Hope Creek Generating Station Main Steam Isolation Valve Sealing System Deletion Meeting

NRC – PSEG Nuclear, LLC **July 18, 2001**

Agenda

- Overview Robert DeNight (10 min)
- X/Q Methodology John Duffy (10 min)
- Meteorological Data Bob Yewdall (5 min)
- Dose Analysis NUCORE Gopal Patel (15 min)
- Containment Water PH Barry Barkley (10 min)
- Summary Robert DeNight (5 min)

MSIV Sealing System Deletion Background

- Original MSIVSS Deletion LCR submitted Dec. 28, '98
- Staff issued a draft SER dated November 14, '00, with identification of open issue – control room habitability.
- PSEG withdrew LCR based on concerns with Control Room (CR) inleakage basis and upcoming Generic Letter 99-02 – Charcoal filter testing Methods.
- PSEG submitted revised LCR for deletion of KP system employing the use of the Alternate Source Term (AST) methodology May 16, '01.

Current Licensing Basis

- Control Room Habitability UFSAR 6.4
- MSIVSS (Leakage Control System) UFSAR 6.7
- FRVS (Filtration, Recirculation & Ventilation System) – UFSAR 6.8
- MSIV System Testing per Tech. Spec. 4.7.2.e.1,
 4.7.2.e.2 & 4.7.2.e.3
- SLC (Standby Liquid Control) System Description UFSAR 9.3.5

Licensing Background

- Control room dose initially evaluated in NRC SER, October 1984
 - design met SRP 6.4 Guidelines
- Amendment No. 30 granted August 7, 1989
 - Tech Spec Surveillance and Testing Requirements for the Filtration, Recirculation, and Ventilation System (FRVS) recirculation filter efficiencies.
- PSEG recalculated Amendment No. 30 control room doses based on TID 14844 Source Term as follows:
 - < 1 Rem Thyroid</p>
 - <<1 Rem Whole Body</p>
 - <1 Rem Skin

MSIV Sealing System Current Design Basis

- Limits fission product leakage through Main Steam lines during DBA / LOCA scenarios.
 - Tech. Spec Limit for MSIV Leakage = 46 scfh
- MSIVSS manual initiation within 20 mins. post LOCA
- Pressurizes MS lines between inboard-outboard MSIVs and outboard MSIVs-MSSVs.
- Sealing system supplied by Primary Containment Instrument and Gas (PCIG) System
- Seismic / Single Failure Proof / 1E power

MSIVSS Deletion LCR

- Deletion of the MSIV steam sealing system
 - Delete MSIVSS from T.S. Section 3.6.1.4 & Table 3.6.3-1
- Revise T.S. Section 3.6.1.2 for an MSIV leak rate
 - Currently 46 scfh total
 - New value total of 250 scfh for all four main steam lines with no one line exceeding 150 scfh.
- Reconstituted Post-LOCA on-site and off-site dose analyses using new methodology.

MSIVSS System Deletion LCR

- SR MSIV-Leakage Treatment Path not credited
- MS Stop Valves Not Closed
- MSLs Beyond the MSSV Credited
 - Safety Related / Seismically Qualified
- Main Steam Lead Drain provides defense-in-depth
 - Continuous, passive line
 - Non-safety-related / non-seismic drain to condenser
 - Not credited in the analyses

Revised Dose Calculation Methodology

- DBA dose calculations reconstituted
 - Release pathways conservative
 - System response times validated
 - Limiting single failures investigated
 - Verified limiting flow rates, volumes
 - Met GL 99-02 requirements
 - X/Q values reconstituted
- AST versus TID source term assumed
- Calculation Methodology RADTRAD V 3.02

Use of Regulatory Guide 1.183

- Full Scope Application
 - Non-LOCA Accidents reviewed
 - LOCA scenario shown to be bounding
 - EQ Dose Profile Reviewed
 - Equipment Qualified life not impacted by change.
 - Vital Access areas being reviewed
 - Several areas are being reconstituted.
- No exceptions to Reg Guide 1.183

X/Q Value Reconstitution

John Duffy

X/Q Methodology

- Current methodology Modified-Halitsky
- Updated methodology ARCON96
 - $-\chi/Q_{ARCON96} > 10\chi/Q_{modified-Halitsky}$

Relative Location of MSIV Leakage Release and Control Room Air Intake

- Center Turbine Building air intake louver selected for conservatism
 - On the west side of the building
 - Nearest to control room air intake
 - 28 ft wide X 6 ft high
- Mixing within the Turbine Building is not credited

MS Valve Locations

- Inboard MSIVs inside drywell
- Outboard MSIVs in Reactor Building steam tunnel
- Main steam stop valves in Auxiliary Building steam tunnel
- Main stop valves in Turbine Building (release location)

Roof Vents

Turbine Building roof vents are further from the control room air intake than the center air intake louver (release to environment location)

ARCON96

- ARCON96 directional inputs are based on plant north
- True North is 5°-30'-01" east of Plant North

$$- \theta_{true} = \theta_{plant} - 5^{o}-30'-01"$$

$$-\chi/Q_{true} < \chi/Q_{plant}$$

No stack flow was assumed

Diffuse Release

 Center louver: 28 ft wide X 6 ft high (columns H and 23)

$$\sigma_v = (28 \text{ ft})/4.3 = 6.512 \text{ ft} = 1.985 \text{ m}$$

$$-\sigma_z = (6 \text{ ft})/2 = 3 \text{ ft} = 0.914 \text{ m}$$

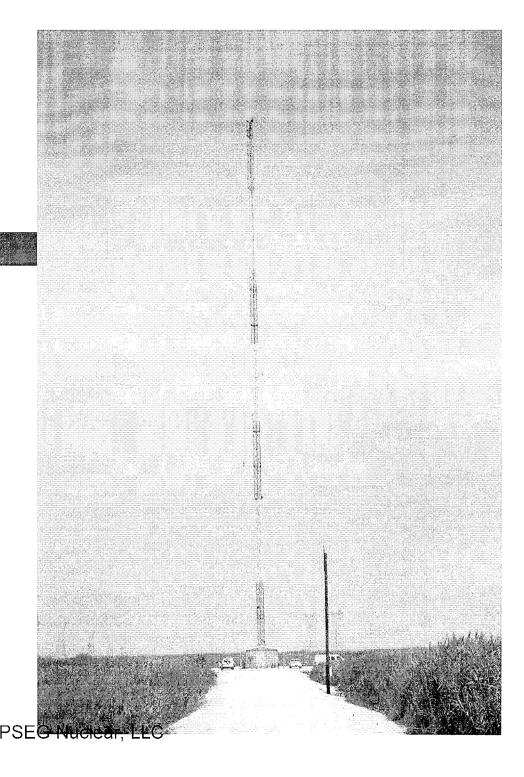
• Vent area = $(28 \text{ ft})(6 \text{ ft}) = 168 \text{ ft}^2$

Release Locations

- 4 main stop valves (columns F and 24)
 - 6'-6" separation
- Equivalent release area ~ $4\pi(3.25 \text{ ft})^2 = 133 \text{ ft}^2$
- Other release points are farther from the control room air intake with larger wake areas

Meteorological Data

Bob Yewdall


Meteorological Monitoring Program Data Quality

- Meets the guidance of Regulatory Guide 1.23 "Onsite Meteorological Programs"
- Incorporates recommendations of ANSI/ANS 3.11-2000 "Determining Meteorological Information at Nuclear Facilities"
- System calibration / PMs performed quarterly

Meteorological Monitoring Program Data Quality

- Data quality is assured by collecting both analog and digital meteorological data.
- Past evaluation of reasonableness of data collection program with respect to regional data performed as part of the initial Salem Unit 2 licensing process.
- Only validated meteorological data was used within ARCON96 dispersion calculations.
- All units were verified.

Met Tower

On-site / Off-site Dose Analyses

Gopal Patel

Calculation Methodology

- RADTRAD 3.02 Utilized
- Parametric Studies Performed
 - Determined Compatibility With Current Design Inputs
 - Determined variation of design inputs/ESF functions with respect to dose consequences and variation of doses from current to proposed licensing basis analyses
- Inputs Validated and Verified
- Release Paths Verified
 - Only safety related ESF components credited for dose mitigation
 - SSE design based MS piping credited for MSIV leakage and single active component failures and limiting design values used to maximize dose consequences

Analysis Parameters

- Core isotopic source inventory
 - ORIGEN 2.1
 - 1.05 times licensed power level
- Release Fractions & Timing
 - By radionuclide group
 - Gap and Early In-Vessel releases
- Chemical Form
 - Iodines (A = 95%, E = 4.85%, O = 0.15%)
 - Sump pH >7 (including radiolysis of hypalon)
- Atmospheric Dispersion Factors (χ/Qs)
 - CR χ /Qs from reconstitution effort
 - Site boundary per RG 1.145

Dose Calculation Critical Inputs / Assumptions

- Control Room unfiltered inleakage value of 900 cfm used versus previously assumed 10 cfm.
- GL 99-02 charcoal filter efficiencies assumed
- Plate-out within seismically qualified MS lines, no plate-out assumed in condenser

Release Pathways

Containment Leakage

- TS Leak Rate (0.5 V%/day) reduced after 24 Hrs
- Directly released to environment before drawdown
- Released to Reactor Building after drawdown
- 50% Mixing in Reactor Building
- Ground Level Release via FRVS Vent

ESF Leakage

- Two times administrative limit
- Directly released to environment before drawdown
- Released to Reactor Building after drawdown
- Ground Level Release via FRVS Vent
- 10% Iodine Flashing Factor per RG 1.183

Release Pathways (Continued)

MSIV Leakage

- 150 scfh In MSIV Failed Line
- 100 scfh In Other Lines
- Aerosol Deposition Based on 40% Monte Carlo Distribution of Settling Velocity Used For Perry Plant
- Elemental Iodine Deposition Based JE Cline Model For Deposition
 & Re-suspension Rates
- Post-LOCA Containment Airborne Activity Released
- Ground Level Release Via Turbine Building Louvers

Containment Purge Release

- Containment Not Purged During Full Power
- Purge Release Path Not Analyzed

Single Failure Assumptions

- Four Out of Six FRVS Recirc Trains Maximize
 Dose / One of Two FRVS Vent Units Utilized
 - Remove Activity From Reactor Building Slower
 - Reduce Mixing of Activity In Reactor Building (100% to 50%)
- One Out of Two CREFS Trains Maximizes Dose
 - Removal of CR Airborne Residual Activity By Recirculation
 Filter Is Faster Than Increase In Activity From Intake Flow
 - CR Activity Equilibrium Reaches Faster With Higher Recirc Filter Removal Rate

HCGS Dose Results

Post-LOCA Activity Release Path	Post-LOCA TEDE Dose (Rem) Receptor Location		
	Containment Leakage	4.50E-01	3.41E-01
ESF Leakage	2.85E-01	3.51E-02	1.19E-02
MSIV Leakage	3.48E+00	1.92E+00	3.67E-01
CR Filter Shine	2.46E-03	0.00E+00	0.00E+00
Total	4.22E+00	2.30E+00	4.89E-01
Allowable TEDE Limit	5.00E+00	2.50E+01	2.50E+01

pH Calculation Results

Barry Barkley

pH Methodology

- STARpH code (Polestar) used for pH calculation
- HNO₃ from radiolysis of water calculated per NUREG/CR-5732
 - Radiation field in pool based on energy deposition rates of fission product groups excluding noble gases; fission product group releases based on Reg. Guide 1.183
 - Include decay of fission products with time after reactor shutdown
- HCI from radiolysis of cable insulation calculated per NUREG/CR-5950
 - Gamma and beta radiation fields based on energy release rates per unit reactor thermal power as a function of time after reactor shutdown from NUREG/CR-2367, modified to reflect Reg. Guide 1.183 source term
 - Gamma radiation leakage from containment taken into account
 - Shielding of beta radiation by cable tray and conduit taken into account PSEG Nuclear, LLC

pH Methodology (Continued)

- pH calculated taking into account total HNO₃ and HCl added as a function of time and buffer strength in pool (from SLCS actuation) using NUREG/CR-5950
 - Effect of pool temperature on buffer dissociation constants taken into account

pH Calculation Inputs

- Material type, mass, and dimensions of chloridebearing cable insulation (both the hypalon jacket and the EPR insulation contain chloride)
 - 12,000 lbs total
 - 75% of mass attributed to non-copper (i.e., 9000 lbs)
- Extent and dimensions of conduit materials
 - 38% in conduit
- Buffer content of SLCS

pH Calculation Assumptions

- Organic acids from paints can be neglected as the [H⁺] added from this source is a small fraction of that from HNO₃ and HCl
- No credit is taken for cesium in the buffer calculation
- Unbuffered pH of the pool should remain above 7 for at least several hours even if it is assumed that no cesium exists as CsOH and that only a portion of the cesium exists as CsBO₂
- Hypalon jacket and EPR insulation are modeled as a single unit with a thickness of 0.401 cm and a density of 1.40 g/cm³ (NUREG 1081)

 PSEG Nuclear, LLC

pH Results

 pH of the containment water pool for the Hope Creek plant radiological DBA LOCA is above 8 over a period of 30 days following accident initiation

pH results vs. time

	
Time	рН
1 h	>8
2h	>8
5h	8.4
12h	8.4
1d	8.4
3d	8.3
10d	8.3
20d	8.3
30d	8.3

PSEG Nuclear, LLC

SLC Operation

- SAG-1, "Primary Cont. Flooding"
 - Entered Upon Failure to Maintain Adequate Core
 Cooling in Emergency Ops Procedures
- SAG-1 Initiates SLCS
- SAG-1 Re-established Full Core Submergence

Schedule

- LCR Submittal Complete
- CR Boundary Envelope Integrity Walkdown Complete
- Tracer Gas Testing July 23-28
- Complete RF-10 Mods. Oct 29

KP System Deletion LCR

Question / Answers