

Pennsylvania Department of Environmental Protection

Rachel Carson State Office Building P.O. Box 8469 Harrisburg, PA 17105-8469 July 25, 2001

Bureau of Radiation Protection

717-787-2480 Fax: 717-783-8965

2001

06 TNF

2

Larry Harmon, Plant Manager Safety Light Corporation 4150-A Old Berwick Road Bloomsburg, PA 17815

Re: DEP Groundwater/Surface Water Assessment

Dear Mr. Harmon:

Enclosed with this letter is a copy of the Final End of Project Report for Groundwater and Surface Water Assessment of the Safety Light Corporation Site (Volume I of II). Volume II consists of sample data sheets and analytical procedures and is not included because of its large size. It can be provided at a later date at your request if you consider it important to have in your records.

Please be aware that the results for radium analysis contained in this report are not valid due to the analytical method used by the laboratory. The Department of Environmental Protection considers the results for the non-radiological analysis and all radiological analysis other than radium valid.

If you have any questions regarding the report provided with this letter or wish to have a copy of Volume II, please contact Robert Maiers of my office at 717-783-8979.

Sincerely,

David J. Allard, CHP Director Bureau of Radiation Protection

cc: R.

R. Maiers, BRP w/o enclosure M. Miller, NRC w/o enclosure

FINAL END OF PROJECT REPORT FOR GROUNDWATER AND SURFACE WATER ASSESSMENT SAFETY LIGHT CORPORATION SITE

VOLUME I OF II

SOUTH CENTRE TOWNSHIP COLUMBIA COUNTY, PA

PADEP CONTRACT NO. ME-359186 (GTAC-3) WORK REQUISITION NO. 34-030

Prepared for:

Commonwealth of Pennsylvania Department of Environmental Protection Northcentral Regional Office 208 W. Third Street - Suite 101 Williamsport, PA 17701

Prepared by:

Foster Wheeler Environmental Corporation One Oxford Valley, Suite 200 Langhorne, PA 19047

March 2001

Prepared by:

Christine Joblon Project Manager

Approved by:

James N. DiClementi, P.E Program Manager

NOTICE

The information in this document has been funded by the Pennsylvania Department of Environmental Protection (PADEP) under Contract No. ME-359186 to Foster Wheeler Environmental Corporation (FWENC). This document has been formally released by PADEP.

SAFETY LIGHT CORPORATION SITE END OF PROJECT REPORT

,

Table of Contents (Page 1 of 2)

,

<u>Secti</u>	on Page
1.0	INTRODUCTION
2.0	PROJECT BACKGROUND 1
3.0	SUMMARY OF FIELD ACTIVITIES33.1Groundwater Sample Collection53.2Surface Water Sample Collection63.3Residential Well Sample Collection73.4Waste Classification Sample Collection73.5Radiological Screen of Sampling Equipment, Samples and IDW73.6QA/QC Sample Collection73.7Decontamination Procedures8
4.0	SUMMARY OF ANALYTICAL RESULTS.84.1Analytical Protocols.84.2Groundwater Analytical Results94.2.1VOC and SVOC Results.94.2.2Inorganic Analyte Results104.2.3Radiological Results104.3Surface Water Analytical Results124.3.1Inorganic Analyte Results124.3.2Radiological Results124.3Radiological Results124.4Residential Well Water Analytical Results124.4.1VOC and SVOC Results124.4.2Inorganic Analyte Results134.4.3Radiological Results134.5Waste Classification Analytical Results134.6QA/QC Sample Collection Results14
5.0	COMPARISON OF PREVIOUS ANALYTICAL DATA TO CURRENT DATA 14
6.0	INVESTIGATION DERIVED WASTES
7.0	CONCLUSION

GTAC3/4030/0019

• 1

SAFETY LIGHT CORPORATION SITE END PROJECT REPORT

Table of Contents (Page 2 of 2)

List of Figures

Figure 1:	Site Location Map	2
	Site Layout and Sample Location Map	

List of Tables

Table 3-1:	Groundwater and Well Depths	5
	Inorganic Analytes in Exceedance of the PADEP Act 2 MSCs	
Table 4-2:	Radionuclides in Exceedance of the EPA Drinking Water MCLs1	1

List of Appendices

. .

Appendix A:	Field Water Quality Parameters	
4 1º D	A 1 2 10 m 11	

Appendix B: Analytical Summary Tables

Appendix C: Laboratory Analytical Data (Volume II)

1.0 INTRODUCTION

-

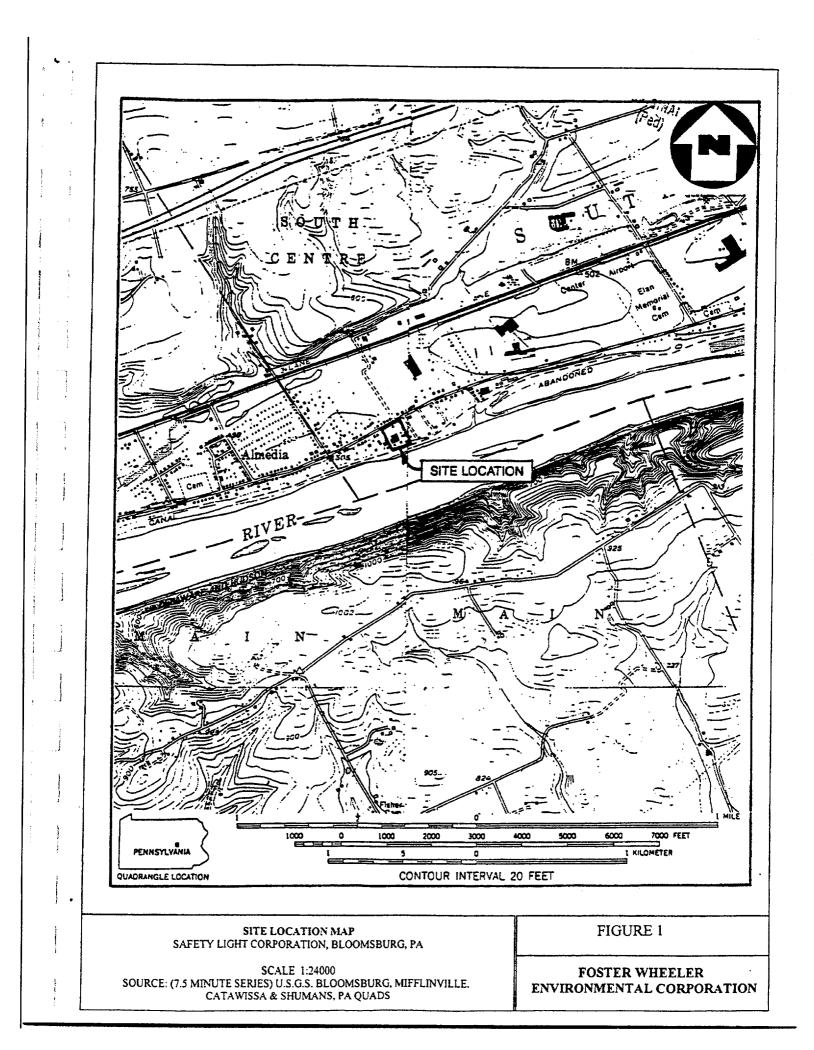
1

• ;

The Pennsylvania Department of Environmental Protection (PADEP) implemented a Hazardous Sites Cleanup Act (HSCA) funded assessment of the Safety Light Corporation (SLC) property located in South Centre Township, Columbia County. Foster Wheeler Environmental Corporation (Foster Wheeler Environmental) was contracted to conduct the site assessment activities. As part of the activities, Foster Wheeler Environmental is submitting this End of Project Report to document the activities completed and to report the analytical findings of the water samples collected. The assessment included the collection and analysis of samples of the following:

- groundwater from monitoring wells located on the site;
- surface water obtained from the adjacent Susquehanna River; and
- nearby residential well water.

This report also contains the Contaminated Materials Handling Plan that details disposal recommendations to PADEP for the Investigation Derived Wastes (IDW). Details on budget and close-out expenditures, as well as final waste disposition documentation, were to be included in this report. This information will be submitted at the end of all project activities. The report is organized as follows:


- Introduction
- Project Background
- Summary of Field Activities
- Summary of Analytical Results
- Contaminated Materials Handling Plan
- Comparison of Previous Analytical Data to Current Data
- Conclusion

2.0 PROJECT BACKGROUND

The SLC Site encompasses an area of approximately 10 acres. The site location is shown in Figure 1. SLC utilizes a 1.5-acre area of the site for its current manufacturing operations. The site has been used since the 1940s to manufacture self-illuminated watches and instrument dials, and other articles containing radioactive materials. Most recently, the facility has been used to manufacture self-illuminating exit signs and other light sources (luminous paints, gas chromatograph foils, and accelerator targets). The facility has also been used for metal finishing and plating.

Radioactive wastes are currently being stored on site. In the past, radioactive wastes were stored and disposed in underground silos, injected into dry wells, spilled, discharged to the sanitary sewer system, and discharged to the Susquehanna River. Additional background and site history, along with other information, is contained in the July 1991, USEPA Preliminary Assessment. Past sampling data is included in a Health Consultation report, dated April 2000, by the Agency for Toxic Substances and Disease Control.

GTAC3/4030/0019

Past sampling events indicated that the site is impacted with radioactive materials, including Tritium, Strontium 90, Cesium 137, Radium 226, Nickel 63, and Americium 241. Other radionuclides, some metals, and to a lesser extent, organic contaminants also exist at the site.

3.0 SUMMARY OF FIELD ACTIVITIES

The primary objective of the scope of work was to perform sample collection and analysis to assess the surface water and groundwater in and around the site. Figure 2 illustrates the site layout and sample locations for groundwater, surface water, and residential well water. A Sampling and Analysis Plan (SAP) for the work was submitted by Foster Wheeler Environmental to PADEP, and approved prior to mobilization. Foster Wheeler Environmental personnel mobilized to the site on August 7, 2000, and completed the field activities on August 9, 2000. Additional field work was conducted on December 19 and 20, 2000, to prepare the IDW for disposal. As part of the field activities, the following types of samples were collected for analysis:

- static water level measurements and the groundwater from 21 monitoring wells located on and around the site;
- surface water (one up-gradient, three down-gradient) from the adjacent Susquehanna River;
- groundwater from two nearby residential wells;
- a composite for each of the waste types generated (solid and liquid) during the field activities; and
- *a* composite of the IDW for disposal facility acceptance requirements.

Field measurements for water quality parameters were collected to determine aquifer stabilization during purging and are included Appendix A. Air monitoring and radiological data were recorded in the field notes.

PADEP contracted Severn Trent Laboratory (STL) to perform chemical and radioactivity analyses on the water and waste characterization samples. Groundwater and surface water samples were analyzed for the following radioactive parameters:

- Gross Alpha radiation;
- Gross Beta radiation;
- Gamma Scan, which included Cesium 137 (CS 137), Cobalt 60 (Co 60); and
- the following radionuclides:
 - Tritium (H_3) ;
 - Strontium 90 (Sr 90);
 - Radium 226 (Ra 226);
 - Carbon 14 (C 14);
 - Nickel 63 (Ni 63);
 - Americium 241 (Am 241); and
 - Polonium 210 (Po 210).

GTAC3/4030/0019

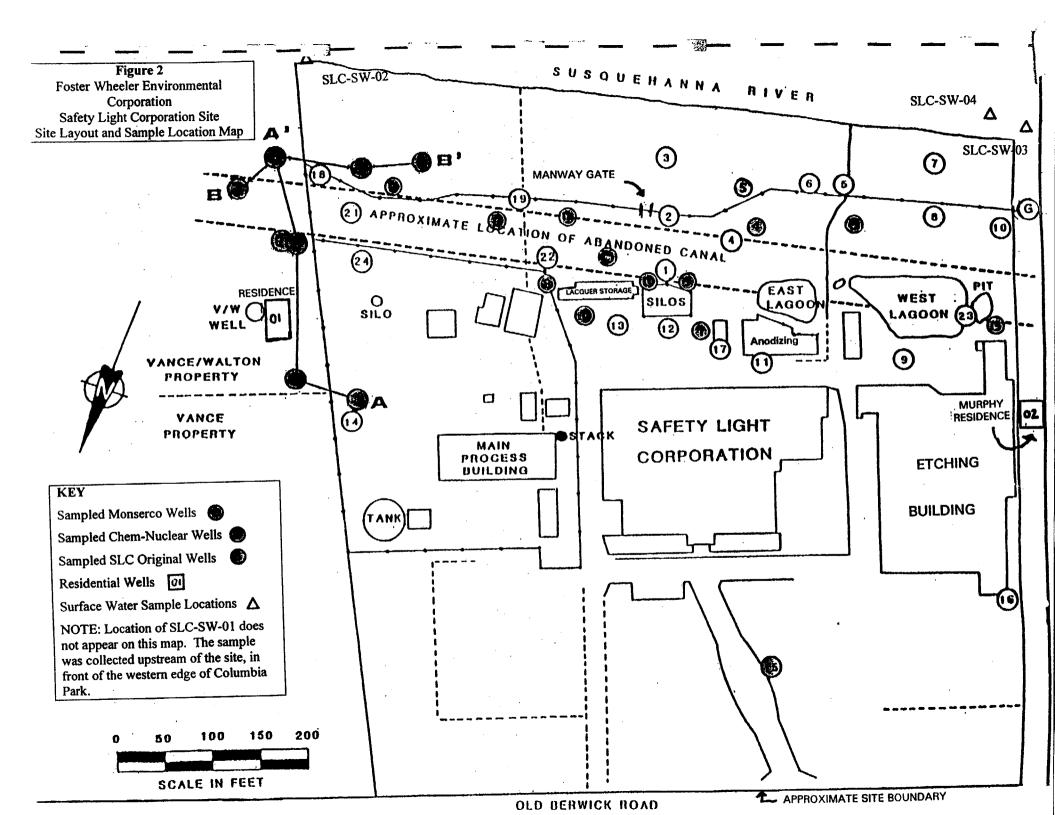


Figure 2 shows the locations all of the monitoring wells found on the site. A total of 23 monitoring wells were selected to be sampled during the field activities, including: thirteen wells installed by Monserco (MS-01 through MS-13), nine wells installed by Chem-Nuclear (CN-A through CN-I), and one Safety Light Corporation well (SL-15). The Monserco and Chem-Nuclear wells were selected because they were in good condition and they were at strategic locations throughout the site. The spatial distribution of the twenty-two wells was considered representative of the site. SL-15 was selected because is was relatively new, in good condition, and was in an up-gradient location of the site. This well was used to establish pre-site "background" conditions. Groundwater samples were collected from 21 of the 23 originally proposed wells. Monitoring wells CN-C and CN-E did not recharge adequately enough after purging to enable samples to be collected.

Whenever possible, at least three volumes of water were purged from the monitoring wells prior to sample collection. Many of the wells purged dry prior to achieving the required three volumes of water. Samples were collected from these wells after recharge without further purging. Water quality parameters were obtained with a Horiba model U-22 to establish that the aquifer groundwater was stabilized. The water quality parameters for each of the wells are located in Appendix A.

Approximately 0.14 feet free-phase product was measured in well MS-07. The product was a thick, black material with a strong petroleum odor. Analytical results of the groundwater sample collected from well MS-07 are discussed in Section 4.2 of this report. Free-phase product was not observed in any of the other wells.

3.2 Surface Water Sample Collection

Samples were collected at four locations along the banks of the Susquehanna River, as directed by PADEP. The approximate locations of the four samples are shown on Figure 2. Surface water sample SLC-SW-01 was collected approximately one mile upstream of the site on the Susquehanna River, within Columbia Park. This location was selected to represent "background", or pre-site conditions of the surface water. Surface water sample SLC-SW-02 was collected on the eastern edge of the site (southeast of the benchmark located near the Vance/Walton property). This sample represented the first location where potential impacts to the surface water would be expected. Surface water sample SLC-SW-03 was collected on the western edge of the site, in front of the Murphy residence property. This sample represented a location downstream of the site, where site impacts could potentially be the greatest on the surface waters. These three samples were collected at the shoreline of the river, approximately three to four feet from the bank. Surface water sample SLC-SW-04 was collected approximately 50 feet upstream from sample SLC-SW-03, further out from the bank, in the free flowing current to assess the impact of the site on water within the natural current.

Each sample was collected by submerging the laboratory-prepared bottles into the river. Care was taken to collect river water that was not impacted by disturbance of nearby sediments. For parameter aliquots requiring preservative, a clean, dedicated laboratory bottle was used to collect

GTAC3/4030/0019

1

ł

VACAN

the sample, and then the sample aliquot was transferred into the appropriate bottle. The sample was then labeled and placed into an iced cooler for shipment to the laboratory. River water samples were not filtered.

3.3 Residential Well Sample Collection

1

ş

i J Foster Wheeler Environmental collected groundwater samples from two nearby residential wells. Samples were collected from either an outdoor spigot or from the whole house intake spigot directly into the laboratory bottles. An in-line filter device was used to obtain the filtered fraction for the TAL inorganics analysis. Sample bottles were labeled and placed into an iced cooler for shipment to the laboratory.

3.4 Waste Classification Sample Collection

Two samples were collected from IDW at the completion of the field activities. A composite sample was collected from the IDW liquids and from the IDW solids to gain representative samples for waste classification analysis of the IDW. The IDW included well purge water, equipment decontamination water, spent PPE, plastic sheeting and tubing which was stored in steel 55-gallon storage drums to await waste classification and disposal. The IDW consisted of one drum of solid waste and 5 partially full drums of liquid waste. Waste classification composite samples, SLC-WC-01 (solid) and SLC-WC-02 (liquid), were collected from the drums of IDW. Both composite samples were analyzed for the full Federal TCLP list, and RCRA Waste Characteristics, Gross Alpha, and Beta Radiation, and Tritium. The IDW was also scanned with a radiological survey meter to determine whether the waste was below the standard of 100 counts per minute (cpm) above established background. The results from the radiological scan were less than 100 cpm above background. Analytical data for IDW is summarized in Section 4 of this report.

Samples were also collected from the waste material for additional analysis required by the disposal facility, and are discussed in detail in Section 6 of this report.

3.5 Radiological Screen of Sampling Equipment, Samples and IDW

All decontaminated sampling equipment, samples leaving the site, and all containerized wastes were scanned with the Eberline ASP-1 survey meter with the HP-260 rod probe for radiological levels before being shipped off-site or stored to await transport and disposal. All screening indicated that the equipment and materials were below the 100 cpm limit.

3.6 OA/QC Sample Collection

QA/QC samples (blind field duplicates and rinsate blanks) were collected. Blind field duplicates were collected for 5% of the total samples collected, and were analyzed for the same parameters as the original sample. Rinsate blanks (if required) were collected from decontaminated sample collection equipment at a rate of 1 per day.

3.7 Decontamination Procedures

.

The majority of the sample collection equipment was dedicated to individual wells. Prior to use, between sample locations, and upon completion of sampling activities, sampling equipment (pumps, tubing, etc.) were decontaminated when required, as detailed in the SAP. The decontamination area was located away from expected sources of contamination to ensure that radiological screening was not impacted by nearby contamination sources. Materials used during sample collection were decontaminated and screened with a radiological survey meter after use to ensure that they were not contaminated with radioactive materials. All wastes generated during decontamination were collected in tubs and transferred to drums appropriately labeled for storage.

4.0 SUMMARY OF ANALYTICAL RESULTS

The laboratory analytical results are discussed below. Appendix B contains the summary tables for analytical data. Appendix C, (included as Volume 2 of this report), contains the laboratory data.

4.1 Analytical Protocols

PADEP contracted STL, in Pittsburgh PA, to perform the analysis, and provided laboratory bottles to Foster Wheeler Environmental. Analytical methods included US EPA SW-846 and 500 Series. PADEP selected the chemical and radiological analytical methods. Groundwater and residential well water sample results for VOCs, SVOCs, and TAL inorganics were compared to the PADEP Medium Specific Concentrations for Organic Regulated Substances in Groundwater, Used Aquifer, Total Dissolved Solids <2500 ug/L, Residential Criteria (PADEP Act 2 MSCs). As directed by PADEP, radiological analytical results for groundwater were compared to the Environmental Protection Agency (EPA) Drinking Water Standards, Maximum Contaminant Levels (MCL) for Radionuclides (EPA Drinking Water MCLs). Surface water organic and inorganic results were compared to Pennsylvania Title 25, Part 1, Subpart A, Chapter 16, Water Quality Toxics Management Strategy, Water Quality Criteria for Toxic Substances, Human Health Criteria. Radiological results for surface water samples are not compared to any criteria. Waste classification sample results were compared to the Federal TCLP and RCRA Characteristics Criteria for waste disposal. Waste classification radiological results have been compared to the disposal facility's criteria for the waste identity profile.

All aqueous samples were analyzed for the inorganic parameters (TAL inorganics), Gross Alpha radiation, Gross Beta radiation, Gamma radiation nuclides, and radionuclides including: tritium (H_3) ; Strontium 90 (Sr 90); Cesium 137 (Cs 137); Radium 226 (Ra 226); Carbon 14 (C 14); Cobalt 60 (Co 60); Nickel 63 (Ni 63); Americium 241 (Am 241); and Polonium 210 (Po 210). Radium 228 (Ra 228) was also run by the laboratory, and is required for comparison to the EPA Drinking Water MCLs. All samples collected for TAL inorganics analysis were analyzed for both filtered (dissolved) and the non-filtered (total) fractions, with the exception of the four river samples. During sample collection, a 0.45 micron in-line filter was used to filter the samples selected for dissolved TAL inorganics analysis.

Groundwater samples were analyzed for VOCs and SVOCs as selected by PADEP prior to field activities. Samples from the two residential wells and three monitoring wells, (MS-09, CN-B, and SL-15) were analyzed for VOCs and SVOCs. The sample from well MS-07 was found to contain free product, and at the direction of PADEP, the water sample collected from MS-07 was analyzed for VOCs and SVOCs. The product was a light non-aqueous phase liquid (LNAPL), and had a petroleum-like odor and a black, viscous, oily appearance. The groundwater sample was slightly turbid water containing small blobs of LNAPL.

Waste classification composite samples (one liquid, one solid) were analyzed for the full Federal TCLP list, and RCRA Waste Characteristics, Gross Alpha, and Beta Radiation, and Tritium.

QA/QC samples (blind field duplicates, rinsate blanks, etc) were to be analyzed as detailed in the Work Plan. Two rinsate blanks were collected; one to be analyzed for organics and TAL inorganics, and the other for TAL inorganics only. However, the blank was not analyzed for organics, as the laboratory failed to log in the organic analysis request for the blank.

4.2 Groundwater Analytical Results

Twenty-one wells were sampled and analyzed for various parameters. Tables 1, 2, 3, and 4, located in Appendix B, summarize the groundwater analytical results for VOCs, SVOCs, total and dissolved TAL inorganics, and radionuclides, respectively.

4.2.1 VOC and SVOC Results

Groundwater samples were collected from four wells for VOC and SVOC analysis. A blind duplicate was collected from well MS-09. VOC analytical results from samples SLC-GW-CN-B, SLC-GW-MS-7, and SLC-GW-SL-15 were below the PADEP Act 2 MSCs. Sample SLC-GW-MS-09 exceeded only the PADEP Act 2 MSC for vinyl chloride at 3.4 ug/L. The PADEP Act 2 MSC for vinyl chloride is 2 ug/L. The blind duplicate (SLC-GD-MS-09) of SLC-GW-MS-09 was below all PADEP Act 2 MSCs, including the MSC for vinyl chloride. SVOC analytical results for samples SLC-GW-CN-B, SLC-GW-MS-7, SLC-GW-SL-15, and SLC-GD-MS-09 were below the PADEP Act 2 MSCs. Sample SLC-GW-MS-09 exceeded the PADEP MSC for bis(2-ethyhexyl)phthalate of 6 ug/L with a result of 14 ug/L.

As discussed previously, LNAPL was observed in well MS-7 during sample collection. The sample was predominantly water and contained a very small amount of product. Although elevated organic concentrations may have been anticipated, VOC analytical results were non-detect for all VOCs except acetone, and extremely low levels of SVOCs were present in the sample. These low levels of organics may be due to the fact that the sample was predominantly water, and little or no product was in the aliquot that was analyzed by the laboratory.

4.2.2 Inorganic Analyte Results

Twenty-one groundwater samples and one blind duplicate were analyzed for total (unfiltered) and dissolved (filtered) TAL inorganics. Results from several groundwater samples exhibited exceedances of the PADEP Act 2 MSCs for inorganics. The range of concentrations and the number of samples in exceedance of the PADEP Act 2 MSCs are shown on Table 4-1, below. The majority of exceedances occurred in the unfiltered sample analyses. Analytical results of several filtered samples exhibited an exceedance of the PADEP Act 2 MSC for thallium. Analytical results of all other filtered samples were below the PADEP Act 2 MSCs. It should be noted that the majority of samples contained significant suspended solids or sediments. Based on the comparison of dissolved to total fraction results, the presence of inorganics may be attributed to the sediments rather than the groundwater. There may also have been some break-through during filtering due to the high sediment content of the groundwater. When break-through was noted, the fraction was re-filtered with a new in-line filter and placed into a clean bottle.

ANALYTES IN EXCEEDANCE	NUMBER OF SAMPLES IN EXCEEDANCE	ANALYTE RANGE ug/L	PADEP ACT 2 MSC ug/L
ANTIMONY	1	7.8	6
ARSENIC	3	55-234	50
BARIUM	1	2470	2000
BERYLLIUM	4	4.6-16.2	4
CADMIUM	2	14.3-78.7	5
CHROMIUM	4	157-589	100
LEAD	13	9.7-689	5
NICKEL	6	129-559	100
SILVER	1	189	100
THALLIUM	20	4.2-43.6	2
VANADIUM	14	4.5-137	2.1
ZINC	1	21100	2000

TABLE 4-1 INORGANIC ANALYTES IN EXCEEDANCE OF THE PADEP ACT 2 MSCs

4.2.3 Radiological Results

Twenty-one groundwater samples and one blind duplicate were analyzed for radiological nuclides. The Gross Alpha analysis had a range of results from non-detect to 3580 pCi/L. The Gross Beta results ranged from non-detect to 66,500 pCi/L. The H₃ results ranged from non-detect to 9050 pCi/L. The Gamma Scan indicated that Cs 137, Co 60, and Pb 214 were present in the groundwater samples. Cs 137 results ranged from non-detect to 1830 pCi/L. Co 60 results ranged from non-detect to 4.07 pCi/L. Lead 214 results ranged from non-detect to 197 pCi/L. Individual radiological scans indicated that Ra 226, C 14, Sr 90, Nil 63, Am 241, and Po210 were present in the groundwater samples. Results for Ra 226 ranged from non-detect to 95.5 pCi/L. C14 results ranged from non-detect to 16.6 pCi/L. Sr 90 results ranged from non-detect

to 29,500 pCi/L. Ni 63 results ranged from 3.02 to 83 pCi/L. Am 241 results ranged from nondetect to 1.46 pCi/L. Results for Po 210 ranged from non-detect to 110 pCi/L.

When compared to the EPA Drinking Water MCLs, numerous sample results were in exceedance of the standards. The following table details the exceedances for the groundwater samples. Note that the EPA Drinking Water MCLs have standards for gross alpha, gross beta, radium 226/radium 228, tritium, and strontium only. The laboratory report states that when strontium 90 is present, it usually causes elevated radium 228 results. The radium 228 result is used in a calculation to obtain the radium 226 result. This then causes an over-correction to the radium 226 results, hence the large negative values of radium 226. The majority of radium exceedances were in samples containing elevated strontium 90 concentrations, and according to the laboratory, the radium results may be erroneous.

TABLE 4-2

RADIONUCLIDES IN EXCEEDANCE OF THE EPA DRINKING WATER MCLs

Sample ID	Gross Alpha	Gross Beta	Tritium	Radium 226/ 228	Strontium
EPA Drinking Water	15	50	20,000	5*	8
MCL (pCi/L)					
SLC-GW-CN-A	301	3820	1980	16.9/13.3	21
SLC-GW-CN-D	64	200	5560	53.6/38.9	68.9
SLC-GW-CN-H	17.8	21.5	2720	1.02/0.867	0.205
SLC-GW-CN-I	26.6	47.7	1820	1.52/0.872	1.36
SLC-GW-MS-01	52.1	755	4290	-279/181	345
SLC-GW-MS-02	20	153	9050	-86.1/48.5	87.6
SLC-GW-MS-03	39.1	371	5790	-37.8/26.5	44.5
SLC-GW-MS-04	496	9650	3780	-979/615	6450
SLC-GW-MS-05	387	866	2860	56/95.5	159
SLC-GW-MS-06	264	2100	4210	-61.8/44.2	140
SLC-GW-MS-07	25.7	106	1600	-14.8/9.58	35.5
SLC-GW-MS-08	89.3	1490	5700	-360/237	696
SLC-GW-MS-09	413	34,200	3830	-7330/3950	10,000
SLC-GD-MS-09	1570	34,200	3600	-7580/4710	9410
SLC-GW-MS-10	3580	66,500	2940	-17,900/114,000	29,500
SLC-GW-MS-11	144	2190	1510	-676/439	1110
SLC-GW-MS-12	27.4	67.7	1830	-313/204	351
SLC-GW-MS-13	70.2	99.3	2960	-0.167/7.12	10.6
SLC-GW-SL-15	3.14	7.83	325	-12.1/8.33	1.03

* Radium 226 and Radium 228 results are summed and compared to a total standard of 5 pCi/L. Negative numbers were considered non-detects, and were zeroed when summed to gain a conservative estimate for the sum of the two isotopes.

Note: results do not include laboratory reported error result.

Bold results indicate exceedance.

GTAC3/4030/0019

4.3 Surface Water Analytical Results

Four surface water samples were collected from the Susquehanna River. No surface water samples were analyzed for VOCs and SVOCs as per the SAP. Tables 5 and 6, located in Appendix B, summarize the surface water analytical results for total TAL inorganics and radionuclides, respectively.

4.3.1 Inorganic Analyte Results

1

Four surface water samples were analyzed for total (unfiltered) TAL inorganics. Analysis of samples SLC-SW-01, SLC-SW-02, SLC-SW-03, and SLC-SW-04 indicated that the over half of the inorganics analyzed for were non-detect. Sample results for antimony, beryllium, cadmium, chromium, cobalt, lead, mercury, nickel, selenium, silver, thallium, vanadium, and cyanide were non-detect for all samples. The remaining analytes were present in levels above detection levels. However, when comparing the results to the Water Quality Criteria for Toxic Substances, no surface water sample results exceeded the criteria for inorganics.

4.3.2 Radiological Results

Four surface water samples were analyzed for radiological nuclides. The Gross Alpha analysis indicated non-detect levels. The Gross Beta results ranged from non-detect to 3.3 pCi/L. The H₃ results ranged from 260 to 390 pCi/L. The Gamma Scan indicated that Cs 137 and Co 60 were present in the surface water samples. Cs 137 results ranged from non-detect to 2.9 pCi/L. Co 60 results were non-detect. Individual radiological scans indicated that Ra 226, C 14, Sr 90, Ni 63, Am 241, and Po 210 were present in the surface water samples. Results for Ra 226 ranged from 0.325 to 0.553 pCi/L. C 14 results ranged from 0.442 to 3.08 pCi/L. Sr 90 results ranged from non-detect to 19.5 pCi/L. Ni 63 results ranged from 6.12 to 13.1 pCi/L. Am 241 results ranged from non-detect to 0.073 pCi/L. Results for Po 210 ranged from non-detect to 0.0417 pCi/L.

4.4 Residential Well Water Analytical Results

Two samples and one blind duplicate were collected from residential wells. All samples were analyzed for VOCS, SVOC, total and dissolved TAL inorganics, and radiological parameters. Tables 7, 8, 9, and 10, located in Appendix B, summarize the groundwater analytical results for VOCs, SVOCs, total and dissolved TAL inorganics, and radionuclides, respectively.

4.4.1 VOC and SVOC Results

VOC and SVOC analysis of the residential well water indicated that no results were in exceedance of the PADEP Act 2 MSCs.

4.4.2 Inorganic Analyte Results

The lead result from one of the unfiltered residential well samples was found to be in exceedance of the PADEP Act 2 MSC of 5 ug/L. The concentration of lead in SLC-RW-02, and its blind duplicate, SLC-RD-02, was 5.5 and 5 ug/L, respectively. Lead concentrations were non-detect in the filtered fraction of the same sample. Both the unfiltered and filtered sample results for copper in SLC-RW-02 and blind duplicate, SLC-RD-02, exceeded the PADEP Act 2 MSC of 1000 ug/L. Sample results for total copper in SLC-RW-02 were 1210 and 1220 ug/L, respectively. Sample results for dissolved copper in SLC-RW-02F and SLC-RD-02F were 1530 and 1580 ug/L, respectively. All other inorganic results were below the PADEP Act 2 MSCs for the residential well samples.

4.4.3 Radiological Results

The residential well water samples were analyzed for radiological nuclides. The Gross Alpha analysis indicated non-detect to 0.879 pCi/L. The Gross Beta results ranged from 2.3 to 2.58 pCi/L. The H₃ results ranged from 1170 to 2180 pCi/L. The Gamma Scan indicated that Cs 137 and Co 60 may be present in the groundwater samples. Cs 137 results ranged from non-detect to 6.24 pCi/L. Co 60 results were non-detect. Individual radiological scans indicated that Ra 226, C 14, Sr 90, Ni 63, Am 241, and Po 210 may be present in the groundwater samples. Results for Ra 226 ranged from non-detect to 0.209 pCi/L. C14 levels were non-detect. Sr 90 results ranged from 0.378 to 0.515 pCi/L. Ni 63 results ranged from non-detect to 4.32 pCi/L. Am 241 results ranged from 0.0216 to 0.0497. Results for Po 210 ranged from non-detect to 0.109 pCi/L.

No results from samples collected from the residential wells exceeded the EPA Drinking Water MCLs.

4.5 Waste Classification Analytical Results

Two waste classification samples were collected from the IDW generated during the sampling activities. Table 11, in Appendix B, summarizes the Waste Classification analytical results for the IDW. Sample SLC-WC-01 (solid IDW) results were below the TCLP and RCRA Characteristic criteria. Radiological results for Gross Alpha, Gross Beta, Tritium, as well as, the groundwater analytical results collected during this investigation, indicated that the solid material is not classified as a low-level radiological waste. Sample SLC-WC-02 (liquid IDW) results indicated that the waste is a RCRA Characteristically Hazardous Waste for Lead. The lead result of 15.5 mg/L exceeds the Federal TCLP criteria for lead of 5 mg/L. The analytical results for the liquid waste indicated that the waste will be handled and disposed of as a Hazardous Waste. Disposal requirements and additional details for the IDW are described in Section 5.0 of this report.

GTAC3/4030/0019

4.6 OA/OC Sample Collection Results

Results of blind duplicate samples and rinsate blanks are reported on the summary tables in Appendix B.

5.0 COMPARISON OF PREVIOUS ANALYTICAL DATA TO CURRENT DATA

Previous analytical data was provided to FWENC by PADEP in two documents, "Preliminary Assessment of Safety Light Corporation" prepared for the Hazardous Site Control Division, Environmental Protection Agency (EPA) by NUS Corporation, July 17, 1991, and "Characterization Survey of Safety Light Corporation Site at Bloomsburg, PA", prepared by Monserco Limited. The Monserco document was submitted to the Nuclear Regulatory Commission on September 5, 1996. The available and applicable data pertaining to groundwater sample analysis contained in these documents was tabulated for comparison to the current groundwater data detailed in this report. There was insufficient documentation pertaining to previous residential and surface water samples to make a comparison to current data (i.e., actual location of sample collection unclear). Table 12 in Appendix B contains the comparison data, and the discussion of the comparison follows below.

Results for radiological analyses of groundwater for ChemNuclear wells (Wells A, B, C, D, E, F, G, H, I, and Safety Light Well 15) were presented in the NUS Corporation document. Analysis was performed on groundwater samples for gross alpha, gross beta, tritium, Cs-137, and St-90 in 1990 by ChemNuclear and in 1991 by NUS Corporation. Comparison of past tritium results with current results shows a significant decrease in tritium concentrations in the groundwater. The sample data shows a decrease of at least an order of magnitude in tritium concentrations from the previous sampling events. The comparison of gross alpha and gross beta results indicates a moderate to significant increase of radionuclide concentrations in the majority of samples. Groundwater samples from wells CN-A and CN-D show the most significant increase in alpha and beta emitters. The majority of Cs-137 and St-90 results indicate little change from the past sampling events to the current event.

Incomplete data was provided in the Monserco Limited document. Groundwater samples were collected from Monserco Wells 1 through 13 for radionuclide, VOC, and metals analyses. A summary of analyses was provided in the document, however, actual concentrations for each compound or analyte were not detailed. More appropriate data may have been contained in the appendices of the document however, they were not provided to FWENC when it was determined that the appendicies were not present in the document.

6.0 INVESTIGATION DERIVED WASTES

On December 19 and 20, 2000, waste handling activities were conducted on site to prepare the IDW for shipment and to meet the disposal facilities requirements (Envirocare, Utah). The facility requires that no free liquids be present in the wastes. The waste consists of purge water and decontamination water, PPE and plastic. The liquid waste was solidified, in the DOT-

GTAC3/4030/0019

1.1.4

÷

approved shipping drums, with a solidification/stabilization agent that produced a lowtemperature cure (Aquaset). The drums were placed onto drum spill pallets for secondary containment until shipment to the facility. The pallets and the drums were then tarped. The drums were stored in the temporary enclosed storage facility at the site. The drums were appropriately labeled as "hazardous waste", as required for storage and shipping. The federal Department of Transportation (DOT) does not require wastes with less than 2 nCi/g of radioactive nuclides to be labeled as a radioactive waste.

As discussed previously, the waste was sampled for waste characterization during the investigation activities. The presence of radionuclides in the waste required that the waste be disposed of at a low-level radioactive waste disposal facility, however, the waste is not classified as a low level radioactive or mixed waste based on analytical results. The solidified liquid and solid (PPE) waste will be considered one waste stream for the facility documentation. The wastewater is also considered characteristically hazardous for lead (D008), based on the TCLP analysis performed during the field investigation activities. Treatment of the material with the solidification/stabilization agent changed the physical state of the waste, from liquid to solid, however, the waste remains a characteristically hazardous waste.

On December 20, 2000, two composite samples of the waste were collected for analysis to ensure that the waste meets the facility's disposal requirements. In order to meet the facility disposal requirements, a free-liquids (Paint Filter Liquids Test) analysis was performed on one waste sample. The sample was sent (December 21, 2000) to STL Laboratory for analysis. Once the result was received, the waste profile application was submitted to the Envirocare facility for approval of the waste profile. The waste profile has been preliminarily approved, and the second composite sample of the waste was shipped to the Envirocare facility on March 5, 2001. The sample was submitted to Envirocare under chain-of-custody, with the Pre-sample Shipment Profile, to meet their testing requirements. Once the waste is tested and final waste shipment approval is completed by the facility, a contract for disposal will completed with FWENC. The waste will then be transported by a permitted and approved transporter, and disposed of as a solid hazardous waste to the Envirocare facility.

All federal, state and local regulations will be followed during the material handling, shipping and disposal. The waste drums do not have screened by radiological survey meter prior to shipment for exposure dosage because the waste is below the DOT requirement of 2 nCi/g, and is not considered a radioactive waste. However, in order to meet Envirocare's acceptance requirements, the waste must be documented on a Radiological Waste Manifest. Since the waste is classified as a hazardous waste, the Pennsylvania Hazardous Waste Manifest will also accompany the waste shipment (Utah does not have a state hazardous manifest). Radiological and hazardous waste manifests will be completed by Foster Wheeler Environmental and signed by a PADEP representative (as generator) to accompany the waste to the disposal facility. Documentation regarding final disposition of the waste will be submitted to PADEP in an addendum letter, and will include all shipping documentation.

7.0 CONCLUSION

Sample collection and analysis generated results that indicate that the groundwater and, potentially, the surface water at the Safety Light Corporation site are impacted by previous site activities. The available data is limited, and the collection and evaluation of additional data may assist in better quantifying actual and potential future impacts to the environment from the contamination existing in the site media.

Analytical results indicate that the groundwater is impacted by radionuclides and some inorganic analytes. The majority of groundwater sample results confirm the presence of radionuclides above non-detect levels. Comparison of the groundwater analytical results indicated that many samples exceeded the EPA Drinking Water MCLs for gross alpha, gross beta, radium 226 and radium 228 (combined), and strontium 90. The highest concentrations of radionuclides were found in the groundwater collected from the monitoring wells closest to the location of the underground waste disposal silos, wells MS-09 and MS-10. None of the residential well sample results were found to exceed the EPA Drinking Water MCLs for radionuclides.

Analytical results of groundwater samples collected from the monitoring wells indicate that numerous inorganic analytes were detected at concentrations that exceed the PADEP Act 2 MSCs. Some of these exceedances may be attributed to the elevated level of suspended solids in the groundwater samples. The majority of the inorganic exceedances were detected in the unfiltered fraction of the groundwater samples. Thallium was the only inorganic analyte detected above the PADEP Act 2 MSCs in the filtered fraction of the monitoring well samples. Lead and copper were found to be in exceedance of the PADEP Act 2 MSCs in one of the residential well water samples. As copper was not detected in other groundwater samples, the elevated copper levels may be attributed to the residential plumbing system.

Low-level organic contaminants were detected in the groundwater samples collected from the site. Groundwater samples were collected from selected monitoring wells and analyzed for VOCs and SVOCs. Vinyl chloride and bis(2-ethyhexyl)phthalate were the only organic contaminants to exceed the PADEP Act 2 MSCs, and were detected in samples from only one monitoring well, MS-09. Bis(2-ethyhexyl)phthalate is a very common laboratory contaminant. However, in this case, it was not consistently present in the laboratory blanks, which would have identified it as a laboratory contaminant. None of the residential well water samples exceeded the PADEP Act 2 MSCs or SVOCs. The majority of the residential well sample organic results were non-detect.

Analytical results from surface water samples collected from the Susquehanna River showed no obvious impact to the river water from site activities. Analyses for radionuclides showed that low concentrations of radionuclides are present in the surface waters of the Susquehanna River. Standards for radionuclide concentrations in surface water were not used for data comparison, as none were determined applicable for this event by PADEP. All surface water sample results were below the inorganics Water Quality Criteria for Toxic Substances. Surface water samples were not analyzed for VOCs and SVOCs.

APPENDIX A

FIELD WATER QUALITY PARAMETERS

GTAC3/4030/0019

s,

evel evel er in Well - Static Water Lo ter per Volume .163 x Radius ²	397 399		- in. ft. in.				
er in Well - Static Water Lo 	<u>3.99</u>		ft. in.				
er in Well - Static Water Lo 	<u>3.99</u>		ft. in.				
- Static Water Lo							
- Static Water Lo		=	22 39				
- Static Water Lo		=	22 39				
ter per Volume		. =	22 39				
ter per Volume	<u></u>	·	<u> 62 J </u>		4		
Puraed =	12		gallone				
		Turbidity	DO				
ime pH	Cond.		50	Temp.	Sal.	TDS	OR
48 66	0.267	665	12.34	1emp. 11,2	Sal.	TDS 0.17	<u>.</u>
48 66 53 6.0	0.267 6271	665 34.5		17.2 133	1		261
48 66 53 6.0 58 6.0	0.267 6.271 6.272	265 34.5 -10	12.34	17.2	00	0.17	261 242
48 66 53 6.0	0.267 6271	665 34.5	12.34 0.00	17.2 133	00 02	0.17 0.18	261 242
48 66 53 6.0 58 6.0	0.267 6.271 6.272	265 34.5 -10	12.34 0.00 0.00	11.2 133 13.2	000 000 0.0	0.17 0.18 0.18	261 242 249
48 66 53 6.0 58 6.0	0.267 6.271 6.272	265 34.5 -10	12.34 0.00 0.00	11.2 133 13.2	000 000 0.0	0.17 0.18 0.18	OR 261 292 299 299
	urged =	Purged = 12	urged = 12	urged = <u>12</u> gallons			x .163 x ² = <u>3.7</u> gal./co.lum Purged = <u>12</u> gallons

.

· · · · · ·

٠

3

1

•]

•

* •

> i 7

. *

2 ______

•

•. j

. . .

4 A

-

•

.

•

"

1911 - N. 191

. .

• ,

.

Ŧ

the second

Well Diamo)C)	25.17		ft.	·			
			2		in.				
Static Wate	er Level		1004						
Well Radiu	!5				in.				
Height of \	Water in V	Veli							
T = Well Dr	epth - Stat	ic Water Le	evei						
2317	-	/	6. 4	_ = _ 7	13		ft		
<u> </u>	· · ·	_ x .163	×	1	=	, <u> </u>		gal./d	
Fotal Gallo	ons Purge	d =	/		_galions			E 1997 - 1997	· ·
		d =	/		_galions				
Vater Qual		рН	/ Cond.	Turbidity	_ galions DO	Temp.	Sai.	TDS	ORP
Nater Qual	lity	.					Sal.		
Vater Qual nitial volume	lity	рН	Cond.	Turbidity	DO	Temp.	Sal.		
Water Qual nitial volume volume volume	lity	рН	Cond.	Turbidity	DO	Temp.	Sal.		
Water Qual nitial volume volume volume volume	lity	рН	Cond.	Turbidity	DO	Temp.	Sal.		
Total Gallo Water Qual nitial Volume Volume Volume Volume Volume	lity	рН	Cond.	Turbidity	DO	Temp.	Sal.		

•

•

. .

1

1

a sono - a s

 A second sec second sec

Second Sec

•

• • _{•.}

Well I.D	Cri	- F			Date	8/9/0	ú		
Well Dept	h (from TO	C)	25 29						
Well Diam									
Static Wat									
Well Radiu	JS		(ìn.				
Height of	Water in V	Vell							
T = Well D	epth - Stat	ic Water Le	evel						
2	1.09		6.17	_ =	21.92		ft.		
Gallons =		Radius ²	x	} ²	=	3.6		gal. / volu	he
Total Galle	ons Purge	d =	Ìь		galions				
Water Qua	ılity								
Water Qua	Time	рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Initial	Time 12.21	7.3	0257	★-10	DO -].85	Temp.	Sal.	TDS	0RP
Initial 1 volume	Time 12.21 12.57	7.3	0247	ו10 ≪10	9.85 11,41	16.3 16.1			
Initial 1 volume 2 volume	Time 12.21	7.3 7.2 7.0	0247 0.281 0241	×-10 ≪-10 ≪-10	<u> </u>	16.3 16.1 15.3	-	-	149 157 143
Initial 1 volume 2 volume 3 volume	Time 12.21 12.5'7	7.3 7.2 7.0 7.1	0 247 0.281 0 241 0.284	★-10 ★-10 ★-10 ★10	9.85 11.41 6.82 8.16	16.3 16.1 15.3 15.2	-	-	149 157
Initial 1 volume 2 volume	Time 12.21 12.37	7.3 7.2 7.0	0247 0.281 0241	×-10 ≪-10 ≪-10	<u> </u>	16.3 16.1 15.3	-	-	149 157 143
Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume	Time 12.21 12.5'7	7.3 7.2 7.0 7.1	0 247 0.281 0 241 0.284	★-10 ★-10 ★-10 ★10	9.85 11.41 6.82 8.16	16.3 16.1 15.3 15.2	-	-	149 157 143 171
Initial 1 volume 2 volume 3 volume 4 volume 5 volume	Time 12.21 12.5'7	7.3 7.2 7.0 7.1	0 247 0.281 0 241 0.284	★-10 ★-10 ★-10 ★10	9.85 11.41 6.82 8.16	16.3 16.1 15.3 15.2	-	-	149 157 143 171
Initial 1 volume 2 volume 3 volume 4 volume 5 volume 7 volume Purge Meti	Time 12-3-1 12-3-7 	7.3 7.2 7.0 7.1 7.1 7.1	0 257 0.251 0 241 0.254 0.254 0.281	★-10 ★-10 ★-10 ★10	9.85 11.41 6.72 5.16 8.35	16.3 16.1 15.3 15.2 15.1		-	149 157 143 171
Initial 1 volume 2 volume 3 volume 4 volume 5 volume 7 volume Purge Meti	Time 12-3-1 12-3-7 	7.3 7.2 7.0 7.1 7.1 7.1	0 257 0.251 0 241 0.254 0.254 0.281	×-10 ×-10 ×-10 ×-10 ×-10 ×-10	9.85 11.41 6.72 5.16 8.35	16.3 16.1 15.3 15.2 15.1		-	149 157 143 171
Initial 1 volume 2 volume 3 volume 4 volume 5 volume 7 volume Purge Meti	Time 12-3-1 12-3-1 	7.3 7.2 7.0 7.1 7.1 7.1	0 257 0.281 0 251 0.281 0.281 0.281	×-10 ×-10	9.85 11.41 6.72 5.16 8.35	16.3 16.1 15.3 15.2 15.1		-	149 157 143 171

.

* : . .

•

a farmer.

• ;

.

•

1

1.1

· · · ·

.

•

Anna Tanata

. . . .

And and the

•••*

Well I.D. <u>Ć</u> N -	G	_		Date	8700			
Well Depth (from T	oc)i	19.96		ft.	• 1			
Well Diameter		2		in.				
Static Water Level	6	1.05		ft.				
Well Radius		1		in.				
Height of Water in	Well							
T = Well Depth - Sta	atic Water Le	vel						
141.46		8.05	=	HĤI		ft		
Gallons = Tx.163 ۱۱ ^۲ ۱۱	x Radius ² x .163	×				-	_gal. /v . v:	*2
Total Gallons Purg Water Quality	x Radius ² x .163 ed =	×				-	_gal. / , , . :	*6
Gallons = T x .163 ۱ ^۲ ۱ ۲۰۱۹ ۲otal Gallons Purg	x Radius ² x .163	×		gallons		-	gal. / , ,	
Gallons = T x .163 \\ ⁽ \\ Total Gallons Purg Water Quality Initial 1 volume	x Radius ² x .163 ed =	×		gallons		-		
Gallons = T x .163 \\ {\\ Total Gallons Purg Water Quality Initial 1 volume 2 volume	x Radius ² x .163 ed =	×		gallons		-		<i>۳</i>
Gallons = T x .163 \\ ⁽ \\ Total Gallons Purg Water Quality Initial 1 volume	x Radius ² x .163 ed =	×		gallons		-		
Gallons = T x .163 \\ {\\ Total Gallons Purg Water Quality Initial 1 volume 2 volume 3 volume	x Radius ² x .163 ed =	×		gallons		-		
Gallons = T x .163 \\ {\\ Total Gallons Purg Water Quality Initial 1 volume 2 volume 3 volume 4 volume	x Radius ² x .163 ed =	×		gallons		-		% C
Gallons = T x .163 (\ {\\ Total Gallons Purg Water Quality Initial Volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Method:	x Radius ² x .163 ed = 	x		gallons	Temp.	Sal.	TDS	
Gallons = T x .163 (\ {\\ Total Gallons Purg Water Quality Initial Volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Method:	x Radius ² x .163 ed = 	x		gallons	Temp.	Sal.	TDS	
Gallons = T x .163 \\ {\\ Total Gallons Purg Water Quality Initial 1 volume 2 volume 3 volume 5 volume 6 volume 7 volume	x Radius ² x .163 ed = 	x		gallons	Temp.	Sal.	TDS	

.

.)

• .

· . • . • .

•

- 3

ij

a na an Abhana an an Ann

1

. . . .

;

rve# 1.D	CN	-11	_		Date	8/8/00		_	
Vell Depti	h (from TO	C)	21.75		_ft.				
/ell Diam	eter	-	2		in.				
tatic Wat	ter Level	1	150		ft.				
Vell Radiu	JS		1		in.				
eight of	Water in V	Vell							
= Well D	epth - Stat	ic Water Le	vel						
21	15		11.50	_ =	125		ft.		
1				÷					
				i		1.7		gal./, 1.4	ı
otal Gali	ons Purge			i		1.7		.gal./L .≺	1
otal Galli ater Qua	ons Purge ality Time	d =	IC Cond.	Turbidity	_ galions	Temp.	Sal.	TDS	OR
otal Galio ater Qua	ons Purge ality	d =	10 Cond.	Turbidity	_galions DO	Temp.			ORF 21/
ater Qua tial volume volume	ons Purge ality Time	d =	IC Cond.	Turbidity	_ galions	Temp.	Sal.	TDS	
ater Qua tial volume volume volume	ons Purge ality Time	d =	10 Cond. Con	Turbidity <	galions 	Temp.	Sal.	TDS	ORF 21/
ater Qua tial volume volume volume volume	ons Purge	d =	Cond. Cold	Turbidity ✓ ·₁.: ><βζή	galions 	Temp. <i>1</i> 7 . 1 <i>1</i> 3 7 <i>i</i> 5 0 <i>i</i> 5 5 <i>i</i> 5 5	Sal.	TDS	ORI - 1 / - 1 - - 1 - - 1 - -
ater Qua itiai volume volume volume volume volume	ons Purge ality Time	d =	10 Cond. Con	Turbidity <	galions 	Temp. <i>i 7. i</i> <i>i 3. j</i> <i>i 5.</i> 0. <i>i 5.</i> 5.	Sal.	TDS	ORI - 1 / - 1 × - 4 f i
otal Gali Vater Qua itial volume volume volume volume volume volume	ons Purge	d =	Cond. Cold	Turbidity ✓ ·₁.: ><βζή ><βζή ✓	galions 	Temp. <i>1</i> 7 . 1 <i>1</i> 3 7 <i>i</i> 5 0 <i>i</i> 5 5 <i>i</i> 5 5	Sal.	TDS 	ORI - 1 / - 1 - - 1 - - 1 - -
otal Galia Vater Qua itial volume volume volume volume volume volume	hod:	d =	10 Cond. C 297 C 297 C 318 C 322 C 322 C 322 C 322 C 322 C 324 C 325 C 3	Turbidity <	gallons	Temp. 17.1 13.7 15.5	Sal.	TDS 	ORI - 1 / - 1 - - 1 - - 1 - -
otal Galia /ater Qua hitial volume volume volume volume volume volume urge Met	hod:	d =	10 Cond. C 297 C 297 C 318 C 322 C 322 C 322 C 322 C 322 C 324 C 325 C 3	Turbidity < 1/2	gallons	Temp. 17.1 13.7 15.5	Sal.	TDS 	ORI - 1 / - 1 - - 1 - - 1 - -
otal Galia Vater Qua nitial volume volume volume volume volume volume volume	hod:	d =	10 Cond. C 297 C 297 C 318 C 322 C 322 C 322 C 322 C 322 C 324 C 325 C 3	Turbidity <	gallons	Temp. 17.1 13.7 15.5	Sal.	TDS 	ORI - 1 / - 1 - - 1 - - 1 - -

•

.

٠

. . .

*

.

. .

1

į

•

•

•

•

· ··· · ·

į

:

2 ⁴	Well Diame Static Wate Well Radiu	eter er Level			+	11				
$\frac{24}{1} = \frac{10.28}{1.7} = \frac{1.7}{1.7} = \frac{1.7}{1.7}$	Static Wate	er Level				_^				
in. = 10.2% ft. $1^2 = 1.7$ gal. /v: lune				22	· · · · · · · · · · · · · · · · · · ·	in.				
$\frac{1}{1^{2}} = \frac{10.28}{1.7} \text{ft.}$	Well Radiu			16.24		ft.				
1 ² = <u>1.7</u> gal./v:lune		S		1		in.				
1 ² = <u>1.7</u> gal./v:lune	Height of \	Water in V	Vell							
1 ² = <u>1.7</u> gal./v:lune	T = Well De	epth - Stat	ic Water Le	evel						
	26.4	57		16.24	_ =/	0.28	•	ft.		
	Galions of	Water pe	r Volume							
	Gallons =	Tx 163 v	Radius ²							
					2					
	10.2	8	_ x .163	x		=	1.7		aal Ivilu	m ć
			d =	10		_ gallons			,	
		lity							ς	
	Nater Qual		рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	· · · · · · · · · · · · · · · · · · ·
	Vater Qual	lity Time	рН 6.18	Cond.	Turbidity ≫i⊊î	DO 9.27	14.8	· ·	-	212
11 >999 6.05 135 236	Vater Qual nitial volume	lity Time	рН 6.18 э.77	Cond. 0315 0311	Turbidity ≻ঀঀঀ >ঀঀঀ	DO 9.27 6.05	14.8 13.5	<u> </u>	TDS 	212 236
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nater Qual nitial volume volume	Time	рН 6.18 > 77 5.44	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nater Qual nitial volume volume	lity Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume	Time	pH 6.18 2.77 5.49 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304	Turbidity >999 >999 596 913 107	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >999 >999 596 913 107	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281
5 7969 677 744 -	Nater Qual	lity Time	рН	Cond.	Turbidity		Temp.	Sal.	-	OR
	Nater Qual	lity Time	рН 6.18	Cond.	Turbidity ≫i⊊î	DO 9.27	14.8	· ·	TDS	
11 >999 6.05 135 236	Vater Qual nitial volume	Time	рН 6.18 э.77	Cond. 0315 0311	Turbidity ≻ঀঀঀ >ঀঀঀ	DO 9.27 6.05	14.8 13.5	· ·	TDS	212 236
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume	Time	рН 6.18 > 77 5 ЧЧ	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS 	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	рН 6.18 > 77 5.44	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume	Time	рН 6.18 > 77 5.44	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume	Time	рН 6.18 > 77 5.44	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS 	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume	Time	рН 6.18 > 77 5 ЧЧ	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume	Time	рН 6.18 > 77 5 ЧЧ	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	рН 6.18 > 77 5 ЧЧ	Cond. 0.315 0.511 0.30€	Turbidity ≻141 >949 5%	DO 9.27 6.05 5.01	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	11.8 13.5 13.4		TDS	212 236 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume	Time	pH 6.18 5.77 5.44 5.42	Cond. 0.315 0.311 0.304 0.304	Turbidity >449 5% 413	DO 9.27 6.05 5.01 4.51	14.8 13.5 13.4 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume volume	Time	pH 6.18 2.77 5.49 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304	Turbidity >999 >999 596 913 107	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vater Qual nitial volume volume volume volume volume	Time	pH 6.18 2.77 5.49 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304	Turbidity >999 >999 596 913 107	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume volume i volume	Time	pH 6.18 2.77 5.49 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304	Turbidity >999 >999 596 913 107	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume volume i volume	Time	pH 6.18 2.77 5.49 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304	Turbidity >999 >999 5% 913 137	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial l volume 2 volume 3 volume 5 volume 5 volume 7 volume	lity Time	pH 6.18 	Cond. 0.315 0.315 0.304 0.304 0.304 0.304 0.304	Turbidity ≻444 >444 556 413 174	DO 9.27 6.05 5.01 4.81 4.81	11.8 13.5 13.4 13.2 13.2		TDS	212 236 262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume volume volume	lity Time 	pH 6.18 2.77 5.44 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304 0.304 0.304 0.304	Turbidity ≻141 >949 5% 413 174	DO 9.27 6.05 5.01 4.81 4.81 4.71	14.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water Qual nitial volume volume volume volume volume volume	lity Time 	pH 6.18 2.77 5.44 5.42 5.42 5.42	Cond. 0.315 0.311 0.304 0.304 0.304 0.304 0.304 0.304	Turbidity ≻141 >949 5% 413 174	DO 9.27 6.05 5.01 4.81 4.81 4.71	14.8 13.5 13.4 13.2 13.2 13.2		TDS	212 236 262 285 281

,

۰.

•

•

; ; !

ţ ;

Final Action of the second se Second sec

ì

Constraint of the second s

The second second

and a second

Well I.D.	Mis-	-ĉ3			Date	8/8/0	i.		
Well Diam					-				
Static Wal	ter Level								
Well Radi	us		4						
tisted of									
	Water in V				•				
	epth - Stat								
			159	- =	5.41		ft.		
Gallons o	f Water pe	r Volume							
	T x .163 x								
				L		<i>.</i>		1	
<u>></u> .	41	_ x .163	x		=	9.0		gal. / within	NC .
Total Gali	ons Purge	d =	1.5		mallama				
					_ gallons				
Water Qua	ality Time	рН	Cond.	Turbidity		Temp.	Sal.	TDS	ORP
Water Qua Initial	ality	рН С.93	Cond.	Turbidity	DO 5.74	Temp.	Sal.	TDS	115
Water Qua Initial 1 volume	ality Time	рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	
Water Qua Initial 1 volume 2 volume 3 volume	ality Time	рН С.93	Cond.	Turbidity	DO 5.74	Temp.	Sai.	TDS	115
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	ality Time	рН С.93	Cond.	Turbidity	DO 5.74	Temp.	Sal.	TDS	115
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume	ality Time	рН С.93	Cond.	Turbidity	DO 5.74	Temp.	Sal.	TDS	115
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	ality Time	рН С.93	Cond.	Turbidity	DO 5.74	Temp.	Sai.	TDS	115
Water Qua Initial 1 volume 2 volume 3 volume 5 volume 6 volume 7 volume	hod:	рН <u>С.93</u> £.38	Cond. 0.57¥ 0.463	Turbidity 3-1 96.5	DO 5.74 3.45	Temp.		· ·	// <i>i</i>

•,

ann aitean Truca

•

•

۰ ۱

•

• • • •

.

•

•

•

a. . .

.

ì

۰.

						1 1			
Well I.D	MS-	64	-		Date	8/8/0	ر	_	
Well Depth ((from TOC	>)	142	2	ft.				
Nell Diamet	ter		2		in.				
Static Water	r Level		7.42		ft.				
Nell Radius					in.				
		6							
Height of W	/ater in W	ell		·		-			
r = Weil De	pth - Stati	c Water Le	vel						
142	2		7.42		6.80		ft.		
Gallons of N	Water per	Volume							
Gallons = 1	T x .163 x	Radius ²							
6.8	ن`	x .163	x	12	=) i		gal / Jula	પ
								1	
Total Gallo	ns Purae	d =	1.5	,	gallons				
Total Gallo	ns Purgee	d =	1.5	······	_ galions				
	ity								
Water Quai	ity Time	pH	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Water Qual	ity						Sal. ن ت	TDS	ORP
Water Qual nitial I volume	ity Time	pH	Cond.	Turbidity	DO	Temp.			
Water Qual nitial I volume 2 volume 3 volume	ity Time	pH	Cond.	Turbidity	DO	Temp.			
Water Qual nitial 1 volume 2 volume 3 volume 4 volume	ity Time	pH	Cond.	Turbidity	DO	Temp.			
Water Qual nitial I volume 2 volume 3 volume I volume 5 volume	ity Time	pH	Cond.	Turbidity	DO	Temp.			
Water Qual	ity Time	pH	Cond.	Turbidity	DO	Temp.			
Water Qual nitial 1 volume 2 volume 3 volume 4 volume 5 volume 5 volume 7 volume	ity Time V733	рН 	Cond. C.270	Turbidity ≫§§	<u>DO</u> 3.ن	Temp.			
Vater Qual nitial volume volume volume volume volume volume	ity <u>Time</u> <u><u>v</u>733</u>	рН 2.7 5-д ма	Cond. 0.270	Turbidity >७४४ 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	1:7
Vater Qual nitial l volume 2 volume 3 volume 5 volume 5 volume 7 volume	ity <u>Time</u> <u><u>v</u>733</u>	рН 2.7 5-д ма	Cond. 0.270	Turbidity ≫§§	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]:7</i>
Water Qual Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Meth Notes/Obse	ity <u>Time</u> <u>v733</u> nod:	рН 2.7 5-дт	Cond. C.270	Turbidity 7989 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]</i> :7
Water Qual Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Meth Notes/Obse	ity <u>Time</u> <u>v733</u> nod:	рН 2.7 5-дт	Cond. 0.270	Turbidity 7989 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]:7</i>
Water Qual Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Meth Notes/Obse	ity <u>Time</u> <u>v733</u> nod:	рН 2.7 5-дт	Cond. C.270	Turbidity 7989 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]:7</i>
Water Qual Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume Purge Meth Notes/Obse	ity <u>Time</u> <u>v733</u> nod:	рН 2.7 5-дт	Cond. C.270	Turbidity 7989 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]:7</i>
Vater Qual nitial l volume 2 volume 3 volume 5 volume 7 volume Purge Meth Notes/Obse	ity Time U733 nod: ervations: June	рН 2.7 5-д ма	Cond. C.270	Turbidity >989 	<u>DO</u> 3. J	Temp.	<i>Ü ټ</i>	0.18	<i>]</i> :7

. ..

.

•

ì

3

. 1

•

•

Well Depth (Well Diametric Static Water Well Radius Height of W	ter r Level		2		*	ŝ	<u>.</u>	-	
Static Water Well Radius	r Level				_ft.				
Well Radius	5				in.				
			6.25		ft.				
Height of W	Vater in We		<u> </u>		in.				
		li							
T = Well Dep	pth - Static	Water Le	evel						
3 22	2		6.28		6.94		ft.		
Total Gallon				<u> </u>	= _ gallons	1.1	<u></u>	gal./vilu	, 'n
	ns Purged ity	× .163 =	1.5	· .	_ gallons				, 'n
Total Gallon Water Qualit	ns Purged	x .163		$\int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} $		1.1 Temp. 15 c	Sal.	gal. /v:/v TDS	, M
Total Gallon Water Qualit Initial 1 volume	ns Purged ity Time	× .163 = pH	1.5 Cond.	Turbidity	_ gallons	Temp.	Sal.	TDS	, 'n
Total Gallon Water Qualit Initial 1 volume 2 volume 3 volume	ns Purged ity Time	× .163 = pH	1.5 Cond.	Turbidity	_ gallons	Temp.	Sal.	TDS	, 'n
Total Gallon Water Qualit Initial 1 volume 2 volume 3 volume 4 volume	ns Purged ity Time	× .163 = pH	1.5 Cond.	Turbidity	_ gallons	Temp.	Sal.	TDS	, 'n
Total Gallon Water Qualit Initial 1 volume 2 volume 3 volume	ns Purged ity Time	× .163 = pH	1.5 Cond.	Turbidity	_ gallons	Temp.	Sal.	TDS	, 'M

•

Well I.D.	M5-0	06			Date	88/00)		
								_	
Well Diam		·			-				
					in.				
Static Wate	er Level	·····	2,32	·····	ft.				
Well Radiu	IS		1		in.				
Height of \	Water in V	Vell							
T = Well D	epth - Stat	tic Water Le	evel						
12.9	7		5.30	_ =	7.67		ft.		
Gallons of Gallons =	T x .163 x	Radius ²		,2					
f.(: J	_ x .163	×	<u>] </u>	= <u> </u>	1.3		gal. jvojs,	**
Total Gallo	ma nurge			6	Gallons				
Water Qua	lity								
Water Qua		рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Water Qua Initial	lity Time	рН 6. 1	Cond.	Turbidity >५ं११	DO 7.79	Тетр . 14.0	Sal.	-	245
Water Qua Initial 1 volume	lity Time	рН 6.1 6.2	Cond. 0.265 0.261	Turbidity ≻५५१ ≻१५४	DO 7.79 4 53	Temp. 14.0 13.γ	*****	-	245 275
Water Qua Initial 1 volume	lity Time	pH 6.1 6.2 6.2	Cond. C.265 C.261 G.262	Turbidity ≻૧૧૧ ≻૧૬૧ ≻૧૬૧	DO 7.79 4 53 3 78	Temp. 17.0 13.9 13.8		-	245 275 245
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	lity Time	рН 6.1 6.2	Cond. 0.265 0.261	Turbidity ≻५५१ ≻१५४	DO 7.79 4 53	Temp . 17.0 13.9 13.8 13.9		-	245 275 255 354
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume	lity Time	pH 6.1 6.2 6.2 6.4	Cond. 0.265 0.261 0.262 0.263	Turbidity ≻૧૧૧ ≻૧૧٩ >૧૧٩ >૧٩٩ >૧٩٩ >૧٩٩	DO 7.79 4 53 3 78 3 48	Temp. 17.0 13.9 13.8		-	245 275 245
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume	lity Time	pH 6.1 6.2 6.2 6.2 6.2	Cond. 0.265 0.261 0.262 0.263 0.263	Turbidity ≻૧૧૧ >૧૬٩ >૧૬٩ >૬૧٩ >૬૧٩ >૬૧٩ >૬٩٩ >६٩٩ >६٩٩	DO 7.79 4 53 3 78 3 48 3 20	Temp . 14.0 13.9 13.8 13.9 13.9	*****		245 275 275 324 324 317
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume	lity 	pH 6.1 6.2 6.2 6.2 6.2	Cond. C.265 C.261 G.262 C.263 C.263 C.264	Turbidity >५६१ >१६१ >१६१ >५६१ >५६१ >६६५	DO 7.79 4 53 3 78 3 48 3 20 3.10	Temp . 14.0 13.9 13.8 13.9 13.9			248 275 275 324 317 327

.

•

۶

a......

•

•

1

• •

•

.

:

;

Well I.D.	MS-	07			Date	8/9/05	j.		
						<u> </u>			
Well Diam	neter		2.		- in.				
Static Wa	ter Level		15.2		ft. (prod	uct)			
Well Radi	us	<u> </u>			•				
Height of	Water in W	/eit							
T = Well D	Depth - Stati	c Water Le	vel		·				
				_ =	6.74		ft		
		X .103	×		= <u> </u>].1		gal Justin	¢
Total Gall	ons Purged	=	5		_ gallons				
Total Gaile Water Qua	ality								
Water Qua Initial		= pH	Cond.	Turbidity		Temp.	Sal.	TDS	ORP
Water Qua Initial 1 volume	ality						Sal.	TDS	ORP
Water Qua Initial	ality						Sal.	TDS	ORP
Water Qua Initial 1 volume 2 volume	ality						Sal.	TDS	ORP
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume	ality						Sal.	TDS	ORP
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	ality						Sal.	TDS	ORP
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 7 volume Purge Meth	ality Time hod:	рн baili	L Cond.	has ps	<u>DO</u>	black ort		top of	;+

.

.

THE OWNER WHEN

¢...

:;;

. 1

į

į

· · ·

1

Well I.D	Mis-i	8	-		Date	8/8/0	<u>.</u>	-	
Well Depth	(from TO	C)	16.62	-	_ft.				
Well Diame	ter		2		in.				
Static Wate	r Level		12.18		ft.				
Well Radius	5		1		in.				
Height of V	Vater in W	/ell							
T = Weil De	epth - Stati	c Water Le	vel						
16.6	,2	1	2.16	_ =	4.46		ft.		
Gallons of	Water per	Volume							
Gallons = "	T x .163 x	Radius ²							
446		v 162	. I	٤	_	0.7			
		-			····		····	3-7-0-0	
lotal Gallo	ns Purge	d =	<u> </u>		_ gallons		·		
	ity						Sel		080
Vater Qual		рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Vater Qual nitial volume	ity Time				D0 7.07	Temp.		TDS	
Vater Qual nitial volume volume	ity Time	рН 6.27	Cond. ୦.୳୦୩	Turbidity ≥₩	DO	Temp.			11
Vater Qual nitial volume volume	ity Time	pH ८.२५ ६.४५ ६.४५ ६.४५ ६.४५ ६.४५	Cond. O.404 c. 455 c. 455 c. 455	Turbidity >%%	DO 7.07 093	Temp.	-	-	11 -26
Vater Qual nitial volume volume volume volume	ity Time	pH ८.24 ५.४५ ५.४५	Cond. ८.५७९ ८.५४४ ७.५४४	Turbidity >汁り 」 2४ウ	DO 7.07 0 री3 ए.ट:	Temp. 15.8 15.2 15.1	-	-	11 -26 -35
Water Qual nitial Volume Volume Volume Volume Volume	ity Time	pH ८.२५ ६.४५ ६.४५ ६.४५ ६.४५ ६.४५	Cond. O.404 c. 455 c. 455 c. 455	Turbidity >???? 5 10 2357 258	DO 7.07 0.13 0.01 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36
Vater Qual nitial volume volume volume volume volume volume	ity Time	pH ८.२५ ६.४५ ६.४५ ६.४५ ६.४५ ६.४५	Cond. O.404 c. 455 c. 455 c. 455	Turbidity >???? 5 10 2357 258	DO 7.07 0.13 0.01 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36
Vater Qual nitial volume volume volume volume volume volume	ity <u>Time</u> - - - od:	pH	Cond. O.404 c. 455 c. 456 O. 458 c. 457	Turbidity >449 510 2847 258 235	DO 7.07 0.73 0.00 0.00 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36
Water Qual nitial volume volume volume volume volume volume	ity <u>Time</u> - - - od:	pH	Cond. O.404 c. 455 c. 456 O. 458 c. 457	Turbidity >iiii ≤ i:- 2847 255 235	DO 7.07 0.73 0.00 0.00 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36
Water Qual nitial Volume Volume Volume Volume Volume Volume	ity <u>Time</u> - - - od:	pH	Cond. O.404 c. 455 c. 456 O. 458 c. 457	Turbidity >iiii ≤ i:- 2847 255 235	DO 7.07 0.73 0.00 0.00 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36
Water Qual nitial volume volume volume volume volume volume	ity Time	pH <u>८.2</u> <u>5.35</u> <u>5.6</u> <u>5.6</u> <u>5.6</u> <u>1</u>	Cond. 0.409 0.455 0.455 0.455 0.457 Water V	Turbidity >iiii ≤ i:- 2847 255 235	DO 7.07 0.73 0.00 0.00 0.00	Temp. 15.8 15.2 15.1 15.1	-	-	11 -26 -35 -36

• •

.

.

. 1

•

1.1

,

ļ

•

• ;

1

1

weilld パン ~の	<u>-</u> (. .	880			
Well Depth (from TO		- 18.77			8 8 10	L		
Well Diameter	•/			-				
								
Static Water Level		12.51		ft.				
Well Radius	·····	<u> </u>		in.				
Height of Water in W	Vell							
Г = Well Depth - Stati	ic Water Le	vel		·				
18.77	12	.51	=	6.26		ft.		·
Sallons of Water per								
$Gallons = T \times .163 \times $								
6,26	_ x .163	×7		=	10		gal. / vila	4 - 1
Vater Quality								
	-11							
Time nitial	<u>рН</u> (6: Т	Cond.		DO	Temp.	Sal.	TDS	ORP
itial Time volume	6.4	0.342	460	DO 5.76 1.31	Temp. 	Sal. 0,2 0 ∪	TDS C 24 O 31	
Itial Time volume -	6.4 6.4	0.342 0.466 0.479	460 113 *•10	5.76 1.31 0.21	17.4 14.9 14.8	0,2 00 0,0	0 24 0 31 0 31	- 85 - 80 - 81
Time nitial - volume - volume - volume - volume - volume -	6.7	0.342 0.466 0.479 0.489	460 113 ★•10 ★-10	5.76 1 31 0.27 6.22	+5.4 14.9 14.8 14.8	0,2 00 0,0 0,0	0 24 0 31 0 31 0 32	- 85 - 80 - 81 - 82
Time Time Time Volume volume volume volume volume volume	6.4 6.4	0.342 0.466 0.479	460 113 *•10	5.76 1.31 0.21	17.4 14.9 14.8	0,2 00 0,0	0 24 0 31 0 31	- 85 - 80 - 81
Time nitial - volume -	6.7	0.342 0.466 0.479 0.489	460 113 ★•10 ★-10	5.76 1 31 0.27 6.22	+5.4 14.9 14.8 14.8	0,2 00 0,0 0,0	0 24 0 31 0 31 0 32	- 85 - 80 - 81 - 83
Time nitial volume	6.7 6.4 6.5 6.5 5.5.00 5.00.00 5.00.00 5.00.00 5.00.00 5	0.342 0.466 0.477 0.487 0.487 0.487 0.487	460 113 ★-10 ≮-10 ≮-10	5.76 1.31 0.22 6.22 0.22	• 5.4 149 148 148 148		$ \begin{array}{c} C & 24 \\ \hline O & 31 \\ \hline O & 31 \\ \hline O & 32 \\ \hline & 32 \\ \end{array} $	- 85 - 80 - 81 - 83 - 83
Time nitial volume volume volume volume volume volume volume volume volume volume volume	6.7 6.4 6.5 6.5 5.5.00 5.00.00 5.00.00 5.00.00 5.00.00 5	0.342 0.466 0.477 0.487 0.487 0.487 0.487	460 113 ★-10 ≮-10 ≮-10	5.76 1.31 0.27 6.22 0.27	• 5.4 149 148 148 148	0.0 0.0 0.0 0.0 0.0	C 24 0 31 0.32 6.32 6.32 Water ;	- 85 - 80 - 81 - 83 - 83
Time nitial volume	6.4 6.4 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	0.342 0.466 0.479 0.489 0.489 0.489 0.489 0.489 0.493	460 113 ★-10 ★-10 ★-10 ★-10	5.76 1.31 0.27 6.22 0.27	149 149 148 148 148 148	0.0 0.0 0.0 0.0 0.0	C 24 0 31 0.32 6.32 6.32 Water ;	- 85 - 80 - 81 - 83 - 83

• :

.

; :

• ;

•

•

•

•

•

•	(nom re)C)	19.52		_ft.				
Well Diam	eter		2		in.				
Static Wate	er Level		7.01		ft.				
Well Radiu			1		in.				
Height of \	Vater in \	Nell							
T = Well De	epth - Sta	tic Water L	.evel		•				
19.5				-	12	51			
Gallons =	T x .163 x	(Radius ²							
				٤					
Total Gallo	ns Purge	_ × .163	8			2.0		gal. / Josh	74
	ns Purge	_ x .163	<u> </u>		gallons				74
Total Gallo Water Qual	ns Purge ity Time	_ × .163 d =	S Cond.	Turbidity	galions	Temp.	Sal.	TDS	-14
12 . Total Gallo Water Qual	ity CF35	_ x .163	8 Cond. 0 5/0	Turbidity ≻i≲y	galions DO 2 دي	Temp.	Sal.	TDS	
Total Gallo Water Qual Initial	ns Purge ity Time	_ x .163 ed = bd = pH 5.71 5.75	8 Cond. 0 5/0 0.528	Turbidity ≻159 >954	galions DO 2 دیر وری	Temp. 17.1 17.0	Sal.	TDS	
i2 Total Gallo Water Qual Initial 1 volume 2 volume	ity C735 C737	X .163	8 Cond. 0 5/0 0.528 0.528 0.547	Turbidity > j⊊ş > ş⊊ş > ;⊊ş	galions DO 2 کو وری د.ون	Temp. 17.1 17.0 19.0	Sal.	TDS	
Total Gallo Water Qual Initial 1 volume 2 volume 3 volume 4 volume	ity CF35 CF37	X .163	8 Cond. 0 510 0 528 0 547 0 553	Turbidity > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î	gallons DO 2 کو 0.00 د.00 C.57	Temp. 14.1 14.0 14.0 14.0	Sal.	TDS	
Total Gallo Water Qual Initial 1 volume 2 volume 3 volume 4 volume 5 volume	5 ity <u>Time</u> C735 C737 - 	X .163	8 Cond. 0 5/0 0.528 0.528 0.547	Turbidity > j⊊ş > ş⊊ş > ;⊊ş	galions DO 2 کو وری د.ون	Temp. 17.1 17.0 19.0	Sal.	TDS	
Total Gallo Water Qual	5 ity <u>Time</u> C735 C737 - 	X .163	8 Cond. 0 510 0 528 0 547 0 553	Turbidity > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î > î ≤ î	gallons DO 2 کو 0.00 د.00 C.57	Temp. 14.1 14.0 14.0 14.0	Sal.	TDS	

•. •

: . . .

•

•

• •

•

Well I.D	MIS	11			Date	8/8/0	J		
Well Dept	th (from TC)C)	12 27	•	ft.				
Well Diam	neter		2		in.				
Static Wa	ter Level								
Well Radi	us	<u></u>			in.				
Height of	Water in V	Vell							
T = Well [Depth - Stat	iic Water Le	evel						
	27		8.18		4.09		ft.		
Gallons =	f Water pe T x .163 x	: Radius ²	×!	2	=	0.7	6 74107704.444400	_gal./v: 10	M (
		d =	4	<u> </u>	_ gallons				
Water Qua	Time	pH	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume	1152 1152 1154 1156 1158	6.5 6.L 6.5 6.4	0.404 0.376 0.375 0.355 0.357 0.357	> M9 7966 520 274 203	7.2)).48 c.64 0.44 0.44	15.5 14.4 14.8 14.8 14.8		0.25 0.23 0.23 0.23	-3-
			L	<u></u>	unu	L			
				мp					
	ervations:		Water	initically_		KULA VSY	tsibid	becomp	bruing

•

ik olda bosonoot

n

• 1

• •

•

•

•

i

•

Well I.D	<u>MS-12</u>							
Well Depth (fro				Date	- 8/8/0	ر		
	n TOC)	-21.48	14.15		, ·			
Well Diameter		2		in.				
Static Water Le	vel	15.17 K	6.82	_ ft.				
Well Radius		1		in.				
Height of Wate	r in Well							
T = Well Depth	Static Motor	t ouel						
					5K			
21.48	<u>415</u>	15.15 6.	<u>b</u> 2 =	6.2	4 7.33	ft.		
Gallons of Wat	er per Volum	e						
Gallons = Tx.	163 x Radius ²	2						
			2					
<u>5, E1</u>	<u>7.33</u> x .16	63 x	<u> </u>	*	12		gal. Justa	ne.
		4					£	
Total Gallons P								
Water Quality								
Water Quality	ne pH	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Water Quality Initial CIS	ne pH	0.364	>999	2.44	14.1	-	-	11
Water Quality Initial Cits 1 volume ひら 2 volume ンス	ne pH 0 6.49 5.84 2 (12	0.364	>999 >999	2.44 0.42	14.1 13.7	~	TDS	11 78
Water Quality Initial Ci 5 1 volume Ci 5 2 volume Ci 5 3 volume Ci 5	ne pH 0 6.49 5.84 2 (12	0.364	>999	2.44	14.1	-	-	11 78 121
Water Quality Initial 1 volume 2 volume 3 volume 4 volume	ne pH 2 6 49 5 84 2 6 6 2	0.364 0.350 0.344	>999 >999 >999 >999	2,44 0.42 0.16	14.1 13.7 13.6	~	-	11 78
Water Quality Tii Initial Ci 5 1 volume Ci 5 2 volume Ci 5 3 volume Ci 5 4 volume 5 volume	ne pH 2 6 49 5 84 2 6 6 2	0.364 0.350 0.344	>999 >999 >999 >999	2,44 0.42 0.16	14.1 13.7 13.6	~	-	78 1-1
Water Quality Tii Initial Cits 1 volume Cits 2 volume کړې	ne pH 2 6 49 5 84 2 6 6 2	0.364 0.350 0.344	>999 >999 >999 >999	2,44 0.42 0.16	14.1 13.7 13.6	~	-	11 78 121

7

Samplers:

ì

Jin Rutting

Well I.D	MS-1.	3			Date	8/9/0	<u>ں</u>		
Well Dept	h (from TO	C)	21.48			-11-			
Well Diam	neter		2		in.				
Static Wa	ter Level		15.14		ft.				
Well Radi	us		l		in.				
Height of	Water in V	Vell							
T = Weil D	epth - Stat	ic Water Le	evel						
2)	.45		15.19	_ =	6.29	i	ft.		
Gallons =	f Water pe T x .163 x <u>(</u> .29	Radius ²	x	12	=	1.0		gal. Ju . 10	~
Total Gall	ons Purge	d = .	ન		_ gallons				
	•								
	-								
Water Qua	ality							1	
	ality Time	рН	Cond.	Turbidity	DO	Temp.	Sal.	TDS	ORP
Water Qua	ality	рН 6 35	Cond. Շ.Վե3	Turbidity	DO 6.75	137	-	-	-62
Water Qua Initial	ality Time	рН 6 35 6 3-	Cond. ୦.୳ଌୢ ୦.୳ଌ୳	Turbidity 4/5 >494	DO 6.75 6.37	137 134	-	-	-62 -67
Water Qua Initial 1 volume 2 volume 3 volume	Time	рН 6 35	Cond. 0.463 c.454 c.357	Turbidity 4/5 ≥\{{\} ≥\{{\}	DO 6.75 0.17 0.02	137 134 133	+	-	-62 -67 -61
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	ality Time ic 21	рН 6 35 6 30 6 20	Cond. ୦.୳ଌୢ ୦.୳ଌ୳	Turbidity 4/5 >{{{ >}{{}}{}} 2}{{}} 4 6/3	DO 6.75 0.07 0.02 0.02	i37 i34 i3.3 i32	-		-62 -67 -61 -58
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume	Time	PH 6 35 6 3- 6 2c 6 0 ⁵ 1	Cond. C.463 c.454 c.387 c.382	Turbidity 4/5 ≥\{{\} ≥\{{\}	DO 6.75 0.17 0.02	137 134 133	+	-	-62 -67 -61
Water Qua Initial 1 volume 2 volume 3 volume 4 volume	Time	PH 6 35 6 3- 6 2c 6 0 ⁵ 1	Cond. C.463 c.454 c.387 c.382	Turbidity 4/5 >{{{ >}{{}}{}} 2}{{}} 4 6/3	DO 6.75 0.07 0.02 0.02	i37 i34 i3.3 i32	-		-62 -67 -61 -58
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume	Ality <u>ic 21</u> - - 1025 hod:	pH 6 35 6 30 6 20 6 0° 1 6 0° 1 6 0°	Cond. C.463 c.404 c.387 c.387 c.383 c.383 c.383 c.383	Turbidity 4/5 >199 7199 613 477	DO 6.75 0.77 0.02 0.07 0.02	137 134 133 132 132			-62 -67 -61 -58
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume	Ality <u>ic 21</u> - - 1025 hod:	pH 6 35 6 30 6 20 6 0° 1 6 0° 1 6 0°	Cond. C.463 c.404 c.387 c.387 c.383 c.383 c.383 c.383	Turbidity 4/5 >199 7199 613 477	DO 6.75 0.77 0.02 0.07 0.02	137 134 133 132 132			-62 -67 -61 -58
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume	Ality <u>ic 21</u> - - 1025 hod:	pH 6 35 6 30 6 20 6 0° 1 6 0° 1 6 0°	Cond. C.463 c.404 c.387 c.387 c.383 c.383 c.383 c.383	Turbidity 4/5 >199 7199 613 477	DO 6.75 0.77 0.02 0.07 0.02	137 134 133 132 132			-62 -67 -61 -58
Water Qua Initial 1 volume 2 volume 3 volume 4 volume 5 volume 6 volume 7 volume	ality Time ic 21 - 1c25 hod:	pH 635 630 620 6.05 6.05 6.05 6.06	Cond. 0.463 c.404 c.307 c.382 c.383 .bk p.: Date gr	Turbidity 415 >999 >999 (13 477 477 (7) bioda	DO 6.75 0.07 0.02 0.03 0.03 0.03 0.03	137 134 133 132 132 becoming			-62 -67 -61 -58

• •

-

.

•

;

•

The Alternative

÷

, ·

a de sel recordo de service a

ł

•

.

Well Depth (from TOC Well Diameter	C)	_						
Well Diameter		36.12	-	_ft.			—	
		9		- in.				
Static Water Level		25.24		ft.				
Well Radius		3		in.				
Height of Water in We	Vell							
T = Well Depth - Static	ic Water Le	ivel		•				
.36.12				: 03				
			-	·	········	. 16.		
		x <u>3</u>	2	=	15.9		gal/	, L
Gallons = T x .163 x F Total Gallons Purged	_ x .163						.gal/	, L
ડ ∶ Total Gallons Purged	_ x .163						.gal/	
∕ ડે. Total Gallons Purged Water Quality	_ x .163	10		_ gallons			.gal//	i t
ડ ∶ Total Gallons Purged	_ x .163 d=	Cond.	Turbidity	_ gallons DO	Temp.	Sai.	TDS	
Total Gallons Purged Water Quality Initial Time I volume	_ x .163	10		_ gallons			, 	
/ 5 Total Gallons Purged Water Quality Initial 1 volume 2 volume	_ x .163 d=	Cond.	Turbidity	_ gallons DO	Temp.		TDS	
/ 5 Total Gallons Purged Water Quality Initial 1 volume 2 volume 3 volume	_ x .163 d=	Cond.	Turbidity	_ gallons DO	Temp.		TDS	
/ 5 Total Gallons Purged Water Quality Initial 1 volume 2 volume 3 volume	_ x .163 d=	Cond.	Turbidity	_ gallons DO	Temp.		TDS	
/ 5 Total Gallons Purged Water Quality Initial 1 volume 2 volume 3 volume	_ x .163 d=	Cond.	Turbidity	_ gallons DO	Temp.		TDS	

 $\overline{}$

•

• 1

•

•

manun.

•

] ۰.

N.C. 28 - 1

i

-

APPENDIX B

ANALYTICAL SUMMARY TABLES

GTAC3/4030/0019

TABLE 1 SAFETY LIGHT CORPORATION SITE, PADEP VOLATILE ORGANIC COMPOUNDS ANALYTICAL RESULTS - GROUNDWATER

LABID		SLC-GW-CN-B	SLC-GW-MS-07	SLC-GW-MS-09	SLC-GD-MS-09	SLC-GW-SL-15
SAMPLE ID	PADEP Act 2	F0H100291008	F0H160319001	F0H100291011	F0H100291012	F0H160319002
DATE COLLECTED	MSCs	8/800	8/9/2000	8/8/2000	8/8/2000	8/9/2000
MATRIX		WATER	WATER	WATER	WATER	WATER
UNITS	ug/l	ug/l	ug/i	ug/l	ug/i	WAIER
COMMENTS					ugn	
1,1,1-Trichloroethane	200	5 U	50) 5U	50	:
1,1,2,2-Tetrachloroethane	na	5 U				•••
1,1,2-Trichloroethane	5	5 U	50		50	5 U
1,1-Dichloroethane	27	5 U	50			5 U
1,1-Dichloroethene	7	5 U	50		2 J	5 U
1,2-Dichloroethane	5	5 U	5 U		5 U	5 U
1,2-Dichloroethene (total)	70	5 U	50	2.6 J	5 U	5 ป
1,2-Dichloropropane	5	5 U	50	2.0 J 5 U	2.2 J	5 U
2-Butanone	2800	20 U	20 U	20 U	5 U	5 ປ
2-Hexanone	na	20 U	20 U		20 U	20 U
4-Methyl-2-pentanone	na	20 U	20 U	20 U	20 U	20 U
Acetone	3700	20 U	20 U	20 U	20 U	20 U
Benzene	5	5 U	14 J 5 U	20 U	20 U	20 U
Bromodichloromethane	100	50	5 U	5 U	5 U	5 U
Bromoform	100	50	5U	5 U	5 U	5 U
Bromomethane	10	10 U		5 U	<u> </u>	5 U
Carbon disulfide	1900	5 U	5.U	10 U	10 U	10 U
Carbon tetrachloride	5	5 U	5.U	1.6 J	5U	5 U
Chlorobenzene	55	5 U	5 U	5 U	5 U	5 [‡] U
Chioroethane	28000	10 [°] U		5'U	50	<u> </u>
Chloroform	100	510	500	3.1 J	2.8 J	10 U
Chloromethane	na	10 U	10 U	5 U	5 U	5 U
is-1,3-Dichloropropene	na	50	5.0	10 U	10 U	10 U
Dibromochloromethane	ла	50		5U	5 U	5°U
thylbenzene	700	50	5 U	5 U	5 U	5iU
lethylene chloride	5	50	5 U	5U	<u> </u>	5 U
tyrene	100	5 U	5 U	5U	5 U	5 U
etrachloroethene	5	5 U	5 U	5U	5 U	5 U
oluene	1000	5 U	5 U 5 U	5 U	5 U	5 U
ans-1,3-Dichloropropene	na	50		5U	5U	5 U
richloroethene	5	50	5 U	5 U	<u>5</u> U	5:U
inyl chloride	2	5 U	5U	5 U	5 U	5 U
ylenes (total)	10000	5U	50	3.4 J 5 U	5 U . 5 U	5 U

TABLE 2 SAFETY LIGHT CORPORATION SITE, PADEP SEMI-VOLATILE ORGANIC COMPOUNDS ANALYTICAL RESULTS - GROUNDWATER

LABID		SLC-GW-CN-B	SLC-GW-MS-07	SLC-GW-MS-09	SLC-GD-MS-09	SLC-GW-SL-1
SAMPLE ID	PADEP Act 2	F0H100291008	F0H160319001	F0H100291011	F0H100291012	F0H16031900
DATE COLLECTED	MSCs		T	1	1	1
MATRIX		WATER	WATER	WATER	WATER	WATER
UNITS	ug/l	ug/l	ug/I	ug/l	ug/i	ug/l
COMMENTS						
1,2,4-Trichlorobenzene	70	10 0	10 0	10 1	10 0	
1,2-Dichlorobenzene	600	10 L				10
1,3-Dichlorobenzene	600	10 L	10 0			10
1,4-Dichlorobenzene	75	10 0				10
2,2'-oxybis(1-Chloropropane)	na	10 0		1		10
2,4,5-Trichlorophenol	3700	10 0		· · · · · · · · · · · · · · · · · · ·		10
2,4,6-Trichlorophenol	60	10 0				10
2,4-Dichlorophenol	20	10 0			10 0	10
2,4-Dimethylphenol	730	10 0				10
2,4-Dinitrophenol	19	50 U		10 0		1(
2,4-Dinitrotoluene	2.1	10 U				50
2,6-Dinitrotokuene	37	10 0		10 U		10
2-Chloronaphthalene	2900	10 0	10 U	10 U		10
2-Chiorophenol	40		10 U	10 U		10
2-Methyinaphthalene	1500	10 U	10 U	10 U		10
2-Methylphenol	1300	10 U	10 U	10 U	10 U	10
2-Nitroaniline	2.1	10 U	10 U	10 U	10 U	10
2-Nitrophenol	2300	50 U	50 U	50 U	50 U	50
3.3'-Dichlorobenzidine		10 U	10 U	10 U	10 U	10
3-Nitroaniline	1.5	50 U	50 U	50 U	50 U	50
1,6-Dinitro-2-methylphenol		50 U	50 U	50 U	50 U	50
-Bromophenyi phenyi ether	na	50 U	50 U	50 U	50 U	50
-Chloro-3-methylphenyl	na	10 U	10 U	10 U	10 U	10
-Chloroaniline	na	10 U	10 U	10 U	10 U	10
	150	10 U	10 U	10 U	10 U	10
-Chlorophenyl phenyl ether	na	10 U	10 U	. 10 U	10 U	10
-Nitroaniline	na	10 U	10 U	10 U	10 U	10
-Nitrophenol	2.1	50 U	50 U	50 U	50 U	50
cenaphthene	60	50 U	50 U	50 U	50 U	50
	2200	10 U	1.3 J	10 U	10 U	10
cenaphthylene	2200	10 U	10 U	10 U	10 U	10
nthracene	43	10 ['] U	10 U	10 U	10 U	10
enzo(a)anthracene	0.9	10 U	10 U	. 10 ¹ U	10 U	10
enzo(a)pyrene	0.2	10 U	10 U	10 U	10 0	10
enzo(b)fuoranthene	0.9	10 U	10 U	10 U	toiU	10
enzo(ghi)perylene	0.26	10 U	10 U	10 U	10 U	10
enzo(k)fluoranthene	0.55	10 U	10 U	10 U	10 U	10
is(2-Chloroethoxy)methane	na	10 U	10 U	10 U	10 U	10
is(2-Chloroethyi) ether	0.13	10 U	10 U	10 U	10 U	10
is(2-Ethylhexyl) phthalate	6	1.6;J	1.8 J	8.9 J	14	1.4,
utyl benzyl phthalate	2700	10 U	10 U	10 U	10 U	10
arbazołe	700	10 U	10 U	10 U	10 U	10
hrysene	1.8	10 U	1.2 J	10 U	10 U	10:
i-n-butyl phthalate	3700	10 U	1.9 J	10 U	10 U	1.6
-n-octyl phthalate	730	10 U	10 U	10 U	10 U	10
ibenzo(a,h)anthracene	0.09	10 U	10 U	10 U	10 U	10
benzofuran	na	10 U	10 U	10 U	10 U	10
ethyl phthalate	500	10 U	10 U	1.9 J	10 U	10
methyl phthalate	na	10 U	10 U	10 U	10 U	10
uoranthene	270	10 U	10 U	10 U	10 U	101
uorene	190	10 U	2 J	10 U	10 U	10,
exachlorobenzene	1	10 U	10 U	10 U	10 U	101
exachlorobutadiane	1	10 U	10 U	10 U	10 U	10,1
xachlorocyclopentadiene	50	50 U	50 U	50 U	50 U	501
exachioroethane	1	10 U	10 U	10 U	10 U	10 1
teno(1,2,3-cd)pyrana	0.9	10 U	10 U	10 U	10 U	10'0
ophorone	100	10 U	10 U	10 U	10 U	10'1
Nitrosodi-n-propylamine	0.094	1010	10 U	10 U	10 U	10:0
Nitrosodiphenylamine	130	10 U	10 0	10 U	10 0	
phthalene	20	10 U	10 U	10 0	10.0	10.1
Irobenzene	18	10 0	10 U			10 L
Intachlorophenol	1			10 U	10 U	10 L
enanthrena	1200	50 U	<u>50 U</u>	50 U	50 U	50°L
anoi	4000	1010	1.9 J	10 U	10 U	10 (
141 IVI	4000	10 U	10 U	10 U	10 U	10°L

MSCs-Medium Specific Concentrations for Organic Regulated Substances in Groundwater, Used Aquifer, TDS <2500, Residential Criteria

SLC data.xls BNA-GW page 1 of 1

SAMPLE ID		SLC-RB-01	Τ	SLC-RB-01-F	Ţ	SLC-RB-02		SLC-RB-02-F	-	SLC-GW-CN-A
LABID		F0H10015300	1	F0H100153007	7	F0H10015301		F0H100153020		
DATE COLLECTED	7	8/7/2000	+	8/7/2000	+-	8/8/2000		8/8/2000	-	F0H100153006
MATRIX	-	WATER	╀	WATER	+	WATER	+	+	-	8/7/2000
UNITS	PADEP	ug/l	+-	ug/i	+		+	WATER		WATER
COMMENTS	MSCs 1		+		+		+	ug/l		ug/1
Aluminum-Dissolved	NA		1	200			+	200		
Aluminum	NA	200	blu		1	200	+		4	
Antimony-Dissolved	6		Ŧ	60	U		10		+	9660
Antimony	6	60	υ			······································	υ	60 (4	
Arsenic-Dissolved	. 50		1-	10				10 1	+	60 L
Arsenic	50	10	īυ			2.3	-	101	4	
Barium-Dissolved	2000		+	200		2.3		200	╋	7.2 8
Barium	2000	200	u		H	200		200 L	4	
Beryllium-Dissofved	4		Ť	5	υ	200	U		╀	1930
Beryllium	4	5	υ	<u></u>	Ĕ	E	υ	<u> </u>	4	
Cadmium-Dissolved	5			5000		5	P		+	5,U
Cadmium	5	5000	11		Η	E000	.,	5000 L	4	
Calcium-Dissolved	NA		ľ	5000	<u>,</u>	5000	Ľ		+	3.1 B
Calcium	NA	5000		5000	-			5000 U	4	!
Chromium-Dissolved	100		Ĕ	10	.	5000	U		-	26500
Chromium	100	10			4			10 0	4-	
Cobalt-Dissolved	NA		ľ	50		10	4		-	7.8 B
Cobalt	NA	50		50	4			50 U	4-	
Copper-Dissolved	1000		Ĭ		-	50	-		-	157
Copper	1000	25	11	25	쒸		-	25 U	-	ال يو الر
ron-Dissolved	NA		4	100		25	U	٤	-	25.8
ron	NA	100		100	4			100 U	1	
.ead-Dissolved	5	100	4	3	-	100	비			13200
ead	5	3		3	4			3 U		<u></u>
Agnesium-Dissolved	NA		쒸		_	3	빅		1	9.7
Aagnesium	NA	5000	╉	5000	4		_	5000 U	₋	i
Anganese-Dissolved	NA	5000	4		+	5000	빅			7670
langanese	NA	15	-	15 1	4			15 U		
fercury-Dissolved	2		쒸			15	4		<u> </u> _	69600.
fercury	2	0.2	+	0.2	4		-	0.2 U	ļ	
lickel-Dissolved	100	0.2	4	13.5	+	0.2	4		┣-	0.2iU
lickel	100	40		13.51	-	40	+	40 U		
otassium-Dissolved	NA			5000 1	+	40	4			28.2 B
otassium	NA	5000		3000 1	4			5000 U	_	
elenium-Dissolved	50	3000	4	51	+	5000	4			6370
elenium	50	5			4		+	5 U		
liver-Dissolved	100	5	4		╉	5	4			5 U
ilver	100	10	+	10 נ	4		+	10 U	-	
odium-Dissolved	NA	10	4	5000	-	10 1	4			11.7
odlum	NA	5000	╬	5000 L	4		+	467 B		
hallium-Dissolved	2		4		+	229	4			9210
hallium	2		+	10 L	4		╀	10 U		
anadium-Dissolved	2.1	10	4-		+-	10	1			7 B
anadium	•		+	50 L	4		+	50 U		
inc-Dissolved	2.1	50 0	4		+	<u>50 l</u>	4			9.9 B
	2000		+	20	4-		╀	7.5 B		
nc Vatido Dissolved	2000	5	¥		1	20 1	1			85.9
yanide-Dissolved	200		╇	5 U	1		L			
yanide	200	5 1	Ψ.			16 L	1	5 U	_	5 U

SLC data.xis

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 1 of 10

.....

SAMPLE ID		SLC-GW-CN-A-F	٦	SLC-GW-CN-B	1	SLC-GW-CN-B-F	ļ	SLC-GW-CN-D	SLC-GW-CN-D-F
LAB ID]	F0H100153012		F0H100291008	+	F0H100291017	<u>.</u>	F0H100153004	F0H100153010
DATE COLLECTED		8/7/2000		8/8/2000	1	8/8/2000	┢	8/7/2000	8/7/2000
MATRIX	1	WATER	1	WATER	†-	WATER	1	WATER	WATER
UNITS	PADEP	ug/l		ug/l	\uparrow	ug/i	t	ug/l	ug/l
COMMENTS	MSCs ¹		1		1			-5	
Aluminum-Dissolved	NA	200	υ		İ	200	U		200:1
Aluminum	NA			200	U			54000	
Antimony-Dissolved	6	60 1	υ			60	U		60 0
Antimony	6		1	60	υ			60 U	1
Arsenic-Dissolved	50	10 1	υĪ			-10	υ		1.6
Arsenic	50			10	υ			24.8	
Barium-Dissolved	2000	54.2 E	в			40	в		55.2 8
Barium	2000			44.2	в			458	
Beryllium-Dissolved	4	5 L	J		H	5	U		51
Beryllium	4		T	5	U			2.4 B	
Cadmium-Dissolved	5	5000 L	Ţ			5000	υ		5000 L
Cadmium	5	1	1	5000	υ			5000 U	
Calcium-Dissolved	NA	26500	1			33200			31900
Calcium	NA		Ţ	32600				34200	
Chromium-Dissolved	100	10 L	丌			10	U		10 L
Chromium	100		┦	10	υ		-1	60.5	
Cobalt-Dissolved	NA	4.8 B	3			50	u		50 L
Cobalt	NA		T	50	U			37.7 ¹ B	
Copper-Dissolved	1000	25 U	1			25	u		25 U
Copper	1000		T	25	υ		1	72.9	
ron-Dissolved	NA	100 U	亣			100	υ		100 U
ron	NA			176		·····	1	75300	
ead-Dissolved	5	3 U	1			3	υİ		3:0
_ead	5		Т	3	υ		٦	44.9	· · ·
Magnesium-Dissolved	NA	6170	Т		Τ	7430			7100
Magnesium	NA			7140	1			16800	
Manganese-Dissolved	NA	4400	Γ			15	u		215.
langanese	NA			83.7				2180	2
Aercury-Dissolved	2	0.2 U				0.21	J	1	0.2 U
Aercury	2			0.2 l	U			0.2 U	
lickel-Dissolved	100	40 U				40 (J		19.8 B
licket	100	1		40 เ	J		T	73.3	1
otassium-Dissolved	NA	3810 B			Ţ	3190	3		2630 B
otassium	NA			3710 E	3		T	11700	
elenium-Dissolved	50	5 U	Ĺ		Ι	5 (ī		5 U
elenium	50			5 L	٦			5 U	
ilver-Dissolved	100	10 U			Ι	10 L	1		10 U
ilver	100			10 L	J			10 U	,
odium-Dissolved	NA	9550	L		Γ	11800	Γ		11000
odium	NA		L	11700	Γ		Τ	10700	1
hallium-Dissolved	2	10 U	Ĺ		Ĺ	10 L	Ţ		10¦U
hallium	2			10 L	١]	8.8 B	
anadium-Dissolved	2 .1	50 U	Ĺ		Γ	50 L	1		50 U
anadium	2.1			50 U	1		1	61.1	
inc-Dissolved	2000	7.8 B			Τ	20 U	ī		10 B
inc	2000			4.6 B			t	238	•
yanide-Dissolved	200	5 U			1	5 U	t		5 ₁ U
yanide	200			5 U	T		1	5:U	

SLC data.xls

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 2 of 10

SAMPLE ID		SLC-GW-CN-	F	SLC-GW-CN-F-	FĮ	SLC-GW-CN-	G	SLC-GW-CN-G-F	SLC-GW-CN-H
LAB ID		F0H10029103	4	F0H100291035		F0H10015300	-+	F0H100153008	F0H100291010
DATE COLLECTED		8/9/2000	-	8/9/2000	1	8/7/2000		8/7/2000	8/8/2000
MATRIX		WATER	1	WATER	-	WATER	+	WATER	
UNITS	PADEP	ug/i	1	ug/i		ug/l	+-		WATER
COMMENTS	MSCs ¹		-					ug/l	ug/1
Aluminum-Dissolved	NA		1	20			+	200/U	
Aluminum	NA	20	υ		+-	365	+	200 0	
Antimony-Dissolved	6		1	6	ου		+-	60 U	13600
Antimony	6	6(0 U		+-		υŪ	000	
Arsenic-Dissolved	50		1	1(JU		Ŧ	10 U	60
Arsenic	50	1(U		+	67	в	1010	
Barium-Dissolved	2000		1	43.6	ВВ		F	79.3 B	13.6
Barium	2000	44.9	в		Ŧ	117		/9.3 B	
Beryllium-Dissolved	4		1		s U		Н		237
Beryllium	4	5	U		-		υ	5 U	
Cadmium-Dissolved	5	1		5000			1		0.72
Cadmium	5	5000	U		+	5000	$\left \cdot \right $	3.9 B	
Calcium-Dissolved	NA	1		30400	┢╌╽	5000	P		5000
Calcium	NA	29100				28200	$\left \right $	30400	
Chromium-Dissolved	100		<u> </u>	10	╁╷┟	20200	-		38600
Chromium	100	10	υ		H	184	Ч	17.8	
Cobalt-Dissolved	NA	1		50			-		18:
Cobalt	NA	50	U		ř†	6.6		50 U	
Copper-Dissolved	1000			25			8		18.8
Copper	1000	25	U	25	M	60.0	+	25 U	
ron-Dissolved	NA			100		62.2			54.7
ron	NA	149	N	100	4	7460	+	89.3 B	•
ead-Dissolved	5		·	3		/400	+		22100
ead	5	3	U U	、	4	3.8		3 U	
lagnesium-Dissolved	NA			7220	╋	3.8	+		26.6
lagnesium	NA	6850		1220	+	6600	+	6870	
langanese-Dissolved	NA			15		0000			7640
langanese	NA	26.1			4	2320	+	501	
lercury-Dissolved	2			0.2		2320	╋		2580,
ercury	2	0.2	;		4	0.2	-	0.2 U	
ickel-Dissolved	100			401		0.2	4-		0.2 U
ickel	100	19.7	3		-	40 (-	40 U	
otassium-Dissolved	NA			3690 8			4		29.4 B
otassium	NA	5000 1	, 			3000 1	;	2240 B	
elenium-Dissolved	50			51	+-	3000 1		5 U	8730
elenium	50	5 .	,		╀	5 1	-		
ver-Dissolved	100			10 L	╬		4		5·U
lver	100	10 1	, †		1-	10 L		10 U	
dium-Dissofved	NA			11500 E	-			9040	10 [°] U
odium	NA	10700			+	9740	╋	5040	
allium-Dissolved	2			10 U	<u>_</u>	5/40	┢		11100
allium	2	10 U			╋	10 U	\vdash	10 U	
nadium-Dissolved	2.1			50 U	+	100	-		10 U
nadium	2.1	50 U			'		╂	50 U	
c-Dissolved	2000			20 U	-	50 U	┞		8.9 B
ic	2000	6.2 E		2010	-			11.3 B	
anide-Dissolved	200			5 U	╂	29.5			73.8
anide	200	5 U			╂		┣	5.0	5°U

SLC data.xis

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 3 of 10

SAMPLE ID	T	SLC-GW-CN-H-	F	SLC-GW-CN-I	ł	SLC-GW-CN-I-F	Ī	SLC-GW-MS-01	1	SLC-GW-MS-01-F
LAB ID	1	F0H100291015	- 1 •	F0H10029100	_	F0H100291016	†	F0H100291032	<u> </u>	F0H100291037
DATE COLLECTED		8/8/2000	+-	8/8/2000		8/8/2000	-	8/9/2000	+	8/9/2000
MATRIX	1	WATER	+	WATER	+-	WATER	-	WATER	_	WATER
UNITS	PADEP	ug/l	┽	ug/t	╈	ug/l		ug/l	-	
COMMENTS	MSCs 1		┢	-8.	+		-		\vdash	
Aluminum-Dissolved	NA	200	νŪ		Ť	200	U		1	200
Aluminum	NA		+	65900			-	9530	N	200
Antimony-Dissolved	6	60	ίu		╀	60	ū			60
Antimony	6		1		νU			60		
Arsenic-Dissolved	50	10	iυ		-	10	IJ			11.7
Arsenic	50		1	42.3	1		-	17.2		
Barium-Dissolved	2000	35.9	В		+	38.3	в			159 8
Barium	2000		Ť	986			-	239	-	
Beryllium-Dissolved	4	5	υ		+	5	ū		-	5
Beryllium	4	1	f	5.4	<u> </u>		Ĭ	5	υ	
Cadmium-Dissolved	5	3.4	в	-dari - realis XXVS	T	4.4	R		Ĕ	5000 1
Cadmium	5	1	1	5000	U	· · · · · · · · · · · · · · · · · · ·	-	5000	11	
Calcium-Dissolved	NA	33100	1		Ī	26600	+	5500	-	36400
Calcium	NA	1	t	68100	1		+	37400	-	30400
Chromium-Dissolved	100	10	U		<u> </u>	10	υ	0,400		10 1
Chromium	100			73.9			Ĭ	13	-	
Cobalt-Dissolved	NA	50	υ		-	50	11		+	50 L
Cobalt	NA			140			-	8.3		
Copper-Dissolved	1000	25	U		\vdash	25	ul		4	25 U
Copper	1000			252	H		Ť	38.9	-+	
ron-Dissolved	NA	100	U			100			+	21900 N
ron	NA			95100			-	36600	N	2.300 1
ead-Dissolved	5	3	U			3 1	J		-	3:0
.ead	5			66.6			-	41.8	╉	
Magnesium-Dissolved	NA	5560		, i		6130	ſ	ſ	╈	5990
Magnesium	NA			20900			╈	7900	+	i
Aanganese-Dissolved	NA	4.4	в			2.9	3		╈	8410 N
fanganese	NA			3420			Ť	8460	Ť	
Aercury-Dissolved	2	0.2	U	1	1	0.2 1	J.		1	0.2 U
lercury	2			0.18	в		1	0.2	亣	
lickel-Dissolved	100	40	U			40 L	1		1	40 U
lickel	100			559	1		T	25.9	3	
otassium-Dissolved	NA	5550			T	3210 B	T		1	6180
otassium	NA.			14000			T	8520		•
elenium-Dissolved	50	5	U			5 L	ī		1	5:U
elenium	50		Ι	3.5	в		T	5 เ	巿	
ilver-Dissolved	100	10 1	υ[T	10 U	1		\uparrow	10'U
ilver	100			10	J		T	10 L	ī	
odium-Dissolved	NA	11600			T	11500	Τ		T	9660 E
odium	NA		ſ	11600	T		Γ	9880	T	
hallium-Dissolved	2	10 L	J٢		T	10 U	Γ		1	4.5 B
hallium	2			8.8 E	3		Г	10 U		
anadium-Dissolved	2.1	50 L	J	. [T	50 U	T		1-	50 U
anadium	2.1		1	82.6	1		1	7.5 B	\uparrow	
nc-Dissolved	2000	5.8 E	5	T T	\uparrow	5.9 B	1		+	5.6 B
nc	2000		T	305	╋		1-	65.4 E	1-	
yanide-Dissolved	200	5 1	1		T	5 U	┢	1	1	5°U
yanide	200		Т	5 L	亣		1	5 U	1-	

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 4 of 10

SAMPLE ID		SLC-GW-MS-02	l	SLC-GW-MS-02-F	:	SLC-GW-MS-03	1	SLC-GW-MS-03-F	SLC-GW-MS-04
LAB ID	-	F0H100291007	t	F0H100291018	+	F0H100291020	┢	F0H100291029	F0H100291019
DATE COLLECTED	-	8/7/2000	+-	8/7/2000	+	8/8/2000	╈	8/8/2000	
MATRIX		WATER	+	WATER	╋	WATER	<u> </u>	WATER	8/800
UNITS	PADEP	ug/l	┢	ug/l	+	ug/I	┿╌		WATER
COMMENTS	MSCs 1		+		+-	USN	┼-	ug/l	ug/l
Aluminum-Dissolved	NA		1	200			1	200.1	· · · ·
Aluminum	NA	2970	+	200	1	1010		200 เ	
Antimony-Dissolved	6		1	60	υ	1010	H	60 L	18400
Antimony	6	60	U		F	60		60 0	
Arsenic-Dissolved	50		-	10	h		F	10 L	60 U
Arsenic	50	3.5	в		Ť	3.9	D	1012	+
Barium-Dissolved	2000		-	70.8	B			75 B	26.2
Barium	2000	96.6	в	10.0	F	96.1		/50	
Beryllium-Dissolved	4		-	5	υ				331
Beryllium	4	5	υ		М	E	υ	5 1	
Cadmium-Dissolved	5		-	5000	<u>,</u>	5	9		0.67 B
Cadmium	5	5000	u	5000		5000		2.9 B	+
Calcium-Dissolved	NA		~	28000		5000	-		5000 U
Calcium	NA	27200		20000	┝╌┨	46900		49900	
Chromium-Dissolved	100			10		40900			36400
Chromium	100	10	n		4	42 5	-	10 U	
Cobalt-Dissolved	NA		Ĭ	50		13.5	-		22.1
Cobalt	NA	50			4		-	6.7 B	
Copper-Dissolved	1000		-	25		50	쒸		13.9 B
Copper	1000	8		20	~			25¦U	
ron-Dissolved	NA		4	61.5		14	в		49.5
ron	NA	4250	┫	01.5	믹	10900	+	4020	
ead-Dissolved	5		-	3		10900			46900
_ead	5	3.8	+		4	. 33	+	3 U	· · · ·
Magnesium-Dissolved	NA		╉	6270	+	. 3.3	+	7400	20.1
lagnesium	NA	6390	╉	0270	+	6780		7130	
Manganese-Dissolved	NA		╉	623		6780	╋	1700	8620
Manganese	NA	531	╋		-+-	4430		4730	
fercury-Dissolved	2		╋	0.2		4430	-		6190
fercury	2	0.2 1	$\frac{1}{1}$		-	0.2 1	╀	0.2 U	
lickel-Dissolved	100		+	40 1		0.21	4	40 U	0.2 U
lickel	100	40 L	亣		-	13.6 E	, -	40 0	
otassium-Dissolved	NA		+	3910 8		10.0 E	'	6770	31.3 B
otassium	NA	4430 E	Ŧ		+	5770	╋	6/70	0.170
elenium-Dissolved	50			5 L	╓		+-	5 U	9470
elenium	50	5 L	亣		╋	5 U	1-		
llver-Dissolved	100		Ť	10 L	᠇		╊	10 U	<u>5:U</u>
ilver	100	10 U	T		+	10¦U	1		8.5 B
odium-Dissolved	NA		T	10600	╋		+	14600	0,3 D
odium	NA	11000	T		┢	14000	╀		9330
hallium-Dissolved	2		t	10 U	,†		+	10 U	
hallium	2	10 U	I		+	10 U		10 0	
anadium-Dissolved	2.1		t	50 U	1-		+	50 U	4.8 <u>B</u>
anadium	2.1	50 U	t		1-	50 U	+		
nc-Dissolved	2000		1-	14.5 B	+-	50 0	┢		13.7 B
nc	2000	22.7	┢		+-	26.5 E	⊢	7.5 B	
vanide-Dissolved	200		t	5 U		20.3 E	╂		118
/anide	200	5.6:U	\vdash		┢		┝	5 ¹ U	
			I		L	510	L		5'U

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 5 of 10

	-1	SLC-GW-MS-04-F	SLC-GW-MS-0		SLC-GW-MS-05-F	:	SLC-GW-MS-06		SLC-GW-MS-06-F
	_	F0H100291030	F0H100153003		F0H100153009	i	F0H100291022		F0H100291027
DATE COLLECTED		8/8/2000	8/7/2000	1.	8/7/2000	;	8/8/2000	1	8/8/2000
MATRIX		WATER	WATER	1	WATER	!	WATER	t	WATER
UNITS	PADEP	ug/l	ug/l	Ţ	ug/I	+	ug/l	+	ug/l
COMMENTS	MSCs ¹					+		÷	-3/1
Aluminum-Dissolved	NA	200 L	1	T	200	νiυ		t	200 U
Aluminum	NA		33400	ז		t	65200	N	
Antimony-Dissolved	6	60 U		T	60	U	·····	-	60 [:] U
Antimony	6	1	7.	B		Ī	60	Ιū	
Arsenic-Dissolved	50	16.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Γ	15.1	╀─		ľ	1.6 B
Arsenic	50		211	, 		+-	46.9	-	1.0.5
Barium-Dissolved	2000	174 B		Π	103	в	40.0	-	63.1 B
Barium	2000		2470			F	654	-	03.1 B
Beryllium-Dissolved	4	5 U	· 你说了吗?""我们这次?"	Π	5	U			;;
Beryllium	4		16.2	в	ů	F	4.6		5 U
Cadmium-Dissolved	5	5000 U		$\overline{\Box}$	5000			-	5000.11
Cadmium	5		14.3	Н		H	5000		5000 U
Calcium-Dissolved	NA	37100		F	40300		5000	ᅴ	26200
Calcium	NA		77400				37400	-	26200
Chromium-Dissolved	100	10 U			10		37400	-	
Chromium	100		589	H		-	73.8	-	10 U
Cobalt-Dissolved	NA	50 U		\neg	50	,,	/3.8		
Cobalt	NA		209	R		쒸		-	50¦U
Copper-Dissolved	1000	25 U			25		30	-	
Copper	1000		614		20	4		<u>`</u>	25 U
on-Dissolved	NA	19500		+	6450	+	181	+	
'n	NA		566000	+	0450	-	110000	-	100 U
ead-Dissolved	5	3 U		-+	3		118000	N	
ead	5		- 689	+	3	4	L. AND	+	3 U
lagnesium-Dissolved	NA	5280		-	8420	-1	111 F		
lagnesium	NA		82800	-+-	0420	╉	21000	╉	5700
anganese-Dissolved	NA	6010	02000	+	7300	╉	21000		
anganese	NA		18300	+	/300	+			9.7 BN
ercury-Dissolved	2	0.2 U	10300	+		+	2550		
ercury	2	0.2 0	0.66	+	0.2 เ	4		-	0.2:U
ckel-Dissolved	100	40 U	0.00	╋		╀	0.2 L	4	
ickel	100		494	-	40 i L	4	L	╀	40 U
otassium-Dissolved	NA	7580		╈	2020			- -	
otassium	NA		43000		3930 E	4		╀	3440 B
elenium-Dissolved	50	5 U	43000	+-	<u>_ </u> .	╀	12400	+	
elenium	50		5 1	╬	51	4-		+-	5 U
lver-Dissolved	100	10 U		4		+	5 U	4-	
ver	100		189	+	10 U	Ή-		-	10 U
dium-Dissolved	NA	9420	line in teitoa. Line in teitoa	╋	12000	+	10 U	-	
dium	NA		16600	╋	12000	┢		┞	11300 E
allium-Dissolved	2	10 U	10000	+-		╀	11800		
allium	2		L.	+	10 U	1	·		10 ¹ U
nadium-Dissolved	2.1		43.6				10.5	Į	
nadium	2.1	50 U	L	+-	50 U		. <u> </u>	 	50°U
ic-Dissolved	2000	11.40	410	+		1	99.3	L.	······································
	2000	11.4 B			7.3 B		·····		4.8 B
anide-Dissolved	2000	510	2060	1		L	311 E	ļ	
					5 U				5 U

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 6 of 10

a. .

5

11

٢ 1

<u>;</u>;; 11

SAMPLE ID	1	SLC-GW-MS-07		SLC-GW-MS-07-F	:	SLC-GW-MS-08	3	SLC-GW-MS-08-F	SLC-GW-MS-09
		F0H160319001		F0H160319004		F0H100291023	1	F0H100291026	F0H100291011
DATE COLLECTED	_	8/9/2000		8/9/2000	1		Ť		8/8/2000
MATRIX		WATER		WATER	Ţ	WATER	+	WATER	WATER
UNITS	PADEP	ug/l		ug/l	T	ug/l	+-	ug/i	ug/i
COMMENTS	MSCs ¹				T		+		
Aluminum-Dissolved	NA			200	U		Ť	200 U	
Aluminum	NA	36100	N*		Ť	10900	İN		361
Antimony-Dissolved	6			3.5	в		-	60 U	301
Antimony	6	60 L	J		F	60	υ		
Arsenic-Dissolved	50	1		3.5	B		H	770	60
Arsenic	50	26.7			Ē	234	Ц	7.7 B	
Barium-Dissolved	2000		-1	201		43 7		400 0	3.1
Barium	2000	536				840	\vdash	136 B	
Beryllium-Dissolved	4		-+		υ	610			179
Beryllium	4	2.6 B			-			5 U	
Cadmium-Dissolved	5		-+	5		0.96	В		5
Cadmium	5	0.79 B	\rightarrow	5	4	E000	\square	5000 ¹ U	
Calcium-Dissolved	NA		-+	45800	+	5000	비		5000
Calcium	NA	48900 N		45000	-			39300	
Chromium-Dissolved	100	1		10		44100	4		48800
Chromium	100	40.7		10	쒸			42	
Cobalt-Dissolved	NA				-	18.9		· · · · ·	10
Cobalt	NA	25.8 B		50	빅		_	50.U	
Copper-Dissolved	1000	23.0 8		·····	-	50	빅		50
Copper	1000	94.7		25	<u> </u>		_	25-U	
ron-Dissolved	NA	54.7				34.5	_		25
ron	NA	71000134		11000	+		4	18000 N	
ead-Dissolved	5	71000 N			_	249000	_		30200
ead	5	54.8		3 ι	4	L	4	3 U	
lagnesium-Dissolved	NA				-	26.6	_		3 เ
fagnesium	NA	11700	- 	5050	╞		1	5670	
langanese-Dissolved	NA	11700			⊥	8030	_		7170
langanese	NA			7550	4.			10100 N	
lercury-Dissolved		8960 N				13200			7900
ercury	2	· · · · · · · · · · · · · · · · · · ·		0.2 L	1		1	0.2 U	
ickel-Dissolved	2	0.2 U			1	0.2 เ	1		0.2 L
ickel	100			4.4 B				40 U	
otassium-Dissolved	100	55.7			L	26.3 E	١		40 1
otassium-Dissolved	NA			4700 B				6460	1
	NA	11700 *				8660			5740
elenium-Dissolved elenium	50		1	5 U	L			5 U	
	50	5 UN	<u> </u>			5 U			5 ¹ U
ver-Dissolved	100		1_	10 U				10IU	
lver	100	10 U				14.7			10 U
dium-Dissolved	NA	i		15600	<u> </u>		Γ	9490 E	
odium	NA	15900	<u>ן</u>			9680	Γ		12900
allium-Dissolved	2			5.5 B			1	5.4 B	
allium	2	7.7 B		· · · · ·	1	27.4	1		5.8 B
inadium-Dissolved	2.1		1	50 U				50 U	0.0 0
Inadium	2.1	63	1			28.4 B	┢╌		50 U
nc-Dissolved	2000	[\mathbf{T}	20 U		-0.4 0	1	9.7 B	
10	2000	192 N	1			100 E	-		56.5
anide-Dissolved	200			5 U					jc.oc
anide	200	5 U	+	·		5 U	 	5 U	5 U

SLC data.xis

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 7 of 10

TABLE 3
SAFETY LIGHT CORPORATION SITE, PADEP
TAL INORGANICS ANALYTICAL RESULTS - GROUNDWATER

SAMPLE ID	T	SLC-GW-MS-09-F	T	SLC-GD-MS-09	,	SLC-GD-MS-09-F		SLC-GW-MS-10	i	SLC-GW-MS-10-F
LAB ID	1	F0H100291014	t	F0H100291012	+	F0H100291013	i	F0H100291031	+	F0H100291038
DATE COLLECTED	1	8/8/2000	\uparrow	8/8/2000	┿	8/8/2000	<u> </u> _	8/9/2000	<u>.</u>	8/9/2000
MATRIX	1	WATER	┢	WATER	┝	WATER	-	WATER	:	WATER
UNITS	PADEP	ug/l	┢	ug/l	+	ug/l	_	ug/i	<u>.</u>	ug/l
COMMENTS	MSCs 1	-3.		ugn -	-		-	69/1	1	
Aluminum-Dissolved	NA	200	i. Ii i		1	200	11		<u> </u>	200 U
Aluminum	NA		F	218	+	200	0	84900	Í NI	200 0
Antimony-Dissolved	6	60	1	·	+	60		04900	114	60 U
Antimony	6		-	60	1		Ē	60	111	000
Arsenic-Dissolved	50	2.3	B		10	2.5				3.9 B
Arsenic	50		-	1.8	R		-	55	Ĺ	3.5 5
Barium-Dissolved	2000	176	R	1.0		175	0			136 B
Barium	2000	1	Ē	178			-	902	$\left - \right $	130 B
Beryllium-Dissolved	4	5	U	1/0		5	1.1	902	$\left \right $	5 U
Beryllium	4		F	5	υ	*	-	5.7	Ц	
Cadmium-Dissolved	5	4.4	R		Ĕ	3.1	2	88 (<u></u>		5000 U
Cadmium	5		-	5000	11		-	5000		5000.0
Calcium-Dissolved	NA	52200			Ē	51600	-		-	45200
Calcium	NA			48700		51000		58400		43200
Chromium-Dissolved	100	10	u		╞	10		50400		
Chromium	100		Ť	10		10	Ĭ	161		10.0
Cobalt-Dissolved	NA	50	ũ		Ĕ	50		101		50 U
Cobalt	NA		-	50	11	50	4	78.9		
Copper-Dissolved	1000	25	υ		-	25		70.5	-	25 ['] U
Copper	1000		Ī	25	11	2J	4	243	-	20 0
Iron-Dissolved	NA	30700	-		Ĕ	30800	4	243	-	15000 N
Iron	NA		-	30000				191000	N	10000 14
Lead-Dissolved	5	3	υ		_	3	υİ	101000	-	3 U
Lead	5	1		3	υ		-	182	-1	
Magnesium-Dissolved	NA	7830	-			7750	1		-	8700
Magnesium	NA			7120			1	26200	+	1
Manganese-Dissolved	NA	8310			-	8170	1		-†	4200 N
Manganese	NA			7870			1	8440		
Mercury-Dissolved	2	0.2	υ			0.2	Ţ		1	0.2 [!] U
Mercury	2			0.2	υ		-	0.14	в	
Nickel-Dissolved	100	40	U			18.3	3		╡	40 U
Nickel	100			40	υ		1	304	-1	
Potassium-Dissolved	NA	8120				7160	1		1	6470
Potassium	NA			6480			t	23500		· · ·
Selenium-Dissolved	50	5	U			5 1	亣			510
Selenium	50			5	U		T	3.5	в	
Silver-Dissolved	100	10	U			10 เ	丌		T	10 U
Silver	100			10	U		T	10	파	
Sodium-Dissolved	NA	13900	T		T	13600	1		1	11800 E
Sodium	NA		Τ	12800			T	12600	1	
Thallium-Dissolved	2.	5.7	в		1	5.7 E	3		1	4.5 B
Thallium	2	[[4.2	в	· · · [1	21.2	1	
Vanadium-Dissolved	2.1	50	J		1	50 1	1		1	50!U
Vanadium	2.1		T	50	U		1	137	1	·
Zinc-Dissolved	2000	7.9	3		1	14.6 E	5	:	1	4.9 B
Zinc	2000		T	73	1		t	530 1	ŧ	
Cyanide-Dissolved	200	5 1	기		1	5 (亣		†	5,U
Cyanide	200		T	5	J		1	5 1	╗	

SLC data.xls

÷

C LUNE AREA

Ż

Contraction of the Association

ALL ALL ALL

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 8 of 10

SAMPLE ID	1	SLC-GW-MS-1	1	SLC-GW-MS-11-F		SLC-GW-MS-12		SLC-GW-MS-12-F	SLC-GW-MS-13
LAB ID		F0H100291024		F0H100291025	╧	F0H100291021	\vdash	F0H100291028	
DATE COLLECTED	~	8/8/2000	-†-	8/8/2000	+	8/8/2000		8/8/2000	F0H100291033
MATRIX		WATER	+	WATER	+	WATER	-	WATER	
UNITS	PADEP	ug/l	+	ug/l	+-	ug/l	-	······	WATER
COMMENTS	MSCs 1	-3.	-		+	ugn		ug/i	ug/i
Aluminum-Dissolved	NA		+	200	10		-	200 1	· · · · · · · · · · · · · · · · · · ·
Aluminum	NA	470	0 N		1	60300	NL	20010	
Antimony-Dissolved	6		+	60			-		33500 N
Antimony	6	6	οU		f	60		00 L	
Arsenic-Dissolved	50		+	3.7	в	· · · · · · · · · · · · · · · · · · ·	Ĭ	10 L	60 (L
Arsenic	50	1	B		F	37.6			
Barium-Dissolved	2000			95.6	в	01.0	-	69 B	30.4
Barium	2000	134	¢ B		1	529	-	09 6	· [- · · · · · · · · · · · · · · · · · ·
Beryllium-Dissolved	4			5	U		-	5 U	405
Beryllium	4		5 U		Ť	3.9	┏	50	
Cadmium-Dissolved	5	1	Ť	5000	u	5.9	쒸	5000 U	1.2 B
Cadmium	5	4.1	В		ť	3.7		0,000	78.7 B
Calcium-Dissolved	NA	1	F	38400	\vdash	0.7	-	33200	10.78
Calcium	NA	38100				38100	+	33200	32600
Chromium-Dissolved	100		\dagger	10	u	00100	╉	10 U	32600
Chromium	100	14.2			Ť	157	╉		2980
Cobalt-Dissolved	NA	1	Ħ	50	ū	n kan sa sa s a s F	╉	50 U	Tag0
Cobalt	NA	9.8	в		Ĭ	66.9	╉	5010	
Copper-Dissolved	1000		1	25	11	00,9	╉	25 U	20.2 B
Copper	1000	32.5	¦∳	20	러	136	╉	25 0	44500
ron-Dissolved	NA		1-1	5300		100	╉	1330	14500
ron	NA	22300	N		1	170000	╁	1000	184000 N
ead-Dissolved	5			3	υ		╋	3 U	104000114
.ead	5	14.2				132	╋		326
agnesium-Dissolved	NA			7150	-	, T	$^{+}$	6830	
Aagnesium	NA	7680			1	20500	$^{+}$		12200
langanese-Dissolved	NA			4300	T		1-	137	,2200
langanese	NA	4430			1	1910	ϯ		7880
fercury-Dissolved	2			0.2	υŤ		\uparrow	0.2 U	
fercury	2	0.2	U		1	0.19 B	+		0.17 B
lickel-Dissolved	100			18.9	3		┢	, 15.3 B	
lickel	100	24	в		1	203	t		373
otassium-Dissolved	NA			3910 E	3	<u>Г</u>	T	2740 B	
otassium	NA	4980	в		T	13000	T		8760
elenium-Dissolved	50			5 L	J		Γ	5 U	
elenium	50	5	υ		Ι	5 U			4.4:B
ilver-Dissolved	100			10 L	1			10 U	
ilver	100	10	U.			10 U	Γ		77.4
odium-Dissolved	NA			10900	Γ		[11200	
odium	NA	10800			Γ	11600			11700
nallium-Dissolved	2		ſ	10 U	I I			10 U	
nalilum	2	10 (٦]	14.4			21.1
anadium-Dissolved	2.1			50 U	~		-	50 U	
anadium	2.1	50 L	١			91.8			60.3
nc-Dissolved	2000		Γ	8.5 B	1			6 B	
nc	2000	108 E			Γ	479 E			21100 E
anide-Dissofved	200			5 U	Γ		·	510	
anide	200	5 L	1		Γ	5 U			5.0

SLC data.xls MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW

page 9 of 10

ŝ

TDS <2500, Residential Criteria

SAMPLE ID		SLC-GW-MS-13-F		SLC-GW-SL-1	s i	SLC-GW-SL-15-F	
LAB ID	-1	F0H100291036	+-	F0H16031900			
DATE COLLECTED		8/9/2000	+		2	F0H160319003	
MATRIX	-{	WATER	+	8/9/2000		8/9/2000	-
UNITS	PADEP		1	WATER		WATER	+-
COMMENTS	MSCs 1	ug/l	+-	ug/l		ug/1	+
Aluminum-Dissolved	NA	200					1
Aluminum	NA	200	10		-	200	μυ
Antimony-Dissolved	6				4 N*		+
Antimony	6	01	10			2.6	B
Arsenic-Dissolved	50	3.9			0 0		<u> </u>
Arsenic	50	3.8	ПВ		<u> </u>	10	U
Barium-Dissolved	2000			1			
Barium	2000	121	В		<u> </u>	65.3	B
Beryllium-Dissolved	4		-	15	<u> 8</u> B		
Beryllium	4	5	U		<u> </u>	5	U
Cadmium-Dissolved					5 U		
Cadmium	5	5000	Ľ			5	U
Calcium-Dissolved	NA NA		$\left \cdot \right $	0.9	5 B		
Calcium		29500			<u> </u>	30700	
Chromium-Dissolved	NA			29800	<u>N</u>		
Chromium	100	10	Ш	·····	1	10!	Ľ
Cobalt-Dissolved	100		\square	1.3	B		
Cobalt	NA	50	비		ļ	50	U
	NA			50	U		
Copper-Dissolved	1000	25	U		<u> .</u>	25	υ
Copper	1000			18.8	В		
Iron-Dissolved	NA	19900	Ν	4	:	173	_
	NA			92800	Ν		_
Lead-Dissolved	5	3	υ			3	u
Lead	5			3	U		
Magnesium-Dissolved	NA	5420				8000	
Magnesium	NA		_	7660	 		
Manganese-Dissolved	NA	5460	N	·		236	
Manganese	NA		_	1070	N		
Mercury-Dissolved	2	0.2	미			- 0.2 1	U
Mercury Nickel-Dissolved	2		\perp	0.2	U		
Nickel	100	40	U.			40 L	U
	100		_	40	U		
Potassium-Dissolved	NA	2210	В			5000 1	<u> </u>
Potassium	NA		_	5000	υ		
Selenium-Dissolved	50		Ч			5jL	1
Selenium	50			5	U		
Silver-Dissolved	100	10 1	U.			10 U	J
Silver	100			10	U		
Sodium-Dissolved	NA	11000 8				13400	1
Sodium	NA			12900			1
hallium-Dissolved	2	5.5				4.7 B	
hallium	2	[]	9.9	в	i i	1
anadium-Dissolved	2.1	50 L	ر			50 U	1
anadium	2.1		T	50	υT	· · · · · · · · · · · · · · · · · · ·	1
inc-Dissolved	2000	371	Τ			6.7 B	
inc	2000		Τ	18.9	BN		1
yanide-Dissolved	200	5 L	1		-†	5 U	
yanide	200		+	5	7		1

SLC data.xls

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, Metals-GW TDS <2500, Residential Criteria page 10 of 10

SAMPLE ID		SLC-RB-0									
LAB ID	EPA		·····	SLC-RB-02		SLC-GW-CN	I-A	SLC-GW-CN	-В	SLC-GW-CN	I-D
DATE COLLECTED		F0H1001530	01	F0H1001530	19	F0H1001530	06	F0H1002910	08	F0H1001530	04
		8/7/2000		8/8/2000		8/7/2000		8/7/2000		8/7/2000	
MATRIX	WATER	WATER		WATER		WATER		WATER			
COMMENTS	STANDARDS	Rinse Blan	k [Rinse Blan		Monitoring V				WATER	
UNITS	piC/L	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	Monitoring W		Monitoring W	
GROSS ALPHA	15	0.33 U	0.39	-0.07 U	0.34			pCi/L	uncert.	pCi/L	uncert.
GROSS BETA	50	1 U	1 1	0.6 U	0.34	301	47	0.846	0.999		14
TRITIUM	20,000	-110 U	110			3820	380	3.31	1.14	200	25
		-110 0		60 U	120	1980	260	2060	267	5560	600
GAMMA SCAN											
Cesium 137	na	4.1 U	6.9	2.1 U	6	-2.6 U	7.2	4.00.11			
Cobalt 60	na	-1.4 U	6.1	1.3 U	8.2	-3.5 U		-4.36 U	8.56	7.8 U	8.1
Lead 214	na	U					9.1	-7.07 U	9.3	1.3 U	7.2
OTHERS				Y		79		32.5	22	78	20
Radium 226	53	0.0825	0.193	0.0101	0.159	-16.9 U					_
Radium228	Ċ	0.897	0.89	0.589	0.839		3.4	0.251	0.129	-53.6 U	8.71
Carbon 14	na	0.517	2.9	1.11		13.3	1.84	0.944	0.456	38.9	4.19
Strontium 90	8	0.32	0.83	0.39	2.8	4.78	2.9	-3.33 U	4.8	3.93	2.9
Nickel 63	na	3.02	11	4.03	0.98	21	4.44	1.8	0.517	68.9	13.7
Americium 241	กล	0.057	0.21	-0.089 U	9.7	9.01	11	5.78	12	8.45	11
Polonium 210	0	0.001	0.12	-0.0091 U	0.06	-0.042 U	0.098	-0.0439 U	0.0769	0.1	0.37
		Notes:	V. 12	-0.0091 0	0.013	4.27	1.1	-0.0057 U	0.011	2.5	0.77

Notes:

U- Result is less than the sample detection limit.

na-not applicable

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total. When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result. This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xis RAD-GW page 1 of 5

SAMPLE ID											
• • • • • • • • • • • • • • • • • • •	• • · · · · · · · · · · · · · · · · · ·	SLC-GW-CN	· · · · · · ·	SLC-GW-C	CN-G	SLC-GW-CI	N-H	SLC-GW-CI	N-1	SLC-GW-MS	-01
LAB ID		F0H1002910)34	F0H10015	3002	F0H100291	010	F0H100291009		F0H100291032	
DATE COLLECTED	DRINKING	8/9/2000		8/7/200	0	8/7/2000)	8/7/2000		8/9/2000	
MATRIX	WATER	WATER		WATE	R	WATER		WATER	******	WATER	
COMMENTS	STANDARDS ²	Monitoring W	/eli	Monitoring	Well	Monitoring V		Monitoring W			
UNITS	piC/L	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	Monitoring V pCi/L	uncert.
GROSS ALPHA	15	0.506	0.843	9.3	2.4	17.8	3.53	26.6	6.87	52.1	8.88
GROSS BETA	50	3.91	1.26	23	3	21.5	3.08	47.7	7.8	755	0.00 75.5
TRITIUM	20,000	1920	254	1280	200		327	1820	245	4290	475
GAMMA SCAN			• · •• · · · · · · ·	- 1980 - 11 an II 14 an II 14 an II.	· · · · · · · · · · · · · · · · · · ·	·····					
Cesium 137	ាន	-7.12 U	9.33	-12.2	U 7.5	-7.31 U	8.26	-5.7 U	6.17	-7.15 U	8.09
Cobalt 60	na	-11.2 U	9.86	-7.7	U 7.7	-7.13 U		2.61	9.11	-2.07 U	
Lead 214	na -	10.8	16.2		U	57.3	23.1	0.242	16.5		
OTHERS					·····			0.242	10.5	5.06	14.1
Radium 226	53	0.212	0.134	-4.8	U 3.75	1.02	0.17	1.52	0.337	-279 U	47
Radium228	63	0.422	0.475	3.41	0.937	0.867	0.478	0.872	0.537	-279 0	4/ 18.1
Carbon 14	na	0.989	2.8	3.12	4.7	-0.53 U		-1.35 U	2.9	-1.05 U	
Strontium 90	8	0.67	0.426	5.98	1.62	0.205	0.403	1.35.0	0.472		
Nickel 63	na	12.3	11	4.97	11		••••••			345	68
Americium 241	na	-0.0151 U	0.145						i		12
Polonium 210	C)	0,144			· · · · · · · · · · · · · · · · · · ·						0.102
Americium 241	па	-0.0151 U	0.145 0.21	4.97 0.18 1.93	11 0.33 0.69	9.81 -0.00753 U 3.92	12 0.0151 1.1	4.92 0.043 4.05	13 0.101 1.3	7.32 0.0623 0.407	

Notes:

U- Result is less than the sample detection limit.

na-not applicable

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total. When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result.

This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xls RAD-GW page 2 of 5

SAMPLE ID		SLC-GW-MS-	02	SLC-GW-MS-	12						
LAB ID	EPA	F0H1002910	· · · · · · · · · · · · · · · ·	and a second sec		SLC-GW-MS		SLC-GW-MS-	05	SLC-GW-MS-	06
DATE COLLECTED	DRINKING	8/7/2000	~~	F0H10029102		F0H1002910	19	F0H10015300	3	F0H100291022	
MATRIX	WATER	WATER	• • • • • •	8/8/2000		8/8/2000		8/7/2000		8/8/2000	
COMMENTS	STANDARDS	ere e esta una la servicia de la servicia de la servicia de la servicia de la servicia de la servicia de la se		WATER		WATER		WATER		WATER	
UNITS	piC/L	Monitoring W		Monitoring We	at	Monitoring W	ell	Monitoring We	ell .	Monitoring We	 eli
GROSS ALPHA		pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.
	15	20	3.17	39.1	6.45	496	94.2	387	52	264	
GROSS BETA	50	153	15.5	371	37.2	9650	965	866	90		58.4
RITIUM	20,000	9050	936	5790	619	3780	426			2100	223
								2860	340	4210	467
AMMA SCAN			• • • • • • • • • • • • • • • • • •		•• • • • • • • • • • • • • • • • • • • •						
Cesium 137	na	34.5	12.5	0.785	8.6	-0.0684 U					
Cobalt 60	na	-0.0173 U	9.4	1.36	6.17		9.04	1830	200	21.6	15.7
Lead 214	na	55.4	18.7	-15.1 U		1.38	8.06	0.9 U	7.1	-2.17 U	8.21
THERS				-10.1 0	15.5	62.1	18.6	197	37	16	17.1
Radium 226	53	-86.1 U	13.6								
Radium228		48.5	4.97	-37.8 U	5.52	-979 U	210	56	5.6	-61.8 U	8.33
Carbon 14	na	0.604		26.5	2.83	615	61.5	95.5	9.72	44.2	4.65
Strontium 90	8		2.8	0.14	2.9	2.6	3	2.77	2.9	-2.14 U	2.9
Nickel 63		87.6	17.3	44.5	8.81	6450	1270	159	31.4	140	27.6
Americium 241		2.46	12	1.41	13	36.3	13	16.7	12	9.09	11
Polonium 210		0.174	0.167	0.00696	0.107	0.207	0.192	1.46	0.56	0.144	0.167
		4.73	1.4	0.208	0.21	38.1	9	110	19	10.2	3.1

Notes:

U- Result is less than the sample detection limit.

na-not applicable

BOLD result-indicates exceedance of standard

Source: Federal Register Volume 65, No. 236, December 7, 2000 1

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total. When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result. This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xis RAD-GW page 3 of 5

SAMPLE ID		SLC-GW-MS	-07	SLC-GW-MS	02						
LAB ID	EPA	F0H1603190				SLC-GW-MS		SLC-GD-MS	-09	SLC-GW-MS-	-10
DATE COLLECTED	DRINKING	8/9/2000		F0H1002910	23	F0H1002910	11	F0H1002910	12	F0H100291031	
MATRIX	WATER	WATER	••• •• •• •••	8/8/2000		8/7/2000		8/7/2000		8/9/2000	
COMMENTS	STANDARDS ²			WATER		WATER		WATER		WATER	
UNITS	piC/L	Monitoring W		Monitoring W	ell	Monitoring W	ell	Monitoring Well D	uplicate	Monitoring W	
GROSS ALPHA	15	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.
GROSS BETA	·······	25.7	5.95	89.3	16.7	413	141	1570	302	3580	65
	50	106	12.4	1490	149	34200	3420	34200	3420		
RITIUM	20,000	1600	255	5700	610	3830	431	3600		66500	665
								3600	409	2940	34
AMMA SCAN			• • • • • • • • • • • • • • • • • • • •		-					•	
Cesium 137	na	-8.08 U	7.96	-6.76 U	8.37	-10.9 U	6.59				
Cobait 60	na	-11.2 U	9.34	-5.18 U	7.85	1.64		9.22	8.05	3.11	9.65
Lead 214	na	-10.8 U	14.9	-4.55 U	14		7.24	-6.95	9.2	-5.56 U	7.85
THERS					![17.2	18.2	24.3	27.1	57.5	34.1
Radium 226	53	-14.8 U	2.34	-360 U	40.0						
Radium228	0	9.58	1.31	-360 0	46.5	-7330 U	1370	-7580 U	1310	-17900 U	3120
Carbon 14	na	2.33	2.8		23.7	3950	395	4710	471	114000	1140
Strontium 90	8	35.5	7.3	-3.01 U	2.8	12.6	3.4	10.5	3.3	11.4	3.1
Nickel 63	na	11.8	7.3	696	137	10000	1970	9410	1850	29500	5810
Americium 241	na	0.454		5.98	12	34	14	31.4	13	83	16
Polonium 210	0		0.347	0.3	0.24	0.209	0.335	-0.019 U	0.149	0.103	0.147
		1.91 otes:	0.69	2.28	0.82	0.78	0.4	0.614	0.39	11.6	2.5

U- Result is less than the sample detection limit.

na-not applicable

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total. When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result. This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xis RAD-GW page 4 of 5

SAMPLE ID		SLC-GW-MS		010 011110					
LABID	EPA			SLC-GW-MS	11 17 7 7 7 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SLC-GW-MS	-13	SLC-GW-S	L-15
· ····		F0H1002910	24	F0H1002910	21	F0H1002910	33	F0H160319	002
DATE COLLECTED	DRINKING	8/8/2000		8/8/2000		8/9/2000		8/9/200	• •• •• •• •• •• •• •• •• •• ••
MATRIX	WATER	WATER		WATER	·····	WATER		WATER	-
COMMENTS	STANDARDS	Monitoring W	/ell	Monitoring V	/oli		(a))		
UNITS	piC/L	pCi/L	uncert.	pCi/L	uncert.	Monitoring W pCi/L	uncert.	Background pCi/L	Well uncert.
GROSS ALPHA	15	144	25.7	27.4	6.48	70.2	12.4	3.14	1.58
GROSS BETA	50	2190	219	67.7	8.78	99.3	12.2	7,83	2.32
TRITIUM	20,000	1510	218	1830	245	2960	349	325	2.32
									103
GAMMA SCAN									
Cesium 137	na	5.94	9.7	15.8	12.8	-0.995 U	7.78	-15.5	U 8.57
Cobalt 60	na	4.07	6.09	-7.82 U	8.34	0.0416	9.76	-8.16	
Lead 214	па	37.9	21.9	5.6	16.3	62.8	30.7	-11.2	
OTHERS								-11.2	0 14.0
Radium 226	5 ³	-676 U	88.5	-313 U	49.5	-0.167 U	0.0193	-12.1	U 2.05
Radium228	Ċ	439	43.9	204	20.4	7.12	0.958	8.33	1.37
Carbon 14	na	-1.72 U	2.9	-2.64 U	2.8	0.522	2.8	1.47	2.8
Strontium 90	88	1110	220	351	69.1	10.6	2.23	1.03	0.826
Nickel 63	na	4.23	12	1.89	11	4.37	10	6.59	0.020
Americium 241	na	0.107	0.109	-0.0125 U	0.0987	0.0374	0.0976	0.131	0.229
Polonium 210	<u>0</u>	6.01	1.5	7.16	2	22.5	4.3	1.07	0.229

Notes:

U- Result is less than the sample detection limit.

na-not applicable

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total. When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result. This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xls RAD-GW page 5 of 5

SAMPLE ID	PADEP	SLC-SW-01	1	SLC-SW-02	I	SLC-SW-03	1	SLC-SW-04
LAB ID	Water Quality	F0H100153021		F0H100153014	+	F0H100153016	-	F0H100153017
DATE COLLECTED	for	8/8/2000	1	8/8/2000	1	8/8/2000		8/8/2000
MATRIX	Toxic	WATER	+	WATER	t	WATER	+-	WATER
UNITS	Substances 1	ug/l	\uparrow	ug/l	+	ug/l	\vdash	ug/l
COMMENTS	ug/L	1	\uparrow			-3-	\vdash	ugri
Aluminum	NA	119	В	327	+	316	i	211
Antimony	10	60	U	60	+	60	–	60 U
Arsenic	50	. 2.7	в	1.5	-	2.6		10 U
Barium	NA	36	+	40.1		39.8	-	36.9 B
Beryllium	NA	5	U		υ		υ	5 U
Cadmium	10	5000	U	5000		5000		5000 U
Calcium	NA	31500	Ē	33400	Ē	33000	ř	32000
Chromium	15	10	υ	10	U	10		10 U
Cobalt	NA	50	υ	50	-	50	-	50 U
Copper	1000	10.3	в	25		25	-	25 U
Iron	NA	540		849	-	1280	-	634
Lead	50	3	υ		U		υ	3 U
Magnesium	NA	7750		8410	-	8040	Ť	7890
Manganese	NA	138		102		172	-	75.6
Mercury	0.144	0.2	Ū	0.2	υ	0.2	υĺ	0.2 U
Nickel	600	40	υ	40	-	40	-+	40 U
Potassium	NA	1920	в	3790	_	3380		4270 B
Selenium	NA	5	-+	5	- +			
Silver	200	10		10		10	-	10 U
Sodium	NA	16000	-	19200	-	18400	Ť	18200
Thallium	2	10	ul	10	마	10100	t	10:00
√anadium	NA	50	<u> </u>	50	-	50	<u> </u>	50 U
Zinc	5000	20	υ	19.7	_	14.3		9'B
Cyanide	700	51	-	5	_	5 1		5 U

1 Pennsylvania Title 25, Part 1, Subpart A, Article 11, Chapter 16, Water Quality Toxics Management Strategy, Human Health Criteria

· · · · · ·

SLC data.xls Metals-SW page 1 of 1

SAMPLE ID	SLC-SW-0	1	SLC-SW-0	2	SLC-SW-0	2	SI 0 000 0		
LAB ID	F0H1001530)21	F0H1001530	- • ••• ••• •	F0H1001530	an a sea a sea e sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea	SLC-SW-04		
DATE COLLECTED	8/8/2000	* * * *	8/8/2000	· · · · · · · · · · · · · · · · · · ·	and a second second second second second second second second second second second second second second second		F0H100153017		
MATRIX	WATER		WATER		8/8/2000		8/8/2000		
COMMENTS	Surface Wat		Surface Wat		WATER		WATER		
UNITS	pCi/L	uncert.	pCi/L	· · · · · · · · · · · · · · · ·	Surface Wat		Surface Wate	er	
GROSS ALPHA	0.73 U	0.71		uncert.	pCi/L	uncert.	pCi/L	uncert.	
GROSS BETA			0.3 U	0.53	0.7 U	0.78	0.22 U	0.58	
	1.8 U	1.2	3.2 J	1.3	2.9 J	1.2	3.3 J	1.2	
	390 J	160	260 J	130	350 J	130	310 J	130	
GAMMA SCAN				· · · · · · · · · · · · · · · · · · ·					
Cesium 137	-1.6 U	7.4	-3.1 U	7.7	-3.2 U	8.5	2.9 U	6.9	
Cobalt 60	1.4 U	8.2	-4.1 U	6.1	-2.9 U	8.4	1.1 U		
THERS		• • •	••••••••••••••••••••••••••••••••••••••						
Radium 226	0.0814	0.21	0.0726	0.172	-0.016 U	0.134	0.634	0.263	
Radium 228	0.325	0.756	0.472	0.885	0.553	0.813	0.353	0.825	
Carbon 14	3.08	2.9	2.18	2.8	0.442	2.8	2.4		
Strontium 90	19.5	4.15	-0.23 U	1.02	NA	NA	0.742	2.8	
Nickel 63	9.59	11	6.12	11	13.1	12		1.06	
Americium 241	-0.081 U	0.06	0.073	0.18			10.4	11	
Polonium 210	-0.00752 U	-0.011	0.0444	0.0972	-0.1 U 0.0417	0.18	-0.0084 U 0 U	0.13	

4.1

55

•

Notes:

U- Result is less than the sample detection limit.

na-not applicable

- - **-** -

NA-not available

na sena sena sena 19 - Angel Angel Angel 19 - Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel 19 - Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel

والمراجع

SLC data.xls RAD-SW page 1 of 1

TABLE 7 SAFETY LIGHT CORPORATION SITE, PADEP VOLATILE ORGANIC COMPOUNDS ANALYTICAL RESULTS - RESIDENTIAL WELL WATER

LAB ID		SLC-RW-01	T	SLC-RW-02	1	SLC-RD-02
SAMPLE ID	PADEP Act 2	F0H100291001	1	F0H100291002	-	F0H100291003
DATE COLLECTED	MSCs	8/8/2000	+	8/9/2000	+	8/9/2000
MATRIX		WATER	+	WATER	+	WATER
UNITS	ug/l	ug/l	┢	ug/i	ŀ	ug/l
COMMENTS	•		┿	- San	┢	ogn i
1,1,1-Trichloroethane	200	0.64	J	1	υ	1/U
1,1,2,2-Tetrachloroethane	na	1	U		U	1 U
1,1,2-Trichloroethane	5		Ū	1	υ	10
1,1-Dichloroethane	27	0.23		1	U	10
1,1-Dichloroethene	7	1	U	1	U	10
1,2-Dichloroethane	5	1	U	1	U	10
1,2-Dichloroethene (total)	70		U	1	Ŭ	10
1,2-Dichloropropane	5		U	1	Ŭ	1 U
2-Butanone	2800	5		5	-	5.0
2-Hexanone	na	5		5		5.0
4-Methyl-2-pentanone	na		Ū	5	-	5 U
Acetone	3700	10	Ū	10	_	10 U
Benzene	5	1	U	1	-	1 U
Bromodichloromethane	100	1		1		10
Bromoform	100		Ū	1	-	10
Bromomethane	10	2	-+	2	-	2 U
Carbon disulfide	1900	1	<u> </u>	.a ** ~ 1	-	1 U
Carbon tetrachloride	5	· · · · · · · · · · · · · · · · · · ·	Ū	1	+	1/U
Chlorobenzene	55	1	-+		ŭ	1 U
Chloroethane	28000	2	ul	2		2:U
Chloroform	100	1	ū			110
Chloromethane	na	2	ū	21	-	210
cis-1,3-Dichloropropene	na	1		1		1 U
Dibromochloromethane	na	1	u	11	-	1 0
Ethylbenzene	700	11		11	<u> </u>	1 U
Methylene chloride	5	1	-	11	-	1.0
Styrene	100	1	-	11	4	1:0
Tetrachloroethene	5	1	-+-	11	1	10
Toluene	1000	11	-	11	+	110
trans-1,3-Dichloropropene	na	111	-	11	-	10
Trichloroethene	5	1		11	-	110
Vinyl chloride	2	21	-	2 L	-	2 U
Xylenes (total)	10000	11	-	1	-	10

32

SLC data.xls MSCs-Medium Specific Concentrations for Organic Regulated Substances in Groundwater, Used Aquifer, TDS <2500, Residential Criteria

LABID		SLC-RW-01	-34	SLC-RW-02	SLC-RD-02			
SAMPLE ID	PADEP Act 2	F0H10029100	<u>.</u>		Ļ	· · · · · · · · · · · · · · · · · · ·		
DATE COLLECTED	MSCs			F0H10029100	2	F0H100291003		
MATRIX		8/8/2000	╞	8/9/2000	+-	8/9/2000		
UNITS	- I	WATER	1	WATER	L	WATER		
	ug/i	lug/t		ugri		ug/t		
COMMENTS			!		ļ			
1,2,4-Trichlorobenzene	70	10	U	10	υ	10		
1,2-Dichlorobenzene	600	10	U	10	U	10		
1,3-Dichlorobenzene	600	10	υ	10	U	10		
1,4-Dichlorobenzene	75	10	u	10	÷	10		
2,2"-oxybis(1-Chloropropane)	na	10	Ū	10	Ū	10		
2,4,5-Trichlorophenol	3700	10	Ū	10	-			
2,4,6-Trichlorophenol	60	10	υ	10	υ			
2,4-Dichlorophenol	20	10	U		<u> </u>	10		
2,4-Dimethylphenol	730		U	10	U	10		
2,4-Dinitrophenol	19	10	-	10	U	10		
2,4-Dinitrotoluene		50		50	-	50		
2,6-Dinitrotoluene	2.1		V		U	10		
	37	10	υ	10		10		
2-Chloronaphthalene	2900		U	10	U	10		
2-Chlorophenol	40	10	U	10	U	10		
2-Methylnaphthalene	1500	10	V	10	U	10		
2-Methylphenol	na	10	U	10	U	10		
2-Nitroanitine	2.1	50	u		Ū	50		
?-Nitrophenol	2300	10	ūt		ŭ	10		
3'-Dichlorobenzidine	1.5		Ŭ		ŭ	50		
Nitroaniline	2.1		u		비	50		
,6-Dinitro-2-methylphenol			ŭ		<u> </u>			
Bromophenyl phenyl ether	na				U.	50		
-Chioro-3-methylphenol			<u>u</u>	10	-	10		
-Chioroaniline	<u>na</u>	101	_	10	-	10		
-Chlorophenyl phenyl ether	150	10 (-	10	-	10		
	na	101	-+-	10 1	J.	10		
Methylphenol	na	10 1	1	101	J	10		
Nitroaniline	2.1	50 1	1	50 1	ų	50 1		
-Nitrophenol	60	50 L	J	50 U	Л	(50		
cenaphthene	2200	10 L	J	10 נ	J.	10 1		
cenaphthylene	2200	10 L	J.	1010	1	101		
nthracene	43	10 1	1	10 L	1	10 1		
enzo(a)anthracene	0.9	1010	i	1011	-	10 1		
enzo(a)pyrene	0.2	10 1	-	10 1	+	1010		
enzo(b)fluoranthene	0.9	10 0	·		-			
enzo(ghi)perylene	0.26		+-	10 U		101		
enzo(k)fluoranthene	0.55	10 U	-	10 U	-	10 נ		
s(2-Chloroethoxy)methane		10 U	+	10 ป	-	10/1		
s(2-Chloroethyi) ether	na	10 U	÷	10 U	-	10 L		
	0.13	10 U		10¦U	L	10 L		
s(2-Ethylhexyi) phthalate	6	4.7 J		3.9 J		10 1		
tyi benzyi phthalate	2700	10 U	İ.	10 U		10 U		
rbazołe	700	10 U	Ē	10 U	Γ	10 U		
rysene	1.8	10 U	Γ	10 U	Γ	1010		
-n-butyl phthalate	3700	10 U	Γ	10 U	Γ	10 U		
-n-octyl phthalate	730	10 U		10 U		10/0		
benzo(a,h)anihracene	0.09	10 U		10/U		10 0		
benzofuran	na	10 U		10 U	-	10 U		
othyt phthalate	5000	1.7 J	F	2.6 J				
nethyl phthalate	na	10 U	-			10 U		
ioranthene	270		_	10 U		10 U		
orene		10 U	_	10 U		10 U		
xachiorobenzene	190	10 U		10 U		10 U		
	1.	10 U		10 U	_	10 U		
xachlorobutadiene	1	10 U		10 U		10 U		
xachlorocyclopentadiene	50	50 U	_	50 U		50 U		
kachioroethane	1	10 U	_	10 U		10 U		
eno(1,2,3-cd)pyrene	0.9	10 U		10 U		10 U		
phorone	100	10 U		10 U		10 U		
litrosodi-n-propylamine	0.094	10 U		10 U		10 0		
litrosodiphenylamine	130	10 U	~~~~	10 U		10 0		
ohthalene	20	10 U		10 U				
obenzene	18					10 U		
tachlorophenol	1	10 U		10 U		10 U		
ananthrene		50 U		50 U		50 U		
	1200	10 U		10 U	_	10 U		
nol	4000	10 U		10 0		10 U		
ene	13	10 U	_	10 U		10 [.] U		

TABLE 8 SAFETY LIGHT CORPORATION SITE, PADEP SEMI-VOLATILE ORGANIC COMPOUNDS ANALYTICAL RESULTS - RESIDENTIAL WELL WATER

MSCs-Medium Specific Concentrations for Organic Regulated Substances in Groundwater, Used Aquifer, TDS <2500, Residential Criteria

. 3

2

SLC data.xls BNA-RW page 1 of 1

3 1 2

TABLE 9 SAFETY LIGHT CORPORATION SITE, PADEP TAL INORGANICS ANALYTICAL RESULTS - RESIDENTIAL WELL WATER

SAMPLE ID		SLC-RW-01	T	SLC-RW-01-F	SLC-RW-02	T	SLC-RW-02-F	SLC-RD-02	SIC PD 02 F
LAB ID		F0H10029100)1	F0H100291006	F0H100291002	5	F0H100291005	F0H100291003	SLC-RD-02-F
DATE COLLECTED		8/8/2000	-	8/8/2000	8/9/2000	-	8/9/2000		F0H100291004
MATRIX	1	WATER	+	WATER	WATER	+	WATER	8/9/2000	8/9/2000
UNITS	PADEP	ug/l	+	ug/i	ug/l	┢	++	WATER	WATER
COMMENTS	MSCs 1		\uparrow	-9.	ugn	╀	ug/i	ug/i	ug/i
Aluminum-Dissolved	NA			2001		+			
Aluminum	NA	20	olu		200		200 (200
Antimony-Dissolved	6	-	+	60 1		10	<u> </u> . <u>+</u> .	200 U	
Antimony	6	6	0 0	i i i i i i i i i i i i i i i i i i i	60	1.	60 L	······································	60
Arsenic-Dissolved	50		+	10 0		0		60 U	
Arsenic	50	1	οU		10		10 L		10
Barium-Dissolved	2000			43.8 B		Ľ		10 U	
Barium	2000	43.0	5 B		38.4		39.4 E		39,1
Beryllium-Dissolved	4	-		5 U	30.4	P		39.5 B	
Beryllium	4		5 U			U	5 L		5
Cadmium-Dissolved	5		+-	5000 U		۲		5 U	
Cadmium	5	500	211	3000 0	5000		4.4 B		4.2.
Calcium-Dissolved	NA			33200	5000	-		5000 ¹ U	
Calcium	NA	31700	<u>,</u>		36400		37300		37200
Chromium-Dissolved	100			10 U	30400	-		37300	
Chromium	100	10	U		10		10 U	· · · · · · · · · · · · · · · · · · ·	10 (
Cobalt-Dissolved	NA				10	쒸		10 U	+
Cobalt	NA	50	lu		50		50 iU		50 L
Copper-Dissolved	1000	1		17.9 B		4	a na sa sa sa sa sa sa sa sa sa sa sa sa sa	50 U	. .
Copper	1000	20.1	B	11.5 B	1210	[*	1530	1. See	1580_
ron-Dissolved	NA		-H	100 U	1210	+		1220	
ron	NA	100	tat		1380	+	666		767
ead-Dissofved	5			30	1360:	╉		1340	· · · · ·
.ead	5	3	lul		5.5	╋	3 U	la se se 🕌	3!U
lagnesium-Dissolved	NA			7940	. 3. 5	╉		5	;
lagnesium	NA	7440			7880	╉	8370		8350
langanese-Dissolved	NA			15 U	7000	╉	27.7	8110	
langanese	NA	15	U		28.8	╉	21.1		28.4
lercury-Dissolved	2			0.2 U	20.0	╋		29.8	
lercury	2	0.2	U		0.2 L	╢	0.2 U		0.2 [‡] U
ickel-Dissolved	100		-	40 U	0.2 0	╢	40 U	0.2;U	
ickel	100	40	마		40 L	+	4010		13.9 B
otassium-Dissolved	NA		-	4220 B		4-	2000 0	40 U	
otassium	NA	2010	в		2640 8	+-	2990 B		2320 B
elenium-Dissolved	50		-	5 U	2040 0			3000 B	- 1- 1
elenium	50	5	u		5 U	+	5U		5 U
Iver-Dissolved	100		+	10 U		+-	10 U	5 U	
iver	100	10	u		10 U	1-			10 ¹ U
odium-Dissolved	NA		T	15600		┢	11800	10 U	
odium	NA	14900	+		11400		11000		11700
allium-Dissolved	2		1-	10 U		-	10 U	11700	
allium	2	10	Ť		10 U	⊢			10 [°] U
anadium-Dissolved	2.1		╈	50 U	10 0			10 U	
inadium	2.1	50 1	1		Pals		50 U		50 U
nc-Dissolved	2000		+	74.7	50 U	-		50 U	
1C	2000	71.2	╋	14.1			57.1	·····	700
anide-Dissolved	200		┢		62.8	Ļ		64.6	:
anide	200	5 (5 U			5[U[5 U

MSCs-Medium Specific Concentrations for Inorganic Regulated Substances in Groundwater, Used Aquifer, TDS <2500, Residential Criteria

SLC data.xls Metals- RW page 1 of 1

	10.0102001	SORE ANALT TO					
SAMPLE ID		SLC-RW-01	1	SLC-RW-02	2	SLC-RI	D-02
LAB ID	EPA	F0H1002910	101	F0H1002910		F0H1002	91003
DATE COLLECTED	DRINKING	8/8/2000		8/9/2000		8/8/20	
MATRIX	WATER	WATER		WATER		WATE	
COMMENTS	STANDARDS ²	Murphy Reside	ence	Vance/Walton Res	sidence	Vance/Walton Resid	
UNITS	piC/L	pCi/L	uncert.	pCi/L	uncert.	pCi/L	uncert.
GROSS ALPHA	15	-0.35 U	0.572	0.879	0.937	0.263	0.58
GROSS BETA	50	2.53	1.16	2.38	1.12	2.3	1.06
TRITIUM	20,000	1170	190	2180	279	2060	267
GAMMA SCAN							
Cesium 137	na	-0.0538 U	6.66	-5.12 U	8.99	6.24	8.4
Cobait 60	na	-2.5 U	5.55	-8.42 U	5.89	-1.94 U	8.09
OTHERS		,					
Radium 226	5 ³	0.0728	0.162	-0.744 U	0.259	0.209	0.139
Radium 228	Ċ	0.511	0.417	0.637	0.376	0.196	0.423
Carbon 14	na	-3.77 U	2.8	-2.33 U	2.8	-0.803 U	2.9
Strontium 90	8	0.378	0.4	0.413	0.428	0.515	0.466
Nickel 63	na	-1.51 U	10	3.03	12	4.32	11
Americium 241	na	0.0497	0.234	0.0228	0.106	0.0216	0.134
Polonium 210	()	0.109	0.17	0.0421	0.092	0 U	0.16

TABLE 10 SAFETY LIGHT CORPORATION SITE, PADEP RADIOLOGICAL ANALYTICAL RESULTS - RESIDENTIAL WELL WATER

Notes:

U- Result is less than the sample detection limit.

BOLD result-indicates exceedance of standard

na-not applicable

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total.

⁴ Included in gross alpha

SLC data.xls RAD-RW

TABLE 11

SAFETY LIGHT CORPORATION, PADEP WASTE DISPOSAL CRITERIA ANALYTICAL RESULTS - INVESTIGATION DERIVED WASTES

Analyte ¹	RCRA		
	Limits		
	Sample ID	SLC-WC-01	SLC-WC-02
	Lab ID	F0H160319005	F0H160319006
	Matrix	Solid	Water
	Date		
	Collected	8/9/2000	8/9/2000
TCLP VOC			
Benzene	0.5	<0.05	<0.05
Carbon Tetrachloride	0.5	<0.05	<0.05
Chlorobenzene	100	< 0.05	<0.05
Chloroform	6	< 0.05	<0.05
1,2-Dichloroethane	0.5	< 0.05	<0.05
1,1-Dichloroethylene (1,1-Dichloroethene)	0.7	< 0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	200	<0.2	<0.2
Tetrachloroethene	0.7	<0.05	<0.05
Trichloroethene	0.5	<0.05	<0.05
Vinyl Chloride	0.2	<0.1	<0.03
TCLP SVOCs		······	
1,4-Dichlorobenzene	7.5	0.0059	<0.05
2,4-Dinitrotoluene	0.13	<0.05	<0.05
2,4,5-Trichlorophenol	400	<0.05	<0.05
2,4,6-Trichlorophenol	2.0	<0.05	<0.05
2-Methylphenol	200	<0.05	<0.05
4-Methylphenol	200	<0.05	<0.05
Pentachlorophenol	100	<0.25	<0.05
Hexachlorobenzene	0.13	<0.05	<0.25
Hexachlorobutadiene	0.5	< 0.05	<0.05
Hexachloroethane	3.0	< 0.05	<0.05
Nitrobenzene	2.0	< 0.05	<0.05
Pyridine	5	<0.1	<0.0
TCLP METALS			
Arsenic	5	<0.0035	0.0113
Barium	100	0.096	0.236
Cadmium	1	<0.00075	0.0066
Chromium	5	0.003	0.037
ead	5	0.0211	15.5
Mercury	0.2	<0.001	<0.001
Selenium	1	<0.006	<0.001
Bilver	5	< 0.0035	<0.0035

All quantities in ppm, except where noted.

< Detected below the detection limits

Ł

(1) VOC-Volatile Organic Compounds, SVOC-Semi-Volatile Organic Compounds

SLC data.xls IDW-TCLP-RCRA page 1 OF 2

(2) Reported lab concentration is the sum of the three constituent SVOC.

TABLE 11

SAFETY LIGHT CORPORATION, PADEP WASTE DISPOSAL CRITERIA ANALYTICAL RESULTS - INVESTIGATION DERIVED WASTES

Analyte ¹	RCRA		·····
	Limits		
	Sample ID	SLC-WC-01	SLC-WC-02
	Lab ID	F0H160319005	F0H160319006
	Matrix	Solid	Water
TCLP PESTICIDES			
Chlordane	0.03	<0.005	<0.005
Endrin	0.02	<0.0005	<0.0005
Heptachlor	0.008	<0.0005	<0.0005
Heptachlor Epoxide	0.008	<0.0005	<0.0005
Lindane	0.4	<0.0005	<0.0005
Methoxychlor	10	<0.001	<0.001
Toxaphene	0.5	<0.020	<0.020
TCLP HERBICIDES			
2,4-D	10	<0.01	<0.01
2,4,5 T (Silvex)	1	<0.04	<0.04
WASTE CHARACTERISTICS			·
Corrosivity	>2 <12.5 pH	7	7.5
Flash Point	>60°C	>60	>60
Reactive Sulfide	500	<4.66	<4.44
Reactive Cyanide	100	<0.026	<0.025
Total Moisture %	-	3.1	not applicable

All quantities in ppm, except where noted.

< Detected below the detection limits

(1) VOC-Volatile Organic Compounds, SVOC-Semi-Volatile Organic Compounds

SLC data.xls IDW-TCLP-RCRA page 2 OF 2

na an an Na an an

•

(2) Reported lab concentration is the sum of the three constituent SVOC.

L....

. 1

TABLE 11 (continued)

SAFETY LIGHT CORPORATION, PADEP WASTE CLASSIFICATION RADIOLOGICAL ANALYTICAL RESULTS - INVESTIGATION DERIVED WASTES

SAMPLE ID	SLC-WC-	01	SLC-WC-02			
LAB ID	F0H160319	005	F0H160319006 8/9/2000			
DATE COLLECTED	8/9/2000)				
MATRIX	SOLID	SOLID				
COMMENTS	Waste comp	Waste composite				
UNITS	pCi/g	uncert.	pCi/L	uncert.		
GROSS ALPHA	0.185	0.143	20.3	4.45		
GROSS BETA	0.844	0.208	61.6	7.57		
TRITIUM	0.117	0.572	2540	339		

.

 $\sigma \cdot$

÷.,

1.4 1.4

n a lin Sina linga

i

 a (

SLC data.xls RAD-WC page 1 of 1

SAMPLE ID									
		SLC-GW-CN-	A .	WELL	A	SLC-GW-CN-B		WELL	В
DATA SOURCE	and the second se	FWENC 2000	FWENC 2000 P		PRELIMINARY ASSESSMENT		00	PRELIMINARY ASSESSMENT	
DATE COLLECTED	DRINKING	8/7/2000		1990	1991	8/7/2000		1990	1991
MATRIX	WATER	WATER		WATER	WATER	WATER		WATER	WATER
COMMENTS	STANDARDS ²	Monitoring We		CNSI/SLC	NUS	Monitoring W	/ail	CNSI/SLC	NUS
UNITS	płC/L	pCi/L	uncert.	pCi/L	pCi/L	pCi/L	uncert.	pCi/L	
GROSS ALPHA	15	301	47	-0.8 +/- 0.9	<1.14	0.846	0.999		pCi/L
GROSS BETA	50	3820	380	28 +/- 5	15.8			-0.3 +/- 0.9	<1.39
TRITIUM	20.000	1980	260			3.31	1.14	6 +/- 4	3.25
				11,000 +1- 300	10,700	2060	267	12,200 +/- 400	11,300
GAMMA SCAN			••••••••	• ••• ••• •• •• ••• •••		· · · · · · · · · · · · · · · · · · ·			
Cesium 137	na	-2.6 U	7.2	NA	<5.00	-4.36 U	8.56	NA	<4.34
Cobalt 60	na	-3.5 U	9.1	NA	NA	-7.07 U	9.3	NA	
Lead 214	na	79	18	NA	NA	32.5	22		NA
OTHERS			· · · · · · · · · · · · · · · · · · ·					NA	NA
Radium 226	53	-16.9 U	3.4	NA	NA	0.251	0.129		
Radium228	(7)	13.3	1.84	NA	NA	0.231	0.129	NA	NA
Carbon 14	na	4.78	2.9	NA	NA			NA	NA
Strontium 90	8	21	4.44	13 +/- 3		-3.33 U	4.8	NA	NA
Nickel 63	na	9.01	11		3.4	1.8	0.517	0 +/- 2	<2.0
Americium 241	na	-0.042 U	0.098	NA	NA	5.78	12	NA	NA
Polonium 210	- 7	4.27		NA	NA	-0.0439 U	0.0769	NA	NA
		4.21	1.1	NA	NA	-0.0057 U	0.011	NA	NA

Notes:

NUS Preliminary Assessment of Safety Light Corp, Appendix E Data Tables, July 17, 1991

12 🔶 (r)

CNSI/SLC-ChemNuclear/Safety Light Corp, 8/90, NRC Samples Analyzed by DOE Sciences Laboratory

NUS-Safety Light Project Groundwater Sample Results Summary

U- Result is less than the sample detection limit.

na-not applicable

NA-NOT AVAILABLE

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total.

When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result.

This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xis RAD-GW (2) page 1 of 4

SAMPLE ID		SLC-GW-CN	LD ·						
DATA SOURCE	EPA			WELI	· · · · · · · · · · · · · · · · · · ·	SLC-GW-CN-F		WELI	. F
		FWENC 200	0	PRELIMINARY A	PRELIMINARY ASSESSMENT		0	PRELIMINARY ASSESSMENT	
DATE COLLECTED		8/7/2000		1990	1991	8/9/2000		1990	1991
MATRIX		WATER		WATER	WATER	WATER		WATER	WATER
COMMENTS	STANDARDS	Monitoring W	/ell	CNSI/SLC	NUS	Monitoring W		CNSI/SLC	NUS
UNITS	pIC/L	pCi/L	uncert.	pCi/L	pCi/L	pCi/L	uncert.	pCi/L	pCi/L
GROSS ALPHA	15	64	14	0 +/- 0.9	<1.25	0.506	0.843	4.6 +/- 1.5	
GROSS BETA	50	200	25	116 +/- 10	64.7	3.91	1.26	2+/- 4	<1.56
TRITIUM	20,000	5560	600		46,500	1920	254	8,700 +/- 400	3.76
GAMMA SCAN	······		•••••••••••••••	·····					
Cesium 137	na	7.8 U	8.1	NA	<4.63	-7.12 U	9.33	NA	<4.39
Cobalt 60	na	1.3 U	7.2	NA	NA	-11.2 U	9.86	NA	<4.39 NA
Lead 214	na	78	20	NA	NA	10.8	16.2	NA	****
OTHERS								NA	NA
Radium 226	53	-53.6 U	8.71	NA	NA	0.212	0.134	NA	
Radium228	শ	38.9	4.19	NA	NA	0.422	0.475	NA	NA NA
Carbon 14	na	3.93	2.9	NA	NA	0.989	2.8	NA	NA
Strontium 90	8	68.9	13.7	60 +/- 4	44	0.67	0.426	NA	
Nickel 63	na	8.45	11	NA	NA	12.3	11	NA	1.9
Americium 241	na	0.1	0.37	NA	NA	-0.0151 U	0.145		NA
Poionium 210	6	2.5	0.77	NA	NA	0.144	0.145	NA	NA

Notes:

NUS Preliminary Assessment of Safety Light Corp, Appendix E Data Tables, July 17, 1991

CNSI/SLC-ChemNuclear/Safety Light Corp, 8/90, NRC Samples Analyzed by DOE Sciences Laboratory

NUS-Safety Light Project Groundwater Sample Results Summary

U- Result is less than the sample detection limit.

na-not applicable

NA-NOT AVAILABLE

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

A de

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total.

When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result.

This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gros- alpha

SLC data.xls RAD-GW (2) page 2 of 4

	SLC-GW-CN-	G	WELL	G	SLC-GW-CN	-H	WELL	Н
EPA	FWENC 200	FWENC 2000 PI		PRELIMINARY ASSESSMENT		0	PRELIMINARY ASSESSMENT	
DRINKING	8/7/2000		1990	1991	8/7/2000			1991
WATER	WATER		WATER	WATER				WATER
STANDARDS ²	Monitoring We	ell.	CNSI/SLC	NUS				NUS
piC/L	pCi/L	uncert.	pCi/L	pCi/L				pCi/L
15	9.3	2.4	-1.1 +/- 0.9	<1.39				<u>ب</u> وريد <1.81
50	23	3	9 +/- 4					
20,000	1280	200	6,200 +/- 300	5,790	2720	327	12,400 +/- 400	5.59 11,800
na	-12.2 U	7.5	NA	<2.52	-7.31 Ц	8.26	NA	<5.21
na	-7.7 U	7.7	NA	NA				NA
na	U		NA					
						23.1	NA	NA
5 ³	-4.8 U	3.75	NA	NA	1.02	0.17		NA
C)	3.41	0.937	NA	NA	0.867			NA
na	3.12	4.7	NA	NA	-0.53 ()			NA
8	5.98	1.62	5 +/- 2	3.9				
na	4.97	11	NA					<0.9
na	0.18	0.33						NA
0	1.93	0.69						NA NA
	EPA DRINKING WATER STANDARDS ² piC/L 15 50 20,000 na na na na na na a a a a a a a a	EPA FWENC 2000 DRINKING 8/7/2000 WATER WATER STANDARDS ² Monitoring We pIC/L 9.3 50 2.3 20,000 1280 na -12.2 U na -7.7 U na U 53 -4.8 U (*) 3.41 na 4.97 na 0.18	EPA FWENC 2000 DRINKING 8/7/2000 WATER WATER STANDARDS ² Monitoring Well pIC/L pCi/L uncert. 15 9.3 2.4 50 2.3 3 20,000 1280 200 na -12.2 7.5 na -7.7 U 7.7 na U	EPA FWENC 2000 PRELIMINARY A DRINKING 8/7/2000 1990 WATER WATER WATER STANDARDS ² Monitoring Well CNSI/SLC piC/L pCi/L uncert. pCi/L 15 9.3 2.4 -1.1 +/- 0.9 50 23 3 9 +/- 4 20,000 1280 200 6,200 +/- 300 na na	EPA FWENC 2000 PRELIMINARY ASSESSMENT DRINKING 8/7/2000 1990 1991 WATER WATER WATER WATER WATER STANDARDS ² Monitoring Well CNSI/SLC NUS pIC/L pCi/L uncert. pCi/L pCi/L 15 9.3 2.4 -1.1 +/- 0.9 <1.39	EPA FWENC 2000 PRELIMINARY ASSESSMENT FWENC 200 DRINKING 8/7/2000 1990 1991 8/7/2000 WATER WATER WATER WATER WATER WATER STANDARDS ² Monitoring Well CNSI/SLC NUS Monitoring W piC/L pCi/L uncert. pCi/L pCi/L pCi/L 15 9.3 2.4 -1.1 +/- 0.9 <1.39	EPA FWENC 2000 PRELIMINARY ASSESSMENT SLC-GW-CN-H DRINKING &/7/2000 1990 1991 8/7/2000 WATER WATER WATER WATER WATER STANDARDS ² Monitoring Well CNSI/SLC NUS Monitoring Well pIC/L pCi/L uncert. pCi/L pCi/L pCi/L uncert. 15 9.3 2.4 -1.1 +/- 0.9 <1.39	EPA FWENC 2000 PRELIMINARY ASSESSMENT FWENC 2000 PRELIMINARY ASSESSMENT FWENC 2000 PRELIMINARY ASSESSMENT DRINKING & 77/2000 1990 1991 877/2000 1990 WATER WATER WATER WATER WATER WATER WATER piC/L pCi/L uncert. pCi/L pCi/L pCi/L CNSI/SLC 15 9.3 2.4 -1.1 +/-0.9 1.39 17.8 3.63 0.3 +/-0.8 50 23 3 9 +/-4 7.62 21.5 3.08 10 +/-4 20,000 1280 200 6,200 +/-300 5.790 2720 327 12,400 +/-400

Notes:

NUS Preliminary Assessment of Safety Light Corp. Appendix E Data Tables, July 17, 1991

CNSI/SLC-ChemNuclear/Safety Light Corp, 8/90, NRC Samples Analyzed by DOE Sciences Laboratory

NUS-Safety Light Project Groundwater Sample Results Summary

U- Result is less than the sample detection limit.

na-not applicable

NA-NOT AVAILABLE

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total.

When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result.

This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xls RAD-GW (2) page 3 of 4

SAMPLE ID		SLC-GW-C	N-I	WEL		0.0.00			
DATA SOURCE	EPA					SLC-GW-		WELL 15-SLC	
DATE COLLECTED		8/7/2000	= T	PRELIMINARY A		FWENC	2000	PRELIMINARY ASSESSMENT	
MATRIX	WATER			1990	1991	8/9/200	000	1990	1991
COMMENTS		WATER		WATER	WATER	WATE	R	WATER	WATER
UNITS		Monitoring V	Vell	CNSI/SLC	NUS	Background	d Well	CNSI/SLC	NUS
		pCi/L	uncert.	pCi/L	pCi/L	pCi/L	uncert.	pCi/L	pCi/L
GROSS ALPHA	15	26.6	6.87	0.8 +/- 0.9	<0.91	3.14	1.58	0 +/- 0.6	N/
GROSS BETA	50	47.7	7.8	0 +/- 14	<1.73	7.83	2.32	-3 +/- 8	
TRITIUM	20,000	1820	245	30,500 +/- 700	27,700	325	159	4,300 +/- 300	N
BAMMA SCAN									
Cesium 137	na	-5.7 U	6.17	NA	<3.34	-15.5	U 8.57	NA	
Cobalt 60	na	2.61	9.11	NA	NA	-8.16		NA	N
Lead 214	па	0.242	16.5	NA	NA	-11.2		NA	
THERS									N
Radium 226	53	1.52	0.337	NA	NA	-12.1	11 0.05		
Radium228	3	0.872	0.641	NA	NA	8.33		NA	N/
Carbon 14	na .	-1.35 U	2.9	NA	NA		1.37	NA	N/
Strontium 90	8	1.36	0.472	NA		1.47	2.8	NA	N/
Nickel 63	na	4.92	13		<1.0	1.03	0.826	NA	N/
Americium 241	na	0.043	0.101	NA	NA	6.59	10	NA	NA
Polonium 210	()	4.05	1.3	NA	NA	0.131	0.229	NA	NA
		NUS Preliminary As		NA	NA	1.07	0.48	NA	NA

NUS Preliminary Assessment of Safety Light Corp, Appendix E Data Tables, July 17, 1991

CNSI/SLC-ChemNuclear/Safety Light Corp. 8/90, NRC Samples Analyzed by DOE Sciences Laboratory

NUS-Safety Light Project Groundwater Sample Results Summary

U- Result is less than the sample detection limit.

na-not applicable

NA-NOT AVAILABLE

BOLD result-indicates exceedance of standard

¹ Source: Federal Register Volume 65, No. 236, December 7, 2000

² Standard excludes uranium and radon, but reported result does includes all alpha emitters.

³ Results of radium 226 and radium 228 are summed for each sample and compared to the standard of 5 pCi/L total.

When St 90 is present it usually causes elevated Ra 228 results which cause an over-correction to the Ra 226 result.

This leads to inaccuracy of the result and generally causes a very negative activity result for Ra 226.

⁴ Included in gross alpha

SLC data.xls RAD-GW (2) page 4 of 4