- 3.10.2.2.2 The measurement of enthalpy rise hot channel facto. __N△H , shall be increased by four percent to account for measurement error. If either measured hot channel factor exceeds its limit specified in the COLR, the reactor power and high neutron flux trip setpoint shall be reduced so as not to exceed a fraction of rated value equal to the ratio of the F_Q or F^N△H limit to measured value, whichever is less. If subsequent in-core mapping cannot, within a 24-hour period, demonstrate that the hot channel factors are met, the reactor shall be brought to a hot shutdown condition with return to power authorized only for the purpose of physics testing.
- 3.10.2.3 The reference equilibrium indicated axial flux difference as a function of power level (called the target flux difference) shall be measured at least once per effective full-power quarter. The target flux difference must be updated each effective full-power month by linear interpolation using the most recent measured value and a value of approximately 0 percent at the end of the cycle life.
- 3.10.2.4 Except during physics tests, during excore calibration procedures and except as modified by Items 3.10.2.5 through 3.10.2.7 below, the indicated axial flux difference shall be maintained within the band specified in the COLR about the target flux difference (defines the band on axial flux difference).
- 3.10.2.5 At a power level greater than 90% of rated power,
- 3.10.2.5.1 If the indicated axial flux difference deviates from its target band, the flux difference shall be returned to its target band immediately or the reactor power shall be reduced to a level no greater than 90 percent of rated power.
- 3.10.2.6 At a power level no greater than 90 percent of rated power,
- 3.10.2.6.1 The indicated axial flux difference may deviate from its target band specified in the COLR for a maximum of one hour (cumulative) in any 24-hour period provided the flux difference does not exceed an envelope bounded by that specified in the COLR at 90% power and increasing by the value specified in the COLR for each 2 percent of rated power below 90% power.
- 3.10.2.6.2 If Specification 3.10.2.6.1 is violated, then the reactor power shall be reduced immediately to no greater than 50% power and the high neutron flux setpoint reduced to no greater than 55 percent of rated values.

Amendment No. 194

- 3.10.2.6.3 A power increase to a level greater than 90 percent ____rated power is contingent upon the indicated axial flux difference being within its target band.
- 3.10.2.7 At a power level no greater than 50 percent of rated power,
- 3.10.2.7.1 The indicated axial flux difference may deviate from its target band.
- 3.10.2.7.2 A power increase to a level greater than 50 percent of rated power is contingent upon the indicated axial flux difference not being outside its target band for more than two hours (cumulative) out of the preceding 24-hour period. One-half the time the indicated axial flux difference is out of its target band up to 50% of rated power is to be counted as contributing to the one hour cumulative maximum the flux difference may deviate from its target band at a power level ≤ 90% of rated power.
- 3.10.2.8 Alarms are provided to indicate non-conformance with the flux difference requirements of 3.10.2.5.1 and the flux difference-time requirements of 3.10.2.6.1. If the alarms are temporarily out of service, conformance with the applicable limit shall be demonstrated by logging the flux difference at hourly intervals for the first 24 hours and half-hourly thereafter.
- 3.10.2.9 If the core is operating above 75% power with one excore nuclear channel out of service, then core quadrant power balance shall be determined once a day using movable incore detectors (at least two thimbles per quadrant).

3.10.3 Quadrant Power Tilt Limits

- 3.10.3.1 Except for physics tests, when the core is operating above 50% of rated thermal power and the indicated quadrant power tilt ratio exceeds 1.02 but is less than or equal to 1.09, within two hours reduce the quadrant power tilt ratio to within its limit or the following actions shall be taken:
 - a. Restrict core power level and reset the power range high flux setpoint three percent of rated values for every percent of indicated power tilt ratio exceeding 1.0, and

Amendment No. 194

- b. Verify that the quadrant power tilt ratio is withings limit within 24 hours after exceeding the limit or restrict core power level to less than 50% of rated thermal power within the next 2 hours and reduce the power range high flux trip setpoint to less than or equal to 55% of rated thermal power within the next 4 hours.
- 3.10.3.2 Except for physics tests, if the indicated quadrant power tilt ratio exceeds 1.09 with the core operating above 50% of rated thermal power and
 - a) there is a simultaneous indication of a misaligned control rod, restrict core power level three percent of rated value for every percent of indicated power tilt ratio exceeding 1.0 or until core power level is less than 50% of rated thermal power. If the quadrant power tilt ratio is not within its limit within 2 hours after exceeding the limit, restrict core power level to less than 50% of rated thermal power within the next 2 hours and reduce the power range high flux trip setpoint to less than or equal to 55% of rated thermal power within the next 4 hours.

-or-

- b) there is no simultaneous indication of a misaligned control rod, reduce thermal power to less than 50% of rated thermal power within 2 hours and reduce the power range high flux trip setpoint to less than or equal to 55% of rated thermal power within the next 4 hours.
- 3.10.3.3 The rod position indicators shall be monitored and logged once each shift to verify rod position within each bank assignment.
- 3.10.3.4 The tilt deviation alarm shall be set to annunciate whenever the excore tilt ratio exceeds 1.02, except as modified in Specification 3.10.10.
- 3.10.4 Rod Insertion Limits
- 3.10.4.1 The shutdown rods shall be withdrawn as specified in the COLR when the reactor is critical or approaching criticality (i.e., the reactor is no longer subcritical by an amount equal to or greater than the shutdown margin in Figure 3.10-1).
- 3.10.4.2 When the reactor is critical, the control banks shall be limited in physical insertion to the insertion limits specified in the COLR.

Amendment No. 194

- 3.10.4.3

Control bank insertion shall be further restricted if:

- a. The measured control rod worth of all rods, less the worth of the most reactive rod (worst case stuck rod), is less than the reactivity required to provide the design value of available shutdown,
- b. A rod is inoperable (Specification 3.10.7).
- 3.10.4.4 Insertion limits do not apply during physics tests or during periodic exercise of individual rods. *In addition, insertion limits do not apply when performing calibration of individual rod position indicator channels at or below a nominal 30% power not to exceed 35% power. However, the shutdown margin indicated in Figure 3.10-1 must be maintained except for the low-power physics test to measure control rod worth and shutdown margin. For this test the reactor may be critical with all but one control rod inserted.

* For Cycle 15.

- 3.10.5 Rod Misalignment Limitations
- 3.10.5.1.1 If a control rod is misaligned from its bank demand position by more than ± 12 steps when indicated control rod position is less than or equal to 210 steps withdrawn, then realign the rod or determine the core peaking factors within 2 hours and apply Specification 3.10.2.
- 3.10.5.1.2 If a control rod is misaligned from its bank demand position by more than +17, -12 steps when indicated control rod position is greater than or equal to 211 steps withdrawn, then realign the rod or determine the core peaking factors within 2 hours and apply Specification 3.10.2.
- 3.10.5.2 If the restrictions of Specification 3.10.3 are determined not to apply and the core peaking factors have not been determined within two hours and the rod remains misaligned, the high reactor flux setpoint shall be reduced to 85% of its rated value.
- 3.10.5.3 If the misaligned control rod is not realigned within 8 hours, the rod shall be declared inoperable.

Amendment No. 213

3.10.6 Inoperable Rod Position Indicator Channels

- 3.10.6.1 A rod position indicator channel shall be capable of determining control rod position as follows: for operation at or below 50% power, within ±24 steps*; for operation above this power, within ±12 steps for indicated control rod position less than or equal to 210 steps withdrawn and +17, -12 steps for indicated control rod position greater than or equal to 211 steps withdrawn, or
 - a. For operation between 50 percent and 100 percent of rating, the position of the control rod shall be checked indirectly by core instrumentation (excore detectors and/or movable incore detectors) every shift, or subsequent to rod motion exceeding 24 steps, whichever occurs first.
 - b. During operation below 50 percent of rating, no special monitoring is required.
- 3.10.6.2 Not more than one rod position indicator channel per group nor two rod position indicator channels per bank shall be permitted to be inoperable at any time.
 During calibration a rod position indication channel is not considered to be inoperable.
- 3.10.6.3 If a control rod having a rod position indicator channel out of service is found to be misaligned from Specification 3.10.6.1a, above, then Specification 3.10.5 will be applied.

* For Cycle 15.

3.10.7 <u>Inoperable Rod Limitations</u>

- 3.10.7.1 An inoperable rod is a rod which does not trip or which is declared inoperable under Specification 3.10.5, or which fails to meet the requirements of Specification 3.10.8.
- 3.10.7.2 Not more than one inoperable control rod shall be allowed any time the reactor is critical except during physics tests requiring intentional rod misalignment.
 Otherwise, the plant shall be brought to the hot shutdown condition.
- 3.10.7.3 If any rod has been declared inoperable, then the potential ejected rod worth and associated transient power distribution peaking factors shall be determined by analysis within 30 days. The analysis shall include due allowance for non-uniform fuel depletion in the neighborhood of the inoperable rod. If the

Amendment No. 213