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Desired Outcomes

1 Provide overview of MAAP containment model
technical bases
B Discuss schedule
I topical (W docket), licensee submittals
I future NRC meetings
I ACRS T/H subcommittee meeting

I Open information exchange and feedback




Beaver Valley Benefits

B Change to an atmospheric containment is part of Full
Potential Program
I benefits include enhanced personnel safety
I program utilizes MAAP containment model

I atmospheric containment is building block for large power
uprate & BELOCA

1 Appropriate understanding & allocation of limitations,
margin

1 Planned atmospheric containment LAR - 3/2002
I implementation - spring 2003 outage (1R15)




Point Beach Benefits

B Address GL 96-06 steam binding concerns for
Containment fan coolers
I 2-3 engineers continuously involved
1 Appropriate uhderstanding & allocation of limitations, margin

B Address limiting MSLB scenario
I Failed Feedwater Regulating Valve at 100% power
1 Containment response for future thermal up-rate

1 LAR Submittal - 02/02 with implementation in 2/03




Benefits of Licensing
Approach |

B Topical allows for development of a consistent approach
I topical submittal 1/02
B optimizes use of NRC Resources
I associated with BV and Point Beach submittals
1 future similar applications
1 BV and PB submittals will follow topical bases
I plant submittals in advance of topical approval
I enhances review of the topical
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PRESENTATION OUTLINE

The important considerations of a realistic model.

How are the mass and energy releases developed and used
for design basis evaluations?

The experimental benchmarks used to test the realistic
containment model.

The representation of uncertainties.

Conclusions.
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THE IMPORTANT CONSIDERATIONS
OF A REALISTIC MODEL

Nodalization.
Representation of atmospheric motion within the
containment subcompartments.

— Circulation due to blowdown.

— Forced circulation flows.

— Natural circulation flows.

— Countercurrent natural circulation flows.
Condensing heat transfer.

— Condensation on cold heat sinks.

— Containment sprays.
The influence of water entrainment.
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WHAT IS INVOLVED IN A
REALISTIC CONTAINMENT MODEL?

« Nodalization:
a. Should represent the containment geometry.
b. Needs to represent the displacement of
noncondensible gases, i.e. correctly represent the
potential for condensation.
c. Needs to represent the potential for induced
circulation, global natural circulation and
countercurrent natural circulation.

d. Needs to represent the behavior of light gases
(stratification).

4 Conclusion: One node analyses cannot give realistic
results — multi-node is required, e.g. 5 to 20 nodes.
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WHAT IS INVOLVED IN A
REALISTIC CONTAINMENT MODEL?
(Continued)

2. Need to represent all the systems which have first order
(100%) and second order (10%) influence.

% Conclusion: Need to represent containment geometry,
containment heat sinks, fan coolers, sprays, and the
containment sump.

4 Need to represent the physical processes which have first
order (100%) and second order (10%) effects.

4 Conclusion: Need to represent induced circulation,
natural circulation/convection, e.g. global and
countercurrent.
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INFLUENCE OF NODALIZATION

« Comparisons with large scale experiments show that
several nodes are required.

 Analyses for a reference Westinghouse 2 loop large dry
containment shows that analyses with 5 nodes result in a
reduction in the peak pressure of at least 15 psi compared
to a single node analysis with the same computer code.

« Multi-node is necessary to assess the displacement of air
from the break location. This results in increased
condensation in the break region which cannot be assessed
with a single node model.
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S NODE CONTAINMENT MODEL
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NO SPRAYS OR FAN COOLERS
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NO SPRAYS OR FAN COOLERS
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NO SPRAYS OR FAN COOLERS
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PWR Containment Modeling

(Large Dry and Ice Condensor Configruation)
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Schematic of Circulation Flows Evaluated for Each Node
(MAAPS Represents Circulation as a Property of Each Node. The Strength
of the Circulation is Determined by a Momentum Balance on Each Node.)
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Momentum Balance Solved for Each Node
to Determine the Change in the Circulation Velocity

[= [Fdt=[d(m,U,)
—F

(M, -M war ~ oo = Fy ) At=A(m, U,)=m, AU, + U A m,

in out

AU, =| (M,, = Mgy = Fyy = F, —F, ) At—UAm, | /m,
I = impulse
M,, =incoming momentum Z:(WU)in
M, = outgoing momentum Z(WU)out
Fi,.n = wall friction
F;, = shear with an adjacent node
F, = drag on submerged structures
U, = circulation velocity

m, = mass of the compartment atmosphere

t = time
15
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Enhancement of the Condensation on Vertical Walls

Use Free Convection to Evaluate the Boundary Layer Thickness

[_aminar

N,, _hL_ 0.555 N%2°
ok

Turbulent

Nu,t, = 013 NK:
N,,, =0.021Ng!
Nu =Max (Nu)ga Nu,t, » Nuvtz)
NRa = NGI‘ _NPR
Now =g [2bs (T, =T ) |BL )

Npg = Hg Cp g /kg

MAAPS
NU,S = Fm * NU
V 0.8
o () 2]
. VRl pgas
\%
Ve, = P, =10’ Pa
Vi
\ ,
Vy=—t% for the local steam partial pressure
Vi

Pes  gas mixture density in the free stream

Py gas mixture density near the condensing interface
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HOW ARE THE MASS AND ENERGY
RELEASES DEVELOPED AND USED FOR
DESIGN BASIS EVALUATIONS?

* LOCA mass and energy releases for containment
integrity.

« LOCA mass and energy releases for NPSH evaluations.

« MSLB mass and energy releases.

17
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DEVELOPMENT AND INCORPORATION OF DESIGN BASIS MASS
AND ENERGY RELEASES WITHIN THE CONTAINMENT

 These design basis analyses will utilize mass and energy releases

consistent with the spectrum of design basis accidents to be considered.
These mnclude:

— large break LOCA — containment integrity,
— large break LOCA — NPSH evaluation, and
— main steam line break conditions

- rupture of a main steam line, and

- split break in a main steam line.

 The design basis mass and energy releases will be developed from
primary system models for each plant that have been previously used
for design basis calculations.

» The mass and energy releases will be input to the MAAP containment
model as a boundary condition. This is exactly the method used for
the CVTR and HDR experimental benchmarks.

18
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THE EXPERIMENTAL BENCHMARKS USED TO
TEST THE REALISTIC CONTAINMENT MODEL

« Separate effects tests.
— Dehbi condensation experiments.
— Anderson condensation experiments.
— Hitachi condensation experiments.
— Uchida condensation experiments.
— Tagami condensation experiments.
— Kulic containment spray tests.
— Epstein-Kenton countercurrent natural circulation
flow tests.
» Large Scale Integral experiments.
— HDR tests.
— CVTR tests.
— CASP tests.

— These are also a demonstration of using external
M&Es.

19
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Experimental Apparatus Described by Dehbi et al. (1991)
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Comparison of MAAP4 and

MAAPS With Dehbi’s Data
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Comparison of MAAP4 and
MAAPS With Dehbi’s Data
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COMPARISON OF ANDERSON’S AND DEHBI’S

EXPERIMENTAL RESULTS

Anderson’s Experimental Conditions
T, (°C) 70 73.7 93.5 106.2 115.7
T, (°C) 30 33.7 53.5 66.2 75.7
P (bar) 1.0 1.5 2.0 2.5 3.0
W._. 0.78 0.83 0.71 0.61 0.54
W_ /Wy 3.52 5.02 2.42 1.59 1.19

Heat Transfer Coefficients (W/m?%/K)
N et 99.9 131.8 | 2755 | 4203 | 584.0
N, perbi 130.0 | 1158 | 221.8 | 3264 | 428.1
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Schematic of the Pressure Test Vessel
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400

Reproducibility for Both Test Vessel
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Local Heat Transfer Coefficient Measurement
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Schematic of the Experimental Apparatus
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CONDENSATION HTC (kW/m?-K)
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Comparison of the MAAPS Calculated Overall Heat Transfer Coefficients
for Condensation in a Steam-Noncondensible Gas Atmosphere
With the Air-Steam Data Reported by Uchida at a Pressure of 1 Bar
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Comparison of the MAAPSSpray Model Prediction in the Experimental

Observations Reported by Kulic (1976) For No Spray (Test-1), a Single

Spray Nozzle With the Water Temperature at 24°C (Test-1A), and Five
Spray Nozzles With a Spray Water Temperature of 24°C (Test-1B)
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Epstein-Kenton Countercurrent
Natural Circulation Flow Experiments
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IMPORTANT INTEGRAL BENCHMARKS
FOR A LARGE DRY CONTAINMENT

Test Results to be Accident Sequence/Condition MAAPS
Experiment Documented Simulated Comparisons
HDR HDR Test E11.2 (ISP #29) | Small LOCA with H, Release Yes

HDR Test T31.5 (ISP #23) | Large LOCA with H, Release Yes

HDR Test V44 (ISP #16) Main Steam Line Break Yes
CVTR CVTR-3 MSLB Yes

CVTR-4 MSLB Plus Containment Spray Yes

CVTR-5 MSLB Plus Containment Spray Yes
Battelle Test D15 (CASP-1) Steam & Two-Phase Blowdown intoa | Yes
Frankfurt Tests Sealed PWR Containment

Test D16 (CASP-2) Water Blowdown Into a Scaled PWR Ongoing

Containment

S&L Tests All Tests Containment Response for a Large Ongoing

LOCA Including Accumulated Water

31
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HDR FACILITY WITH KEY LOCATIONS FOR T31.5
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NO SPRAYS OR FAN COOLERS
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CVTR Containment Building
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CVTR Containment Response, Test 5
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Battelle Frankfurt Tests

For the present experiment D15 the compartments of the containment are
connected such as to form a “chain of compartments”:

R6 -R8—>R7—>R4—>R5—->R9.
Arrangement of
compar tments:
R9
L""—I ? | .
059 A I
| v4s {047
RS --—— - R7
1 R ]
' 31
U8 B
046 048
- l R6 —ri
RrR8
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Input for Battelle Frankfurt Test D15

June 20, 2001

Concrete | Metal*
Compartment | Surface | Surface Vent Vent
Volume Area Area Dia. Area
Designation (m3) (m?) (m?) (m) (m?)
Break compartment R6 41.26 90.12 25.7
15t vent (channel R6/R8) | y46/y48 0.8 0.74 0.430
2nd compartment R8 40.53 92.0 18.3
2nd yent (orifice) Y78B 0.75 0.442
37 compartment R7 40.4 76.6 16.0
3t cent (orifice) Y47 0.75 0.442
4% compartment R4 12.2 38.6 16.4
4th vent (orifice) v45 0.75 0.442
5t compartment R5 41.05 76.1 27.4
5t vent (orifice) Y59A 0.75 | 0.442
6t compartment R9 etc. 450 645.8 87.5

*Detailed list of the surface areas of metal components on the next pages. The surface areas include
internals in the individual compartments, such as pipes, cover plates, etc.
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Test Building Configuration for Battelle

Frankfurt Experiment D-15
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Comparison of MAAPS and Battelle Frankfurt Experiment D-15
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THE REPRESENTATION OF UNCERTAINTIES

 Realistic uncertainty boundaries for individual

phenomena are developed using separate effects
tests.

» These uncertainty boundaries are tested with
large scale, integral experiments.
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PROPRIETARY

THE SSSTAR PROCESS TO QUALIFY
ANALYTICAL MODELS (COMPUTER CODES)
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PROPRIETARY
SSSTAR
(5 Step Structured Treatment for Analytical Representation)
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PROPRIETARY

Comparison of the SSSTAR Process and the Six Basic Principles
Defined in DG-1096 “Transient and Accident Analysis Methods”
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PROPRIETARY

Conclusion With Respect to the Uncertainty Evaluations
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CONCLUSIONS

The passive heat sinks in a large dry containment are very effective in condensing
steam and reducing the containment pressure. These can only be properly
represented using a realistic model with sufficient nodalization (5-20 nodes).

The MAAPS5 models for condensation and structural heat sinks and that due to
containment sprays have been benchmarked against the applicable separate effects
tests. This includes tests with steam and air as well as gas mixtures of air-helium-
steam.

The MAAPS large dry containment model has been compared to the relevant
large scale containment experiments. Furthermore, these experiments include
those conditions typical of both large break LOCA accidents as well as as
MSLBs.

The SSSTAR process provides a structured approach for understanding and
separating ALL relevant experiments as well as to quantify and characterize the
uncertainties. This also simplifies the process of keeping the analysis current.

The composite of the extensive benchmarking with applicable experiments and
the comparison with large scale results, as well as the inclusion of realistic
uncertainty boundaries for the physical models provides the necessary technical

basis for assessing the response of large dry containment building to design basis

events.
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