

WESTINGHOUSE/ NRC MEETING

POWER PLANT UPRATING

July 26, 2001

*** Agenda ***

Power Upratings for Westinghouse-CE Designed PWRs July 26, 2001

Time	<u>Subject</u>	Presenter/ Discussion Leader
8:30 AM	Introductions/Overview	(W)
8:45	Summary of Uprating Process/Recently Approved Programs	(W)
9:30	Lessons Learned from 1.4% and 5% Uprate Submittals	(W/NRC)
10:00	Process and Approach for Licensing the Greater than 5% Uprates	(W/NRC)
10:30	Looking to the Extended (10 to 20%) Uprate Programs	(W/NRC)
11:15	Wrap-Up and Summary	(W/NRC)

Introductions/ Overview

Westinghouse Attendees			
John Fasnacht	Mgr. Integrated Plant Engineering Services		
Roy Kim	Supervisory Engineer, IPES		
Mehran Golbabai	Power Uprate Program Mgr. for CE Designed Plants		
Mike Gancarz	Product MgrOperations Analysis Windsor Office		
Charlie Brinkman	Director of Washington Operations		
Hank Sepp	Mgr., Regulatory and Licensing Engineering		

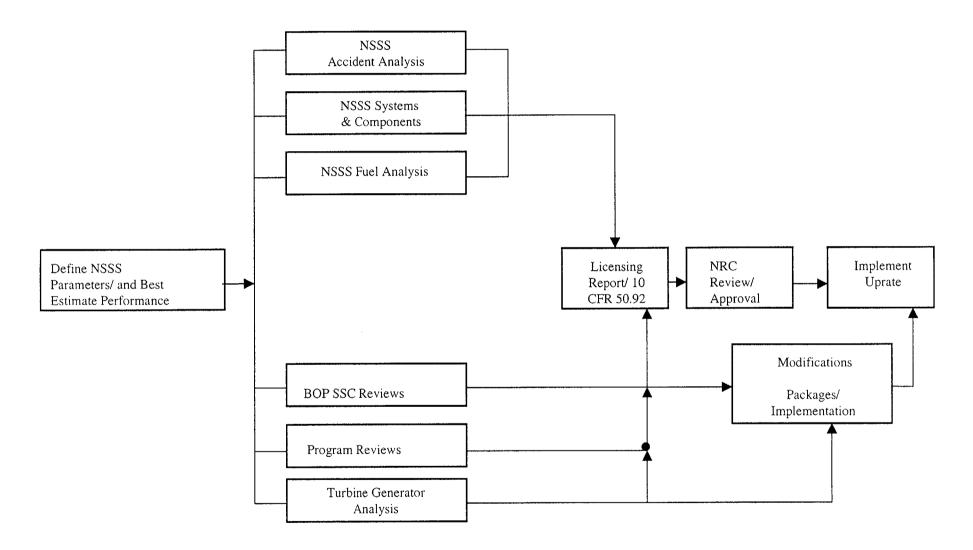
Introductions/ Overview

Goals/ Objectives For The Meeting

- Open dialogue regarding uprate analysis and licensing
- Obtain NRC feedback/ input on licensing approach and process
- Discuss NRC ongoing initiatives as they relate to Westinghouse uprate processes and methods
- Discuss ways to enhance and facilitate the overall uprating process
- Present overview of approach and plans for extended power uprates

Process Overview - Guiding Principles

- Generally follow the same process regardless of desired power level
- As uprated power level increases, depth of review generally increases
- Follow most recent licensing precedent
 - 5%+ Uprates Farley and Byron/Braidwood, (W)
 - ANO, (CE)
 - 1% Uprates Watts Bar, Salem, (W)
 - San Onofre, (CE)


- Maintain current licensing basis/ use approved methods and codes.
- WCAP-10263, "A Review Plan for Uprating the Licensed Power of a PWR Plant" - provides general guidance for Westinghouse designed plants.

Upratings to Date

• 35 Westinghouse Designed Plants Uprated by total of 5,043 MWt or 1,670 Mwe - Equal to more than a 4-loop plant

• 10 Combustion Engineering Plants Uprated by total of 1,424 MWt or 475 MWe

General Overview of Uprating Process

NSSS Accidents/ Fuel

- Large and Small Break LOCA
- Non-LOCA/ Transient Analyses
- SGTR
- LOCA & SLB Mass and Energy
- Fuel Related Analyses
- Dose

NSSS Components

- Reactor Vessel
- Reactor Internals
- Pressurizer
- CRDM
- Loop Piping and Supports
- RCP
- Steam Generator
- Selected Auxiliary Equipment

NSSS Systems

- Control Systems and Condition I events
- RCS
- CVCS
- RHR
- SFPCS
- NSSS/ BOP Interface

Programs

- SBO
- MOV GL 89-10
- HELB
- EQ
- Grid Stability
- Human Factors

Key BOP SSCs

- MFW
- AFW
- MSS
- CCWS and SWS
- HVAC
- Electrical

Turbine-Generator

General Comments

- Selection of Design Parameters Important to Success of Uprating
- Accuracy of Analysis Inputs Is Important to Project Success
- Previous RAI Considerations Incorporated in Uprating Documentation
- Understanding of uprating impact on applicable analysis values, acceptance criteria and limits- critical to success
- Feasibility assessments to develop confidence that desired power level could be reasonably achieved

Appendix K Uprates (1.4% to date)

- Approach/ Process is mature
- Past and Current NRC review process/ timing
- Use of existing venturis for power uprate
- Going beyond 1.4% uprate
- Licensing precedent and model (evaluation vs. analytical)
 - components
 - systems
 - accidents
 - BOP

Up to 5% Uprates

- Farley and Byron/ Braidwood Submittals
- More emphasis on analyses vs. evaluation
- NRC review process/ time
- Margin generally exists. May need more advanced (approved) methods

RAI Topics for Discussion

- Stating Codes and Methods Used. Providing documentation of method approval
- Structural providing stress intensity and fatigue usage for applicable locations
- Accident Analysis defining acceptance criteria and quantifying results

RAI Topics for Discussion (continued)

- Defining the current licensing basis
- Non-safety aspects of BOP
- Other areas of concern

Process and Approach for Licensing the Greater than 5% Uprates

- Interface with Staff and ACRS
 - NRC Research Programs for Synergetic Effects
 - NRC Review of Site Calculations (e.g. Arnold)
 - NRC Position on Risk Informed Reviews
 - ACRS Review Process and Schedule
- Adjustments to Reviews or Inputs
- Schedule for Reviews

Process and Approach for Licensing the Greater than 5% Uprates

- •Status of Uprate Standard Review Plan Goals
- Level of BOP Review-Level of Detail, Safety vs. Non-Safety Systems
- Formalized Process Standard Beyond Existing Precedent

Looking to the (10 - 20%) Uprate Programs

- Review of technical feasibility
- Review/ Implement the Process
- Licensing Approach
- Deployment Schedule
- NRC Feedback

Wrap-Up and Summary

- Continued Successful Track Record on Upratings
- Anticipate Technical Feasibility and Plant Modifications for Extended Power Uprates
- Continued Dialogue Proposed to Facilitate the Overall Process and Assure Continued Uprating Success for All Stakeholders