Appendix A Literature Review

Appendix A4:FLECHT-SEASET 161 Rod Unblocked Bundle Tests

Dates When Tests Were Performed 1981-1982

References:

- R6 Loftus, M. J., et al," PWR FLECHT-SEASET Unblocked Bundle Forced and Gravity Reflood Task Data Report," NUREG/CR-1532, September 1981.
- R7 Lee, N., Wong, S., Yeh, H.C., and L.E. Hochreiter, "PWR FLECHT-SEASET Unblocked Bundle Forced and Gravity Task, Data Evaluation and Analysis Report", NUREG/CR-2256, February 1982.
- R8 Wong, S. and L.E. Hochreiter, "PWR FLECHT-SEASET Analysis of Unblocked Bundle Steam-Cooling and Boil-off Tests", NUREG/CR-1533, May 1981.

Availability of Data:

Plots and tables of selected data are given in R6 for each of the tests. These tests are similar to the Low Flooding Rate Cosine Tests excepting that the rod array used in the FLECHT-SEASET tests used the newer 17x17 array while the Low Flooding Rate Cosine and Skewed Power Tests used the older 15x15 rod array. There are selected tests which were analyzed in detail in Reference 2 particularly test 31504, which is a 40 psia, 1 in/sec constant reflood test. There was additional instrumentation on the test bundle which permitted more accurate mass and energy balances for the two-phase dispersed flow region of the bundle. There were also several high-speed movies of the different tests taken as the 3, 6, and 9 windows. The drop diameter and droplet velocities were obtained and are given in R7. A heat transfer correlation was developed as a function of the distance from the quench front for both the 15x15 and 17x17 rod bundle geometry.

The raw data in engineering units is available from the Nuclear Regulatory Commission Data Bank for selected tests. All the data exists at Westinghouse on Microfiche, including the analyzed data. The analyzed data and the row data in engineering units also exists at Westinghouse in storage on older computer tapes. It is not clear at this time if the data can be assessed.

Test Facility Description, Types of Tests

The FLECHT-SEASET Unblocked Bundle tests were the first publicly available reflood experiments on the newer 17x17 fuel array which was adopted by the utilities in the 1980's. This fuel array used fuel rod of approximately 0.374-inches on a square pitch of 0.496-inches. The experiments used a 1.66 chopped cosine power shape which was the same as the FLECHT Low Flooding Rate Cosine Tests. The tests were used to help confirm the conservatism in the Appendix K rule as well as to be used for reflood safety analysis computer code assessment. Two of the experiments were also used as US Standard Problem 9 in which different parties predicted two FLECHT-SEASET unblocked bundle reflood transients. The unblocked bundle tests were also used as a basis for determining the effects of flow blockage within the rod bundle which simulated the ballooning and bursting of the Zircaloy cladding.

The majority of the tests were separate effects constant and or variable reflood tests. There were also limited gravity reflood scoping experiments as well. In addition, there were boil-off and steam cooling tests performed as well as given in R8.

The 161 rod bundle unblocked bundle did have problems with the electrical heater rod. The new smaller diameter rods, with smaller inside wall thermocouples, proved to be less reliable then the previous larger (0.422-inch diameter) rods. Several of the heater rod thermocouples failed in the initial transient tests such that the bundle instrumentation became degraded. Consequently, the 161 rod bundle was rebuilt by replacing heater rods approximately one-half way into the testing program. Those individuals using the test data must verify the proper channel and rod location since new rods were used in several different locations. The full channel list for all tests is given in R6.

The 161 bundle also used the thin wall circular housing so as to minimize the housing radiation heat sink effects as well as the housing heat release effects. Figure A-4.1 shows the cross-section of the rod bundle and Figure A-4.2 shows the facility flow diagram. The majority of these tests were conducted with a uniform radial power profile for ease of analysis, as well as obtaining a statistical distribution for the hot spot temperatures and heat transfer coefficient.

The 161 bundle was much more heavily instrumented as compared to the previous FLECHT test bundles. Most of the heater rods were instrumented and would have eight thermocouples per rod. Rods were located in symmetric positions such that complete coverage over the bundle length was achieved. The differential pressure cells were located one foot apart as in the skewed bundle tests and the data was used to determine the mass balance as well as for the average void fraction over the given cell span. There was no specific thermocouple placement relative to the grids, and the spacer grids were not instrumented, however, the axial placement was sufficiently fine that the data does indicate the heat transfer improvements caused by the spacer grids. The FLECHT egg-crate spacers grids were used and are the same as those used in previous FLECHT tests. One of the objectives of the 161 tests was to provide improved data for the development and validation of safety analysis computer codes. To this end, there were additional aspirating steam probes added to the guide tube thimbles. Some of the steam probes aspirated the flow out the bottom of the bundle while other probes aspirated out the top of the bundle. It was discovered that the bottom probes would not indicate the true steam temperature since they were more easily wetted during the transient. The probes which are regarded as unreliable are given in R6.

The range of conditions which were examined were similar to the Low Flooding Rate FLECHT tests and included:

Constant flooding rates	0.45 - 6.1 inches/sec
Upper Plenum Pressure	20 - 60 psia
Initial clad temperature at peak location	494 2045 ⁰ F
Initial peak power at peak location	0.40 - 1.0 kw/ft
Radial power distribution similar to FLECHT tests	uniform - FLECHT
Inlet liquid temperature	124 - 257 ⁰ F
Variable flooding rate tests	6.36 inches/sec for 5 sec; 0.82 inches/sec onward
	6.53 inches/sec for 5 sec;0.98 inches/sec for 25 sec;0.62 inches/sec onward
Gravity injection tests	5.8 inches/sec for 15 sec; 0.785 inches/sec onward

There were other tests performed such as hot and cold channel tests to examine the effects of liquid entrainment, repeat tests to verify that the bundle was performing in a repeatable manner overlap tests with the previously performed 15x15 cosine experiments and steam cooling tests. The steam cooling tests are given in Reference 3 and investigated the steam cooling in the bundle over a Reynolds number range of approximately 1500 to 25000. The test matrix for this test series is given as Table A-4.1, along with the measured peak cladding temperatures,

There were a significant number of power cycles performed on the test bundle which led to heater rod distortion at the end of the test program. An analysis was performed to determine

when the effects of distortion became evident in the data. This analysis is given in Reference 1 and should be consulted when modeling the tests from this program such that only valid data is used

High-speed movies were taken for a number of tests at the three, six, and nine-foot windows with camera speeds up to 2000 frames/sec. The movie data was reduced and analyzed to obtain droplet size and velocity data which was then compared to values from the literature as well as calculations. It was found that a log-normal distribution fit the droplet diameter data reasonably well while there was no real correlation of the droplet velocity with the droplet diameter or any other parameter.

An empirical reflood heat transfer correlation was developed from the 161-rod bundle experiments. The heat transfer correlation was a function of the distance above the quench front as well as the bundle initial conditions of power, pressure, flooding rate, inlet subcooling, and initial power. This correlation was used to predict the heat transfer above the quench. In addition, a quench front correlation was also developed such that given a set of system conditions, the dispersed flow film boiling heat transfer above the quench front in the PCT region could be predicted. The correlation was also used the older 15x15 FLECHT Low Flooding Rate Cosine and Skewed Power test data for developing the correlation.

The unique area that the 161-rod bundle tests addressed was the analysis of the test data above the quench front in the film-boiling region. The analysis methods which were first developed as part of the FLECHT Low Flooding Rate Test Series were expanded upon in the FLECHT-SEASET program. There was increased instrumentation for axial vapor temperature measurements along the test bundle which could then be used with the exit flow measurements to calculate the local actual quality in the test bundle, from an energy balance, such that the local liquid and vapor velocities could be determined. From the calculations of the vapor flows, velocities, and temperatures, the local vapor Reynolds number could be calculated such that a convective heat transfer could be predicted from different single-phase correlations. The effects of the vapor superheat on the calculated Reynolds number were significant since superheated steam flows at 50 ft/sec could result in a Reynolds number in the laminar regime. The results from the energy balance were also used with the high-speed movie from the analysis of the droplet data to calculate the void fraction in the flow. The measured void fraction from the differential pressure cells is not as accurate in the highly dispersed flow regime when the flow has very little liquid content.

The wall heat flux was also decomposed using a six-node radiation heat transfer network such that the radiation heat transfer from the inner hot rods, outer cold rods, guide tube thimbles, housing, droplets, and vapor could be calculated. Once the radiation component of the hot rods was calculated, the convective-dispersed flow film boiling portion of the rod heat transfer could be determined by subtracting the calculated radiation heat transfer from the measured total heat transfer which was calculated from an inverse conduction calculation using the heater rod thermocouple and local power. The convective-dispersed flow film boiling heat transfer was also compared to the single phase heat transfer one would predict using the same vapor Reynolds number, wall temperature and vapor temperature conditions. As with the FLECHT tests, the

convective dispersed flow heat transfer data gave much higher values of the Nusselt number when compared to the Nusselt number calculated form the same conditions for a single-phase vapor. The interpretation of this difference is that the droplets are acting to enhance the heat transfer in the flow by acting as additional turbulence promoters, as well as temperature sinks which change the local bulk temperature profile. The comparisons indicate that the droplet effects are the greatest at the lowest vapor Reynolds numbers where the natural turbulence in the flow is the smallest. Therefore, the drops could be promoting increased turbulence in the flow which provides for increased heat transfer. It was also observed that as the liquid content of the flow increased, the difference between the convective dispersed flow film boiling heat transfer and the predicted single phase heat transfer also increased.

The 161-bundle tests also clearly showed that two different two-phase regions exist above the quench front. A lower void fraction, liquid rich froth or transition region, exits at and just above the quench front for the forced flooding tests. The length of this region depends on the flooding rate value relative to the quench velocity. The larger the flooding rates relative to the quench velocity (which is conduction controlled), the longer the froth region. The froth region was observed and appears as liquid ligaments which are sheared into increasingly smaller droplets from the steam flow generated at the quench front and the higher wall temperature in the quench front region. The vapor shearing effects generate the entrained droplets which then provide cooling at the upper elevations of the test bundle in the non-equilibrium dispersed flow film-boiling regime.

Conclusions

The FLECHT-SEASET 161 unblocked bundle experiments represent the best reflood experiments which were performed. It was recognized in the test planning that data was needed for advanced reflood computer code development such that an effort was made to obtain additional local condition heat transfer and fluid flow condition data in addition to the total heater rod heat transfer data for an empirical correlation. The mass balances on the tests were generally very good such that the data can be used with confidence, however, one must be careful of the vapor measurements as indicated earlier since some of the steam probes did not function as desired. Also because of heater rod problems, the bundle was rebuilt so that channel designation relative to specific heater rods may have changed. These changes are documented in the reports such that the user can correctly obtain the data for a given test.

The analysis for the test data is the most complete of all the FLECHT test series. One test 31504 was analyzed in detail with several plots given in the reports which can be used for computer code validation. There is also an amount of very good droplet size and velocity information which can also be used for computer code validation. If all the data is used for the validation, not just the heater rod temperatures, one can more realistically assess a computer code reflood heat transfer model since the test measurements include the rod surface temperature, vapor temperature, drop size, drop velocity as well as the local quality, void fraction, and heat flux split between radiation heat transfer and convective dispersed flow film boiling heat transfer.

Two of the FLECHT-SEASET tests were used as US Standard Problem 9 for the purposes of code validation. It is strongly recommended that these data be used for validating the NRC merged code.

· • •

•

BUNDLE STATISTICS

16 THIMBLES	HOUSING INSIDE DIAMETER HOUSING WALL THICKNESS ROD DIAMETER THIMBLE DIAMETER ROD PITCH CROSS-SECTIONAL FLOW AREA FILLER DIMENSIONS 161 HEATER RODS 16 THIMBLES	194.0 mm (7.625 in.) 5.08 mm (0.200 in.) 9.50 mm (0.374 in.) 12.0 mm (0.474 in.) 12.6 mm (0.496 in.) 15571 mm ² (24.136 in. ²) 18.8 x 8.43 mm (0.741 x 0.332 in.)
-------------	--	--

.

.

Figure A4-1. FLECHT-SEASET Rod Bundle Cross Section

Figure A4-2. FLECHT-SEASET Facility Flow Diagram

- **L**_

-															
				Actual 1	est Condition	15				Result					
Test No.	Run Na.	Upper Pienum Pressure (MPa (psia)]	Rod Initial T ciad at 1.83m (72 in.) [°C(97)]	Rod Peak Power [kw/m (kw/ft)]	Flooding Rate [mm/sec (in./sec)]	Coolent Temperature [°C(9F)]	Radial Power Distribution	Hottest Rod T/C and Elevation [m(In.)]	Initial " Temperature [ºC(ºF)]]]	Maximum Temperature [ºC(ºF)]	Temperatura Rise [ºC(ºF)]	Turn- eround Time (sec)	Quench Time (sec)	Bundle Quench, Time (sec)	Disconnected Rod Location
CONS	TANT FLOOD	ING RATE													
	31701	0.28 (40)	872 (1601)	2.3 (0.70)	155 (6.1)	53 (127)	Uniform	91-1.78(70)	893 (1640)	923 (1694)	30 (54)	5	55	114	4G, 5G
2	31302	0.28 (40)	869 (1597)	2.3 (0.69)	76.5 (3.01)	52 (126)	Uniform	8E-1.70(67)	889 (1631)	932 (1710)	43 (79)	8	124	262	4G, SG, 6J, 11G
3	31203 33903	0.28 (40) 0.28 (40)	872 (1601) 881 (1619)	2.3 (0.70) 2.3 (0.70)	38,4 (1.51) 40,1 (1.58)	52 (126) 52 (125)	Uniform Uniform	9L-1.93(76) 7K-1.98(78)	870 (1597) 868 (1594) -	1037 (1898) 1048 (1919)	167 (301) 180 (325)	63 68	246 220	435 335	4G, 5G 4G, 5G, 111, 113, 114, 12134, 1334
	34103	0.28 (40)	885 (1626)	2.4 (0.74)	38.1 (1.50)	51 (123)	Uniform	7K-1.98(78)	872 (1601)	1089 (1992)	217 (391)	71	241	381	4G, 5G, 1113K, 1213K, 133K
	31504	0.28 (40)	863 (1585)	2.3 (0.70)	24 (0.97)	51 (123)	Uniform	84-1.98(78)	820 (1507)	1150 (2101)	330 (593)	130	325	594	4G, 5G
	35304 ^(a)	0.28 (40)	915 (1679)	2.4 (0.74)	25.9 (1.02)	5) (124)	Uniform	9F-1.93(76)	797 (1467)	1230 (2246)	433 (779)	125	249	499	4G, 5G, 1113K, 1213K, 133K,
5	31805	0.28 (40)	871 (1600)	2.3 (0.70)	21 (0.81)	51 (124)	Uniform	11K-1.98(78)	851 (1563)	1232 (2250)	381 (687) 🕚	134	419	69 i	4G, 5G
6	34006	0.27 (39)	882 (1620)	1.3 (0.40)	15 (0.59)	51 (124)	Uniform	7K-1.98(78)	864 (1587)	1163 (2126)	299 (539)	175	327	566	4G, 5G, 1113K, 1213K, 133K
7	34907(a,b)	0.28 (40)	897 (1648)	1.4 (0.42)	11 (0.45) 76 (3.0)	51 (123)	Uniform	9F-1.78(78)	836 (1538)	1230 (2246)	394 (708)	.203	326	385	4G, 5G, 1113K, 1213K, 133K
	35807 ^(e)	0.28 (40)	886 (1628)	0.89(0.27)	10 (0.41)	50 (121)	Uniform	9F-1.88(74)	849 (1560)	1182 (2160)	333 (600)	217	368	734	4G, 5G, 1113K, 1213K, 133K
				<u>ן</u> זב	L	1									
PRE	SURE AT CUT	0.13 (19)	871 (1600)	2.3 (0.70)	79.0 (3.11)	33 (91)	Unlform	91-1.78(70)	884 (1624)	938 (1720)	54 (96)	10	156	364	4G, 5G
,	34209	0.14 (20)	889 (1636)	2.4 (0.72)	27.2 (1.07)	32 (90)	Uniform	7K-1.98(78)	854 (1570)	1161 (2121)	307 (551)	127	427	701	4G, 5G, 1113K, 1213K, 133K

.

Table A4-1 FLECHT SEASET UNBLOCKED BUNDLE REFLOOD TEST DATA SUMMARY

Significant rod bundle distortion occurred between 1.52 and 2.27 m (60 and 90 in.)

b. Scrammed at 279 seconds because of high rod temperature

	r							· · · · · · · · · · · · · · · · · · ·							
			A	-Run Test Co	nditions					Results				·····	
Test No.	Run No.	Upper Plenum Pressure [MPs (psie)]	Rod Initial ⁷ clad at 1.83m (72 In.) [⁹ C(9F)]	Rod Pesk Power [kw/m (kw/ft)]	Flooding Rate [mm/sec (In./sec)]	Coolent Temperature [ºC(약)]	Radial Power Distribution	Hottest Rod T/C and Elevation [m(in.)]	Inițiai Temperature [ºc(ºr)]	Maximum Temperature [¹⁰ C(¹⁰ F)]	Temperature Rise [ºC(ᡩ)]	Turn- around Time (sec)	Guench Time (sec)	Bundla Guench Tigge (sec)	Disconnected Rod Location
10	34610	0.14 (20)	892 (1637)	1.4 (0,42)	21 (0.82)	32 (90)	Uniform	6D-1.88 (74)	845 (1554)	1052 (1926)	207 (372)	137	310	507	4G, 5G, 1113K, 1213K, 133K
11	54713(B)	0.13 (19)	888 (1630)	1.4 (0.42)	17 (0.67)	33 (91)	Uniform	9E-1.93 (76)	855 (1571)	1119 (2045)	264 (474)	135	361	600	4G, 5G, 1110K, 1210K, 130K
12	35212 ^(a,c)	0.14 (20)	879 (1613)	1.4 (0.42)	11 (0.43) 178 sec 79 (3.1)	32 (89)	Uniform	9E-1.83 (72)	830 (1526)	1231 (2247)	401 (721)	173	236	294	4G, 5G, 1113K, 1213K, 133K
	3591Z(=)	0.14 (20)	889 (1632)	0.89 (0.27)	11 (0.42)	34 (93)	Uniform	9G-2.29 (90)	802 (1476)	1128 (2062)	326 (586)	289	558	789	4G, 5G, 1110K, 1210K, 130K
13	32013	D.41 (60)	887 (1629)	2.3 (0.70)	26.4 (1.04)	66 (150)	Uniform	62-1.93 (76)	B46 (1555)	1171 (2139)	325 (584)	115	269	461	4G, 5G
SUBC	DOLING														
14	32114	0.28 (40)	893 (1639)	2.3 (0.70)	25-31 (1.0-1.22)	125 (257)	Uniform	6L-1.88 (74)	840 (1544)	1189 (2172)	349 (628)	114	405	633	4G, 5G
	35114	0.28 (40)	892 (1638)	2.4 (0.74)	25 (0.98)	123 (253)	Uniform .	90-1.83 (72)	886 (1628)	1192 (2178)	306 (550)	123	394	651	4G, 5G, 1 11.0K, 121.0K, 13.0K
15	31615 34815(a)	0.14 (20) 0.14 (20)	876 (1609) 895 (1643)	2.3 (0.70) 2.4 (0.74)	0 (0) 25 (0.98)	94 (221)	Uniform Uniform	1 1H-1.70 (67) 7J-1.83 (72)	881 (1617) 870 (1597)	1220 (2228) 1178 (2152)	339 (611) 308 (555)	57 132	- 562	- 919	4G, 5G 4G, 5G, 1110K, 1210K, 130K
16	34316	0.28 (40)	889 (1631)	2.4 (0.74)	25 (0.97)	51-119 (124-246)	Uniform	6D-1.88 (74)	849 (1560)	1207 (2206)	358 (646)	107	349	592	4G, 5G, 1113K, 1213K, 133K
INITIA	L CLAD TEM	PERATURI	5												•
17	30817	0.27 (39)	531 (987)	2.3 (0.70)	38.6 (1.52)	53 (128)	Unlform	103-1.98 (78)	519 (965)	B32 (1530)	313 (565)	84	219	395	4G, 5G
18	30518	0.28 (40)	256 (494)	2.3 (0.70)	38.9 (1.53)	52 (126)	Uniform	81 -1.98 (78)	246 (475)	653 (120B)	407 (732)	96	187	344	4G, 5G
19	30619	0.134 (19.5)	256 (494)	2.3 (0.70)	38.9 (1.53)	36 (96)	Uniform	2H-1.98 (78)	243 (469)	727 (1340)	484 (871)	142	292	572	4G, 5G

Table A4-1 (cont.) FLECHT SEASET UNBLOCKED BUNDLE REFLOCO TEST DATA SUMMARY

.

t.

c. Scrammed at 178 seconds because of high rod temperature

- -

			As-	Run Test Cond	itions			Results							
Test No.	Run No.	Upper Planum Pressure [MPa (psia)]	Rod Initial T _{clad} at 1.83m (72 jn.) [°C(°F)]	Rod Pesk Power [kw/m (kw/tt)]	Floading Rate (mm/sec (In./sec)}	Coolant Temperature [ºC(ºF)]	Radial Power Distribution	Hottest Rod T/C and Elevation [m(In.)]	initial Temperature [PC(9F)]	Maximum Temperature [ªC(9F)]	Temperature Rise [ºC(ºF)]	Turn- sround Time (sec)	Quench Time (sec)	 Bundle Guench Time (sec)	Disconnected Rod Location
20	34420	0.27 (39)	1119 (2045)	2.4 (0.74)	38.9 (1.53)	51 (124)	Uniform	73-1.83 (72)	1102 (2016)	1207 (2205)	105 (189)	34	222	376	4G, 5G, 1110K, 1210K, 130K
ROD P	EAK POWER											·	•		
21	30921 ^(d)	0.27 (39)	879 (1614)	1.3 (0.40)	38.9 (1.53)	52 (126)	Uniform	91-1.78 (70)	887.(1629)	949 (1740)	62 (111)	17	152	158	4G, 5G
	31021	0.28 (40)	880 (1615)	1.3 (0.40)	38.6 (1.52)	52 (126)	Unlform	9H-1.78 (70)	891 (1635)	941 (1726)	50 (91)	14	158	271	4G, 5G
22	31922	0.14 (20)	883 (1621)	1.3 (0.40)	27.2 (1.07)	35 (95)	Uniform .	6F-1.83 (72)	863 (1621)	975 (1787)	92 (166)	70	229	435	4G, 5G
23	30223	D.27 (39)	258 (497)	1.3 (0.40)	37.8 (1.49)	54 (129)	Unlform	6F-1.93 (76)	261 (501)	455 (852)	194 (351)	44	113	181	None
	30323	D.27 (39)	259 (499)	1.3 (0.40)	38.6 (1.52)	52 (126)	Uniform	6F-1.98 (78)	256 (494)	459 (859)	203 (365)	57	115	171	None
24	34524	0.28 (40)	878 (1612)	3.0 (1.0)	39.9 (1.57)	52 (125)	Uniform	7J-1.83 (72)	873 (1604)	1204 (2199)	331 (595)	89	266	520	4G, 5G, 1113K, 1213K, 133K
RADIA	L POWER DI	STRIBUTIO	N												
25	Not run														
26	35426 ^(a)	0.28 (40)	886 (1627)	2.54 (0.773) 2.42 (0.737) 2.08 (0.633)	25.7 (1.01)	52 (126)	FLECHT	98-1.93 (76)	814 (1497)	1229 (2243)	415 (746)	113	240	485	4G, 5G, 1113K, 1213K, 133K
	36026 ^(a)	0.28 (4D)	900 (1651)	2.42 (0.737) 2.31 (0.703) 2.19 (0.667)	25 (1.0)	51 (124)	FLECHT	l IF-1.88 (74)	862 (1583)	1174 (2145)	312 (562)	113	286	475	4G, 5G, 1113×, 1213×, 133×
27	Not run												1		
28	Not run														
REPEA	TESTS												_		
29	35304														

•

Table A4-1 (cont.) FLECHT SEASET UNBLOCKED BUNCLE REFLOOD TEST DATA SUMMARY

d. Scrammed because of high-temperature thermocouple failure at 125 seconds

Ţ	As	-Run Test Cor	nditions			Results									
Upper Pienum Pressure [MPa (psia)]	Rod Initial ^T clad at 1.83m (72 in.) [°C(°F)]	Rod Peak Power (kw/m (kw/ft))	Flooding Rate (mm/sec (in./sec)]	Coolant Temperature [ºC(ºF)]	Radial Power Distribution	Hottest Rod T/C and Elevation [m(in.)]	Initial Temperature [ºC(ºF)]	Maximum Temperature [ºC(ºF)]	Temperature Rise [ºC(ºF)]	Turn- around Time (sec)	Quench Time (sec)	W Bundle Quench Time (sec)	Disconnected Rod Location		
NG RATE	<u> </u>				I	I		<u>l</u>]				
0.78 (40)	889 (1631)	2.3 (0.70)	162 (6.36) 5 sec 21 (0.82) onward	52 (125)	Uniform	6L-1,93 (76)	843 (1550)	1 148 (2099)	305 (549)	131	337	639	4G, 5G		
0.14 (20)	888 (1630)	2.3 (0.70)	166 (6.53) 5 sec 25 (0.98) 200 sec 16 (0.62) onward Injection Rate kg/sec (lbm/sec)	31 (88)	Uniform .	6K-1.98 (78)	823 (1514)	1146 (2096)	323 (582)	142	546	964	4G, 5G		
	L	<u>،</u>	L	I	L		<u></u>	I	h	L	1	1	L		
0.27 (39)	878 (1611)	2.3 (0.70)	5.80 (12.8) 15 sec 0.785 (1.73) onward	52 (125)	Uniform	10H-1-78 (70)	891 (1636)	910 (1670)	19 (34)	4	121	174	4G, 5G		
0.28 (40)	871 (1600)(e) 591 (1096)(1)	2.3 (0.70)(e) 1.3 (0.40(f)	5.9 (13) 15 sec 0.807 (1.78) onward	52 (125)	Hot/ cold channels	10H-1.78 (70)	906 (1664)	925 (1697)	19 (33)	6	76	181 11	4G, 5G		

Table A4-1 (cont.) FLECHT SEASET UNBLOCKED BUNDLE REFL'00D TEST DATA SUMMARY

-

.

			As-	-Run Test Co	nditions			Results							
Test No.	Run No.	Upper Pienum Pressure [MPa (psia)]	Rod Initial ^T clad at 1.83m (72 in.) [°C(°F)]	Rod Peak Power [kw/m (kw/ft)]	lnjection Rate [kg/sec (lbm/sec)]	Coolant Temperature [ºC(ºF)]	Radial Power Distribution	Hottest Rod T/C and Elevation [m(in.)]	(altiel Temperature [°C(°F)]	Maximum Temperature [ºC(ºF)]	Temperature Rise [ºC(ºF)]	Turn- around Time (sec)	Quench Time (sec)	Bundle Guench Time (sec)	Disconnected Rod Location
39	Not run					L			<u> </u>	İ					L
HOT A	ND COLD C	HANNELS					_			r		·	r	<u></u>	
40	Not run						1					ļ		ł	
41	Not run										[
42	Not run											}			
43	Not run				•			l		l		l	<u> </u>	L	
AXIAL	TEMPERAT	URE DISTR	BUTION						r	r	1	1	1	T	1
44	33544 33644	0.27 (39) 0.27 (39)	196 (385)(9) (0 to 3) 874 (1605) 182 (359)(9) (0 to 3) 877 (1610)	2.3 (0.69)	5.85 (12.9) 15 sec 0.780 (1.72) onward 5.81 (12.8) 15 sec 0.789 (1.76) onward	52 (125) 52 (125)	Uniform Uniform	11K-1.93 (76) 7D-1.93 (76)	877 (1610)	908 (1668) 930 (1705)	31 (58) 46 (82)	9	121	213	4G, 5G 4G, 5G
CTE AL		L		L	J	L	- 	1 <u></u> ^							
45 46	32652 thr 36160 thr	ough 33056 ough 37170	[[
OVER		TESTS	·						. <u>.</u>		• · · ·	· · · · · · · · · · · · · · · · · · ·	_		<u></u>
47	Not run	[1	1	1			1						
48	Not run) .			1						
	1	1	1	I	1	L					******				

Table A4-1 (cont.) FLECHT SEASET UNBLOCKED BUNDLE REFLOOD TEST DATA SUMMARY

g. Axial temperature distribution - simulated gravity raflood

-

			As	-Run Test Con	ditions			Results							
Test Na.	Run No.	Upper Plenum Pressure [MPa (psis)]	Rod Initial Tciad at 1.83m (72 in.) [°C(°F)]	Rod Peak Power [kw/m (kw/1t)]	Flooding Rate (mm/sec (in./sec)]	Coolent Temperature [¹⁰ C(⁰ F)]	Radial Power Distribution	Hottest Rod T/C and Elevation {m(in.)}	Initisti Temperature [ºC(ºF)]	Maximum Temperature [⁰ C(°F)]	Temperature Rise [⁰ C(⁰ F)]	Turn- around Time (sec)	Quench Time (sec)	: Bundhy Quench Time (sec)	Disconnects ^d Rod Location
COMP	ARISON WITH	HWESTING	HOUSE PROP	RIETARY RE	LOOD DATA										
49	33749 33849(h)	0.27 (39) 0.28 (40)	745 (1374) 745 (1374)	1.9 (0.57) 1.9 (0.57)	26.9 (1.06) 25.9 (1.02)	61 (142) 58 (138)	Uniform Uniform	11K-1.88 (74) 8K-1.98 (78)	730 (1346) 705 (1302)	1017 (1861) 1025 (1878)	287 (515) 320 (576)	103 105	250 254	430 437	4G, 5G 4G, 5G
50	35050 ^(a)	0.14 (20)	758 (1397)	1.6 (0.48)	25.9 (1.02)	43 (109)	Uniform .	90-1.83 (72)	758 (1397)	958 (1758)	200 (361)	98	243	433	4G, 5G, 1110K, 1210K, 130K
POWE	RDECAY														
51	Not run														

1

F

Table A4-1 (cont.) FLECHT SEASET UNBLOCKED BUNDLE REFLOOD TEST DATA SUMMARY

h. Rod 123 failed during test.

Appendix A-5 Literature Review

Test Facility Name: FEBA - Flooding Experiments with Blocked Arrays

Dates When Tests Were Performed: 1977

References:

- R9. P. Ihle, K. Rust FEBA Flooding Experiments with Blocked Arrays Evaluation Report - KfK 3657 - March 1984
- R10. P. Ihle, K. Rust FEBA Flooding Experiments with Blocked Arrays Data Report 1. Test Series I through IV - KfK 3658 - March 1984
- R11. P. Ihle, K. Rust FEBA Flooding Experiments with Blocked Arrays Data Report 2. Test Series V through VIII - KfK 3659 - March 1984

Availability of Data:

Reduced instrument responses are presented in References R9 to R11 in a variable versus time plot format. Tables and figures describing instrument locations are provided. Results are presented in 'almost-S1' units. Listing of computer channel numbers and of data identification are available on tapes or in the USNRC/RSR Data Bank.

Test Facility Description, Types of Tests:

The test facility is designed for a separate effect test program involving a constant flooding rate and a constant back pressure to allow investigation of the influence of coolant channel blockages independently of system effect.

Figure A-5.1 shows a scheme of the test facility. The coolant water is stored in tank and during operation the flow is forced into the bundle with a back pressure control system. A 1x5 as well as 5x5 rod array are placed in a full length stainless steel housing which have a wall thickness of 14 inches. The heater rods were 0.423-inches (10.75 mm) in diameter and were arranged on a square pitch of 0.563-inches (14.3 mm) and had heated length of 12.8 ft (3900 mm) for the 5x5 rod bundle tests and 9.5-ft (2900 mm) for the 1x5 rod bundle tests. The axial power profile is shown in Figure A-5.2. Top-down quenching was prevented in the experiments by using a particular upper plenum design (Figure A-5.3)

The range of conditions include:

Constant Mass Flow Rate

0.8 - 3.7 in/sec (2.0 - 9.5 cm/s)

Pressure	29.4 - 91.1 psia (2.0 - 6.2 bar)
Initial Clad Temperature	694 - 1461 F (368 - 794 C)
Power Axial Peak Factor	1.19
Initial Average Power	120% ANS: 40s after Reactor Trip
Inlet Temperature	104 - 257 F (40 - 125 C)
Initial Housing Temperature	527 - 1400 F (275 - 760 C)
Flow Blockage ratio	(0%, 62%, 90%, 90%+62%)
Flow Blockage Geometry	Various

The FEBA 5x5 rod bundle program consisted of eight test series with different grid spacer and sleeve blockage arrays within the bundle (Figure A-5.4). Series I are base-line tests with undisturbed bundle geometry. Series II tests investigate the grid spacer effect on the axial temperature profile at bundle mid-plane. Series III and IV consider 90% and 62% blockage at bundle mid-plane respectively. Series V consider both the blockage and the grid spacer effects while Series VI has a double blockage and investigate on the possibility of a hot region between the two blockages. Finally Series VII and VIII investigate on cooling enhancement downstream the blockages.

Instrumentation and Data From Tests:

Thermocouples (Chromel-Alumel) are imbedded in each of the rods as shown in Figure A-5.5 and A-5.6. They are used to measure cladding, sleeve, grid spacers and housing temperatures at different locations (Figure A-5.7). Fluid temperatures were measured with three different thermocouples (Figure A-5.8) and probes in order to provide information about two separate phases. The signals of all three fluid thermocouples indicated roughly same temperature during most part of reflood. Radiation effect for the unshielded thermocouple was not detected however shielding led to earlier quenching of the shielded thermocouples. Pressure and pressure differences were measured with pressure transducers. In addition to inlet and outlet pressure, the pressure differences along the midplane as well as along both the lower and upper portion of the bundle were measured. The floooding rate was measured with a turbine flow meter. The amount of water carry over was measured continuously by a pressure transducer on the water collecting tank. All data were digitally recorded with a scan frequency of 10 Hz.

The water level rising in the lower plenum at the onset of reflood was detected by thermocouples. In some tests high-frequency probes were used to detect the presence of water in the flow channel.

LEGEND

- 1 Water Supply
- 2 Steam Supply
- 3 Storage Tank
- 4 Water Pump
- 5 Filter
- 6 Heat Exchanger
- 7 Throttle Valve
- 8 Turbine Meter
- 9 Water Level Regulation Valve
- 10 Lower Plenum
- 11 Test Section
- 12 Upper Plenum
- 13 Water Separator

14 Power Supply

- 15 Rod Instrumentation Exits
- 16 Water Level Detector
- 17 Water Collecting Tank
- 18 Outlet Valve
- 19 Buffer
- 20 Pressure Regulator

- -

l

¥

~

- 8

.

,

.

	0000							00000		
Test Series Test Series -	Test Si Test Si Test Si 90% Bio	irles ()) Irles V Irles VI Ickage	Te Te 62	st Series IV st Series Vi X Blockage	,	Test Serie 625 Blocke	s VII ge	Test : 90% 8:	Series VIII lockage	
FLOODING PARAMETERS										
Test Series	ł	1 1	П	1 111	I IV	1 1				
Flooding Velocity (cold bundle) Constant During Each Test	ca/s	3.8, 5.8	3.8, 5.8	3.8, 5.8	3.8, 5.8	2.2, 3.8	2.2, 3.8	V11 3.8, 5.8 (2.2)	VIII 3.8, 5.8 (2.2)	
System Benerium	+								1 1 1 1	

System Pressure Constant During Each Test	ber	2, 4, 6 2, 4, 6 2, 4, 6 4 4 2, 4, 6 2, 4, 6
Feedwater Temperature Constant During Each Test	•c	40 °C, some fav tests vith 80 °C (4) (2, 4)
Max. Cladding Temperature (at start of reflooding)	•c	between 700 and 800 °C, some few tests between 600 and 700°C
Max, Housing Temperature (at start of reflooding)	•c	between 600 and 700 °C, some few tests between 500 and 600°C
Sundle Power	ĸv	at start of refideding 200 kW, 120% AMS decay heat transient 40 s after shutdown

Steam Cooling Tests

Test series VII and VIII include steady state and translant tests for which low bundle power and system pressures of 2, 4 and 6 bar were selected. - +

ſ

Figure A-5.4: 5x5 Rod Bundle, Test Matrix for Series I through VIII

.

Figure A-5.5: Rod Geometry and location of Thermocouple

Figure A-5.6: Radial and Axial location of cladding, fluid and housing TC's for Test Series 1

- .. -

. 1

:

Rod Type	TC No.	Axial Level mm	Rod Type	TC No.	Axial Level mm	Rod Type	TC No.	Axial Level mm
8	1 2 3 4	2225 2770 3315 3860	e	1 2 3 4	2075 2125 2175 2225	×	with	out TC's
b	1 2 3 4	45 590 1135 1680	ŧ	1 2 3 4	2125 2225 2325 2425			
c	1 2 3 4	3725 3825 3925 4025	g	1 2 3 4	1625 1725 1825 1925			
d	1 2 3 4	2025 2025 2025 2025 2025	h	1 2 3 4	1925 2025 2125 2225			

~

A5-9

9

.

·..

.

Figure A-5.8: 5 rod row: Comparison of different fluid temperature measuring devices

e

Table 1 Assessment of FEBA Test to RBHT PIRT: Single Phase Liquid Convective Heat Transfer in the Core Component During Reflood Below the Quench Front

Process/Phenomena	Ranking	Basis	FEBA V
16 Liquid Convective Heat Transfer	L	1¢ Convective H.T. data has been correlated for rod bundles, uncertainty will not effect PCT.	Can be back calculated.
- Effects of Geometry	L	De has been shown to be acceptable for P/D or $1.3^{(5)}$.	P/D = 1.33
- Effects of Spacers	L	Effects of spacers in b convective H.T. is known, see ⁽⁶⁾ . No impact on PCT uncertainty.	Separate tests with and without grid spacers have been run. The effect can be estimated from clad and fluid temperatures below the quench front.
- Effects of Properties	۰L	Property effects are accounted for in analysis for $1 \oplus$ H.T. little uncertainty.	Insufficient data.
16 Liquid Natural Connection H.T.	L	Must test Gr/Re to determine regime.	Not applicable.
Effects of Geometry	L	Limited data exists which can be used as a guide, should have little uncertainty on PCT.	Not applicable.
Effects of Spacers	L	Effect unknown for natural convection, but enhances H.T. No impact on PCT uncertainty.	Not applicable.
Effects of Properties	L	Accounted for in dimensionless parameters, little uncertainty.	Not applicable.
Decay Power	н	Source of energy for rods, boundary convection for test.	n Measured.

٠,

.

1

1

i,

Table 2 Assessment of FEBA Test to RBHT PIRT: Subcooled and Saturated Boiling The Core Component Below the Quench Front

(

ť

÷

Process/Phenomena	Ranking	Basis	FEBA
Subcooled Boiling	L	A significant variation in the subcooled boiling H.T. coefficient will not effect the PCT uncertainty since rod is quenched.	Temperature measurements (fluid and clad) are available but void fraction data are insufficient.
-Effects of Geometry, P/D, De	L	Boiling effects in rod bundles have been correlated for our P/d, De range with acceptable uncertainty ⁽⁸⁾ .	P/D = 1.33 for tests.
-Effects of Spacers	L	Locally enhances H.T.; Correlations/ Models are available acceptable uncertainty.	Separate tests with and without grid spacer have been run to address the effect.
·Effects of Properties	L	Data exists for our Range of Conditions, little uncertainty.	Insufficienta data.
Saturated Boiling	L	Similar to subcooled boiling, data is available for our P/D, De range. The uncertainty of Saturated Boiling H.T. coefficient will not significantly impact the PCT since rod is quenched.	Heater rod and fluid temperatures are available, but void fraction data are insufficient.
-Effects of Geometry, P/D, De	L	Data exists in the range of P/D, De with acceptable uncertainties ⁽¹⁾ .	P/D = 1.33
-Effects of Spacers	L	Locally enhances H.T., Correlations/ Models are available ⁽⁹⁾ , with acceptable uncertainty.	Separate tests with and without grid spacer have been run to address the effect.
Effects of Properties	L	Data exists for our range of conditions, little uncertainty.	Insufficient void fraction data.
Decay Power	н	Source of energy for rods, boundary condition for the test.	Measured.

12

Table 3 Assessment of FEBA Tests to RBHT PIRT: Quench Front Behavior in the Core Component

1

(

it.

Process/Phenomena	Ranking	Basis	Ņ.	FEBA	Ŷ
Fuel /Heater Rod Quench					
Fuel/heater rod materials, ρ , C _p , k, rod diameter	н	These properties effect the stored energy in the fuel/heater rod and its quench rate, uncertainty directly impacts PCT.	Rod properties are known, a	s are dimensions, stored ener	rgy can be calculated.
Gap heat transfer coefficient	м	Second largest resistance in fuel rod. Can limit heat release <u>rate</u> from fuel pellet. Gap heat transfer coefficient has large uncertainty, but its impact on PCT is smaller since all stored energy will be released, timing may change however.	0.5mm gap is present betwee Rod and sleeve temperature:	2n rod and sleeve in blocked 3 are measured.	bundle experiments.
Cladding materialsp, Cp, k	L	Both Inconcl and Zirc have approximately same conductivity most existing data is on stainless steel. Small uncertainty.	Cladding material properties	s are known Ni-Cr 80-20 cla	adding was used.
Cladding surface offects Oxides Roughness Materials T _{win} T _{CHP}	н	Since zirc can oxidize, the oxide layer will quench sooner due to its low conductivity, verses Inconel or Zirc. Also roughness from oxide promotes easier quenching. The surface condition effects T_{a} which is the point where quenching is initiate ⁽³⁾ , ⁽¹⁰⁾ . Quenching is a quasi-steady two-dimensional process, values of T_{ab} and T_{CHP} can be estimated. Large uncertainty and impact on PCT.	Surface properties effects w information are available.	ere not addressed in the anal	ysis and insufficient
Transition Boiling Heat Transfer	н	Determines the <u>rate</u> of heat release at Quench Front directly impacts PCT, large uncertainty.	Insufficient data.		
Steam generation at quench front	н	It is the rapid amount of steam generation which creates the liquid entrainment, large uncertainty and impact on PCT.	Not given in the data analy:	sis.	21

13

Table 3 Assessment of FEBA Tests to RBHT PIRT: Quench Front Behavior in the Core Component(continued)

(

Ý

1

.'

Decay Power	н	Source of Energy for Rods, boundary condition for the test.	Mcasured.
Liquid entrainment at quench front which includes liquid ligaments, initial drop size, and droplet number density	н •	Liquid entrainment cools the PCT location downstream, directly impacts PCT, high uncertainty.	Total water carryover is measured but no information is available on droplets size, density, velocity etc.
Void fraction/flow regime	н	Determines the wall heat transfer since larga results in dispersed flow, lowa is film boiling. Directly impacts PCT.	Only coarse (ΔP) measurements are available. Insufficient data.
Interfacial area	н	Determines the initial configuration of the liquid as it enters the transition region directly impacts liquid/vapor heat transfer and resulting PCT downstream.	Insufficient instrumentation.

,

Table 4 Assessment of FEBA Tests to RBHT PIRT: FROTH Region for Core Component

t i

(

		Desis	÷ Ř	EED A	Ý
Process/Phenomena	<u>Ranking</u>	Basis	Ŷ.	<u>FEBA</u>	
Void fraction/flow Regime	н	Void fraction/flow Regime helps determine the amount of vapor-liquid heat transfer which effects the downstream vapor temperature at PCT, large uncertainty.	DP measurements are to	so coarse to calculate the void fr	action.
Liquid ligaments, drop sizes, interfacial area, droplet number density	н •	Liquid surface characteristics determine the interfacial heat transfer in the transition region as well as the dispersed flow region, large uncertainty.	Insufficient instrumenta	រtion.	
Film Boiling H.T. at low void fraction classical film boiling (Bromley)	Н	The film boiling heat transfer is the sum of the effects listed below in the adjacent column. Each effect is calculated separately and is added together in a code calculation, large uncertainty.	Only rod heat transfer o	an be calculated from data.	
- droplet contact heat transfer	н	Wall temperature is low enough that some direct wall-to-liquid heat transfer is possible with a high heat transfer rate, large uncertainty.	No data or analysis is a	vailable.	
- convective vapor H.T.	м	Vapor convective heat transfer is not quite as important since the liquid content in the flow is large and the vapor velocities are low, but large uncertainty.	Estimated using Dittus	s-Boelter correlation.	
interfacial H.T.	м	Interfacial heat transfer effects are also smaller since the steam temperature is low, but large uncertainty.	No data available.		
radiation H.T. to liquid/vapor	М	The radiation heat transfer effects are also small since the rod temperatures are low.	No data available.		
effects of spacers	м	The velocities and Reynolds numbers are low in this region such that droplet breakup and mixing are not as important. Drop deposition could occur.	Measured. Separate tes effect.	sts with and without grid spacer	were run to investigate the
Jecay Power	н	Source of power for rods.	Measured.		, ¹

Table 5 Assessment of FEBA Tests to RBHT PIRT: A Dispersed Flow Region for Core Component (continued)

 Radiation Heat Transfer to: surfaces vapor droplets 	M/H M/H M/H	This is important at higher bundle elevations (H) where the convective heat transfer is small since the vapor is so highly superheated. Very important for BWR reflood with sprays, and colder surrounding can. Large uncertainty.	Radiation heat transfer was not considered in the data analysis.
Gap heat transfer	L	Controlling thermal resistance is the dispersed flow film boiling heat transfer resistance. The large gap heat transfer uncertainties can be accepted, but fuel center line temperature will be impacted.	A 0.5mm gap is present between rod and sleeve in blocked bundle experiments. Rod and sleeve temperature were measured in this case.
Cladding Material	L	Cladding material in the tests is Inconel which has the same conductivity as zircalloy nearly the same temperature drop will occur.	Used Ni-Cr 80-20 clad.
Reaction Rate	м	Inconel will not react while Zircalloy will react and create a secondary heat source at very high PCTs, Zirc reaction can be significant	Not present.
³ uel Clad Swelling/Ballooning	L	Ballooning can divert flow from the PCT location above the ballooning region. The ballooned cladding usually is not the PCT location. Large uncertainty.	The effect of clad ballooning was extensively investigated since it was the main issue of FEBA experiment campaign. Large amount of data is available.

16

A5-16

IJ.

11

Table 5Assessment of FEBA Tests to RBHT PIRT:A Dispersed Flow Region for Core Component (continued)

 Radiation Heat Transfer to: surfaces vapor droplets 	М/Н М/Н М/Н	This is important at higher bundle elevations (H) where the convective heat transfer is small since the vapor is so highly superheated. Very important for BWR reflood with sprays, and colder surrounding can. Large uncertainty.	Radiation heat transfer was not considered in the data analysis.
Gap heat transfer	L	Controlling thermal resistance is the dispersed flow film boiling heat transfer resistance. The large gap heat transfer uncertainties can be accepted, but fuel center line temperature will be impacted.	A 0.5mm gap is present between rod and sleeve in blocked bundle experiments. Rod and sleeve temperature were measured in this case.
Cladding Material	L	Cladding material in the tests is Inconel which has the same conductivity as zircalloy nearly the same temperature drop will occur.	Used Ni-Cr 80-20 clad.
Reaction Rate	м	Inconel will not react while Zircalloy will react and create a secondary heat source at very high PCTs, Zirc reaction can be significant	Not present.
Fuel Clad Swelling/Ballooning	L	Ballooning can divert flow from the PCT location above the ballooning region. The ballooned cladding usually is not the PCT location. Large uncertainty.	The effect of clad ballooning was extensively investigated since it was the main issue of FEBA experiment campaign. Large amount of data is available.

17

A5-17

11

t1

Table 6 Assessment of FEBA Tests to RBHT PIRT: **Top Down Quench in Core Components**

e.

Î

Process/Phenomena	Ranking	Basis	ġ.	FEBA	Ŷ
De entrainment of film flow	Ľ	The film flow is the heat sink needed to quench the heater rod. This has high uncertainty.	Top down quenching w	as prevented in these tests by design.	
Sputtering droplet size and velocity	L	The droplets are sputtered off at the quench front and are then re-entrained upward. Since the sputtering front is above PCT location, no impact. The entrained sputtered drops do effect the total liquid entrainment into the reactor system, as well as the steam production, in the steam generators.	Not applicable since top	p down quenching was prevented.	
fuel rod/heater rod properties for stored energyp, C _p , k.	L	These properties are important since they determine the heat release into the coolant. However, since this occurs above PCT level, no impact.	Not applicable since top	p down quenching was prevented.	
Gap heat Transfer	L1	Effects the <u>rate</u> of energy release from fuel/heater rod.	Not applicable since top	p down quenching was prevented.	

lote: Some of these individual items can be ranked as high (H) within the top down quenching process; however, the entire list is ranked as low for a PWR/BWR since it occurs downstrea e PCT location.

18

A5-18

1

r'

۲

(

Table 7Assessment of FEBA Tests to RBHTPreliminary PIRT for Gravity Reflood Systems Effects Tests

<u>FEBA</u>

(

Process/Phenomena	<u>Ranking</u>	Basis	
Upper Plenum - entrainment/de-entrainment	м	The plenum will fill to a given void fracture after which the remaining flow will be entrained into the hot leg, large uncertainty.	Not applicable.
Hot Leg - entrainment, de-entrainment	L	The hot legs have a small volume and any liquid swept with the hot leg will be entrained into the steam generator plenums, medium uncertainty.	Not applicable.
Pressurizer	L	Pressurizer is filled with steam and is not an active component-smal uncertainty.	lNot applicable.
Steam Generators	н	The generators evaporate entrained droplets and superheat the stear such that the volume flow releases (particularly at low pressure). The result is a higher steam flow downstream of the generators-hig uncertainty since a good model is needed. FLECHT-SEASET data exists for reflood.	1 Not applicable.
Reactor Coolant Pumps	н	This is the largest resistance in the reactor coolant system which directly effects the core flooding rate-low uncertainty.	Not applicable.
Cold Lee Accumulator Injection	н	Initial ECC flow into the bundle.	Not applicable.
Cold Leg Pumped Injection	н	Pumped injection maintains core cooling for the majority of the reflood transient.	Not applicable.
Pressure	н	Low pressure (20psia) significantly impacts the increased vapor volume flow rate, which decreases the bundle flooding rate.	Low pressure (30 psia) simulated
Injection Subcooling	м/Н	Lower subcooling will result in boiling below the quench front suc that there is additional vapor to vent.	th Low subcooling simulated.
Downcomer wall heat transfer	н	The heat transfer from the downcomer walls can raise the ECC flu temperature as it enters the core, resulting in more steam generation	id Not applicable. m.
ower Plenum Wall Heat Transfer	м	Source effect as downcomer but less severe.	Not applicable.
Break	L	Excess ECC injection spills, but break P helps pressurize reactor system.	Not applicable.

Table 8 Assessment of FEBA Tests to RBHT PIRT for High Ranked BWR Core Phenomena

(

~

	Process/Phenomena	Basis	FEBA
Corc	Film Boiling	PCT is determined in film boiling period.	Total heat transfer is measured.
•	Upper Tie Plate CCFL	Hot Assembly is in co-current up flow above CCFL limit.	Not applicable.
•	Channel-bypass Leakage	Flow bypass will help quench the BWR fuel assembly core.	Not applicable.
•	Steam Cooling	A portion of the Dispersed Flow Film Boiling Heat Transfer.	Steam cooling heat transfer is estimated from data.
•	Dryout	Transition from nucleate boiling and film boiling.	Quench front is measured.
•	Natural Circulation Flow	Flow into the core and system pressure drops.	Not applicable.
•	Flow Regime	Determines the nature and details of the heat transfer in the core.	Movies exist to determine flow regime.
•	Fluid Mixing	Determines the liquid temperature in the upper plenum for CCFL break down.	Not applicable.
•	Fuel Rod Quench Front	Heat release from the quench front will determine entrainment to the upper region of the bundle.	Quench front data exists.
•	Decay Heat	Energy source for heat transfer.	Measured as initial/boundary conditions.
•	Interfacial Shear	Effects the void fraction and resulting droplet and liquid velocity in the entrained flow.	Not measured.
	Rewet: Bottom Reflood	BWR hot assembly refloods like PWR.	Total reflood heat transfer measured.
	Rewet Temperature	Determines the quench front point on the fuel rod.	Quench temperature is measured.
	Top Down Rewet	Top of the hot assembly fuel will rewet in a similar manner as PWR.	Top down rewet quench front measured.
	Void Distribution	Gives the liquid distribution in the bundle.	Not measured.
	Two-Phase Level	Similar to quench front location, indicates location of nucleate and film boiling.	Measured by rod T/Cs, collapsed level measured, & level estimated from DP cells.

20

Conclusions

The FEBA experiments provide very good information concerning the separate effect of grids and blocked bundle regions on the heat transfer during reflood. Separate tests were run with the same boundary conditions with and without grids, with and without blockage to address this effect. On the other hand a very little effort has been dedicated to investigate the single thermal-hydraulic process involved in the heat transfer during reflood (droplets behavior, entrainment etc.) which does not provide sufficient data to develop and validate mechanistic models to be used in best-estimate code.

.

-__

-

A5-21

21

Appendix A-6 Literature Review

Test Facility Name: Oak Ridge National Laboratory Thermal-Hydraulic Test Facility (THTF)

Dates when tests were performed: 1980 - 1982

References:

- R12. Mullins, C. B., et al., "ORNL Rod Bundle Heat Transfer Test Data," NUREG/CR 2525, Vol. I to Vol. 5, 1982.
- R13. Yoder, G. L., et al., "Dispersed Flow Film Boiling in Rod Bundle Geometry Steady State Heat Transfer Data and Correlations Comparisons," NUREG/CR 24351, 1982.

Availability of Data:

Reduced instrument responses are presented in Reference R12 for transient film boiling in upflow. Microfiche of the reduced data in graphical form exist along with three types of tables to assist the reader in using the data. The first table lists instrumentation in terms of instrument function, type and location. The second table lists instruments in the order they appear graphically in the microfiche. The third table lists instruments alphabetically in terms of the instrument application number (IAN). In addition to the transient data, steady state data exist in ReferenceR13fordispersedflowfdmboiEng. The data are presented in two separate sets of tables, one in SI units and the other in English units, listing fluid conditions, surface conditions and correlation - predicted versus experimentally determined heat transfer coefficients.

Test Facility Description, Types of Tests

Both the transient and steady state experiments were performed in the Thermal-Hydraulic Test Facility (THTF), as shown in Figure A-6. 1. The THTF was a heavily instrumented nonnuclear pressurized-water loop containing 64 full-length rods arranged in an 8x8 bundle; 60 of the rods were electrically heated (see Figure A-6.2). The rod diameter was 0.374" (0.0095 m) and the rod pitch was 0.501" (0.0127 m) on a square lattice, typical of PWRs with 17x17 fuel rod assemblies. Figure A-6.3 shows a simplified cross section of a typical fuel rod simulator. The axial and radial power profile was flat. The heated length of the bundle was 12 ft (3.66 m) and there were eight spacer grids in the heated length, as shown in Figure A-6.4. The spacer grids were of the egg-crate type installed 2 ft (0.61 m) apart.

Two types of tests were performed, one transient and the other steady state. The transient tests were initiated by breaking the outlet rupture disk assembly. Although the THTF had a rupture disk assembly at the inlet, it was not employed to assure a unidirectional flow up through the test section. At the same time the outlet rupture disk was broker4 the pump was tripped and bundle power was ramped up to about 6-8 MW. After the initial power ramped up, the bundle power remained at this high level until most of the sheath temperatures at level G in the bundle

Figure A6.1. THTF system with instrumented spool pieces labeled.

ORNL-DWG 77-5718

- L

M INACTIVE RODS

Figure A6.3. Cross-section of a typical FRS.

Figure A6.4. Axial location of spacer grid and FRS thermocouples.

reached 1000°F (811 K). The bundle power was then ramped down to maintain high rod sheath temperatures in the upper bundle without reaching the safety limit of 1550°F (1116 K). All test series including test 3.03.6AR, test 3.06.6B and test 3.08.6C were conducted under reactor accident-type conditions to obtain transient film boiling data. The ranges of conditions are given are given below.

Test 3.03.6AR:

	Mass Velocity Quality Pressure Heat Flux	$136 - 502 \text{ kg/m}^2 \text{s} (1 \times 10^5 \text{ to } 3.7 \times 10^5 \text{ lb}_m/\text{h.ft}^2)$ 23 - 100% 5 - 10 MPa (700 - 1500 psi) $158 - 1000 \text{ kW/m}^2 (5 \times 10^4 \text{ to } 3.2 \times 10^5 \text{ Btu/h.ft}^2)$
Test 3.06.6B:		
	Mass Velocity	$136 - 610 \text{ kg/m}^2 \text{s} (1 \times 10^5 \text{ to } 4.5 \times 10^5 \text{ lb}_m/\text{h.ft}^2)$
	Quality	5 - 100%
	Pressure	6 – 13 MPa (875 – 1900 psi)
	Heat Flux	$158 - 630 \text{ kW/m}^2 (5 \times 10^4 \text{ to } 2 \times 10^5 \text{ Btu/h.ft}^2)$
Test 3.08.6C:		
	Mass Velocity	$330 - 1090 \text{ kg/m}^2 \text{s} (2.4 \times 10^5 \text{ to } 8 \times 10^5 \text{ lb}_{\text{m}}/\text{h.ft}^2)$
	Quality	35 - 100%
	Pressure	6.6 – 11.7 MPa (950 – 1700 psi)
	Heat Flux	$160 - 1100 \text{ kW/m}^2 (5 \times 10^4 \text{ to } 3.5 \times 10^5 \text{ Btu/h.ft}^2)$

In the steady state tests, the working fluid flowed from the pump through two control values, past the inlet rupture disk assembly and through a vertical spool piece before it entered the external downcover. The working fluid then flowed through two spool pieced in the downcover and entered the test section. The fluid was heated as it flowed along the rods within the test section. It then left the test section from the upper plenum, past through the three outlet spool pieces and the heat exchangers, and returned to the pump. During the run, the loop was adjusted to provide the desired inlet fluid temperature and inlet pressure. The bundle power was then increased until the dryout point was at the desired position in the bundle. The steady state operating conditions were assumed to have been reached when the operating pressure and rod surface temperatures stabilized. A total of twenty-two (22) steady-state tests were performed. The ranges of conditions were:

Mass Velocity	$226 - 806 \text{ kg/m}^2 \text{s} (1.66 \text{x} 10^5 \text{ to } 5.94 \text{x} 10^5 \text{ lb}_m/\text{h.ft}^2)$
Quality	0 - 100%
Pressure	4.4 – 13.4 MPa (635 – 1938 psi)
Heat Flux	$320 - 940 \text{ kW/m}^2 (1 \times 10^5 \text{ to } 3 \times 10^5 \text{ Btu/h.ft}^2)$

Instrumentation and Data from Tests

The bundle was fully instrumented with thermocouples at various axial locations (i.e., at A, B, C, D, E, F, G levels) to measure the rod temperatures and in-bundle fluid temperatures. At each axial location where a rod had thermocouples, there were three individual thermocouples spaced azimuthally around the rod. In-bundle fluid temperatures were measured using thermocouples extending a short distance from the rod surface into the fluid as well as thermocouples mounted on the spacer grids. Rods 36 and 46 also contained gamma densitometer instrumentation for measuring in-bundle fluid density. Two flow measurement sites were positioned at each end of the test section containing the rod bundle. Differential pressure and pressure instrumentation located in the entire piping system including the outlet nozzle, vertical outlet and external downcover spool pieces.

In the transient tests, local bundle fluid conditions were calculated with the homogeneous two-phase flow and thermodynamic equilibrium thermal-hydraulics code RLPSFLUX. The transient data were compared to six existing film boiling correlations. Results of the comparisons were presented in Reference R12. In the steady state tests, mass and energy conservation relationship were used to calculate equilibrium fluid conditions within the rod bundle. These fluid conditions, along with calculated rod surface temperatures, were used to evaluate the six film boiling correlations as well as single-phase vapor correlation. Results of the comparisons were presented in Reference RI 3. In addition to the dispersed flow film boiling data, results were also obtained for the spacer grid effects, which had beneficial influence on the heat transfer due to a boundary layer breakup-rebuild process at the grids.

Table 5Assessment of ORNL/THTF Data to RBHT PIRT:Dispersed Flow Region for Core Component

Process/Phenomena	Ranking	Basis	ORNL/THTF Data
Decay power	н	Energy source which determines the temperature of the heater rods, and energy to be removed by the coolant.	Known, measured as initial/boundary conditions.
Fuel Rod/Heater Rod properties, p, c _p , k	L	The exact properties can be modeled and stored energy release is not important at this time, environmentally.	Heater rod properties are known and approximate those of nuclear rod.
Dispersed Flow Film Boiling H •		Dispersed flow film boiling modeling has a high uncertainty which directly effects the PCT.	Total head transfer coefficients for DFFB have been obtained from the transient and steady state data covering a wide range of mass velocities, qualities and pressures. The coefficients have been compared to existing correlations.
Convection to superheated vapor	н	Principle mode of heat transfer as indicated in FLECHT- SEASET experiments ⁽⁴⁾ .	Total convection heat transfer has been determined.
Dispersed phase enhancement of convective flow	н	Preliminary models indicted that the enhancement can be over 50% in source cases ⁽¹³⁾ .	This component was not isolated.
Direct wall contact H. T.	L	Wall temperatures are significantly above Tmin such that no contact is expected.	This component was not isolated.
Dry wall contact ⁽¹²⁾	М	Iloeje ⁽¹²⁾ indicates this H. T. Mechanism is less important than vapor convection.	This component was not determined.
Droplet to vapor interfacial heat transfer	н	The interfacial heat transfer reduces the vapor temperature which is the heat sink for the wall heat flux.	The quality is known but the interfacial surface area is not.
Radiation Heat Transfer to: • surfaces • vapor • droplets	М/Н М/Н М/Н	This is important at higher bundle elevations (H) where the convective heat transfer is small since the vapor is so highly superheated. Very important for BWR reflood with sprays, and colder surrounding can. Large uncertainty.	Can be estimated from the data on surface temperatures and fluid conditions.

Table 5Assessment of ORNL/THTF Data to RBHT PIRT:Dispersed Flow Region for Core Component (continued)

Gap heat transfer	L	Controlling thermal resistance is the dispersed flow film boiling heat transfer resistance. The large gap heat transfer uncertainties can be accepted, but fuel center line temperature will be impacted.	Not present. Heater rods have no gap.
Cladding Material	L	Cladding material in the tests is Inconel which has the same conductivity as zircalloy nearly the same temperature drop will occur.	Used stainless steel clad.
Reaction Rate	M	Inconel will not react while Zircalloy will react and create a secondary heat source at very high PCTs, Zirc reaction can be significant.	Not present.
Fuel Clad Swelling/Ballooning	L	Ballooning can divert flow from the PCT location above the ballooning region. The ballooned cladding usually is not the PCT location. Large uncertainty.	Not present.

Conclusions

The ONRL/THTF tests provide both transient and steady state film boiling heat transfer data in rod bundle geometry. In general, the steady state results support the conclusions reached in the analysis of the transient results. The experimentally determined heat transfer coefficients may be useful as they have been compared to various existing heat transfer correlations. It is found that the Dougall-Rohsenow correlation often overpredicts the heat transfer coefficient whereas the Groeneveld-Delorme correlation tends to underpredict the heat fluxes near dryout but improves as distance from dryout increases. On the other hand, the Groeneveld 5.7, Groeneveld 5.9 and Condie-Bengston IV correlations give better agreement with the experimental data.

It should be noted that although the steady state and the transient data appear to be consistent with each other, the bundle fluid conditions in both cases are determined from mass and energy conservation consideration based on the assumption of thermodynamic equilibrium. However, non-equilibrium conditions probably exist within the bundle. Thus, a more sophisticated calculational method accounting for the effect of non-equilibrium is needed to determine the actual bundle fluid conditions. Non-equilibrium also implies that liquid droplets can be present in the flow when equilibrium qualities are calculated to be larger than unity.

The ORNL/THTF tests have been focused on the case of dispersed flow film boiling in upflow under high-pressure high-temperature conditions. The data may provide some relevant information in the dispersed flow region for core component in the RBHT PIRT Table 5. However, the results are not applicable to single phase liquid corrective heat transfer in the core component during reflood below the quench front (RBHT PIRT Table 1), subcooled and saturated boiling in the core component below the quench front (RBI-IT PIRT Table 2), quench front behavior in the core component (RBHT PIRT Table 3), froth region for the core component (RBHT PIRT Table 4), top down quench in core component (RBHT PIRT Table 6), and gravity reflood system effects (RBHT PIRT Table 7).

Even in the dispersed flow region, the ORNL/THFT data must be used with caution. This is because the pressure range (4.4 - 13.4 MPa or 635 - 1938 psi) explored in the THTF tests is very high, more characteristic of a PWR or BWR blowdown situation. Thus the results may not be directly applicable to transient stage of reflood heat transfer in rod bundles.

Appendix A-7 Literature Review

Test Facility Name: FRIGG-2 36-Rod Loop (Sweden)

Dates When Tests Were Performed: 1965-1968

References:

- R14. Becker, K. M., Flinta, J., and Nylund, O., "Dynamic and Static Burnout Studies for the Full Scale 36-Rod Marviken Fuel Element in the 8 MW Loop FRIGG," Paper presented at the Symposium on Two-Phase Flow Dynamics, Eindhoven, September 1967.
- R15. Nylund, 0. *et al.*, "Measurements of Hydrodynamic Characteristics, Instability Thresholds, and Burnout Limits for 6-Rod Clusters in Natural and Forced Circulation," ASEA and AB Atomenergi Report FRIGG-1, 1967.
- R16. Nylund, O., Becker, K. M., Eklund, R., Gelius, O., Haga, I., Herngorg, G., Rouhani, Z., and Akerhielm, F., "Hydrodynamic and Heat Transfer Measurements on a Full Scale Simulated 36-Rod Marviken Fuel Element with Uniform Heat Flux Distribution," ASEA and AB Atomenergi Report FRIGG-2, 1968.

Availability of Data:

The experimental investigation simulates the fuel element of a Swedish heavy water cooled Marviken BVRR with 35 uniformly heated heater rods and a unheated (but larger in diameter) center rod simulating the control rod. Experimental data available from the FRIGG-2 tests, all under pressures up to 5 0 bars (71 1 psi), are single- and two-phase pressure drops; burnout (or critical heat flux) in natural and forced circulation; natural circulation mass velocity as a function of total power and inlet subcooling; the stability limit; as well as the details about the system during transient conditions. Additionally, a unique output of the FRIGG-2 tests is the axial and radial void distributions measured by the Cobalt-60 gamma-ray densitometer system. The results have been compared to data obtained from in the previous 6-rod tests (RI 5., FRIGG-1) and to predictions with existing correlations and models. All pressure drop data are consistently agreeable between FRIGG-2, FRIGG-1, and actual Marviken conditions. The natural circulation burnout value is very close to that of forced circulation, but both are about 20% low compared to predictions by the Becker correlation. This is believed to be due to the unfavorable conditions in the inner subchannels of the uniformly heated bundle. The results of natural circulation mass velocity, stability limit, and transient behavior at different power levels agree well with the calculation. Calculations indicate that the conditions in a real Marviken boiling channel are somewhat more favorable than in the FRIGG-2 experiment. That suggests that sufficient margins against burnout and hydrodynamic instability are present in the Marviken reactor.

Test Facility Description, Types of Tests:

The primary purpose of FRIGG-2 tests was to obtain the burnout values of the 36-rod bundle at different mass fluxes and inlet subcoolings to simulate the core conditions of a Marviken BWR. The geometric features of the test section are:

Number of heated rods Number of unheated rods	35 1	Rod diameter Unheated rod dia.	13.8 mm (0.5433") 20 mm (0.7874")
Circular housing diameter	160 mm (6.30")	Number of spacers	8
Average hydraulic dia.	26.9 mm (1.06")	Heated hydraulic dia.	36.6 mm (1.44")
Heated length (uniform)	4375 mm (172")	Number of burnout T	/C's 4

Tests were run with 35 rods electrically heated and I center rod unheated. Both the axial and radial power profiles are uniform. A cross-sectional view of the test section is shown in Fig. A-7. 1, indicating the placement pattern of the unheated center rod and 3 5 heated rods in three orbital rows. The flow diagram of the FRIGG-2 loop is shown in Fig. A-7.2. For burnout tests FRIGG-2 requires a significant DC electrical power: 80 MW, 80 kA, and DC voltage regulation from 0 to- 200 V. The heater rods were of a type with coaxial feeder rod eliminating the electromagnetic forces between the rods. Most of the heat is produced in the 0.8 mm stainless steel canning of the rod, which is isolated from the center copper conductor. This means that the reactor fuel time constant (or heat capacity) is <u>not</u> correctly simulated. There are 4 electrically isolated burnout detectors (or thermocouples) measuring temperatures at different elevations and there wires running axially along the inside surface of the stainless steel canning. If a burnout event is detected by any of the burnout detectors in the bundle, the DC power applied to the bundled would be immediately reduced by 20% within 0. I second and the histories of all important fluid and thermal parameters are recorded. These burnout conditions are the primary objective of the FRIGG-2 tests.

A secondary but important test of FRIGG-2 is the void fraction measurement in both the axial and radial directions of the bundle. The measurement system comprises one gamma source, Co-60, and four scintillation detectors with adjustable collimators. The pulses from the detectors are amplified, analyzed and counted in separate scalars built into the data collection system. The penetration paths of the four gamma beams can be changed between three prefixed radial positions within the bundle. The void at a certain level is thus evaluated from the twelve measurements covering different parts of the bundle. This gives a rather good cross sectional mean value of the void and also information about the radial void distribution. The void allows for axial void distribution measurement.

Other instrumentation includes Chromel-alumel thermocouples for fluid temperature distribution measurement; fast response DP cells with venturi units and turbine flow meters for mass velocity measurement; and impedance void gauge to measure the outlet quality. Standard single- and two-phase pressure drops at all test conditions are also measured using differential and absolute pressure sensors.

Figure A-7.1 36-Rod Bundle of the FRIGG-2

:

Figure A-7.2 Flow Diagram of the FRIGG-2 Loop

The ranges of test conditions include,

Single-phase (cold) mass flux	840 - 3195 kg/m ² s $(0.618 - 2.35 \times 10^6 \text{ lbm/ft}^2\text{hr})$
Two-phase mass flux	$366 - 1492 \text{ kg/m}^2 \text{s} (0.269 - 1.098 \times 10^6 \text{ lbm/ft}^2 \text{hr})$
Pressure	50 bars (711 psi)
Rod Temperature	measured with thermocouples serving as burnout detectors
Average heat flux	$8.1 - 103 \text{ W/cm}^2 (0.0257 - 0.326 \times 10^6 \text{ Btu/ft}^2\text{hr})$
Exit quality	2.2% - 51.5%
ΔT_{sub}	2.4 - 29.4 °C
Flow regimes	Liquid 1-\$\phi\$, bubbly, transition, annular (typical of
Void Frontier	BWR)
Vold Fraction	070-10070

Instrumentation and Data from Tests

Each of the heater rods was instrumented with four (4) thermocouples. These thermocouples are primarily for burnout detectors and thus calibration is not necessary. Neither was any visualization view port provided, such that the identification of flow regimes was based on empirical correlations from the state of local quality. Heat transfer information were mainly derived from the voltage and current parameters of the DC power system, thus only global heat flux (rather than local heat flux) were obtained. Although the heater rods were pushed to the burnout limits in order to obtain the critical heat flux (CHF), the normal BWR operating mass flux range was maintained. Therefore the post-LOCA reflood (or blowdown) scenarios were not addressed, neither were the radiation heat transfer and dispersed flow film boiling phenomena as normally encountered in a uncovered core during reflood. However, the FRIGG-2 gamma-ray densitometer experiments provided valuable information on the axial and radial distribution of void faction. It could facilitate the physical correlation between void fraction, local quality, and interfacial slip.

Extensive single- and two-phase flow pressure drop data were obtained in the FRIGG-2 tests. These pressure drop data are specific to the Marviken reactor core condition, but have compared favorably with the Martinelli-Nelson and Becker correlations.

The only complete natural circulation curve was also obtained at conditions close to the Marviken reactor's. However, by far, the most important data obtained from the FRIGG-2 tests are the CHF data for the particular fuel type and grid spacer pattern, as well as the void fraction distribution of the 36-rod bundle.

Conclusion

For the burnout experiments in FRIGG-2, all independent parameters (mass flux, inlet subcooling, pressure, and power to the bundle) have been carefully and independently controlled Due to the uniform axial and radial power profiles of FRIGG-2, which resulted in a less favorable heat transfer condition in FRIGG-2 as compared to the actual Marviken core, the

measured burnout data were approximately 20% lower than those predicted. This points out the major deficiency of the uniform power profiles of FRIGG-2. Follow-up tests using the actual Marviken reactor's power profiles have been suggested and recognized.

The natural circulation mass flow rate in Marviken is 10-15% above the experimental values of FRIGG-2 in the power range of interest, while there is a close agreement between the calculated and measured FRIGG-2 flows. The differences are attributed to the Marviken's coolant (heavy water); larger radial heat loss of Marviken channel; and distributed power profiles of Marviken fuel assembly.

Although the FRIGG-2 facility has improved our understanding of the burnout limits and natural circulation flows of a simulated Marviken core, it did not address the heat transfer phenomena associated with post-LOCA reflood conditions, in which the quench front progression, froth region propagation, and dispersed flow film boiling are of major interest. However, the following relevant heat transfer information of FRIGG-2 may be assessed against the RBHT PIRT:

Table 1Assessment of FRIGG-2 36-Rod Bundle Test to RBHT PIRT:Single Phase Liquid Convective Heat Transfer in the Core Component During Reflood Below the Quench Front

Process/Phenomena	Ranking	Basis	FRIGG-2 36-Rod Bundle Test
<u>1¢Liquid Convective Heat Transfer</u>	L	lφConvective H.T. data ha been correlated for rod bundles, uncertainty will not effect PCT.	Flows are substantially higher than proposed RBHT $\sqrt{2}$ reflood flows.
Effects of Geometry	L	De varies radially	P/D varies radially
Effects of Spacers	L	Effects of spacers in 1φ convective H.T. is known. No impact on PCT uncertainty.	Rod T/C's are used for burnout detectors only.
Effects of Properties	L	Property effects are accounted for in analysis for 1\$\overline{0}\$H.T. little uncertainty.	Insufficient instrumentation for T _b .
<u>1¢Liquid Natural Convection</u> <u>H.T.</u>	М	Must test Gr/Re ² to determine regime.	Natural circulation flow measured, but at powers substantially higher than the decay power.
Effects of Geometry	L	Limited data exists which can be used as a guide, should have little uncertainty on PCT.	Insufficient instrumentation for T_b .
Effects of Spacers	L	Effect unknown for natual convection, but enhances H.T. No impact on PCT uncertainty.	Insufficient rod T/C instrumentation.
• Effects of Properties	L	Accounted for in dimensionless parameters, little uncertainty.	Insufficient instrumentation for T_b .
Decay Power	Н	Source of energy for rods, boundary convection for test.	Decay power not simulated

÷

Table 2Assessment of FRIGG-2 36-Rod Bundle Tests to RBHT PIRT:Subcooled and Saturated Boiling in The Core Component Below the Quench Front

Process/Phenomena	Ranking	Basis	FRIGG-2 36-Rod Bundle Tests
Subcooled Boiling	L	A significant variation in the subcooled boiling H. T. coefficient will not effect the PCT uncertainty since rod is quenched.	Heater rod temperatures are measured, but only used as burnout detectors.
• Effects of Geometry, P/D, De	L	Boiling effects in rod bundles have been correlated for our P/d, De range with acceptable uncertainty.	P/D varies radially
Effects of Spacers	L	Locally enhanced H. T.	Not quantified by the experiments
Effects of Properties	L	Data exists for our Range of Conditions, little uncertainty.	Heater rods do not simulate nuclear rods
Saturated Boiling	L	Similar to subcooled boiling, data is available for our P/D, De range. The uncertainty of Saturated Boiling H. T. coefficient will not significantly impact the PCT since rod is quenched.	Heater rod temperatures are available, but only used as burnout detectors.
• Effects of Geometry, P/D, De	L	Data exists in the range of P/D, De with acceptable uncertainties.	P/D varies radially
Effects of Spacers	L	Locally enhanced H. T., Correlations/ Models are available, with acceptable uncertainty.	Not quantified by the experiments.
Effects of Properties	L	Data exists for our range of conditions, little uncertainty.	Heater rods do not simulate nuclear rods
Decay Power	Н	Source of energy for rods, boundary condition for the test.	Tests were conducted at Marviken operating power, not at decay power.

Table 3 Assessment of FRIGG-2 36-Rod Bundle Tests to RBHT PIRT for High Ranked BWR Core Phenomena

	Process/Phenomena	Basis	FRIGG-2 36-Rod Bundle Tests
Core			Ŵ
٠	Film Boiling	PCT is at the end of the heated length, but not measured.	Only occurs in dryout DNB tests
•	Upper Tie Plate CCFL	Hot Assembly is in co-current up flow above CCFL limit.	Not applicable
•	Channel-bypass Leakage	Flow bypass will help quench the BWR fuel assembly core.	Not applicable
•	Steam Cooling	A portion of the Dispersed Flow Film Boiling Heat Transfer.	Pot-dryout condition, not enough H.T. measurement
•	Dryout	Transition from nucleate boiling and film boiling.	Indicated from the burnout detectors
•	Natural Circulation Flow	Flow into the core and system pressure drops.	At Marviken's normal power
•	Flow Regime	Determines the nature and details of the heat transfer in the core.	Bubbly, transitional, and annular flows identified from flow-regime map, typical of BWR.
•	Fluid Mixing	Determines the liquid temperature in the upper plenum for CCFL break down.	Not applicable
٠	Fuel Rod Quench Front	Heat release from the quench front will determine entrainment to the upper region of the bundle.	Not applicable
•	Decay Heat	Energy source for heat transfer	Not applicable
•	Interfacial Shear	Effects the void fraction and resulting droplet and liquid velocity in the entrained flow.	Insufficient measurement
•	Rewet: Bottom Reflood	BWR hot assembly refloods like PWR.	Not applicable
•	Rewet Temepratures	Determines the quench front point on the fuel rod.	Not applicable
•	Top Down Rewet	Top of the hot assembly fuel will rewet in a similar manner as PWR.	Not applicable
•	Void Distribution	Gives the liquid distribution in the bundle.	Measured by the gamma-ray densitometer 11
•	Two-Phase Level	Similar to quench front locations, indicates location of nucleate and film boiling.	Not applicable

Appendix A-8 Literature Review

Test Facility Name: General Electric Nine-rod Bundle Facility

Dates When Tests Were Performed: 1968-1970

References:

- R17. Lahey, R. T., and Schraub, F. A., "Mixing, Flow Regimes, and Void Fraction for Two-Phase Flow in Rod Bundles," *Two-Phase Flow and Heat Transfer in Rod Bundles*, ASME, Nov. 1969.
- R18. Lahey, R. T., Shiralkar, B. S., and Radcliff, D. W., "Two-Phase Flow and Heat Transfer in Multirod Geometries: Subchannel and Pressure Drop Measurements in a Nine-rod Bundle for Diabatic and Adiabatic Conditions," GEAP-13049, AEC, 1968.

Availability of Data:

In the 3x3 9-rod bundle configuration for typical BWR operating conditions, there are three (3) types of geometrical subchannels: comer, side, and center subchannels. Subchannels are also classified into hot (locally heated), cold (unheated), and uniform (uniformly heated) subchannels. Data for all test points are available in tabulated form for all types of subchannel. Bundle average mass flux, bundle average exit quality, measured subchannel mass flux, and subchannel quality are tabulated against the test points in Refs. R17 and R18. Substantial differential pressure drop data for both single- and two-phase flows are available in the same references. Other reduced or analyzed data are also available in graphic forinat that include: subchannel quality-vs-average quality; subchannel energy flux-vs-subchannel mass flux; subchannel quality-vs-subchannel type; subchannel mass flux-vs-subchannel type; etc. Singlephase friction factors are graphed against the Reynolds number, while two-phase friction multipliers are graphed against flow quality and favorably compared with the Martinelli-Nelson correlation.

Test Facility Description, Types of Tests:

The primary purpose of this investigation was to obtain the mass flux and enthalpy distribution in a simulated rod bundle for a BWR. The geometric features of the test section are

Number of rods	9	Rod diameter	0.570"
Radius of channel corner	0.400"	Rod-rod clearance	0.168"
Rod-wall clearance	0.135"	Hydraulic diameter	0.474"
Heated length	72"		

Tests were run with all 9 rods electrically heated. The radial local peaking was either uniform or a peaking pattern typical of BWR conditions. A cross-sectional view of the test section is shown

in Fig.A-8.1, indicating the corner, side, and center subchannels. One of the unique features of the facility is that provisions are made for bringing static and differential pressure lines at the same axial location but for different subchannels. To measure the flow in any given subchannel, that subchannel is isolated at some point from the rest of the channel. The subchannel flow, also referred as sample flow as shown in Fig. A-8.2, can then be taken through special ducting to another point outside the test section, where both the flow rate and enthalpy can be measured. Flow splinters made of thin metal sheets are used to separate and isolate flow of a subchannel at the end of the heated length. Such an isolated flow is guided through a tube before passing out the test section flange and entering a heat exchanger (calorimeter), Fig. A-8.2. The condensed flow is monitored by a turbine flow meter for subchannel flow measurement.

The sample enthalpy was determined by a heat balance on the calorimeter. For this purpose, the cooling water flow and temperature rise are carefully measured to provide as accurate energy information as possible. The outlet thermocouples are inserted beyond a right-angle bend in the piping to ensure good mixing in the water. Pressure drop measurements were also made during both single- and two-phase tests. All pressure drop measurements were corrected-for the hydrostatic head in the pressure tap lines based on the average density of water between the relevant pressure taps.

The ranges of test conditions include,

$0.311 - 2.273 \times 10^6 \text{ lbm/ft}^2 \text{hr}$
$0.372 - 1.180 \times 10^{6} \text{ lbm/ft}^{2} \text{hr}$
1100 - 1200 psi
not measured
$0.219 - 0.797 \times 10^6 \text{ Btu/ft}^2 \text{hr}$
3.1% - 44.4%
290 - 533 Btu/lbm
Liquid 1-\$\phi\$, bubbly, transition, annular

Instrumentation and Data from Tests

The heater rods were not instrumented with thermocouples. Thus, little local heat transfer information could be obtained. Neither was any visualization view port provided, such that the identification of flow regimes was based on empirical correlations from the state of local quality. Since the heater rods were sufficiently cooled under the normal BWR operating conditions and the issues of DNB and LOCA/reflood were not addressed, radiation heat transfer was not a important factor. However, flow and enthalpy distributions among the subchannels that are unique to BWR conditions were carefully measured and addressed. The tests were able to measure flow, enthalpy, and derive local quality in each individual subchannel. Thus the facility can yield some significant information on the heterogeneous flow core, of which the cross flow phenomenon is of importance.

While the heater rods were uniformly heated in the axial direction, the radial power distribution was controlled by peaking the individual transformers. Thus the flow, enthalpy, and

GEAP-13049

Figure A-8.1 Positions of Pressure Taps for Setting Isokinetic Conditions

Figure A-8.2 Schematic of Loop Showing Sampling Circuit

quality distributions across the subchannels due to radial power peaking were also unique output of the facility.

Pressure drop data for single- (cold) and two-phase flow tests were obtained for frictional loss correlation. At the same axial locations, cross-flow phenomenon (between subchannels) was interpreted from the pressure differential between subchannels (non-isokinetic cases).

Conclusion

Subchannel test data were taken for a 9-rod bundle in typical BWR operating conditions. In general the following observations are valid:

- 1. The comer subchannel runs a mass flux and quality below the bundle average values.
- 2. The side subchannel has mass flux and quality approximately equal to or slightly less than the bundle average.
- 3. The center subchannel has both mass flux and quality above the bundle average values.
- 4. There is an observable, though somewhat inconsistent, tendency for the subchannels to approach bundle average condition in the regions of slug-annular flow-regime transition.
- 5. The effect of heat flux on subchannel enthalpy distribution was small for low flows, but showed a strong effect at the high flows.
- 6. The effect of the bundle average mass flux on subchannel mass flux distribution was to increase the mass flux in the comer and center subchannels, and decrease the mass flux in the side subchannels, as the bundle average mass flux was increased.
- 7. The effect of heat flux on subchannel mass flux distribution was to decrease the mass flux in the comer subchannel but leave the mass flux in other subchannels relatively unchanged.
- 8. The adiabatic single-phase friction factor for the clean 9-rod bundle under consideration was slightly higher than the smooth-tube friction factor, for all Reynolds numbers.
- 9. The two-phase friction drop multiplier showed only a very minor flow effect, and the data was well correlated by the classical Martinelli-Nelson curve.

Although this facility and work improved our understanding of subchannel flow and energy diversions in typical BWR conditions, it did not address the heat transfer phenomena associated with post-LOCA reflood conditions, in which the quench front progression, froth region propagation, and dispersed flow film boiling are of major interest. However, the following relevant heat transfer information may be assessed against the RBHT PIRT:

Table 1Assessment of General Electric 9-Rod Bundle Tests to RBHT PIRT:Subcooled and Saturated Boiling in The Core Component Below the Quench Front

Process/Phenomena	Ranking	Basis	GE 9-Rod Bundle Tests
Subcooled Boiling	L	A significant variation in the subcooled boiling H. T. coefficient will not effect the PCT uncertainty since rod is quenched.	Heater rod temperatures are not measured, but subchannel flow, temperature, quality are measured.
• Effects of Geometry, P/D, De	L	Boiling effects in rod bundles have been correlated for our P/d, De range with acceptable uncertainty.	P/D = 1.295 for tests.
Effects of Spacers	L	Locally enhanced H. T.; Correlations/Models are available, acceptable uncertainty.	Subchannel flow and enthalpy should be redistributed by the spacers, but was not investigated.
Effects of Properties	L	Data exists for our Range of Conditions, little uncertainty.	No heater rod temperature measurement
Saturated Boiling	L	Similar to subcooled boiling, data is available for our P/D, De range. The uncertainty of Saturated Boiling H. T. coefficient will not significantly impact the PCT since rod is quenched.	Heater rod temperatures are not available, but subchannel flow, temperature, and quality are measured.
• Effects of Geometry, P/D, De	L	Data exists in the range of P/D, De with acceptable uncertainties.	P/D = 1.295.
Effects of Spacers	L	Locally enhanced H. T., Correlations/ Models are available, with acceptable uncertainty.	Subchannel flow and enthalpy should be redistributed by the spacers, but was not investigated.
Effects of Properties	L	Data exists for our range of conditions, little uncertainty.	No heater rod temperature measurement.
Decay Power	Н	Source of energy for rods, boundary condition for the test.	Test were conducted at BWR operating power, not at decay power.

Table 2Assessment of General Electric 9-Rod Bundle Tests to RBHT PIRT forHigh Ranked BWR Core Phenomena

	Process/Phenomena	Basis	General Electric 9-Rod Bundle Tests
Core		įį	v
٠	Film Boiling	PCT is at the end of the heated length, but not measured.	Not applicable
•	Upper Tie Plate CCFL	Hot Assembly is in co-current up flow above CCFL limit.	Not applicable
•	Channel-bypass Leakage	Flow bypass will help quench the BWR fuel assembly core.	Subchannel cross flow observed
•	Steam Cooling	A portion of the Dispersed Flow Film Boiling Heat Transfer.	Not applicable
•	Dryout	Transition from nucleate boiling and film boiling.	Not applicable
•	Natural Circulation Flow	Flow into the core and system pressure drops.	Not applicable
•	Flow Regime	Determines the nature and details of the heat transfer in the core.	Bubbly, transitional, and annular flows identified from flow-regime map.
•	Fluid Mixing	Determines the liquid temperature in the upper plenum for CCFL break down.	Not applicable
•	Fuel Rod Quench Front	Heat release from the quench front will determine entrainment to the upper region of the bundle.	Not applicable
•	Decay Heat	Energy source for heat transfer	Not applicable
•	Interfacial Shear	Effects the void fraction and resulting droplet and liquid velocity in the entrained flow.	Not applicable
•	Rewet: Bottom Reflood	BWR hot assembly refloods like PWR.	Not applicable
•	Rewet Temepratures	Determines the quench front point on the fuel rod.	Not applicable
•	Top Down Rewet	Top of the hot assembly fuel will rewet in a similar manner as PWR.	Not applicable
•	Void Distribution	Gives the liquid distribution in the bundle.	Not directly measured, however, the enthalpy 1 distribution of the 9-rod bundle was measured.
•	Two-Phase Level	Similar to quench front locations, indicates location of nucleate and film boiling.	Identified from the flow-regime map.

÷

Appendix A-9, Literature Review

Test Facility Name: PNL LOCA Simulation Program at NRU Reactor, Chalk River, Canada

Dates When Tests Were Performed: October 1980 - November 1981

References:

- R19. C.L.Mohr et al, "Data Report for thermal-Hydraulic Experiment 2 (TH-2)", NUREG/CR-2526, PNL-4164, November 1982
- R20. C.L.Mohr et al, "Data Report for thermal-Hydraulic Experiment 3 (TH-3)", NUREG/CR-2527, PNL-4165, March 1983

Availability of Data:

Graphical data demonstrating fuel cladding temperature control using the preset reflood flow and temperature feedback. Photographs of guard and test fuel used are shown. Data in graphical form on the test assembly temperatures, cooling flow and the neutronic environment are also presented. Data is available in both SI and British units. Microfiche of the entire report is available with NTIS.

Test Facility Description, Types of Tests:

The TH-2 included 14 tests. A schematic of the test train used is depicted in figure A-9.1. The fuel assembly consists of 6 by 6 segment of a 17 by 17 PWR fuel assembly with four corner rods removed providing a basic fuel array of 32 rods. The 20 guard rods in the outer row reduced the heat net heat transfer from the inner test rods during the test. All the inner 12 test fuel rods were arranged in cruciform pattern. All the 32 unpressurized fuel rods were filled with helium. The core configuration is shown in figure A-9.2.

The following table gives the test fuel rod design variables.

Cladding Material	Zircaloy-4
Cladding Outside Diameter (OD)	0.963 cm (0.379 in)
Cladding Inside Diameter (ID)	0.841 cm (0.331 in)
Pitch (rod to rod)	1.275 cm (0.502 in)
Fuel pellet OD	0.826 cm (0.325 in)
Fuel pellet length	0.953 cm (0.375 in)
Active fuel length	3.66 m (12 ft)

The TH-2 experiment included a preconditioning phase and 14 successive tests, each having a pretransient and a transient phase. The average test assembly fuel rod power during preconditioning was \sim 18.7 kW/m (5.7 kW/ft) with the U-2 loop providing water cooling, this was used for the TH-3 experiment too. System loop pressure was held at 8.62 MPa (1250 psia).

The pretransient stage for the TH-3 tests was conducted with the steam cooling provided by the U-1 loop at a mass flow rate of ~0.379 kg/s (~3000 lbm/hr) and a reactor power of ~7.4 MW. This enabled the total assembly power to remain constant, even though the peak cladding temperature varied from test to test. The transient phase of TH-3 commenced when the steam coolant flow was reduced from ~3000 lbm/hr to 0, with the reactor power being maintained at ~7.4 MW. No preconditioning operation was conducted for the TH-3 experiment.

The test conditions measured during experiment are described in the tables below. Table A-9.1 and A-9.2 represent conditions for TH-2 experiment and TH-3 experiment respectively.

- -

-

-

Figure A-9.1 Schematic of NRU Loss-of-Coolant Accident Test Train

)

A9-3

.

-_

-_

-_

.

Figure A-9.4 Instrumentation Levels in the TH-3 Test Assembly

A9-5

(

3								
Parameter	Preconditioning	Reflood Calibration	Transient TH-2.01	Transient TH-2.02	Transient TH-2.03	Transient TH-2.04	Transient TH-2.05	Transient TH-2.06
Reactor power, MW	127	0	-7.4	-7.4	-7.4	-7.4	-7.4	-7.4
Test assembly power, kW		0						
Coolant	U-2 water	U-1 steam/ reflooding	U-1 steam/re- flooding	U-1 steam/re- flooding	U-1 steam/re- flooding	U-1 steam/re- flooding	U-1 steam/re- flooding	U-1 steam/re- flooding
Coolant flow, kg/s (lbm/h)	0 to 16.30 (0 to 129,400)	0.378 (3000)	0.380 (3010)	0.383 (3040)	0.382 (3030)	0.382 (3030)	0.382 (3030)	0.381 (3020)
Reflood delay, s	NA	0	NA					
Reflood rates, m/s (in/s)	NA	0.0508 (2.0), 0.0254 (1.0), 0.0508 (2.0)						
Pretransient cladding temperatures, K (°F)	NA	NA	707 (813)					
Peak cladding temperature (PCT), K(°F)	700 (800)	433 (320)	1005 (1350)					
Reactor condi- tional trip crite- ria (PCT), K(°F)	NA	NA	978 (1300)	1103 (1525)	1103 (1525)	1144 (1600)	1144 (1600)	1144 (1600)
Bundle quench time, ^(a) s								
Type of test	NA	Reflood	Adiabatic	Transient	Transient	Transient	Transient	Transient
Type of reflood control			NA	LCS ^(b)	DACS ^(c) after 85 s	DACS after 85 s	DACS after 85 s	DACS after 85 s

Table A-9.1: Measured Conditions for the TH-2 Experiment ⁽¹⁾

.

. .

_

A9-6

······································	· · · · · · · · · · · · · · · · · · ·							-
Parameter	Transient TH-2.07	Transient TH-2.08	Transient TH-2.09	Transient TH-2.10	Transient TH-2.11	Transient TH-2.12	Transient TH-2.13	Transient TH-2.14
Reactor power, MW	-7.4	-7.4	-7.4	-7.4	-7.4	-7.4	-7.4	-7.4
Test assembly power, kW						138.7	143.8	142.8
Coolant	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam reflooding
Coolant flow, kg/s (lbm/h)	0.383 (3040)	0.378 (3000)	0.379 (3010)	0.378 (3000)	0.378 (3000)	0.378 (3000)	0.378 (3000)	0.378 (3000)
Reflood delay, s							NA	
Reflood rates, m/s (in/s)						unable to read from paper	0	unable to read from paper
Pretransient cladding temperatures, K (F)						743 (877)	783 (869)	737 (867)
Peak cladding temperature (PCT), K(F)						1174 (1653)	1013 (1364)	1274 (1834)
Reactor condi tional trip crite ria (PCT), K(F)	1144 (1600)	1144 (1600)	1144 (1600)	1144 (1600)	1144 (1600)	1144 (1600)	1144 (1600)	1144 (1600)
PCT turnaround time, ^(a) s						273	33	244
Bundle quench ime, ^(a) s						306	NA	338
Type of test	Transient	Transient	Transient	Transient	Transient	Transient	Adiabatic	Transient
fype of reflood control	DACS after 95 s	DACS after 95 s	DACS after 95 s	DACS after 95 s	DACS after 95 s	DACS after 95 s	NA	DACS after 95 s

Table A-9.1: Measured Conditions for TH-2 Experiment (continued)

.

(1) TH-2.12 and TH-2.14 were the principal

(b) LCS-Loop Control System,

.

_

_

(a) Time after initiation of transient,

(c) DACS - Data Acquisition and Control System

				T	· · · · · · · · · · · · · · · · · · ·
Parameter	Preconditioning	Reflood Calibration	Test TH-3.01	Test TH-3.02	Test TH-3.03 -
Reactor power, MW	127	0	7.4	7.4	7.4
Test assembly power, kW		0	141.5	134.6	133.5
Coolant	U-2 water	U-1 steam/ reflooding	U-1 steam/ reflooding	U-1 steam/ reflooding	
Coolant flow, kg/s (lbm/h)	0 to 16.30 (0 to 129,400)	0.0254, 0.508 (1.0, 2.0)	0.379 (3010)	0.379 (3004)	0.379 (3009)
Reflood delay, s	NA	NA	NA	9	3
Reflood rates, m/s (in/s)	NA	NA	NA	0.0823(3.24) for 8 s 0.0549(2.16) for 40 s 0.0366(1.44) for 16 s 0.0244(0.96) for 28 s 0.127 (0.5) for 162 s	0.0828(3.26) for 8 s 0.0574(2.26) for 40 s 0.0371(1.46) for 16 s 0.0224(0.88) for 28 s 0.0124(0.49) for 18 s 0.0191(0.75) for 40 s 0.0097(0.38) for 96 s 0.0147(0.58) for 28 s 0.0102(0.4) for 130s
Pretransient cladding temperatures, K (* F)	NA	NA	723 (842)	723 (842)	717 (830)
Peak cladding temperature (PCT), K(° F)	700 (800)		1008 (1354.4)	1318 (1912)	1283 (1850)
Reactor conditional trip criteria (PCT), K(°F)	NA	NA	978 (1300)	1172 (1650)	1200 (1700)
PCT turnaround time, (a) s	NA	NA	35	193	257
Bundle quench time, ^(a) s	NA	NA	NA	277	407
Type of test	NA	Reflood	Adiabatic	Transient	Transient
Type of reflood control	NA	LCS (b)	NA	DACS ^(d) after 90 s	DACS after 90 s

Table A-9.2: Measured Conditions for the TH-3 Experiment

.

. L

(a) Time after initiation of transient,

.

(b) LCS-Loop Control System,

_

(c) DACS - Data Acquisition and Control System

A9-8

Table 5

Assessment of NRU Inpile Reflood Data to RBHT PIRT: Dispersed Flow Region for Core Component

Process/Phenomena	Ranking	Basis	NRU Inpile Reflood Data
Decay Power	Н	Energy source which determines the temperature of the heater rods, and the energy removed by the coolant.	Known
Fuel Rod/Heater Rod properties, p, C _p , k	L	The exact properties can be modeled and stored energy release is not important at this time, environmentally.	Known properties and dimensions.
Dispersed Flow Film Boiling	н	Dispersed flow film boiling modeling has a high uncertainty which directly effects the PCT.	PCTs known for the tests.
Convection to superheated vapor	н	Principal mode of heat transfer as indicated in FLECHT- SEASET experiments ⁽⁴⁾	Not determined
Dispersed phase enhancement of convective flow	н	Preliminary models indicated that the enhancement can be over 50% in source cases ⁽¹³⁾ .	Not determined
Direct wall contact H.T.	L	Wall temperatures are significantly above T_{min} such that no contact is expected.	Not determined
Dry wall contact ⁽¹²⁾	м	Iloje indicates that H.T. Mechanism is less important than vapor convection.	Not determined
Droplet to vapor interfacial heat transfer.	н	The interfacial heat transfer reduces the vapor temperature which is the heat sink for the wall heat flux.	Not determined
Radiation Heat Transfer to: • Surfaces • Vapor • Droplets	М/Н М/Н М/Н	This is important at higher bundle elevations (H) where the convective heat transfer is small since the vapor is so highly superheated. Very important for BWR reflood with sprays, and colder surrounding can. Large uncertainty.	May be estimated from the values of test rod temperatures and the flow conditions

 $\mathbf{F}^{\mathbf{1}}$

.

(

νÝ

Table 5

Assessment of NRU Inpile Reflood Data to RBHT PIRT: Dispersed Flow Region for Core Component (continued)

Process/Phenomena	<u>Ranking</u>	Basis	NRU Inpile Reflood Data
Gap heat transfer	L	Controlling thermal resistance is the dispersed flow film boiling heat transfer resistance. The large gap heat transfer uncertainties can be accepted, but the fuel center line temperature will be impacted.	Gap existed and gap conductance can be estimated.
Cladding Material	L	Cladding material in the tests is Inconel which has the same conductivity as Zircaloy, nearly same temperature drop will occur.	Used Zircaloy-4.
Reaction Rate	м	Inconel will not react while Zircaloy will react and create a secondary heat source at very high PCTs, zirc reaction can be significant.	Should exist because zircaloy is used.
Fuel Clad Swelling/Ballooning	L	Ballooning can divert flow from the PCT location above the ballooning region. The ballooned cladding usually is not the PCT location. Large uncertainty.	This effect was modeled in the tests.

11

11

r

. .

Ta	bl	e	8
----	----	---	---

(

Assessment of NRU Inpile Reflood Data to RBHT PIRT for High Ranked BWR Core Phenomena

Process/Phenomena	Basis	NRU Inpile Reflood Data
Film Boiling	PCT is determined in film boiling period.	PCT is determined in the tests.
Upper Tie Plate CCFL	Hot Assembly is in co-current upflow above CCFL limit.	Not simulated
Channel-bypass Leakage	Flow bypass will help quench the BWR fuel assembly core.	Not simulated
Steam Cooling	A portion of the Dispersed Flow Film Boiling Heat Transfer	Simulated but overall heat transfer was measured.,
Dryout	Transition from Nucleate boiling and Film boiling.	Quench front location not known
Natural Circulation Flow	Flow into the core and system pressure drops.	Not applicable
Flow Regime	Determines the nature and details of the test transfer in the core.	Dispersed flow film boiling regime
Fluid Mixing	Determines the liquid temperature in the upper plenum for CCFL breakdown.	Not applicable
Fuel Rod Quench Front	Heat release from the quench front will determine entrainment to the upper region of the bundle.	Simulated with nuclear rods
Decay Heat	Energy source for heat transfer.	Simulated
Interfacial Shear	Effects the void fraction and resulting droplet and liquid velocity in the entrained flow.	Not measured
Rewet: Bottom Reflood	BWR hot assembly refloods like PWR.	Measured
Rewet Temperature	Determines the quench front point on the fuel rod.	Measured
Top Down Rewet	Top of the hot assembly fuel will rewet in a similar manner as PWR.	Not measured
Void Distribution	Gives the liquid distribution in the bundle.	Not measured 1
Two-Phase Level	Similar to the quench front location, indicates location of nucleate and film boiling.	Measured

1 '
Instrumentation and Data from Tests:

The instrumentation for the TH-2 experiment included: 24 self-powered neutron detectors(SPNDs), 115 fuel rod TCs, 18 steam probe TCs and 4 closure head TCs. The instrumentation was-located at $\overline{21}$ elevations along the test train assembly. These are shown in the figure A-9.3.

The instrumentation for the TH-3 experiment included: 24 self-powered neutron detectors(SPNDs), 69 fuel rod TCs, 4 hanger TCs and 4 closure head TCs. The instrumentation was located at 22 elevations along the test train assembly. These are shown in the figure A-9.4.

Thermal-hydraulic data was obtained by turbine flowmeters and TCs. Local coolant temperatures were measured with steam probe TCs that protruded into the coolant channel and with TCs attached to the shroud. Azimuthal temperature variations were measured by TCs located at the fuel centerline and attached to the inside of the cladding surface. The cladding temperature was monitored by cladding TCs that were spot welded to the interior cladding surface.

The SPNDs provided neutron flux measurements within the fuel bundle. These measurements were made at opposite corners of the stainless steel shroud at several elevations, ranging from 13.3" to 139.3" above the bottom of the fuel column. The SPNDs provide a measure of the radial neutron flux gradient and neutron flux distribution over the vertical axis of the test assembly. These could also detect the coolant density variations (through flux changes) associated with the quench front that passed each SPND during the reflood phase of the transient. The instrument signals were monitored on a real-time basis with the DACS (Data Acquisition and Control System). The recorded data characterized the coolant flow rates, temperature, neutron flux and operating history.

The reflood flow measurement system included a Fisher-Porter turbine flowmeter in the high flow rate line and a series connected Barton and Fisher-Porter turbine flowmeters in the parallel low flow rate line. Steam probe temperature history provided independent measurements of the reflood coolant level in the test assembly.

Conclusions:

These tests give the average fuel rod cladding temperatures during preconditioning, pretransient and transient phases. Also available are the test coolant and shroud temperatures. However, these tests do not have enough data to make code model changes without the potential for compensating errors. Many of the heat transfer phenomena such as droplet to vapor interfacial heat transfer, dry wall contact are not simulated, though overall wall heat transfer is measured. Therefore, while these tests are useful in simulating the overall reflood heat transfer, they provide limited data which can be used to assess the reflood phenomena which was identified in the PIRT table for the RBHT program.

A9-12

Appendix A Literature Review

Appendix A10: ACHILLES Reflood Heat Transfer Tests

Dates when Tests Were Performed: 1989 - 1991

References:

- R21 Denham, M. K., Jowitt, D., and K. G. Pearson, "ACHILLES Unballooned Cluster Experiments, Part 1: Description of the ACHILLES Rig, Test Section, and Experimental Procedures", AEEW-R2336, November 1989, Winfrith Technology Centre (Commercial in Confidence).
- R22 Denham, M. K., and K. G. Pearson, "ACHILLES Unballooned Cluster Experiments, Part 2: Single Phase Flow Experiments", AEEW-R2337, May 1989, Winfrith Technology Centre (Commercial in Confidence).
- R23 K.G. Pearson and M. K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 3: Low Flooding Rate Reflood Experiments", AEEW-R2338, June 1989, Winfrith Technology Centre (Commercial in Confidence).
- R24 K.G. Pearson and M.K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 4: Low Pressure Level Swell Experiments", AEEW-R2339, July 1989, Winfrith Technology Centre (Commercial in Confidence).
- R25 Dore, P and M.K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 5: Best Estimate Experiments", AEEW-R2412, July 1990, Winfrith Technology Centre, (Commercial in confidence).
- R26 Dore, P. and D.S. Dhuga, "ACHILLES Unballooned Cluster Experiments, Part 6: Flow Distribution Experiments", AEA-RS-1064, December 1991, Winfrith Technology Centre (Commercial in Confidence).

Availability of Data

The ACHILLES experiments were performed as part of the safety case for PWR's in the United Kingdom. The ACHILLES tests were funded by the Central Electricity Generating Board (CEGB) and were performed by the United Kingdom Atomic Energy Authority (UKAEA) at the Winfrith Laboratories. The data does have some release restrictions and is not unlimitedly available to the general public. However, more recently, data has been released to interested

parties and governments as part of cooperative data exchange. Some of the data was used for an International Standard Problem. Westinghouse has been able to obtain some of the data directly from the CEGB provided that reference was given to the CEGB in the reports prepared by Westinghouse. Therefore, the data should be available to the Nuclear Regulatory Commission.

Test Facility Description, Types of Tests

The ACHILLES tests were specifically conducted to support the PWR (Sizewell) safety case in the United Kingdom in the late 1980's and early 1990's. Since these tests were performed after the FLECHT-SEASET tests, the authors had made some improvements which are of value for the current Rod Bundle Heat Transfer Program. The testing consisted of specific test series which were used to examine specific safety issues and safety analysis issues. Specifically, experiments were performed to examine:

Low reflooding rate behavior similar to FLECHT-SEASET and FLECHT,

Best-Estimate Reflood tests were performed to assess a realistic LOCA transient,

Single-phase flow distribution tests were performed to examine the flow uniformity and single-phase heat transfer within the rod bundle,

Low-pressure level swell experiments were also performed to validate drift flux/void fraction relationships.

There were also gravity feed Reflood tests with loop resistance simulated, and variable injection Reflood tests which simulated evaluation model type system response.

There were also oscillating inlet flow injection tests.

One of the purposes of the ACHILLES test program was to examine the heat transfer performance of a fuel assembly with high blockages caused by the swelling of the zirc cladding (sausage ballooning problem). This issue had been resolved in the US but it still remained as an open item in the United Kingdom safety case for the PWR. The reports given in the review only discuss the unblocked or Unballooned configuration of the test program. There is a continuation of the ACHILLES test program which specifically examines flow blockages of up to 80% to address the clad swelling issues during a LOCA. These tests will not be discussed here.

The ACHILLES bundle is shown in Figure A-10.1 and contains a total of 69 heater rods of 9.5 mm (0.374-inches) in diameter on a square pitch of 12.6 mm (0.496-inches) and have 3.66 m (12-feet) of heated length. ACHILLES used production Inconel mixing vane grids supplied by Westinghouse. All rods were heated in ACHILLES such that there was no simulation of the guide tube thimbles in the bundle such as in the FLECHT-=SEASET experiments. However, experiments were performed in ACHILLES to examine the effects of increased surface-to-surface radiation heat transfer by performing tests with selective unpowered heater rods.

Figure A-10.2 indicates the flow loop schematic for the ACHILLES facility. There was ample flexibility built into the test facility such that both single phase, two-phase, forced Reflood injections could be performed as well as, oscillatory injection and gravity injection tests with little facility modifications. The Test bundle was contained within a circular shroud of wall thickness of 6.5 mm (0.26-inches) and a pressure capability of 6 bars (approximately 90 psia). There were no filler rods in the test bundle design which resulted in excess flow area for the square array of rods within the circular housing. To compensate for the excess flow area and to better simulate an infinite array of fuel rods, the ACHILLES housing was heated with zonal heaters which had a total power of 46 kw. These heaters provided a similar axial temperature distribution as the heater rods.

The heater rods were manufactured by RAMA corporation, the same company that made the FLECHT-SEASET heater rods. A chopped cosine power shape with a peak-to-average of 1.4 was used. These rods used Inconel cladding, and could have up to six thermocouples per rod installed. The axial distribution of the heater rod thermocouples and the other instrumentation is shown in Figure A-10.3. One unique feature of the ACHILLES bundle is that the instrumentation plan was developed with the idea of examining the heat transfer effects of the spacer grids both upstream and downstream of the grids.

The grids used were Inconel production 17x17 spacer grids with mixing vanes. These grids were instrumentated with 0.5 mm (0.20-inch) thermocouples which were attached to the grids using Inconel shim stock which was spot-welded to the spacer. The attachment method was designed to minimize the flow disturbance and the effects of the thermocouple lead leading to early grid rewet. Each grid had two thermocouples attached to the spacer at the top and lower edges at different radial positions. The data indicates that this installation method worked well and only one-grid thermocouples failed.

The vapor temperature was measured in the rod bundle at different axial location, up steam and down stream of spacer grids using 1 mm (0.040-inches) thermocouples which were swagged to a tip size of 0.5 mm (0.020-inches). There is an uncertainly analysis given in the report which indicates that f or the conditions used in the ACHILLES tests, the vapor temperature uncertainty is only 13 °C or 23.4 °F which is consistent with the uncertainty which was derived in the FLECHT-SEASET program. It is mentioned in Reference 2 that the vapor temperature measurements did have an effect on the entrained droplets with the probe causing additional droplet breakup and slowing down of larger droplets. There is insufficient data presented to draw an independent conclusion of these effects.

There were additional pressure taps placed along the shroud such that the pressure drops across the spacer grids were obtained as well as the frictional pressure drop in the rod bundle section. The pressure drop information was used to infer void fraction, however, there was no frictional or acceleration pressure drop corrections to the data such that the void fractions given for ACHILLES are lower then those expected.

The shroud had windows at the mid-plane for photographic purposes with the view being through specific rows of heater rods. The windows were very small such that they could be

heated by the rods during heat-up before each test. The windows were set back from the inside edge to avoid direct droplet impact which would have caused the window to wet. From the report, it appears that the windows would stay dry until the quench front was within the grid span where the windows were located. One could interpret this as having the top of the froth front approaching the window before the window wetted.

Tests were performed using a four-cylinder piston pump which superimposed an oscillating flow on the forced flooding rate. The period and magnitude of the flow and oscillation frequency could be adjusted for different sensitivity tests. The bi-directional flow probe showed reverse flow, but is not clear if "real" reverse flow occurred. One significant observation is that with oscillatory flow, the grids quickly rewet as compared to constant forced injection flow. The same situation occurred for initially high injection flows.

An improved photographic droplet diameter and velocity measuring technique was developed as part of the ACHILLES program in which a pulse of green light was shined into the open camera shutter, followed by a pulse of red light. The duration of each pulse was short and there was a fixed time between the two pulses. This approach produced two images of a droplet which were of different color such that the drop size and velocity could be inferred from the prints. The filming rate was 100 frames/sec, a clips of shots were taken during a given test. Two cameras were also able to focused on different subchannels such that a reasonable droplet distribution across the bundle could be determined. It was observed that the droplet flow was not uniform with more liquid in the outermost channel near the wall. The outermost channel has the larger hydraulic diameter and hence the greater steam flow as compared to the inner regions of the bundle which could explain the observed trend. The report included droplet distribution plots for selected tests.

The test matrix for the low flooding rate tests is given in Table A-10.1. One parameter to note is that they purposely controlled the power such that very high heater rod temperatures never occurred and the maximum temperatures were very similar. Details of the reference test and the effects for the different sensitivity tests is given in Reference 3. The temperature rise values were different. Table A-10.2 gives the test numbers for the droplet distribution experiments, Table A-10.3 gives the conditions for the air flow only single phase experiments, and Table A-10.3 gives the test numbers for the voidage distribution experiments. Each series of tests is discussed in Reference 2. The test matrix for the best-estimate or realistic Reflood tests is given in Table A-10.4 from Reference 5.

The authors did perform a similar analysis as in the FLECHT and FLECHT-SEASET tests in which the actual quality was calculated at the bundle cross sections where vapor measurements existed. The same or similar exist flow measurements were made in the ACHILLES tests as in the FLECHT and FLECHT-SEASET tests such that a bundle heat and mass balance could be written. However, the authors did not attempt to separate the radiation component from the total measured heat transfer such that their estimates of the convective dispersed flow film boiling heat transfer results in higher heat transfer coefficients then would be the case in the FLECHT and FLECHT. SEASET experiments. However, very similar trends were observed, with very low

vapor Reynolds number flows and enhancement of the dispersed flow film boiling heat transfer above the single phase convection heat transfer limit for the same fluid conditions.

The effects of the spacer grids were analyzed and a correlation was suggested for the convective enhancement of the local heat transfer downstream of the grid. There were also some very informative plots of the vapor temperatures and the spacer grid temperatures which showed that when the grid quenches, the vapor temperature downstream of the grid decreases.

He axial distribution of the heater rod thermocouples gave an excellent indication of the quench front along the bundle. These authors did display their data more as axial plots for different time periods such that additional information good be obtained with fewer figures. Variable reflood rates, oscillatory flooding rates, and stepped flooding rates would easily quench the spacer grids and they remained wetted throughout the transient. The very high flooding rates also quenched the miniature thermocouples used to measure the vapor temperature. Some of these thermocouples could dry out later in the tests and would indicate the presence of superheated vapor.

The best-estimate tests had more favorable test initial conditions such that the heat transfer was higher and the bundle would quench more easily. The same or similar phenomena was observed in these tests excepting that the transients were shorter and the temperatures were lower.

Single-phase heat transfer and flow tests were also conducted using air as the fluid. A specially constructed hot film probe was used for the air velocity distribution which confirmed that a bypass effect was occurring in the ACHILLES bundle due to the large excess flow area located on the outside edge of the bundle between the heater rods and the shroud. Single-phase effects of the spacer grids were also determined and compared to a previous correlation. We need to verify the axial distribution of the Thermocouples in the RBHT test to make sure that we can detect the decaying heat transfer trend downstream of the spacer grids.

One of the more unique data obtained in the ACHILLES program is the droplet or liquid distribution across the bundle using the photographic technique. Again, this distribution is distorted and shows more liquid at the edge of the bundle where the steam mass flow is higher due to the increased bypass flow at this location. The opposite would be expected in an infinite bundle since the center rods would be hotter creating a thermal syphon which should result in increased entrainment.

Conclusions

The ACHILLES Reflood experiments potentially represent some of the best Reflood data available for computer code validation. However, a two-channel model which includes crossflow should be used to represent the inner region of the bundle which has the correct flow are per rod, while an outer channel would represent the outer region of the bundle where there is excess flow area. Also, the computer code would have to model the housing or shroud which also supplies energy to the fluid. Computer codes such as the TRAC- P series, and COBRA-TF and COBRA-TRAC have the ability to model these effects. However, the flow diversion, excess flow area, and housing heat release effects must be assessed as test distortions. Also, if they are first order effects, it will be difficult to determine what models in the candidate code need improving since the test distortions could mask the model requirements resulting in compensating error being introduced into the code.

There is some unique data from the ACHILLES tests which are not available from other tests such as the subchannel droplet distribution data, spacer grid loss coefficient data, instrumentated spacer grid and local fluid temperature data, along with very finely spaced heater rod thermocouple data which shows the heat transfer effects of the spacer grids and quench front. The differential pressure data was taken using small spans both between grids and across spacer grids. This data needs to be corrected for frictional pressure drop and acceleration pressure drop in order to be used for inferring the local void fraction. Once this is performed, the local heat transfer can then be correlated with the void fraction.

The tests cover a wide range of conditions which are equally applicable to evaluation model calculations as well as best-estimate Reflood conditions such that an ample set of data is available. Also the tests include oscillating inlet flow, stepped forced flooding rate tests, and gravity Reflood tests.

It is strongly recommended that these data be screened and selected ACHILLES tests be obtained from CEGB and added to the NRC data bank and analyzed with the TRAC-M code and COBRA-TF. These tests can also be used for comparison purposes with the Rod Bundle Heat Transfer Tests.

Figure A-10-1 Cross Section of ACHILLES 69-Rod Bundle

A10-8

÷

NOMINAL LOCATIONS IN MA ABOVE BOTTOM OF HEATED LENGTH

Figure A-10-3 Axial Locations in Test Section

Table A-10-1
Summary of Low Flooding Rate Reflood Experiments

L

Run	, , , , , , , , , , , , , , , , , , ,		Steady	Inlet	Initial	Initial	Results	at 2.13 m	Grid Centre Rewet Time		
Rumber	Description	Pressure	Reflood	Subcool ing	Rod	Тепр	Hay Tam	Devet Time	Crid A	orid S	Cold A
		bar	cm/s	•c	K¥	•c	(.c)	(5)	(5)	(5)	(5)
ForcediRefLood											
A1R027	Nedium Constant Power	2.4	2.0	28	2.0	662	879	418	120	189	207
A1R028	High Constant Power	2.1	2.0	22	2.5	654	964	606	121	283	452
A1R029	90% ANS + 20	2.1	2.0	24	3.9	651	1082	678	141	382	532
A1R030	Base Case (70% ANS + 20)	2.1	2.0	24	3.0	651	971	515	120	263	323
A1R032	50% ANS + 20	2.1	2.0	24	2.3	653	8/9	416	120	200	199
A1R033	Low Flow, Constant Power	2.1	1.0	22	1.5	054	960	269	200	410	000
A1R035	Haximum Flow	2.2	10.0	25	3.0	652	000	210	21	22	2
ATR036	Naximum Flow and Subcooling	2.1	10.0	>>	3.0	649	002	104	170	24	7/1
A1R037	Low Flow, Decreasing Power	2.1	1.0	23	1.8	002	900	533	1.50	204	344
18040	Varying Flow	1 2.1	119 20	23	3.0	457	07/	575	175	2/0	30.
A1R042	Base Case Repeat 1	2.	2.0	23	3.0	452	087	687	174	112	250
A18044	Low Pressure	1.4	2.0	24	3.0	450	0/7	3/0	106	150	109
A1K045	Nigh Pressure		2.0	23	3.0	505	878	453	00	143	01
A18040	Low initial temperature	2.1	2.0	23	3.0	453	04/	455	117	183	288
A18047	High Inlet Subcooling		2.0	2/	3.0	654	904	355	135	100	14
A18048			20	24	3.0	457	074	522	64	160	272
AIRUSS	Base Lase Repeat 2	2.1	2.0	24	3.0	655	1014	582	64	214	344
AIRUSS	1004 ANS + 20		2.0	24	2 4	652	073	453	l õx	140	200
110050	IDUA ANS + 20	2.1	2.0	24	3.0	654	947	482	07	155	231
1410041	/ timestered Rods	21	2.0	25	1 3 0	653	010	452	81	117	366
A18001	14 Unpowered Rods, Low Shrous Temp	2.1	2.0	25	1 1 0	656	043	520	77	144	220
110022	High Should Bouen	2.1	2.0	24	1 3 0	657	063	588	l on	161	287
1410070	I ou Shroud Temperatura	21	2.0	24	3.0	667	058	475	82	73	177
A10074	Rece Case Recent 3	2.1	2.0	25	3.0	654	969	518	102	104	226
A10114	Combination of 40 and 61	2.1	510 50	16	3.0	657	828	512	2	2	2
A10117	Very Low Shrout Temperature	2.1	2.0	24	3.0	675	909	345	68	115	227
101011	Hery con shrous resperatore	L .,							-	1	
FLOW O	scillations					1				1	
A18050	Naximum Amplitude	2.1	2.0	17	3.0	652	966	690	10	10	10
Grevit	Y Reflood	1			1					Ι.	
A10041	Gravity Base Case	2.3	2.0	27	3.0	656	897	463	20	6	5
A16051	High Pressure	4.2	2.0	26	3.0	651	850	313	2	Z	1 2
A10052	High Inlet Subcooling	2.2	2.0	53	3.0	652	907	405	Z	4	3

.

Table A-10-2 Droplet Distribution Experiments

Run No	Description	Sub- Chan	Window	Iniet Sub- Cool	Init at 2. Rod F5	Temp 13 m Shroud	Resu at 2. Max Tem	ilts 13 m Rewet
					(Č)	(C)	(C)	(s)
Hot Shro	oud Experimen	ts						
A3R014		D0	3	23	647	599	960	540
A3R025		D0	3	24	645	598	947	521
A3R021		DI	3	23	644	599	947	523
A3R019		D2	3	19	647	599	953	552
A3R020		D3	3	24	648	598	952	528
A3R018		D4 •	3	18	645	597	940	553
A3R001	Base Case	D5	3,4	23	646	600	958	526
A3R002		D5	1,2	23	645	597	961	524
A3R006		D5 '	3,4	23	649	595	95 0	527
A3R013		D6	3	23	648	600	950	519
A3R003		D7	3,4	21	645	598	960	540
A3R012		D8	3	25	646	597	950	510
A3R005		D9	3,4	23	646	600	960	535
Cool Shr	oud Experimer	nts						
A3R017		D0	3	21	657	399	940	498
A3R022	• •	DI	3	23	656	399	946	500
A3R023		D2	3.	22	656	399	.947	510
A3R024	•	D3	. 3	21	656	400	941	498
A3R009	Base Case	D5	3,4	23	652	399	945	493
A3R008		D7	3,4	23	650	399	950	492
A3R011		D8	3	24	652	398	940	491
A3R010		D9	3	23	653	398	940	473

Table A-10-3 Airflow and Voidage Distribution Experiments

. с

	A	ir Flow	Distrib	ution Exp	eriments	;
Run No	Description	Inlet Re N	Cl o Powe (kW)	uster er Temp (°C)	Scan Period (s)	Log Time (s)
Repeat H	leat Transfer I	Experim	ents			
A3A015	Examined	5000	15	350	2	2000
A3A016	temperature	5000	15	350	2	2000
A3A026	asymmetry	5000	15	350	2	2000
A3A027		5000	15	350	2	2000
A3A036		1000	3	350	8	8000
A3A035		1750	5.5	350	5	5000
A3A034		3000	10	350	3	3000
A3A033		9000	25	350	1	1000
Isotherma	l Flow Distrib	ution E	xperime	nts		
A3A029	Measured	3000	0	23	2	2000
A3A030	radial	3000	0	21	2	2000
A3A031	Velocity	3000	0	22	2	2000
A3A028	-	5000	0	23	2	2000
A3A032		5000	0	23	2	2000
Run N	o Descriptio	Voida; on	ge Distri Press (bar)	ibution E: Flow Rate (dm ³ /s)	Sub- Cool (°C)	Cluster Power (kW)
	¢		1	<u> </u>		
Air/Wa	ter		•			
A3L031	7 Commissio	n	1.0	3.0	-	0
Boil-do	wn .					
A3L038	3		1.2	d/c	-	20
A3L039	9		1.0	d/c	-	20
Steady-	boiling					
A3L040)		1.2	d/c	4	20
A3L041	l		1.2	0.08	4	20
A3L042	2		1.2	0.08	4	40
A3L043	3		1.2	0.08	4	60
A3L044	1		1.2	0.08	4	80
A3L045	5 Base Case		1.2	0.08	50	40
A3L046	5 Power		1.2	0.08	50	60
A3L047	7 Flow		1.2	0.11	50	40
A3L048	Pressure		2.0	0.08	50	40
A3L049	A3R cond	ition	2.0	0.15	86	105

d/c - downcomer connected to shroud vessel

A10-12

Table A-10-4 Summary of Best Estimate Reflood Experiments

TORCE	D REFLOOD						Quench front		
Run Nyaber	Description	Rig Pressure	Initial Flow	Surge Volume	Subcooling	Initial Temperature	Elevation after Initial Surge	Results Max Temp	at 2.13 m Revet Time
		(bar)	(cm/s)	(dm))	(K)	(*C)	(m)	(*C)	()
	wich Initial Temp	3	30	19.2	10	650	0.19	720	266
VID000.	Righ interer imp	ĩ	10	20.0	10	650	0.34	716	254
XIBU91	High Inicial Ivep	1	30	20.1	10	500	0.56	624	172
A18092	Low Initial Temp		30	20.5	10	550	0.53	658	184
A18094	Base Case Repeat	2	30	20.9	50	550	0.66	621	183
A1B095	Righ Inlet Subcooling	2	30	20.8	10	400	0.70	536	115
A1B096	Low Initial Temp	2	30	20.0	10	550	0.42	696	333
A18097	Low Pressure	<u> </u>	30	10.1	10	550	0.32	683	194
A180983	Low Downcomer Level	3	30	10.6	20	650	0.44	737	319
A18099	EM Comparison	3	30	20.0	10	550	0 52	666	233
A1B100	High Surge Rate	3	60	18.0	10	550	0.51	665	223
A1B101	High Surge Rate	3	100	21.4	10	330	0.33	666	240
A18112	BASS CASS	3	30	21.2	10	320	0.43		

Notes

All Condition as Base Case unless stated. ³ Initial Temperature high at bottom of test-section only.

Initial Downcomer Level 50%.

NATURAL REFLOOD

NATUR.	AL REFLOOD						Quench front		
Run Number	Description	Rig Pressure	Surge Volume	Subcooling	' Initial Temperature	OR1/OR21	Elevation after Initial Surge	Results Max Temp	at 2.13 m Revet Time
		(bar)	(dm))	(K)	(*C)		(m)	(*c)	(=)
		٦	9.3	10	650	0/0	0.33	734	265
X13087	Plow Resistance	5	75 9	10	650	0/300	0.42	798	308
A18089	Flow Resistance	:	21.7	10	650	25/300	0.33	\$12	300
A1B102	Flow Resistance	5	21.7	10	650	35/200	0.33	796	278
A1B103	Flow Resistance	3	14.9	10	050	35/200	0.61	755	268
A18104	Flow Resistance	3	22.9	10	550	35/200	0.00	794	776
110105	High Initial Temp	3	17.1	10	650	32/100	0.33	704	4/3
ALBIOJ		3	19.0	10	550	35/100	0.38	738	248
AIBIUS		3	20.8	10	400	35/100	0.74	613	169
A18107	LOW INICIAL LUMP	1	24.3	50	550	35/100	0.7	740	214
A18108	High Inlet Cooling		24 0	10	550	35/100	0.57		341
A18109	Low Pressure	4 i	21.0	10	550	35/100	0.96	709	225
A181101	odd Initial Temp	3	23.7	10	550	35/0	0 16	711	254
A18111	Flow Resistance	3	10.0	10	330	35/0	0.10	717	254
A18123	Base Case Repeat	3	. 18.1	10	550	22/100		732	254

-

.

Notes

All Condition as Base Case unless stated.

OR1 & OR2 k values based on Area = 3578 mm².
 Initially, Bottom 1.0 m of Cluster at Saturation Temperature.

Appendix A Literature Review

Appendix A11: Lehigh 9-Rod Bundle Tests

Dates When Tests Were Performed: 1982 - 1986

References:

R27. Tuzla, K., Unal C., Badr, O., Neti, S., Chen, J.C., "Thermodynamic Nonequilibrium in Post-Critical-Heat-Flux Boiling in a Rod Bundle", NUREG CR-5095 Vol. 1-4, June 1988.

R28. Unal C., Tuzla, K., Badr, O., Neti, S., Chen, J.C., "Convective Boiling in a Rod Bundle: Traverse Variation of Vapor Superheat Temperature Under Stabilized post-CHF Conditions", Int. J. Heat and Mass Transfer, Vol. 34, No. 7, pp. 1695-1706, 1991

Availability of Data:

The data for these experiments is contained in Volumes 2 - 4 of reference R27. Raw data is not available from the original source.

Test Facility Description, Types of Tests:

The rods were 0.374-inches in diameter and were arranged in a square pitch of .0496-inches. The actual test section of the facility was 4-feet long with one spacer grid located at 30-inches from the bottom. The rods had a linear power profile to provide a constant heat flux over the length of the test section. Each sub-channel had the same wetted perimeter and this resulted in \sim 39% of excess flow area in the bundle. The excess flow area was to account for the housing effect.

Coolant Mass Flow Rate	3.0×10^{-4} to 7.7×10^{-2} lb./sec
Inlet Subcooling	$72 {}^{0}F$ to $1 {}^{0}F$
Pressure	14.8 to 17.4 psi
Initial Shroud Temperature	575 °F to 750°F

Initial Rod Temperature	~1100 ⁰ F
Heat Flux	5 to 4312 kW/m^2
Linear Heat Generation (const. Over length)	0.4 to 3.5 kW/ft
Constant Flooding Rates	0.04 to 0.16 in/sec

Instrumentation and Data From Tests:

There were 8 thermocouples imbedded in each of the 9 heater rods at 6-inch intervals. Due to limitations of the data collection system, only 80 channels could be monitored for any given test. The arrangement of thermocouple elevations has one disturbing shortcoming. There are no thermocouples located at identical elevations and angles to allow for checking of the symmetry of the test section. The pressure cells were spaced to far apart to be able to make a calculation of the void fraction. Two aspirating steam probes were located at 24 and 38-inches respectively. These probes were traversed through the bundle in several experiments to measure the traverse variation of vapor superheat. The vapor temperature difference was reduced from 120 to 40 °C superheat when the inlet quality was increased from 0.04 to 0.40. Effects of dispersed droplet cooling were evident after the grid as well.

The data shows a pronounced effect caused by the spacer grid located at the 30-inch elevation. This information might be used in evaluating the effects of spacer grids in two-phase - dispersed droplet flow. The data also showed a small error caused by the steam probes.

Conclusions:

This series of tests is of limited use to the Rod Bundle Program. The information gathered using a traversing steam probe is the most significant contribution.

Figure A-11-1. Cross-sectional view of test bundle.

. 1

Figure A-11-2. Schematic of test section support system.

Figure A-11-3. Sample plot of temperature and steam quality data for the stabilized quench front experiments.

Table A-11-1	. Sample tabulation of a stabilized quench front
	data point (see Table A-11-2 for nomenclature).

- 1

INLET DUALITY	= .219	
INLET MASS FLUX	= 15.00	Kg/M^2s
TEST-ROD HEAT FLUX	= 2.60	W/cm^2
HOT-ROD HEAT FLUX	= 16.87	W/cm^2
HOT-PATCH HEAT FLUX	= 12.82	W/cm^2
INLET PRESSURE	= 110.0	Кра
SAT. TEMPERATURE	= 102.3	C

VAPOR	SUPERHEAT	TEMPERATURE

•

					_										
I	AT	Z=76.2	CM	1V1	-	561.0	C	AT	Z=111.B	CM	TV2	=	366.0	C	1
1		RATING	OF	TVI	-	1			RALING	UF	1VZ		4		1
1				XA1	5	.40B					XAZ	82	.527		1
1				XE1	83	. 579					XE2		.651		1

	SHROUD					. TEST RODS							
:	 ZS	ORS		 ZS	TS		2T	XE	TRI	TR3	TR4		
1	(CM)	(W/CM2)	11	(CM)	(C)	::	(CM)		(2)	(C)	(C)		
1	18.7	. 93	11	1.3	501.	11	15.2	.45	70Ì				
:	25.9	1.24	11	5.5	495.	11	20.3	.46			558		
1	33.2	1.26	11	9.7	475.	11	25.4	.48		584			
1	40.4	1.21	11			.11	30.5	. 49	596				
1	47.5	1,04	11	34.3	582.	11	35.6	.50			610		
1	54.7	.81	11	60.2	667.	11	40.6	.51		643			
:	61.9	. 57	11	66.1	687.	11	45.7	.52	674	2		TR9	687
t	69.0	.50	11	B3.1	686.	11	48.3	.52	•			TR7	696
1	76.2	.50	11	90.2	611.	11	50.8	.53			672		
:	83.4	. 43	11	97.B	617.	11	53.5	. 53				TR6	729
:	90.5	1.38	11	104.9	7 643.	11	55.9	.54		709		TR5	683
1	97.7	1.25	11	117.4	679.	11	58.4	.54				TRØ	746
ł	104.9	.98	11	125.7	695.	11	61.0	. 55	738				
1	112.1	.82	11	130.8	3 676.	11	66.0	.56			746		
1	119.2	2 .43	11		4	11	71.1	.57		734			
1	126.4	.20	11			11	76.2	. 5B	772		750		
1	133.6	1.06	11			11	81.3	. 59			747	TR2	756
			-			1	86.4	.60		758			
						I	91.4	.61	757				
						1	96.5	.62			617	TR2	605
						1	101.6	• 63		728			
						1	106.7	.64	687				
						1	111.8	.65			712		
						1	116.8			694			
						1	121.9		728				
						1	124.5						//(
						1	127.0				770	TR2	739
						1	129.4					TR6	774
						1	132.1			743		TR5	769
						1	134.6					TRB	772
						1	137.1		768			TR9	748
						1	147.3			700			

Table A-11-2. Definition of parameters used in Table A-11-1.

```
QRS = shroud heat flux (local)
TR 1 = surface temperature of test rod number 1
TR 3 = surface temperature of test rod number 3
TR 4 = surface temperature of test rod number 4
TR 5 = surface temperature of test rod number 5
TR 6 = surface temperature of test rod number 6
TR 7 = surface temperature of test rod number 7
TR 8 = surface temperature of test rod number 8
TR 9 = surface temperature of test rod number 9
     = shroud surface temperature
ΤS
TV 1 = vapor temperature obtained from first probe
TV 2 = vapor temperature obtained from second probe
XA 1 = actual quality at the first vapor probe location
XA 2 = actual quality at the second vapor probe location
     = equilibrium quality
XE
XE 1 = equilibrium quality at the first vapor probe location
XE 2 = equilibrium quality at the second vapor probe location
     = shroud axial location (reference to hot-patch inlet)
ZS
     = test section axial location (reference to hot-patch inlet)
ZΤ
```

-

			_
	5 8		ž
	3 8		787
			4 ML
	5	g	242
	б Ч.з	57 ACD	Ē
	855	2	Ē
			Ħ
14			5
.9 •	N.	1	-
Ē	1 2 2 2 U		
ü	4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	171MG+2	R.
	- 522	945, N	й.
	DUAL 11 RASSTU PARSAU	DMDIT 1(D)9.
		8	
		l	2

```
DEV = device
DIS = distance
QRS = shroud's heat flux (local value)
QUAL = equilibrium quality
    = test rod #1
R1
    = test rod #3
R3
    = test rod #4
R4
R6
   = test rod #6
R7
    = test rod #7
R8
    = test rod #8
SH
    = shroud
TR 1 = surface temperature of test rod number #1
TR 3 = surface temperature of test rod number #3
TR 4 = surface temperature of test rod number #4
TR 6 = surface temperature of test rod number #6
TR 7 = surface temperature of test rod number #7
TR 8 = surface temperature of test rod number #8
   = surface temperature of the shroud
TS
TV1 = vapor temperature of first vapor probe elevation
TV2 = vapor temperature of second vapor probe elevation
XA 1 = actual quality at the first vapor probe location
XA 2 = actual quality at the second vapor probe location
XE
    = equilibrium quality
XE 1 = equilibrium quality at the first vapor probe location
XE 2 = equilibrium quality at the second vapor probe location
   = shroud axial location (reference to hot-patch outlet)
ZS
    = test section axial location (reference to hot-patch outlet)
ZΤ
```


Figure A-11-4. Sample plot of heat flux and steam quality data for the advancing quench front experiments.

Figure A-11-5. Sample plot of rod and steam temperature data for the advancing quench front experiments.

. L

Figure A-11-6. Transverse vapor temperature profiles for various vapor qualities.

Figure A-11-7. Typical transverse vapor temperature profiles downstream of the grid spacer.

Figure A-11-8. Comparison of transverse vapor temperature profiles upstream and downstream of the grid spacer.

.

Appendix B.1: Radiation heat transfer network and calculation of π_i groups

In order to calculate the radiative heat transfer from the rods to the surfaces and the housing, a six node radiation network (Figure 6-3 has been developed which includes radiation heat transfer to droplets and vapor. The network resistances are defined as follows ^(7,2, 7,3, 7,4):

$$\frac{1}{R_{ii}} = \frac{\varepsilon_w}{1 - \varepsilon_w} A_i$$

$$\frac{1}{R_{ij}} = (1 - \varepsilon_i)(1 - \varepsilon_v) A_j F_{ij}$$

$$\frac{1}{R_{il}} = \varepsilon_i (1 - \varepsilon_v) A_i$$

$$\frac{1}{R_{iv}} = \varepsilon_v (1 - \varepsilon_l) A_i$$

$$\frac{1}{R_{iv}} = \varepsilon_l \varepsilon_v \sum_{i=1}^4 A_i$$

where

The view factors are calculated by summing up single rod-to-rod, rod-to-housing and rod-tosurfaces view factors which are calculated with the VIEWFAC subroutine of MOXY computer program⁽⁷⁻¹⁾:

$$F_{12} = \sum_{j} \frac{\sum_{i=1}^{49} A_i F_{ij}}{\sum_{i=1}^{49} A_i}, \quad \text{where} \quad j = j_{CR} \text{ and } i \neq j_{CR} \quad (j_{CR} \text{ are the cold rods indices})$$

Assuming that the droplet and vapor media are optically thin, the drop and vapor emissivities ε_l and ε_c are calculated with the following formula:

$$\varepsilon_l = 1 - e^{-a_l L_m}$$
$$\varepsilon_v = 1 - e^{-a_v L_m}$$

the beam length L_m is defined as follows for rod bundle geometry:

$$L_{m} = 0.85 D_{h}$$

Assuming the droplets in the geometric scattering regime, the liquid absorption coefficient is calculated by the following formula which is based on Ref. 7.4 with the additional assumption of considering a single drop size group (Sauter-mean diameter):

 $a_i = 0185\pi . d^2 n_d$

where d is the drop sauter mean drop diameter (m) while the number of droplet per unit volume n_d is calculated from the void fraction:

$$n_d = \frac{6(1-\alpha)}{\pi d^3}$$

Where the saurter-mean diameter and the void fractions are inputs in the program. The vapor absorption coefficient a_v is calculated with the following formula:

$$a_v = 9.84 \cdot 10^{-5} P \left[18.66 \left(\frac{555}{T_w} \right)^2 - \left(\frac{555}{T_w} \right)^4 \right]$$
 (SI units)

where P is the pressure [kPa] and T_{w} is the wall temperature [K].

Solution of the radiation network

The Kirchoff law is applied to nodes 1,2,3 and 4:

$$\frac{J_1 - \sigma \cdot T_{hr}^4}{R_{11}} + \frac{J_1 - J_2}{R_{12}} + \frac{J_1 - J_3}{R_{13}} + \frac{J_1 - J_4}{R_{13}} + \frac{J_1 - \sigma \cdot T_l^4}{R_{1l}} + \frac{J_1 - \sigma \cdot T_v^4}{R_{1l}} + \frac{J_1 - \sigma \cdot T_v^4}{R_{1v}} = 0.0$$

$$\frac{J_2 - \sigma \cdot T_{cr}^4}{R_{22}} + \frac{J_2 - J_1}{R_{12}} + \frac{J_2 - J_3}{R_{23}} + \frac{J_2 - J_4}{R_{24}} + \frac{J_2 - \sigma \cdot T_l^4}{R_{2l}} + \frac{J_2 - \sigma \cdot T_v^4}{R_{2v}} = 0.0$$

$$\frac{J_3 - \sigma \cdot T_s^4}{R_{33}} + \frac{J_3 - J_1}{R_{13}} + \frac{J_3 - J_2}{R_{23}} + \frac{J_3 - J_4}{R_{34}} + \frac{J_3 - \sigma \cdot T_l^4}{R_{3l}} + \frac{J_3 - \sigma \cdot T_v^4}{R_{3v}} = 0.0$$

$$\frac{J_4 - \sigma \cdot T_h^4}{R_{44}} + \frac{J_4 - J_1}{R_{14}} + \frac{J_4 - J_2}{R_{24}} + \frac{J_4 - J_3}{R_{34}} + \frac{J_4 - \sigma \cdot T_l^4}{R_{4l}} + \frac{J_4 - \sigma \cdot T_v^4}{R_{4v}} = 0.0$$

where J_i are the radiosities in the network nodes.

For a given temperature field $(T_{hr}, T_{cr}, T_s, T_h, T_l, T_v)$ the equations are solved for the unknowns J_1, J_2, J_3, J_4 . Then the heat rate across each resistance in the network can be calculated as:

$$Q_{ij} = \frac{J_j - J_i}{R_{ij}}$$

The previous procedure has been implemented in the Fortran program called RADNET attached in Appendix B.5.

Another input to the RADNET computer program is how hot versus cold rods are lumped together in the bundle. It can be recognized that, for given boundary conditions, the result is dependent on how hot and cold rods are lumped together in the model. Sensitivity studies have carried out where the hot rods sub-array has been assumed to be either the central rod, the inner 3x3 or the inner 5x5. For example the group π_{30} (see later) calculated with the three different lumping approach is:

 $\pi_{30,cr} = 0.567$ $\pi_{30,3x3} = 0.388$ $\pi_{30,5x5} = 0.345$

It is important to note that this is the group affected most while the effect of different lumping approach on the other groups is less important. Results from the detailed rod-to-rod model calculations (Appendix 7.1) show that the temperature is practically uniform in the inner $3x_3$ array while the temperature drops in the periphery as effect of the housing, thus the $3x_3$ hot rods lumping approach is the most appropriate and was chosen in the dimensionless groups calculation.

Appendix B.2 - Rod Grid Radiation Network for RBHT

Inputs

H grid	1.5	in	0.0381	m
N grids	0 374	in	0.0095	m
rode niteb	0.496063	in	0.0126	m
rod power	5.6	k W		
	40	nsia	272,1088	kРа
pressure linuid tem pereture	267	F	403.6956	к
	1177	F	909.2511	к
vapor tem perature	1650	F	1172.029	ĸ
rod temperature	1376	F	1019 807	ĸ
grid temperature	0.005	•		
void fraction	0.995		0.001	m
droplets softer mean diameter			0.8	
wall emissivity			0.0	
Calculation				
bundle hydraulic diameter			0.01179	m
droplet density			9554140	Ndrp/m 3
liquid absorption coefficient			5.55	m - 1
beam length			0.010021	m
liquid emissivity			0.054101	
vapor absorption coefficient			0.182435	m - 1
vapor emissivity			0.000542	
rod area (based on Hgrid) Ar	1.76154	in 2	0.001136	m 2
grid area (per rod) Ag	2.976	in 2	0.00192	m 2
1/811			0.004546	
1/R22			0.00768	
1/R12			0.001074	
1/B1L			6.15E-05	
1/B1V			5.83E-07	
1/R2L			0.000104	
1/R2V			9.84E-07	
1/RLV			8.96E-08	
A 1 1	•		0.005682	
A22			0.008859	
A12=A21			-8.96E-08	
C 1			486.4733	
C 2			471.1879	
det(A)			5.03E-05	

Appendix B.3 - Rod Grid Radiation Network for PWR

· • • •

,

Inputs

H grid N grids rod diameter rods pitch rod power pressure liquid temperature vapor temperature rod temperature grid temperature	1.5 6 0.374 0.496063 5.6 40 267 1177 1650 1376	in in kW psia F F F	0.0381 0.0095 0.0126 272.1088 403.6956 909.2511 1172.029 1019.807	m m kPa K K K K
void fraction droplets sorter mean diameter wall emissivity	0.995		0.001 0.9	m
Calculation				
bundle hydraulic diameter droplet density liquid absorption coefficient beam length liquid emissivity			0.01179 9554140 5.55 0.010021 0.054101	m Ndrp/m3 m-1 m
vapor absorption coefficient vapor emissivity			0.182435 0.000542	m - 1
rod area (based on Hgrid). Ar grid area (per rod) Ag	1.76154 2.976	in 2 in 2	0.001136 0.00192	m 2 m 2
1/R11 1/R22 1/R12 1/R1L 1/R1V 1/R2L 1/R2V 1/RLV			0.010228 0.01728 0.001074 6.15E-05 5.83E-07 0.000104 9.84E-07 8.96E-08	
A 1 1 A 22 A 1 2 = A 2 1 C 1 C 2 det(A)	•		0.011365 0.018459 -8.96E-08 1094.421 1059.93 0.00021	

Appendix B.4 - Rod Grid Radiation Network for BWR

Inputs

H grid	1.5	in	0.0381	m
N grids	6	·_	0.01007	m
rod diameter	0.483071	in	0.01227	m
rods pitch	0.637795	in L M	0.0162	113
rod power	5.6	K VV	070 1009	k D a
pressure	40	psia	272.1088	кга
liquid temperature	267	F _	403.6956	n K
vapor temperature	1177	F	909.2511	ĸ
rod temperature	1650	F	1172.029	ĸ
grid temperature	1376	F	1019.807	к
void fraction	0.995			
droplets sorter mean diameter			0.001	m
wall emissivity			0.9	
Calculation				
bundle bydraulic diameter			0.014977	m
droplet density			9554140	Ndrp/m3
liquid absorption coefficient			5.55	m - 1
haam longth			0.01273	m
liquid emissivity			0.068215	
inquia eniissivity			0 182435	m - 1
vapor absorption coefficient			0.000868	
vapor emissivity			0.000000	
rod area (based on Harid) Ar	2 275264	in2	0.001468	m 2
grid area (per rod) Ag	2.976	in 2	0.00192	m 2
1/011			0.013211	
1/011			0.01728	
1/012			0.001367	
1/01			0.0001	
			1 19E-06	
1/810			0.000131	
1/R2L			1.55E-06	
1/RLV			2.01E-07	
A 1 1			0.014679	
A 0 0	•		0.018779	
M22			-2 01F-07	
A 12=A21			1413 639	
			1059 992	
			0.000276	
det(A)			0.000276	

B.5 - Program Radnet

```
program radnet
с
     dimension f(50,50),area(50)
         dimension pir(50)
     dimension ir(50)
с
    common/cgauss/ a(10,10),b(10),c(10),na
    common/temp/t(10),eb(10),tl,tv,ebl,ebv,q(10)
    common/resist/ r(10,10)
с
    data sig/5.67E-08/
    data pi/3.141592654/
с
c.....input values
    nhot=9
    trmed=1650.0
         thr=2100.0
         ts=800.0
         th=800.0
         tl=267.0
         tv=1650.0
         hqch=4.0
         grod=2296.6
с
    hcore=12.0
         qtot=qrod*45.0
         qhr=qrod*float(nhot)
    nsurf=4
    nrod=49
    ncold=nrod-nhot-nsurf
    n=nrod+1
    drod=0.0095
    dh=0.01178
                                      .
         dtemp=155.0
         if (nhot.eq.9) dtemp=161.0
         if (nhot.eq.25) dtemp=170.0
         if (thr.eq.0.0) thr=trmed+ncold*dtemp/float(ncold+nhot)
         tcr=thr-dtemp
         write(6,*) thr,tcr
с
c.....pressure in psia
    press=40.0
    alp=0.995
    dd=0.001
    ew=0.8
    timax=500.0
с
c.....end of inputs
с
    do 301 i=1,49
    ir(i)=2
 301 continue
```

```
if (nhot.eq.1) then
    ir(25)=1
    endif
    if (nhot.eq.9) then
    ir(17)=1
    ir(18) = 1
    ir(19)=1
    ir(24)=1
    ir(26) = 1
    ir(31)=1
    ir(32)=1
    ir(33)=1
    endif
    if (nhot.eq.25) then
    ir(9) = 1
    ir(10)=1
    ir(11)=1
    ir(12)=1
    ir(13)=1
    ir(16)=1
    ir(20)=1
    ir(23)=1
    ir(27)=1
    ir(27)=1
    ir(30)=1
    ir(34)=1
    ir(37)=1
    ir(38)=1
    ir(39)=1
    ir(40)=1
    ir(41)=1
    endif
с
    ir(1)=3
    ir(7)=3
                                       .
    ir(43)=3
    ir(49)=3
с
    shrod=float(nhot)*pi*drod
    scrod=float(ncold)*pi*drod
    ssrf=float(nsurf)*pi*drod
    shou=0.3607
    nd=6.0*(1.0-alp)/(pi*dd**3.0)
    al=0.185*nd*pi*dd**2.0
    press=press*100.0/14.7
с
c.....calculate global view factors with inner hot rods array considered
¢
     do 11 i=1,n
     do 12 j=1,n
     read(9,*) ni,nj,f(i,j)
  12 continue
     read(9,*) area(i)
  11 continue
с
```
```
fhrcr=0.0
    do 101 j=1,nrod
    fsum=0.0
    asum=0.0
    if (ir(j).ne.2) goto 101
    do 102 i=1,nrod
    if (ir(i).ne.1) goto 102
    fsum=fsum+area(i)*f(i,j)
    asum=asum+area(i)
 102 continue
    fhrcr=fhrcr+fsum/asum
 101 continue
¢
    fsum=0.0
    asum=0.0
    fhrh=0.0
    do 202 i=1,nrod
    if (ir(i).ne.1) goto 202
    fsum=fsum+area(i)*f(i,n)
    asum=asum+area(i)
 202 continue
    fhrh=fsum/asum
с
    fsum=0.0
    asum=0.0
    fcrh=0.0
    do 302 i=1,nrod
    if (ir(i).ne.2) goto 302
    fsum=fsum+area(i)*f(i,n)
    asum=asum+area(i)
 302 continue
    fcrh=fsum/asum
с
    fhrs=0.0
    do 401 j=1,nrod
    fsum=0.0
    asum=0.0
    if (ir(j).ne.3) goto 401
    do 402 i=1,nrod
    if (ir(i).ne.1) goto 402
    fsum=fsum+area(i)*f(i,j)
    asum=asum+area(i)
 402 continue
    fhrs=fhrs+fsum/asum
 401 continue
с
    fcrs=0.0
    do 501 j=1,nrod
    fsum=0.0
    asum=0.0
    if (ir(j).ne.3) goto 501
    do 502 i=1,nrod
    if (ir(i).ne.2) goto 502
    fsum=fsum+area(i)*f(i,j)
    asum=asum+area(i)
```

```
(0,1)_{1}=(1,0)_{1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Э
                                                                                                                          ((\text{uors+frse+bors+bors+bors})*ls*vs)/0.1=(0,2)
                                                                                                                                                                                                                                                                                                                                                                                                    0.0 = (\xi, \xi)_{1}
                                                                                                                                                                                                                                                                                                                                                                                (\xi, 4) = (4, \xi) \mathbf{1}
                                                                                                                                                                                                                                                                                                                                                                                (\xi,\xi) = (\xi,\xi) \mathbf{1}
                                                                                                                                                                                                                                                                                                                                                                                r(5,2)=r(2,5)
                                                                                                                                                                                                                                                                                                                                                                                 (\zeta, I)_{1} = (I, \zeta)_{1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Э
                                                                                                                                                                                                                                              (uont^{(1)})^{(1)} = (0,1)^{(1)} = (0,1)^{(1)}
                                                                                                                                                                                                                                              (uont^{(v_3-0.1)*[s_3)})(0.1=(2,2))
                                                                                                                                                                                                                                                                   (uods*ws)/(ws-0.1)=(4,4)1
                                                                                                                                                                                                                                                                                                                                                                                 (4, \xi)_1 = (\xi, 4)_1
                                                                                                                                                                                                                                                                                                                                                                                  (4,2)=r(2,4)
                                                                                                                                                                                                                                                                                                                                                                                  (4,1)=(1,4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                                        (f_{122}^{*}(19-0.1)^{*}v_{9})/0.1=(0,\xi)_{7}
                                                                                                                                                                                                                                                         (128^{*}(v_{9}-0.1)^{*}l_{9})/0.1 = (2, \xi)_{1}
                                                                                                                                                                            (hs1*112*(v3-0.1)*(l3-0.1))/0.1=(4, E)
                                                                                                                                                                                                                                                                               (f122*w5)/(w5-0.1)=(E,E)1
                                                                                                                                                                                               .
                                                                                                                                                                                                                                                                                                                                                                                  (\xi, 2) = (2, \xi) r
                                                                                                                                                                                                                                                                                                                                                                                  (\xi, I) = (I, \xi) I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                           (12,6)=1.0/(e^{1})^{*}v^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*}s^{3}/(e^{1})^{*
                                                                                                                                                                                                                                           (bologies)^{(v_3-0.1)*[a)}_{0.1=(2,2)}
                                                                                                                                                       (121^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{10} (120^{10})^{
                                                                                                                                                         (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)^{10} (12)
                                                                                                                                                                                                                                                                 (boros*ws)/(ws-0.1)=(2,2)r
                                                                                                                                                                                                                                                                                                                                                                                  (2,1)=(1,2)1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                           (bonds*(lo-0.1)*vo)/0.1=(0.1)1
                                                                                                                                                                                                                                           (bonk*(vo-0.1)*lo)\0.1=(2.1)r
                                                                                                                                                      (h1h^{1}b01h^{2}(v9-0.1)^{1}(19-0.1))/0.1=(4,1)
                                                                                                                                                       (stif*boths*(v9-0.1)*(l9-0.1))/0.1=(\xi,1)_1
                                                                                                                                                  (1200 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 10
                                                                                                                                                                                                                                                                 (bonds*ws)/(ws-0.1)=(1,1)n
                                                                                                                                                                                                                                                                                                                 (m | x^* v b) q x b - 0.1 = v b
                                                                                                                                                                                                                                                                                                                         (m[x^*|a-)qxb-0.1=b
                                                                                                                                                                                                                                                                                                                                                                                4b*28.0=m1x
(0.4**(v1/0.222) - 0.2**(v1/0.222)*0.81)*2291q*2-948.9=vb
                                                                                                                                                                                                                                                                                                                                                    0.4**v1*giz=vds
                                                                                                                                                                                                                                                                                                                                                           0.4**lj*giz=ld5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                                  c.....calculate network resistances
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                                           muss/(4s1+5s1+2s1+1s1)=ds1
                                                                                                                                                                                                                                                                                                                    (n,04)]*(04)bsreates1
                                                                                                                                                                                                                                                                                                                    (n,£4)]*(£4)ssre=Est
                                                                                                                                                                                                                                                                                                                                        (n, \nabla)i*(\nabla)sərea(2, n)
                                                                                                                                                                                                                                                                                                                                        (n, 1)h^*(1)sons=1 sh
                                                                                                                                                   (24) asum=area(1)+area(7)+area(43)+area(49)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Э
                                                                                                                                                                                                                                                                                                                                                                                                    sunimos 102
                                                                                                                                                                                                                                                                                                                    muse/musi+eroi=eroi
                                                                                                                                                                                                                                                                                                                                                                                                     suniinos 202
```

```
r(6,2)=r(2,6)
    r(6,3)=r(3,6)
    r(6,4)=r(4,6)
    r(6,5)=r(5,6)
    r(6,6)=0.0
с
    na=4
с
    t(1)=273.14+(thr-32.0)/1.8
    t(2)=273.14+(tcr-32.0)/1.8
    t(3)=273.14+(ts-32.0)/1.8
    t(4)=273.14+(th-32.0)/1.8
         t(5)=273.14+(tl-32.0)/1.8
          t(6)=273.14+(tv-32.0)/1.8
    do 10 i=1,6
    eb(i)=sig*t(i)**4.0
 10 continue
с
    call matrix
    call gauss
с
    do 351 i=1,na
    q(i)=(c(i)-eb(i))/r(i,i)
351 continue
    q(5)=0.0
    q(6)=0.0
    do 352 i=1,na
    q(5)=q(5)+(c(i)-eb(5))/r(i,5)
    q(6)=q(6)+(c(i)-eb(6))/r(i,6)
 352 continue
    qvl=(eb(6)-eb(5))/r(5,6)
    q(5)=q(5)+qvl
          q(6)=q(6)-qvl
¢
          q12=(c(1)-c(2))/r(1,2)
          q13=(c(1)-c(3))/r(1,3)
          q23=(c(2)-c(3))/r(2,3)
          q14=(c(1)-c(4))/r(1,4)
    q_{24}=(c_{2})-c_{4})/r_{2,4}
          q11=(c(1)-eb(5))/r(1,5)
          q1v=(c(1)-eb(6))/r(1,6)
    q2l=(c(2)-eb(5))/r(2,5)
          q2v=(c(2)-eb(6))/r(2,6)
          q3l=(c(3)-eb(5))/r(3,5)
          q3v=(c(3)-eb(6))/r(3,6)
          q4l=(c(4)-eb(5))/r(4,5)
          q4v=(c(4)-eb(6))/r(4,6)
с
c.....pi groups in the flow energy equation
          pir(1)=(q1v+q2v)/qtot
          pir(2)=(q11+q21)/qtot
          pir(3)=q4v/qtot
          pir(4)=q4l/qtot
          pir(5)=q3v/qtot
          pir(6)=q3l/qtot
```

```
pir(7)=qvl/qtot
с
c.....pi groups in the rod energy equation
         pir(8)=q13/qhr
         pir(9)=q14/qhr
         pir(10)=q12/qhr
         pir(11)=q11/qhr
         pir(12)=q1v/qhr
с
c.....correction to account for the above quench length
    corf=(hcore-hqch)/hcore
         do 701 i=1,7
         pir(i)=pir(i)*corf
701 continue
с
    write(6,*) RV = ', pir(1)
         write(6,*) RL = ', pir(2)
         write(6,*) HV = , pir(3)
         write(6,*) HL = ', pir(4)
         write(6,*) 'SV = ', pir(5)
         write(6,*) 'SL = ', pir(6)
         write(6,*) 'VL = ', pir(7)
         write(6,*)
    write(6,*) RS = ', pir(8)
         write(6,*) RH = ', pir(9)
         write(6,*) RR = ', pir(10)
         write(6,*) RL = ', pir(11)
         write(6,*) RV = ', pir(12)
с
    stop
    end
с
с
    subroutine matrix
с
    common/cgauss/ a(10,10),b(10),c(10),na
    common/temp/t(10),eb(10),tl,tv,ebl,ebv,q(10)
    common/resist/ r(10,10)
с
    do 10 i=1,na
    b(i)=0.0
    do 10 j=1,na
    a(i,j)=0.0
  10 continue
с
    do 101 i=1,na
    b(i)=eb(i)/r(i,i)+ebl/r(i,5)+ebv/r(i,6)
    do 102 j=1,na
    if (i.ne.j) then
    a(i,j) = -1.0/r(i,j)
    else
    do 103 k=1,6
    a(i,i)=a(i,i)+1.0/r(i,k)
 103 continue
    endif
```

```
102 continue
 101 continue
с
    return
    end
с
с
    subroutine gauss
с
    common/cgauss/ a(10,10),b(10),c(10),na
с
    k=1
  20 temp = 1.0/a(k,k)
    j=k
  30 a(k,j) = a(k,j)*temp
    if (j.eq.na) goto 40
    j=j+1
    goto 30
  40 b(k) = b(k)*temp
    j=k+1
  50 temp = a(j,k)
    l=k
  60 a(j,l) = a(j,l)-a(k,l)*temp
    if (l.eq.na) goto 70
    l = l + 1
    goto 60
  70^{\circ} b(j) = b(j) - b(k) + temp
    if (j.eq.na) goto 80
    j=j+1
    goto 50
  80 if (k.eq.na-1) goto 90
    k=k+1
    goto 20
  90 continue
    c(na) = b(na)/a(na,na)
    i=1
 120 \text{ sum} = 0.0
    j=na-i+1
 100 sum = sum+a(na-i,j)*c(j)
    if (j.eq.na) goto 110
    j=j+1
    goto 100
 110 c(na-i) = b(na-i)-sum
    if (i.eq.na-1) goto 130
    i=i+1
    goto 120
 130 continue
с
    return
    end
с
```

Appendix C: BUNDLE MODEL Description

A full model of a square lattice rod bundle was developed to calculate the cross section temperature distribution during the reflood transient. The model includes the rod-to-rod and rodto-housing thermal radiation heat transfer as well as the radial heat conduction in the rods and the housing. The convection heat transfer between rods and fluid as well as housing and fluid is simulated by inputting a convective heat transfer coefficient time history. The fluid temperature is another input value and it is kept constant during the transient.

The view factor matrix is calculated with the VUEFAC subroutine of MOXY computer program^(7.1). The conduction heat transfer is computed in each of the fuel rods, subject to the transient heat flux boundary condition of combined convection and radiation heat transfer. The radiative heat transfer computations are based on assumptions of gray and diffuse surfaces. The model neglects absorption, emission, or scattering of radiation by steam and droplets contained between surfaces. The radiation heat transfer between the surfaces and vapor was taken into account in the lumped model described in Section 6 (RADNET computer program).

Conductive heat transfer

The heat conduction in fuel rods, solid inactive rods and housing is computed by numerical integration of the one-dimensional Fourier heat conduction equation:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + q^{\prime\prime\prime} = \rho C_{\rho}\frac{\partial T}{\partial t}$$

where q''' is zero for the inactive rods. The equation is discretized as follows:

$$\frac{\rho \cdot C_{p,1} V_{1}}{\Delta t} \left(T_{1}^{n+1} - T_{1}^{n}\right) = Q_{1} + 2\pi \left(k_{1} \frac{T_{2}^{n} - T_{1}^{n}}{2}\right)$$

$$\frac{\rho \cdot C_{p,N} V_{i}}{\Delta t} \left(T_{i}^{n+1} - T_{i}^{n}\right) = Q_{i} + 2\pi \left[k_{i} \left(r_{i} + \frac{dr_{i}}{2}\right) \left(\frac{T_{i+1}^{n} - T_{i}^{n}}{dr_{i}}\right) - k_{i-1} \left(r_{i} - \frac{dr_{i-1}}{2}\right) \left(\frac{T_{i}^{n} - T_{i-1}^{n}}{dr_{i-1}}\right)\right]$$

$$\frac{\rho \cdot C_{p,N} V_{N}}{\Delta t} \left(T_{N}^{n+1} - T_{N}^{n}\right) = Q_{N} - 2\pi \left[k_{N-1} \left(r_{N} - \frac{dr_{N-1}}{2}\right) \left(\frac{T_{N}^{n} - T_{N-1}^{n}}{dr_{N-1}}\right)\right] - 2\pi r_{N} \left[q^{n}_{rod} + h \left(T_{N}^{n} - T_{f}\right)\right]$$

- **b**

where:

$$V_{i} = \pi \left[r_{i} \left(dr_{i-1} + dr_{i} \right) + \frac{dr_{i}^{2} - dr_{i-1}^{2}}{4} \right]$$

The equation for the heat conduction in the housing is:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + q''' = \rho \cdot C_{\rho} \frac{\partial T}{\partial t}$$

Again, this is solved numerically with the following equations:

$$\frac{\rho \cdot C_{p,1} dx}{\Delta t} \left(T_1^{n+1} - T_1^n \right) = k_1 \left(\frac{T_2^n - T_1^n}{dx} \right) - h_{loss} \left(T_1^n - T_{out} \right)$$
$$\frac{\rho \cdot C_{p,1} dx}{\Delta t} \left(T_1^{n+1} - T_1^n \right) = k_1 \left(\frac{T_{i+1}^n - T_i^n}{dx} \right) - k_{i-1} \left(\frac{T_i^n - T_{i-1}^n}{dx} \right)$$
$$\frac{\rho \cdot C_{p,N} dx}{\Delta t} \left(T_N^{n+1} - T_N^n \right) = -k_{N-1} \left(\frac{T_N^n - T_{N-1}^n}{dx} \right) - h \left(T_N^n - T_f \right) - q^n_{rad}$$

Once the radiative heat rate q_{rad}^n is calculated form the radiation transport equations, the previous equations are solved for the temperature field at time t_{n+1} .

Radiative heat transfer

The equations governing the radiative heat transfer are the following:

$$J_i - \left(1 - \varepsilon_i\right) \sum_{j=1}^N F_{ij} J_j = \varepsilon_i E_{b,i} \qquad i = 1, 2, \dots, N$$

where:

 $J_{i} = \text{radiosity of i-th surface}$ $E_{b,i} = \text{blackbody emissive power of i-th surface}$ $F_{ij} = \text{view factor matrix}$ $\varepsilon_{i} = \text{emissivity of i-th surface}$

Once the temperature field is known by solving the conduction equation at time t_n , the emissive power $(E_{b,i})$ can be calculated. Then the previous system is solved for the radiosities J_i and the radiative heat fluxes at time t_n are calculated from the following equation:

$$q_{rad,i}^{n} = \frac{\mathcal{E}_{i}}{1 - \mathcal{E}_{i}} \Big(E_{b,i} - J_{i} \Big)$$

The radiative heat fluxes are applied as the wall boundary condition for the conduction equation which is used to evaluate the temperature field at time t_{n+1} .

The program herein presented can operate also in a steady state mode. In this case the conduction equation is not solved while the temperature field is calculated iteratively. The source list of the program is attached in the Appendix.

FORTRAN source list program #1

```
program bundle
С
      implicit double precision (a-h,o-z)
      dimension d(1000), pwf(1000)
      dimension a(1001,1001),b(1001)
С
      common /vf/ f(1001,1001), area(1001)
      common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
     + emiss(1001), bs(1001), qold(1001)
      common/heat1/tfad,tenvad,h,hout,hmin,qct,qrt,qt
      common/geoint/nrod,n,nl
     common/geo/vrod(1000)
      common/temp/told(1001)
      common/converg/alfa
      common/printc/tpcv,nprt1,nprt2,imod
С
      common/trans1/regsze(4),ql(1000),qr(1000),tr(1000,100),th(100)
      common/trans2/ndreg,ndx,ndr,npc,np1,ntab,ntab2,ifrad,inuc
      common/trans3/dt,tmax,time,tft,s,tenv,hloss,qavg,htrs,trst,
                     tdst, thst, tmin, fdcy, hgap
      common/trans4/tme(100), hft(100), tmep(100), pdcy(100), tmix(100)
С
      data pi/3.141592654/
      data sig/5.67D-08/
С
      open(unit=8,file='bd.inp')
      open(unit=11,file='bd.out')
      open(unit=12,file='bd.dmp')
      open(unit=13,file='bd.flx')
С
      write(11,800)
      write(12,600)
      write(13,700)
      read(8,*) nl
      write(11,812) nl,nl
      read(8,*) inuc
      read(8,*) dd,p,drh
      write(11,801) dd
      write(11,802) p
      write(11,803) drh
      read(8,*) pwavg
      write(11,804) pwavg
      read(8,*) emirod, emihs
      write(11,805) emirod
      write(11,806) emihs
      read(8,*) hf,tf,tmin
      write(11,807) hf
      write(11,808) tf
      hf=hf*5.679
      tf = (tf - 32.0) * 5.0 / 9.0 + 273.14
      tmin=(tmin-32.0)*5.0/9.0 + 273.14
      read(8,*) hloss,tenv
```

- **- - -**

```
write(11,809) hloss
      write(11,810) tenv
      hloss=hloss*5.679
      tenv=(tenv-32.0)*5.0/9.0 + 273.14
      read(8, *) s
      write(11,813) s
      s=s*0.0254
С
      hmin=0.2
С
      write(11,811)
      nrod=nl*nl
      n=nrod+1
      k1=1
      k2=k1+nl-1
      do 500 i=1,nl
      read(8,*) (pwf(k),k=k1,k2)
      write(11,903) (pwf(k),k=k1,k2)
      k1=k1+nl
      k2=k2+n1
500 continue
С
      read(8, *) err
      read(8,*) imod,ifrad
С
      if (imod.eq.0) goto 510
C
c....read transient data
      read(8,*) dt,tmax,nprt1,nprt2
      read(8,*) (regsze(i),i=1,4)
      do 505 i=1,4
      regsze(i)=regsze(i)*0.0254
     rsum=rsum+regsze(i)
     vrod(i) = (rsum**2.0-(rsum-regsze(i))**2.0)*pi
 505 continue
      read(8,*) hgap
     hgap=hgap*5.679
      read(8,*) ndreg,ndx
       read(8,*) tft
С
       tft=(tft-32.0)*5.0/9.0 + 273.14
С
      read(8,*) ntab
      do 507 i=1, ntab
      read(8,*) tme(i),hft(i),tmix(i)
      hft(i)=hft(i)*5.679
      tmix(i) = (tmix(i) - 32.0) * 5.0/9.0 + 273.14
 507 continue
      read(8,*) ntab2
      do 508 i=1,ntab2
      read(8,*) tmep(i),pdcy(i)
 508 continue
      read(8,*) trst,tdst,thst
      trst=(trst-32.0)*5.0/9.0 + 273.14
      tdst=(tdst-32.0)*5.0/9.0 + 273.14
      thst=(thst-32.0)*5.0/9.0 + 273.14
```

```
С
С
c....'pwavg' is the radial average power in kW/ft
С
 510 feet=0.3048
      pwl=pwavg*1000./feet
      tpcv=tf+pw1/(hf*pi*dd*0.0254)
С
      call vufac(nl,dd,p,drh)
С
      do 301 i=1,n
      do 302 j=1,n
 302
      continue
      area(i)=area(i)*0.0254
      continue
 301
С
      do 401 i=1, nrod
      d(i) = dd * 0.0254
      gl(i) = pwf(i) * pwl
      emiss(i)=emirod
 401
      continue
      emiss(n)=emihs
      qavg=pwl/(pi*d(1))
С
      if (imod.eq.1) goto 2000
С
c.....Set dimensionless variables
С
      tfad=(sig*tf**4.0d0/qavg)**0.25d0
      tenvad=(sig*tenv**4.0d0/qavg)**0.25d0
      tguess=tfad
      h=hf/(qavg**0.75d0 * sig**0.25d0)
      hout=hloss/(qavg**0.75d0 * sig**0.25d0)
      do 501 i=1,nrod
      q(i) = pwf(i)
 501 continue
      q(n) = 0.0
С
c....Start Iteration loop
C
       if (h.lt.hmin) then
       alfa=1.0
       nitmax=1000
       goto 150
       endif
С
       write(6,*) 'ALFA = ?'
       read (6,*) alfa
       write(6,*) 'NITER = ?'
       read (6,*) nitmax
С
 150 niter=0
 С
 c....Initial guess for temperature
```

- 4--

```
С
      do 201 i=1,n
      temp(i)=tfad
      continue
201
C
1001 niter=niter+1
C
      call rads
      call conv
C
c....check for convergence
      eps=0.0
      elast=0.0
      do 240 i=1,n
      tnew=temp(1)
      eps=abs(tnew-told(i))
      eps=max(elast,eps)
      elast=eps
      told(i)=tnew
 240
      continue
      write(6,*) niter,eps
      if (niter.gt.nitmax) goto 1002
      if (eps.gt.err) goto 1001
1002
      continue
      goto 2100
С
c....transient calculation
С
2000 call trans
      goto 9001
C
c....print results steady state
С
2100 call print
С
С
 600 format(5x,'TIME',4x,'TCR-1',4x,'TCR-N',4x,'TWR-N',4x,'TOR-N',
             4x, 'THO-1', 4x, 'THO-N', 4x, 'TN3x3', 4x, 'TN5x5', 4x, 'TN7x7', /)
 700 format(5x,'TIME',3x,'Q-RtoH',3x,'Q-RtoF',3x,'Q-HtoF',3x,
              'Q-LOSS', 3x, 'T-RODS', 3x, 'T-SURF', 3x, 'T-HOUS', //)
 800 format(/,40x,'CALCULATION RBHT',
             //,3x,'INPUT DATA')
     +
                                                             = ', F8.3)
 801 format(3x, 'Rod Diameter
                                              (in)
                                                             = ', F8.3)
 802 format(3x, 'Rods Array Pitch
                                              (in)
                                                             = ', F8.3)
 803 format(3x, 'Distance Rods-to-Housing
                                              (in)
                                                             = ', F8.3)
                                              (kW)
 804 format(3x, 'Rod Average Power
                                                             = ', F8.3)
                                              ( - )
      format(3x, 'Rod Surface Emissivity
 805
                                                             = ', F8.3)
      format(3x,'Housing Surface Emissivity (-)
 806
      format(3x,'Bundle Covection H.T.C. (Btu/hr-F-ft2)= ',F8.3)
 807
                                                             = ', F8.3)
                                               (F)
 808 format(3x, 'Fluid Temperature
      format(3x,'Housing Heat Losses H.T.C. (Btu/hr-F-ft2)= ',F8.3)
 809
                                                            = ', F8.3)
                                              (F)
 810 format(3x, 'Enviroment Temperature
       format(//,3x,'RODS POWER FACTOR',///)
 811
                                                                = ', 3x,
       format(//,3x,'Bundle Array Size
                                                  (-)
 812
```

```
I2,'x',I2)
 813 format(3x, 'Housing Thickness
                                         (in)
                                                   = ', F8.3)
 903 format(20(1x, F7.2))
С
9001
      stop
      end
С
      C*
С
      subroutine trans
С
      implicit double precision (a-h,o-z)
С
      common/trans1/regsze(4), ql(1000), qr(1000), tr(1000, 100), th(100)
      common/trans2/ndreg,ndx,ndr,npc,np1,ntab,ntab2,ifrad,inuc
      common/trans3/dt,tmax,time,tft,s,tenv,hloss,qavg,htrs,trst,
     +
                    tdst, thst, tmin, fdcy, hgap
      common/trans4/tme(100), hft(100), tmep(100), pdcy(100), tmix(100)
      common/heat/q(1001), qrad(1001), qconv(1001), temp(1001),
     + emiss(1001), bs(1001), qold(1001)
     common/geoint/nrod,n,nl
      common /vf/ f(1001,1001), area(1001)
      common/printc/tpcv,nprt1,nprt2,imod
С
      dimension trf(1000,100),thf(100)
С
      data pi/3.141592654/
      data sig/5.67D-08/
С
     ndr=4*ndreg
     npc=ndr+1
     ndt1=0
     ndt2=0
      ic = (nl * *2.0+1) / 2.0
     iw=ic-(nl-1)/2.0
С
c....initial condition
С
     do 10 j=1,nrod
     qr(j) = 0.0
     do 10 i=1,npc
     tr(j,i)=trst
     if (ql(j).eq.0.0) tr(j,i)=tdst
 10 continue
     do 11 i=1,ndx+1
     th(i)=thst
 11 continue
     qr(n) = 0.0
C
 100
     call interp(tme,hft,time,htrs,ntab)
     if (tr(ic,npc).lt.tmin) htrs=5600.0
     call interp(tme,tmix,time,tft,ntab)
     call interp(tmep,pdcy,time,fdcy,ntab2)
     call trod
```

•-**--**---

```
C-8
```

```
call thous
С
      arf=0.0
      do 102 i=1, nrod
      tw=tr(i,npc)
      temp(i) = (sig*tw**4.0d0/qavg) **0.25d0
      qrf=qrf+htrs*area(i)*(tw-tft)
 102 continue
      temp(n) = (sig*th(np1)**4.0d0/qavg)**0.25d0
      qhf=htrs*area(n)*(th(ndx+1)-tft)
      qloss=hloss*area(n)*(th(1)-tenv)
С
      if(ifrad.eq.0) goto 210
С
c....turn off radiation after quench
     if(htrs.ge.5600.0) then
     grh=0.0
     do 141 i=1,n
     qr(i) = 0.0
 141 continue
     goto 210
      endif
С
     call rads
С
c....calculate new radiation fluxes grad
С
      do 201 i=1,n
      qr(i)=(temp(i)**4.0d0 - bs(i))*qavg*emiss(i)/(1.0d0-emiss(i))
 201
      continue
      grh=-gr(n) *area(n)
C
 210 time=time+dt
      ndt1=ndt1+1
      ndt2=ndt2+1
      if(ndt1.eq.nprt1) then
      write(6,*) time,htrs,tr(ic,npc)
      do 301 i=1,nrod
      do 302 j=1,npc
      trf(i,j) = (tr(i,j) - 273.14) * 9.0/5.0 + 32.0
 302 continue
 301 continue
      do 303 i=1,np1
      thf(i) = (th(i) - 273.14) * 9.0/5.0 + 32.0
 303 continue
C
c....3x3 Taverage
       tsum=0.0
       is3=ic-nl-1
      do 402 k=1,3
       do 401 i=is3,is3+2
       tsum=tsum+trf(i,npc)
 401 continue
       is3=is3+nl
```

```
402 continue
      t33=tsum/9.0
C
c....5x5 Taverage
      tsum=0.0
      is5=ic-2*nl-2
      do 404 \text{ k}=1.5
      do 403 i=is5,is5+4
      tsum=tsum+trf(i,npc)
 403 continue
      is5=is5+nl
 404 continue
      t55=tsum/25.0
С
c....7x7 Taverage
      tsum=0.0
      n7=0
      is7=ic-3*nl-3
      do 406 k=1,7
      do 405 i=is7,is7+6
      if (ql(i).eq.0.0) goto 405
      tsum=tsum+trf(i,npc)
      n7 = n7 + 1
 405 continue
      is7=is7+nl
 406 continue
      t77=tsum/n7
С
c....Hot-Rods Taverage
      tsum1=0.0
      tsum2=0.0
      ndum=0
      do 407 i=1, nrod
      if (ql(i).eq.0.0) then
      tsum2=tsum2+trf(i,npc)
      ndum=ndum+1
      goto 407
      endif
      tsum1=tsum1+trf(i,npc)
 407
      continue
      thot=tsum1/float(nrod-ndum)
      tcold=tsum2/float(ndum)
С
      write(12,601) time,trf(ic,1),trf(ic,npc),trf(22,npc),
     +
                          trf(1,npc),thf(1),thf(np1),t33,t55,t77
      write(13,701) time,qrh,qrf,qhf,qloss,thot,tcold,thf(npl)
      ndt1=0
      endif
      if(ndt2.eq.nprt2) then
      call print
      ndt2=0
      endif
С
      if(time.lt.tmax) goto 100
```

```
С
     return
С
601 format(10(1x,F8.2))
    format(8(1x, F9.0))
701
С
     end
С
                 C****
С
     subroutine rads
С
     implicit double precision (a-h,o-z)
С
     common /vf/ f(1001,1001),area(1001)
     common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
    + emiss(1001), bs(1001), qold(1001)
     common/geoint/nrod,n,nl
С
     dimension a(1001,1001),b(1001),c(1001)
С
     do 205 i=1,n
     do 204 j=1,n
     a(i,j) = -f(i,j) * (1.0d0-emiss(i))
204
     a(i,i) = a(i,i) + 1.0
    continue
205
     do 206 i=1,n
     b(i) = emiss(i) * temp(i) * 4.0d0
     continue
206
С
     call gauss(a,n,b,bs)
С
     return
     end
С
       C***
С
     subroutine conv
С
     implicit double precision (a-h,o-z)
С
     common /vf/ f(1001,1001),area(1001)
     common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
     + emiss(1001), bs(1001), qold(1001)
     common/heat1/tfad,tenvad,h,hout,hmin,qct,qrt,qt
     common/geoint/nrod,n,nl
     common/temp/told(1001)
     common/converg/alfa
С
     data sig/5.67D-08/
С
     qct=0.0
     qrt=0.0
     qt=0.0
```

```
С
      do 102 i=1,n
      sumbs=0.0d0
      do 101 j=1,n
      sumbs=sumbs+f(i,j)*bs(j)
     continue
 101
С
c....special case: radiation dominated cases
      if (h.lt.hmin) then
      eb=q(i)*(1.0d0-emiss(i))/emiss(i) + bs(i)
      temp(i) = eb^{**0.25d0}
      goto 102
      endif
С
      temp(i) = tfad + (q(i) - bs(i) + sumbs)/h
     continue
 102
      c1=(h*tfad+hout*tout)/(h+hout)
      c2=1.0d0/(h+hout)
      temp(n) = c1 + c2 * (sumbs - bs(n))
C
c....underrelaxation
      do 103 i=1,n
      temp(i)=(1.0d0-alfa)*told(i) + alfa*temp(i)
 103 continue
С
      do 105 i=1,n
      gconv(i)=h*(temp(i)-tfad)
      qrad(i)=q(i)-qconv(i)
      grt=grt+grad(i)*area(i)
      qt=qt+q(i) *area(i)
      gct=gct+gconv(i) *area(i)
     continue
 105
      if (h.lt.hmin) temp(n)=tenvad+qt/(hout*area(n))
С
      return
      end
С
       C***
С
       subroutine gauss(a,na,b,c)
С
       implicit double precision (a-h,o-z)
       dimension a(1001,1001),b(1001),c(1001)
С
       k=1
   20 \text{ tmp} = 1.d0/a(k,k)
       j=k
       a(k,j) = a(k,j) * tmp
   30
       if (j.eq.na) goto 40
       j=j+1
       goto 30
    40 \quad b(k) = b(k) \star tmp
       j=k+1
    50 tmp = a(j,k)
```

```
1=k
      a(j,1) = a(j,1)-a(k,1)*tmp
  60
      if (l.eq.na) goto 70
      1 = 1 + 1
      goto 60
  70 b(j) = b(j) - b(k) * tmp
      if (j.eq.na) goto 80
      j=j+1
      goto 50
  80 if (k.eq.na-1) goto 90
      k=k+1
      goto 20
  90 continue
      c(na) = b(na)/a(na,na)
      i=1
     sum = 0.0
 120
      j=na-i+1
 100 sum = sum+a(na-i,j)*c(j)
      if (j.eq.na) goto 110
      j=j+1
      goto 100
 110 c(na-i) = b(na-i)-sum
      if (i.eq.na-1) goto 130
      i=i+1
      goto 120
 130 continue
С
      return
      end
С
                    c*
С
      subroutine trod
С
      implicit double precision (a-h,o-z)
С
      common/trans1/regsze(4),ql(1000),qr(1000),tr(1000,100),th(100)
      common/trans2/ndreg,ndx,ndr,npc,np1,ntab,ntab2,ifrad,inuc
      common/trans3/dt,tmax,time,tft,s,tenv,hloss,qavg,htrs,trst,
                    tdst, thst, tmin, fdcy, hgap
     +
      common/trans4/tme(100), hft(100), tmep(100), pdcy(100), tmix(100)
      common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
                  emiss(1001), bs(1001), qold(1001)
      common/geoint/nrod,n,nl
     common/geo/vrod(1000)
С
      dimension cd(100),cp(100),t(100),qh(100),ddr(100)
С
      data pi/3.141592654/
С
      do 201 j=1,nrod
С
      do 10 i=1,npc
      t(i) = tr(j, i)
```

```
qh(i) = 0.0
  10 continue
      i1=ndreg+2
      i2=ndreg*2
     do 20 i=i1,i2
      qh(i)=ql(j)*fdcy/float(ndreg-1)
  20 continue
      qvnuc=0.0
      if (inuc.ne.0) qvnuc=fdcy*ql(j)/(vrod(1)+vrod(2)+vrod(3))
C
c....calculation properties
С
      ireg=1
      jr=1
      do 50 i=1,ndr
      ddr(i)=regsze(ireg)/float(ndreg)
      tn=t(i)
      call prop(tn,ireg,cnd,cpm,inuc)
     if (ql(j).eq.0.0) call prop(tn,4,cnd,cpm,inuc)
     if (i.eq.(ndreg*3+1).and.hgap.ne.0)
           cnd=cnd*hgap*ddr(i)/(cnd+hgap*ddr(i))
     +
     cd(i) = cnd
     cp(i)=cpm
      if (jr.eq.ndreg) then
      jr=0
      ireg=ireg+1
      endif
      jr=jr+1
  50 continue
С
c....calculation conduction in rod
c....centerline, inner regions, clad surface
С
      r=0.0
                            .
С
      dr = ddr(1)
      vol=0.25*pi*dr**2.0
      a=cd(1)*0.5*(t(2)-t(1))
      c=dt/(cp(1)*vol)
      if (inuc.ne.0) qh(1)=qvnuc*vol
      t(1) = t(1) + (qh(1) + 2.0*pi*a)*c
С
      r=ddr(1)
      do 101 i=2,ndr
      drml=ddr(i-1)
      dr=ddr(i)
      vol=pi*(r*(drm1+dr) + (dr**2.0-drm1**2.0)/4.0)
      vol2=pi*(r*drml-(drm1**2.0)/4.0)
      if (inuc.ne.0) then
      qh(i)=qvnuc*vol
      if (i.gt.ndreg*3) qh(i)=qvnuc*vol2
      if (i.gt.ndreg*3+1) qh(i)=0.0
      endif
```

-

```
a=cd(i)*(r+dr/2.0)*(t(i+1)-t(i))/dr
     b=cd(i-1)*(r-drm1/2.0)*(t(i)-t(i-1))/drm1
     c=dt/(cp(i)*vol)
     t(i) = t(i) + (qh(i) + 2.0*pi*(a-b))*c
     r=r+dr
101 continue
С
     vol=pi*(r*dr - 0.25*dr**2.0)
     a=-cd(ndr)*(r-dr/2.0)*(t(npc)-t(npc-1))/dr
     b=r^{*}(qr(j) + htrs^{*}(t(npc)-tft))
     c=dt/(cp(ndr)*vol)
      t(npc)=t(npc)+(qh(npc)+2.0*pi*(a-b))*c
С
      do 151 i=1,npc
      tr(j,i)=t(i)
 151 continue
С
 201
     continue
С
      return
      end
С
           c*
С
      subroutine thous
С
      implicit double precision (a-h,o-z)
С
      common/trans1/regsze(4),ql(1000),qr(1000),tr(1000,100),th(100)
      common/trans2/ndreg,ndx,ndr,npc,np1,ntab,ntab2,ifrad,inuc
      common/trans3/dt,tmax,time,tft,s,tenv,hloss,qavg,htrs,trst,
                    tdst,thst,tmin,fdcy,hgap
     +
      common/trans4/tme(100), hft(100), tmep(100), pdcy(100), tmix(100)
      common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
     + emiss(1001), bs(1001), qold(1001)
      common/geoint/nrod,n,nl
С
      dimension cd(100),cp(100),t(100)
С
      data pi/3.141592654/
С
      dx=s/float(ndx)
      np1=ndx+1
С
c....calculation properties
С
      ireg=4
      do 50 i=1,ndx
      tt=th(i)
      call prop(tt, ireg, cnd, cpm, inuc)
      cd(i)=cnd
      cp(i)=cpm
     continue
  50
С
```

```
c....calculation conduction in the housing wall
C
     a=2.0*cd(1)*(th(2)-th(1))/dx
     b=hloss*(th(1)-tenv)
     c=dt/(cp(1)*dx)
     th(1) = th(1) + (a-b) *c
С
     do 101 i=2,ndx
     a=2.0*cd(i)*(th(i+1)-th(i))/dx
     b=2.0*cd(i-1)*(th(i)-th(i-1))/dx
     c=dt/(cp(i)*dx)
     th(i)=th(i)+(a-b)*c
     r=r+dr
 101 continue
С
     a=-2.0*cd(ndx)*(th(np1)-th(np1-1))/dx
      b=htrs*(th(np1)-tft)
      c=dt/(cp(ndx)*dx)
      th(np1)=th(np1)+(a-b-qr(n))*c
С
      return
      end
С
            c*
С
      subroutine prop(tk, ireg, cnd, cpm, inuc)
С
      implicit double precision (a-h,o-z)
С
      t=tk-273.14
С
c....nuclear rod
С
      if (inuc.eq.0) goto 100
     if (ireg.eq.4) goto 110
С
c....uranium dioxide
     rho=9649.0
      cnd=2.45
      cpm=333.0*rho
      return
С
c....zircalloy
 110 rho=6560.0
      a=1.461e-2
      b=12.092
      cnd=a*t+b
      cpm=347.0*rho
      return
С
c....region 1 and 3 - BN
С
 100 if (ireg.ne.3.and.ireg.ne.1) goto 101
      rho=1910.0
```

۰ **ا**

```
a=-0.061356
     b=122.734
      cnd=a*t + b
      cpm=1500*rho
     return
С
c....region 2 - Heater
 101 if (ireg.ne.2) goto 102
     rho=8470.0
     a=4.7742e-10
     b=-1.1151e-6
     c=5.2571e-4
     d=4.0755e-1
     cpm=1000.0*(a*t**3.0+b*t**2.0+c*t+d)*rho
     a=2.8263e-2
     b=17.583
     cnd=a*t+b
     return
С
c....region 4 - Clad - Inconel 600
C
 102 rho=8270.0
      a=4.7427e-4
     b=4.1430e-1
     cpm=1000.0*(a*t+b)*rho
     a=1.6972e-2
     b=14.599
     cnd=a*t+b
      cnd=15.0
      return
С
      end
С
С
                      ****
C*****
С
      subroutine print
С
      implicit double precision (a-h,o-z)
С
      common/heat/q(1001),qrad(1001),qconv(1001),temp(1001),
     + emiss(1001),bs(1001),qold(1001)
      common/trans3/dt,tmax,time,tft,s,tenv,hloss,qavg,htrs,trst,
                    tdst, thst, tmin, fdcy, hgap
     +
      common/trans4/tme(100), hft(100), tmep(100), pdcy(100), tmix(100)
      common/printc/tpcv,nprt1,nprt2,imod
      common/geoint/nrod,n,nl
С
      data sig/5.67D-08/
С
c....print results
      if (imod.eq.0) write(11,900)
      if (imod.eq.1) write(11,904) time
```

```
do 250 i=1,n
     temp(i) = temp(i) / (sig/qavg) **0.25d0
С
c....conversion to british units
     temp(i) = (temp(i) - 273.14) * 9.0/5.0 + 32.0
С
250
     continue
С
     k1=1
     k2=k1+n1-1
     do 600 i=1,nl
     write(11,903) (temp(k),k=k1,k2)
     k1=k1+n1
     k2=k2+n1
 600 continue
     write(11,901) temp(n)
     tpcv=(tpcv-273.14)*9.0/5.0 + 32.0
     if (imod.eq.0) write(11,902) tpcv
С
     return
С
    format(///,3x,'RESULTS STEADY STATE',
 900
           //,3x,'RODS SURFACE TEMPERATURE (F)',//)
    +
    904
           /, 3x, 'RESULTS AT TIME (sec) = ', F7.2,
    +
            //,3x,'RODS SURFACE TEMPERATURE (F)',//)
 901 format(/,3x,'HOUSING TEMPERATURE (INSIDE WALL) (F) = ',F7.2)
 902 format(//,3x,'Rod Surf. Temp. for infinite array at SS (F) = ',
           F7.2)
 903 format(20(1x,F7.2))
С
     end
С
С
С
     subroutine vufac(nmx,dd,p,drh)
С
     the subroutine is based
С
            12/06/78 D.R.EVANS
С
     VIIFAC
     and modified by C. Frepoli 3/10/98
С
     the symmentry logic (MIRRIM, ISWAP etc.) is deleted
С
С
      implicit double precision (a-h,o-z)
С
      DIMENSION AREA(226), R0(225)
С
     dimension r0(1000)
      COMMON /VF/ F(1001,1001), area(1001)
      COMMON /RI/ RIJ(1001,1001)
С
      data nf, npt, n, na/1001, 200, 37, 37/
      data pi/3.14159265358979323846/
```

```
С
```

```
xlh=p*float(nmx-1)+dd+2.0*drh
С
      nlim=nmx
      n2=nmx*nmx +1
      nl=nmx
      n1 = 8
      nl1=nmx
      ahs=x1h*4.0
С
      NP=N2-1
      TWOPI=2.*PI
      DO 1700 I=1,NP
      r0(i) = dd/2.0
      AREA(I) = TWOPI*R0(I)
1700 CONTINUE
      AREA(N2) = ahs
С
      CALL VFAC(F, AREA, AEA, SCALFC, BB, R0, IROW, JCOL, MIRRIM, P, PI, N,
     1NF, NLIM, N2, NA, NSYM, NL, NL1, NPT)
С
       do 998 i=1,n2
       do 997 j=1,n2
       write(9,*) i,j,f(i,j)
  997
       continue
       write(9,*) area(i)
  998 continue
С
      return
      END
С
C*****
                       12/12/78 D.R.EVANS
               FIJ
       SUBROUTINE FIJ(F,R,P,PI,M,NPT,L,SOURCE,IX,IY,L1,L2,IRC,IA)
      implicit double precision (a-h,o-z)
       DIMENSION F(M,1), R(1), XA(2,100), YA(2,100), RA(2,100)
      COMMON /RI/ RIJ(1001,1001)
       INTEGER SOURCE, TARGET, UPPER (14), LOWER (14)
       LOGICAL SKIP
       DATA XA(1,1),YA(1,1)/2*0.D0/
       DATA SKIP/.FALSE./
       IF(SKIP) GO TO 10
       SKIP=.TRUE.
       RNPT=1.D0/NPT
       DELTA=2.D0*PI*RNPT
       RDELT=1.D0/DELTA
       PIO2=.5D0*PI
   10 CONTINUE
        IF(IRC-2) 12,16,20
   12 CONTINUE
С
          ROWS
        IF(IA.EQ.2) GO TO 14
          ADJACENT ROW
С
        IXY=IX
        K2 = L
        K3=1
```

GO TO 24 14 CONTINUE ROWS BEYOND ADJACENT ROW С IXY=IY IYX=IX I3 = 1K2 = 0K3=LGO TO 24 16 CONTINUE HIGHER-NUMBERED COLUMNS С IF(IA.EQ.2) GO TO 18 ADJACENT COLUMN С K2 = 1GO TO 22 18 CONTINUE COLUMNS BEYOND ADJACENT COLUMN С TXY = IXIYX=IY T3=LK2 = 0K3=1 GO TO 24 20 CONTINUE LOWER-NUMBERED COLUMNS С K2 = -122 CONTINUE IXY=IY K3=L24 CONTINUE COMPUTE SHADOWING ROD NUMBERS С KMI = L2 - IXYIF(KMI.LT.0) KMI=L1-IXY KMIABS=IABS(KMI) TARGET=SOURCE+K2+K3*KMI I2=K3*ISIGN(1,KMI) IF(IA.EQ.2) GO TO 30 ADJACENT ROW AND COLUMNS С K4=KMIABS GO TO 40 30 CONTINUE ROWS AND COLUMNS BEYOND ADJACENT С K4=KMIABS-1 UPPER(1) = 0LOWER(KMIABS)=0 K5=0 40 CONTINUE DO 70 I=1,K4 LOWER(I)=SOURCE+I2*I IF(IA.EQ.2) GO TO 60 UPPER(I)=TARGET-I2*(KMIABS-I+1) GO TO 70 CONTINUE 60 UPPER(I+1) =LOWER(I) +I3

		IF(IYX.EQ.L) UPPER(I+1)=0
	70	CONTINUE
		K=KMIABS+1
С		SET RADII AND COORDINATES OF SOURCE, TARGET, AND ALL POTENTIAL
С		SHADOWING RODS
		R1=R(SOURCE)
		RA(1,1)=R1
		RA(2, K) = R(TARGET)
С		XA(2,1)=0.D0
		XA(2,1)=0.E0
		YA(2, 1) = P
		DO 230 I=1, KMIABS
		FI=I
		PTFI=P*FI
		IP1=I+1
		XA(1, IP1) = PTFI
С		YA(1, IP1) = 0.D0
-		YA(1, IP1) = 0.E0
		XA(2, IP1) = PTFI
		YA(2, IP1) = P
		TF(LOWER(I), EO, 0) GO TO 200
		RA(1, TP1) = R(LOWER(I))
		GO TO 210
	200	CONTINUE
C	200	BA(1, TP1) = 0, D0
C		RA(1, TP1) = 0.E0
	210	CONTINUE
		IF(UPPER(I).EQ.0) GO TO 220
		RA(2,I) = R(UPPER(I))
		GO TO 230
	220	CONTINUE
С		RA(2, I) = 0.D0
		RA(2,I)=0.E0
	230	CONTINUE
		DO 700 K1=L1,L2
		KMI=K1-IXY ·
		KMIABS=IABS(KMI)
		TARGET=SOURCE+K2+K3*KMI
		K=KMIABS+1
		IF(IA.EQ.2) GO TO 235
		Y1=YA(2,K)
		R2=RA(2, K)
		K4=KMIABS
		GO TO 238
	235	
		$IF(R(SOURCE) \cdot LE \cdot R(LOWER(I)) \cdot AND$
~	*	R(LOWER(KMIABS-I)).GE.R(TARGEI)) GO IO 700
С		Y1=0.D0
		$\frac{\pi}{2} - \pi \sqrt{1} \frac{\pi}{2} \frac{\pi}{2}$
	220	
	230	
		$A_1 - A_2 \langle 2 \rangle \langle N \rangle$

С	DIAG=FKMI**2+1.D0
	DIAG=FKMI**2+1.E0
С	RR12=1,D0/(P*DSORT(DIAG))
0	RR12=1.EO/(P*SORT(DIAG))
	$TEMP = P \times SORT((FLOAT(KMIABS)) \times 2+1.)$
	$PT_{1}(SOURCE TARGET) = TEMP - 0.5* (R(SOURCE) + R(TARGET))$
C	$T_{1-DDET} = T_{1-DDEC} + (R_{1+R_2}) + RR_{12} - DATAN_2 (1, D), FKMI)$
C	$II = RDELI (FI = DARCOS((RI)R2) + REI2) = \Delta TAN2(I = F(RI))$
	$\Pi = RDELT^{*}(PI = ACOS((RI+R2) RRI2) ATAAV2(I:BO, TAAI))$
240	CONTINUE
С	COMPUTE VIEW FACTOR
	VIEWFC=0.
	DO 500 IPT=I1,NPT
	XIPT = IPT - 1
	THETA = DELTA \star XIPT
С	XV=-R1*DCOS(THETA)
	XV=-R1* COS(THETA)
С	YV=R1 *DSIN (THETA)
	YV=R1* SIN(THETA)
С	DETERMINE IF (XV, YV) CAN SEE THE TARGET ROD
	IF(XV*X1+YV*Y1.LE.R1*(R1-R2)) GO TO 500
C	TS IS THE TANGENT TO THE SOURCE ROD AT (XV, YV)
C	TS=DATAN2(-XV, YV)
0	TS = ATAN2(-XV, YV)
C	COMPLITE TANGENTS TO TARGET ROD
č	T1 IS THE LOWER TANGENT TO THE TARGET ROD
C	T2 IS THE UPPER TANGENT TO THE TARGET ROD
Ç	X1MXP=X1 - XV
	V1MYP=Y1-YV
	RSO = X1MXP * *2 + Y1MYP * *2
C	$S = DS \cap RT (RS \cap R^2 * * 2)$
C	S = DSQR1 (RSQ R2 2) $S = COPT (RSQ R2 2)$
C	S = SQRT(RSQ RZ Z)
C	
	CUDGU-C*DDCU KUSQ-1.EU/KSQ
	D D D C - D T D C O
	B=RIURSQ*YIMIP
	C=SORSQ*YIMYP
	D=RIORSQ*XIMXP
	XTAMXP=S*(A-B)
	YTAMYP=S*(C+D)
	XTBMXP=S*(A+B)
	YTBMYP=S*(C-D)
С	T2=DATAN2(YTAMYP, XTAMXP)
	T2= ATAN2 (YTAMYP, XTAMXP)
С	T1=DATAN2(YTBMYP,XTBMXP)
	T1= ATAN2(YTBMYP,XTBMXP)
С	COMPUTE TANGENTS THROUGH (XV,YV) TO SHADOWING RODS
С	FIND MINIMUM UPPER SHADOWING AND MAXIMUM LOWER SHADOWING
	DO 300 J=1,2
	DO 300 I=1,K4
	RB=RA(J, I+2-J)
	IF(RB.EO.0.) GO TO 300
	XB=XA(J, I+2-J)

		YB=YA(J,I+2-J)
		X1MXP=XB-XV
		Y1MYP=YB-YV
		RSQ=X1MXP**2+Y1MYP**2
С		S=DSQRT(RSQ-RB**2)
		S = SORT(RSQ-RB**2)
		IF(S.EO.0.) GO TO 260
C		RRSO=1.D0/RSO
Ŭ		RRSO=1.EO/RSO
		SORSO=S*RRSO
		B10BS0=RB*BRS0
		A = SORSO * X1MXP
		B = B 1 0 R S 0 * Y 1 MYP
		C = SORSO * V1MYP
		D-PIORSO*X1MXP
		TE(TEO.2) CO TO 250
C		HDDER TANGENTS TO LOWER SHADOWING RODS
C		$\frac{OFFER}{\Delta = C^{*}(\lambda - B)}$
		$\frac{1}{2} \frac{1}{2} \frac{1}$
		$IIAMIP = S (C + D)$ $m_{A} = m_{A} M X D (V - M X D V - M X D)$
-		$\frac{1}{1} = \frac{1}{1} $
С		IA = AIANZ (IIAMIF, AIAMAI)
-		$\prod = DMAXI(IA, II)$
С		$T_{\perp} = AMAXI (TA, TI)$
	250	
~	250	LOWER MANGENES TO URDER SHADOWING RODS
C		LOWER TANGENIS TO OPPER SHADOWING RODS
		$XTBMXP=5^{(A+B)}$
		$Y''_{BMYP} = S^{(U-D)}$
		TB=DATAN2 (YTBMYP, XTBMXP)
С		TB = ATAN2 (YTBMYP, XTBMXP)
		T2=DMINI(TB, T2)
С		$T_2 = AMINI(TB, T_2)$
		GO TO 300
	260	CONTINUE
		$\frac{1F(J.EQ.2)}{D} = \frac{1}{2} \frac$
		$T_1 = DMAXI(PIO2, TI)$
С		$T_{1} = AMAXI(P_{1}O_{2}, T_{1})$
		GO TO 300
	270	CONTINUE
		T2 = DMINI(0, D0, T2)
С		T2 = AMINI(0.E0, T2)
	300	CONTINUE
		IF (TI .GE. TZ) GO TO 490
		IF (TI .LT. TS .OR. II .GE. IS + FI) GO TO 520
		PHII = TI - TS
	200	GO TO 350
	320	CONTINUE
		PHII = U.
		1F (TI .GE. TS) PHIL = PL
	350	
		IF (TZ .LT. TS .OK. TZ .GE. TS $+$ PI) GO TO 370
		PH12 = T2 - TS
		GO TO 380
	370	CONTINUE

```
PHI2 = 0.
       IF (T2 .GE. TS) PHI2 = PI
  380 CONTINUE
       CONFIG=.5D0*(DCOS(PHI1)-DCOS(PHI2))
С
       CONFIG=.5E0*( COS(PHI1) - COS(PHI2))
       VIEWFC=VIEWFC+CONFIG
       GO TO 500
  490 CONTINUE
       IF (VIEWFC.NE.0.) GO TO 510
  500 CONTINUE
  510 CONTINUE
       IF(IA.EQ.1) GO TO 550
       IF(K5.EQ.1) GO TO 540
       FSAVE=VIEWFC
       K5 = K5 + 1
       DO 530 I=1,K4
       IF(IYX.EQ.1) GO TO 520
       UPPER(I+1) = LOWER(I) - I3
       RA(2, I+1) = R(UPPER(I+1))
       GO TO 530
  520 CONTINUE
С
       RA(2, I+1) = 0.D0
       RA(2, I+1) = 0.E0
  530 CONTINUE
       GO TO 240
  540 CONTINUE
       VIEWFC=VIEWFC+FSAVE
       K5=0
       DO 545 I=1,K4
       IF(IYX.EQ.L) GO TO 542
       UPPER(I+1) = LOWER(I) + I3
       RA(2,I+1)=R(UPPER(I+1))
       GO TO 545
  542 CONTINUE
С
       RA(2, I+1) = 0.D0
       RA(2, I+1) = 0.E0
  545 CONTINUE
  550 CONTINUE
       F (SOURCE, TARGET) = VIEWFC*RNPT
  700 CONTINUE
       RETURN
        END
С
C*****
               PATHLEN 12/14/78 D.R.EVANS
       SUBROUTINE PATHLEN(R, DELTAX, P, N2, L)
       implicit double precision (a-h,o-z)
       DIMENSION F(15), R(1)
       COMMON /RI/ RIJ(1001,1001)
       INTEGER SOURCE
       REAL L1, L2, L3, L4
       DATA F/0.5,0.086740,0.013966,0.001517,0.000424,0.000172,
              0.000088,0.000048,0.000034,6*0./
      1
          COMPUTE PATH LENGTHS FROM RODS TO CANISTER
С
       DO 100 IX=1,L
```

. .

```
DO 100 IY=1,L
      SOURCE=IY+(IX-1)*L
      HALFR1=0.5*R(SOURCE)
С
         PATH OND
      L1=P*FLOAT(IX-1)+DELTAX-HALFR1
С
         PATH TWO
      L2=P*FLOAT(L-IX)+DELTAX-HALFR1
С
         PATH THREE
      L3=P*FLOAT(IY-1)+DELTAX-HALFR1
С
         PATH FOUR
      L4=P*FLOAT(L-IY)+DELTAX-HALFR1
         PATH LENGTH IS THE VIEW-FACTOR-WEIGHTED MEAN OF FOUR
С
С
         CONTRIBUTIONS
      RIJ(SOURCE, N2) = (L1 * F(IX))
                      +L2*F(L-IX+1)
     1
     2
                      +L3 *F(IY)
     3
                      +L4*F(L-IY+1)) /
     4
                      (F(IX))
     5
                      +F(L-IX+1)
     6
                      +F(IY)
     7
                      +F(L-IY+1))
100
      CONTINUE
      RETURN
      END
C
C*****
               STRING 12/12/78 D.R.EVANS
       SUBROUTINE STRING(F, R, P, PI, M, L, SOURCE, IX, IY)
      implicit double precision (a-h,o-z)
       DIMENSION F(M,1),R(1)
      COMMON /RI/ RIJ(1001,1001)
       DIMENSION TIN(1000,4), THET(1000,4), TEX(1000,2), ALPH(1000,2)
       INTEGER SOURCE, TARGET
       LOGICAL SKIP
       DATA SKIP/.FALSE./, PP/0./
       IF(SKIP) GO TO 10 .
       SKIP=.TRUE.
       RPI=1.D0/PI
С
       RPI=1.E0/PI
С
       PIO2=.5D0*PI
       PIO2=.5E0*PI
С
       PIO4=.5D0*PIO2
       PIO4=.5E0*PIO2
   10 CONTINUE
       IF(PP.EO.P) GO TO 20
       PP=P
       PSO=P**2
С
       R13SQ=2.D0*PSQ
       R13SQ=2.E0*PSQ
С
       RR13=1.D0/DSQRT(R13SQ)
       RR13=1.E0/ SQRT(R13SQ)
С
       RP=1.D0/P
       RP=1.E0/P
   20 CONTINUE
         COMPUTE TANGENT LENGTHS AND ANGLES FOR CROSSED STRING METHOD
С
```

```
IF(IX.GT.1.OR.IY.EQ.L) GO TO 145
       J1=SOURCE
       J2 = SOURCE + L - 2
       DO 140 I=J1,J2
       R1=R(I)
       R2=R(I+1)
       R3 = R(I + 1 + L)
       R4=R(I+L)
       R2MR3=R2-R3
       R4MR3=R4-R3
С
       TIN13=DSQRT(R13SQ-(R1+R3)**2)
       TIN13 = SORT(R13SO - (R1 + R3) * *2)
С
       TIN23=DSQRT(PSQ-(R2+R3)**2)
       TIN23 = SQRT(PSQ-(R2+R3)**2)
С
       TIN34=DSQRT(PSQ-(R3+R4)**2)
       TIN34 = SQRT(PSQ-(R3+R4) * *2)
С
       TIN24=DSQRT(R13SQ-(R2+R4)**2)
       TIN24 = SQRT(R13SQ-(R2+R4)**2)
       TIN(I,2) = TIN13
       TIN(I+1,3) = TIN23
       TIN(I+L,1) = TIN34
       TIN(I+1, 4) = TIN24
С
       THET(I,2)=DARSIN(TIN13*RR13)
       THET(I, 2) = ASIN(TIN13 * RR13)
С
       THET(I+1,3)=DARSIN(TIN23*RP)
       THET (I+1,3) = ASIN(TIN23*RP)
С
       THET (I+L, 1) = DARSIN(TIN34 * RP)
       THET(I+L, 1) = ASIN(TIN34*RP)
С
       THET (I+1, 4) = DARSIN (TIN24 * RR13)
       THET (I+1, 4) = ASIN(TIN24 * RR13)
       IF(R2MR3.EQ.0.) GO TO 100
С
       ALPH(I+1,2) = DARCOS(R2MR3*RP)
       ALPH(I+1,2) = ACOS(R2MR3*RP)
С
       TEX(I+1,2) = DSQRT(PSQ-R2MR3**2)
       TEX(I+1,2) = SQRT(PSQ-R2MR3**2)
       GO TO 105
  100 CONTINUE
       ALPH(I+1, 2) = PIO2
       TEX(I+1,2) = P
  105
       CONTINUE
       IF(R4MR3.EQ.0.) GO TO 110
С
       ALPH(I+L,1) = DARCOS(R4MR3*RP)
       ALPH(I+L, 1) = ACOS(R4MR3*RP)
С
       TEX(I+L, 1) = DSQRT(PSQ-R4MR3**2)
       TEX(I+L,1) = SQRT(PSQ-R4MR3**2)
       GO TO 115
  110
       CONTINUE
       ALPH(I+L,1) = PIO2
       TEX(I+L,1) = P
  115
       CONTINUE
        IF(I.GT.J1) GO TO 130
       R1MR4=R1-R4
С
       TIN14=DSQRT(PSQ-(R1+R4)**2)
       TIN14 = SQRT(PSQ-(R1+R4)**2)
```

- **- -**

		TIN(I,3)=TIN14
С		THET(I,3)=DARSIN(TIN14*RP)
		THET(I,3) = ASIN(TIN14*RP)
C		$\frac{1}{1} \left(\text{RIMR4.EQ.U.} \right) = \frac{1}{1} \frac{1}{$
C		$ALPH(1,2) = DARCOS(RIMR4^RP)$
C		$\frac{\text{RDPH}(1,2) - \text{RCOS}(\text{RTM}(4, \text{RT}))}{\text{RTS}(1,2) - \text{RCOS}(\text{RTM}(4, \text{RT}))}$
C		TEX(1,2) = SORT(PSO-R1MR4*2)
		GO TO 125
	120	CONTINUE
		ALPH(I,2) = PIO2
		TEX(1,2)=P
	125	CONTINUE
	130	CONTINUE
		IF(IY.GT.1) GO TO 140
~		R1MR2=R1-R2
С		$TIN12=DSQRT(PSQ-(R1+R2)^{2})$
		$TINIZ = SQRT(PSQ+(RI+RZ)^{}Z)$
C		$\frac{11N(1,1)-11N12}{\pi H E \pi (1,1)-n A R C T N (\pi T N 12*RP)}$
C		THET(1,1) = DARSIN(TIN12 RF)
		IF(R1MR2.EO.0.) GO TO 135
С		ALPH(I, 1) = DARCOS(R1MR2 * RP)
		ALPH(I,1) = ACOS(R1MR2*RP)
С		TEX(I,1) = DSQRT(PSQ-R1MR2**2)
		TEX(I,1) = SQRT(PSQ-R1MR2**2)
		GO TO 140
	135	CONTINUE
		ALPH(I,I) = PIO2
	140	TEX(1, 1) = P
	140	CONTINUE
С	140	COMPUTE ADJACENT AND DIAGONAL ROD VIEW FACTORS
C		USING CROSSED STRING METHOD
С		COMPUTE ADJACENT ROD VIEW FACTORS
		R1=R(SOURCE)
		DO 150 I=1,2
		IF(IX.EQ.L.AND.I.EQ.1) GO TO 150
		IF(IY.EQ.L.AND.I.EQ.2) GO TO 150
		$m_{\lambda} p_{\alpha} p_{\beta} m_{\beta} = \alpha_{\alpha} (m_{\lambda} p_{\alpha} p_{\beta} + 1)$
		TARGET=SOURCE+L**(I-1)
		TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE_2**I-1)+R1*ALPH(SOURCE_I)
	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE, 2**I-1)+R1*ALPH(SOURCE, I) +R2*(PI-ALPH(SOURCE, I))-(R1+R2)*THET(SOURCE, 2**I-1)
	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I)
С	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1
С	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1
С	*	<pre>TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2)</pre>
С	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150
С	*	<pre>TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150 F(SOURCE,SOURCE+L)=F(SOURCE,TARGET) PLAT(SOURCE,COURCE,COURCE,COURCE,COURCE)</pre>
С	*	<pre>TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150 F(SOURCE,SOURCE+L)=F(SOURCE,TARGET) RIJ(SOURCE,SOURCE+L)=RIJ(SOURCE,TARGET) CO TO 152</pre>
С	*	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150 F(SOURCE,SOURCE+L)=F(SOURCE,TARGET) RIJ(SOURCE,SOURCE+L)=RIJ(SOURCE,TARGET) GO TO 152 CONTINUE
С	* 150	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150 F(SOURCE,SOURCE+L)=F(SOURCE,TARGET) RIJ(SOURCE,SOURCE+L)=RIJ(SOURCE,TARGET) GO TO 152 CONTINUE CONTINUE
С	* 150 152	TARGET=SOURCE+L**(I-1) R2=R(TARGET) CROLEN=TIN(SOURCE,2**I-1)+R1*ALPH(SOURCE,I) +R2*(PI-ALPH(SOURCE,I))-(R1+R2)*THET(SOURCE,2**I-1) CROMUN=CROLEN-TEX(SOURCE,I) F(SOURCE,TARGET)=.5D0*RPI*CROMUN/R1 F(SOURCE,TARGET)=.5E0*RPI*CROMUN/R1 RIJ(SOURCE,TARGET)=P-0.5*(R1+R2) IF(IY.NE.IX) GO TO 150 F(SOURCE,SOURCE+L)=F(SOURCE,TARGET) RIJ(SOURCE,SOURCE+L)=RIJ(SOURCE,TARGET) GO TO 152 CONTINUE CONTINUE IF(IY,EO,L) GO TO 190

COMPUTE DIAGONAL ROD VIEW FACTORS С DO 185 I=1.2 IF(IX.EO.1.AND.I.EQ.1) GO TO 185 IF(IX.EO.L.AND.I.EQ.2) GO TO 185 MORP1 = (-1) * * IM1ORZ=I-2TARGET=SOURCE+L+MORP1 R2=R(SOURCE+MORP1) R3=R(TARGET)R4=R(SOURCE+L)TIN12=TIN (SOURCE+M10RZ, 1) THET12=THET (SOURCE+M1ORZ, 1) TIN13=TIN(SOURCE, 2**(3-I))THET13=THET(SOURCE, 2 * * (3 - I)) TIN14=TIN(SOURCE, 3) THET14=THET(SOURCE, 3) TIN23=TIN(SOURCE+MORP1,3) THET23=THET (SOURCE+MORP1, 3) TTN34 = TTN(SOURCE + L + M1ORZ, 1)THET34=THET(SOURCE+L+M1ORZ, 1) PST2=PIO2-THET12-THET23 PSI4=PIO2-THET14-THET34 IF(PSI2.GT.0.) GO TO 155 R1MR3=R1-R3 С ALPH31=DARCOS(R1MR3*RR13) ALPH31= ACOS(R1MR3*RR13) PSI312=ALPH31-THET13 PSI132=PI-ALPH31-THET13 TIN12=DSQRT(R13SQ-R1MR3**2) С TIN12= SQRT(R13SQ-R1MR3**2) С TIN23=0.D0 TIN23=0.E0 С PSI2=0.D0 PSI2=0.E0 GO TO 160 155 CONTINUE PSI312=PIO4+THET12-THET13 PSI132=PIO4+THET23-THET13 160 CONTINUE IF(PSI4.GT.0.) GO TO 175 IF(PSI2.LE.0.) GO TO 165 R1MR3=R1-R3 С ALPH31=DARCOS(R1MR3*RR13) ALPH31= ACOS(R1MR3*RR13) PSI314=ALPH31-THET13 PSI134=PI-ALPH31-THET13 TIN14=DSQRT(R13SQ-R1MR3**2) С TIN14= SQRT(R13SQ-R1MR3**2) GO TO 170 165 CONTINUE PSI314=PSI312 PSI134=PSI132 TIN14=TIN12 170 CONTINUE

С		TIN34=0.D0
		TIN34=0.E0
С		PSI4=0.D0
		PSI4=0.E0
		GO TO 180
	175	CONTINUE
		PSI314=PI04+THET14-THET13
		PST134 = PTO4 + THET34 - THET13
	180	CONTINUE
С	100	CROLEN=2.D0*TIN13+R1*(PSI312+PSI314)+R3*(PSI132+PSI134) CROLEN=2.E0*TIN13+R1*(PSI312+PSI314)+R3*(PSI132+PSI134) UNCLEN=TIN12+TIN23+TIN34+TIN14+R2*PSI2+R4*PSI4
		CROMUN=CROLEN-UNCLEN
С		F(SOURCE, TARGET) = .25D0*RPI*CROMUN/R1
0		F(SOURCE, TARGET) = .25E0*RPI*CROMUN/R1
		RIJ(SOURCE, TARGET) = SORT(R13SQ) - 0.5*(R1+R3)
	185	CONTINUE
	190	CONTINUE
	190	RETURN
		FND
C		
C*	* * * * *	VFAC 12/12/78 D.R.EVANS
C	1	SUBROUTINE VFAC(F, AREA, E, SCALFC, B, R0, IROW, JCOL, MIRRIM, P, PI, N, M, L, N2, NA, NSYM, NL, NL1, NPT)
	j	mplicit double precision (a-h,o-z)
		DIMENSION F(M, 1), AREA(1), E(1), SCALFC(1), B(NA, 1), IROW(1),
	1	JCOL(1),MIRRIM(20,1),R0(1)
	(COMMON /RI/ RIJ(1001,1001)
		INTEGER ROD. TARGET
		NP=N2-1
		$SL=0.25 \times AREA(N2)$
C		SI IS THE DISTANCE BETWEEN OPPOSITE SIDES OF THE CANISTER
C		DELTAX= $0.5 \times (SL - P \times FLOAT(L - 1))$
C		DELTAX IS THE DISTANCE FROM THE CENTER OF AN EDGE ROD TO
C		THE ADJACENT FACE OF THE CANISTER
C		CALCULATE THE PATH LENGTH FROM ROD TO CANISTER
C		CALL DATULEN (PO DELTAX P N2 L)
C		CALL PATHLEN (NO, DEDTAN, 1, NZ, D)
C		GENERATE UPPER DIAGONAL PORTION OF VIEW FACTOR MATRIX
		1AP2=1A+2
~		
С		ZERO OUT MATRIX
		DU IU KKEKUD, NP
		F(ROD, KK) = 0.
		RIJ(ROD, KK) = 0.
	10	CONTINUE
С		ADJACENT AND DIAGONAL ROD VIEW FACTORS BY CROSSED STRING
С		METHOD
		CALL STRING(F, R0, P, PI, M, L, ROD, IX, IY)

· —

IF(IY.EO.L) GO TO 40 С MORE-DISTANT VIEW FACTORS BY MODIFIED VIEWPIN METHOD С HIGHER-NUMBERED ROWS С ADJACENT ROW K1=IX-NL IF(K1.LE.0) K1=1 IXM2 = IX - 2IF(IXM2.LT.K1) GO TO 12 CALL FIJ(F,R0,P,PI,M,NPT,L,ROD,IX,IY,K1,IXM2,1,1) 12 CONTINUE K2 = IX + NLIF(K2.GT.L) K2=LIF(K2.LT.IXP2) GO TO 14 CALL FIJ(F, R0, P, PI, M, NPT, L, ROD, IX, IY, IXP2, K2, 1, 1) 14 CONTINUE IF(IYMIX.NE.0) GO TO 20 DO 15 KK=K1,K2 IF(KK.LT.IX.OR.KK.EQ.IYP1) GO TO 15 TARGET=KK+L*IY ITARG2=IYP1+(KK-1)*L RIJ (ROD, ITARG2) = RIJ (ROD, TARGET) F(ROD, ITARG2) = F(ROD, TARGET)15 CONTINUE 20 CONTINUE IF(IYP1.GE.L) GO TO 40 С ROWS BEYOND ADJACENT ROW K2 = IY + NL1IF(K2.GT.L) K2=LIF(K2.LT.IYP2) GO TO 24 CALL FIJ(F,R0,P,PI,M,NPT,L,ROD,IX,IY,IYP2,K2,1,2) IF(IYMIX.NE.0) GO TO 24 DO 21 KK=IYP2,K2 TARGET=ROD+(KK-IY)*L ITARG2=ROD+KK-IY F(ROD, ITARG2) = F(ROD, TARGET)21 CONTINUE 24 CONTINUE IF(IX.EQ.1) GO TO 34 С LOWER-NUMBERED ADJACENT COLUMN K2 = IY + NLIF(K2.GT.L) K2=LIF(K2.LT.IYP2) GO TO 40 CALL FIJ(F,R0,P,PI,M,NPT,L,ROD,IX,IY,IYP2,K2,3,1) 34 CONTINUE IF(IYMIX.EQ.0) GO TO 45 IF(IX.EQ.L) GO TO 45 С HIGHER-NUMBERED COLUMNS С ADJACENT COLUMN CALL FIJ(F,R0,P,PI,M,NPT,L,ROD,IX,IY,IYP2,K2,2,1) 40 CONTINUE IF(IX.EQ.L-1) GO TO 45 С COLUMNS BEYOND ADJACENT COLUMN K2 = IX + NL1IF(K2.GT.L) K2=L

--

```
IF(K2.LT.IXP2) GO TO 44
       CALL FIJ(F, R0, P, PI, M, NPT, L, ROD, IX, IY, IXP2, K2, 2, 2)
   44 CONTINUE
   45 CONTINUE
   50 CONTINUE
С
         FILL VIEW FACTOR MATRIX
С
       DO 225 I=1,NP
       DO 225 J=I,NP
       RIJ(J,I) = RIJ(I,J)
  225 F(J,I) = F(I,J) * AREA(I) / AREA(J)
       SUMA=1.
       DO 230 I=1,NP
       SUM=1.
       DO 235 J=1,NP
  235 SUM=SUM-F(I,J)
       F(I, N2) = SUM
       RIJ(N2,I) = RIJ(I,N2)
       F(N2, I) = F(I, N2) * AREA(I) / AREA(N2)
  230 SUMA=SUMA-F(N2, I)
       F(N2, N2) = SUMA
       RIJ(N2,N2) = 0.25 * SL
С
       RETURN
       END
С
С
      C***
С
      SUBROUTINE INTERP(X,Y,X1,Y1,N)
С
      implicit double precision (a-h,o-z)
С
      dimension x(100), y(100)
С
                            •
      DO 100 I=1, n
      I1=I
      IF(X(I1)-X1) 100,100,200
  100 CONTINUE
  200 Y1=Y(I1-1)+((X1-X(I1-1))/(X(I1)-X(I1-1)))*(Y(I1)-Y(I1-1))
      RETURN
      END
```

. . .
4. LISTINGS FOR COBRA-TF

_

1

.

D.1 Introduction

Appendix D contains an input listing from the two-channel model of COBRA-TF and associated input processing as well as the output for time zero. A full listing of the sub-channel model is not given because the listing is too large because the file is too large, instead only the input file is given here.

. **.**

,

.

.

D.2 Two-Channel Model Listing

	D.2	L	W0-1	liam		louc		1611	cting		* * * * * * * * * *	* * * * * * * * *	*********
1****	******	*****	*****	******	2456	** 1ng	DUC 11	1e 11 89012	34567	89012	3456789012	345678901	234567890
	123456	18901	23450	/89012	3400	/0901/	234307	0,012	5450,	0,015	5150705012		
1			0		0	0							
2			0		0	10		40					
3		· ·	001			10	* *	** 08	HT BU	ndle	7x7 Rods	* * * *	
4		1						ND		mare	A Rous		
5	1	1				0 0	0.4	"	1	24	0.0	9999	1.0
6		40.0	1	170.		0.0	0.4	00	1	. 24.	0.0		
7	air	_	•	0001									
8	2	5											
9	14	4.867	1.74	0 /	. 22								
10	27	.2207	1.74										
11	32	.1791	8.79										
12	45	.0405	2.95		-								
13	55	0.247	1.74	7.22	0								
14	3	1					~ ~	0	~	1 0	0 0		
15	1	3	41	.952 1	. 38	2.0	0.0	0	0	1.0	0 0		
16	16.	0.0											
17	0									•			
18	4	4	1	0	_								
19	1	1	2	4.0)			-					
20	1	2		_	_			Ţ					
21	2	1	1	5.75	5			•					
22	2	3	4					1					
23	3	2	22	2.5	51	10		-		F	7 70	6	6 85
24	2		2.51	3		7.72	4		. 12	2	6 95	23	6 85
25	20		6.85	21		6.85	22	t	0.85	22	0.05	25	0.05
26	3	5						2					
27	4	5						2					
28	4	1	3	4.()			2					
29	5	5						3	4				
30	2						0.245.65	10001		70001	2245679901	234567890	1234567890
	123456	578901	123456	578901:	23456	578901	23450	189014	23430	/0901	21410/0901	234307030	123130,055
31	. 50							0	0	0			
32	. 7	8	1	1	1	1	1	0	0	0			
33	1.2	2	2	3									
34	1.2	5	2	3									
35	1.2	8	2	3									
36	1.2	11	2	3									
37	1.2	14	2	3									
38	3 1.2	17	2	3									
39	1.2	20	2	3									
40) 1.2	23	2	3									
41	1	8	2	1		1.4		2952		1.5	1.984		
42	2 2	5	8	11	14	17	20	23					
4	3 3	16.		1	1								
44	1 4	33.		2	1								
4	5 8	3	1	2	2	0	0	0	1		5000	1	
46	5 1	1	1	2		0.05		16.		1.0	5000.	T	

47 3 1.0 0.05 29.0 1.0 5000. 1 48 2 1 1 2 49 4 1.0 5000. 0.0 1 50 3 2 0 2 0.05 4. 51 4 1.0 14.20 14.20 1.0 4 0. 90.0 52 1 3 0 4 53 1 2 54 1 2 502.0 121.75 1563. 157.75 502.0 169.76 521.0 55 13.75 56 2 1 1 2 57 3 58 - 1 169.0 521. 13.75 521.0 59 9 3 60 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 1 hrod . 374 0.0 4 0 61 3 1 .02 0.0 1 3.044 1.0 3 2.0545 0.0 1 2.0685 0.0 62 . 374 2 tube .209 1 0 63 3 1.0825 0.0 64 0 14.20 .250 1 65 3 wall 3 1 .250 66 67 10 3 516.7 68 1 17 8.340 70. .1030 69 32. .1010 8.1400 392. .1210 10.04 70 212. .1110 9.090 10.60 572. 0.131 10.98 71 500. .1270 932. 0.151 12.88 11.93 72 752. .1410 0.166 13.82 13.23 1112. 1000. 0.158 73 1472. 0.191 15.72 0.178 14.77 74 1292. 0.204 16.66 1652. 0.193 15.86 75 1500. 0.229 18.56 0.216 2012. 1832. 17.61 76 0.241 19.50 77 2192. 119. 2 14 78 212. 392. .22014 63.827 .16587 67.37 79 .29590 56.737 .26263 60.28 752. 80 572. .34233 49.646 .32194 53.19 1112. 932. 81 .37078 42.555 1472. .35829 46.10 82 1292. .38822 35.464 39.01 1832. 1652. .38056 83 .39891 28.375 2192. . 39421 31.92 2012. 84 .40546 21.284 24.83 2552. 2372. .40259 85 3 10 528.8 86 200. 0.107 11.333 70.0 .10000 10.083 87 14.833 600. 0.117 400. .11400 13.00 88 0.125 18.333 1000. 800. .120 16.50 89 0.141 21.833 1400. .132 20.00 90 1200. 123456789012345678901234567890123456789012345678901234567890123456789012345678901 1800. 0.186 25.167 1600. 23.50 91 0.157 25 92 11 1 1 5 93 157.76 0.0 1.50 157.75 0.5 13.75 0.5 121.75 94 168.0 0.0 95 .921 35.0 .8704 52.5 .8326 17.5 96 0.0 1.

	97 98 99 00 01 02 03	13	70. 140. 220. 360. 500. 1000. 2	0	. 803 . 714 . 652 . 588 . 547 . 002 . 2	8 15 25 39 53 0	7.5 7.5 5.0 5.0 5.0		7755 6973 6332 5769 5444	105. 175. 290. 430. 570.	0 . 0 . 0 . 0 . 0 .	7512 6837 6167 5656 5304	122.5 192.5 325.0 465.0 605.0	.7302 .6710 .6017 .5562 .5243
10 10 10 10	05 06 07 08	0.0 0.0 1 124.	1 1.0.	0.0 1.0 2 99999	0.1 0.2 1 .0001	0	.801 1.01	.500. .500. .260	92	.80 1.0 .05	40.0			
1:	10 11 12	5 124.	5 1.0.	1 9999	0 . 0001	0		40.0	117	0.0	40.0			
1 1 1	13 14 15	14 0 0	5	0	0	0	0	1	2					
	16 17 18 19 20 21 22 23	500 12345	0 . (678901	0 5. .001 12345 10.	678901	.01 1 .0(234567 1(15 L. 05 7890:	12345(500. 800. 5.0 6789012 500.	3456789	1.0 800. 1.0 90123456 500.	7890123	99999. 200. 456789012.	34567890
1: 1: 1: 1: 1: 1: 1: 1: 1:	24 25 26 27 28 29													
1		C	obra_t	tf 1	dat main c	e 1998 ontro	8080 1 pa:	3 rameto	time O ers are	0:00:00 :)			
				r S O M M	estart imulat uter i aximum aximum	time ion st terat numbe numbe	step tart ion o er o er o	p time conve f inn f out	 rgence er iter er iter	 limit ations ations	· · · · · · · · · · · · 4	0 .000 0010000 0 10		
	1 2 3 4 7 8 9	1 5 1 4 8 3 3	0 0 1 1 1 0	0 0 0 1 2 0	0 0 0 1 2 0	0 0 0 1 0	0 0 0 1 0 0	0 0 0 0 0 0	0 0 0 0 0 1 0		0 0 0 0 0 0 0			

D-5

1	$ \begin{array}{c} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \\ 0 \end{array} $	3 1 2 5 0	0 25 0 0 0	0 0 2 0 0	0 0 0 0	0 0 0 0	0 0 0 1 0	0 0 2 0	0 0 0 0	0 0 0 0	0 0 0 0	input summary
											ge **	•••• Test 31504 Bundle Rod 7x7 •••• neral information •••••
0							i i m a t	nitia nitia nitia ass f verag otal otal	l sys l sys l non l lig lux f e lin axial no. c	tem o tem s conde uid v or in lear h leng f axi	pera team nsab olum itia eat th (al n	ting pressure (psi) 40.00000 /water enthalpy 1170.00000 le gas enthalpy 124.00000 le fraction 00000 lization (lb/ft**2 sec) 00000 rate (kw/ft) 46600 inches) 28
1							i	nitia	l vol	• ume f	ract	ions of vapor and noncondensable gases

1

100.00000 percent of the total system volume is initially filled with vapor and/or noncondensable gases. the fraction of this gas volume occupied by water vapor and each noncondensable gas is as follows: steam .9999 air .00010 1

subchannel data

subchannel id. no.	nominal channel area (in**2)	wetted perimeter (in.)	momentum area (bottom)	momentum area (top)	axial continuity area	variation momentum area	tables wetted perimeter
• • •							
1	44.8600	71.740	44.8600	7.2200) 0	0	0
2	7.2200	71.740	7.2200	7.2200) 0	0	0
3	2.1790	18.790	2.1790	2.1790	0 0	0	0
4	5.0400	52.950	5.0400	5.0400	0 0	0	0
5	50.2400	71.740	7.2200	50.2400	0 0	0	0

0

1 * * * * * * * * * * * *

grid spacer data

	<pre>model selection (0=off,1=on)</pre>	grid quench fro drop breakup at grid enhancemen	nt heat transfer to grid spacer t of single phase va	fluid por convection	1 1 1		
	grid type 1	material type i grid length [in grid perimeter fraction of cha loss coefficien	ndex,] 1 [in] 1 nnel blocked t multiplier 1	1 .500 .984 .295 .400			
	axial levels con 2	taining grid type 5 8 11	1 14 17 20 23				
	grid located n in channel	o. of grids in channel	fuel rod surfa	ce index pairs :	surrounding grid	d	
	3 4	16.000 33.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - 0 0 0 - 0 0	- 0 0 - 0 - 0 0 - 0	0 0 0 0	
channel no.	d node gap gap no. below above	ata for lateral mom area node ga no. bel	nentum convected by a ap gap area Low above	xial velocities node gap no. below a	at section bou gap area bove	ndries node gap gap no. below above	area
	channel thermal conne	ction input data					
	channel no.	fuel rod	surface index pair	- S		heat slab indic	es

0

0

0

3 4	1 2	1 1	0 3	0 - 1	0	0 0	0 0	0 0	0	0 0	0 0 -	0 0	0 1	0 0						

0

gap	data
-----	------

gap no.	ik	jk	gap width	centroid distance	loss coeff.	frict. flag	gap below	gap above	sign modifier		gaps whi ii side	ch fac	e this gap jj	side		variation table
1	.3	4	1.952	1.380	2.000	.00	0	0	1.000	0	0	0	0	0	0	0
1						channe	l split	tting (data - axia	l level	1 of	4				

number	no. of	cell length
of channels	nodes	(nominal)
1	2	. 3 3 3 3

	channel		chan	nels	above	2	channels below									
										· · ·		÷ .	-			
	1	2	0	0	0	0	0	1	0	0	0	0	0			
1						_						1	h			

channel splitting data - axial level 2 of 4

number	no. of	cell length
of channels	nodes	(nominal)
1	1	. 4792

channel		nels	above	•		channels below						
									-			
2	3	4	0	0	0	0	1	0	0	0	0	0

÷

variable axial noding

1

1

node	length	node	length	node	length	node	length	node	length
no.	(ft)	no.	(ft)	no.	(ft)	no.	(ft)	no.	(ft)
2	. 4792		- ·						

channel splitting data - axial level 3 of 4

number	no. of	cell length
of channels	nodes	(nominal)
2	22	. 5643

channel		chan	nels	above			channels below					
٦	5	0	0	0	0	0	2	0	0	0	0	0
4	5	Ō	0	0	0	•0	2	0	0	0	0	0

 node no.	length (ft)	node no.	length (ft)	node no.	length (ft)	node no.	length (ft)	node no.	length (ft)
						5.	6433		5708
2	.2092	د	. 6433	4	.0435		.0455	0	
7	.5708	8	.5708	9	. 5708	10	.5708	11	. 5708
12	.5708	13	.5708	14	.5708	15	.5708	16	. 5708
17	5708	18	.5708	19	.5708	20	.5708	21	. 5708
22	.5708	23	.5708						

channel splitting data axial level 4 of 4

number	no. of	cell length
of channels	nodes	(nominal)
1	3	. 3333

channel		channels above							channels below					
								+	-					
5	5	0	0	0	0	0	3	4	0	0	0	0		

variable axial noding

1

node no.	length (ft)	node no.	length (ft)	node no.	length (ft)	node no.	length (ft)	node no.	length (ft)
2	. 3333	3	. 3333	4	. 3333				

simultaneous solution group information

no. of	last cell number in each group
groups 1	50
* * * * * * * * * * * * * * * * * * * *	**********************

fuel rod and heat slab model input

٠	no.	of	fuel	rods		3	no.	of	fuel	rod	surfaces	=	3
	no.	υf	heat	slabs	=	1							

fuel rod model input

fuel rod index	axial (in.)	location (in.)	geometry type	conductor type	radial power factor	axial power profile	renoding flag	minimum node size	rod multiplier
=									
1	13 75 -	162 72	hrod	1	1.000	1	2	.0500	16.000
1	13.75	162 72	brod	1	1.000	1	2	.0500	29.000
2	13.75	162.72	tube	2	.000	0	2	.0500	4.000

heat slab model input

heat slab index	ch	annel connection inside	heat out	ed perimeter side	geometry type	conductor type	slab multiplier	
1		4 14.20	0	14.20	wall	3	1.000	

conductor geometry description no. of geometry types = 3

.....

type 1 - hrod cylindrical heater rod - -----

rod diameter	.3740	(in.)
inside diameter	.0000	(in.)
no. of nodes (total)	8	
material index (oxide)	0	

radial noding information

node		material	radial	node boundaries j		power
	no.	index	location	(inside)	(outside)	fraction
		$(x,y) \in \{x,y\}$	- - • • • •			
	1	2	.0484	.0000	.0685	. 00000
	2	3	.0931	.0685	.1125	1.00000
	3	2	.1219	.1125	.1307	. 00000
	4	2	.1400	.1307	.1488	.00000
	5	2	.1582	.1488	.1670	. 00000
	6	1	.1710	.1670	.1750	.00000
	7	1	.1790	.1750	.1830	.00000
	8	1	.1870	.1830	.1870	.00000

type 2 tube tube conductor geometry

outside diameter	. 3740	(in.)
inside diameter	.2090	(in.)
no. of nodes (total)	3	
material index (inside)	0	
material index (outside)	0	

radial	noding node	information material	radial	node bou	undaries	power
	110.	muex	IUCALIUN	(inside)	(outside)	raction
	1	1	.1045	.1045	.1251	.00000
	2	1	.1472	.1251	.1664	.00000
	3	1	.1870	.1664	.1870	.00000

D-11

type 3 - wall flat plate conductor geometry

wall perimeter	14.2000	(in.)
wall thickness	.2500	(in.)
no, of nodes (total)	3	
material index (inside)	0	
material index(outside)	0	

radial	noding node	information material	radial	node bou	undaries	power
	no.	index	location	(inside)	(outside)	fraction
	1 2 3	1 1 1	.0000 .1250 .2500	.0000 .0625 .1875	.0625 .1875 .2500	.00000 .00000 .00000

٠

material property tables

____ ---

cold state density = 516.700 (lbm/ft3) material type 1 conductivity (btu/hr ft-f) specific heat (btu/lbm-f) temperature (f) 8.140 .10100 32.0 8.340 .10300 70.0 9.090 .11100 212.0 10.040 .12100 392.0 10.600 .12700 500.0 10.980 .13100 572.0 11.930 .14100 752.0 12.880 .15100 932.0 13.230 .15800 1000.0 13.820 .16600 1112.0 67.370 .16587 212.0 63.827 .22014 392.0 60.280 .26263 572.0 56.737 .29590 752.0 53.190 .32194 932.0 49.646 .34233 1112.0 46.100 .35829 1292.0

material type - 2

cold state density = 119.000 (lbm/ft3)

temperature (f)

specific heat (btu/lbm-f)

conductivity (btu/hr-ft-f)

212.0	.16587	67.370
392.0	. 22014	63.827
572.0	. 26263	60.280
752.0	. 29590	56.737
932.0	. 32194	53.190
1112.0	. 34233	49.646
1292.0	. 35829	46.100
1472.0	. 37078	42.555
1652.0	. 38056	39.010
1832.0	. 38822	35.464
70.0	. 10000	10.083
200.0	.10700	11.333
400.0	. 11400	13.000
600.0	. 11700	14.833

material type - 3 cold state density = 528.800 (lbm/ft3)

temperature (f)	<pre>specific heat (btu/lbm-f)</pre>	conductivity (btu/hr-ft-f)
70.0	.10000	10.083
200.0	.10700	11.333
400.0	. 14400	13.000
600.0	.11700	14.833
800.0	. 12000	16.500
1000.0	.12500	18.333
1200.0	.13200	20.000
1400.0	.14100	21.833
1600.0	.15700	23.500
1800.0	.18600	25.167

axial power profile tables

axial profile no.	1	used by rod nos. = 1 2
-------------------	---	------------------------

rod node no.	axial location (in.)	fluid node no.	axial power factor
1	13.75	5	. 5029
2	15.01	5	.5145
3	20.12	6	. 5590
4	27.84	7	. 6305
5	35.56	8	.7019
6	42.84	9	. 7694
7	49.69	10	. 8328
8	56.54	11	. 8962
9	63.39	12	. 9597
10	70.24	13	1.0231

11		77.09		14	1.0865
12		83.94		15	1.1500
13		90.79		16	1.2134
14		97.64		17	1.2768
15		104.49		18	1.3402
16		111.34		19	1.4037
17		118.19		20	1.4671
18		125.04		21	1.4084
19		131.89		2.2	1.2182
20		138.74		23	1.0279
21		145.59		24	. 8376
22		152.44		25	. 6474
23		159.29		26	. 1930
24		162.72		26	. 0000
this table	integrates to	.9689	over a heated	length o	f 148.97 (in.)

•

power forcing function table

transient time	(secs) power	factor
		· -
. 0000	1.0000	
17.5000	. 9210	
35.0000	. 8704	
52.5000	. 8326	
70.0000	. 8030	
87.5000	. 7755	
105.0000	.7512	
122.5000	. 7302	
140.0000	.7140	
157.5000	. 6973	
175.0000	. 6837	
192.5000	.6710	
220.0000	.6520	
255.0000	.6332	
290.0000	.6167	
325.0000	.6017	
360.0000	. 5880	
395.0000	. 5769	
430.0000	. 5656	
465.0000	. 5562	
500.0000	.5470	
535.0000	. 5444	
570.0000	. 5304	
605.0000	. 5243	
1000.0000	.0020	

۲

1					forcing funct	ion tables				
0	table	1								
	time coord.	forcing factor	time f coord.	orcing factor	time coord.	forcing factor	time coord.	forcing factor	time coord.	forcing factor
0	.000 table	. 000	.100	. 800	1500.000	.800				
	time coord.	forcing factor	time f coord.	orcing factor	time coord.	forcing factor	time coord.	forcing factor	time coord.	forcing factor
1	. 000	1.000	.200	1.000 axial and	1500.000 H/or injection	1.000 boundary co	onditions			
			boundary type			p	roperty specif	ication		
			1= pressure a 2= flow and e 3= zero axial 4= injected f 5= pressure s	hthalpy (a) flow . low and ent ink and ent	cial)		ass flow ero njected flow ink pressure			
			channel index	axial node	boundary type (see above)	specifi prope (see ab	ed rty ove) entha	alpy		
0			1 5	1 5	2 1	4	.26 0.00 117	92.05 70.00		
U				zero cros	sflow boundary	conditions				
				gap index	axial node					
		5	channels will be	e printed						
0		3	12 rods will be pri	3 4 inted	5					

D-15

1 2 3

1 gaps will be printed

1 0 initial run (check against dimension of indemp array maximum number of graphics normal vessel dump selected 1 trac major edit delt = 0.000E+00 seconds time = 0.000E+00 seconds time steps – 0 oitno= 0 last minimum number of inner iterations was 0 at step 0 current convergence limits and limitation counts delemx delrmx delvmx delamx delcmx delpmx 0,000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 0 0 0 0 0 cptime = 0.000E+00 channel results date 19980803 time 00:00:00 **** Test 31504 Bundle Rod 7x7 **** 0 simulation time = .00000 seconds fluid properties for channel 1 velocity void fraction flow rate node dist. pressure flow heat added gama (psi) (ft/sec) (lbm/s) no. (ft.) reg. (btu/s) (1bm/s)liquid vapor entr. liquid vapor entr. liquid vapor entr. liquid vapor .00 .0000 1.0000 3 . 67 40.009 .00 .00 .0000 .00000 .00000 .00000 0 .000E+00 .000E+00 .00 2 . 33 40.010 .00 .00 .00 .0000 1.0000 .0000 .00000 .00000 .00000 0 .000E+00 .000E+00 .00 .00 .00 .0000 1.0000 .0000 .00000 1 .00 40.010 .00 .00000 .00000 0 .000E+00 .000E+00 .00 enthalpy density node dist. net (btu/lbm) no. (ft.) (1bm/ft3)entrain vapor-hg liquid hf liq. hf vapor hg mixture liquid vapor mixture 1169.77 236.14 . 67 1170.00 .23 236.13 .01 3 1169.25 58.29915 .09446 .000 .0945 1170.00 1169.77 .23 236.13 236.14 -.01 2 . 33 1169.25 58.29915 .09446 .0945 .000 1170.00 1169.77 .23 236.13 236.15 1 .00 -.02 1169.25 58.29915 .09446 .0945 .000

0

node no.	dist.	mixture flow rate	mixture velocity	- rel vap	ative vel liq va	ocities p. – entr.	area	vap./liq. interfaci drag	vap./c al inters dra	lrop Tacial ng	grid type	tempera dec	spacers ature gf	percent quenched
3 2 1	. 67 . 33 . 00	. 00 . 00 . 00	.00 .00 .00		00 00 00	. 00 . 00 . 00	.050 .311 .311	01 .00 5 .00 .5 .00	10 10 10	.0010 .0010 .0010	0 0 0		.00 .00 .00	.000 .000 .000
* * *	* * *	• • • • • •		* * * *	• • • * *	* * * * *	* * * * *	* * * * * *	* * * *	* * * *	* * * *	* * * *	* * * *	* * * * *
node 3 2	dist. .67 .33	hash1 347.3965 347.3965 347.3965	hascl 34.7397 34.7397 34.7397	hashv 3.4740 3.4740 3.4740 3.4740	hascv 34.7397 34.7397 34.7397	drop ai .1000E-09 .1000E-09 .1000E 09	ai source .0000E+00 .0000E+00 .0000E+00	sent .0000E+00 . .0000E+00 . .0000E+00 .	sdent 0000E+00 0000E+00 0000E+00	qradd .0000E+0 .0000E+0 .0000E+0	qra 0 .0000 0 .0000 0 .0000	dv sn E+00 .000 E+00 .000 E+00 .000	kld 0E+00 .0 0E+00 .0 0E+00 .0	gamsd)000E+00)000E+00)000E+00
0 3 2 1	.67 .33	hmgas 124.00 124.00 124.00	rmgas .00001 .00001 .00001	steam 99.99(99.99(99.99(air) .010) .010) .010	000. 000 0.000	.000 .000 .000	volumetric .000 .000 .000	analysis .000 .000 .000	diam-1d .0000 . .0000 .	diam-sd 00000 . 00000 . 00000 .	flow-sd 0000E+00 0000E+00 0000E+00	veloc- .00 .00 .00	-sd gamsd .0000E+00 .0000E+00 .0000E+00
*****	channel	results	date 19	980803	time 00:0	0:00	*********	**********	* * * * * * * * * * * * * * T * * * * *	********** est 31504	Bundle	*********** Rod 7x7	* * * * * * * * *	* * * * * * * * * * * *
node no.	sin dist. (ft.)	ulation tin pressure (psi)	me = ve (1 liquid	.00000 elocity t/sec) vapor	seconds	void f liquid va	fluid prop raction por entr.	erties for o liquid	channel flow ra (lbm/s vapor	2 te) entr.	flow reg.	heat (bt liquid	added u/s) vapor	gama (lbm/s)
2 1	1.15 .67	40.009 40.009	. 00 . 00	.00 .00	.00	.0000 1.0 .0000 1.0	0000. 0000 0000. 0000	.00000 .00000	.00000	.00000) () () ()	.000E+00 .000E+00	.000E+ .000E+	00 .00 00 .00
node no.	dist. (ft.)				ei (b'	nthalpy tu/lbm)					(2	density lbm/ft3)		net entrain
	, ,	vap	or	 hg v	apor hg	liquid	hf	lig. – hf	mixture	e 1.	iquid	vapor	mixtur	е
2 1	1.15 .67	1170 1170	.00 116 .00 116	9.77 9.77	. 23 . 23	236.13 236.13	236.14 236.14	.01 01	1169.25 1169.22	5 58 2 58	.29915 .29915	.09446 .09446	.094 .094	5 .000 5 .000
* *	* * * *	* * * * *	* * * * *	* * * *	* * * *	* * * * * *		* * * * *	* * * * *	* * * * *	* * *	* * * * *	* * * *	* * * * *
node no.	dist.	mixture flow rate	mixtur velocit	e – re y vap.	lative ve liq. v	locities - ap. entr	area	a vap./liq interfac drag	1. vap. ial inte d	/drop rfacial rag	gri typ	grid d tempe e d	spacers rature egf	percent quenched

2 1	1.15 .67	.00 .00	.00		.00 .00	.00 .00	.050 .050	1 . 0 1 . 0	010 010	.0010 .0010	()	.00 .00	.000
* * *	,	* * * * * *	* * * *	* * * *	* * * * *		* * * *	* * * * *	* * * * *	* * * *	* * * *	* * * *	* * * * *	* * * *
node 2 1 0	dist. 1.15 .67	hashl 80.3732 80.3732	hasc1 8.0373 8.0373	hashv .8037 .8037	hascv 8.0373 8.0373	drop ai ai .1000E-09 . .1000E-09 .	source 0000E+00 0000E+00 gas	sent .0000E+00 .0000E+00 volumetric	sdent .0000E+00 .0000E+00 .analysis	qradd .0000E+0 .0000E+0	qra 000.0000	adv sn)E+00 .000)E+00 .000	kld g 0E+00 .00 0E+00 .00	amsd 00E+00 00E+00
2 1	1.15 .67	hmgas 124.00 124.00	rmgas .00001 .00001	steam 99.990 99.990	air) .010) .010	.000	.000	.000	.000 .000	diam ld .0000 . .0000 .	diam-sc 00000 . 00000 .	l flow sd 0000E+00 0000E+00	veloc-s .00 .00	d gamsd .0000E+00 .0000E+00
0	channel	results	date 19	9980803	time 00:00):00	* * * * * * * * * * *	********	***** T	est 31504	Bundle	e Rod 7x7	********	* * * * * * * * *
node no.	simu dist. (ft.)	lation tim pressure (psi)	e = ve (1 liquid	.00000 elocity ft/sec) vapor e	seconds	fl void fra liquid vapo	uid prope ction r entr.	rties for liquid	channel flow ra (lbm/s vapor	3 te) entr.	flow reg.	heat (bt liquid	added u/s) vapor	gama (lbm/s)
23 22	13.56 12.99	40.001 40.001	.00	. 00 . 00	. 00 . 00	.0000 1.000 .0000 1.000	0.0000 0.0000	.00000	.00000 .00000	. 00000 . 00000	0	.000E+00 .000E+00	.000E+00 .000E+00	. 00 . 00
21 20 19	12.42 11.85 11.28	40.002 40.002 40.003	.00 .00 .00	.00 .00 .00	.00 .00 .00	.0000 1.000 .0000 1.000 .0000 1.000	0 .0000 0 .0000 0 .0000	.00000 .00000 .00000	.00000 .00000 .00000	.00000		.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	.00 .00 .00
18 17 16 15	10.71 10.13 9.56 8.99	40.003 40.003 40.004 40.004	.00 .00 .00	.00	.00 .00	.0000 1.000 .0000 1.000 .0000 1.000 .0000 1.000	0 .0000 0 .0000 0 .0000	.00000	.00000	.00000		.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	.00 .00 .00
14 13 12	8.42 7.85 7.28	40.004 40.005 40.005	.00 .00 .00	.00	.00 .00 .00	.0000 1.000 .0000 1.000 .0000 1.000	0 .0000 0 .0000 0 .0000	.00000 .00000 .00000	.00000	.00000) 0) 0) 0	.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	.00 .00 .00
11 10 9	6.71 6.14 5.57	40.006 40.006 40.006	.00 .00 .00	.00 .00 .00	.00 .00 .00	.0000 1.000 .0000 1.000 .0000 1.000	0 .0000 0 .0000 0 .0000	.00000 .00000 .00000	.00000 .00000 .00000	.00000 .00000 .00000) 0) 0) 0	.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	. 00 . 00 . 00
8 7 6	5.00 4.43 3.86	40.007 40.007 40.007	.00 .00 .00	.00 .00 .00	.00 .00 .00	.0000 1.000 .0000 1.000 .0000 1.000	0 .0000 0 .0000 0 .0000	.00000 .00000 .00000	.00000	.00000		.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	.00 .00 .00
5 4 3	3.28 2.64 2.00	40.008 40.008 40.009	.00 .00 .00	.00 .00 .00	.00	.0000 1.000	0.0000	.00000	.00000	.00000		.000E+00 .000E+00 .000E+00	.000E+00 .000E+00 .000E+00	.00 .00 .00
2	1.30	40.009	. 00	. 00	. 00	.0000 1.000	0 .0000	. 00000	. 00000	. 00000		.000E+00 .000E+00	.000E+00 .000E+00	.00 .00

node no.	dist. (ft.)	e (b	nthalpy tu/lbm)	density (1bm/ft3)	net entrain

D-18

-

	vapor	hg	vapor-hg	liquid	hf li	lq. – hf	mixture	liquid	vapor	mixture	
23 13.56	1170.0	0 1169.	.23	236.13	236.13	.00	1169.25	58.29915	.09444	. 0945	. 000
22 12.99	1170.0	0 1169.	.23	236.13	236.13	.00	1169.25	58.29915	.09444	. 0945	.000
21 12.42	1170.0	0 1169.	77.23	236.13	236.13	.00	1169.25	58.29915	.09444	. 0945	.000
20 11.85	1170.0	0 1169.	.23	236.13	236.13	. 00	1169.25	58.29915	.09444	.0945	.000
19 11.28	1170.0	0 1169.	77.23	236.13	236.13	.00	1169.25	58.29915	.09444	. 0945	. 000
18 10.71	1170.0	0 1169.	77 .23	236.13	236.13	.00	1169.25	58.29915	.09444	.0945	.000
17 10.13	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09444	. 0945	. 000
16 9.56	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09444	.0945	.000
15 8.99	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09444	.0945	.000
14 8.42	1170.0	0 1169.	77.23	236.13	236.14	01	1169.25	58.29915	.09444	.0945	.000
13 7.85	1170.0	0 1169.	77.23	236.13	236.14	.01	1169.25	58.29915	.09445	. 0945	.000
12 7.28	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
11 6.71	1170.0	0 1169.	77.23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
10 6.14	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
9 5.57	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
8 5.00	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	. 000
7 4 43	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
6 3.86	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	.0945	.000
5 3.28	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
4 2.64	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09445	.0945	.000
3 2.00	1170.0	0 1169.	77 .23	3 • 236.13	236.14	01	1169.25	58.29915	.09445	. 0945	.000
2 1.36	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09446	. 0945	. 000
1 1.15	1170.0	0 1169.	77 .23	236.13	236.14	01	1169.25	58.29915	.09446	. 0945	.000
node dist. no.	mixture flow rate	mixture velocity	relative	velocities	area	1		ron		chacere	
			vap. 114.	vap. – entr.		vap./110 interfac drag	ial interf dra	acial grid g type	temper de	ature egf	percent quenched
23 13 56	0.0	. 00	.00	vap entr. .00	. 015	vap./lic interfac drag	g. Vap.70 cial interf dra	acial grid g type	grid i temper e de	.00	percent quenched .000
23 13.56	.00	. 00 . 00	.00 .00	vap entr. .00 .00	.015 .015	vap./11c interfac drag 1 .(1 .(1. Vap./d cial interf dra 0010 0010	acial grid g type .0010 1 .0010 0	grid l temper de	.00 .00	percent quenched .000 .000
23 13.56 22 12.99 21 12 42	.00 .00 .00	.00 .00 .00	.00 .00 .00	vap entr. .00 .00 .00	.015 .015 .015	vap./110 interfac drag 1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010	.0010 1 .0010 1 .0010 0	gria l temper de	.00 .00 .00	percent quenched .000 .000 .000
23 13.56 22 12.99 21 12.42 20 11.85	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	vap entr. .00 .00 .00 .00	.015 .015 .015 .015 .015	vap./110 interfac drag 1 .(1 .(1 .(1 .(1. Vap.7d cial interf dra 0010 0010 0010 0010	.0010 1 .0010 1 .0010 0 .0010 0 .0010 0	gria i temper e de	.00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010	log grid g type .0010 1 .0010 0 .0010 0 .0010 0 .0010 1 .0010 1 .0010 0	gria i temper e de	.00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010	log grid acial grid g type .0010 1 .0010 0 .0010 0 .0010 1 .0010 0 .0010 1 .0010 0 .0010 0	gria t temper de 	.00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71 17 10.13	.00 .00 .00 .00 .00 .00	. 00 . 00 . 00 . 00 . 00 . 00	.00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf 0010 0010 0010 0010 0010 0010 0010	.0010 1 .0010 1 .0010 0 .0010 0 .0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0	grid t temper de 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71 17 10.13 16 9 56	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010	.0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 1 .0010 1 .0010 1	gria i temper de	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71 17 10.13 16 9.56	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1	1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 00	.0010 1 .0010 1 .0010 0 .0010 0 .0010 1 .0010 0 .0010 1 .0010 1 .0010 1 .0010 0 .0010 1 .0010 1 .0010 1 .0010 1 .0010 1	grid i temper de)) . 5()) . 10(.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71 17 10.13 16 9.56 15 8.99 14 8 42	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 00	log grid acial grid g type .0010 1 .0010 0 .0010 1 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0	grid i temper e de))) . 5()) . 10() . 15:	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
23 13.56 22 12.99 21 12.42 20 11.85 19 11.28 18 10.71 17 10.13 16 9.56 15 8.99 14 8.42 13 7 85	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 00	.0010 1 .0010 1 .0010 0 .0010 0 .0010 1 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0	grid temper de 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010	.0010 1 .0010 1 .0010 0 .0010 0 .0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0 .0010 0	gria i temper de de)) . 5()) . 5()) . 10()) . 15:	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap.//1/c interfac drag 1	1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010	.0010 1 .0010 1 .0010 0	grid temper de 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap.//1/c interfac drag 1(1(1(1(1(1(1(1(1(1(1(1	1. Vap./d cial interf dra 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010	log grid acial grid g type .0010 1 .0010 0 .0010 1 .0010 0 .0010 1 .0010 0 .0010 1 .0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 1 .0010 0 .0010 1 .0010 0 .0010 1 .0010 1 .0010 0 .0010 1 .0010 1 .0010 1	grid temper de 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1	1. Vap./d cial interf dra 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 00000 0000 0000 0000 0000 00000	.0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 1	grid i temper e de))) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100) 100 100	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1 .(1 .(1 .(1 .(1 .(1 .(1 .(1 .(1. Vap./d cial interf dra 0010 00000 0000 00000 00000 000000	.0010 1 .0010 1 .0010 0 .0010 0 .0010 0 .0010 1 .0010 0	grid temper de . 5() . 5() . 10() . 15:) . 13) . 11	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	vap entr. .00 .00 .00 .00 .00 .00 .00 .00 .00	.015 .015 .015 .015 .015 .015 .015 .015	vap./11c interfac drag 1	1. Vap./d cial interf dra 0010	.0010 1 .0010 1 .0010 0	grid temper de 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	percent quenched .000 .000 .000 .000 .000 .000 .000 .0

6	3.86	.00	. 00	. (00	. 00	. 015	.0	010	.0010	0)	.00		.000
5	3.28	.00	.00	. (00	.00	. 015	.0	010	.0010	1		933.89		.000
4	2.64	. 00	.00	. ()0	. 00	. 015	.0	010	.0010	0)	. 0.0		.000
3	2.00	. 00	.00	. (00	. 00	.015	.0	010	.0010	0)	. 00		.000
2	1.36	.00	. 00	. (00	.00	.015	.0	010	.0010	1		731.43		.000
1	1.15	. 00	. 00	. (00	. 00	.015	.0	010	.0010	0)	. 00		.000
-															
* *	* * * *	* * * * *	* * * * *	* * * * *		* * * * *	* * * * *	* * * * *	* * * * *	* * * * *		* * *	* * * *	* *	* * * *
node	dist.	hashl	hascl	hashv	hascv	drop ai a	i source	sent	sdent	gradd	qra	ndv	snkld	g∂	umsd
23	13.56	110.3287	11.0329	1.1033	11.0329	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0000.)E+00 .(000E+00	. 000)0E+00
22	12 99	110 3287	11 0329	1.1033	11.0329	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0000.)E+00 .(000E+00	.000)0E+00
21	12 42	110 3287	11 0329	1.1033	11.0329	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0000.)E+00 .(000E+00	.000)0E+00
20	11 85	110 3287	11 0329	1 1033	11.0329	1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0.0000)E+00 .(000E+00	.000	00E+00
10	11 29	110.3287	11 0329	1 1033	11 0329	1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0000)E+00 .0	0000E+00	.000	00E+00
19	10 71	110.3287	11 0329	1 1033	11 0329	1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+00	0,000)E+00 .0	000E+00	.000)0E+00
10	10.71	110.3207	11.0329	1 1033	11 0329	10008-09	0000E+00	0000E+00	0000E+00	0000E+00	0000	E+00 (0000E+00	000	10E+00
17	10.13	110.3207	11.0323	1 1033	11 0329	1000E-09	0000E+00	00005+00	0000E+00	0000E+00	0000	F+00 (0000E+00	000	105+00
10	9.50	110.320/	11.0329	1 1033	11 0329	1000E-09	0000E+00	0000E+00	0000E+00	0000E+00	n nnnn)E+00 (0000E+00	000)0E+00
15	8.99	110.3287	11.0329	1 1033	11 0329	1000E-09	00005+00	00005+00	0000E+00	0000E+00	n nnnn)E+00 (00005+00	000)0E+00
14	8.42	110.328/	11.0329	1.1033	11.0329	1000E-09	000005+00	00000000000	0000000000	00005+00)E+00 .(0000000000	000	10E+00
13	7.85	110.3287	11.0329	1 1033	11.0329	10000 09	000000000000000000000000000000000000000	000002+00	00002+00	0000E+00	0000)E+00 .(000000000000000000000000000000000000000	000	10E+00
12	1.28	110.3287	11.0329	1.1035	11.0329	10005-09	.00005+00	000000000000000000000000000000000000000	.000002+00	0000E+00)E+00 .(000000000	000	10E+00
11	6.71	110.3287	11.0329	1.1033	11.0329	1000E-09	.0000E+00	.00002+00	000000000000000000000000000000000000000	00002+00)E+00 .(000000000000000000000000000000000000000	.000	005+00
10	6.14	110.3287	11.0329	1.1033	11.0329	10005-09	.0000E+00	.0000E+00	.000002+00	00005+00	0.0000)E+00 .(00005+00	.000	005+00
9	5.57	110.3287	11.0329	1.1033	11.0329	10000-09	.0000E+00	.0000E+00	.00006+00	.00005+00	0 .0000)E+00 .0	00002+00	.000	005+00
8	5.00	110.3287	11.0329	1.1033	11.0329	.1000E-09	.000000+00	.0000E+00	.0000E+00	.000002+00		DE+00 .(000000000000000000000000000000000000000	. 000	005-00
7	4.43	110.3287	11.0329	1.1033	11.0329	.1000E-09	.000000+00	.0000E+00	.0000E+00	.0000E+00)E+00 .(00002+00	.000	JUE+00
6	3.86	110.3287	11.0329	1.1033	11.0329	1000E 09	.0000E+00	.00002+00	.00000000000	000000000000000000000000000000000000000		DE+00 .(.000	
5	3.28	124.3412	12.4341	1.2434	12.4341	.1000E 09	.0000E+00	.00008+00	.0000E+00	.00005+0		DE+00 .0		.000	
4	2.64	124.3412	12.4341	1.2434	12.4341	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0			0000E+00	.000	JUE+00
3	2.00	124.3412	12.4341	1.2434	12.4341	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0		JE+00 . (0000E+00	.000	JUE+00
2	1.36	40.4270	4.0427	. 4043	4.0427	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0		JE+00 .0	J000E+00	.000	JUE+00
1	1.15	40.4270	4.0427	.4043	4.0427	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0	0.0000	JE+00 .0	J000E+00	.000	J0E+00
0							gas	volumetric	c analysis			a 61			
		hmgas	rmgas	steam	air	000	000	000	000		0100-00	1 110W	sa vero	DC SC	1 gamsu
23	13.56	124.00	.00001	99.990	.010	.000	.000	.000	.000		00000	00000000000	00 . (00 /	, U.	- 0000E+00
22	12.99	124.00	.00001	99.990	.010	. 000	.000	.000	.000	.0000 .	00000	0000E+)0 .)0	.0000E+00
21	12.42	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	. 0000E+)0 .)0	.0000E+00
2.0	11.85	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	. 0000E+1)0 .)0	.0000E+00
19	11.28	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	.0000E+		,, ,,	.0000E+00
18	10.71	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	.0000E+		JO .	.0000E+00
17	10.13	124.00	. 00001	99.990	.010	. 000	. 000	.000	.000	.0000 .	00000	. 0000E+	.00.	10 .	.0000E+00
16	9.56	124.00	.00001	99.990	.010	. 000	.000	.000	.000	.0000 .	00000	. 0000E+	00 .(JU .	.0000E+00
15	8.99	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	. U000E+		10 .	.0000E+00
14	8.42	124.00	.00001	99.990	.010	. 000	.000	.000	.000	.0000 .	00000	.0000E+	.00	10 .	.0000E+00
13	7.85	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	.0000E+	.00	. 00	.0000E+00
12	7.28	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	.0000E+	.00	10	.0000E+00
11	6.71	124.00	.00001	99.990	.010	. 000	.000	.000	.000	.0000 .	00000	.0000E+	. 00)0	.0000E+00
10	6.14	124.00	.00001	99.990	.010	.000	.000	.000	.000	.0000 .	00000	.0000E+	. 00)0	.0000E+00
ģ	5.57	124.00	.00001	99.990	.010	. 000	. 000	.000	.000	.0000 .	00000	.0000E+	. 00)0	.0000E+00

÷

8	5.00	124.00	.00001	99.9	90.01	0.0	00	.000	.000	.000 .	. 0000	00000	.0000E+00	.00.	0000E+00
7	4.43	124.00	.00001	99.9	90 .01	0.0	00	.000	.000	.000 .	. 0000	00000	.0000E+00	.00 .	0000E+00
6	3.86	124.00	. 00001	99.9	90 . 01	0.0	00	.000	.000	.000 .	. 0000	00000	.0000E+00	.00.	0000E+00
5	3.28	124.00	. 00001	99.9	90 . 01	0.0	00	.000	.000	.000 .	0000 .	00000	.0000E+00	.00 .	0000E+00
4	2.64	124.00	. 00001	99.9	90 .01	0.0	00	.000	. 000	.000 .	0000 .	00000	.0000E+00	.00.	0000E+00
3	2.00	124.00	.00001	99.9	90 .01	0.0	00	.000	.000	.000 .	. 0000	00000	.0000E+00	.00.	0000E+00
2	1.36	124.00	. 00001	99.9	90.01	0.0	00	.000	.000	.000 .	0000 .	00000	.0000E+00	.00 .	0000E+00
1	1.15	124.00	.00001	99.9	90 .01	0.0	00	.000	.000	.000 .	0000 .	00000	.0000E+00	.00 .	0000E+00
* * * * *	******	*********		******	********	*******	* * * * * * *	*****	**********	********				********	******
0	channel	results	date 1	9980803	time 00:	00:00				**** Te	SC 31504	BUNAL	e koa /x/	****	
*****		·lation time		0000	0 seconds		f1i	d prop	erties for (channel	4				
	Sim	ulation time	3 = 11	olocity	o seconas	voi	d fract	ion	ercres for (flow rat	- -	flow	heat	added	gama
node		(pressure	, ,	ft/sec)		•01	u muci			(lbm/s)	0	req.	(bt	u/s	(lbm/s)
110.	(10.)	(psi/	liquid	vanor	entr	limid	vapor	entr.	liquid	vapor	entr.	rog.	liquid	vapor	(1000)07
			IIquiu	vupor	cher.	IIquiu	Vapor		IIquid				r qui a	Tapor	
23	13.56	40.001	.00	. 00	.00	.0000	1.0000	. 0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
22	12.99	40.001	. 00	. 00	.00	.0000	1.0000	.0000	. 00000	.00000	.00000	0	.000E+00	.000E+00	.00
21	12.42	40.002	. 00	.00	.00	. 0000	1.0000	.0000	. 00000	.00000	.00000	0	.000E+00	.000E+00	. 00
20	11.85	40.002	. 00	.00	.00	.0000	1.0000	. 0000	. 00000	.00000	.00000	0	.000E+00	.000E+00	.00
19	11.28	40.003	. 00	. 00	.00 🔹	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
18	10.71	40.003	. 00	. 00	.00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
17	10.13	40.003	. 00	.00	.00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
16	9.56	40.004	. 00	.00	.00	.0000	1.0000	.0000	. 00000	.00000	.00000	0	.000E+00	.000E+00	.00
15	8.99	40.004	. 00	.00	.00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
14	8.42	40.004	. 00	.00	. 00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
13	7.85	40.005	. 00	. 00	. 00	.0000	1.0000	.0000	.00000	.00000	. 00000	0	.000E+00	.000E+00	.00
12	7.28	40.005	. 00	. 00	. 00	.0000	1.0000	.0000	. 00000	.00000	.00000	0	.000E+00	.000E+00	.00
11	6.71	40.006	.00	.00	. 00	.0000	1.0000	.0000	. 00000	. 00000	.00000	0	.000E+00	.000E+00	.00
10	6.14	40.006	.00	.00	.00	.0000	1.0000	. 0000	.00000	. 00000	.00000	0	.000E+00	.000E+00	.00
9	5.57	40.006	.00	.00	.00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
8	5.00	40.007	.00	. 00	.00	.0000	1.0000	.0000	.00000	.00000	. 00000	0	.000E+00	.000E+00	.00
7	4.43	40.007	. 00	. 00	.00	.0000	1.0000	.0000	.00000	. 00000	. 00000	0	.000E+00	.000E+00	.00
6	3.86	40.007	. 00	.00	.00	.0000	1.0000	.0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
5	3.28	40.008	. 00	.00	.00	.0000	1.0000	. 0000	.00000	.00000	. 00000		00000000	.000E+00	.00
4	2.64	40.008	. 00	.00	.00	.0000	1.0000	.0000	.00000	.00000	. 00000	0	.000E+00	.000E+00	.00
3	2.00	40.009	.00	.00	.00	.0000	1 0000	. 0000	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
2	1.36	40.009	.00	.00	.00	.0000	1 0000	. 0000	00000	.00000	. 00000		.000E+00	.000E+00	.00
1	1.15	40.009	.00	.00	.00	.0000	1.0000	.0000	.00000	.00000	. 00000	0	.000E+00	.0006+00	.00
node	dist				e	nthalpy							density		net
no.	(ft.)				(b	tu/lbm)						4	lbm/ft3)		entrain
										· · · ·					-
		vapo	r	hg	vapor-hg	liquid	l	hf	liq hf	mixture	1i	quid	vapor	mixture	
2.2	12 50	1170	00 114	(q 77	23	236.13	2	36.13	.00	1169.25	58.	29915	.09444	.0945	.000
23	10.00	1170.	00 116	, , , , 59 77	27	236.13	2	36.13	.00	1169.25	58.	29915	.09444	.0945	.000
22	12.99	1170.	00 114	59.77	23	236.13	2	36.13	. 00	1169.25	58.	29915	.09444	.0945	.000
21	11 05	1170.	00 114	59.77	.23	236.13	2	36.13	.00	1169.25	58.	29915	.09444	.0945	.000
2.0	11.00	11/0.													

19 18 17 16 15 14 13 12 11 10 9 8	$11.28 \\ 10.71 \\ 10.13 \\ 9.56 \\ 8.99 \\ 8.42 \\ 7.85 \\ 7.28 \\ 6.71 \\ 6.14 \\ 5.57 \\ 5.00 \\ 1$	$\begin{array}{c} 1170 & 00\\ 1170$	0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77 0 1169.77	. 23 . 23 . 23 . 23 . 23 . 23 . 23 . 23	236.13 236.	236.13 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14 236.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	169.25 5 169.25 5	8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915 8.29915	.09444 .094 .09444 .094 .09444 .094 .09444 .094 .09444 .094 .09444 .094 .09445 .094 .09445 .094 .09445 .094 .09445 .094 .09445 .094 .09445 .094	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	4.45	1170.00	0 1169 77	.23	236.13	236.14	.01 1	169.25 5	8.29915	.09445 .094	.000
S S	3 28	1170.00	0 1169.77	. 23	236.13	236.14	.01 1	169.25 5	8.29915	.09445 .094	.000
4	2.64	1170.00	0 1169.77	. 23	236.13	236.14	01 1	169.25 5	8.29915	.09445 .094	.000
3	2.00	1170.00	0 1169.77	. 23	236.13	236.14	. 01 1	169.25 5	8.29915	.09445 .094	.000
2	1.36	1170.00	0 1169.77	. 23	236.13	236.14	. 01 1	169.25 5	8.29915	.09446 .094	15 .000
ĩ	1.15	1170.00	0 1169.77	. 23	236.13	236.14	.01 1	169.25 5	8.29915	.09446 .094	15 .000
•• node no.	* * * *	<pre>mixture flow rate</pre>	• • • • • • • mixture - velocity v	- relative vo ap. liq.	* * * * * * * * elocities vap entr.	area	vap./liq. interfacial drag	vap./drop 1 interfacial drag	grid type	grid spacers temperature degf	percent quenched
23	13.56	. 00	. 00	. 00	. 00	.0350	.0010	.0010	1	.00	. 000
22	12.99	.00	. 00	. 00	. 00	.0350	. 0010	0 .0010	0	.00	. 000
21	12.42	. 00	. 00	. 00	. 00	.0350	.0010	0010	1	502.00	. 000
20	11.85	.00	. 00	. 00	. 00	. 0350	. 0010	0010	1	502.00	. 000
19	11.28	.00	. 00	.00	. 00	.0350	.0010	0 .0010	0	.00	.000
18	10.71	. 00	.00	.00	.00	. 0350	.0010	0 .0010	1	1062 12	.000
17	10.13	.00	.00	.00	. 00	.0350	. 001	0 0010	Ō	.00	. 000
16	9.56	. 00	. 00	.00	.00	.0350	.001	0 .0010	Ő	. 00	.000
15	8.99	.00	. 00	.00	.00	0350	.001	0.0010	1	1528.70	.000
14	8.42	.00	. 00	.00	.00	0350	.001	0.0010	0	. 00	. 000
13	7.85	. 00	.00	.00	.00	.0350	.001	0.0010	0	. 00	. 000
12	7.28	.00	. 00	.00	. 00	,0350	.001	0.0010	1	1330.43	.000
11	6.71	.00	.00	.00	.00	.0350	.001	0.0010	0	. 00	.000
10	6.14	.00	.00	.00	. 00	.0350	.001	0.0010	0	. 00	. 000
9	5.57	.00	.00	.00	.00	.0350	.001	0.0010	1	1132.16	.000
8	5.00	.00	.00	00	. 00	.0350	.001	0.0010	0	. 00	.000
	4.43	.00	.00	.00	. 00	.0350	.001	0.0010	0	. 00	.000
ь г	3.00 9.00	. 00	00	.00	.00	.0350	.001	0.0010	1	933.89	.000
5	3.20	.00	.00	.00	. 00	.0350	.001	0.0010	0	.00	. 000
4	2.04	00	,00	.00	. 00	.0350	.001	0.0010	0	. 00	. 000
נ ר	2.00	.00	. 00	. 00	. 00	.0350	.001	0 .0010	1	731.43	. 000
1	1 15	.00	. 00	. 00	. 00	.0350	.001	0 .0010	0	.00	. 000

-

						* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * *	* * * * *	* * * *	
* * *	* * * *	* * * * *												
								cont	edent	gradd	grad	v snk	ld g	gamsd
node	dist.	hashl	hascl	hashv	hascv	drop al a	1 Source	00005+00	0000E+00	.0000E+00	. 0000E	+00 .0000	E+00 .00	000E+00
23	13.56	90.5571	9.0557	.9056	9.0557	.1000E-09	.00000000000	00005+00	00005+00	0000E+00	.0000E	+00 .0000	E+00 .00	DOOE+00
22	12.99	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	00005+00	0000E+0(.0000E	+00 .0000	E+00 .00	000E+00
21	12.42	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	00005+00	0000E+00	0000E	+00 .0000	E+00 .00	DOOE+00
20	11.85	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.00005+00	00005+00	0000E+00	0000E	+00 .0000	E+00 .00	000E+00
19	11 28	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	00002+00	00005+00	0000E+0	0.0000E	+00 0000	E+00 .00	000E+00
1.9	10 71	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	000000000000000000000000000000000000000	0000E+0	0 .0000E	+00 .0000	E+00 .0	000E+00
17	10 13	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	00005+00	0000E+0	0 .0000E	+00 .0000	E+00 .0	000E+00
16	9 56	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	0000E+00	0000E+0	0 0000F	+00 .0000	E+00 .0	000E+00
15	8 99	90.5571	9.0557	.9056	9.0557	.1000E 09	.0000E+00	.0000E+00	00002+00	0000E+0	0 00005	+00 .0000	E+00 .0	000E+00
1/	8 42	90.5571	9.0557	.9056	9.0557	.1000E 09	.0000E+00	.000000+00	00005+00	0000E+0	0 00005	+00 .0000	E+00 .0	000E+00
19	7 85	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	0000E+0	0 00005	C+00 .0000	E+00.0	000E+00
10	7.05	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.00000000000	.0000E+0	0 00005	r+00 0000	E+00 .0	000E+00
12	6 71	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0	0 00002	r+00 0000	E+00 .0	000E+00
10	6.71	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0	0 00001	r+00 0000	E+00 .0	000E+00
10	5.14	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.00002+0	0 00001	7+00 0000	E+00.0	000E+00
9	5.57	00.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.00000000000000000000000000000000000000	0 00001	2+00 .0000	E+00 0	000E+00
8	5.00	90.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.00000000000	0 .00001	E+00 .0000	E + 00 = 0	000E+00
	4.45	00.5571	9.0557	.9056	9.0557	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0	0 00001	E+00 .0000	E+00 0	000E+00
6	3.80	102 0585	10 2059	1.0206	10.2059	.1000E-09	.0000E+00	.0000E+00	.00005+00	.000000000000		E+00 .0000	E + 0.0 = 0	000E+00
5	3.28	102.0505	10 2059	1.0206	10.2059	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.00006+0		E+00 .0000	F + 00 = 0	000E+00
4	2.64	102.0585	10 2059	1.0206	10.2059	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.00006+0		E+00 .0000	E + 00 = 0	0000E+00
3	2.00	102.0303	3 3182	.3318	3.3182	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0		5+00 .0000 5+00 .0000)F+00 0	000E+00
2	1.30	33.1022	3 3182	.3318	3.3182	.1000E-09	.0000E+00	.0000E+00	.0000E+00	.0000E+0		5+00 .000		
1	1.15	33.1022	5.5102				gas	volumetri	c analysis		diam-Ed	flow sd	veloc-	sd gamsd
0		hmana	rmgas	s steam	air				000	0000	00000	00005+00	00	0000E+00
	12.50	124 00	0000	99.990	.010	. 000	.000	.000	.000	.0000 .	00000 .	000000000000000000000000000000000000000		0000E+00
23	13.50	124.00	.00001	99,990	.010	. 000	.000	.000	.000	.0000 .	00000 .	00005+00	.00	0000E+00
22	12.99	124.00	00000	99,990	.010	. 000	.000	.000	.000	.0000	.00000 .	000002+00	.00	0000E+00
21	12.42	124.00	.00001	99,990	.010	. 000	. 000	.000	.000	.0000	.00000 .	000002+00	.00	00005+00
20) 11.85	124.00	. 0000	1 99 990	.010	. 000	.000	.000	.000	.0000	.00000 .	00005+00	.00	00005+00
19) 11.28	124.00		1 99 990	.010	. 000	.000	.000	.000	.0000	.00000 .	000000000000000000000000000000000000000	.00	0000E+00
18	3 10.71	124.00	. 0000	1 99 990	.010	. 000	.000	.000	.000	.0000	.00000 .	000000000000000000000000000000000000000	.00	0000E+00
17	10.13	124.00	.0000	1 99 990	.010	. 000	.000	.000	.000	.0000	.00000 .	00000000000	.00	00005+00
10	5 9.56	124.00	. 0000	1 99.990	.010	.000	.000	.000	.000	.0000	.00000 .	000000000000	.00	00005+00
1 9	5 8.99	124.00	.0000	1 00 000	010	.000	.000	.000	.000	.0000	.00000 .	0000E+00	.00	000002+00
14	4 8.42	124.00	.0000	1 00 000	010	.000	.000	.000	.000	.0000	.00000 .	0000E+00	.00	.00005+00
1	3 7.85	124.00	.0000	1 99.990	010	.000	.000	.000	.000	.0000	.00000 .	0000E+00	.00	.000000+00
13	2 7.28	124.00	.0000	1 99.990	010	000	.000	.000	.000	.0000	.00000 .	0000E+00	.00	.0000000000
1	1 6.71	124.00	.0000	1 99.990	, .010	000	.000	.000	.000	.0000	.00000 .	0000E+00	.00	.0000E+00
1	0 6.14	124.00	.0000	1 99.990		,	. 000	.000	.000	.0000	.00000 .	.0000E+00	.00	.0000E+00
-	9 5.57	124.00	.0000	1 99.990	.010	, .000	.000	.000	.000	.0000	.00000 .	.0000E+00	.00	.0000E+00
	8 5.00	124.00	. 0000	1 99.990	.010	,	000	.000	.000	.0000	.00000 .	.0000E+00	. 00	.0000E+00
	7 4 43	124.00	.0000	1 99.990) .010	.000	000	. 000	.000	.0000	.00000	.0000E+00	. 00	.0000E+00
	6 3.86	124.00	.0000	1 99.990) .010	.000	.000	000	.000	.0000	.00000	.0000E+00	. 00	.0000E+00
	5 3.00 5 3.29	124.00	. 0000	1 99.990	010	, .000	. 000	000	000	.0000	.00000	.0000E+00	.00	.0000E+00
	A 7 6A	124.00	. 0000	1 99.99	0 .010	000	.000	. 000	000	.0000	.00000	.0000E+00	.00	.0000E+00
	a 2.04 2 2.04	124.00	.0000	1 99.99	0.010	000 .000	. 000	.000	000	.0000	.00000	.0000E+00	. 00	.0000E+00
	ע.ע ע.ע0	124 00	.0000	1 99.99	0.010	000.000	.000	.000	.000	.0000				
	2 1 10	123.00												

1	1.15	124.00	.00001	99.990	.010	.000	. 000		. 000	.000	.0000 .0	00000 .	0000E+00	.00	.0000E+00
* * * * *				******	* * * * * * * * *	********	********			******	********		* * * * * * * * *		* * * * * * * *
0	channel	results	date 199	80803	time 00:0	00:00				**** T	est 31504	Bundle	Rod 7x7	****	
* * * * *	*******	*********	**********	******	*********	*********	fluid prov		iog for g	*******	5	*****	********	* * * * * * * * * *	* * * * * * * *
	Sim	ulation tim	e = vol	.00000	seconas	would f	raction	Jerti	les for c	flow ra	5 te	flow	heat	added	(ama
node		pressure	vei (ft	(cec)		VOIU	Taction			(lbm/s)	req.	(ht	u/s)	()bm/s)
no.	(11.)	(psi)	liquid	vapor e	ntr.	liquid va	apor entr		liquid	vapor	, entr.		liquid	vapor	(1010) 57
							•		-	-			-	-	
٨	14 56	40 000	. 00	. 00	. 00	.0000 1.0	000 .000	С	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
2	14 23	40.000	. 00	.00	.00	.0000 1.0	000 .000	Э	.00000	.00000	. 00000	0	.000E+00	.000E+00	. 00
2	13.89	40.001	. 00	. 00	. 00	.0000 1.0	0000 .0000	С	.00000	.00000	. 00000	0	.000E+00	.000E+00	.00
1	13.56	40.001	. 00	. 00	.00	.0000 1.0	0000 .000	0	.00000	.00000	.00000	0	.000E+00	.000E+00	.00
node	dist				er	thalov							density		net
noue no.	(ft.)				(bt	u/lbm)						(]	lbm/ft3)		entrain
		vapo	r h	g va	npor-hg	liquid	hf	liq	. – hf	mixture	li	quid	vapor	mixture	
1	14 56	1170	00 1169	77	.23*	236.13	236.13		.00	1169.25	58.	29915	.09443	.0945	. 000
4 7	14.23	1170.	00 1169	.77	. 23	236.13	236.13		.00	1169.25	58.	29915	.09444	.0945	.000
2	13.89	1170.	00 1169	.77	. 23	236.13	236.13		.00	1169.25	58.	29915	.09444	.0945	. 000
1	13.56	1170.	00 1169	.77	. 23	236.13	236.13		.00	1169.29	58.	29915	.09444	. 0945	.000
node	dist.	mixture flow rate	* * * * mixture velocity	rel vap.	lative vel liq. va	locities ap. entr	are.	* * a	vap./liq. interfaci drag	vap./ ial inter dr	drop facial ag	grid type	grid d tempe	spacers rature p egf c	v * * * * percent quenched
							2		0.0		0.01.0		0	0.0	0.00
4	14.56	.00	. 00		. 00	.00	د. د	489 189	. 00	10	0010		5	.00	. 000
3	14.23	.00	. 00	-	.00	.00	 R	489	.00	010	.0010		0	00	000
2	13.89	.00	.00		. 00	.00	. 0	501	. 00	010	.0010		D	.00	. 000
1	15.50														
* *	* * * *	* * * * * *	* * * *	* * * *	* * * *	* * * * *	* * * * *	* *	* * * * *		* * * *	* * *	• • • • •	* * * * *	* * * * *
node	dist.	hashl	hascl	hashv	hascv	drop ai	ai source		sent	sdent	qradd	qr	adv s	nkld g	gamsd
4	14.56	389.0593	38.9059	3.8906	38.9059	.1000E-0	9 .0000E+0	0.0	000E+00	.0000E+00	.0000E+0	0.000	0E+00 .00	00E+00 .00	000E+00
3	14.23	389.0593	38.9059	3.8906	38.9059	.1000E-0	9 .0000E+0	0.0	000E+00	. UUUUE+00	.0000E+0	0.000	UE+00 .00	UUE+00 .00	JUUE+00
2	13.89	389.0593	38.9059	3.8906	38.9059	.1000E 0	9 .0000E+0	0.0	000E+00 .	. UUUUE+00) .0000E+0	0.000	UE+00 .00	002+00 00	JUUE+00
1	13.56	389.0593	38.9059	3.8906	38.9059	.1000E-0	9 .0000E+0	0.0 5.00	lumetric	analvsis	5 .0000E+0				006+00
0		hmgas	rmgas	steam	air		ga	2 .0	1.4000110		diam ld	diam-s	d flow-s	d veloc :	sd gamsd

۲

4	14.	56 124.	0000.000	1 99.990	.010 .	000 .00	0.000	.000	. 0000	. 00000	.0000E+00	.00	.0000E+00
3	14.	23 124.	00 .0000	1 99.990	.010 .	000 .00	0 .000	.000	.0000	. 00000	.0000E+00	. 00	.0000E+00
2	13.	89 124	00 .0000	1 99.990	.010 .	000 .00	0 .000	.000	.0000	.00000	.0000E+00	.00	.0000E+00
1	13.	56 124.0	.0000	1 99.990	.010 .	000 .00	0 .000	.000	.0000	.00000	.0000E+00	.00	.0000E+00
* * * *	* * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * * * * * * *	* * * * * * *	* * * * * * * *
1			r	od results	**** Toot 3	date	1998 080 Rod 7x7	3 time	00:0 0:0	0			
					iest b	1504 Bundle	ROU /X/						
****	* * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	*****	*******	* * * * * * *	* * * * * * * *
		heater : surface	rod number no. 1 of	1		simulatio	n time =	.00 seco	nds				
				- cc	nducts heat t	o channels	3 0 0	0 0 0		geomet	ry type =	1	
				ar	d azimuthally	to surface	s 1 and	1		no. of	f radial nod	es = 8	
• • • •	* * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	*****	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	******	********	* * * * * * *	* * * * * * * * *
ro	d	axial	fluid te	mperatures	surface	heat	heater	rod tempera	tues,				
no	de	location	(de	g-f)	heat flux	transfer		(deg f)					
no		(in.)	liquid	vapor	(b/h-ft2)	mode	surfa	ice cent	er				
-													
2	4	162.72	. 0	. 0	.0000E+00		502.00	502.00	.000	0E+00			
2	3 *	159.29	.0	. 0	.0000E+00		502.00	502.00	. 000	0E+00			
2	2 *	152.44	.0	. 0	.0000E+00		658.35	658.35	.000	00E+00			
2	1 *	145.59	. 0	.0	.0000E+00		860.24	860.24	.000	00E+00			
2	0 *	138.74	.0	.0	.0000E+00		1264 00	1264 00	.000	05+00			
1	9 *	131.89	.0	.0	.0000E+00		1465 99	1465 89	.000	0000000			
1	8	125.04	.0	.0	.0000E+00		1403.09	1528 70	.000	05+00			
1		118.19	.0	.0	.0000E+00		1462 61	1462 61	.000				
1	6	111.34	.0	.0	.0000E+00		1402.01	1206 50	.000				
1	5 -	104.49	.0	. 0	.0000E+00		1390.32	1330.32	.000	002+00			
1	4 *	97.64	.0	.0	.0000E+00		1350.45	1364 34					
1	3 *	90.79	.0	. 0	.0000E+00		1204.34	1100 25	.000				
1	2 *	83.94	.0	. 0	.0000E+00		1198.25	1198.25	.000	00E+00			
1	1 *	77.09	.0	.0	.0000E+00		1132.10	1132.10	. 000	JUE+UU			
1	0 *	70.24	. 0	.0	.0000E+00		1066.07	1066.07	. 000	JOE+00			
	9 *	63.39	. 0	. 0	.0000E+00		999.98	999.98	. 000	JUE+00			
	8 *	56.54	. 0	. 0	.0000E+00		933.89	933.89	.000	DUE+00			
	7 *	49.69	. 0	. 0	.0000E+00		867.80	867.80	. 000	D0E+00			
	6 *	42.84	. 0	. 0	.0000E+00		801.71	801.71	. 000	D0E+00			
	5 *	35.56	. 0	. 0	.0000E+00		731.43	731.43	. 000	D0E+00			
	4 *	27.84	. 0	. 0	.0000E+00		656.94	656.94	. 000	JUE+00			
	3 *	20.12	. 0	. 0	.0000E+00		582.46	582.46	. 000	00E+00			
	2 *	15.01	. 0	. 0	.0000E+00		533.11	533.11	. 000	00E+00			
	1	13.75	. 0	. 0	.0000E+00		521.00	521.00	.000)0E+00			
ro	d	axial	· · • ·			rod temper	atures (de	eg-f)					
no	de	location				radii	in inches	5					

no.		(in.)	.0484	. 0931	.1219	.1400	.1582	.1710	.1790	.1870	
23	•	159.29	502.0	502.0	502.0	502.0	502.0	502.0	502.0	502.0	
22	*	152.44	658.4	658.4	658.4	658.4	658.4	658.4	658.4	658.4	
21	*	145.59	860.2	860.2	860.2	860.2	860.2	860.2	860.2	860.2	
20	*	138.74	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1	
19	*	131.89	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0	
18	*	125.04	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9	
17	*	118.19	1528.7	1528.7	1528.7	1528.7	1528.7	1528.7	1528.7	1528.7	
16	*	111.34	1462.6	1462.6	1462.6	1462.6	1462.6	1462.6	1462.6	1462.6	
15	٠	104.49	1396.5	1396.5	1396.5	1396.5	1396.5	1396.5	1396.5	1396.5	
14	*	97.64	1330.4	1330.4	1330.4	1330.4	1330.4	1330.4	1330.4	1330.4	
13	*	90.79	1264.3	1264.3	1264.3	1264.3	1264.3	1264.3	1264.3	1264.3	
12	*	83.94	1198.3	1198.3	1198.3	1198.3	1198.3	1198.3	1198.3	1198.3	
11	*	77.09	1132.2	1132.2	1132.2	1132.2	1132.2	1132.2	1132.2	1132.2	
10	*	70.24	1066.1	1066.1	1066.1	1066.1	1066.1	1066.1	1066.1	1066.1	
9		63.39	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	
8	*	56.54	933.9	933.9	933.9	933.9	933.9	933.9	933.9	933.9	
7	*	49.69	867.8	867.8	867.8	867.8	867.8	867.8	867.8	867.8	
6	*	42.84	801.7	801.7	801.7	801.7	801.7	801.7	801.7	801.7	
5	*	35.56	731.4	731.4	731.4	731.4	731.4	731.4	731.4	731.4	
4	*	27.84	656.9	656.9	656.9	656.9	656.9	656.9	656.9	656.9	
3	*	20.12	582.5	582.5	582.5	582.5	582.5	582.5	582.5	582.5	
2	*	15.01	533.1	533.1	533.1	533.1	533.1	533.1	533.1	533.1	

heater rod number 2	simulation time = .00 secon	nds
surface no. 1 of 1	conducts heat to channels 4 0 0 0 0 0	geometry type = 1
	and azimuthally to surfaces 1 and 1	no. of radial nodes = 8
**********	*************************************	*****

rod node		axial location	fluid tem (deg	peratures -f)	surface heat flux	heat transfer	heater	<pre>rod temper (deg-f)</pre>	atues,
no.		(in.)	liquid	vapor	(b/h-ft2)	mode	surfa	ce cen	ter
		· · · ·							
24		162 72	. 0	. 0	.0000E+00		502.00	502.00	.0000E+00
23	*	159 29	0	. 0	.0000E+00		502.00	502.00	.0000E+00
22	*	152 44	. 0	. 0	.0000E+00		658.35	658.35	.0000E+00
22	*	145 59	. 0	. 0	.0000E+00		860.24	860.24	.0000E+00
20	*	138 74	.0	. 0	.0000E+00		1062.12	1062.12	.0000E+00
10	*	131 89	.0	. 0	.0000E+00		1264.00	1264.00	.0000E+00
10		125 04	0	. 0	.0000E+00		1465.89	1465.89	.0000E+00
17	*	118 19	. 0	. 0	.0000E+00		1528.70	1528.70	.0000E+00
16		111 34	.0	.0	.0000E+00		1462.61	1462.61	.0000E+00
15	*	104.49	. 0	. 0	.0000E+00		1396.52	1396.52	.0000E+00

D-26

t

14	*	97.64	. 0	. 0	.0000E+0	00	1330	.43 13	30.43	.0000E+00		
13	*	90 79	. 0	. 0	.0000E+0	00	1264	. 34 12	264.34	.0000E+00		
12	*	83 94	. 0	. 0	.0000E+0	00	1198	.25 11	.98.25	.0000E+00		
11	*		0	0	.0000E+(00	1132	. 16 11	.32.16	.0000E+00		
10	•	70.24	. 0	0	0000E+0	0	1066	.07 10	066.07	.0000E+00		
10		70.24	. 0	. 0	0000E+0	10	999	98 9	99.98	.0000E+00		
9		63.39	. 0	. 0	0000000	20	933	80 0	133 89	0000E+00		
8	•	56.54	.0	.0	.00002+0	00	953	, 0, 2 0, 9	267 80	00005+00		
7	*	49.69	. 0	. 0	.0000E+	50	80/	. 00 0	007.00	00000000000		
6	*	42.84	. 0	. 0	.0000E+	00	801	./1 0		.00002+00		
5	*	35.56	. 0	. 0	.0000E+	00	/31	.43 /	/31.43	.0000E+00		
4	*	27.84	. 0	. 0	.0000E+	00	656	.94 6	56.94	.0000E+00		
3	*	20.12	. 0	. 0	.0000E+	00	582	.46 5	582.46	.0000E+00		
2	*	15.01	. 0	. 0	.0000E+	00	533	.11 5	533.11	.0000E+00		
1		13.75	. 0	. 0	.0000E+	00	521	.00 5	521.00	.0000E+00		
-												
rod		avial				rod (temperature	s (deg-f))			
node		location					radii in i	nches				
noue		(in)	0484	0931	.1219	.1400	.1582	.1710	.1790	.1870		
110.		(111.)										-
						5 0 0 0	502.0	502 0	502 D	502 0		
23	*	159.29	502.0	502.0	502.0	502.0	502.0	502.0	502.0	502.0		
22	*	152.44	658.4	658.4	658.4	658.4	658.4	658.4	058.4	000.4		
21	*	145.59	860.2	860.2	860.2	860.2	860.2	860.2	860.2	860.2		
20	*	138.74	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1	1062.1		
19	*	131 89	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0	1264.0		
10	*	125 04	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9	1465.9		
17		110 10	1528 7	1528 7	1528.7	1528.7	1528.7	1528.7	1528.7	1528.7		
17		110.19	1462 6	1462 6	1462 6	1462.6	1462.6	1462.6	1462.6	1462.6		
16		111.34	1402.0	1206 5	1306 5	1396 5	1396.5	1396.5	1396.5	1396.5		
15		104.49	1390.5	1330.5	1330 4	1330 4	1330 4	1330 4	1330.4	1330.4		
14	*	97.64	1330.4	1330.4	100.4	1264 2	1264 3	1264 3	1264 3	1264 3		
13	*	90.79	1264.3	1264.3	1204.3	1100 3	1109 2	1109 3	1198 3	1198 3		
12	*	83.94	1198.3	1198.3	1198.3	1190.3	1120.3	1170.5	1122.2	1132 2		
11	*	77.09	1132.2	1132.2	1132.2	1132.2	1132.2	1152.2	1152.2	1066 1		
10	*	70.24	1066.1	1066.1	1066.1	1066.1	1066.1	1066.1	1000.1	1066.1		
9	*	63.39	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0	1000.0		
8	*	56.54	933.9	933.9	933.9	933.9	933.9	933.9	933.9	933.9		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	49 69	867.8	867.8	867.8	867.8	867.8	867.8	867.8	867.8		
ć	*	42.84	801 7	801.7	801.7	801.7	801.7	801.7	801.7	801.7		
0 r		92.09	731 4	731 4	731.4	731.4	731.4	731.4	731.4	731.4		
5	Î	33.30	656 9	656 9	656 9	656.9	656.9	656.9	656.9	656.9		
4		27.84	000.9	030.9 E01 E	592 5	582 5	582.5	582.5	582.5	582.5		
3	*	20.12	582.5	502.5	502.5	622.5	533 1	533 1	533 1	533 1		
2	*	15.01	533.1	533.1	233.1	133.1	222.1		555.1	555.1		
* * * * * *	* * *	* * * * * * * * * * * *	*********	* * * * * * * * * * *	* * * * * * * * * *	*******	********	******	********	* * * * * * * * * * * * * *		
~	·v1 i	indrical tub	be rod no.	3		sim	ulation tim	ne =	.00 seconds			
C C		surface	no. 1 of	1					0		• · · · · · · · · · · · · · · · · · · ·	
				cond	ducts heat	to channe	els 4 0 (	0 0 0	0	geometry	type = 2	2
				â	and azimuth	hally to s	urfaces 1	land 1		no, of	radial nodes	= 3

roa	axial	*	outside surfa	ce	*	*	inside surface		· ·
node	location	heat flux	h.t. **** tempe	ratures	(deg f) ****	**** temperatures	(deg f) ****	h.t.	heat f
no.	(in.)	(b/h ft2)	mode wall	vapor	liquid	liquid vapor	wall	mode	(b/h-f
24	160 70	00005+00	521 00	00	0.0		521 00	0.0	000.00
24	150 20	000000000	521.00	.00	.00		521.00	. 00	005+00
20 *	152.44	00005+00	521.00	.00	.00		521.00	. 00	002+00
22 *	102.44	.0000E+00	521.00	.00	.00		521.00	. 00	002+00
21 *	120 74	.00005+00	521.00	.00	.00		521.00	. 00	002+00
20 -	138.74	.0000E+00	521.00	.00	.00		521.00	.00	00E+00
19 *	131.89	.0000E+00	521.00	.00	.00		521.00	.00	00E+00
18	125.04	.0000E+00	521.00	.00	.00		521.00	. 00	00E+00
17 *	118.19	.0000E+00	521.00	.00	.00		521.00	. 00	00E+00
16 *	111.34	.0000E+00	521.00	.00	.00		521.00	.00	00E+00
15 *	104.49	.0000E+00	521.00	.00	. 00		521.00	.00	00E+00
14 *	97.64	.0000E+00	521.00	.00	. 00		521.00	. 00	00E+00
13 *	90.79	.0000E+00	521.00	.00	. 00		521.00	. 00	00E+00
12 *	83.94	.0000E+00	521.00	.00	.00		521.00	. 00	00E+00
11 *	77.09	.0000E+00	521.00	.00	.00		521.00	. 00	00E+00
10 *	70.24	.0000E+00	521.00	.00	. 00		521.00	. 00	00E+00
9 *	63.39	.0000E+00	521.00	. 00	.00		521.00	.00	00E+00
8 *	56.54	.0000E+00	521.00	. 00	.00		521.00	.00	00E+00
7 *	49.69	.0000E+00	521.00	. 00	.00		521.00	.00	00E+00
6 *	42.84	.0000E+00	521.00	. 00	.00		521.00	. 00	00E+00
- - -	35.56	.0000E+00	521.00	.00	. 00		521.00	00	00E+00
4 *	27 84	0000E+00	521.00	.00	. 00		521 00	00	006+00
3 +	20 12	0000E+00	521.00	00	00		521 00		005+00
	15 01	00005+00	521 00	00	00		521 00	. 00	005+00
2	13.01	0000E+00	521.00	.00			521.00	. 00	002+00
	******	* * * * * * * * * * * * * *		*****	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	******	****
		heat	slab results	31504	date 199	98 0803 time 00	:0 0:00		
* * * * * * *	*********	* * * * * * * * * * * * *	1050	******	****	****	* * * * * * * * * * * * * * *	* * * * * * *	******
	heat slab n	o. 1 (wall)	si fl fl ge	mulation uid chan uid chan ometry 1	n time = .00 nnel on inside s nnel on outside type = 3	) seconds surface = 4 surface = 0			

-

rod	avial	*	out	side surfa	ice	*	* .		ins	ide surface		
node	logation	heat flux	h.t.	**** tempe	ratures	(deg f) ****	* * *	* tempera	tures (de	g-f) ****	h.t.	heat flux
noue	(in )	$\frac{1640}{164}$ ft21	mode	wall	vapor	liquid	1	iguid	vapor	wall	mode	(b/h-ftl)
no.	(111.)											
2.2	150 20	00005+00		521.00				.00	.00	521.00	. 0	000E+00
23	159.29	0000000000		521 00				.00	.00	521.00	. 0	000E+00
22	152.44	.0000E+00		521.00				00	00	521.00	. 0	000E+00
21	145.59	.0000E+00		521.00				.00	00	521 00	Ċ	1000E+00
20	138.74	.0000E+00		521.00				.00		521 00		0005+00
19	131.89	.0000E+00		521.00				.00	.00	521.00		00000.00
18	125.04	.0000E+00		521.00				.00	.00	521.00	. (	00002+00
17	118.19	.0000E+00		521.00				.00	.00	521.00	. (	00002+00
16	111.34	.0000E+00		521.00				.00	.00	521.00	. (	0000E+00
15	104 49	.0000E+00		521.00				.00	.00	521.00	. (	1000E+00
14	97 64	0000E+00		521.00				.00	.00	521.00	. (	0000E+00
14	37.03	00005+00		521 00				.00	. 00	521.00	. (	0000E+00
13	90.79	.0000E.00		521 00				.00	. 00	521.00	. (	0000E+00
12	83.94	.000000+00		521.00				.00	. 00	521.00	. (	0000E+00
11	77.09	.0000E+00		521.00				00	.00	521.00	. (	000E+00
10	70.24	.0000E+00		521.00				.00	00	521 00		0000E+00
9	63.39	.0000E+00		521.00				.00	.00	521.00		00005+00
8	56.54	.0000E+00		521.00				.00	.00	521.00		000000000000000000000000000000000000000
7	49.69	.0000E+00		521.00				.00	.00	521.00	•	000000+00
6	42.84	.0000E+00		5 <b>2</b> 1.00				.00	.00	521.00	•	0000E+00
5	35 56	.0000E+00		521.00				.00	.00	521.00	•	0000E+00
ر ۸	27 94	0000E+00		521.00				.00	.00	521.00	•	0000E+00
4	27.04	00005+00		521.00				.00	.00	521.00	•	0000E+00
3	20.12	.0000E+00		521 00				.00	.00	521.00	•	0000E+00
2	15.01	.00005+00		522.000								
			*******	* * * * * * * * * *	* * * * * * * *	***********	******	* * * * * * * * *	* * * * * * * * *	**********	* * * * * * * *	*******
*******	**********											
		1.5+	oral drift	t results		date 1998	0803 t	time 0	0:0 0:00			
1		100	erat drift	c roodrop								
		0				**** Test	31504 I	Bundle Ro	d 7x7 **	* *		
		case v										
		* * * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	* * * * * * * *	***********
******												
	aimulation	time =	.00000 s	econds	sum	mary for gap	1 co	nnecting	channel	3 to chann	el 4	
	Simulation	aresflows			vel	ocities		pressur	e void	fraction	flow	
ax18	al							diff.			area	
rang	ge	(ID/Sec)		liquid	vanor	entrained		nii pii	ii	ii		
(in	.) liqu	id vapor e	ntraineo	IIquiu	vapor	00		6000	1.0000	1.0000	.034	
13.8-	16.3.0	0.00	.00	.00	. 00	.00			1 0000	1 0000	105	
16.3	24.0.0	0.00	.00	. 00	.00	.00		.000	1 0000	1 0000	105	
24.0-	31.7 .0	0.00	.00	.00	. 00	.00		.000	1 0000	1 0000	105	
31 7-	39.4 0	0.00	.00	.00	. 00	.00		.000	1.0000	1.0000	.105	
30.4	163 N	0.00	.00	. 00	.00	.00		.000	1.0000	1.0000	.093	
39.4	-10.5 .0 E3.1 0	0 00	.00	.00	.00	.00		.000	1.0000	1.0000	.093	
40.3-	JJ.1 .0	0 00	.00	.00	.00	.00		.000	1.0000	1.0000	.093	
53.1-		0 00	00	. 00	. 00	. 00		.000	1.0000	1.0000	.093	
60.0-	66.8 .0		.00									

.

•

66			0.0	0.0	0.0	0.0	0.0	000	1 0000	1 0000	002	
	.8 73.7	. 00	.00	.00	.00	.00	.00	. 000	1.0000	1.0000	.093	
73	.7- 80.5	.00	. 00	.00	.00	.00	.00	. 000	1.0000	1.0000	.093	
80	.5-87.4	.00	.00	.00	. 00	.00	.00	.000	1.0000	1.0000	.093	
87	.4 94.2	. 00	.00	.00	.00	.00	.00	.000	1.0000	1.0000	. 093	
94	.2 101.1	. 00	. 00	. 00	.00	. 00	. 00	. 000	1.0000	1.0000	.093	
101	.1-107.9	.00	. 00	. 00	.00	.00	. 00	.000	1.0000	1.0000	. 093	
107	.9-114.8	. 00	. 00	. 00	. 00	.00	. 00	. 000	1.0000	1.0000	. 093	
114	.8 121.6	.00	. 00	. 00	.00	.00	. 00	. 000	1.0000	1.0000	.093	
121	6 128.5	.00	. 00	. 00	. 00	.00	.00	.000	1.0000	1.0000	.093	
128	5-135 3	.00	. 00	.00	. 00	. 00	. 00	. 000	1.0000	1.0000	. 093	
135	3-142 2	00	. 00	. 00	. 00	.00	. 00	. 000	1.0000	1.0000	.093	
142	2.149 0	. 00	. 00	.00	.00	.00	. 00	. 000	1.0000	1.0000	. 093	
1/0	0 155 9	. 0 0	00	. 00	. 00	.00	. 00	. 000	1.0000	1.0000	. 093	
1917	0 160 7	.00	.00	00	00	.00	.00	. 000	1.0000	1.0000	.093	
100	.9 102.7	.00	.00 ini	ection boun	darv condit	tions date	1998 0	803 time	00:0 0:00			
1			111	cecton noun	any condi-							
		0.000					**** Test	31504 Bundle	Rod 7x7 **	* *		
		Case	U									
			* * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *		* * * * * * * * * *	* * * * * * * * * * * * *		* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *
		Jakian tim		00000 60	conds							
	simu	lation tim	ie =	.00000 50	CONGS							
					•							
			<b>N</b>		•	init ul	init bai	nit blinit				
			cha	nnel node	• wg	injt wl	injt hgi	njt hlinjt				
			cha n	nnel node no. no.	• wg lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt 1bm btu/1bm				
			cha n	nnel node no. no.	• lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt 1bm btu/1bm				
			cha n	nnel node 10. no.	• lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt lbm btu/lbm				
			cha n	nnel node 10. no.	• vg lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt 1bm btu/1bm				
			cha n	nnel node no. no.	• lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt lbm btu/lbm				
			cha n	annel node no. no.	• Wg lbm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt lbm btu/lbm				
* * *			cha n	annel node no. no.	wg 1 bm	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt lbm btu/lbm				
* * *	• • • • • • • • • • •		cha n new ti	annel node no. no. ime domain r	wg lbm eached	injt wl /sec lbm	injt hgi /sec btu/	njt hlinjt 1bm btu/1bm				
• • •	minimum	maximum	cha n new ti time	annel node no. no. ime domain r long	wg lbm eached short	injt wl /sec lbm graphics	injt hgi /sec btu/ 	njt hlinjt lbm btu/lbm				
• • •	minimum time	maximum time	cha n new ti time domain	annel node no. no. ime domain r long edit	wg lbm eached short edit	injt wl /sec lbm ********* graphics edit	injt hgi /sec btu/ dump *	njt hlinjt lbm btu/lbm				

.

٢

* * 2.000E 04 1.500E 02 5.000E+02 5.000E+00 8.000E+02 1.000E+00 8.000E+02 *

time step ratio = 1.000E+00

-

*	*	*	*	*	saved o	graphics	data	at	time	.0000	*	*	*	*	*	*	*	*	*	*	*
*	*	*	٠	٠	saved o	graphics	data	at	time	. 9868	*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	saved of	graphics	data	at	time	1.9918	*	*	*	*	*	*	*	*	*	*	*
٠	*	٠	*	*	saved o	graphics	data	at	time	2.9968	*	*	*	*	*	*	*	*	*	*	*
٠	٠	*	٠	٠	saved g	graphics	data	at	time	4.0018	*	*	*	*	*	*	*	*	*	*	*

____

# D.3 Sub-Channel Model Input Deck

		0 0		C	.0		4.0	,						
	1	001	* * * * * *	Sub-	5 Channe	1 Mo	del of	RBH	r 7x7	Bundl	e ***	***		
1	$\begin{smallmatrix}&1\\40.0\end{smallmatrix}$	11	69.77		0.0	. 4	6667	-	L24.		0.0	. 9	999	
1.U air			.0001											
2	18 .0681. 1	5875	0.0	0.0	1									
23	.13621	175	0.0	0.0	3	23	3	0						
3.	.0681.	5875	0.0	0.0	2	20	2							
23 4.	.13621	.175	0.0	0.0	3		-	0						
23 5.	3 .13621	0 175	23 0.0	5 0.0	0 4	23	/	0		_	-			
23 6.	4 .0681.	0 5875	23 0.0	5 0.0	0 2	23	6	0	23	8	0			
23	6	003	23	9	0									
23	.08741	005	23	10	Ő									
8. 23	.08741 8	.083. 0	0.0 23	$0.0 \\ 10$	0	23	11	0						
9. 23	.08741 9	083 0	0.0 23	0.0 11	3 0	23	12	0						
10.	.0275.	4339	0.0	0.0	1									
11	. 4920	1.01	0.0	0.0	1									
3 12	.6150	1.01	0.0	0.0	2									
3 13	13 .50941	0 1.775	0.0	$14 \\ 0.0$	0 1									
3 14	14 .27242	0 2.350	0.0	0.0	2									
3	15	3	3	15	4 5									
3	15	3	3	15	4	3	16	7	3	16	8	3	16	9
16	.28973 16	5.683 7	3	16	-3	3	16	9						
175 3	5.6071 0	L0.69 15	0.0.	9026	2 16									
180 3	6.2803 16	3.500	1.616	0.0	0									
1	1	2	0.1220	.496	0.5	0.0	0	0	1.0	1	3			
2	2	3	0.1220	.496	0.5	0.0	0	0	1.0	0	4			
3	2	4	0.1220	.496	0.5	0.0	0	0	1.0	1	7			
1. 4	0.0	5	0.1220.	.496	0.5	0.0	0	0	1.0	2	8			
1. 5	0.0	5	0.1220.	.496	0.5	0.0	0	0	1.0	0	6			
1. 6	U.0 5	6	0.1220	. 496	0.5	0.0	0	0	1.0	5	9			
1.77	0.0 4 0.0	7	0.122.3	3915	0.5	0.0	0	0	1.0	3	-1			

D-31

.

8	5	80	.122.39	15	0.5	0.0	0	0	1.0	4	-1		
1. 9	0.0	90	.122.39	15	0.5	0.0	0	0	1.0	6	-1		
1. 10	0.0	80	.1000.4	96	0.5	0.5	0	0	1.0	0	11		
1. 11	0.0	90	.1000.4	96	0.5	0.5	0	0	1.0	10	12		
1. 12	0.0	100	.100.39	15	0.5	0.5	0	0	1.0	11	-1		
1.13	0.0 11	120	.9920.7	44	0.0	0.0	0	0	1.0	0	14		
1.14	0.0	131	.4880.4	96	0.0	0.0	0	0	1.0	13	0		
1. 15	0.0 14	150	.1220.7	44	0.5	0.0	0	0	1.0	0	16		
2. 16 3.	$     \begin{array}{c}       0.0 \\       15 \\       0.0 \\     \end{array} $	160	.1220.4	96	0.5	0.0	0	0	1.0	15	0		
1 4 6	2 5 6	1 2 4	2 4 6	2 6 9	1 4 8 6	2 5 7	4 4 10 12	3 3 5 9	3 5 8 10	5 8 10 8	2 7 5 7		
11 $4$ $1$	1 9 5 1	8 1 2	12 0 4	12 .0	9	9	12	<u> </u>	10	0	,		
17 2 14 15 16 3	14 3 1 4 7 10	15 2 2 5 8 22	16 2.8 3 6 9 2.	75 10 51	5	_	17 17 17 17		ć		6.05		
2		2.51	3		7.72	5		7.72	6		6.85	23	6.85
1 2 3 4 5 6 7 8 9 10	11 11 12 12 13 13 13 13						14 14 15 15 16 16 16						
4 11	3 18	2	4	0			1	2	3				
12 13	18 18			_			4 7	5 8	6 9	10			
5 18 18	1 18	1	4	1.0			11	12	13				
235 7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	8 2 5 8 11 14 17 20 23	1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 4 4 4 4 4 4 4	1 5 5 5 5 5 5 5 5 5 5 5 5 5	0 6 6 6 6 6 6 6 6	0 7 7 7 7 7 7 7 7	0 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9	10 10 10 10 10 10 10		
1.2	8	10	1	2	1.4	-	.2952		1.5		1.984		

. L

D-32

	2 1 2 3 4 5 6 7 8 9	5	$ \begin{array}{r}     8 \\     0.5 \\     1.0 \\     0.5 \\     1.0 \\     0.5 \\     0.75 \\     0.75 \\     0.75 \\     0.75 \\   \end{array} $	11 2 3 4 5 6 7 8 9	14 1 2 3 2 3 3 2 3 3 3 3 3	17 2 3 5 6 9 8 9 10	20 1 2 4 2 4 4 2	23 3 4 6 7 8 10	1 1 1 2 1	5 8 9	1 1 1				
	10 8 1	10 1	0.50 4 1	10 3 2	3 3	10 0.05	6	31 1.	1	1.0		0.	1	0.	
	1 2	.125 1	1	2		0.05		1.		1.0		0.	1	0.	
	1 3	.25 1	2 1	.25 2		0.05		1.		1.0		0.	1	0.	
	1 4	.125	2 1	.25	3	.125 0.05		1.		1.0		0.	1	0.	
	25	.25	4	.25	-	0.05		1.		1.0		0.	1	0.	
	6	.25	3	.25	5	.25	4	.25		1.0		0.	1	0.	
	3	.125	5 1	.25	6	0.05		1.		1.0		0.	1	0.	
	4 8	.25	1	.25 2	0	0.05	7	1.		1.0		0.	1	0.	
	4 9 5	.25	5 1	.25	8	0.05		.25		1.0		0.	1	0.	
	5 10 6	.25 2	0	.25	9	0.05	0	.25		0.0		0.	1	0.	
	1 2 3 4	. 125 3 3 3 3	0 0 0 0	.23 .496 .496 .496 .537	0 0 0 0	. 496 . 496 . 496 . 287		1.0 1.0 1.0 1.0	7 8 9 10			0. 0. 0. 0.		90.0 90.0 90.0 90.0	
858	1 1 3.0	2 3.75	3 8:	4 22.0	5 12	6 1.75	7 1	8 600.	9 15	7.75	85	58.0	168	8.76	
	2 10	1	0	4											
383	1 8.0	3.75	3.	72.0	12	1.75	6	45.0	15	7.75	38	33.0	16	B.76	
305	3 -1 1	0 -2 3.75	4 -3 32	4 -4 22.0	12	1.75	4	82.0	15	7.75	32	27.0	16	8.76	
221	1	1 2	-1 4	20	0 1	2	1.0	2	1.0	2	1.0	2	1.0	5	1.0
7	3	-7	9	5	-	2	-	-	-	2	-	-	5	5	2
	2	2	-1	20	0		1.0		1.0		1.0		1.0		1.0
16	3	5	9	7	2	1	2	4	3	7	9	5	8	12	18
	6	10	13	10											
19	3 6	3 10	-1 13	20 10	0 5	3	1.0 7	9	1.0 5	9	1.0 7	3	1.0 11	14	1.0 22
	11	19	22	14											

D-33

-----

	4 8	4 12	2 18	19 16	0 7	3	1.0 5	9	1.0 8	16	1.0 18	12	1.0 17	21	1.0 -1
11	14	22	19												
15	5 11	5 14	2 22	19 19	0 10	6	1.0 10	13	1.0 12	18	1.0 16	8	1.0 20	25	1.0 -2
12	23	26	23												
24	6 15	6 23	3 26	18 23	0 14	11	1.0 19	22	1.0 14	22	1.0 19	11	1.0 24	27	1.0 -3
2.	- 3	27													
	7 17	7 21	4 -1	13 16	0 8	12	1.0 18	17	1.0 -1	21	1.0 20	25	1.0 -2		1.0
	8 20	8 25	4 -2	13 19	0 11	14	1.0 22	21	1.0 -1	17	1.0 24	27	1.0 -3		1.0
	9 24	9 27	5 - 3	12 23	0 15	23	1.0 26	25	1.0 -2	20	1.0 28	-4	1.0		1.0
	10 28	10 -4	6 27	8 24	0 - 3	27	1.0 -3	24	1.0		1.0		1.0		1.0
	-1	.374		. 8		.374		.496							
. 31	-2 74	.374		. 8		.100		.496		0.0		0.0		. 8	
. 37	-3 74	.374		. 8		.100		.496		0.0		0.0		. 8	
. 3	-4 74	.374		. 8		.100		.496		0.0		.248		. 8	
. 3'	-5 74	.374		. 8		.100		.496		0.0		.248		. 8	
. 3'	-6 74	.374		. 8		.100		.496		0.0		.248		. 8	
_	9 1 1	3 hrod 2	.0675	.374 0.0	1	0.0 3	4 .045	0 1.0	3	2	.0465	0.0	3	1	.0280
0.	0 2 3	tube 1	.083	.375		.209	1	0							
	3 3 10	wall 1 3	.250	.496		.250	1	0	0						
	1	12 212. 572.		528.8 .111 .131	:	9.09 10.98		392. 752.		Inco .121 .141		10.04 11.93			

۰.

.

1 1 2	932. 292. 652. 012.		.151 .178 .204 .229	12 14 16 18	.88 .77 .66 .56	1 1 1 2	112. 472. 832. 192		.166 .191 .216 .241 .241	1: 1! 1 1	3.82 5.72 7.61 9.50		
2 1 1 2 2	14 212. 572. 932. 292. .652. 2012. 2372.	1 .1 .2 .3 .3 .3 .3 .3	19.2 6587 6264 2194 5829 8057 9421 0259	67 60 53 46 39 31 24	.37 .28 .19 .10 .01 .92 .83	1 1 1 2 2	392. 752. 112. 472. 832. 192. 552.	. 22 . 29 . 34 . 37 . 38 . 39 . 40	2015 9590 4233 7078 8822 9891 0546	6: 5: 4: 4: 3: 2: 2:	3.87 6.74 9.65 2.56 5.47 8.37 1.28		
3 1 11	10 70. 400. 800. 200. 600.	25	28.8 .100 .114 .120 .132 .157	10. 13. 16. 20. 23.	083 000 500 000 500	1 1 1	200. 600. 000. 400.		.107 .117 .125 .141 .186	11 14 18 21 25	.333 .833 .333 .833 .167		
1 1	4 13.75		. 5	121	75		1.5	15	7.75		. 5	157	.76
0.0	0.0		1.	1	.7.5		.921		35.0		8704	5	2.5
.8326	70.		.803	8	37.5		7755	1	05.0	•	7512	12	2.5
.7302	140.		.714	15	57.5		6973	1'	75.0		6837	19	2.5
.6710	220.		.652	25	55.0	•	6332	2	90.0	•	6167	32	5.0
.6017	360.		.588	39	95.0		5769	4	30.0		5656	46	5.0
.5562	500.		.547	53	35.0		.5444	5	70.0		5304	60	5.0
.5243 13 3	1000. 2	0	.002 1	0	0								
0.0 17 124.	1 1.0	0.0 2 .9999	0.1 1 .0001	0	1.01 .032	500. 1610	95	1.0 .3047		40.0			
18 124.	4 1.0	1 .9999	0 .0001	0	•	40.	1169	.7685		40.0			
14 0 0	5	0	0	0	0	0	0						
300	0 .0 .0 0	0 0001 .19 0001 25.0 0001 5.0 .001		.001 50 .002 50 .001 5	10 .0 00 .0 00 .0		0 100 50 100 300 100	. 2 . 0 . 0 . 0 . 0 . 0		1.0 50.0 1.0 5.0 1.0 5.0	) ) ) )	99000 99000 99000	).0 0 ).0 0 ).0 0

•