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Stepped Inventory Reduction Test

e OSU-CE-0002 was a stepped reduction
in inventory test.
— Constant core power of 275 kW

— Break on RPV opened to remove primary
fluid in stepped intervals.

— Break closed and cold leg flow rates
measured at each step.

e Similar to tests performed at Semiscale.
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Core Flow Rate (kg/s)

Core Flow Rates versus Percentage

of Primary System Mass Inventory
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Comparison of OSU-CE-0002 and
Semiscale Mod 2A Data
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Stepped Inventory Reduction Test

o Test OSU-CE-0002 indicates that loop
flow stagnation (Reflux Condensation)
occurs when the primary side inventory
drops below 60% of normal operating
inventory.

 APEX-CE and Semiscale MOD2A
trends are nearly identical.
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Loop Stagnation Phenomena
4P Reactor Core
o) |
Downcomer g

Loop Seal
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Loop Stagnation Test Summary

Test ID Test Description Stagnation Phenomena

OSU-CE-0007 1.4 “ hot leg break from full power s CL 1, 2 and 3 stagnate due to presence of cold
without charging liquid plug in loop seals

OSU-CE-0008 2 “ hot leg break from full power + CL 1 and 2 stagnate due to steam generator voiding

e CL 3 and 4 stagnate due to presence of cold liquid
plug in loop seals

OSU-CE-0009 Stuck-open pressurizer SRV from full « CL 4 stagnates due to presence of cold liquid plug
power in loop seal

OSU-CE-0010 Stuck-open ADV and pressurizer SRV ¢ CL 2 and 4 stagnate due to loss of SG 2 heat
from full power sink.

OSU-CE-0011 1 ft2 main steam break inside e CL 2 and 4 stagnate due to loss of SG 2 heat
containment from hot zero power with sink.
failure to isolate AFW

OSU-CE-0012 1 ft2 main steam break inside e CL 1 and 3 stagnate due to loss of SG 1 heat

containment from full power with
failure to isolate AFW

sink.
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Steam Generator Tube Voiding
and Loop Seal Cooling

* The 2-inch SBLOCA test experienced
cold leg stagnation in all four cold legs.

— Cold Legs #1 and #2 stagnate because of
Steam Generator tube voiding.

— Cold Legs #3 and #4 stagnate earlier
because of loop seal cooling.
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Steam Generator #2 Tube Voiding
(OSU-CE-0008)
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Loop Stagnation Due to SG Tube

Voiding and Loop Seal Cooling
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- Loop Seal Cooling (OSU-CE-0008)

Cold Leg Loop Seal 2 and 4 Temperatures
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Stagnation Due to Loop Seal
Cooling

e Cold water spill-over into the loop seal
results in rapidly cooling down the loop
seal volume.

e This creates a cold liquid “plug” with a
gravity head that resists loop flow.

e The flow is preferentially diverted to the
adjacent cold leg through the SG lower
plenum.

Nuclear Engmeermg&alatlon Health Phy3|cs

State UmverS|ty
13




ics

Oregon State University
14



Temperature (F)

Steam Generator Reverse Heat

Transfer (OSU-CE-0012)
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Steam Generator Reverse Hea
Transfer Cold Leg Stagnation

Cold Leg 1 and 3 Flow
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Downcomer Driven Loop Flow

* It is noted that even in the presence of reverse
heat transfer from the steam generators,
positive loop natural circulation can occur
because of HPSI injection into the downcomer.

* The buoyancy generated by the density
difference between the cold downcomer fluid
and the hot core fluid exceeds the resistance
due to the SG acting as a heat source.

* The SG Reverse Heat Transfer can act as
“brakes” that impede N/C loop flow.
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Conclusions

e Three mechanisms for loop flow stagnation
were observed in the APEX-CE tests.
Steam generator tube voiding
Loop Seal Cooling
Steam Generator Reverse Heat Transfer

* The presence of an RCP weir wall delays loop
seal cooling and hence stagnation in the loops.

* SG Reverse Heat Transfer can reduce or stop
primary loop N/C flow depending on the
available downcomer fluid driving head.
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nset of Weir Wall Spill-Over

Nuclear Engineering & Radiation Health Physics

R

Oregon State University
7




Onset of Loop Seal Cooling
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OSU-CE-0003 Parametric Study

OSU-CE-0003 was a parametric study to examine
the conditions for the onset of thermal stratification
in the cold legs under natural circulation
conditions.

Presence of the RCP weir-wall results in some
stratification for the full range of conditions
studied. That is:

— Natural circulation cold leg flow rates ranging from

1.5% to 4% decay power for 30% - 100% HPSI
injections flow rates.

RCP weir wall spill-over was not observed in these
tests because natural circulation flow rates were
always greater than 10 gpm per cold leg. |
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OSU-CE-0003 Parametric Study

Core Decay Power Cold Leg #3 Cold Leg #4
(kW) HPSI Flow Rate (gpm) | HPSI Flow Rate (gpm)
400 0.50 1.00
400 0.35 0.65
300 0.50 1.00
300 0.35 0.65
200 0.50 1.00
200 0.35 0.65
150 0.50 1.00
150 0.35 0.65
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Cold Leg #3 Thermal
Stratification in OSU-CE-0003

450

400 kW 400 kW 300 kW 300 kW 200 kW 200 kW 150 kW 150 kW
0.5 gpm 0.35gpm 0.5gpm 035gpm 05gpm  0.35gpm 0.5 gpm 0.35 gpm

400

350

300

. |
+ Top of Cold Leg #3
200 | = TF-223 - ;

7~~~
&
@
=
=
Nt
«
i
@
=
g
@
2

s TF-225
150 x TF-227 -
x TF-229
« Bottom of Cold Leg #3 |
100 T T - T
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

Nuclear Engineering & Radiation Health Physics

Oregon State University
11




Cold Leg #4 Thermal
Stratification in OSU-CE-0003
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Buovant Plumes in the
Downcomer

e Typical analyses examine a single planar
plume in a stagnant, uniform temperature,
ambient fluid.

e (lassic Assumptions:

— G.I. Taylor’s Entrainment Asssumption Linear
spread of plume radius with axial position
implies mean inflow velocity across the edge of
the plume is proportional to the local mean
downward velocity of the plume.

— Similarity of Velocity and Buoyancy Profiles
— Gaussian Shaped Profiles
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Buoyant Plume in a Uniform
Stagnant Medium
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Buovant Plumes in the
Downcomer

e Plume behavior in APEX-CE was
significantly more complicated than
typical analysis assumptions.

— Some APEX-CE tests involved multiple
asymmetric plume interactions with co-flow
in a thermally stratified downcomer.
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Plume Interaction During
OSU-CE-0012 MSLB at Full Power

Plant Pressure
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Transient Temperatur
Map Demonstration fo

OSU-CE-0012
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Buovant Plume Behavior in the
Presence of a Co-flowing Stream

 [.R. Wood, “Asymptotic Solutions and
Behavior of Outfall Plumes.”

— The presence of a co-flowing stream can reduce the spread
of a falling plume because the relative velocity between
the plume and the ambient fluid 1s reduced.

.g_t_)_. _ ks[IP
dz  [U, + U_cos(o)]

— Where k_ is the spread constant, b is the plume half width,
U_ is the stream velocity, Uy 18 the plume centerline
velocity and o is the angle between the flow direction and
the plume direction.
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Buovant Plume Behavior in the
Presence of a Co-flowing Stream

e In APEX-CE, thermal stratification in the cold
leg permits significant flow of hot water into the
downcomer. This sometimes produces a falling
plume in the presence of co-flowing downcomer
fluid stream.

e A positive value of U_results 1n:

) [

dz Stagnant dz Coflow

e Downcomer thermal stratification has been
observed to occur under these conditions.
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Conclusions

e Cold Leg thermal stratification was observed
to occur for all of the natural circulation flow
rates and HPSI flow rates tested. (Range 1.5%
to 4% Decay Power; Qyp; flow to 30%-100%)

» Presence of an RCP weir-wall promotes
thermal stratification.

* Plume merging was observed during the tests.

e Co-flow of downcomer fluid reduces plume
spreading. This results in plume behavior
similar to what was observed in the IVO
facility.
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Stagnant L.oop Case

OSU-CE-0005 Downcomer Temperatures Under Cold Leg 1
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Stagnant L.oop Case

OSU-CE-0005 Downcomer Temperatures Under Cold Leg 2
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Stagnant Loop Case

OSU-CE-0005 Downcomer Temperatures Under Cold Leg 3
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Stagnant LLoop Case

OSU-CE-0005 Downcomer Temperatures Under Cold Leg 4
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Stagnant Loop Case

OSU-CE-0006 Downcomer Temperatures Under Cold Leg 2
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Stagnant LLoop Case

OSU-CE-0006 Downcomer Temperatures Under Cold Leg 4
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Natural Circulation Case

OSU-CE-0003 Downcomer Temperatures Under Cold Leg 3
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Natural Circulation Case

OSU-CE-0003 Downcomer Temperatures Under Cold Leg 4
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Conclusions

e Downcomer plumes are observed in
both stagnant and natural circulation
flow conditions.

e For range of natural circulation flows
examined ( ~1.5% to 4% Decay Power
and 30% -100% HPSI flows) the plumes
were well-mixed by 4 cold leg
diameters.
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Outline

e Description of Downcomer Thermal
Stratification

e (Observations in APEX-CE

* Transient Temperature Map

e Conclusions
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Downcomer Thermal Stratification
Mechanism

e Thermal Stratification in |
the downcomer occurs in
the presence of primary
loop natural circulation and
HPSTI operation.

e Co-flow of the Downcomer
fluid stream and the plume
reduces mixing; thus
permitting downcomer
thermal stratification.
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Photos taken from
the IVO facility in
Finland

Single HPI
injection with flow
in a Single Cold
Leg

Temperature
Gradient observed
in the Downcomer
Similar
Phenomenon

Observed 1n
APEX-CE

Test # 102 (66 GPM Cold Leg C, 6.6 GPM HPI Cold Leg B)
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Observation in APEX-CE

Emptied

Test # Description Downcomer T/S Downcomer Cold Leg Flow
Max AT

OSU-CE-0004 | Single HPSI No Stagnant

OSU-CE-0005 | 4 HPSI No Stagnant

OSU-CE-0006 | 4 HPSI No Stagnant

OSU-CE-0007 | 1.4”-SBLOCA Yes 35.4 OF Natural Circulation

OSU-CE-0008 | 2.0"-SBLOCA Yes, only in the 40.3 OF Natural Circulation

beginning of test.

OSU-CE-0009 | Stuck Open SRV Yes 35.5 OF Natural Circulation

OSU-CE-0010 | Stuck Open SRV and Yes, After SG-1 28.2 OF Natural Circulation
Stuck Open ADV on SG-1 | Emptied

OSU-CE-0011 | MSLB SG-1 No Natural Circulation
Hot Zero Power

OSU-CE-0012 | MSLB SG-2 Full Power Minor, After SG-2 12.1 9F Natural Circulation
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- Oregon State University
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.

S

onclusions ;

The phenomenon of Downcomer Thermal

Stratification (DTS) was observed in some of
the APEX-CE tests.

DTS did not occur under stagnant primary loop
conditions or when the plant cool-down rate
was very high. (e.g. MSLB)

The tests where DTS occurred had primary
loop natural circulation.

The probable mechanism for DTS is the co-
flow of the downcomer fluid stream and the
plume. This tends to preserve the plume; thus
permitting downcomer thermal stratification.
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Objectives
Description of REMIX
Description of APEX-CE Stagnation Tests
REMIX Comparisons
— OSU-CE-0004
— OSU-CE-0005
— OSU-CE-0006
Effect of Core Barrel Heat Transfer

Summary and Conclusions

Nuclear Engineering & Radiation Health Physics

A

Oregon State University
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jectives

Benchmark REMIX against APEX-CE
stagnation tests

e Identify code limitations

e Assess the applicability of code for
integral system geometries

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Description of REMIX

 REMIX i1s based on the Regional Mixing
Model. Global and Local calculations are
carried out separately.

QHP!
T
c TH MR 1 MR3
BN \ \\\ / |
Ok a2 L/
P e e --'#W = MR4
N~ > ) 2 L~
” hc Qupr| £ 9
Y
Loop Seal =
at Ty Downcomar
at Ty

Nuclear Engineering & Radiation Health Physics

Oregon State University
: 4




Description of REMIX

e [imitations

— Not designed to predict the effect of multiple
plume interactions on local downcomer
temperatures.

— Not designed to predict cold leg thermal
stratification in presence of cold leg flow.

— Only predicts plume centerline temperatures.
— Does not predict plume velocities.

— Uses a fixed surface heat transfer coefficient.
— 1-D Conduction Heat Transfer

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Test Descriptions

e Tests OSU-CE-0004, OSU-CE-0005
and OSU-CE-0006 were compared to

REMIX predictions.
Test # Fr # Ap/p Qupst # of HPSI
(ft3/s) Injection Sites
OSU-CE-0004 |.0402 18 003315 1
OSU-CE-0005 |.0350 18 002882 |4
OSU-CE-0006 |.0190 18 001652 |4

Nuclear Engineering & Radiation Health Physics

Oregon State University
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REMIX Input for APEX-CE

e Fluid Volumes Included:
— 1 HPSI Model
— 4 HPSI Model

e Material Properties:
 HPSI Flow Rates, Fluid Temperatures
e Initial System Temperature

e Heat Transfer Areas
e Heat Transfer Coefficients

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Thermal Circuit for Core

Barrel/Reflector

RI R2 Rf
VW
TS 1 TS2 TS 1 TSQ

q; < g,
4+—> 4+—>
L L

Core Barrel Equivalent

and Reflector Material

e The mixed material must contribute equal
heat as the composite, q, = q,

_T51'—'T52
q, =
R, + R,
T. —
g, = SIR S2
f
R L
kA

Nuclear Engineering & Radiation Health Physics
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REMIX Comparisons

 Well-Mixed and DC Temperatures
— OSU-CE-0004
— OSU-CE-0005
— OSU-CE-0006

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Core Inlet Well-Mixed Temperature,
OSU-CE-0004 (1 HPSI)
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DC Temperature 1.3 D,
OSU-CE-0004 (1 HPSI)

—— APEX-CE
—— REMIX
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DC Temperature 4.0 D,
OSU-CE-0004 (1 HPSI)

——— APEX-CE .
— REMIX

2000 4000 6000 8000 10000 12000

Time (s)
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Oregon State University
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C Temperature 8.0 D,
OSU-CE-0004 (1 HPSI)

—— APEX-CE
—— REMIX

Temperature (F)

2000 4000 6000 8000 10000 12000
Time (s)
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Core Inlet Well-Mixed Temperature,
OSU-CE-0005 (4 HPSI)

— APEX-CE
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DC Temperature 1.3 D,
SU-CE-0005 (4 HPSI
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DC Temperature 4.0 D,
OSU-CE-0005 (4 HPSI)

— APEX-CE |
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500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
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DC Temperature 8.0 D,
OSU-CE-0005 (4 HPSI)

- APEX-CE
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Core Inlet Well-Mixed Temperature,
OSU-CE-0006 (4 HPSI)

- APEX-CE

350 |-
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N
o
o

100 -}

-150 1850 3850 5850 7850 9850
Time (s)
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DC Temperature 1.3 D,
OSU-CE-0006 (4 HPSI)

Temperature (F)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (s)
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DC Temperature 8.0 D,
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Effects of Heat Transfer
Coefficient and Reflector/Core
Barrel Stored Energy Release

* Varying the Heat Transfer Coefficient
does not significantly impact the
downcomer temperature.

* Not including the APEX-CE reflector |
has a significant impact on the
downcomer temperatures.

Nuclear Engineering & Radiation Health Physics

Oregon State University
22



REMIX Heat Transfer
Coefficient Sensitivity

— 100 W/m2 K
— 1000 W/m2 K
—-3000 W/m2 K
6000 W/m2 K
c S
2
g ,
[
[
o
£
0]
'_ - -
1000 2000 3000 4000 5000 6000

Time (s)
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Oregon State University
23




Effect of Reflector Stored Energy
Release on Downcomer Fluid
Temperatures

— REMIX Before Core Barre! Correction

e REMIX With Core Barrel Correction

Temperature
N
o
S

1850 2850 3850 4850 5850 6850 7850 8850
Time (s)
Nuclear Engineering & Radiation Health Physics

Oregon State University
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Summary and Conclusions

* A REMIX model has been developed for
APEX-CE. It includes the core barrel and
reflector.

« REMIX Comparisons

— OSU-CE-0004

* REMIX under predicted the core inlet (well-
mixed) temperature and the DC temperatures.

— OSU-CE-0005

 REMIX was in good agreement with core inlet
temperature

* DC temperatures are under predicted

— OSU-CE-0006

* REMIX was in good agreement with the core
inlet temperatures

* DC temperatures are under predicted

Nuclear Engineering & Radiation Health Physics
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Oregon State University
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Summary and Conclusions

* All of the 1.3 D fluid temperatures were
significantly under predicted by REMIX. This

gap and impinges on the core barrel.
 REMIX generally under predicted the

interactions may be one factor.

was because the plume “jumps” the downcomer

downcomer fluid temperatures. Multiple plume

Nuclear Engineering & Radiation Health Physics

S

Oregon State University
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Outline

e Objectives
e Introduction to STAR-CD CFD Code.

» Description of the Creare 1/2-Scale Test
Facility.

e Description of Creare MAY-105 Test.

e Description of STAR-CD Model.

e Comparison of STAR-CD Results with Creare
Data.

e Conclusions

Nuclear Engineering & Radiation Health Physics
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Objectives

* Benchmark STAR-CD against an
applicable data set.

* Provide insights into the code operation
to support the APEX-CE Simulations.

» Establish the Learning Curve For
STAR-CD.

Nuclear Engineering & Radiation Health Physics

Oregon State University
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STAR-CD CFD Code

* STAR-CD 1s a Computational Fluid Dynamics
Code (CED). The acronym STAR stands for
Simulation of Turbulent flow in Arbitrary
Regions.

* The Code Consists of:

— A preprocessor/postprocessor called Prostar.
— An analysis package called STAR.
— A Parallel Computing Interface Called Pro-HPC.

* The code has the capability of handling many
types of fluid flow, dispersed flow, and
chemical reactions.

R

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Creare 1/2-Scale Test Facility

« The Creare 1/2- T
Scale test facility ~Y
is not a model of NN Y
any particular e
PWR, but can 3 e 3
simulate multiple | I
types of PWR’s. T b =
The configuration PR o
used in the MAY- L | ]| eemonven g
105 test is shown — R
to the right.

[

Oregon State University
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Creare 1/2-Scale Test Facility

 Some of the characteristic dimensions for the
facility are:

— Cold Leg ID — 14.3 inches (363.2 mm)

— HPI ID — 4.5 inches (114.3 mm)

— Downcomer Width — 63.7 inches (1618 mm)

— Downcomer Gap — 5.4 inches (137.2 mm)

— Thermal Shield Thickness — 1.5 inches (38.1 mm)

— Vessel Wall Thickness — 2.75 mches (70 mm)

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Creare MAY-105 Test

e The MAY-105 test initial conditions
— Loop
e Stagnant
¢ 462.15 K (189 °C)
— HPI
e Constant Flow 5.17E-3 m?/s
e 287.35 K (14.2 °C)

e Test Duration
— 2340 seconds

Nuclear Engineering & Radiation Health Physics

Oregon State University
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STAR-CD Model

* A computational grid was generated to
represent the Creare test loop.

e The grid was generated using the
meshing tool within STAR-CD

e The resulting grid consisted of
— 214,308 Fluid Cells
— 60,816 Solid Cells

Nuclear Engineering & Radiation Health Physics

Oregon State University
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STAR-CD Model Vs. Creare

Component Creare STAR-CD | Difference
Loop Seal 17.72 ft 18.48 {t° 0.76 ft3
Pump Simulator 9.6 ft 4.19 ft? -5.41 ft3
Cold Leg 14.35 ft3 14.27 £t -0.08 ft3
Downcomer 29.45 ft3 30.29 ft? 0.84 {3
Lower Plenum 21.35 ft? 19.07 ft3 22.28 ft3
Total Volume 92.47 {13 86.3 ft3 -6.17 ft3

Nuclear Engineering & Radiation Health Physics

Oregon State University
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STAR-CD Model Inputs *

* For the calculations to be run some parameters |
needed to be specified to establish the
appropriate fluid conditions for the model.

Turbulence Model High Reynold’s Number K-¢

Density is Isobaric 0= Po
1+ AT -T,

Time Step 0.25 sec

Iterations 4280

Time of Transient 1070 sec

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Results

e The model ran for a period of 7.7 days on a
Sun Blade 1000 Dual 750 MHz Processor
Unix machine.

e Results Presented

— Cold Leg Stratification
* Plots

— Downcomer Temperatures
* Animation of Plume activity in the downcomer
 Plots

— Velocities around the Thermal Shield
e Snap Shots of Velocity Vectors

Oregon State University
12




old Leg Stratification

* A cold leg rake in the Creare facility is located 9.1
inches (231.14 mm) after the HPI point towards the
Downcomer.

* The thermocouples on this rake are compared with data
from cells nearest or at the same location in the model.
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old Leg Stratification (continued)

Cold Leg Position 1 Compared With STAR-CD

—— Creare Cold Leg Position 1

—— STAR-CD Cold Leg Position 1 (right of centerline)

e STAR-CD Cold Leg Position 1 (left of centerline)

Temperature {F)

LM»MMMM MA«Ml.uu.mmuMu.l
Mm*v

200 400 600 800 1000 1200

Nuclear Engine&fing & Radiation Health Physics
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Temperature (F)

Cold Leg Stratification (continued)

Cold Leg Position 4 Comparison With STAR-CD

. ——Creare Cold Leg Position 4

e . —a—S8TAR-CD Cold lL.eg Postion 4 (right of centerline)

~+--STAR-CD Cold Leg Position 4 (left of centerline)

N e
S ek ek VP
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Time (sec)
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- Cold Leg Stratification (continued)

Cold Leg Position 10 Compared With STAR-CD

—— Creare Cold Leg Position 10

-—-STAR-CD Cold Leg Position 10 (right of centerline)

~amee STAR-CD Cold Leg Position 10 (left of centerline)

Temperature (F)
N
(o]
o

200 400 600 800 1000 1200

Time (sec)
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owncomer Temperatures

Animation of the model calculations to
help visualize the plume development
and mixing in the downcomer.

The first animation is a view from the
vessel side looking at the downcomer.

The second 1s a view from the core side.

Nuclear Engineering & Radiation Health Physics

Oregon State University
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Downcomer Animation (Vessel Side)
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Downcomer Animation (Core) Side

AR
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Downcomer Temperature Plots
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Downcomer Temperature Plots Cont.

Downcomer Row 5 Column 7 Comparison With STAR-CD

{ ——Creare Downcomer Core Side Row 5 Column 7

- ——Creare Downcomer Vessel Side Row 5 Column 7
—— STAR-CD Downcomer Core Side Row 5 Column 7
s STAR-CD Downcomer Vessel Side Row 5 Column 7
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Downcomer Temperature Plots Cont.

Downcomer Row 9 Column 7 Comparison With STAR-CD

—— Creare Downcomer Core Side Row 9 Column 7

- Creare Downcomer Vessel Side Row 9 Column 7

iR, ) o 1 —— STAR-CD Downcomer Core Side Row 9 Column 7

u l' ‘.‘,?'-% —»— STAR-CD Downcomer Vessel Side Row 9 Column 7
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Temperature (F)

Well Mixed Temperature

CREARE Well Mixed Temperature Compared With STAR-CD

STAR-CD Exit Temperature

- = - -CREARE MAY-105 Lower Plenum Temperature

200
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Velocities Around Thermal Shield
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Velocities Around Thermal Shield
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Conclusions

e STAR-CD has been Benchmarked
against the CREARE data:

— Well-mixed temperatures were slightly
under-predicted because model’s total

mixing volume was 6.7% less than the
CREARE facility.

— Predictions of plume temperatures in the
downcomer compared reasonably well with
the data.

Nuclear Engineering & Radiation Health Physics

Oregon State University
26




Conclusions (continued)

* Learned to run STAR-CD using parallel
processing to accelerate the

‘computational process. This supported
the APEX-CE calculations.

e Benchmark calculations aided in the
selection of turbulence models.
— Selection of diffusion lengths

— Selection of turbulent intensity

Nuclear Engineering & Radiation Health Physics

Oregon State University
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3-D CFD Model of the APEX- -~
CE Test Facility

Dan Wachs - Argonne National Laboratory — West
Eric Young - Oregon State University
John Rodgers - Adapco, Inc.

Presentation to
Advisory Committee on Reactor Safeguards

Thermal Hydraulic Subcommittee Meeting
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Outline

* OSU-CE-0003 Test Description
e Description of STAR-CD Model
e Cold leg stratification

e Core 1nlet temperature

~

e Downcomer temperature

* Downcomer plume velocity

e Downcomer heat transfer coefficient
 Summary

Argonne National Laborator;,




OSU-CE-0003 Test Description

The objective of the test was to
collect data on cold leg stratification
and downcomer plume behavior
during HPSI operation

Reactor coolant pumps were tripped
and cold leg flow was controlled
with core power

Data for four different HPSI
injection rates was collected at each
core power; 400 kW, 300 kW, 200
kW, 150 kW

L ——

Argonne National Laboratory




Description of Model

Models the thermal hydraulic behavior
within the Cold Legs and Downcomer

Includes the HPSI, Loop Seal, and
Lower Vessel Plenum

Inlet conditions to Loop Seal and HPSI
are specified

Assumes adiabatic walls

Argonne National Laboratory




Initial and Boundary Conditions

* Constant initial temperature (~296°F/147°C)
* Moderate loop flow through the cold legs

— Qcrsz~14.4 gpm

— QcL~12.3 gpm

* Constant injection flow rate from both HPSI
lines

— QHPI#3~O‘5206 gpm

Argonne National Laboratory,
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Core Inlet Temperature

Core Inlet Temperature
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owncomer Temperature (1.3 D)

Downcomer Temperature (1.3 D, )
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Downcomer Temperature (2.0 D, )
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Temperature (F)

Downcomer Temperature (3.0 D,
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Downcomer Temperature (4.0 D)

Downcomer Temperature (4.0 D CL)
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Plume Velocity

e The maximum plume velocity was
extracted from the Star-CD model

e Plume Re

V Uy Vp (25)

D

where S 1s the downcomer gap and v, is
the plume velocity

Argonne National Laboratory,




otsovinos Model for Plume Velocity

_1.66 8"

where B is the specific buoyancy flux
defined as

QHPI (IOHPSI o IOa)

a

P

Argonne National Laboratory




Comparison with Model

Mazimum Plume Velocity
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Vessel Temperature

Argonne National Laboratory,




Heat Transfer Coefticient

 Newton’s Law of Cooling |

" = h AT ;

— h contains all the hydrodynamic
effects

— AT contains most of the thermal
effects

Argonne National Laboratory




Vessel Wall Heat Flux

* The radial temperature gradient in the
wall can be extracted from the model
(and thus the heat flux through it)

{4

22

Argonne National Laboratory




Heat Transfer Coefticient

 The heat transfer coefficient can
then be calculated

dT
h=k
dr (T-T.)

e Convert to a Nusselt number

28
Nu=h—
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Conclusions and
Recommendations

e The nodalization 1s too coarse in the full
system model to accurately predict the
cold leg temperature profile. Higher
density meshes on the cold leg alone
resulted in better agreement.

 Downcomer temperatures are in good
agreement

Argonne National Laboratory




onclusions and
eccomendations (cont.)

e Core inlet temperatures are mildly
underpredicted due to the omission of
the heat transfer through the core barrel

* Cold plume interactions occur and
affect the plume velocity

Argonne National Laboratory




Conclusions and
Reccomendations (cont.)

e The plume’s radial location affects the
heat transfer coefficient (generally
lower than the Dittus-Boelter
correlation would suggest)

e More cases should be run to optimize
the mesh cell density

Argonne National Laboraton,
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CEFD Methodology

e Problem definition
e Mesh construction
e Problem setup

* Run

e Post-processing

Argonne National Laboratory




Things to consider

Understand the physics and phenomena
prior to modeling |

e Mesh building

— Alternate programs for geometry
construction are available

— Mesh gradients should match
physical gradients

— Cells and time steps can be both too
large or too small (Courant PZf7
condition)

Argonne National Laboratory,



Things to consider (cont.)

e Modeling large systems can be |
simplified with selection of computing |
system

— Parallel computing provided better
than linear improvements in
performance

— Homogeneous computing platforms
are 1important

Argonne National Laboratory,



Things to consider (cont.)

e Comparing model results to
experimental data can be difficult

— O(100) mnstrumented points vs.
O(100,000) numerical points

— It can be difficult to extract a multi-
dimensional image of local behavior
from even extremely well
instrumented experiments

Argonne National Laboratory,




Report Schedule

Jose N. Reyes, Jr.

Presentation To

Advisory Committee On Reactor Safeguards
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Schedule

* Scaling Analysis Report, Completed
(Awaiting final editorial comments from NRC
Publications.)

* Final Report (December 2001) will include:
— Review of Previous PTS Research

— Description of the OSU PTS Test Facilities

— Overview of Palisades Operations

— Results of OSU PTS Tests

— RELAPS Calculations of APEX-CE Overcooling Behavior
— REMIX and STAR-CD Calculations

— Data and Drawings

Nuclear niering & Radiation Health Physics

Oregon State University
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