Test Plan 81 Report

æ

TABLE OF CONTENTS

1.	PURPOSE	1
2.	SCOPE OF TESTING	1
3.	FAILURE MODES	2
4.	FAILURE MODES TEST UNIT DESCRIPTION	
5.	SUMMARY AND CONCLUSIONS	4
6.	TP81 NORMAL TESTS	6
	Compression Test	
	Penetration Test	7
	1.2 Meter (4 Foot) Drop Test	8
	Post-Test Inspection and Assessment	9
7.	TP81 ACCIDENT DROP TESTS - TP81(C)	. 10
	TP81 ACCIDENT DROP TESTS - TP81(C)	. 10
	Puncture Test	.11
	Post-Test Inspection and Assessment	. 11
8.	TP81 ACCIDENT DROP TESTS – TP81(B)	. 12
	9 Meter (30 Foot) Drop Test	. 12
	Puncture Test	.13
	Post-Test Inspection and Assessment	.13
9.	TP81 ACCIDENT DROP TESTS – TP81(A)	13
	9 meter (30 Foot) Drop Test	13
	Puncture Test	14
	Post-Test Inspection and Assessment	15
	-	

APPENDICES

- A. CALIBRATION RECORDS
- B. MANUFACTURING ROUTE CARDS AND PRE-TEST RADIATION PROFILE DATA SHEET
- C. TEST CHECKLISTS AND DATA SHEETS
- D. TEST PHOTOGRAPHS

1. **PURPOSE**

This report describes the Type B test results for the Model 702 transport package. These tests were performed in accordance with Test Plan 81 and were conducted April 9 through 15, 1999. The Test Plan specified testing necessary to demonstrate compliance with the requirements in 10 CFR Part 71 and IAEA Safety Series No. 6 (1985 as amended 1990) for "Normal Conditions of Transport" and "Hypothetical Accident Conditions." Evaluation of the compliance of the Model 702 with these requirements is provided in the Safety Analysis Report (SAR).

2. SCOPE OF TESTING

Test Plan 81 identified three orientations that could potentially cause the most significant damage to the Model 702 transport package in the 9 meter (30 foot) drop tests. Therefore, the test plan required three test specimens. However, since the Model 702 is not portable, only one unit was preconditioned (i.e., subjected to Normal Conditions of Transport Tests) prior to the Hypothetical Accident Condition tests. Also, only one shipping cask was used (in three different cage/skid assemblies) for all tests because the number of 702 units is limited. The shipping cask was taken from the field population, and therefore represents a worse case than using a new 702 shipping cask. The tests conducted are described below.

- 1. Normal Conditions of Transport Tests per 10 CFR 71.71, including the following for specimen TP81(A):
 - a) <u>Compression test</u>, with the test specimen under a load greater than or equal to five times the Model 702 maximum weight for at least 24 hours.
 - b) <u>Penetration test</u>, in which a 13.4 lb (6.08 kg) penetration bar is dropped from at least 1 meter (40 inches) onto the test specimen in the most vulnerable location.
 - c) <u>1.2 meter (4 foot) drop test</u>, in which the test specimen is dropped in an orientation expected to cause maximum damage.

Water spray preconditioning of the test specimens prior to testing was not required in the test plan and is evaluated separately.

- 2. Hypothetical Accident Condition Tests per 10 CFR 71.73, including the following for each of the test specimens:
 - a) <u>9 meter (30 foot) drop test</u>, in which the test specimen is dropped in an orientation expected to cause maximum damage.
 - b) <u>Puncture test</u>, in which the test specimen is dropped from at least 1 meter (40 inches) onto a 6 inch (152.4 mm) diameter vertical bar in an orientation expected to compound damage from the 9 meter (30 foot) drop test.

c) <u>Thermal test</u>, in accordance with 10 CFR71.73(c)(4), in which the test specimen is exposed for 30 minutes to an environment which provides a time-averaged environmental temperature of at least 800°C (1472°F), and an emissivity coefficient of at least 0.9. For the Model 702, the test plan specified that the decision to perform thermal testing would be based on an assessment of damage sustained by the specimen following the drop and puncture tests. This requirement was based on the evaluation of the construction of the unit, and on the potential failure modes, which are discussed in the following section.

The crush test specified in 10 CFR 71.73(c)(2) was not required because the radioactive contents are qualified as Special-Form radioactive material.

The water immersion test specified in 10 CFR 71.73(c)(6) and other tests specified in 10 CFR 71 are evaluated separately.

For all tests, sufficient margin was included in test parameters to account for measurement uncertainty. These test parameters included test specimen weight, temperature, and drop height.

3. FAILURE MODES

For the Model 702 transport package, the key function important to safety is the positive retention of the radioactive source in its stored position within the depleted uranium shield. Removal of the cask cover or damage to the cask or DU shield could cause radiation from the package to increase above regulatory limits. Mechanisms, which could cause these modes of failure, include:

- <u>Failure of the Cask Cover Bolts</u> During the free drop or puncture tests, failure of the cask cover bolts could result in the source becoming partially or completely exposed.
- <u>Failure of the Cask or Cover Assembly Shell</u> Failure (e.g., puncture) of the cask cover assembly or failure of the inner liner to outer shell weld could expose the depleted uranium (DU) shield, which could oxidize during thermal testing.
- <u>Separation of the Cask from the Skid</u> If the cask to skid bolts or the tie down assembly fail during the 9 meter (30 foot) drop test, the cask may strike the impact surface. In addition, the specimen could then be further damaged in the puncture bar test when the cask impacts on the puncture bar.
- <u>Crushing or Buckling of the Protective Cage</u> If there is significant deformation of the protective cage during the 1.2 meter (4 foot) drop, the distance from the source to the specimen external surface would be decreased. If there is significant deformation of the protective cage during the 9 meter (30 foot) drop, the cask may strike the impact surface.

The drop orientations for the normal and hypothetical accident tests were selected to challenge the components that are intended to prevent these failures. For the 1.2 meter (4 foot) drop test, the test orientation considered most likely to cause crushing or buckling of the protective cage was top, long edge down. (See Section 6 for a figure of the 1.2 meter (4 foot) drop orientation).

Three orientations were considered most likely to cause damage during the 9 meter (30 foot) drop tests. These orientations include the following:

- <u>Horizontal, Short-Side Down</u> The skid is stiffer in this orientation than in the longside down, so the maximum moment is applied to the hold down feet and the cask bolts. The impact may also cause buckling and/or brittle failure of the carbon steel protective cage structure. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.
- <u>Top, Long Edge Down</u> The impact may cause significant deformation of the carbon steel protective cage. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.
- <u>Vertical, Top Down</u> An impact in this orientation will apply the maximum tensile load to the cask cover bolts and inner liner weld. The impact may also cause buckling and/or brittle failure of the carbon steel protective cage structure. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.

Because of the potential for brittle failure of carbon steel components, all test units were packed in dry ice and cooled to less than -40° C (-40° F) (the minimum temperature required by IAEA Safety Series 6) for the penetration, 1.2 meter (4 foot) drop, 9 meter (30 foot) drop, and puncture tests.

The thermal test was only expected to have a significant effect on those units for which the cask or cover assembly shell failed and exposed the DU shield. The test plan required thermal tests of the test specimens only if they sustained damage that could lead to DU oxidation during the thermal test.

4. TEST UNIT DESCRIPTION

The Model 702 test specimens, identified below, were originally constructed in accordance with drawing C70290 and were prepared for testing in accordance with drawing R-TP81, Revision B. The manufacturing route cards for the units document the compliance of these units with the AEA Technology QSA QA program (see Appendix B).

	Serial Number			
Specimen	Cask	Cage/Skid	Total Weight	
TP81(A)	24	24	406 lb (184 kg)	
TP81(B)	24	26	402 lb (182 kg)	
TP81(C)	24	23	403 lb (183 kg)	

• 3

Cask Serial No. 24 was used with the cask/skid assemblies identified above for each test specimen. The only change from production units was a replacement of the tungsten "nest" that holds sources within the source cavity, with a solid tungsten plug. The weight of the plug bounds the weight of a loaded tungsten nest.

ŝ

5. SUMMARY AND CONCLUSIONS

Since only one shipping cask was used for all tests, radiation profiles were only taken on the TP81(A) specimen. The test specimen met the requirements for 10CFR71 Type B(U) Transport Testing, as shown in the following table of Radiation Profile results.

Specimen	Specimen Surface	At Surface, Before Test	At One Meter, Before Test	At Surface, After 4 ft Drop Test	At One Meter, After 4 ft Drop Test	At One Meter, After Puncture Test (Note 1)
· · · · · · · · · · · · · · · · · · ·	Reg. Limits	200 mR/hr	10 mR/hr	200 mR/hr	10 mR/hr	1000 mR/hr
TP81(A)	Тор	20	0.5	17	0.6	1.0
	Right	37	1.0	35	0.8	1.1
S/N 24	Front	30	0.5	27	0.9	1.1
	Left	44	1.1	35	0.8	1.1
	Rear	27	0.9	22	0.8	0.8
····	Bottom	3	< 0.4 (Note 2)	1.8	< 0.1	0.8 (Note 3)

Notes:

- 1. Radiation profile at the surface is not required for the Hypothetical Accident Condition test (see 10 CFR 71.51(a)(2)). The shipping cask had been removed from cage/skid prior to final puncture test and was profiled without the cage/skid assembly.
- 2. Background level is 0.3 mR/hr.
- 3. Activity measured at surface of shipping cask.

.,

Results of each test are summarized in the table below, in the sequence in which the tests were completed. Detailed results are provided in the following sections of this report, test data sheets are in Appendix C, and photographs are included in Appendix D.

Specimen	Test Performed	Test Results
TP81(A)	Compression test	No damage
	1 meter (40 inch) penetration bar on	Cage perforated plate dented in and
	top, center of cage	partially broken. No other damage.
	1.2 meter (4 foot) drop, top, long	• Hold down ring, 30° section, and 1
	edge down	bracket broken
		• Cage frame displaced about 1/4 inch
		• Perforated plate buckled on sides
1		Skid cracked
		• Cask and cage still secured to skid
	Post-Drop Inspection	Cask cover secure
ł	• • , ,	• No change in radiation profile
TP81(C)	9 meter (30 foot) drop, horizontal,	• Brittle fracture of both legs of skid
	short-side down	• All 4 cask-to-skid bolts sheared off
		• All 4 lower brackets fractured, so
		cask was free within the cage
		• 1 of 6 cask cover bolts failed (bolt
		head pried off due to local buckling
		of cask cover)
		Cask cover locally buckled near
		broken cover bolt
		Perforated plate torn along
		impacted edge
	1 meter (40 inch) puncture,	Broke off one leg of skid
	horizontal, short-side down	Puncture bar tore through
	(puncture bar positioned directly	perforated plate
	under tear in perforated plate)	Bottom tube of cage frame broken
		• Slight bend on one cask fin
	Post-Drop Inspection	Cask cover still secured by
		remaining 5 bolts
TP81(B)	9 meter (30 foot) drop, top, long	• 3.75 inch to 4 inch deflection of
	edge down	cage frame
	_	• Perforated plate detached on both
		sides of cage
		• Some buckling of skid
		• 2 of 4 hold down ring brackets
		(next to impact edge) failed
		• 2 cage frame welds on top edge
		failed
		• Tube steel dented by impact from 2
		hold down ring brackets
		• 2 of 4 hold down base brackets
		(opposite impact edge) broke

Spęcimen	, Test Performed	Test Results
TP81(B) (con't)	1 meter (40 inch) puncture test not performed for this cage/skid because potential damage to cask was bounded by puncture tests using cask with cage/skid assemblies TP81(C) and TP81(A) Post-Drop Inspection	 n/a Cask remained secured to skid via 4 cask-to-skid bolts
TP81(A)	9 meter (30 foot) drop, vertical, top down	 Cask cover remained secured Brittle fracture of skid Cask and square plate welded to skid tore away from rest of skid 3 hold down ring brackets failed (4th had broken in 1.2 meter (4 foot) drop test) Cask struck impact surface, which dented head of 1 cask cover bolt Cask fin ends dented
	1 meter (40 inch) puncture, cask attached to portion of skid, dropped upside down, 10° to 15° off vertical onto dented cask cover bolt Post-Drop Inspection	 Bolt was further dented, but remained secure. Cask remained secured (after 3rd 30 foot drop and 2 puncture tests) Small change in radiation profile

The skid, cage, and hold down assemblies of each test specimen were damaged. The only significant damage to the cask, however, was the loss of 1 of the 6 cask cover bolts during the 9 meter (30 foot) drop test of specimen TP81(C). Further testing (e.g., 2 additional 9 meter drop tests and 2 puncture tests with the same cask) added no significant damage to the cask or cask cover bolts. There were no openings in the cask cover or in the cask shell, so thermal testing was not required.

6. TP81 NORMAL TESTS

Compression Test

Test specimen TP81(A) was loaded as shown in the figure below. Lead weights were placed on a steel plate, which was positioned on top of the test specimen.

The vertical projected area of the unit is 19 inch (483 mm) x 21 inch (533 mm) or 399 square inches (2574 square centimeters), yielding a total load of 798 lb (362 kg) for an applied pressure of 2 psi. Since the maximum weight of the Model 702 transport package is 410 lb (186 kg), a load of 5 times the weight, or 2050 lb (930 kg), is more conservative. The total compressive load actually used was 2138 lb (970 kg). The test setup is shown below.

3

Compression Test Setup for Specimen TP81(A)

ł,

After a period of 24 hours, the weights were removed. No visible deformation or buckling occurred and no other damage was observed for any of the test specimens.

Penetration Test

Test specimen TP81(A) was subjected to the penetration test. Temperature readings taken just before the test are summarized below.

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	7°C	-72°C	-77°C	-63°C
	(45°F)	(-98°F)	(-107°F)	(-81°F)

The penetration bar target was the top center of the protective cage in an attempt to penetrate the perforated plate and impact the cask cover. For this test, the specimen was positioned right side up, as shown below.

0

Penetration Test Orientation for Specimen TP81(A)

The penetration bar was dropped from a height of at least 1 meter (40 inches) above the impact point. The bar hit as intended on the specimen, and dented and partially broke the perforated plate at the point of impact.

1.2 Meter (4 Foot) Drop Test

Test specimen TP80(A) was then subjected to the 1.2 meter (4 foot) drop test. Temperature readings taken just before the test are summarized below.

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	7°C	-71°C	-71°C	-54°C
	(45°F)	(-96°F)	(-96°F)	(-65°F)

The drop orientation for the unit is shown below.

1.2 Meter (4 Foot) Drop Orientation for Specimen TP81(A)

The test specimen impacted as intended. The hold down ring fractured and a 30 degree section of the ring (along with one of the top brackets) broke off. The perforated plate buckled on the sides and the cage was displaced about 1/2 inch towards the shipping cask. There was some tearing of the perforated plate. The cask and cage remained secured to the skid.

Post-Test Inspection and Assessment

Results of the first intermediate inspection and assessment are summarized below. The radiation profile of the specimen was measured, and data sheets are provided in Appendices B and C.

Specimen	Damage	Radiation Profile
TP81(A)	 Protective cage and perforated plate slightly damaged One tie down bracket and 30° section of the hold down ring broken Skid cracked Cask and cage remain attached to skid. Cask cover secure 	• No change

7. TP81 ACCIDENT DROP TESTS – TP81(C)

Due to the damage sustained during the Normal Conditions of Transport tests, Specimen TP81(C) was dropped in the orientation defined in Test Plan 81 for TP81(A) (horizontal, short-side down).

Specimen TP81(C) was subjected to both a 9 meter (30 foot) drop test and a puncture test in accordance with Test Plan 81. The results are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(C) were as follows:

Specimen	Ambient	Cask	Skid	Cage
TP81(C)	10°C	-90°C ;	-92°C	-93°C
	(50°F)	(-130°F)	(-134°F)	(-135°F)

The orientation for Specimen TP81(C) was horizontal, short-side down as shown below. The intention was to apply the maximum moment to the hold down feet and the cask-to-skid bolts, thereby breaking the cask free from the skid.

9 Meter (30 Foot) Drop Orientation for Specimen TP81(C)

10

The specimen impacted as intended. Both legs of the skid fractured. All four cask to skid bolts sheared off and all four lower brackets of the hold down assembly fractured, which freed the cask and allowed the hold down ring to strike the impact surface. The hold down ring transferred the side impact load into the top edge of the cask cover, which locally buckled and pried off one of the 6 cask cover bolts.

Puncture Test

For the puncture test, TP81(C) was dropped in the cage horizontal, short-side down as in the 9 meter (30 foot) drop with the puncture bar directly under the tear in the perforated plate, where the hold down ring had struck the impact surface. The puncture billet was intended to strike the cask cover through the side of the perforated plate.

Puncture Drop Orientation for Specimen TP81(C)

The unit impacted on its side and the puncture billet impacted at the tear in the perforated plate as intended. The impact caused further degradation of the skid and cage. One of the skid legs broke off, the puncture bar tore through the perforated plate at the point of impact, and the bottom tube of the cage frame broke. One of the cask cooling fins was slightly bent, but there was no additional damage to the cask or cask cover bolts.

Post-Test Inspection and Assessment

Following the test, the protective cage was removed and the unit was inspected. The cask and cask cover retained their structural integrity.

8. ,TP81 ACCIDENT DROP TESTS – TP81(B)

During re-assembly of Specimen TP81(B), the 5 remaining cover bolts for the cask were replaced and torqued in accordance with drawing R-TP81, Revision B. Specimen TP81(B) was then subjected to a 9 meter (30 foot) drop test in accordance with Test Plan 81. A puncture test was not performed because the 9 meter (30 foot) drop test did not result in significant damage to the shipping cask, and, therefore, the puncture test performed for TP81(C) (and later for TP81(A)) bounds any puncture tests that could have been done for TP81(B). The results of the 9 meter (30 foot) test are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(B) were as follows:

Specimen	Ambient	Cask ,	Skid	Cage
TP81(B)	12°Ç	-54°C	-69°C	-62°C
	(54°F)	(-65°F) :	(-92°F)	(-80°F)

The orientation for Specimen TP81(B), shown below, was the same as for the 1.2 meter (4 foot) drop. The intention was to cause significant deformation of the carbon steel protective cage.

9 Meter (30 Foot) Drop Orientation for Specimen TP81(B)

The specimen impacted as intended. The impact deflected the cage frame about 4 inches towards the shipping cask. The perforated plates on both sides of the cage detached. The skid buckled slightly. Two of the four base brackets (those opposite the impact edge) broke. Two of the four top brackets (those next to impact edge) also failed. Frame welds on the top edge failed and the tube steel dented due to the impact from the two top brackets. The cask remained secured to the skid via the four cask to skid bolts.

Puncture Test

Not performed.

Post-Test Inspection and Assessment

Since the 9 meter (30 foot) drop resulted in essentially no damage to the cask, and since only one cask was used for all tests, the final 9 meter (30 foot) drop test for Specimen TP81(A) was performed before selecting a final puncture test orientation.

9. TP81 ACCIDENT DROP TESTS – TP81(A)ⁱ</sup>

Specimen TP81(A) was subjected to the third orientation for the 9 meter (30 foot) drop test and puncture test described in Test Plan 81. The results are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(A) were as follows:

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	10°C	-45°C	-82°C	-63°C
	(50°F)	(-49°F)	(-116°F)	(-81°F)

The orientation for Specimen TP81(A), shown below, was vertical, top down. The intention was to apply the maximum tensile load to the cask cover bolts and inner liner weld.

4

9 Meter (30 Foot) Drop Orientation for Specimen TP81(A)

The specimen impacted as intended. The skid fractured and the cask and square plate welded to the skid tore away from the rest of the skid. Three hold down ring brackets broke off (the fourth bracket was broken in the 1.2 meter drop test of specimen TP81(A)). The cask struck the impact surface, as evidenced by the dented-in head of one of the 5 remaining cask cover bolts, and by the dented ends of the cask cooling fins.

Puncture Test

For the Specimen TP81(A) puncture test, the cask bolted to the portion of the skid that remained after the 9 meter (30 foot) drop was dropped without the cage at a 15 to 20 degree angle off vertical onto the puncture bar. The targeted impact point was the bolt that had been dented during the 9 meter (30 foot) drop test.

.3

Puncture Drop Orientation for Specimen TP81(A)

The cask struck the puncture bar on the intended bolt. The bolt was dented further, but remained secure. There was no additional damage to the cask or the other cask cover bolts.

Post-Test Inspection and Assessment

The cask and cask cover retained their structural integrity. The post-test radiation profile was performed on the cask without the cage/skid assembly, and showed only a slight change in radiation levels from the pre-test profile (see Appendices B and C). Because no damage occurred that could result in oxidation of the DU shield, the thermal test was not required (see Section 3).

SENTINEL

]	TEST PLAN NO. <u>81, Nev.</u> 1
TEST PLAN COVER SHEET	
TEST TITLE: Model 70.2 Transport Package Type B Tra	nsport Tests
PRODUCT MODEL: Model 702	
ORIGINATED BY: Sie Chh	DATE: 30 MAR 99
TEST PLAN REVIEW	
ENGINEERING APPROVAL	DATE: 3 MAR 99
QUALITY ASSURANCE APPROVAL:	DATE: <i>31 Mar</i> 99
REGULATORY APPROVAL: C. Konfulan	DATE: 31, Mar 99
COMMENTS:	
TEST RESULTS REVIEW	
ENGINEERING APPROVAL:	DATE: 0310199
QUALITY ASSURANCE APPROVAL:	DATE: 7 Nov 94
REGULATORY APPROVAL:	DATE: 11 NOV 88

3

ENGINEERS

QUALITY ASSURANCE DOCUMENT This document has been prepared, reviewed, and approved in accordance with the Quality Assurance requirements of 10CFR50 Appendix B, as specified in the MPR Quality Assurance Manual.

Prepared by Name Vie Reviewed by 94 Approved by

September 8, 1999

đ

Mr. Michael L. Tremblay AEA Technology QSA, Inc. 40 North Avenue Burlington, MA 01803

Subject: Final Test Plan 81 Report, Model 702, Type B(U) Transport Package

Dear Mr. Tremblay:

Three copies of the final Test Plan 81 Report, Model 702, Type B(U) Transport Package are enclosed. This version of the report incorporates the documentation missing from our May 14 draft report.

Please call me if you have comments or questions about this letter or enclosure.

Sincerely,

ŝ

Cauti Addle

Caroline S. Schlaseman

Enclosure

k

TEST PLAN 81 REPORT

•

MODEL 702

September 8, 1999

;

i

na ho Prepared By:

Laura Ridzon, MPR Associates, Inc.

Date: 08 SEPT 1999

Reviewed By: <u>Marlar (). Marrow</u> Nicholas & Marrowe, MPR Associates, Inc.

-____ Date: <u>8 Sarpi 1999</u>

Approved By: _____

Date: 8 SEPT 99

Caroline S. Schlaseman, MPR Associates, Inc.

AEA Technology QSA, Inc. Burlington, MA

AEA Technology QSA, Inc.

x

7

TABLE OF CONTENTS

1.	PURPOSE	1
2.	SCOPE OF TESTING	1
3.	FAILURE MODES	
4.	TEST UNIT DESCRIPTION	3
5.	SUMMARY AND CONCLUSIONS	
6.	TP81 NORMAL TESTS	6
	Compression Test	6
	Penetration Test	7
	1.2 Meter (4 Foot) Drop Test	8
	Post-Test Inspection and Assessment	9
7.	TP81 ACCIDENT DROP TESTS - TP81(C)	10
	9 Meter (30 Foot) Drop Test	10
	Puncture Test	11
	Post-Test Inspection and Assessment	11
8.	TP81 ACCIDENT DROP TESTS – TP81(B)	12
	9 Meter (30 Foot) Drop Test	12
	Puncture Test	
	Post-Test Inspection and Assessment	13
9.	TP81 ACCIDENT DROP TESTS - TP81(A)	
	9 meter (30 Foot) Drop Test	13
	Puncture Test	
	Post-Test Inspection and Assessment	

APPENDICES

- A. CALIBRATION RECORDS
- B. MANUFACTURING ROUTE CARDS AND PRE-TEST RADIATION PROFILE DATA SHEET
- C. TEST CHECKLISTS AND DATA SHEETS
- D. TEST PHOTOGRAPHS

1. PURPOSE

This report describes the Type B test results for the Model 702 transport package. These tests were performed in accordance with Test Plan 81 and were conducted April 9 through 15, 1999. The Test Plan specified testing necessary to demonstrate compliance with the requirements in 10 CFR Part 71 and IAEA Safety Series No. 6 (1985 as amended 1990) for "Normal Conditions of Transport" and "Hypothetical Accident Conditions." Evaluation of the compliance of the Model 702 with these requirements is provided in the Safety Analysis Report (SAR).

2. SCOPE OF TESTING

Test Plan 81 identified three orientations that could potentially cause the most significant damage to the Model 702 transport package in the 9 meter (30 foot) drop tests. Therefore, the test plan required three test specimens. However, since the Model 702 is not portable, only one unit was preconditioned (i.e., subjected to Normal Conditions of Transport Tests) prior to the Hypothetical Accident Condition tests. Also, only one shipping cask was used (in three different cage/skid assemblies) for all tests because the number of 702 units is limited. The shipping cask was taken from the field population, and therefore represents a worse case than using a new 702 shipping cask. The tests conducted are described below.

- 1. Normal Conditions of Transport Tests per 10 CFR 71.71, including the following for specimen TP81(A):
 - a) <u>Compression test</u>, with the test specimen under a load greater than or equal to five times the Model 702 maximum weight for at least 24 hours.
 - b) <u>Penetration test</u>, in which a 13.4 lb (6.08 kg) penetration bar is dropped from at least 1 meter (40 inches) onto the test specimen in the most vulnerable location.
 - c) <u>1.2 meter (4 foot) drop test</u>, in which the test specimen is dropped in an orientation expected to cause maximum damage.

Water spray preconditioning of the test specimens prior to testing was not required in the test plan and is evaluated separately.

- 2. Hypothetical Accident Condition Tests per 10 CFR 71.73, including the following for each of the test specimens:
 - a) <u>9 meter (30 foot) drop test</u>, in which the test specimen is dropped in an orientation expected to cause maximum damage.
 - b) <u>Puncture test</u>, in which the test specimen is dropped from at least 1 meter (40 inches) onto a 6 inch (152.4 mm) diameter vertical bar in an orientation expected to compound damage from the 9 meter (30 foot) drop test.

1

AEA Technology QSA, Inc.

c) <u>Thermal test</u>, in accordance with 10 CFR71.73(c)(4), in which the test specimen is exposed for 30 minutes to an environment which provides a time-averaged environmental temperature of at least 800°C (1472°F), and an emissivity coefficient of at least 0.9. For the Model 702, the test plan specified that the decision to perform thermal testing would be based on an assessment of damage sustained by the specimen following the drop and puncture tests. This requirement was based on the evaluation of the construction of the unit, and on the potential failure modes, which are discussed⁻ in the following section.

The crush test specified in 10 CFR 71.73(c)(2) was not required because the radioactive contents are qualified as Special-Form radioactive material.

The water immersion test specified in 10 CFR 71.73(c)(6) and other tests specified in 10 CFR 71 are evaluated separately.

For all tests, sufficient margin was included in test parameters to account for measurement uncertainty. These test parameters included test specimen weight, temperature, and drop height.

3. FAILURE MODES

For the Model 702 transport package, the key function important to safety is the positive retention of the radioactive source in its stored position within the depleted uranium shield. Removal of the cask cover or damage to the cask or DU shield could cause radiation from the package to increase above regulatory limits. Mechanisms, which could cause these modes of failure, include:

- <u>Failure of the Cask Cover Bolts</u> During the free drop or puncture tests, failure of the cask cover bolts could result in the source becoming partially or completely exposed.
- <u>Failure of the Cask or Cover Assembly Shell</u> Failure (e.g., puncture) of the cask cover assembly or failure of the inner liner to outer shell weld could expose the depleted uranium (DU) shield, which could oxidize during thermal testing.
- <u>Separation of the Cask from the Skid</u> If the cask to skid bolts or the tie down assembly fail during the 9 meter (30 foot) drop test, the cask may strike the impact surface. In addition, the specimen could then be further damaged in the puncture bar test when the cask impacts on the puncture bar.
- <u>Crushing or Buckling of the Protective Cage</u> If there is significant deformation of the protective cage during the 1.2 meter (4 foot) drop, the distance from the source to the specimen external surface would be decreased. If there is significant deformation of the protective cage during the 9 meter (30 foot) drop, the cask may strike the impact surface.

AEA Technology QSA, Inc.

The drop orientations for the normal and hypothetical accident tests were selected to challenge the components that are intended to prevent these failures. For the 1.2 meter (4 foot) drop test, the test orientation considered most likely to cause crushing or buckling of the protective cage was top, long edge down. (See Section 6 for a figure of the 1.2 meter (4 foot) drop orientation).

Three orientations were considered most likely to cause damage during the 9 meter (30 foot) drop tests. These orientations include the following:

- <u>Horizontal</u>, <u>Short-Side Down</u> The skid is stiffer in this orientation than in the longside down, so the maximum moment is applied to the hold down feet and the cask bolts. The impact may also cause buckling and/or brittle failure of the carbon steel protective cage structure. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.
- <u>Top, Long Edge Down</u> The impact may cause significant deformation of the carbon steel protective cage. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.
- <u>Vertical, Top Down</u> An impact in this orientation will apply the maximum tensile load to the cask cover bolts and inner liner weld. The impact may also cause buckling and/or brittle failure of the carbon steel protective cage structure. Detachment of the cask from the skid is possible due to thread failure of the tapped holes in the skid and brittle failure of the hold down assembly "feet" which are welded to the skid.

Because of the potential for brittle failure of carbon steel components, all test units were packed in dry ice and cooled to less than -40°C (-40°F) (the minimum temperature required by IAEA Safety Series 6) for the penetration, 1.2 meter (4 foot) drop, 9 meter (30 foot) drop, and puncture tests.

The thermal test was only expected to have a significant effect on those units for which the cask or cover assembly shell failed and exposed the DU shield. The test plan required thermal tests of the test specimens only if they sustained damage that could lead to DU oxidation during the thermal test.

4. TEST UNIT DESCRIPTION

The Model 702 test specimens, identified below, were originally constructed in accordance with drawing C70290 and were prepared for testing in accordance with drawing R-TP81, Revision B. The manufacturing route cards for the units document the compliance of these units with the AEA Technology QSA QA program (see Appendix B).

3

-	Serial Number		
Specimen	Cask	Cage/Skid	Total Weight
TP81(A)	24	24	406 lb (184 kg)
TP81(B)	24	26	402 lb (182 kg)
· TP81(C)	24	23	403 lb (183 kg)

Cask Serial No. 24 was used with the cask/skid assemblies identified above for each test specimen. The only change from production units was a replacement of the tungsten "nest" that holds sources within the source cavity, with a solid tungsten plug. The weight of the plug bounds the weight of a loaded tungsten nest.

ŝ

5. SUMMARY AND CONCLUSIONS

Since only one shipping cask was used for all tests, radiation profiles were only taken on the TP81(A) specimen. The test specimen met the requirements for 10CFR71 Type B(U) Transport Testing, as shown in the following table of Radiation Profile results.

Specimen	Specimen Surface	At Surface, Before Test	At One Meter, Before Test	At Surface, After 4 ft Drop Test	At One Meter, After 4 ft Drop Test	At One Meter, After Puncture Test (Note 1)
	Reg. Limits	200 mR/hr	10 mR/hr	200 mR/hr	10 mR/hr	1000 mR/hr
TP81(A)	Тор	20	0.5	17	0.6	1.0
	Right	37	1.0	35	0.8	1.1
S/N 24	Front	30	0.5	27	0.9	1.1
	Left	44	1.1	35	0.8	1.1
	Rear	27	0.9	22	0.8	0.8
	Bottom	3	< 0.4 (Note 2)	1.8	< 0.1	0.8 (Note 3)

Notes:

- Radiation profile at the surface is not required for the Hypothetical Accident Condition test (see 10 CFR 71.51(a)(2)). The shipping cask had been removed from cage/skid prior to final puncture test and was profiled without the cage/skid assembly.
- 2. Background level is 0.3 mR/hr.
- 3. Activity measured at surface of shipping cask.

Results of each test are summarized in the table below, in the sequence in which the tests were completed. Detailed results are provided in the following sections of this report, test data sheets are in Appendix C, and photographs are included in Appendix D.

Specimen	Test Performed	Test Results
TP81(A)	Compression test	No damage
	1 meter (40 inch) penetration bar on	Cage perforated plate dented in and
	top, center of cage	partially broken. No other damage.
	1.2 meter (4 foot) drop, top, long	• Hold down ring, 30° section, and 1
	edge down	bracket broken
	•	• Cage frame displaced about ¼ inch
		• Perforated plate buckled on sides
		Skid cracked
		• Cask and cage still secured to skid
	Post-Drop Inspection	Cask cover secure
		No change in radiation profile
TP81(C)	9 meter (30 foot) drop, horizontal,	• Brittle fracture of both legs of skid
	short-side down	• All 4 eask-to-skid bolts sheared off
		• All 4 lower brackets fractured, so
		cask was free within the cage
		• 1 of 6 cask cover bolts failed (bolt
		head pried off due to local buckling
		of cask cover)
		• Cask cover locally buckled near
		broken cover bolt
		Perforated plate torn along
		impacted edge
	1 meter (40 inch) puncture,	Broke off one leg of skid
	horizontal, short-side down	Puncture bar tore through
	(puncture bar positioned directly	perforated plate
	under tear in perforated plate)	• Bottom tube of cage frame broken
		• Slight bend on one cask fin
	Post-Drop Inspection	Cask cover still secured by
		remaining 5 bolts
TP81(B)	9 meter (30 foot) drop, top, long	• 3.75 inch to 4 inch deflection of
	edge down	cage frame
		• Perforated plate detached on both
		sides of cage
		 Some buckling of skid
		 2 of 4 hold down ring brackets
		(next to impact edge) failed
		 2 cage frame welds on top edge
		failed
		• Tube steel dented by impact from 2
		hold down ring brackets
		 2 of 4 hold down base brackets
	<u>1</u>	(opposite impact edge) broke

...

Specimen	Test Performed	Test Results
TP81(B) (con't)	1 meter (40 inch) puncture test not performed for this cage/skid because potential damage to cask was bounded by puncture tests using cask with cage/skid assemblies TP81(C) and TP81(A)	n/a
	Post-Drop Inspection	 Cask remained secured to skid via 4 cask-to-skid bolts Cask cover remained secured
TP81(A)	9 meter (30 foot) drop, vertical, top down	 Brittle fracture of skid Cask and square plate welded to skid tore away from rest of skid 3 hold down ring brackets failed (4th had broken in 1.2 meter (4 foot) drop test) Cask struck impact surface, which dented head of 1 cask cover bolt Cask fin ends dented
	1 meter (40 inch) puncture, cask attached to portion of skid, dropped upside down, 10° to 15° off vertical onto dented cask cover bolt	Bolt was further dented, but remained secure.
	Post-Drop Inspection	 Cask remained secured (after 3rd 30 foot drop and 2 puncture tests) Small change in radiation profile

The skid, cage, and hold down assemblies of each test specimen were damaged. The only significant damage to the cask, however, was the loss of 1 of the 6 cask cover bolts during the 9 meter (30 foot) drop test of specimen TP81(C). Further testing (e.g., 2 additional 9 meter drop tests and 2 puncture tests with the same cask) added no significant damage to the cask or cask cover bolts. There were no openings in the cask cover or in the cask shell, so thermal testing was not required.

6. TP81 NORMAL TESTS

Compression Test

Test specimen TP81(A) was loaded as shown in the figure below. Lead weights were placed on a steel plate, which was positioned on top of the test specimen.

The vertical projected area of the unit is 19 inch (483 mm) x 21 inch (533 mm) or 399 square inches (2574 square centimeters), yielding a total load of 798 lb (362 kg) for an applied pressure of 2 psi. Since the maximum weight of the Model 702 transport package is 410 lb (186 kg), a load of 5 times the weight, or 2050 lb (930 kg), is more conservative. The total compressive load actually used was 2138 lb (970 kg). The test setup is shown below.

AEA Technology QSA, Inc.

Compression Test Setup for Specimen TP81(A)

١.

After a period of 24 hours, the weights were removed. No visible deformation or buckling occurred and no other damage was observed for any of the test specimens.

Penetration Test

Test specimen TP81(A) was subjected to the penetration test. Temperature readings taken just before the test are summarized below.

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	7°C	-72°C	-77°C	-63°C
	(45°F)	(-98°F)	(-107°F)	(-81°F)

The penetration bar target was the top center of the protective cage in an attempt to penetrate the perforated plate and impact the cask cover. For this test, the specimen was positioned right side up, as shown below.

Penetration Test Orientation for Specimen TP81(A)

The penetration bar was dropped from a height of at least 1 meter (40 inches) above the impact point. The bar hit as intended on the specimen, and dented and partially broke the perforated plate at the point of impact.

1.2 Meter (4 Foot) Drop Test

Test specimen TP80(A) was then subjected to the 1.2 meter (4 foot) drop test. Temperature readings taken just before the test are summarized below.

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	7°C	-71°C	-71°C	-54°C
	(45°F)	(-96°F)	(-96°F)	(-65°F)

The drop orientation for the unit is shown below.

1.2 Meter (4 Foot) Drop Orientation for Specimen TP81(A)

The test specimen impacted as intended. The hold down ring fractured and a 30 degree section of the ring (along with one of the top brackets) broke off. The perforated plate buckled on the sides and the cage was displaced about 1/2 inch towards the shipping cask. There was some tearing of the perforated plate. The cask and cage remained secured to the skid.

Post-Test Inspection and Assessment

Results of the first intermediate inspection and assessment are summarized below. The radiation profile of the specimen was measured, and data sheets are provided in Appendices B and C.

Specimen	Damage	Radiation Profile
TP81(A)	 Protective cage and perforated plate slightly damaged One tie down bracket and 30° section of the hold down ring broken Skid cracked Cask and cage remain attached to skid. Cask cover secure 	• No change

7. TP81 ACCIDENT DROP TESTS – TP81(C)

.

Due to the damage sustained during the Normal Conditions of Transport tests, Specimen TP81(C) was dropped in the orientation defined in Test Plan 81 for TP81(A) (horizontal, short-side down).

Specimen TP81(C) was subjected to both a 9 meter (30 foot) drop test and a puncture test in accordance with Test Plan 81. The results are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(C) were as follows:

Specimen	Ambient	Cask	Skid	Cage
TP81(C)	10°C	-90°C	, -92°C	-93°C
	(50°F)	(-130°F)	(-134°F)	(-135°F)

The orientation for Specimen TP81(C) was horizontal, short-side down as shown below. The intention was to apply the maximum moment to the hold down feet and the cask-to-skid bolts, thereby breaking the cask free from the skid.

9 Meter (30 Foot) Drop Orientation for Specimen TP81(C)

The specimen impacted as intended. Both legs of the skid fractured. All four cask to skid bolts sheared off and all four lower brackets of the hold down assembly fractured, which freed the cask and allowed the hold down ring to strike the impact surface. The hold down ring transferred the side impact load into the top edge of the cask cover, which locally buckled and pried off one of the 6 cask cover bolts.

Puncture Test

For the puncture test, TP81(C) was dropped in the cage horizontal, short-side down as in the 9 meter (30 foot) drop with the puncture bar directly under the tear in the perforated plate, where the hold down ring had struck the impact surface. The puncture billet was intended to strike the cask cover through the side of the perforated plate.

Puncture Drop Orientation for Specimen TP81(C)

The unit impacted on its side and the puncture billet impacted at the tear in the perforated plate as intended. The impact caused further degradation of the skid and cage. One of the skid legs broke off, the puncture bar tore through the perforated plate at the point of impact, and the bottom tube of the cage frame broke. One of the cask cooling fins was slightly bent, but there was no additional damage to the cask or cask cover bolts.

Post-Test Inspection and Assessment

Following the test, the protective cage was removed and the unit was inspected. The cask and cask cover retained their structural integrity.

8. 'TP81 ACCIDENT DROP TESTS – TP81(B)

During re-assembly of Specimen TP81(B), the 5 remaining cover bolts for the cask were replaced and torqued in accordance with drawing R-TP81, Revision B. Specimen TP81(B) was then subjected to a 9 meter (30 foot) drop test in accordance with Test Plan 81. A puncture test was not performed because the 9 meter (30 foot) drop test did not result in significant damage to the shipping cask, and, therefore, the puncture test performed for TP81(C) (and later for TP81(A)) bounds any puncture tests that could have been done for TP81(B). The results of the 9 meter (30 foot) test are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(B) were as follows:

Specimen	Ambient	Cask '	Skid	Cage	
TP81(B)	12°C	-54°C	-69°C	-62°C	٦.
	(54°F)	(-65°F)	,(-92°F)	(-80°F)	

The orientation for Specimen TP81(B), shown below, was the same as for the 1.2 meter (4 foot) drop. The intention was to cause significant deformation of the carbon steel protective cage.

9 Meter (30 Foot) Drop Orientation for Specimen TP81(B)

The specimen impacted as intended. The impact deflected the cage frame about 4 inches towards the shipping cask. The perforated plates on both sides of the cage detached. The skid buckled slightly. Two of the four base brackets (those opposite the impact edge) broke. Two of the four top brackets (those next to impact edge) also failed. Frame welds on the top edge failed and the tube steel dented due to the impact from the two top brackets. The cask remained secured to the skid via the four cask to skid bolts.

Puncture Test

Not performed.

Post-Test Inspection and Assessment

Since the 9 meter (30 foot) drop resulted in essentially no damage to the cask, and since only one cask was used for all tests, the final 9 meter (30 foot) drop test for Specimen TP81(A) was performed before selecting a final puncture test orientation.

9. TP81 ACCIDENT DROP TESTS – TP81(A)

Specimen TP81(A) was subjected to the third orientation for the 9 meter (30 foot) drop test and puncture test described in Test Plan 81. The results are described below.

9 Meter (30 Foot) Drop Test

Just before the drop test, thermocouple readings for Specimen TP81(A) were as follows:

Specimen	Ambient	Cask	Skid	Cage
TP81(A)	10°C	-45°C	-82°C	-63°C
	(50°F)	(-49°F)	(-116°F)	(-81°F)

The orientation for Specimen TP81(A), shown below, was vertical, top down. The intention was to apply the maximum tensile load to the cask cover bolts and inner liner weld.

9 Meter (30 Foot) Drop Orientation for Specimen TP81(A)

The specimen impacted as intended. The skid fractured and the cask and square plate welded to the skid tore away from the rest of the skid. Three hold down ring brackets broke off (the fourth bracket was broken in the 1.2 meter drop test of specimen TP81(A)). The cask struck the impact surface, as evidenced by the dented-in head of one of the 5 remaining cask cover bolts, and by the dented ends of the cask cooling fins.

Puncture Test

For the Specimen TP81(A) puncture test, the cask bolted to the portion of the skid that remained after the 9 meter (30 foot) drop was dropped without the cage at a 15 to 20 degree angle off vertical onto the puncture bar. The targeted impact point was the bolt that had been dented during the 9 meter (30 foot) drop test.

AEA Technology QSA, Inc.

Puncture Drop Orientation for Specimen TP81(A)

The cask struck the puncture bar on the intended bolt. The bolt was dented further, but remained secure. There was no additional damage to the cask or the other cask cover bolts.

Post-Test Inspection and Assessment

The cask and cask cover retained their structural integrity. The post-test radiation profile was performed on the cask without the cage/skid assembly, and showed only a slight change in radiation levels from the pre-test profile (see Appendices B and C). Because no damage occurred that could result in oxidation of the DU shield, the thermal test was not required (see Section 3).

-3

APPENDIX A

CALIBRATION RECORDS

ŗ

ż

A CARLES AND A CARLES	and the second
METT	LER TOLEDO
SCALE CALIBRATION	RECORD Date: 11-16-98
SCALE LOCATION Shipping + Reg. MANUFACTURER FAIRBANKS	TAG NO. ASSY TE SERIAL NUMBER 1482397
MODEL NUMBER Port Beam CAPACITY 2000 X 1/2- TEST PROCEDURE 1+B44	DIVISIONS 4000
TEST PROCEDURE REFERENCE: METTLER TOLEDO	MANUAL FOR CALIERATIONS SERVICES, HANDBOOK

/

Shift Test	· Weights Applied	Scale Reading	· Error (+/-)	Scale Reading After Adjustment							
Position 1	500 16	501 16	+1 16	Acco Rej.							
Position 2	500 1	500	0 ;	Acc. Rei.							
Position 3	500	500 1/2	+1/2 !								
Position 4	1500	5001/2	+1/2.	Acc. Rej.							
Test Load	Weights Applied	Scale Reading	Error (+/-)	Scale Reading After Adjustment							
Zero Balance	0 16	.0 .16	0 .[b +1/2-	Acc. Rej.							
	500	500 1/2	- 1/2	Acc. Rei.							
	1000	1501	+1	Acc. Rei.							
Maximum Test Load	2000	1998.	-2	Acc. Rei.							
				Acc. Rei.							
	1000		-12	Acc. Rei.							
	••			Acc. Rei.							
Zero Balance	0		0 .								
TEST WEIGHT ID NUMBERS: 01 4hru 28											

.B. Clarke

CUSTOMERS SIGNATURE (FOR OFF TOLERANCE): _

i)vaper

Ŧ

TECHNICIANS SIGNATURE: J.

Longe		Sugar	فمانين منادسته والتجموم مقانيه	an an the state of	
		A STATE OF A	ER T	OLEDO	16/98_
MANUFACTU MODEL NUM CAPACITY TEST PROCE	ATTON Shipt IRER H-X Y BER DWM 5000 DURE HB	Ding / Rec Jeigh TV X 44	TAC SERIAL NUI DIVISIONS _ CSWA#	HER F1638	
	Maighte	Scale	Error	Scale Readin	g

Shift Test	Weights Applied	Scale Reading	Error .(+/-)	Scale Reading After Adjustment
Position 1	1000 [6		0 14	Acc. Rej.
Position 2	1000	1000	0 1	
Position 3	1000	1001	+1	Acc. Rej.
Position 4	1000	1001	+1 .	Airing rug.
Test Load	Weights Applied	Scale Reading	Error . (+/-)	Scale Reading After Adjustment
Zero Baiance	0 16	0 16	0 16	Acc Rej.
	1000	2002	+2	2001 (Acc.) Rei. 3999 (Acc.) Rei.
Maximum Test Load	5000	5006.	+6	5001 Acc. Rei. 3999 Acc. Rei. 2001 Acc. Rei.
Zero Balance	<u>(000</u>			IOG I Acc. Rei. Acc. Rei. Acc. Rei.

B CLARKE

+

raper

٩

TEST WEIGHT ID NUMBERS: 01 thro2

COMMENTS/ACTIONS:

CUSTOMERS SIGNATURE (FOR OFF TOLERANCE): ____

TECHNICIANS SIGNATURE: $\sqrt{}$.

Strology Service, Inc. Data Sheet HMSCC-10012 Page 11 P.O. No.: 3753 ID.No.: 140 Date Cal: 04/01/99 ID.No.: 140Manufacturer: DELTRONICDate Cal: 04/01/992 ID.No.:Serial No.: 140Date Due: 04/01/002 ID.No.:Serial No.: 140Technician: PRDepartment:Model No.:Cal. Proc. No: 20Deviation u.:Standard No.: 006Cal.: 02/10/99Accuracy: +/-0.000 04"Standard No.: 021Cal.: 02/10/99Accuracy:Standard No.: 021Cal.: 02/10/99Accuracy:Standard No.: 021Cal.: 02/10/99Accuracy:Standard No.:Cal.: Due:Gage Type: FLAIN PLUG - X CLASSCal.:Due: Gage Type: FLAIN PLUG - X CLASS : END A END B Required. 0.2801" 0.2901" Deviation: : +0.000 01" 0.000 00" Measured: : 0.28011" 0.28000" . . • Customer: AEA TECHNOLOGYDate Cal.ID.No.: 142Manufacturer: STARRETT2 ID.No.:Serial No.:Department: QC- Model No.: 4RDeviation u.:Standard No.: 027Accuracy: +/-0.0010"Standard No.: 101Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.: 051Accuracy:Standard No.: 051Cal.: 01/15/99Due: 01/15/00Standard No.:Cal.: 01/15/99Due:Standard No.: : STRAIGHT WITHIN .0001" Required: 5.0" 12.0" 18.0" 22.0" Deviation: : 0 C 0 0 SQUARE HEAD WITHIN 0.0001" Measured: : 6.000" 12.000" 18.000" 22.000" INCREMENTS CORRECT P.O. No.: 3753 Date Cal: 04/01/99 Date Due: 04/01/00 Customer: AEA TECHNOLOGY Date Cal: 04/01/99ID.No.: 143Manufacturer: DELTRONICDate Due: 04/01/002 ID.No.:Serial No.: 143Technician: PRDepartment:Model No.:Cal. Proc. No: 20Deviation u.:Standard No.: 006Cal.: 02/10/99Due: 08/31/99Accuracy: +/-0.000 04"Standard No.: 021Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.:Cal.: Due:Standard No.:Cal.: Due:Due: 08/31/99 Gage Type: PLAIN PLUG - X CLASS : END A END B Required: : 0.4527" 0.4527" Deviation: : -0.000 04" -0.000 03" Measured: : 0.45266" 0.45267" -----Customer: AEA TECHNOLOGY P.O. No.: 3753 Customer: AEA TECHNOLOGYP.O. No.: 3753
Date Cal: 04/01/99ID.No.: 144Manufacturer: DELTRONIC2 ID.No.:Serial No.: 144Department:Model No.:Deviation vStandard No.: 006Accuracy: +/-0.000 04"Standard No.: 021Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.:Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.:Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.:Cal.: 02/10/99Due: 08/31/99Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.:Cal.: Due:Due:Standard No.:Cal.: Due:Cal.: Due:Standard No.:Cal.: Due:Standard No.:Cal.: Due:Standard No.: Gage Type: PLAIN PLUG - X CLASS

 END A
 END B

 Required:
 0.4534"
 0.4534"

 Deviation:
 0.000 00"
 0.000 00"

 Measured:
 0.45340"
 0.45340"

		•			
BS-01-11 :0150	ECORD	RATION R	alla:	ירבּכ	d DS
EDO	101,73		ie -		
With Constraints and a second se	والمنافعة المتلافة المحاجم والمحجم والم	a superior and a superior		فتويه مستعاصبت ويذوعه في	

TEST PROCEDURE REFERENCE: METTLER TOLEDO MANUAL FOR CALIBRATIONS SERVICES, HANDBOOI

#¥MS⊃

SNDISING

AUN LAUFER

TONENT

.เรห	(2)4				Zero Ealance
Rei	NER I	0	1 0.35	1	
Rei.	1 BUI	O O	1 0.02	00	· ·
Rei	(SOR)	10	1 0.22	1 52	1
.isA	ACC	0	.0.521	251	mumixaM bsoltesT
Rei	1 (25A)	10	1 7.54	1 52	1
.isH	1 334		20,02	60 1	
Rei	1 Acc 1	\bigcirc	1. 57.5Z	1 22	
Rei.		191 0	191 .	191 0	Sonsist ores
•••••••••••••••••••••••••••••••••••••••	Scale Reading InentaljbA refiA	Error (+/-)	Scale Reading	Veights V beilqqA	test beol
-ieH	Scale Reading		1	Zi Zi Meights	
ish .ish			Scale	Weights	7655
Jay Jay	Scale Reading	Error .	50.6 49.8 50.0	کر کر کرب	4 notizof test
ish	Scale Reading	Error .	<u>کی ک</u>	ري ري کري Weights	Fresition 3 Fresition 4 fest

Ο

ł

ł

IGINI

727

201

7/~

SERENUN DI THOEW TEET

1.

 $\overline{\mathcal{O}}$

COMMENTS/ACTIONS:

TAUNAN CIER 24

YTDA9AD

OAFUNAN

EST PROCEDURE

YODEL NUMBER

NOLLYDOT ETVDS

CUSTOMERS SIGNATURE (FOR OFF TOLERANCE):

..

FRAM

() /

SUICEIGO

1301

X

2,00

2

214

Ĩ

TECHNICIANS SIGNATURE: J. D. C. LATICE

 \overline{O}

junt Metrology Service, Inc. Data Sheet HMSCC: 01843 PAGE 1 P.O.No.: P3236 Justpmer: AEA TECHNOLOGY QSA Date Cal: 11/10/98 ID.No.: 279 (1) Manufacturer: CRAFTSMAN Date Due: 11/10/99 Serial No.: 5970355413 Technician: DD 2 ID.No.: *
 Model No.:
 Cal.: 07/06/98
 Due: 07/06/99

 Standard No.: 151
 Cal.: 07/06/98
 Due: 07/06/99
 Department: Q.C. Deviation U.: Accuracy: +/-4% Cal.: Due: Standard No.: Accuracy: Gage Type: 20-150 ft/1b TORQUEWRENCH (PART 1 of 2) CW 80 120 50 140 Ib Required: : 40 Deviation: : +0.77 +1.70 +2.40 +4.00 +2.07 Measured: : 40.77 61.70 82.40 124.60 142.07 lb P.O.No.: P3236 Customer: AEA TECHNOLOGY QSA Date Cal: 11/10/98 Date Due: 11/10/99 Manufacturer: CRAFTSMAN ID.No.: 279 (2) Technician: DD Serial No.: 5970355413 2 ID.No.: Cal. Proc. No.: 23 Department: Q.C. Model No.: Standard No.: 158 Model No.: Cal.: 07/06/98 Due: 07/06/99 Cal.: 07/06/98 Due: 07/06/99 Deviation u.: Standard No.: 161 Accuracy: +/-4% Cal.: Due: Standard Mo.: Accuracy: Gage Type: 20-150 ft/lb TORQUEWRENCH (PART 2 of 2) \$ CCW . Required: : 40 60 Deviation: : +1.60 +0.19 140 lb 120 60 +0.19 +1.34 +3.60 +2.37 Measured: : 41.60 60.19 21.34 123.60 142.37 1b -----------

/

Tekse	RV		(Do 8 00	T 98
127 Riverneck Road	C	ALIBRATION I	REPORT		•
Chelmsford, MA 01824 Telephone: 978 - 459-9 FAX # 978 - 453-6336	480				N-0226210
WEB SITE: http://www.	1150900		09002	TRACT NUMBER: S	ENTINEL
	REGISTURED COM	MATY • * * *		А	59847
- AEA TECHNOLOGIE	л S	DATE RECEIVED			
40 NORTH AVENUE	•		MANUFACT	URER	
BURLINGTON	MA 01803 .		DEL SERVICE STOR	T-179139	UMBER Verse
	ل 01803 MA				
23. 00 C 30:	00% 9/25/97		DATE OF TEST 10/08/98	10/0	
CALIBRATE/CERTI	TED	SERVICES RENDERE		L DLERANCE AS	
PROCEDURE MANUFACTURE	USED 3 12 R 1 S	N.I.S.T. TE 413348-433	I ST NUMBER 349-259071-LRA	N POU	
CALIBRATION CHECKED TO. MA	NUFACTURER'S	SPECIFICATIONS ADJUSTE	D TO MANUFACTURE	R 'S	SPECIFICATIONS
MANUFACTURER	MODEL		SERIAL	ACCURACY	DATE CALIBRATED
ANALOGIC	AN6520	87040	10	MFG.	7/03/98
				<u></u>	
EKSERV CERTIFIES THAT PERFORMED IN ACCORDA SO-10012-1, ANSI/NCSL-25	ALL CALIBRATION EQUIPN NCE WITH MIL-STD-45662A, 40-1-1994.	IENT USED IN THE TE , ISO9002,	ST IS TRACEABLE FOR	1/37/AND THE TE	ST WAS

IN TOLERANCE AS RECEIVED

TEKSERV CALIBRATION DATA

OMEGAModelHH-21SerialNumber: \mathcal{T} \mathcal{T} Dateoftest: \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} PriorCal: \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} Technician: \mathcal{I} \mathcal{I}	Data as Received Data After Adjustment Data After Repair Asset Number:							
Range	Reading	Specification						
Deg.C Type J		Decerication						
- 100.0	-99.6	+/-{0.1%rdg+0.5'C}						
0.0	0,3	ti .						
100.0	100,3	ti						
500.0	500.0	11						
Deg.F Type J	<i>QG Q</i>	•						
- 100.0 32.0	-99.3.	+/-{0.1%rdg+1.0'F}						
200.0	32.6	11						
650.0	200.5	•••••••••••••••••••••••••••••••••••••••						
1200.0	650.4	FI						
	1.199.9							
Deg.C Type K - 100.0	-69 -							
0.0	-705	+/-{0.1%RDG+0.5'C}						
100.0	0.4	11 · · · · · · · · · · · · · · · · · ·						
600.0	100.4	81						
1000.0	577.7	11						
Deg.F Type K	100012							
- 100.0	- 99.1	+/-{0.1%rdg+1.0'F}						
32.0	32.9							
200.0	200.7	tt						
600.0	600,4	11						
1600.0	1600.5	81						
Deg.C Type T								
- 100.0	-99.5	+/-{0.1%rdg+0.5'C}						
0.0	0,3	"/ [0:1410g70:5*C]						
100.0	100,2							
350.0	350.1	ŧt						
Deg.F Type T								
- 100.0	-99.4	+/-{0.1%rdg+1.0'F}						
32.0	32.5	11 II I						
100.0	100.3	11						
500.0	500,3	11						

INSPECTION I	NSTRUC	TION	PART/DWG. NO.		REV.	VENDOR: PERIODIC M				MAINTENANCE			Page 1 of	
AND RECORD	•		T10122		В						CM-NA			
CHARACTERISTICS	TOLERANCE	AQL	1	2	3	° 4	5	6	7 ·	8	9	10	11	12
GENERAL VISUAL SURFACE SELURE & NOT DAMAGED	N/A	C/10076	0/											
REMOVE 4 1/2-13 SCREWS JUBRICATE AND REINSTALL	N/A	C/10%	0/											
			:											
									•					
										•		\square		
DRIGINATOR Laul made 29 56	DATE P .O. / W.O . PT97 DAYS,	Freq	365						~					
engineering approval N/A	date receiving f D a te		25 SEPT 98							•				
regulatory approval N/A	DATE LOT / SERIA	L NO.	01											
	DATE LOT OTY.		1											
COMMENTS: OTY REJ NCR NO.		NCR NO.	O N/A											
l	QTY ACC.		1								1			
	INSP	DATE	Da 25		$\left \right $	$\left \right $	1/	\square	$\left \right>$		\square		\square	\square

-

Simpson Gumpertz & Heger Inc.

9 June 1997

Consulting Engineers 2 Arlington, MA A San Francisco, CA C

297 Broadway* Arlington, MA 02174-5310 Telephone: 617 643 2000 Fax: 617 643 2009

Sentinel Amersham Corporation 40 North Avenue Burlington, Massachusetts 01803

Attention: Steven J. Grenier

Tel: 617-272-2000 Fax: 617-273-2216

Comm. 97276 – Test Foundation Study, Sentinel Amersham Test Site, Groveland, MA

Gentlemen:

At your request we studied a test foundation located on the property of Valley Tree Service, Inc. at 1210 Salem Street, Groveland, Massachusetts. The purpose of our study was to determine if the test foundation provides an essentially unyielding horizontal surface for purposes of a drop test.

Scope

The scope of our study included: visiting the site to examine the foundation; reviewing documents provided by you that describe the construction of the foundation; reviewing drawings describing the housing of your Model 676 Projector; and computing the performance characteristics of the foundation in a drop test of the Model 676 Projector.

Background and Information From Others

We understand from our discussions with Sentinel Amersham representatives that the test foundation is used as a reaction support in a drop test for the Model 676 Projector. The projector is dropped from a height of 30 ft onto the center portion of the foundation. The drawings for the Model 676 Projector show that the weight is 625 lbs, and the end plates are fabricated from 1 in. thick steel plate.

We understand from discussions with Sentinel Amersham representatives and from construction records that the test foundation was built in 1982. The delivery tickets show that 2-1/2 cubic yards of 3,000 psi concrete were utilized. We were also told that a 1 in. thick steel plate is embedded in the top surface of the foundation and welded to reinforcing steel in the foundation.

Observations

On 5 June 1997, Joseph J. Zona of Simpson Gumpertz & Heger Inc. visited the test facility and observed the following:

- The test foundation is 7 ft 4 in. x 7 ft 5 in.
- A steel plate is embedded in the top of the foundation so that the top of the plate is approximately flush with the top of the concrete. The plate is 47 in. x 48 in. At one

side of the plate, the concrete is chipped away exposing part of the plate edge. The bottom of the plate is not visible, but 7/8 in. of plate is exposed to view.

- The top surface of the steel plate is approximately horizontal. The plate slopes a maximum of 1/8 in. per 2 ft.
- The top surface of the concrete is weathered, but sound.
- Four cracks are visible in the foundation, each emanating from a corner of the steel plate. The cracks appear stable and show no signs of recent movement.
- The concrète is flush with the adjoining bituminous pavement. There is no evidence
 of settlement or heaving of the foundation.

• The exposed soil in the vicinity of the foundation is firm and sandy.

Results of Analysis

We estimated the depth of the foundation as 15 in. based on the measured plan dimensions and the reported volume of concrete delivered. We characterized the supporting soil as medium dense coarse grained material.

We used simple analytical models to estimate the response of the foundation in a drop test. A conservation of momentum approach that models the test as a plastic impact provides an upper bound estimate of the kinetic energy taken by the foundation. This approach predicts that 6 percent of the kinetic energy of the Model 676 Projector is taken by the foundation upon impact.

Arya et al present a relevant method of analysis in "Design of Structures & Foundations For Vibrating Machines." The approach accounts for the participation of an effective soil mass in resisting a dynamic loading. This method predicts less than 1 percent of the kinetic energy is taken by the foundation. Arya et al also present a method of estimating the foundation deflection. We computed a deflection upon impact of 0.014 in.

We estimated the flexibility of the concrete foundation as a plate on an elastic foundation using a method presented in "Theory of Plates and Shells" by Timoshenko & Woinowsky-Krieger. This approach shows that the foundation is rigid relative to the soil, and virtually all of the foundation deflection is the result of soil response.

Discussion

The plastic impact approach provides an upper bound estimate of the energy transmitted to the foundation. In an actual test, energy is absorbed in the device being tested in both plastic deformation and rebound energy that is not accounted for in this analysis.

The Arya approach is fully applicable to foundations that support vibrating equipment. This approach may somewhat overstate the participation of the soil in a single impact loading. However, we expect the influence of the participating soil mass will be significant and, therefore, we expect the percent of kinetic energy taken by the foundation is closer to 1 percent than 6 percent.

Steven J. Grenier, Comm. 97276

- 3 -

The four cracks near the corners of the foundation intersect corners of the embedded steel plate. This suggests that the plate restrained the free shrinkage of the foundation and caused these cracks. The cracks are obviously old, yet they remain tight and there is no sign of recent movement at the cracks. This strongly indicates that the cracks have not compromised the monolithic behavior of the foundation. Any loss of stiffness in the foundation related to these cracks is insignificant within the limits of our simple analytical models.

Conclusion

Based on the study described above, we conclude that the existing test foundation absorbs between 1 and 6 percent of the kinetic energy at impact during a 30 ft drop test of a Model 676 Projector. In our opinion the foundation provides an essentially unyielding horizontal surface for the purpose of this test. For items of lesser mass, the foundation also provides an essentially unyielding horizontal surface.

Sincerely yours P.E. ona los 1.1732-

iepins, P.E. Senior Associate

١.

	B MECA ENGINEEFFIING INC. Technologies Company of Conformance
AEA TECHI	
40 NORTH	AVE
BURLINGT	ON MA 01803
Cust. P.O. #: <u>3291</u>	OMEGA W.O. # <u>812995304</u> CAL-1
order have been manufact instructions and specific TEMPERATURE MEAS ENCYCLOPEDIA •. OME	ertifies that the items comprising the above tured in accordance with all applicable cations as published in the OMEGA SUREMENT HANDBOOK AND GA Engineering Inc. further certifies and noble metal materials conform to ANSI dard MC96.1)
Certified by:Quality A	ssurance Inspector
Telephone: (20	ne Omega Drive, Box 4047, Stamford, CT 06907 3) 359-1660 · FAX: (203) 359-7811 www.omega.com E-Mail: info@omega.com

Cal1Temp

An OMEGA Technologics Company
Certificate of Conformance
AEA TECHNOLOGY
40 NORTH AVE
BURLINGTON MA 01803
Cust. P.O. #: <u>3226</u> OMEGA W.Q. # <u>811973359</u>
CAL-1
OMEGA Engineering, Inc. certifies that the items comprising the above order have been manufactured in accordance with all applicable instructions and specifications as published in the OMEGA TEMPERATURE MEASUREMENT HANDBOOK AND ENCYCLOPEDIA •. OMEGA Engineering Inc. further certifies that all thermocouple base and noble metal materials conform to ANSI Limits of Error (ANSI Standard MC96.1)
Certified by: Quality Assurance Inspector Date: Date:
Omega Engineering, Inc., One Omega Drive, Box 4047, Stamford, CT 06907 Telephone: (203) 359-1660 · FAX: (203) 359-7811 Internet Address: http://www.omega.com E-Mail: info@omega.com
•

CaliTemp

INOLEPHININ INOLUAPIN						 .		PERIODIC MAINTENANCE					ιους ι υί <u></u>		
AND RECORD		•	•	T101	19		C .	C DESCRIPTION: PUNCTURE TEST BILLET				CM-NA	\		
CHARACTERISTICS	TOL	ERANCE	AQL	1	2	3	4	5	6	7	8	9	10	11	12
GENERAL VISUAL	N	/A	C/100%	0/1	0/										
											./				
		<u></u>													
ORIGINATOR 3 SCOT	DATE	.p.o. 1 W.O. FREQ	. DAYS	365			·		~~~.						X
engineering approval N //A	DATE	RECEIVING F		3 SEPT 98	3 Sep 99					••• ·					
REGULATORY APPROVAL N/A	DATE	LOT / SERIA	L NO.	01	01										
GAAPPROYAL, KNAKK 3Sep9	date 7	LOT QTY.		J	1										÷
COMMENTS: V		QTY REJ	NCR NO.	O N/A	O NA										
		QTY ACC.		1		,			•			1			
		INSP	DATE	JU Sent 91	DW 3 See										

•3

APPENDIX B

MANUFACTURING ROUTE CARDS AND PRE-TEST RADIATION PROFILE DATA SHEET

;

ŝ

MĖRS Xorpo	RATION		_ сонги _ srut u			TOTAL W RTEL CD.	0 QTY: _			LOT NO SUB-LOT NO:	AS / A		
CM-A			ITTOMUTA		Shield	Ship	oing	DRAWIN	G NUMBER	L R		ORDER	
7020		Cont	ainer C	enera	l Asse	mbly		<u> </u>	70206		FG MC MR3 4-28	526	30
OFER	1	OPERATIC	м	BY		STATUS	REFERE	INCE			MENTS	י כי	
SEQ	DEFT	DESCRIPTIO		P/N			Rev				•		
_A		Cover Ass	y					•		•			
		Install S		DRB	4-12-93	-	B7020	3 '	Less	item 9	spacer		*
1	MS	Install 5	pacers	22				•			•	× .	
2	QC	In. Proce	ee Inst	MR	442.92	Are	B7020	3	Space	r verif	ication,	less i	item 9
		111. 11000	JJ LIOP	1/100	1615	//							•
			-	mon	4-17-92		B7020	÷-	SOP-6	1003 & S	0P-W011		
3	MS_	<u>.010 Max</u> Weld Pre	Gap_and	VEV	1			1			necessar	y	
		werd Fre	P		`		 						
			<u></u>	lana	1.707	Act	B7020	 > ·	SOP_E	2003 Ve	rify_01	O Max (Gan
_4	<u></u>	Weld Fit-	-	1.14.5	n kau	· · ·	Leury						•
	·	.Inspectio	11					•	1				
	<u> </u>			non	4.003	<u> </u>	12000		SOP-F	1003			
5	MS_	Assemble	8	1VKO	4-293	 	<u>B7020</u>						
		Weld					<u> </u>		1				
•	<u> </u>	<u> </u>								c ()	24	· · · · · · · · · · · · · · · · · · ·	
<u>_6a</u> _	<u></u>	Assembly	Insp	Maz	9-2793	LACC_	SOP-Q	015	Verify S/N 24.				
	<u> </u>								600				
<u>бЪ</u>		Weld Visu	al Inst	003	19.23-5-	HEC.	<u>B7020</u>	3	SOP-1				
	[100			SOP-1				
<u>6c</u>	QC	Liq. Pen.	Insp.	1185	19-7392	CHECKL	B7020	<u>,</u>	<u> 301-</u> ·		CHECKLIST		
	1	CHECKLIST	500-	+	<u> </u>	Descriet		SOF-	INTTALS		DESCRIPTION		SOF- STEP
DRB	Sta	DESCRIPTION mp S/N		INTTALS									
	- OCa												
DRB			- <u> </u>						·				
VR	-	figure_Shie #/Heat#		1								•	
			_	<u> </u>	1				·				
	<u> </u>	•								· .			<u>}</u>
					+			1				•	
-					+				1				
	+	·							1	•			
	·	••• .:						<u> </u>	1	·			
					+								
	· · ·				+			1					
.	<u></u>							<u> </u>					
(1		צ ההנוג וו	,	<u> </u>			<u>ا</u>	141.47		s: france	,	174,43
ENGIN	BERING:	41 Huncon	<u>~</u>	47		- i	A. 1. 1	<u>na juzn</u>	r [con] · /				and it
PRODU	ICTION:	Kielen 100	Bran-	QUAL	TY ÅSSUR	ANCE:	MUAD	Nhi-	~ 11 JE	93 15	SUE NUMBER	REVISIO	J
		•				/	/					REVISIO	
										•			
		•			•					. *			

			~											•
			•									•		
1 80	REVISIO	· · · ·	17/2	A	สาสส	fmm.	STACE:	RUSSA YT	סטארו		AMY"	Mich	CLION:	reoou
	HUNDER:	<u></u>		(jug) 1	min	107 ~~	THAT	.YAOTA	1 1 2 0 0 2 3 1	s ~in I	HORN .	11	נפגואק:	висіне
C. Fritt		גאואנים: / , גאואנים: /		150011			<u> </u>	T			<i>[/</i>	-0		
			•											
			<i>i</i> .	·			<u> </u>				<u>.</u>			
													, 	
	•		;								#1	हंश्म7#र्वे	1	
										- p	әग्रेपुऽ ә.	1081]0	ιοJ	WW
· ·	•		••			:	•					N75.đu	1674	110
					1			• •				······		WW
	•					<u> </u>					10202	11'01'		
		•										I IIs:	•	ww
	HOLLIN	0590		57YLUHI	3318	•	Description		ואנדוגנג	کلونہ 206-	<u> </u>	Descritt		S JVIIII
101. 5761	15173			J	101-		CHECEL					CHECET		,
			•						··				-	
												·		
			· 21	SOP-WO		D70202	700	Efest-h	Sew	d	en Ins	pil	<u>, 50</u>	201
 							•				700074		<u></u>	109
·			11	08-30S	•	02020	· ?>¥	Efer-h	END	asul	Ísusiv	- PIeu		401
				61110x		vo-aos	27	<u> १३-</u> १२-h	Ru	a	sur kia	wəssy	၁Ծ	FOI
		45.	· · ·	Verify	3.					<u> </u>				1
	•						·						•	
				on-aus		02020	-	si-h	NW	bIə	R & SId	məszA	SH	6
	• •	••		<i>s</i> *				ļ	· · · · ·	<u> </u>	roittag	sul:	· ·	
					ļ,		77	EUSHIN	- ZEM	1	<u>qU-311</u>		<u> </u>	8
	889 Small		λ ευ 	W210					<u> </u>	+	· · · · · · · · · · · · · · · · · · ·			
Salk 14	R Only		7 IF	Instal					500 ac	IIaci	easul a	Space		<u> </u>
	11	ON-405	- E0	on-Jos	+	D70207	-	SI-h	lula	′	Lep &		SH	2
	<u> </u>	•				•	·	<u> </u>	_		Are hio Kss	- <u>86</u>		
	•			- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		20202	Na		+	i fais i	nod shi			B
		INSMMO	5	<u> </u>	- 30	ИЗХЭЧЭЯ	SUTAT	2 37AQ	28	1	CRIFTION		1190	018R 098Q
	W023630	ן משי		9	02020						istrod		*38	70206 70206
	T 2 2 2 0 M	-21 Nat	<u> </u>	338MUN	DHIMY	<u> </u>					DESCRIPTION	<u>''</u>		CH-A
	V/N	-	T03-8	ns			0 - 00 - 00 - 00 7 TC- CO- 0			197340; 107113		-	NOITA	овгову
	5°	юн.	toj		16			•					w	พธุญาณ
	ר . צפענער אחי					OUV	DIUO	บ						
E 30	. 2 Sq	•										•		•

.

MERS	IIAM	••••••••••••••••••••••••••••••••••••••		- -	:							· SERIAL	of 3 NUMBER
	RATION	<u>_N/A</u> , <u>_N/A_</u>	COMPLE SPLIT L	ot "		TOTAL ¥ RTE CD.	0 QTY:	1	- -	LOT NO: SUB-LOT NO:			
CH-A	MBER	DESCRIPT	rionUr;	anium	Shield 1 Asse	ling S	hippir	BRAWIN	G NUMBER 70206	R R	WORK M	CORDER 0526.	30
7020 orer		OPERATION		l					Ī		103 428-4 4ents	3	
SEQ	DEFT	DESCRIPTION		BY		STATUS				1G			
С		General As	sembly		4-26	PN	7020	6	Rev A	01-28-93			
					11.24			· · ·	L	: 4101			· · · ·
11	MS	Final Asse	mbly	mm	4-26		D7020	0	Weign	101	<u> </u>	24	
				The	1.00	1.00	SOPQ	003					· · · ·
12	QC	Final Insp	ection	<u>cr</u>	4-A-P	AC	50P-Q	003				•	
			<u>, i</u>										
13.	OA.	Review	• •	ym	2gap19	3=	SOP-Q	025		<u></u>			
•				-nr				_ _	 				
14	IC ·	Stock Room		1th	430.97		SOP-M	002	. 2		•	·····	{
		Processing		· · ·	·		·		!	<u> </u>			
	ŀ	· ·				•		<u>.</u>	<u> </u>	·			{
		•		ļ				;		······			<u>_</u>
								·	Į		. <u>.</u>		{
				ļ					<u> </u>				
* 7									ļ	. <u></u>			
								•	· .				
						*							
					1								
				1							·		
	<u></u>	CHECKLIST				CHECKL	IST		<u> </u>	c	HECKLIST		501-
HITTALS		DESCRIPTION	SOF-	INITIALS		DESCRIPTI	04	SOF-	INITIALS		DESCRIPTION		ster_
MM	Engra	ve Nameplat	e										┼───┤
							•	ļ	1				
MM	Stamp	S/N	_		·					•• ••			
	1						·						
			·				•				• •		<u></u>
		•	i				-				•		<u>[</u>]
	1		1		1								<u> </u>
•		····				<u></u>					<u>.</u>		
		•	1		1			1		:		· .	
	<u> </u>	·	<u> </u>		1			1		÷ .			
		. <u></u>						T	1				
<u></u>	+			+	<u> </u>			1	1				
<u> </u>	+	· · · ·		<u> </u>	+			1	1				
	ــــــ	n.1	NJA~S	5	<u>t:</u>	Print	10 f .	<u>, ()</u> ,	1100 62	MATERIAL	Am		JHN43
ENGINE	ERING: A	11 preason	11259	REGUL	ATORY:	Untrill	un N	2210-	1.1.1	MATERIALS	· J //m	1	<i>a</i>
	сттон!/[ichal Werr	22 402	JOUAL	TY ASSUR	ANCE:	IMILY I	WYW	~1182	293 155	UENUMBE	R: /	ON 1
FRODU					:	/	1		:	•	•.	K 12 V 131	•
FRODU					•							•	
FRODU		•								•	•		
FRODU		•			•								·

INSPECTION I	NSTRUC	TION	PART/DWG. NO.			REV 43 C 1.14 43 C 1.14 CO FOT FE	VENDOR:	A	ASSEN	1BLY	/MS		Page ⁻	1 of
AND RECORD			D	<u>7020</u>	6	POT PET I	DESCRIPTI	ON: URWIL GENERAL	IN SHIEL	SHIPPI.	LG CONT	KINER	CM -	A
CHARACTERISTICS	TOLERANCE	AQL	.1	2	3	4	5	6	7	8	9	10	11	12
GENERAL VISUAL		100%	0/5	PL 2.4	<i>.</i> 5	10 F. 43								
FROPER LABELS + NAHEPLATES PRESENT		100%	05	Rei	5	MO2-113 4-22-12	X							
PROPER HARDWARE + FASTENERS INSTALLED		100%	0/5	PR 2:4	5	11137 83 41-22 6			115	EN	12 in	1		
COVER GASKET PRESENT (707003-10) + MOPERLY INSTALLED		100%	0	PR 2-4		1-12: 77		X		I.	2			
VERIFY SIN HARKEDON COVER AGGEMBLY, SKID AND CONTAINER AGGEMBLY		100%	05	P 2-4	5	12375 12375			\mathbf{X}					
PROFILE	·	100%	05	0	Cf 5	- 139%0			X	\square				
						11.209		/		\mathbf{X}				
									\square	\nearrow				
ORIGINATOR C C Ferrera 12 JAL	DATE P.O. / W.O.		50500	50670	52630	5:26:30			<u> </u>				· ·	¢
ENGINEERING APPROVAL	DATE RECEIVING R		NA	NIA	NA	N/A			/	/				
REGULATORY APPROVAL	DATE LOT / SERIAL	NO.	12- 16	17	18 Hiru 22	23 Jinno 28								
Q A APPROVAL CAMULIANICICI- 12 Jun	DATE LOT QTY.		5	1	5	6								
COMMENTS:	QTY REJ	NCR NO.	0/-	0	0	0/-		\square			;		X	
	QTY ACC.		5	1	ý	6								
	INSP	DATE	04 43	ft / ce	PF1CF	25/18-293								X

•

Amersham Corporation 40 North Avenue Burlington, MA 01803

.,

SHIELDING PROFILE AND INSPECTION FORM

ر هي

Model No.:_70	2Serial N	o.: <u>24</u>	Radionu	Iclide <u>TR 192</u>	Max.	Capacity	<u>്റററ്</u> _Ci
Shield I.D. No	93-014 Lot [#] 2B	INCOM 92-188	IING SI 3 iource T	HIELD INSP	ECTIC	DN :tions <u>№</u> µ	4
Mass of Shield_	97 2-10-93	20.5 1-12-93 B	Hot Top _Tube (Dimension M Cut in Fixture_	leasure	а() <u>ы</u> [А 	A
Inspector Signa	ture <i>M3</i>	3apt	0	ate <u>4-28-</u>	<u>7'<_</u> [NCR No. 30	19 <i>9</i> 3130
				EFFICIENC			
Source Model N Survey Instrum							
OBSER	/ED INTENSI	TY mB/br		/	A	DJUSTED IN	ITENSITY mR/hr
	AT SURFACE	SURFACE CORRECTION FACTOR		NA			AT SURFACE
ТОР			1 /			ТОР	
RIGHT			\mathcal{V}	CAPACITY		RIGHT	
FRONT				CORRECTION FACTOR	-	FRONT	
LEFT						LEFT	
REAR	/					REAR	e i se
воттом						воттом	
Inspector's Sig	Inature			Date		NCR NO.	· · ·

SENTINEL

•.

FIRST ARTICLE REPORT

AMERSHAM CORPORATION

DATE:	SUPPLIER:	PART NO:	REV:	P.O./W.O.	
25 FEB 99		T10287	A	INDIRE	
	MACHINE SHOP				
	T PLAN INSERT 702 CONTAIN	ENSPECTED BY:	Dane	<u>کسک</u>	2.
DRAWING DIMENSION	ACTUAL DIMENSION	MTE USED)	SN. / C	AL DATE DUE
GENERAL VISUAL	ACCOTABLE	N/A		N/A	-
2.200 0	2.200 ø	DIGITAL CAL	DER	# 180	I AAR 99
3 1/8"	3.123	4		#180	I APR 99
WT. 8165 + .2 165	7.6 1bs ¥	SCALE		# 268	16 MAY 99
TUHASTEN .	AUEDTABLE	NA		NA	
		3			
	· · · · · · · · · · · · · · · · · · ·				
		;		·····	•
	······································	÷			
		•			
		÷.,			
				<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
				·····	
	·····			·····	
	•	-			
		- 			
				·	
		•			
COMMENTS: *-USE as is	- w.ll not effect to	arm, E.t.ar k	Euctic 19	- 25/51	999

QP15-2/1

• •

Mersham QSA

			REVISIONS		
	REV,	ECO/TCR	DESCRIPTION	APPROVALS	DATE
•	A	310	INITIAL RELEASE	SEE TITLE E	BLOCK

...

SEN JINEL

•

· · · · · · · · · · · · · · · · · · ·				Δ	Ċ	Jug Appe	9						
INSPECTION INST	RUCTION	ORIGINATOR / DATE	Dave	ant 91	GR 99 ·	REY		R-TPE	31	SUPPLIER	TEST SA	EUMEN	TP81
AND RECORD		QA APPROVAL / DAT	R. R.	lly	APR ST	см А	PIL NA	DESCRIPTION	MODE	L 702	test s	PECIME	N
CHARACTERISTICS	TOLERANCE	MTE / SN.	AQL	1	2	3.	4	5	6	7	8	9	10
General Visual	N/A	N/A	7000	21									
VERIFY ALL ITEMS PRESENT	N/A	N/A	•	0/1									
VERIFY PROPER- HARDWARE	N/A	N/A		2	_								
VERIFY NOTES #1-#4	N/A	N/A		2									
VERIFY ALL TORQUES PER DWG	PER DWG	#- TOBONE WRENCH 279	Y	0/1									
													,
													\leq
COMMENTS:		PO/WO #	ļ	AIN									
		TRAVELER /QC	CL#	NA									
		LOT / SERIAL #		CASE 24 SBID CASE 24									
		LOT QTY.)									
-		QTY. REJ/NCR	#	NA									
		QTY. ACC.											
		INSP / DATE	(Du 9 Ape 99	•								

SENTINEL

2

PRE-TEST

...

t

SHIELDING PROFILE AND INSPECTION FORM

odel:_70	2\$	Serial Num	ber:		Radionuclide: <u>Tr. 19</u> d Data	2 Max.Capa	city: <u>_/D, 000</u> Ci					
						Lot #:						
Shield Heat#	•		[Ma	ass of Shield:								
	Initial Profile Source SN: Activity: Ci											
Survey Inst.:		<u>`s</u>	l:	· (Date Cal.:	Date_Due:						
Surface	Observe Intensity m			Correction		Adjusted Ir	ntensity mR/hr					
Тор				<u>·· </u>	N/A							
Right					Capacity Correction							
Front					Factor:							
Left												
Rear	•						<u></u>					
Bottom												
Inspector:				Dat	e:	NCR #:						
				Final	Profile		•					
Source Mod	el: * N/A	Source	SN:_*	NJA	Activity: 7898 Ci	Mass of Devic	e: <u>406</u> Lbs.					
	:AN/PDR7		فعراقه ينتجهه		Date Cal.: 80-+98	Date Due:	80+99					
				ity mR/hr		Adjusted Ir	ntensity mR/hr					
Surface	At Surface	Surface Facto	Corr.	At One Meter		At Surface	At One Meter					
Тор	15	1.0	8	. 4		20	-5					
Right		1.0		.8		37	1.0					
Front	-75			. 4	Capacity Correction	30	.5					
Left	22	1.61		.9	Factor: 1.26	44	1.1					
Rear	32	1.04		.7	- -	27	.9					
<u> </u>	20	1.0		4.30	1	3	4.40					
Bottom	2.2	1.0	' A	<u> { , </u>	Ite: In March 99	NCR #:	N/A					
	A Bulk I ound Lex		-0	0.		Qi6-1						

Mersham QSA

PROFILE ORIENTATION TOP (FOR TYPE B TOST NG -Agen 4 MAR-29 - . REAR . 0 <u>/</u>A -18 GA. (047) PERFORA STEEL (A DA - 3 CENTER & STAGGERED) TACK WELDED ALONG ED RADIONCTI (1/8 LG WELD EVERY 3/4 N -PROTECTIVE CAGE WARNING LABEL (2 AT 180°) 1 1/2 × 120. WALL 50 TUBI (1/8 FILLET & BUTT WE 1/16 ST STL <u></u> S. ST 2. PLATE PERFORATED STEEL (2 AT OPPOSITE SIDES) FRON RIGHT OUR SAME 97 19 凶 SEAL WIRE -BOIS, LOOKWAE, FLAIWASHERS A TORQUED TO 517 LE R MODEL 702 PACKAGE GENERAL ARRANGEMENT * PLEASE CLEARLY IDENTIFY ON CAGE AND CASK

AEA Technology QSA, Inc.

Test Plan 81 Report

APPENDIX C

TEST CHECKLISTS AND DATA SHEETS

ŝ

١.

· · · · ·

AEA Technology QSA, Inc. **Burlington**, Massachusetts

14 TPOILA (C) For TAPOILA)

Specimen Preparation List

•

	S	itep	TP81(A)	TP8	1(B)	TP81(C)
1.	Serial Number:		SN 24	CAS X #24 (AGE # 2		CAS#24 CAGE # 23 -
2.	Weight of tungsten plug	g (lb):	7.6 tbs.	7.6	<u>bs</u>	7.61bs
3.	Weight of cask (lb):		269 lbs.	269	lbs	269 160
4	Weight of skid (lb):	9 ORAND 99	4814 IS MAR	7816	5	79 lbs
5	Weight of cage (lb):	P OQ MIKIQ	NA	. 55	lbs.	55 lbs
6.	Total weight of package	e (lb):	Hole 165	402	lbs	403)bs
7.	Attach thermocouples to protective cage.	o the cask, the skid, and the	yog ;	yes ()w)	yes Du
8.	All fabrication and insp accordance with the AE	ection records documented in EAT QA Program?	yor at	yes 6	لفي ا	yes De
9.	Does the unit comply w Drawing R-TP81, Revis		HONOTES 182-14M	NOTE	1	4 eg Du 13 APA
10.	Has the radiation profile with AEAT QSA Work	e been recorded in accordance Instruments WI-Q09?	Yur 9	N	1,4	NIA
11.	Is the package prepared	for transport?	Yey 9	Y-r:	9	yes Die 13 Ape 99
Veri	ified by:	Print Name:	Signature:	31	Date:	
	Engineering	MICHAEL L TREAMAT	Mulipa	Ŵ	02A	PR99
	Regulatory Affairs	MARC S. NASON	9	/	9-A	APR-99
	Quality Assurance	DANIEL W. KUETZ	Damipw. Ke	utz	9 AF	2 99
		* <u></u>			0	M?9 /4 A A
	ENGINGERING	MCHAEL L TREMOLA	Munker	and t	Įą.	MR99-
	GULATORY ATTAILS	MAU S. NADON	land		14 N 15 K	HARLIN S9
2.4	LITY LECARALIAN	DANIEL W. KURTZ	D.W. Kuth		14 A.P.	0 40

NOTE 1: CASK WAS DAMAGED DURING PRIOR 30' DROP TEST - ONLY 5 OF 6 MASK COVER BOLTS ARE SECURED PER DWG. R-TP81, REV. B. N NOTE 2: HOLD. DOWN RING FRACTURED (PIECE MISSING AT ONE THE DOWN BRACKET) DURING. 1. 2M (4 FOOT) DROP. ALSO, SKID WAS CRACKED DURING 1. 2M (4 FOOT) DROP. N

SENTINEL

.

/

SHIELDING PROFILE AND INSPECTION FORM

10del: <u>7</u>	2	Serial Number:	24	Radionuclide: <u><u> </u></u>	2Max.Capad	city: <u>10,000</u> Ci						
	Shield Data											
Shield Heat#	t:	N	lass of Shield:	Lbs.	Lot #:							
			Initial	Profile								
Source Mod	el:	·	Source SN:	Ac	tivity:	Ci						
Survey Inst.	>	SN:		Date Cal.:	Date Due:							
Surface	Observe Intensity m		e Correction		Adjusted In	itensity mR/hr						
Тор				N/A		<u>, </u>						
Right				Capacity Correction		•						
Front				Factor:								
Left												
Rear						<						
Bottom												
Inspector:			Da	te:	NCR #:							
			Final	I Profile	1	•						
Source Mod	lel: <u>* N/A</u>	Source SN:	* NJA	Activity: 7898 Ci	Mass of Devic							
Survey Inst.	.AN PDR 7	SN: SN	1392.402	Date Cal.: 80-+98	Date Due:	80+27						
		Observed Inter	nsity mR/hr		Adjusted In	tensity mR/hr						
Surface	At Surface	Surface Corr. Factor	At One Meter		At Surface	At One Meter						
Тор	15	1.08	.4		20	-5						
Right	27	1.09	.8	· ·	37	1.0						
Front	22	1.68	. 4	Capacity Correction Factor: <u>1.26</u>	30	.5						
Left	32	1.09	.9		44	1.1						
Rear	20	1.08	.7]	27	.9						
Bottom	2.2	1.07	4.30		3	4.40						
Inspector:_	<u>_1_6*6</u>	Masad	2 Da	ate: 15 March 99	NCR #:	ALA						
`omments:	* Bulk I	Fidium	· · · · · · · · · · · · · · · · · · ·		Q16-1	/!						

BRackground Livel=.3

Mersham QSA

Equipment List 1: Compression Test

¢

• • •

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Weight Scale	Port Beam ASSY 11	due 16 MAY 98
Record any additional tools used to facilitate the test and	attach the appropriate inspection r	eport or calibration certificate.
Compination Square	JO 142	ar APR.00
beight Scale .	4010 1126131	IL MAYS9
Thermometer	FENG-12	OBOCT99
Print Name:	Signature:	Date:
Completed by: DAVE ANNY	Duelings	09 Apr 99
Verified by: MICHAFLL TRE	man Mult Marke	JOS MPR 59
	190	
Torque unands	5970355413	Sieve Apparel-x 1

AEA Technology QSA, Inc. Burlington, Massachusetts

•

 \setminus

•

Test Plan 81, Revision 1 March 31, 1999 Page 36 of 54

	Step			TP81(A)
Position the specimen on c	oncrete surface, per the appropr	riate drawing.		Figure 3
				70.6°F
			Þ	NG-12
Apply a uniformly distribut	ted weight of at least 2080 pour I of 24 hours.	nds on the top of the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
			.:21	138 lbs
Note the instrument use	ed:		Floor	sclade - shipping
Record start time and d	ate:	ş	asp	1700
After 24 hours, remove the	weight.		-	9 ·
		1,	12A1	0299 @ 1350
		· · · · · · · · · · · · · · · · · · ·		71.9°F
·				NG -12
		Data Sheet 1.		Ð
Engineering, Regulatory assessment, per Section 8. what changes are necessar	Affairs and Quality Assurance 5.2. Record the assessment on y in package orientation for the	ce make a preliminary Data Sheet 1. Determine		_9
rified by:	Print Name:	Signature:	}	Date:
Engineering	MICHAEL I. TOEMY	or thundal his	Ŋ	12 APR 99
Regulatory Affairs			_	12 AM 99
Quality Assurance		D.H. Kurtz		12 APE 99
	Measure the ambient temp Note the instrument use Apply a uniformly distribu protective cage for a period Record the actual weig Note the instrument use Record start time and d After 24 hours, remove the Record end time and d Measure the ambient temp Note the instrument us Photograph the test specim Engineering, Regulatory assessment, per Section 8. what changes are necessar achieve maximum damage rified by: Engineering Regulatory Affairs	Position the specimen on concrete surface, per the appropriate Measure the ambient temperature. Note the instrument used: Apply a uniformly distributed weight of at least 2080 pour protective cage for a period of 24 hours. Record the actual weight: Note the instrument used: Record start time and date: After 24 hours, remove the weight. Record end time and date: Measure the ambient temperature. Note the instrument used: Photograph the test specimen and record any damage on 1 Engineering, Regulatory Affairs and Quality Assurance assessment, per Section 8.5.2. Record the assessment on what changes are necessary in package orientation for the achieve maximum damage. rified by: Print Name: Engineering MCH AEL L TOLEMY Regulatory Affairs MML S. WMM	Position the specimen on concrete surface, per the appropriate drawing. Measure the ambient temperature. Note the instrument used: Apply a uniformly distributed weight of at least 2080 pounds on the top of the protective cage for a period of 24 hours. Record the actual weight: Note the instrument used: Record start time and date: After 24 hours, remove the weight. Record end time and date: Measure the ambient temperature. Note the instrument used: Photograph the test specimen and record any damage on Data Sheet 1. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment, per Section 8.5.2. Record the assessment on Data Sheet 1. Determine what changes are necessary in package orientation for the penetration test to achieve maximum damage. rified by: Print Name: Signature: Engineering MCH AFEL L TOLEMMENT Manual M	Position the specimen on concrete surface, per the appropriate drawing. Measure the ambient temperature. Note the instrument used: Apply a uniformly distributed weight of at least 2080 pounds on the top of the protective cage for a period of 24 hours. Record the actual weight: Note the instrument used: Record the actual weight: Note the instrument used: Record start time and date: After 24 hours, remove the weight. Record end time and date: Note the instrument used: Photograph the test specimen and record any damage on Data Sheet 1. Photograph the test specimen and record any damage on Data Sheet 1. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment, per Section 8.5.2. Record the assessment on Data Sheet 1. Engineering MCH A EL L TREMENT Regulatory Affairs MAL D. Nixty

Checklist 1: Compression Test

•

...

•

Test Pian 81, Revision 1 March 31, 1999 Page 37 of 54

.

	Data Sheet 1: Comp	pression Test
Test Unit Model and Serial Number: SN24		Test Specimen: TP81 (A)
Test Date: 09 AP 12 99	Test Time:	Test Plan 81 Step No.: 8.5
Describe test orientation and setup:	· corner #	1 2 34
an concude floor plate & lead mot	to flaer	2 3 4 209/16 205/8 207/8 201/16
Describe on-site inspection (damage,	broken parts, etc.):	
NONE		F 1.
On-site assessment: NO DAMA	pest 1. GE	at 1 2 3 4 annor 1 2 3 4 20% 20% 20% 20% 20%
NO DAMA une draug Engineering: Munter Photo	Beulatory:	QA: D. H. Kust
Describe, any post-itest disassembly a	and inspection:	
Describe any change in source posit	ion: NOT APPLICAN	3LE
Completed by:	All	Date: 12 APR 99
. / .	\boldsymbol{V}	

AEA Technology QSA. Inc. Burlington, Massachusetts

÷

.

Test Plan 81, Revision 1 March 31, 1999 Page 38 of 54

Equipment List 2: Penetration Test

1

Descrip	tion	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Penetration Bar	,	Drawing BT10129, Rev. B	SEE Appenden "A"
Drop Surface		Drawing AT10122, Rev. B	
Thermometer		ENG-12	
Thermocouple	CASK	OMEGA #WTK-10-36-54	р-н
Thermocouple	CAGE -	- OMEGA #WT N-10-36-SMP-	M
Thermocouple	SKID	OMEGA #- WTK-10-36-	smo-m V
Record any additional tools use	ed to facilitate the test and	d attach the appropriate inspection re	port or calibration certificate.
Tanjune commande		5970355413	J
		ų. Ag	
	Print Name:	Signature:	Date:
Completed by:	DAVE AUNIST	Davolunt	13 Apr 90
Verified by:	77 1 3 1	MICHAR I TREA	MAI 13/10/299
V			

٠.

;

-

-

Checklist 2: Penetration Test

	Step		TP81(A)
1. Immerse specimen in dry i specimen below -40°C.	ce or cool in freezer to bring car	bon steel portions of the	~ .
2. Position the package as sho	own in the referenced figure.	-	Figure 4
3. Begin video recording of the	ne test.		and
4. Inspect the orientation setu	p and verify the bar height.		2
5. Photograph the set-up in a	least two perpendicular planes.	2	5
6. Measure the ambient temp specimen is at the specifier	erature and the specimen temper d temperature. Note the instrum	ratures. Ensure that the function that the function of the second s	ENG-17 .
Record the ambient ten	nperature:		7°C
Record the cask tempe	rature:		84.546 72°C - 71°C
Record the skid temper	rature:		-77°C/-71°C
Record the protective of	cage temperature:	·	-63°C/-54°C
7. Drop the penetration bar.			2
8. Check to ensure that pene	ration bar hit the specified area		9
9. Measure the specimen's su	urface temp. Ensure that specim	en is at specified temp.	- 5400
Note the instrument us	ed:		FNG-12
10. Photograph the test specir	nen and record any damage on I	Data Sheet 2.	
11. Engineering, Regulatory assessment, per Section 8	Affairs and Quality Assurance .6.3. Record the assessment on ry in package orientation for the	ce make a preliminary Data Sheet 2. Determine	5
Verified by:	Print Name:	Signature:	Date:
Engineering	MCHAEL 2 TRENGLA	1 Munder har	13 APR 99 13 APR 99
Regulatory Affairs	MARC S. NADONU	and	13 APR 99
Quality Assurance	DANIEL W. KUETZ	D.W. Kurtz	13 APE 99

:

Test Plan 81, Revision 1 March 31, ≰999 Page 40 of 54

.

	Data Sheet 2: Pene	tration Test	·
Test Unit Model and Serial Number: 702 SN 24		Test Specimen:	TP81 (A)
Test Date: 13 APR 99	Test Time: 10:00 Am	Test Plan 81 Step No	.: 8.6
Describe test orientation and setup: SEE FIGU	RE 4, SECTION 8.	6.2	
Describe impact (location, rotation, e PENETRA TION BA,		STER OF CAGE	, AS PRESCRIBED.
Describe on-site inspection (damage, PERF. PLATE DENTE OF PENETTEATION BA	D IN AND PARTIAL	Y BRAKEN THE BR DAMAGE T	OUGH AT LOCATION
On-site assessment:	ORATED PLATE ON	TOP OF CAGE	IS NOT SENIFICANT.
CONTINUE WITH NEX.	T TE5T (1.2M(4F	77.) FREE DROP) AS PLANWED.
Engineering: <u>Munification</u> Describe any post-test disassembly a N/A	T TEST (1.2 M (4 F	т.) FREE DROP) AS PLANWED.
CONTINUE WITH NEX	T TEST (1.2 M (4) Regulatory: <u>Shi</u> nd inspection:	Т.) FREE DROP QA: <u>Д. М.</u>) AS PLANWED.
CONTINUE WITH NEX. Engineering: <u>Manual Manual</u> Describe any post-test disassembly a N/A	Regulatory: <u>John</u> nd inspection:	Т.) FREE DROP QA: <u>Д. М.</u>) AS PLANWED.

/

.

Test Plan 81, Revision 1 March 31, 1999 Page 41 of 54

_ Equipment List 3: 1.2 Meter (4 Foot) Free Drop

Description		Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate		
Drop Surface		Drawing AT10122, Rev. B	SEE APPENIAX "A"		
Thermometer		OMEGA ENG-12.			
Thermocouple	CASK	отеба # WTK-10-36-5MP-M			
Thermocouple	CAGE	0MEGA # WTK-10-36-5MP-M			
Thermocouple		OMEGA # WTK-10-36-SMP-M			
Record any additional tools us		and attach the appropriate inspection re	port or calibration certificate.		
tarque unand	4	5970355417			
inger wie					
	Print Name:	Signature	Date:		
Completed by:	DAVE ANNIS	Davelint	13 Apr 09		
Verified by:	Mini Ofm	If MICHAELLTON	MAY 15 APR 99		
	the state of the s	- W			

AEA Technology QSA, Inc. Burlington, Massachusetts

-

Test Plan 81, Revision 1 March 31, 1999 Page 42 of 54

TC_

1

Checklist 3: 1.2 Meter (4 Foot) Free Drop

ð

		Step			TP81(A)
1.	Immerse specimen in dry ice o below -40°C.	or cool in freezer to bring carbon st	cel portions of the specimen	-1	9.
2.	Measure the ambient temperat	ure.			7°C
	Note the instrument used:	-		Ţ.	16-12
3.	Attach the test specimen to the	e release mechanism.			ige -
4.	Begin video recording of the t	est.		ú	5
5.	Measure specimen temperatur instrument used:	es. Ensure specimen is at specific	d temperature. Note the	E	NG-12
	Record the cask temperate	ILE:			-71°C
	Record the skid temperatu	ire:	;		- 71° C
	Record the protective cag	e temperature:			- 54° C
6.	Lift and orient the test specim	en as shown in the specified refere	nced figure.		Figure 5
7.	Inspect the orientation setup a	nd verify drop height.	· · · · · · · · · · · · · · · · · · ·		
8.	Photograph the set-up in at lea	ast two perpendicular planes.			9
9.	Release the test specimen.				2
10.	Measure specimen temperatur instrument used:	res. Ensure specimen is at specific	d temperature. Note the		ENG-12
	Record the cask temperat	ure:			-69°C
	Record the skid temperat	ure:			- 53°C
	Record the protective cag	e temperature:			-15°C (dangere
11.	Photograph the test specimen	and record any damage on Data S	heet 3.		~ -
12.		on profile of the test specimen in a		N	o draze
13.	ner Section 873 Record as	ffairs and Quality Assurance ma sessment on Data Sheet 3. Determ tion for the 9 meter (30 foot) free of	line what changes are		~2-
Ve	rified by:	Print Name:	Signature:		Date:
	Engineering	MICHAELL TO EAST	× ponto to	7	13 APR 99
	Regulatory Affairs	Marc S. Norm	and		13 AAL 99
	Quality Assurance	DANIEL W. KUETZ.	D.N. Kenty		13 APE 99

AEA Technology QSA, Inc. Burlington, Massachusetts Test Plan 81, Revision 1 March 31, 1999 Page 43 of 54

Data Sheet 3: 1.2 Meter (4 Foot) Free Drop Test Specimen: **TP81 (A)** Test Unit Model and Serial Number: 70250 24 Test Plan 81 Step No.: 8.7 Test Time: 10:15 Test Date: 13 APR 99 Describe drop orientation and drop height: see Figure 5. section 8.7.7 Describe impact (location, rotation, etc.): Hit is person had -fell to side Describe on-site inspection (damage, broken parts, etc.): refairing ring prokian 20° cection bucken out minimal damage to case - purt plate bulled on sides Cosk still recine to skill cape it.ll seave to skill ring troken - notaing rodo 10054 Lat On-site assessment: tack a los a part plato detaded 90° to edyo timped QA: D.W. Kurt Regulatory: Engineering Describe any post-test disassembly and inspection: SKID CRACKED AS SHOWN ON TEST PLAN FG. 5 MARK-UP (ATTACHED). NOT APPLICABLE Describe any change in source position: Describe results of any pre- or post-test radiography: N/A Date: Completed by: 13 ADD 99

1

8.7.2 1.2 Meter (4 Foot) Free Drop Test Orientation, Specimen TP81(A)

The impact surface of Specimen TP81(A) is the top, long edge of the protective cage as shown below.

Figure 5. 1.2 Meter (4 Foot) Free Drop Test Orientation, Specimen TP81(A)

SENJINEL TPOI(A) - AFTER 1.2 M (4 FOOT) DROP TEST DROP TEST UNIT

	L	SHIELD		E AND INSPECT	rion	FORM	
Model:	702	- Serial Number:	24	_ Radionuclide: <u>Tr</u>	- 19	<u>2 Max.Cap</u>	acity: <u>10,000</u>
				d Data			
Shield Heat	#:_ (+)	N	lass of Shield:	L	_bs.	Lot #:	
$\overline{}$			Initial	Profile			
Source Mod	ek:		Source SN:		Ac	:tivity:	Ci
Survey Inst.		SN:		Date Cal.:		_ Date Due:_	
Surface	Observ Intensity n		Correction actor			Adjusted I	ntensity mR/hr
Тор			\sim	. N/A			
Right				Capecity Correct	tion		
Front				Factor:	_		• • • • • • • • • • • • • • • • • • • •
Left				A		<u> </u>	<u></u>
Rear							<u></u>
Bottom							\geq
Inspector:			Dat	e:		NCR #:	
			Final	Profile			
Source Mod	el: <u>BolkT</u> F	<u>192</u> Source SN:	NIA	Activity: <u>8761•2</u>	_ Ci	Mass of Devic	e. P <u>N/A</u> Lbs.
Survey Inst.	ANPOR7		392402 1	Date Cal.: <u>용아누연</u>	2	_ Date Due:	30-+99
		Observed Intens	ity mR/hr			Adjusted Ir	ntensity mR/hr
Surface	At Surface	Surface Corr. Factor	At One Meter			At Surface	At One Meter
Тор	14	1.08	.5		L	17	,6
Right	28	1.09	,7				.8
Front	22	1.08	.8	Capacity Correcting Factor: 1.14	on	27	,9
Left	28	1.09	.7	Factor: <u>7.19</u>		35	.8
Rear	18	1.08	.7			22.	.8
Bottom	1.5	1.07	٢.١			1.8	L.1
Inspector:	A	alloc / BBay		e: 13 April 99		NCR #:	
		Documentatio				Q16-1/	1

*

AEA Technology QSA, Inc. Burlington, Massachusetts Test Plan 81, Revision 1 March 31, 1999 Page 44 of 54

٠.

Equipment List 4: 9 Meter (30 Foot) Free Drop

Description		Ent	er the Model and Serial Number	Auach Inspection Report or Calibration Certificate		
Drop Surface		Draw	ing AT10122, Rev. B	SEE APP	PND# "A"	
Thermometer	4	OMEE HH-	21 6185-16			
Thermocouple	CASK	omeg # W	TK-10-36-SMP M			
Thermocouple	CAGE	omeg # W	TK-10-36-5MD-M			
Thermocouple	SKID		TK-10-36-5MP-N	<u> </u>	/	
Record any additional tools use	d to facilitate the test an	d attach	the appropriate inspection re	port or calibrat	on certificate.	
Torque arene	h	5970355413		d'		
					· ·	
		<u> </u>	۰ <u>۰</u>			
	Print Name:		Signature:	Date:		
Completed by:	DAVE ANNIS		Davolut	14 April	99	
Verified by: DANK W. KURTZ			D. N. Kurz	14 APR	99	

•

.

Checklist 4: 9 Meter (30 Foot) Free Drop

4

		Step		TP81((A)	TP81(B)	TP81(C)	
 Immerse specimen in dry ice or cool in freezer to bring carbon steel portions of the specimen below -40°C. 						~	Я.	
2.	Measure the ambient temp	erature.		100		12°C	30° p	ŀ
	Note the instrument us	ed:		ENG	12-	<u>ENG-12</u>	ZDG-	Ł
3.	Attach the test specimen to	o the release mechanism.	·	CH		CSA	e	
4.	Begin Video Recording of	the test		as		CSA	9	T
5.	Measure specimen temper Note the instrument used:	atures. Ensure specimen is	at specified temperature.	ens.	\leq	ENG-12	FNG-	1/2
	Record the cask tempe	rature:	· · · · · · · · · · · · · · · · · · ·	-45	2	-54°C	-90°Ç	
	Record the skid temper	rature:	i i	-820	2	• 69°C	- 92°C	
	Record the protective of	cage temperature:		-63	2	- 62°C	- 93°C	
6.	Lift and orient the test spe	cimen as shown in the speci	ified referenced figure.	Figure	e ø 8	Figure 7	Figure 8	
7. Inspect the orientation setup and verify drop height.					4	C.SCHUNG	ut	·
8. Photograph the setup in at least two perpendicular planes.				CAS	1	ass	9	1
9. Release the test specimen.						CSS	منصر	
10.	Measure specimen temper Note the instrument used:	atures. Ensure specimen is	at specified temperature.	ense.	= 1	ENG-12	EVOT	
	Record the cask tempe	erature:		NOTE	100	-50°C	-75°C	
	Record the skid tempe	rature:		-85	°C	-56°C	-74°C	
	Record the protective	cage temperature:		-35	°C	32°C	-48°C	
11.	Photograph the test specin	nen and record any damage	on Data Sheet 4.	CAS		as	2	
 Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment, per Section 8.9.5. Record assessment on Data Sheet 4. Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage. 						CLA	9	
Ver	rified by:	Print Name:	Signature:		Date:			
	Engineering	MICHAEL L TREM	ELA Minister Think	H	15	APR	94	
	Regulatory Affairs	MARCS. NAS.			ي حز	APR 9	3	
Quality Assurance DANIEL W. KUETZ D.W. Kurtz 15 APR 99								

NOTE 1 : TE LOST TURING IMPACT. :. NO READING.

÷

Test Plan 81, Revision 1 March 31, 1999 Page 48 of 54

4

Test Unit Model and Serial Number:	Test Specimen: TP81(C)						
702 SN 23							
Test Date: 14 APR 99 Test Time: 10:30 Arr	Test Plan 81 Step No.: 8.9 -						
Describe drop orientation and drop height: DROPPED AS SHOWN IN FIG. 6.							
Describe impact (location, rotation, etc.): IMPACTED EDGE OF SKID, AS PRES	CRIBBD.						
Describe on-site inspection (damage, broken parts, etc.): Sh Britle Fracture both legs of skid. All 4 Cask to F Lower Brackets Fractured. Cosk Cover Botts-1 of pbces on impacted edge. Cask Cover Backled near	KID (14 APR 99) All 4 Duck with Bolts shoored off. Top upper 3 is & Failed. Aertonated Plate torn in a few Broken Cover Bolt.						
On-site assessment: PERFORM PUNCTURE TEST TO INCREASE DAMAGE TO CASK COVER. USE SAME UNIT ORIENTATION, WITH PUNCTURE BAR UNDER TEAR IN PERF PLATE AT TOP OF CASK. SPECIMEN WILL POSITIONED SO THAT PUNCTURE BAR WILL MISS THE TOP TUBE OF THE CAGE (WHICH WOULD PROTECT THE OASL). SINCE PERF. PLATE IS TOO THIN FOR BRITTLE FAILURE, ONLY CASK TEMP. NEEDS TO BE LESS THAN -40°C, TO ASSURE THAT CARDON STEEL HOLD-DOWN RING IS <-40°C. Engineering Multiply Regulatory: NO FURTHER INSPECTION PRIOR TO PUNCTURE TEST.							
Describe any change in source position: NOT APPLICA	ABLE						
Describe results of any pre- or post-test radiography: N/A							
Completed by: anotan A Sella	Date: 14 APR 99						

Data Sheet 4: 9 Meter (30 Foot) Free Drop

4

AEA Technology QSA, Inc. Burlington, Massachusetts Test Plan 81, Revision 1 March 31, 1999 Page 25 of 54

•

Test Plan 81, Revision 1 March 31, 1999 Page 47 of 54

. .

:

.

-	Data Sheet 4: 9 Meter (3	0 Foot) Free Drop	
Test Unit Model and Serial Number 702 SN 26	:	Test Specimen:	TP81(B)
Test Date: 14 APR 99	Test Time: 3:45pm	Test Plan 81 Step No	.: 8.9
Describe drop orientation and drop I DROPPED AS SHOW	height: N IN FIG.7.		
Describe impact (location, rotation, IMPACTED TOP EDGE			. MARR99 HaD-DOWN RIN
OF SKID. 2 OF 4 HOLD J	DOWN BASE BRACKE	TS (THOSE OPP NG BRACKETS (2	
On-site assessment: TO SKID THIS DROP REFULTE	D IN ESSENTTALLY	Y NO DAMAGE DEFORMING TI	TO THE CASK BECAUSE HE CASE AND BREAKING
THE HOLD-DOWN ASSE SELECTING A FINAL	MBLY. PERFORM PUNCTURE TEST	PINAC SON (ORIENTATION)	ing there will an
Engineering	Regulatory:	QA: D.A	Kurtz
Describe any post-test disassembly NO FURTHER INSP CASK (W/DIFFERENT	ECTION PRIOR TO	NEXT 9M (X	077) DROP OF SAME
Describe any change in source posi	tion: NOT APPLICA	ABLE	
Describe results of any pre- or post	-test radiography: N/A		
Completed by:	Han	Date: 14 APR	99
·			

١

8.9.3 9 Meter (30 Foot) Free Drop Test Orientation, Specimen TP81(B)

The impact surface of Specimen TP81(B) is the top long edge of the protective cage as shown below.

Test Plan 81, Revision 1 March 31, 1999 Page 46 of 54

Data Sheet 4: 9 Meter (30 Foot) Free Drop

Test Specimen: **TP81(A)** Test Unit Model and Serial Number: SN 24 702 Test Plan 81 Step No.: 8.9 Test Date: 14 APR 99 Test Time: 5:20 pm Describe drop orientation and drop height: DROPPED AS SHOWN IN FIGURE 8. Describe impact (location, rotation, etc.): IMPACTED TOP OF CAGE, AS PRESCRIBED Describe on-site inspection (damage, broken parts, etc.): BRITTLE FRACTURE OF SKID: CASK WSQUARE WELDED SKID PLATE TORE AWHY FROM REST OF SKID. 2 BRACKETS AT TOP RING BROKE OTF, AS DID 3RD THE DOWN (4M WAS BROKEN IN FRIDE 4A (1.2M) DROP) CASK STRUCK IMPACT SURFACE, AS EVIDENCED BY DENTED IN HEAD OF ONE OF THE 5 CASK COVER BOLTS (6th BOLT HAD BROKEN IN FRIOR 30 Ft (9 M) DROP), AND BY DENTED ENDS OF FINS AT 2 CIRCUMPERENTIAL LOCATIONS. On-site assessment: REMOVE CASK, AND PORTION OF SKID STILL BOLTED TO CASK, FROM THE CASE AND DROP W/O CAGE ON PUNCTURE BAR. DROP AT AN ANGLE SUGHTLY OFF VERTICAL, ONTO THE DENTED CASK COVER BOLT, TO TRY TO BREAK OFF THIS BOLT. QA: D.H. Kurt Engineering: Regulatory: Describe any post-test disassembly and inspection: NO FURTHER INSPECTION PRIOR TO PUNCTURE TEST. NOT APPLICABLE Describe any change in source position: Describe results of any pre- or post-test radiography: N/ADate: Completed by: 14 APR 99 Cashi SSAla

• . .

•

Test Plan 81, Revision 1 March 31, 1999 Page 49 of 54

.

...

Description			ter the Model and Serial Number	Attach Inspection Report or Calibration Certificate		
Drop Surface		Drav	ving AT10122, Rev. B	50	E Appendex "A"	
Puncture Billet	-	Drav	ving CT10119, Rev. C			
Thermometer		OME	- <u>CNC-12</u>			
Thermocouple	CASK		K-10-36-5mp-M	•	•	
Thermocouple	CAGE	OMEC #W	77 - 10-36-5MP-M	• •		
Thermocouple	SKD	omet # w	а тк-10-36-smp-м		V .	
Record any additional tools us	sed to facilitate the test and	d attac	h the appropriate inspection	repo	rt or calibration certificate.	
	· · · · · · · · · · · · · · · · · · ·		i.			
			<u>.</u>			
· · · · · · · · · · · · · · · · · · ·						
	Print Name:	<u>, , , , , , , , , , , , , , , , , , , </u>	Signature:		Date:	
Completed by:	DAVE ANNIS		Dans Cung		14 Apr 99	
Verified by:	DANIEL W. KUETZ	•	D. N. Kurtz		14 APE 99	

Equipment List 5: Puncture Test

 $\tau_{q'}^{i}$

Test Plan 81, Revision 1 March 31, 1999 Page 50 of 54

		Checklist	5: Puncture Test		A,	DIA HAPR99
		Step		1816	TP81	
1.	Immerse specimen in dry ic specimen below -40°C.	e or cool in freezer to bring ca	rbon steel portions of the	R	<i>K</i> IA	-
2.	Measure the ambient tempe	rature.		15°C	. 10°C	
	Note the instrument use	d:		ENG-1	2 ENG-12	
3.	Attach the test specimen to	the release mechanism.		50	CAS	
4.	Begin Video Recording of t	he test.		Da	CAS	
5.	Measure specimen tempe Note the instrument used		is at specified temperature.	ENG		
	Record the cask temp	erature:		-480		5
	Record the skid temp	erature:		sez note	N/A - SKID NOT IMPACTIN	G
	Record the protective	cage temperature:		see note	N/A-NO	
6.	Lift and orient the test speci determined during the asses	imen as shown in the specified sment of the 9 meter (30 foot)	referenced figure, or as drop test.	see cisof gades	SEE ASSMIT OF Figure F 9 M DROP CL	D IYAPR99
7.	Inspect the orientation setup	and verify drop height.	· · · · · · · · · · · · · · · · · · ·	لور	as	
8.	Photograph the set-up in at l	9	clà			
9.	Release the test specimen.	· · · · · · · · · · · · · · · · · · ·		2	as	
14.	Measure specimen tempe Note the instrument used	eratures. Ensure specimen i 1:	is at specified temperature.	FNGT		
	Record the cask temp	perature:	•	-41	N/A - STAINLESS	
	Record the skid temp	erature:		See		>
	Record the protective	e cage temperature:		siele	N/A-NO	
10.	Photograph the test specime	en and record any damage on I	Data Sheet 5.	2	au	
11.	Profile the shipping cask.			see hote:	9	
12.	per Section 8.10.5. Record	Affairs and Quality Assurand assessment on Data Sheet 5. Lation for thermal test to achiev	ce make a preliminary assessme Determine what changes are ye maximum damage.		<i>a</i> ts	
Ver	ified by:	Print Name:	Signature:	~	Date:	
 	Engineering	MICHAFELLTREA	may My Set 1	J)	2APR9	6
 	Regulatory Affairs	MARC S IL	in and	N		
	Quality Assurance	DANIEL W. KUETZ	D.W. Kuntz		22 Alk ? 20 APR 99	

١

1. Coge + skidi@ ambiat. Puntore is directed a cask cour Maryh side pert plate. Temperature di Aanae beta con -10° 2015° and nou no effect on performance & port plate + This no effect on puncture + at 2. Fuel prefile le be performed ofter al 3 30' and any pourtoue drys durand

Test Plan 81, Revision 1 March 31, 1999 Page 51 of 54

Data Sheet 5: Puncture Test

TP81 (C) AL 14 AR 99 Test Unit Model and Serial Number: Test Specimen: 702 SN24 Test Plan 81 Step No.: 8.10 Test Time: 5:45 Pm Test Date: 14 APR 99 Describe drop orientation and drop height: CASK, BOLTED TO PORTION OF SKID THAT REMAINED AFTER 9 M (30 Ft) DROP WAS DROPPED 1/0 CAGE AT AN ANGLE ~10-15 OFF VERTICAL ONTO ONE OF THE CASK COVER BOLTS. THE BOLT CHOSEN FOR IMPACT HAD CASK STRUCK PUNCTURE BAR (BEEN DENTED (IMPACTED) DURING THE 30 H(9M) DEC Describe impact (location, rotation, etc.): DROP HT. 240" AN BOLT (WHICH LEFT A MARK ON THE PUNC. BAR). Describe on-site inspection (damage, broken parts, etc.): BOT THAT WAS STRUCK WAS FURTHER DENTED, BUT REMAINED SECURE. **On-site assessment:** SPECIMEN SUCCESSFULLY PASSED HYPOTHETICAL ACCIDENT TEST (SUBJECT TO FINAL RAD. PROFILE) BECAUSE CASK AND COVER DID NOT LOBE THETR STRUCTURAL INTEGRITY (DESPITE BEING DAMAGED PRIOR TO START OF THIS 30 ft DROP-PUNCTURE TEST SEQUENCE). QA: D.W. Kut Engineering: Regulatory: Describe any post-test disassembly and inspection: NO FURTHER INSPECTION, OTHER THAN FINAL PROFILE OF CASK. NOT APPLICABLE Describe any change in source position: Describe results of any pre- or post-test radiography: N/A Completed by: Carchi Selle Date: 14 APR 99

SENJINEL TPSI(A) - AFTER PUNCTURE TEST Drop TEST Whit

SHIELDING PROFILE AND INSPECTION FORM

٦

Shield Heat	#:		Mass of Shield	Lbs.	Lot #:	
	\sim		Initia	l Profile		
Source Mod	lel:		Source SN:	A	ctivity:	Ci
Survey Inst.		· SN.		Date Cal.:	Date Due:	·····
Surface	Observe Intensity m	· · ·	ce Correction Factor		Adjusted I	ntensity mR/hr
Гор						
Right				Capacity Correction		
Front	<u> </u>			Factor:		<u></u>
Left				-		
Rear	· .			Ч. К.		
Bottom			· •	<u> </u>	NCR #:	
nspector:				te:	<u> </u>	
	0 ILT	167 0 00		Profile Activity: <u>8282-0</u> Ci	Mass of Devic	ce: <u> #/4</u> Lbs.
		(92 Source SN:		Date Cal.: 8 0 + 98		800+99
Survey Inst	ANIPOR	<u>277</u> SN: <u>SY</u> Observed Inte				ntensity mR/hr
Surface	At Surface	Surface Corr Factor			At Surface	At One Meter
Тор	* N/A	NIA	.8		A/K	1.0
Right			.9	-		1.1
Front			.9	Capacity Correction Factor: <u>1.20</u>		1.1
Left			.9	-		1.1
Rear			.7	- · · ·		.8
Bottom	* .7		, B		.8	NIA
Inspector:_	and the second	RRAD		nte: <u>19 April 19</u>	NCR #:	1/3
omments:	* Not Rigd	L. per Engines	ring. Ourob	le to athin Meter Bear ace reading takening	ling without tead. r Assembly)	laying unit on

١

APPENDIX D

<u>و</u>.

TEST PHOTOGRAPHS

1

î

TP81(A) Compression Test Setup

TP81(A) Penetration Test Setup

TP81(A) Penetration Test Results

.

D-1

TP81(A) 1.2 Meter Drop Setup

TP81(A) 1.2 Meter Drop Results-Detail of Hold Down Ring

TP81(A) 1.2 Meter Drop Results-Detail of Cage Deformation

TP81(A) 1.2 Meter Drop Results-Detail of Buckled Cage

TP81(C) 9 Meter Drop Setup

TP81(C) 9 Meter Drop Results-Detail of Cask Detached From Skid

TP81(C) 9 Meter Drop Results-Detail of Skid

TP81(C) 9 Meter Drop Results-Detail of Missing Cask Cover Bolt

TP81(C) Puncture Test Setup

TP81(C) Puncture Test Results

TP81(B) 9 Meter Drop Setup

TP81(B) 9 Meter Drop Results-Detail of Cage Deformation

TP81(B) 9 Meter Drop Results-Detail of Cask and Skid

TP81(B) 9 Meter Drop Results-Detail of Cask and Skid

TP81(A) 9 Meter Drop Setup

TP81(A) 9 Meter Drop Results

TP81(A) Puncture Test Setup

TP81(A) Puncture Test Results-Detail of Dented Bolt

AEAT/QSA Inc. Burlington, Massachusetts 19 July 2001 - Revision 4 Page VII

Appendix D: Finite Element Analysis (Model 702)

D-1 Finite Element Analysis for the Model 702

AEAT/QSA Inc. Burlington, Massachusetts 19 July 2001 - Revision 4 Page VIII

INTENTIONALLY LEFT BLANK

		:	MPR Assoc 320 King Sti Alexandria,	reet
	CALCULATION TITL	E PAGE		
Client AEA Technology QSA	, Inc.		Pag (Attac	e 1 of 38 chments 1, 2)
Project Transport Package Qua	lification		Ta	ask No. 0001-004-0
Title Model 702 Finite Eleme	ent Analysis			ulation No. 004-EBB-1
Preparer / Date	Checker / Date	Reviewer & Approv	/er/Date	Rev. No.
L. J. Mid 7-6-00 Edward Bird 7-6-00	Chris Rice 7-6-00 Chris Rice 7-6-00	Muhrlug Mur Nick Marrone	7-6-00	0.
This document has been prepare equirements of 10CFR50, Appe	QUALITY ASSURANCE D ed, checked and reviewed/approv	ved in accordance wit	h the Quali	ty Assurance

	APR			320 King §	ociates, Inc. Street a, VA 22314			
RECORD OF REVISIONS								
	culation No.	Prepared By	Checked	Ву	Page: 2			
420-	004-EBB-1	E. S. huid	C. Our		Revision: 0			
Revision	Affected Pages		Description	·				
0	All	Initial Issue						
		· · ·						
			ŕ					
-								
Not		nber found on each individual culation in effect at the time that			the revision			

	MPR		320 <u>K</u> i	Associates, Inc. ng Street Idria, VA 22314
	Calculation No.	Prepared By	Checked By	Page: 3
	420-004-EBB-1	E.B. hud	C. Rin	Revision: 0
		CONTENTS		
Sect	ion			Page
1.0	Purpose			4
2.0	Summary of Results			4
3.0	Approach			4
4.0	Finite Element Model			5
	4.1 Geometry		¦≸	[•] 5
	4.2 Material Properties			5
•	4.3 Thermal Boundary		5 14	6
	4.4 Structural Boundar			7
5.0	Cover Bolt Calculations			7
6.0	Results 6.1 Thermal			8
	6.1 Thermal6.2 Stress			8
	6.3 Cover Bolts			8
7.0				9 10
				10
			•	
	· · · · · · · · · · · · · · · · · · ·		······································	· · · · · · · · · · · · · · · · · · ·

1

i

:

•

.

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.	Prepared By	Checked By	Page: 4	
420-004-EBB-1	E.S. And	C. Rice	Revision: 0	

1.0 Purpose

The purpose of this calculation is to document a finite element analysis of the AEA Technology Model 702 transport package for the thermal requirements of 10CFR71.73.4. The Model 702 transport package is designed for use as a shipping container for radio-isotopes. The transport package is shown on Figures 1 and 2.

10CFR71.73 specifies hypothetical accident conditions for which the transport package must be designed. The thermal accident conditions include immersion in a 1475 °F fire for 30 minutes. The acceptance criteria for the test is that there is not a significant increase in radiation levels external to the package following a hypothetical accident. For this calculation, the acceptance criteria is considered to be met if the calculated strains in the stainless steel components which contain the depleted uranium and the stainless steel cover bolts are less than the strain corresponding to the material ultimate strength at the test temperature.

2.0 Summary of Results

Figure 3 shows contours of the stress intensity profile in the transport package at 2 minutes, the time of maximum stress during the transient. The maximum stress intensity is 26 ksi. Figure 4 shows contours of total strain at 2 minutes. The maximum strain is less than 5%. This strain is considerably less than the strain at failure (40 to 50%) for stainless steel at a temperature of 1475 °F.

£.,

An additional elastic-plastic stress pass was made at a time of 30 minutes to confirm that there is sufficient material strength at the highest temperatures to react the primary pressure loads. The maximum calculated total strain at 30 minutes is also less than 5%.

3.0 Approach

A three-dimensional finite element model of the transport package was developed with the ANSYS computer program (Reference 1). The shipping cask is mounted on a carbon steel skid with a protective cage. The skid and cage are conservatively assumed to have failed as a result of hypothetical accident drop loads and are not included in the model. The transport package components included in the model are:

- Shipping Cask
- Depleted Uranium Shield
- Cask Cover Assembly (Stainless Steel Liner and Depleted Uranium Shielding)
- Cask Cover Bolts
- Copper Wafers

MMPR		. 3	IPR Associates, Inc. 20 King Street Iexandria, VA 22314
Calculation No.	Prepared By	Checked By	Page: 5
420-004-EBB-1	E. K. Kud	C. Rica	Revision: 0

Half (180 degrees) of the transport package was modeled based on geometric and loading symmetry.

A three part sequential analysis technique was used. In the first part of the analysis, a thermal transient analysis was performed to calculate temperature profiles within the package as a result of immersion in a fire. Radiation and convective heat transfer modes were considered. In the second part of the analysis, stresses in the transport package components due to the calculated temperature profiles were determined on an elastic basis at several times during the transient. In the third part of the analysis, at the time of maximum elastic stress due to temperature, a final analysis was performed with elastic-plastic material properties. The effects of bounding internal pressure and cover bolt pre-load were included in the final analysis.

4.0 Finite Element Model

4.1 Geometry

One half of the transport package is modeled. Figures 5 through 8 show the finite element model components. Dimensions for the model are from References 2 through 16. Figures 9, 10 and 11 show key-point numbers for a cross section of model. Keypoint coordinates for the cross sections are listed in Attachment 1.

The model is meshed with hexahedral (brick) and tetrahedral elements. The bolts are represented by spar (line) elements. A surface effect element is used on the outside of the model to facilitate the application of the thermal boundary conditions.

The transport package includes thin (0.010 inch) copper wafers that separate the depleted uranium from the stainless steel. These wafers are modeled explicitly and are assumed to completely fill the gap and to be in perfect thermal contact with the stainless steel on one side and the depleted uranium on the other. Structurally, these wafers provide little mechanical resistance due to the low strength of copper at high temperature.

4.2 Material Properties

The transport package outer shell, cover, liners and bolts are constructed from 304 stainless steel. Depleted uranium is used for shielding in the cask and cover assemblies. Thin copper wafers are used between the stainless steel and uranium. A neoprene gasket was included between the cover and cask assemblies. Material properties for these four materials from References 17 through 20 are used in the model and listed in Attachment 2. The properties are temperature dependent for all but the neoprene.

XMPR	R MPR Associates, Inc. 320 King Street Alexandria, VA 22314		ing Street
Calculation No.	Prepared By	Checked By C. Rice	Page: 6
420-004-EBB-1	E.A. Ind	C. Vine	Revision: 0

The mechanical strength of the copper at elevated temperature was assumed to be negligible. Accordingly, the elastic modulus for this materials was set to 1,000 psi.

Elastic-plastic material properties for the stainless steel components were used for the final analysis runs. Bi-linear stress strain curves as a function of temperature were input. The yield stress values used are shown in Table 4.1. A tangent modulus (slope of the stress strain curve in the plastic region) of 500,000 psi was used for each curve.

Temperature (°F)	Yield Stress (ksi)
100	29.01
300	22.39
600	18.27
900	16.21
1,200	14.20
1,500	9.50

 Table 4.1: Yield Stress Values for 304 Stainless Steel (Reference 17)

4.3 Thermal Boundary Conditions

Thermal boundary conditions representing immersion in a fire at 1475 °F were applied to the finite element model on all exterior surfaces. These surfaces include the finned outer surface of the cask, the cover top plate and the cask lower plate. The bottom of the cask lower plate was also heated (i.e. the cask is assumed to be suspended in the fire). The symmetry plane of the model was represented by a no heat flow condition (insulated).

Radiation and convection heat transfer modes were included to account for heat flow from the fire to the cask. For radiation, the shipping cask was conservatively assumed to be a black body; absorbing all radiation. An absorptivity / emissivity of 1.0 was assumed for the exterior; a form factor of 1.0 was assumed indicating the cask is fully engulfed by the fire. Based on a review of typical fossil-fired furnace design coefficients, a heat transfer coefficient of 20 BTU/hr-ft²-°F was assumed on the exterior surfaces for convection.

Heat flow across the air gaps inside the shipping cask was also considered. Radiation links were used to represent the heat transfer between the cask inner liner and the cover liner. Convective heat transfer in the confined space within the shipping cask was assumed to be negligible.

MPR	•	320 K	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No.	Prepared By	Checked By	Page: 7	
420-004-EBB-1	E.b. Bud	C. Rice	Revision: 0	

4.4 Structural Boundary Conditions

Structural boundary conditions were applied to the shipping cask finite element model to determine thermal expansion stresses and stresses due to internal pressure. Thermal expansion stresses result from differential thermal expansion of the shipping cask components. Pressure stresses result from the air inside the shipping cask heating up and expanding (according to the ideal gas law).

Internal pressures were applied in the final elastic-plastic analyses. The limiting condition for internal pressure stress occurs when the neoprene gasket has burned off, relieving the pressure within the source cavity while the air surrounding the depleted uranium contained within the welded portion on the cask and cover assemblies expands (i.e. the inner surfaces of the cask and cover assemblies shown on Figures 6 and 7 are pressurized). The bounding value of the applied pressure is determined as follows:

$$P_2 = \frac{T_2}{T_1}P_1 = \frac{(1475 + 460)}{(70 + 460)} 15 = 55 \text{ psi}$$

Displacements are constrained at the plane of symmetry in the direction normal to the plane of symmetry (y direction), along a vertical line through the origin in the x direction, and at a single node on the bottom of the cask lower plate in the z direction.

5.0 Cover Bolt Calculations

An initial strain of 0.004 inches was applied to the bolts in the final elastic-plastic analyses. This strain was determined to result in a bolt pre-load of 1,467 lb for ambient conditions. This pre-load corresponds to a torque of 165 in-lbs from the following relationship:

T = K*D*F

Where T = the applied torque

K =the nut factor (0.3, Reference 21)

D = the nominal bolt diameter = 3/8 inch

F = the bolt tension force

The 1,467 lb load in the bolts corresponds to a stress of 19 ksi for a stress area of 0.0773 in² (Reference 23 for 3/8 inch bolts)

$$S_{pl} = \frac{1467}{0.0773} = 19 \text{ ksi}$$

XMPR		
Prepared By	Checked By	Page: 8 Revision: 0
	Prepared By	

Other potential loads on the bolts are dead weight and pressure. These loads were not applied in the finite element model but are evaluated below. The weight of the cover assembly is 30 lbs (Reference 13). This weight results in load of 5 lbs and a stress of 0.065 ksi in each of the 6 bolts.

$$S_{dw} = \frac{30}{6(0.0773)} = 0.065 \text{ ksi}$$

If the neoprene gasket does not fail, the 55 psi internal pressure is applied on a area conservatively corresponding to the bolt circlé diameter of 5.5 inches. This results in a load of 218 lbs and a stress of 2.8 ksi for each bolt.

ŝ

$$L_{p} = \frac{55\frac{\pi}{4}(5.5)^{2}}{6} = 218 \text{ lbs} \qquad S_{p} = \frac{55\frac{\pi}{4}(5.5)^{2}}{6(0.0773)} = 2.8 \text{ ksi}$$

6.0 Results

6.1 Thermal

Figures 12 through 16 show temperature profiles in the shipping cask at selected times during the temperature transient. At two minutes into the transient (Figure 13) the fins on the outside of the shipping cask have heated up to nearly 1300 °F while the inside of the shipping cask is still relatively cool. By 30 minutes, the shipping cask has nearly reached an equilibrium temperature of 1475 °F. The depleted uranium shielding in the cover is the last component to heat up.

6.2 Stress

Figures 17 through 23 show contours of stress intensity in the shipping cask at selected times during the temperature transient. These stresses were calculated with elastic material properties and do not include pressure loads or bolt pre-load. This phase of the analysis was used to identify the time of maximum thermal stress. The maximum thermal stress intensity occurs at 2 minutes and is located in the outer tip of the fin at its attachment to the lower plate on the plane of symmetry.

The stress in the fin and lower plate results from the expansion of the hot fin which is restrained by the cooler cask and lower plate. The maximum calculated elastic stress of 135 ksi occurs where the bending reinforcement provided by the lower plate is a minimum at the plane of symmetry. This maximum stress would not occur in an actual cask subjected to the specified thermal conditions because the stainless steel shell material would yield and relieve the stress. These

XMPR		MPR Associates, Ind 320 King Street Alexandria, VA 223	
Calculation No.	Prepared By	Checked By	Page: 9
420-004-EBB-1	E.S. bad	C. Rice	Revision: 0

thermal expansion stresses are secondary and do not occur in the material that forms the pressure boundary around the depleted uranium.

High stresses also occur in the cover periphery. The depleted uranium shielding in the cover causes the center of the cover to heat up more slowly than the periphery. This temperature difference results in a hoop stress in the cover.

To obtain a more realistic picture of the stress and strain condition in the cask, the stress pass was repeated at the time of maximum elastic thermal stress, 2 minutes, with elastic-plastic material properties. Pressure and bolt pre-load were included in this pass. Figures 3 and 4 show contours of stress intensity and total (elastic + plastic) strain. The maximum stress is reduced from 135 ksi to 26 ksi due to yielding in the material. The maximum calculated strain is less than 5%. Material testing shows that 304 stainless steel at 1475 °F will not rupture until the strain reaches 40 to 50% (Reference 22). Consequently, a strain of less than 5% is judged to be acceptable.

An additional elastic-plastic stress pass was made at a time of 30 minutes to confirm that there is sufficient material strength at the highest temperatures to react the primary pressure loads. Figure 24 shows that the stress results are bounded by the stresses at 2 minutes. The maximum calculated total strain at 30 minutes is also less than 5%.

As discussed in Attachment 2, the analyses reported in this calculation were performed using a curve fit for the uranium and copper material properties which slightly under-predicted the heat capacity of the material at low temperatures. Scoping analyses performed using linear interpolation of the available material properties indicate that the time of maximum stress remains at about 2 minutes into the transient. The curve fit material properties result in a maximum elastic stress about 8% lower than that predicted using linear interpolation of the data. The maximum strain calculated in an elastic-plastic analysis is similarly expected to be no more than 8% greater than that shown in Figure 4, i.e. less than 5%.

6.3 Cover Bolts

The stress and load in the cover bolts were evaluated for the elastic-plastic stress passes. These evaluations show that the stress and load in the bolts was lower at high temperature than under cold pre-load conditions. The load decreases at high temperature because the stainless steel bolt expands more than the joint formed by the cover plate, gasket and shell.

The decrease in load more than offsets any potential load due to internal pressure if the gasket does not rupture or deadweight of the cover. At 2 minutes, the load in each bolt decreases from 1,467 lb to 114 - 176 lbs (the three bolts have different loads). This decrease in load of more than 1,000 lbs more than offsets the 5 lb load due to dead weight or the 218 lb potential pressure load.

MMPR				MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
	Calculation No. Prepared By		Prepared By	Checked By	Page: 10
	420-	004-EBB-1	E.B.Bud	C. Rue	Revision: 0
7.0		bolts are adequate f	or the thermal accident con	ditions and will retain the cov	ver in place.
	1.		ig the Solaris 7 operating sy	rogram, Version 5.6 installed stem. The ANSYS installation	
	2.	AEA Drawing No.	D70202, Isotope Shipping	Container, Rev. K	
	3.	AEA Drawing No.	D70202-1, Outside Shell, I	Rev. N	
	4.	AEA Drawing No.	D70202-2, Uranium Shield	l, Rev. C	、
	5.	AEA Drawing No.	C70202-3, Inner Liner, Re	v. H	
	6.	AEA Drawing No.	A70202-4, Copper Spacer,	Rev. A	
	7.	AEA Drawing No.	A70202-5, Copper Spacer,	Rev. A	
	8.	AEA Drawing No.	A70202-6, Copper Spacer,	Rev. A	
	9.	AEA Drawing No.	A70202-7, Copper Spacer,	Rev. A	
	10.	AEA Drawing No.	A70202-8, Copper Spacer,	Rev. B	
	11.	AEA Drawing No.	A70202-9, Copper Spacer,	Rev. A	
	12.	AEA Drawing No.	A70202-10, Copper Space	r, Rev. B	
	13.	AEA Drawing No.	B70203, Cover Assembly,	Rev. F	
	14.	AEA Drawing No.	B70203-1, Cover Outer Sh	ell, Rev. E	
	15.	AEA Drawing No.	B70203-2, Cover Top Plate	e, Rev. G	
	16.	AEA Drawing No.	B70203-4, Cover Shielding	g, Rev. C	
	17.			., Nuclear Systems Materials teels, Section 2 - 304 SS Ann	
	18.		Hill (Properties for Copper	I. (Eds.), Handbook of Heat and Uranium obtained from (
	19.	Metals Handbook,	Volume 2, Tenth Edition, 1	990.	
	20.	Mark, J.E., Erman 1994.	, B., and Eirich, F.R., Scien	ce and Technology of Rubber	, Second Edition,

MPR			MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No.	Prepared By	Checked By	
420-004-EBB-1	E.S. And	C.Ree	Revision: 0
21. Bickford J. H., a	nd Nassar, S., Handbook o	f Bolts and Bolted Joints.	
	tural Metals Handbook, 19		
•	ing Handbook, seventh edit		
	•	•	
	• •	,	
		· · · · · · · · · · · · · · · · · · ·	
		•	

· •

:-

i

į

ł

. . .

Figure 1: Isometric View of Model 702 Transport Package

Figure 2: Model 702 Transport Package Schematic

,				320 King S	ociates, Inc. Street a, VA 22314
C	Calculation No.	Prepared By	Checked E	By	Page: 37
	420-004-EBB-1	E. S. hud	Checked E C. Rice		Revision: 0
	A	ttachment 1: Geometric K	Sevocint Coordinates		
			copposite Coordinates		
		••			
	4				
		• ,			
	•				
· • • •				•	

r

LIST ALL SELECTED KEYPOINTS. DSYS=

		TARMATAN		VDGTGE	NODE	-	Mam	REAL	TYP	ESYS
NO.		LOCATION	^	KESIZE 0.	NODE 3685	615M 0	0	UA37	119	LS15 0
2	0.	0.	0.	0.300	3923	0	0	0	0	0
4	4.50	0.	0.			0	0	0	0	· 0
5	0.	0.	0.375	0.	2661 3929	0	0	0	0	0
6	4.50	0.	0.375	0.300		0	0	0	0	0
10	3.50	0.	0.	0.	3418	-	0	0	0	0
12	3.50	0.	0.375	0.	2801	0	. 0	0	0	0
16	. 2.27	0.	0.	0.	3446	0	0	-	0	0
18	2.27	0.	0.375	0.	2788	0	-	0	-	•
22	1.27	0.	0.	0.	3605	0	0	0	0	0
24	1.27	0	0.375	. 0.	2662	0	0	0	0	0
27	3.72	0.	0	0.300	3087	0	0	0	0	-
28	3.54	0.	0.	0.300	3088	0	0	0	-	0
31	3.72	0.	10.6	0.	6543	0	0	0	0	0
38	3.54	0	10.6	0.	10391	0	0	0	0	0
39	3.72	0.	0.438	0.	6589	0	0	0	0	0
40	3.54	0.	0.438	0.	2349	0	0	0	0	· 0
43	3.72	0.	9.81	0.	6551	0	0	0	0	0
46	3.54	0.	9.81	0.	2440	0	0	0	0	0
47	0.	0.	0.438	0.	1	0	0	0	•	
48	3.50	-0.563E-15	0.438	0.	841	0	0	0	0	0
NO.	X,Y,Z	LOCATION		KESIZE	NODE		MAT	REAL	TYP	ESYS
51	3.72	<u></u> 0.	6.88	0.	6567	0	0	0	0	0
54	3.54	.0.	6.88	0.	2531	0	0	0	0	0
55	3.72	0.	0.375	0.300	3090	0	0	0	0	0
56	3.54	0.	0.375	0.300	3092	0	0	0	0	0
59	3.72	0.	2.69	0.	6587	0	0	0	0	0
62	3.54	0.	2.69	0.	2362	0	0	0	0	0
63	3.72	0.	2.90	0.	6585	0	0	0	0	0
64	3.54	0.	2.90	0.	2648	0	0	0	0	0
67	3.72	0.	3.02	0.	6569	0	0	0	0	0
70	3.54	0.	3.02	0.	2518	0	0	0	0	0
71	3.72	0.	7.06	0.	6565	0	0	0	0	0
72	3.54	0.	7.06	0.	2635	0	0	0	0	0
75	3.72	0.	7.18	0.	6553	0	0	0	0	0
78	3.54	0.	7.18	0.	2427	0	0	0	0	0
121	3.50	-0.563E-15	2.69	0.	842	0	0	0	0	0
125	0.	0.	2.69	0.	193	0	0	0	0	0
128	4.12	0.	10.6	0.	6539	0	0	0	0	0
129	4.50	0.	10.2	0.	6489	0	0	0	0	0
242	1.27	-0.204E-15	0.438	0.	2	0	0	0	0	0
244	3.50	-0.563E-15	6.88	0.	1492	0	0	0	0	0
NO.	x,y,z	LOCATION		KESIZE	NODE			REAL		ESYS
247	1.27	-0.204E-15	6.88	0.	2141	0	0	0	Q	0
248	3.50	-0.563E-15	2.90	0.	1556	0	0	0	0	0
249	1.27	-0.204E-15	2.90	0.	2089	0	0	0	0	0
252	3.50	-0.563E-15	3.02	0.	1777	0	0	0	0	0
255	1.27	-0.204E-15	3.02	0.	2117	0	0	0	0	0
256	2.27	-0.365E-15	0.438	0.	763	0	0	0	0	0
258	3.50	-0.563E-15	9.81	0.	1127	0	0	0	0	· 0
261	2.27	-0.365E-15	9.81	0.	1133	0	0	0	0	0
262	3.50	-0.563E-15	7.06	0.	1439	0	0	0	0	0

0

		· · ·									
		•									۰.
263	2.27	-0.365E-15	7.06	0.	1440	0	0	0	0	0	
266	3.50	-0.563E-15	7.18	0.	1075	0	0	0	0	0	
269	2.27	-0.365E-15	7.18	0.	1091	0	0	0	0	0	
271	1.27	-0.204E-15	2.69	0.	133	0	0	- 0	0	0	
272	2.27	-0.365E-15	2.69	0.	781	0	0	0	0	0	
274	2.27	-0.365E-15	6.88	0.	1507	0	0	0	0	0	
276	2.27	-0.365E-15	2.90	<u>,</u> 0.	1544	0	0	0	0	0	•
278	2.27	-0.365E-15	3.02	0.	1681	0	0	0	0	0	
280	0.	0.	2.90	0.	13878	0	0	0	0	0	
281	1.24	-0.200E-15	2.90	0.	2853	0	0	0	0	0	
283	1.24	-0.200E-15	3.02	0.	2867	0	0	0	0	0	
NO.	X,Y,Z	LOCATION		KESIZE	NODE	ELEM	мат	REAL	TYP	ESYS	
285	0.	0.	3.02	0.	13848	0	0	0	0	0	
286	1.12	-0.181E-15	2.90	. 0.	13880	0	0	0	Ō	0	
288	1.24	-0.200E-15	7.18	0.	13512	Ō	Ō	Ō	0	0	
291	1.12	-0.181E-15	7.18	0.	14011	Ō	Ō	Ō	Ō	Õ	
292	1.24	-0.200E-15	6.88	0.	2879	Ō	Ō	Ō	Ō	Ō	
295	1.12	-0.181E-15	6.88	0.	13625	0	ō	Ō	Ō	Õ	
296	2.25	-0.361E-15	7.06	0.	2983	õ	ō	ō	ŏ	Ő	
297	1.12	-0.181E-15	7.06	0.	13973	Õ	Ō	Ō	Ő	0	
300	2.25	-0.361E-15	7.18	0.	2997	Õ	Ō	Ő	Ō	Ō	
302	2.14	-0.344E-15	7.06	0.	13439	0	Ō	Ō	Ō	Õ	
304	2.25	-0.361E-15	10.6	0.	13022	Ő	Ō	ō	ō	Õ	
307	2.14	-0.344E-15	10.6	0.	13058	õ	ŏ	ŏ	ō	ō	
308	2.25	-0.361E-15	9.81	0.	3009	0	ō	ō	Ō	ō	
311	2.14	-0.344E-15	9.81	0.	13182	Ő	õ	ŏ	õ	ō	
312	3.72	-0.598E-15	10.0	0.	6549	Ő	ŏ	0	õ	ō	
313	2.14	-0.344É-15	10.0	0.	14096	Ő	ŏ	ŏ	õ	Ő	
316	2.75	-0.442E-15	10.0	0.	10455	ő	ŏ	ŏ	ŏ	Ő	
318	2.75	-0.442E-15	10.6	0.	13002	ő	ŏ	ő	õ	0	
323	3.54	0.	10.1	0.	10435	Ő	ŏ	ő	ŏ	0	
328	3.72	-0.598E-15	10.1	0.	6545	0	ŏ	ŏ	ŏ	ŏ	
NO	v v 7	LOCATION		KESIZE	NODE	FT.FM	M۵ጥ	REAL	mvρ	ESYS	
329	2.14	-0.344E-15	10.1	CESIZE	13067	606M 0	0	0	0	E313 0	
333	1.14	-0.181E-15	3.02	0.	13627	0	0	0	0	0	
334	1.12	-0.200E-15	7.06	0.	13440	0	0	0 0	0	0	
336	1.24 2.14	-0.344E-15	7.18	0.	13440	0	0	0	0	0	
339	2.14 2.25	-0.344E-15	10.1	0.	13184	0	0	0 0	0	0	
343	2.25	-0.442E-15	10.1	0.	10451	0	0	0	0	0	
343	2.75	-0.442E-15 -0.361E-15	10.1	0.		0	0	0	0	0	
352	2.25 3.54				13146		0	0		0	
352 379		0.	10.0	0.	10457	0			0		
379	0. 1.11	0. -0.179E-15	6.31	0.	20023	0	0 0	0 0	0 0	0 0	
382	1.11 1.11	-0.179E-15	6. 3 1	0.	20278	0 0	0	0	0	0	
384	0.	-0.179E-15	6.43	0.	20266		0	0	0		
	•		6.43	0.	20030	0				0	
385	0.	0. 0 1500 15	10.3	0.	19787	0	0	0	0	0	
386	0.990	-0.159E-15	6.31	0.	20102	0	0	0	0	0	
388	0.990	-0.159E-15	6.43	0.	20096	0	0	0	0	0	
390	2.12	-0.341E-15	10.3	0.	20214	0	0	0	0	0	
392	1.02	-0.164E-15	6.31	0.	20279	0	0	0	0	0	
394	2.12	-0.341E-15	10.9	0.	21009	0	0	0	0	0	
395	1.11	-0.179E-15	7.43	0.	20336	0	0	0	0	0	
398	1.02	-0.164E-15	7.43	0.	20318	0	0	0	0	0	
NO.	X,Y,Z	LOCATION		KESIZE	NODE	ELEM	MAT	REAL	TYP	ESYS	
											•

			•										
	400	ο.	0.	10.9		0.	20876	0	0	0	0	0 [`]	
(400	0.	0.	10.7		0.	19986	0	0	0	0	0	
	402	3.25	-0.523E-15	10.7		0.	20971	· 0	0	0	0	0	
	403	1.11	-0.179E-15	6.44		0.	20408	0	0	0	0	0	
	406	1.02	-0.164E-15	6.44		0.	20414	0	0	0	0	0	
	407	2.12	-0.341E-15	7.31		0.	20382	0	0	0	0	0	
	408	1.02	-0.164E-15	7.31		0.	20324	0	0	0	0	. 0	
	411	2.12	-0.341E-15	7.43		[.] 0.	20370	0	0	0	0	0	
	414	3.25	-0.523E-15	10.9		0.	20989	0	0	0	0	0	
	415	2.00	-0.321E-15	7.31		0.	20474	0	0	. 0	0	0	•
	419	2.00	-0.321E-15	7.43		0.	20486	0	0	0	0	0	
	422	2.75	-0.442E-15	10.7		0.	20977	0	0	0	0	0	
	424	2.02	-0.325E-15	7.31		0.	20383	0	0	0	0	0	
	426	2.75	-0.442E-15	10.9		0.	20983	0	0	0	0	0	
	427	0.	0. ~	9.70	·	0.	19793	0	0	0	0	0	
	428	2.12	-0.341E-15	9.70		0.	20694	0	0	0	0	0	
	430	2.02	-0.325E-15	10.9		0.	21027	0	0	0	0	0	
	433	2.02	-0.444E-15	10.7		0.	20226	0	0	0	0	0	
	435	2.12	-0.341E-15	7.45		0.	20588	0	0	0	0	0	
	438	2.02	-0.325E-15	7.45		0.	20618	0	0	0	0	0	
	NO	x v 7	LOCATION			KESIZE	NODE	ELEM	MAT	REAL	TYP	ESYS	
	439	2.02	-0.444E-15	10.3		0.	20227	0	0	0	0	0	
	443	2.12	-0.341E-15	9.69		0.	20582	0	0	0	0	0	
	446	2.02	-0.325E-15	9.69		0.	20624	0	0	0	0	0	
	447	1.02	-0.222E-15	6.43		0.	20272	0	0	0	0	0	
	449	1.11	-`0.222E-15	7.31		Ο.	20330	0	0	0	0	0	
	451	2.02	-0.444E-15	7.43		Ο.	20376	0	0	0	0	0	
	456	2.12	-0.444E-15	10.7		0.	20220	0	0	0	0	0	
	459	Ο.	0.	6.44		0.	21073	0	0	0	0	0	
	460	0.990	-0.159E-15	6.44		0.	21109	0	0	0	0	0	
	462	0.990	-0.222E-15	10.3		0.	19835	0	0	0	0	0	
	463	2.00	-0.321E-15	9.70		0.	20740	0	0	0	0	0	
	465	2.00	-0.321E-15	10.9		0.	21040	0	0	0	0	0	
	469	0.990	-0.159E-15	9.70		0.	19805	0	0	0	0	0	
	471	0.990	-0.159E-15	10.9		0.	20913	0	0	0	0	0	
	475	1.11	-0.179E-15	9.70		0.	20746	0	0	0	0	0	
	477	1.11	-0.179E-15	10.9		0.	21046	0	0	0	0	0	
	479	0.990	-0.222E-15	10.7		0.	20156	0	0	0	0	0	
	483	2.00	-0.444E-15	10.7		0.	20674	0	0	0	0	Ò	
	484	2.02	-0.222E-15	9.70		0.	20700	0	0	0	0	0 0	
	486	2.00	-0.444E-15	10.3		0.	20668	0	0	0	0	U	
	NO	X.Y.7	LOCATION			KESIZE	NODE	ELEM	MAT	REAL	TYP	ESYS	
	488	1.11	-0.222E-15	10.3		0.	20758	0	0	0	0	0	
	491	1.11	-0.222E-15	10.7		0.	20838	0	0	0	0	0	
	494	0.990	-0.159E-15	9.69		0.	21146	0	0	0	0	0	
	496	· 0.	0.	9.69		0.	21139	0	0	0	0	0	
	497	0.990	-0.159E-15	7.31		0.	21241	0	0	0	0	0	
	499	0.	0.	7.31		0.	21362	0		0	.0	0	
	500	ů.	0.	7.45		0.	21422	0	0	0	0	0	
	501	2.00	-0.321E-15	7.45		0.	21274	0		0	0	0	
	503	2.00	-0.321E-15	9.69		0.	21215	0	0	0	0	-	
	505	1.11	-0.179E-15	7.45		ο.	21280	0	0	0	0	0	
	507	1.11	-0.179E-15	9.69		Ο.	21209	0	0	0	0		
	509	0.990	-0.111E-15	7.45		Ο.	21457	0	0	0	0	. 0	

.

.

	•	MPR Associates, Inc. 320 King Street Alexandria, VA 22314				
Calculation No.	Prepared By	Checked By	Page: 3			
420-004-EBB-1	E. K. Kud	C. Que	Revision: 0			
The material properties liste	Attachment 2: Material	on linear interpolation of the a	vailable data and			
the thermal transport proper copper. The results reporte the heat capacity of the mat results was evaluated. It was clastic stress about 8% less	rties (density, specific heat, a d in this calculation are based erial at lower temperatures. as determined that the use of	e. Initially, polynomial curve f nd thermal conductivity) for us d on the curve fits which slight The impact of this modelling a the curve fits resulted in a max near interpolation of the data. tic-plastic analyses.	ranium and tly under-predict approach on the ximum calculated			
r v						
-	- -					
		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			

		•	
, LIST MATERIALS PROPERTY= ALL	1 то	4 BY	1
PROPERTY TABLE I	EX MAT= DATA	1 NUM. TEMPERATURE	POINTS

						•	
;		*					
LIST MATERIALS PROPERTY= ALL		4 BY	1				
PROPERTY TABLE	EX MAT=	1 NUM	. POINTS= 17				
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA		
70.000	0.28120E+0	8 200.00	0.27620E+08	300.00	0.27160E+08	•	
400.00	0.26640E+0	8 500.00	0.26070E+08	600.00	0.25440E+08		
700.00	0.24770E+0	8 800.00	0.24060E+08	900.00	0.23310E+08		
1000.0	0.22530E+0	8 1100.0	0.21720E+08		0.20890E+08		
1300.0	0.20030E+08	8 1400.0	0.19170E+08	1500.0	0.18300E+08		
1600.0	0.17420E+0	8 1700.0	0.16540E+08				
PROPERTY TABLE	NUXY MAT=	1 NUM			D3 Ø3	·	

TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.26390	200.00	0.27110	300.00	0.27610
400.00	0.28080	500.00	0.28510	600.00	0.28920
700.00	0.29310	800.00	0.29700	900.00	0.30080
1000.0	0.30460	1100.0	0.30860	1200.0	0.31270
1300.0	0.31710	1400.0	0.32170	1500.0	0.32680
1600.0	0.33240	1700.0	0.33840		

PROPERTY TABLE	ALPX MAT= " 1 NUM	. POINTS= 17	
TEMPERATURE	DATA TEMPERATURE	DATA TEMPERATURE	DATA
70.000	0.84810E-05 200.00	0.87860E-05 300.00	0.89980E-05
400.00	0.91930E-05 500.00	0.93710E-05 600.00	0.95340E-05
700.00	0.96840E-05 800.00	0.98230E-05 900.00	0.99510E-05
1000.0	0.10070E-04 1100.0	0.10180E-04 1200.0	0.10290E-04
1300.0	0.10390E-04 1400.0	0.10490E-04 1500.0	0.10590E-04
1600.0	0.10690E-04 1700.0	0.10790E-04	
PROPERTY TABLE	DENS MAT= 1 NUM	POINTS= 17	
TEMPERATURE	DATA TEMPERATURE	DATA TEMPERATURE	DATA
70.000	0.29020 200.00	0.28900 300.00	0.28800

PROPERTY TABLE	DENS MAT=	1 NUM.	POINTS= 17	
TEMPERATURE	DATA	TEMPERATURE	DATA TEMPERATURE	DATA
70.000	0.29020	200.00	0.28900 300.00	0.28800
400.00	0.28710	500.00	0.28620 600.00	0.28530
700.00	0.28430	800.00	0.28340 900.00	0.28250
1000.0	0.28150	1100.0	0.28060 1200.0	0.27970
1300.0	0.27880	1400.0	0.27780 1500.0	0.27690
1600.0	0.27600	1700.0	0.27500	
PROPERTY TABLE	KXX MAT=	1 NUM.	POINTS= 17	
TEMPERATURE	DATA	TEMPERATURE	DATA TEMPERATURE	DATA
70.000	0.19840E-0	3 200.00	0.21520E-03 300.00	0.22750E-03

PROPERTY TABLE	KXX MAT=	1 NUM	. POINTS= 17		
TEMPERATURE	DATA	TEMPERATURE	DATA TEMPERATUR	RE DATA	
70.000	0.19840E-03	200.00	0.21520E-03 300.00	0.22750E-03	
400.00	0.23950E-03	500.00	0.25110E-03 600.00	0.26240E-03	
700.00	0.27330E-03	800.00	0.28400E-03 900.00	0.29450E-03	
1000.0	0.30480E-03	1100.0	0.31490E-03 1200.0	0.32480E-03	
1300.0	0.33470E-03	1400.0	0.34450E-03 1500.0	0.35430E-03	
1600.0	0.36410E-03	1700.0	0.37390E-03		

PROPERTY TABLE	C MAT=	1 NUM.	POINTS=	17	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.11410	200.00	0.12020	300.00	0.12410
400.00	0.12740	500.00	0.13020	600.00	0.13260
700.00	0.13470	800.00	0.13640	900.00	0.13800
1000.0	0.13950	1100.0	0.14100	1200.0	0.14260
1300.0	0.14430	1400.0	0.14620	1500.0	0.14850
1600.0	0.15110	1700.0	0.15420		
PROPERTY TABLE			POINTS=	17	
TEMPERATURE	DATA	TEMPERATURE	מדאמ	TEMPERATURE	ከልጥል

PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0	EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1 NUM. TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0	POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	17 TEMPERATURE 300.00 600.00 900.00 1200.0 1500.0	DATA 1.0000 1.0000 1.0000 1.0000 1.0000
PROPERTY TABLE TEMPERATURE	DATA	1 NUM. TEMPERATURE	POINTS= DATA	TEMPERATURE	DATA
70.000 400.00	70.000 70.000	200.00 500.00	70.000 70.000	300.00	70.000 70.000

700.00	70.000	. 800.00	70.000	900.00	70.000
1000.0	70.000	1100.0	70.000	1200.0	70.000
	70.000	1400.0	70.000	1500.0	70.000
1300.0	•			1300.0	70.000
1600.0	70.000	1700.0	70.000		
		•			
PROPERTY TABLE		2 NUM			
TEMPERATURE		TEMPERATURE	DATA	TEMPERATURE	DATA
77.000	0.29500E+08	212.00	0.26100E+	+08 392.00	0.22200E+08
572.00	0.18600E+08	752.00	0.14300E+	08 932.00	0.10100E+08
1112.0	0.57800E+07	1220.0	0.33700E+	07 1231.0	0.57800E+07
1292.0	0.50600E+07		0.83900E+	+06 1472.0	0.83900E+06
PROPERTY TABLE	NUXY MAT=	2 NUM.	. POINTS=	17	
TEMPERATURE	*****	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.22000	200.00	0.22000	300.00	0.22000
				600.00	0.22000
400.00	0.22000	500.00	0.22000		
700.00	0.22000	800.00	0.22000	900.00	0.22000
1000.0	0.22000	1100.0	0.22000	1200.0	0.22000
1300.0	0.22000		0.22000	1500.0	0.22000
1600.0	0.22000	1700.0	0.22000		
PROPERTY TABLE	ALPX MAT=	2 NUM	POINTS=	5	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
77.000	0.66700E-05	1161.0	0.15600E-	-04 1341.0	0.15600E-04
1656.0	0.11100E-04	2061.0	0.11100E-	-04	
PROPERTY TABLE	DENS MAT=	2 NUM	. POINTS=	17	
TEMPERATURE		TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.68910	200.00	0.68680	300.00	0.68500
				600.00	0.67920
400.00	0.68320	500.00	0.68130		
700.00	0.67690	800.00	0.67460	900.00	0.67210
1000.0	0.66930	1100.0	0.66490	1200.0	0.66050
1300.0	0.65600	1400.0	0.65220	1500.0	0.64860
1600.0	0.64520	1700.0	0.64160		
	٠				
PROPERTY TABLE	KXX 'MAT=	2 NUM	. POINTS=	17	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.35710E-03	200.00	0.40210E-	-03 300.00	0.41600E-03
400.00	0.43340E-03	500.00	0.45130E-	-03 600.00	0.47010E-03
700.00	0.49320E-03	800.00	0.51780E-	-03 900.00	0.54180E-03
			0.56110E-	-03 1200.0	0.60400E-03
1000.0	0.301208-03	1100.0			
1000.0	0.56120E-03 0.60370E-03				
1300.0	0.60370E-03	1400.0	0.60390E-	-03 1500.0	0.60450E-03
		1400.0		-03 1500.0	
1300.0 1600.0	0.60370E-03 0.60490E-03	1400.0 1700.0	0.60390E- 0.60530E-	-03 1500.0 -03	
1300.0 1600.0 PROPERTY TABLE	0.60370E-03 0.60490E-03 C MAT=	1400.0 1700.0 2 NUM	0.60390E- 0.60530E- . POINTS=	-03 1500.0 -03 17	0.60450E-03
1300.0 1600.0 PROPERTY TABLE TEMPERATURE	0.60370E-03 0.60490E-03 C MAT= DATA	1400.0 1700.0 2 NUM TEMPERATURE	0.60390E- 0.60530E- . POINTS= DATA	-03 1500.0 -03 17 TEMPERATURE	0.60450E-03 DATA
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00	0.60390E- 0.60530E- . POINTS= DATA 0.29100E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00	0.60450E-03 DATA 0.30100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00	0.60390E- 0.60530E- . POINTS= DATA 0.29100E- 0.32900E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00	0.60450E-03 DATA 0.30100E-01 0.34300E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.36200E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00	0.60390E- 0.60530E- . POINTS= DATA 0.29100E- 0.32900E- 0.38100E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00	DATA 0.30100E-01 0.34300E-01 0.40000E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.36200E-01 0.41600E-01	1400.0 1700.0 Z NUM TEMPERATURE 200.00 500.00 800.00 1100.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0	DATA 0.30100E-01 0.34300E-01 0.40000E-01 0.42100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.36200E-01 0.41600E-01 0.42400E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0	DATA 0.30100E-01 0.34300E-01 0.40000E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.36200E-01 0.41600E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0	DATA 0.30100E-01 0.34300E-01 0.40000E-01 0.42100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.43500E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01	DATA 0.30100E-01 0.34300E-01 0.40000E-01 0.42100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT=	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01	DATA 0.30100E-01 0.34300E-01 0.40000E-01 0.42100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT=	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.43500E-	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01	DATA 0.30100E-01 0.34300E-01 0.40000E-01 0.42100E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT=	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.43500E- . POINTS=	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42500E- 0.43500E- . POINTS= DATA 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE	DATA DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 DATA
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42500E- 0.43500E- . POINTS= DATA 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- . POINTS= DATA 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.43500E- . POINTS= DATA 1.0000 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.43500E- . POINTS= DATA 1.0000 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00 1200.0 1500.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.42200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT=	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 900.00 1200.0 1500.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.0000 1.00000 1.00000 1.00000 1.00000 1.00000	03 1500.0 03 17 TEMPERATURE 01 300.00 01 600.00 01 900.00 01 1200.0 01 1500.0 01 17 TEMPERATURE 300.00 600.00 900.00 1200.0 1500.0 17 TEMPERATURE	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1400.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.500E- 0.43500E- 0.43500E- 0.500E- 0.43500E- 0.43500E- 0.43500E- 0.500E- 0.43500E- 0.43500E- 0.500E- 0.43500E- 0.43500E- 0.500E- 0.500E- 0.43500E- 0.5	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 1200.0 1500.0 17 TEMPERATURE 300.00	DATA 0.30100E-01 0.4300E-01 0.42100E-01 0.42100E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1400.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.00000 0.0000 0.0000 0.00000 0.000000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 17 TEMPERATURE 300.00 600.00	DATA 0.30100E-01 0.44000E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1600.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 800.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.00000 0.000000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00	DATA 0.30100E-01 0.44000E-01 0.42100E-01 0.42900E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1400.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.00000 0.0000 0.0000 0.00000 0.000000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 600.00 -01 900.00 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 17 TEMPERATURE 300.00 600.00	DATA 0.30100E-01 0.44000E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1600.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.36200E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 800.00	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.38100E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.00000 0.000000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00	DATA 0.30100E-01 0.44000E-01 0.42100E-01 0.42900E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1000.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.42700E- 0.43500E- 0.43500E- DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000
1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 700.00 1000.0 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1300.0 1600.0 PROPERTY TABLE TEMPERATURE 70.000 400.00 1000.0 1300.0 1300.0	0.60370E-03 0.60490E-03 C MAT= DATA 0.27900E-01 0.31500E-01 0.41600E-01 0.42400E-01 0.43200E-01 EMIS MAT= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 REFT MAT= DATA 70.000 70.000 70.000 70.000 70.000	1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 1700.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0 2 NUM TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	0.60390E- 0.60530E- DATA 0.29100E- 0.32900E- 0.32900E- 0.41900E- 0.42700E- 0.42700E- 0.43500E- POINTS= DATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 70.000 70.000 70.000	-03 1500.0 -03 17 TEMPERATURE -01 300.00 -01 900.00 -01 1200.0 -01 1200.0 -01 1500.0 -01 17 TEMPERATURE 300.00 600.00 1500.0 17 TEMPERATURE 300.00 600.00 900.00 1200.0	DATA 0.30100E-01 0.34300E-01 0.42100E-01 0.42100E-01 0.42900E-01 0.42900E-01 DATA 1.0000 1.0000 1.0000 1.0000 1.0000 70.000 70.000 70.000 70.000

.

PROPERTY TABLE			. POINTS=			
TEMPERATURE		MPERATURE	DATA	TEMPERATURE	DATA	
70.000	1000.0	200.00	1000.0	300.00	1000.0	
400.00	1000.0	500.00	1000.0	600.00	1000.0	
700.00	1000.0	800.00	1000.0	900.00	1000.0	
1000.0	1000.0	1100.0	1000.0	1200.0	1000.0	
1300.0	1000.0	1400.0	1000.0	1500.0	1000.0	
1600.0	1000.0	1700.0	1000.0	1000.0	1000.0	
PROPERTY TABLE	NILLY MAT-	3 NIIM	POINTS=			
TEMPERATURE		MPERATURE	DATA	TEMPERATURE	DATA	
70.000	0.30800	200.00	0.30800	300.00	0.30800	
	0.30800	500.00				
			0.30800	600.00	0.30800	
700.00	0.30800	800.00	0.30800	900.00	0.30800	
1000.0	0.30800	1100.0	0.30800	1200.0	0.30800	
1300.0	0.30800	1400.0	0.30800	1500.0	0.30800	
1600.0	0.30800	1700.0	0.30800			
PROPERTY TABLE		3 NŬM.	POINTS=		•	
TEMPERATURE		MPERATURE	DATA	TEMPERATURE	DATA	
68.000	0.92800E-05		0.96100E-0	05 261.00	0.97800E-05	
441.00	0.10170E-04	621.00	0.10500E-0	04 801.00	0.10890E-04	
981.00	0.11330E-04 ···	1521.0	0.13110E-0	04 1701.0	0.13780E-04	
PROPERTY TABLE	DENS MAT=	3 NUM.	POINTS=	17		
TEMPERATURE		MPERATURE	DATA	TEMPERATURE	DATA	
70.000	0.32270	200.00	0.32150	300.00	0.32060	
400.00			0.31870	600.00	0.31770	
700.00	0.31670	800.00	0.31570	900.00	0.31460	
1000.0			0.31240	1200.0	0.31120	
1300.0		1400.0	0.31240	1500.0	0.30780	
1600.0		1700.0	0.30560	1300.0	0.00/00	
	`			·		
PROPERTY TABLE	•		POINTS= :			
TEMPERATURE		MPERATURE	DATA	TEMPERATURE	DATA	
70.000	0.55190E-02			2 300.00	0.51990E-02	
400.00	0.52560E-02			02 600.00	0.50360E-02	
700.00	0.50970E-02			02 900.00	0.46550E-02	
1000.0	0.46810E-02		0.46530E-0	02 1200.0	0.46330E-02	
1300.0	0.46090E-02	1400.0	0.46480E-0	02 1500.0	0.47290E-02	
1600.0	0.42690E-02	1700.0	0.43440E-0)2		
PROPERTY TABLE	C MAT=	3 NUM.	POINTS=	17		
TEMPERATURE	DATA TE	MPERATURE	DATA	TEMPERATURE	DATA	
70.000	0.92000E-01	200.00	0.93800E-0	1 300.00	0.95100E-01	
400.00		500.00		01 600.00	0.10230	
700.00		800.00	0.10500	900.00	0.10600	
1000.0		1100.0	0.10680	1200.0	0.10670	
1300.0		1400.0	0.10790	1500.0	0.11010	
1600.0		1700.0	0.11460	1500.0	0.11010	
		3 ·····		2		
PROPERTY TABLE TEMPERATURE		3 NUM. MPERATURE	POINTS= 1 DATA	TEMPERATURE	DATA	
70.000		200.00	1.0000	300.00	1.0000	
400'.00	1.0000	500.00				
			1.0000	600.00	1.0000	
700.00	1.0000		1.0000	900.00	1.0000	
1000.0		1100.0	1.0000	1200.0	1.0000	
1300.0		1400.0	1.0000	1500.0	1.0000	
1600.0	1.0000	1700.0	1.0000			
PROPERTY TABLE	REFT MAT=	3 NUM.	POINTS= :	17		
TEMPERATURE	DATA TE	MPERATURE	DATA	TEMPERATURE	DATA	
70.000	70.000	200.00	70.000	300.00	70.000	
400.00		500.00	70.000	600.00	70.000	
700.00		800.00	70.000	900.00	70.000	
1000.0		1100.0	70.000	1200.0	70.000	
1300.0	70.000	1400.0	70.000	1500.0	70.000	
1600.0	70.000	1700.0	70.000			
PROPERTY TABLE	EX MAT=	4 NUM.	POINTS=	17		
	DATA TE	MPERATURE	DATA	TEMPERATURE	DATA	•
TEMPERATURE	DAIA IC	MPERATORE	DUTU	TERFERMIORE	DUIU	

• ·

•							
			•				
		•					•
	70.000	0.29000E+06	200.00	0.29000E+06	300.00	0.29000E+06	
(·	400.00	0.29000E+06		0.29000E+06	600.00	0.29000E+06	
	700.00	0.29000E+06		0.29000E+06	900.00	0.29000E+06	
	1000.0	0.29000E+06		0.29000E+06		0.29000E+06	
	1300.0	0.29000E+06		0.29000E+06	1500.0	0.29000E+06	
	1600.0	0.29000E+06	1700.0	0.29000E+06			
	PROPERTY TABLE	NUXY MAT-	4 NUM.	POINTS= 17			
	TEMPERATURE		TEMPERATURE		TEMPERATURE	DATA	
	70.000	0.45000	200.00	0.45000	300.00	0.45000	
	400.00	0.45000	500.00	0.45000	600.00	0.45000	
	700.00	0.45000	800.00	0.45000	900.00	0.45000	
		0.45000	1100.0	0.45000	1200.0	0.45000	
	1300.0	0.45000	1400.0	0.45000	1500.0	0.45000	
	1600.0	0.45000	1700.0	0.45000			
	PROPERTY TABLE	ALPX MAT=	4 NUM.	POINTS= 17			
	TEMPERATURE		TEMPERATURE:		PERATURE	DATA	
	70.000	Ο.	200.00	0.	300.00	0.	
	400.00	Ο.	500.00	0.	600.00	0.	
	700.00	0.	800.00	0.	900.00	0.	
	1000.0		1100.0	0.	1200.0	0.	
	1300.0	0.	1400.0	0.	1500.0	0.	
	1600.0	0.	1700.0	0.			
	PROPERTY TABLE	DENS MATTE	4 NUM	POINTS= 17			
	TEMPERATURE		TEMPERATURE		PEMPERATURE	DATA	
	70.000	0.43000E-01		0.43000E-01	300.00	0.43000E-01	
	400.00	0.43000E-01	500.00	0.43000E-01	600.00	0.43000E-01	
	700.00	0.43000E-01	800.00	0.43000E-01	900.00	0.43000E-01	
	1000.0	0.43000E-01		0.43000E-01	1200.0	0.43000E-01	
	1300.0	0.43000E-01		0.43000E-01	1500.0	0.43000E-01	
	1600.0	0.43000E-01	1700.0	0.43000E-01			
	PROPERTY TABLE	KXX MAT=	4 NUM.	POINTS= 17			
	TEMPERATURE	-	TEMPERATURE		TEMPERATURE	DATA	
1	70,000	0.17390E-06		0.17390E-06	300.00	0.17390E-06	
· ·	400.00	0.17390E-06	500.00	0.17390E-06	600.00	0.17390E-06	
	700.00	0.17390E-06	800.00	0.17390E-06	900.00	0.17390E-06	
	1000.0	0.17390E-06		0.17390E-06	1200.0	0.17390E-06	•
	1300.0	0.17390E-06		0.17390E-06	1500.0	0.17390E-06	
	1600.0	0.17390E-06	1700.0	0.17390E-06			
	PROPERTY TABLE	C MAT=	4 NUM.	POINTS= 17			
	TEMPERATURE		TEMPERATURE		TEMPERATURE	DATA	
	70.000	0.48000	200.00	0.48000	300.00	0.48000	
	400.00	0.48000	500.00	0.48000	600.00	0.48000	
	700.00	0.48000	800.00	0.48000	900.00	0.48000	
	1000.0	0.48000	1100.0	0.48000	1200.0	0.48000	
	1300.0	0.48000	1400.0	0.48000	1500.0	0.48000	
	1600.0	0.48000	1700.0	0.48000			
	PROPERTY TABLE	EMIS MAT=	4 NUM	POINTS= 17			•
	TEMPERATURE	DATA	TEMPERATURE		TEMPERATURE	DATA	
	70.000	1.0000	200.00	1.0000	300.00	1.0000	
	400.00	1.0000		1.0000	600.00	1.0000	
	700.00	1.0000	800.00	1.0000	900.00	1.0000	
	1000.0	1.0000	1100.0	1.0000	1200.0	1.0000	
	1300.0	1.0000	1400.0	1.0000	1500.0	1.0000	
	1600.0	1.0000	1700.0	1.0000			
	PROPERTY TABLE	REFT MAT=	4 NUM.	POINTS= 17			
	TEMPERATURE		TEMPERATURE		TEMPERATURE	DATA	
	70.000	70.000	200.00	70.000	300.00	70.000	
	400.00	70.000	500.00	70.000	600.00	70.000	
	700.00	70.000	800.00	70.000	900.00	70.000	
	1000.0	70.000	1100.0	70.000	1200.0	70.000	
	1300.0	70.000	1400.0	70.000	1500.0	70.000	
	1600.0	70.000	1700.0	70.000			

a a second s