B3.3 INSTRUMENTATION

B 3.3.2 Engineered Safety Feature Actuation System (ESFAS) Instrumentation

BASES

BACKGROUND	The ESFAS initiates necessary safety systems, based on the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary, and to mitigate accidents.
	The ESFAS instrumentation is segmented into three distinct but interconnected modules as identified below:
	 Field transmitters or process sensors and instrumentation: provide a measurable electronic signal based on the physical characteristics of the parameter being measured,
	 Signal processing equipment including analog protection system, field contacts, and protection channel sets: provide signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications, and
	 Solid State Protection System (SSPS) including input, logic, and output bays: initiates the proper unit shutdown or engineered safety feature (ESF) actuation in accordance with the defined logic and based on the bistable outputs from the signal process control and protection system.
	The Allowable Value in conjunction with the trip setpoint and LCO establishes the threshold for ESFAS action to prevent exceeding acceptable limits such that the consequences of Design Basis Accidents (DBAs) will be acceptable. The Allowable Value is considered a limiting value such that a channel is OPERABLE if the setpoint is found not to exceed the Allowable Value during the CHANNEL OPERATIONAL TEST (COT). Note that, although a channel is "OPERABLE" under these circumstances, the ESFAS setpoint must be left adjusted to within the established calibration tolerance band of the ESFAS setpoint in accordance with the uncertainty assumptions stated in the referenced setpoint methodology, (as-left criteria) and confirmed to be operating within the statistical allowances of the uncertainty terms assigned.

WOG STS

BACKGROUND (continued)

Field Transmitters or Sensors

To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. In many cases, field transmitters or sensors that input to the ESFAS are shared with the Reactor Trip System (RTS). In some cases, the same channels also provide control system inputs. To account for calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint and Allowable Values. The OPERABILITY of each transmitter or sensor is determined by either "as-found" calibration data evaluated during the CHANNEL CALIBRATION or by qualitative assessment of field transmitter or sensor, as related to the channel behavior observed during performance of the CHANNEL CHECK.

Signal Processing Equipment

Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in FSAR, Chapter [6] (Ref. 1), Chapter [7] (Ref. 2), and Chapter [15] (Ref. 3). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems.

Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of- two logic.

Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to

BACKGROUND (continued)

provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation.

These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 2.

Allowable Values and ESFAS Setpoints

The trip setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those ESFAS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5), the Allowable Values specified in Table 3.3.2-1 in the accompanying LCO are conservative with respect to the analytical limits. A detailed description of the methodology used to calculate the Allowable Value and ESFAS setpoints including their explicit uncertainties, is provided in the plant specific setpoint methodology study (Ref. 6) which incorporates all of the known uncertainties applicable to each channel. The magnitudes of these uncertainties are factored into the determination of each ESFAS setpoint and corresponding Allowable Value. The nominal ESFAS setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for measurement errors detectable by the COT. The Allowable Value serves as the Technical Specification OPERABILITY limit for the purpose of the COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE.

The ESFAS setpoints are the values at which the bistables are set and is the expected value to be achieved during calibration. The ESFAS setpoint value ensures the safety analysis limits are met for the surveillance interval selected when a channel is adjusted based on stated channel uncertainties. Any bistable is considered to be properly adjusted when the "as-left" setpoint value is within the band for CHANNEL CALIBRATION uncertainty allowance (i.e., calibration tolerance uncertainties). The ESFAS setpoint value is therefore considered a

BACKGROUND (continued)

"nominal value" (i.e., expressed as a value without inequalities) for the purposes of the COT and CHANNEL CALIBRATION.

Setpoints adjusted consistent with the requirements of the Allowable Value ensure that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the unit is operated from within the LCOs at the onset of the DBA and the equipment functions as designed.

Each channel can be tested on line to verify that the signal processing equipment and setpoint accuracy is within the specified allowance requirements of Reference 2. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SR section.

Solid State Protection System

The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements.

The SSPS performs the decision logic for most ESF equipment actuation; generates the electrical output signals that initiate the required actuation; and provides the status, permissive, and annunciator output signals to the main control room of the unit.

The bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various transients. If a required logic matrix combination is completed, the system will send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases.

Each SSPS train has a built in testing device that can automatically test the decision logic matrix functions and the actuation devices while the

BACKGROUND (continued)

unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.

The actuation of ESF components is accomplished through master and slave relays. The SSPS energizes the master relays appropriate for the condition of the unit. Each master relay then energizes one or more slave relays, which then cause actuation of the end devices. The master and slave relays are routinely tested to ensure operation. The test of the master relays energizes the relay, which then operates the contacts and applies a low voltage to the associated slave relays. The low voltage is not sufficient to actuate the slave relays but only demonstrates signal path continuity. The SLAVE RELAY TEST actuates the devices if their operation will not interfere with continued unit operation. For the latter case, actual component operation is prevented by the SLAVE RELAY TEST circuit, and slave relay contact operation is verified by a continuity check of the circuit containing the slave relay.

- REVIEWER'S NOTE -

No one unit ESFAS incorporates all of the Functions listed in Table 3.3.2-1. In some cases (e.g., Containment Pressure - High 3, Function 2.c), the Table reflects several different implementations of the same Function. Typically, only one of these implementations are used at any specific unit.

Each of the analyzed accidents can be detected by one or more ESFAS APPLICABLE Functions. One of the ESFAS Functions is the primary actuation signal SAFETY for that accident. An ESFAS Function may be the primary actuation ANALYSES, LCO, and APPLICABILITY signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. For example, Pressurizer Pressure - Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment. Functions such as manual initiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as backups to Functions that were credited in the accident analysis (Ref. 3).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE. A channel is OPERABLE with a trip setpoint value outside its calibration tolerance band provided the trip setpoint "as-found" value does not exceed its associated Allowable Value and provided the trip setpoint "as-left" value is adjusted to a value within the calibration tolerance band of the Nominal Trip Setpoint. A trip setpoint may be set more conservative than the Nominal Trip Setpoint as necessary in response to plant conditions. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions.

The LCO generally requires OPERABILITY of four or three channels in each instrumentation function and two channels in each logic and manual initiation function. The two-out-of-three and the two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing an ESFAS initiation. Two logic or manual initiation channels are required to ensure no single random failure disables the ESFAS.

The required channels of ESFAS instrumentation provide unit protection in the event of any of the analyzed accidents. ESFAS protection functions are as follows:

1. Safety Injection

Safety Injection (SI) provides two primary functions:

- Primary side water addition to ensure maintenance or recovery of reactor vessel water level (coverage of the active fuel for heat removal, clad integrity, and for limiting peak clad temperature to < 2200°F), and
- 2. Boration to ensure recovery and maintenance of SDM (k_{eff} < 1.0).

These functions are necessary to mitigate the effects of high energy line breaks (HELBs) both inside and outside of containment. The SI signal is also used to initiate other Functions such as:

- Phase A Isolation,
- Containment Purge Isolation,

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

- Reactor Trip,
- Turbine Trip,
- Feedwater Isolation,
- Start of motor driven auxiliary feedwater (AFW) pumps,
- Control room ventilation isolation, and
- Enabling automatic switchover of Emergency Core Cooling Systems (ECCS) suction to containment sump.

These other functions ensure:

- Isolation of nonessential systems through containment penetrations,
- Trip of the turbine and reactor to limit power generation,
- Isolation of main feedwater (MFW) to limit secondary side mass losses,
- Start of AFW to ensure secondary side cooling capability,
- Isolation of the control room to ensure habitability, and
- Enabling ECCS suction from the refueling water storage tank (RWST) switchover on low low RWST level to ensure continued cooling via use of the containment sump.
- a. Safety Injection Manual Initiation

The LCO requires one channel per train to be OPERABLE. The operator can initiate SI at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.

The LCO for the Manual Initiation Function ensures the proper amount of redundancy is maintained in the manual ESFAS actuation circuitry to ensure the operator has manual ESFAS initiation capability.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. Each push button actuates both trains. This configuration does not allow testing at power.

b. <u>Safety Injection - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

This LCO requires two trains to be OPERABLE. Actuation logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment.

Manual and automatic initiation of SI must be OPERABLE in MODES 1, 2, and 3. In these MODES, there is sufficient energy in the primary and secondary systems to warrant automatic initiation of ESF systems. Manual Initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a SI, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation.

These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting individual systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. Unit pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems.

c. Safety Injection - Containment Pressure - High 1

This signal provides protection against the following accidents:

- SLB inside containment,
- LOCA, and

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Feed line break inside containment.

Containment Pressure - High 1 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with a two-out-of-three logic. The transmitters (d/p cells) and electronics are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment.

Thus, the high pressure Function will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

Containment Pressure - High 1 must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary systems to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment.

d. Safety Injection - Pressurizer Pressure - Low

This signal provides protection against the following accidents:

- Inadvertent opening of a steam generator (SG) relief or safety valve,
- SLB,
- A spectrum of rod cluster control assembly ejection accidents (rod ejection),
- Inadvertent opening of a pressurizer relief or safety valve,
- LOCAs, and
- SG Tube Rupture.

At some units pressurizer pressure provides both control and protection functions: input to the Pressurizer Pressure Control System, reactor trip, and SI. Therefore, the actuation logic must be able to withstand both an input failure to control system, which may then require the protection function

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

actuation, and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements.

The transmitters are located inside containment, with the taps in the vapor space region of the pressurizer, and thus possibly experiencing adverse environmental conditions (LOCA, SLB inside containment, rod ejection). Therefore, the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 (above P-11) to mitigate the consequences of an HELB inside containment. This signal may be manually blocked by the operator below the P-11 setpoint. Automatic SI actuation below this pressure setpoint is then performed by the Containment Pressure - High 1 signal.

This Function is not required to be OPERABLE in MODE 3 below the P-11 setpoint. Other ESF functions are used to detect accident conditions and actuate the ESF systems in this MODE. In MODES 4, 5, and 6, this Function is not needed for accident detection and mitigation.

- e. Safety Injection Steam Line Pressure
 - (1) Steam Line Pressure Low

Steam Line Pressure - Low provides protection against the following accidents:

- SLB,
- Feed line break, and
- Inadvertent opening of an SG relief or an SG safety valve.

Steam Line Pressure - Low provides no input to any control functions. Thus, three OPERABLE channels on

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

each steam line are sufficient to satisfy the protective requirements with a two-out-of-three logic on each steam line.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during a secondary side break. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties.

This Function is anticipatory in nature and has a typical lead/lag ratio of 50/5.

Steam Line Pressure - Low must be OPERABLE in MODES 1, 2, and 3 (above P-11) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, feed line break is not a concern. Inside containment SLB will be terminated by automatic SI actuation via Containment Pressure - High 1, and outside containment SLB will be terminated by the Steam Line Pressure - Negative Rate - High signal for steam line isolation. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident.

(2) <u>Steam Line Pressure - High Differential Pressure Between</u> <u>Steam Lines</u>

Steam Line Pressure - High Differential Pressure Between Steam Lines provides protection against the following accidents:

- SLB,
- Feed line break, and
- Inadvertent opening of an SG relief or an SG safety valve.

Steam Line Pressure - High Differential Pressure Between Steam Lines provides no input to any control functions.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Thus, three OPERABLE channels on each steam line are sufficient to satisfy the requirements, with a two-out-of-three logic on each steam line.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. Steam line high differential pressure must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is not sufficient energy in the secondary side of the unit to cause an accident.

f, g. <u>Safety Injection - High Steam Flow in Two Steam Lines</u> <u>Coincident With T_{avg} - Low Low or Coincident With Steam Line</u> <u>Pressure - Low</u>

These Functions (1.f and 1.g) provide protection against the following accidents:

- SLB, and
- the inadvertent opening of an SG relief or an SG safety valve.

Two steam line flow channels per steam line are required OPERABLE for these Functions. The steam line flow channels are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-out-of-two configuration allows online testing because trip of one high steam flow channel is not sufficient to cause initiation. High steam flow in two steam lines is acceptable in the case of a single steam line fault due to the fact that the remaining intact steam lines will pick up the full turbine load. The increased steam flow in the remaining intact lines will actuate the required second high steam flow trip. Additional

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

protection is provided by Function 1.e.(2), High Differential Pressure Between Steam Lines.

One channel of $T_{\mbox{\scriptsize avg}}$ per loop and one channel of low steam line pressure per steam line are required OPERABLE. For each parameter, the channels for all loops or steam lines are combined in a logic such that two channels tripped will cause a trip for the parameter. For example, for three loop units, the low steam line pressure channels are combined in two-out-ofthree logic. Thus, the Function trips on one-out-of-two high flow in any two-out-of-three steam lines if there is one-out-of-one low low Tava trip in any two-out-of-three RCS loops, or if there is a one-out-of-one low pressure trip in any two-out-of-three steam lines. Since the accidents that this event protects against cause both low steam line pressure and low low Tavo, provision of one channel per loop or steam line ensures no single random failure can disable both of these Functions. The steam line pressure channels provide no control inputs. The T_{avq} channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate.

The Allowable Value for high steam flow is a linear function that varies with power level. The function is a ΔP corresponding to 44% of full steam flow between 0% and 20% load to 114% of full steam flow at 100% load. The nominal trip setpoint is similarly calculated.

With the transmitters typically located inside the containment (T_{avg}) or inside the steam tunnels (High Steam Flow), it is possible for them to experience adverse steady state environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. The Steam Line Pressure - Low signal was discussed previously under Function 1.e.(1).

This Function must be OPERABLE in MODES 1, 2, and 3 (above P-12) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This signal may be manually blocked by the operator when below the P-12 setpoint. Above P-12, this Function is automatically unblocked. This Function is not required all the second

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

OPERABLE below P-12 because the reactor is not critical, so feed line break is not a concern. SLB may be addressed by Containment Pressure High 1 (inside containment) or by High Steam Flow in Two Steam Lines coincident with Steam Line Pressure - Low, for Steam Line Isolation, followed by High Differential Pressure Between Two Steam Lines, for SI. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident.

2. Containment Spray

Containment Spray provides three primary functions:

- 1. Lowers containment pressure and temperature after an HELB in containment,
- 2. Reduces the amount of radioactive iodine in the containment atmosphere, and
- 3. Adjusts the pH of the water in the containment recirculation sump after a large break LOCA.

These functions are necessary to:

- Ensure the pressure boundary integrity of the containment structure,
- Limit the release of radioactive iodine to the environment in the event of a failure of the containment structure, and
- Minimize corrosion of the components and systems inside containment following a LOCA.

The containment spray actuation signal starts the containment spray pumps and aligns the discharge of the pumps to the containment spray nozzle headers in the upper levels of containment. Water is initially drawn from the RWST by the containment spray pumps and mixed with a sodium hydroxide solution from the spray additive tank. When the RWST reaches the low low level setpoint, the spray pump suctions are shifted to the containment sump if continued containment spray is required. Containment spray is actuated

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

manually by Containment Pressure - High 3 or Containment Pressure - High High.

a. Containment Spray - Manual Initiation

The operator can initiate containment spray at any time from the control room by simultaneously turning two containment spray actuation switches in the same train. Because an inadvertent actuation of containment spray could have such serious consequences, two switches must be turned simultaneously to initiate containment spray. There are two sets of two switches each in the control room. Simultaneously turning the two switches in either set will actuate containment spray in both trains in the same manner as the automatic actuation signal. Two Manual Initiation switches in each train are required to be OPERABLE to ensure no single failure disables the Manual Initiation Function. Note that Manual Initiation of containment spray also actuates Phase B containment isolation.

b. <u>Containment Spray - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

Manual and automatic initiation of containment spray must be OPERABLE in MODES 1, 2, and 3 when there is a potential for an accident to occur, and sufficient energy in the primary or secondary systems to pose a threat to containment integrity due to overpressure conditions. Manual initiation is also required in MODE 4, even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a containment spray, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary and secondary systems to result in containment overpressure. In MODES 5 and 6, there is also adequate time for the operators to evaluate unit

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

conditions and respond, to mitigate the consequences of abnormal conditions by manually starting individual components.

c. Containment Spray - Containment Pressure

This signal provides protection against a LOCA or an SLB inside containment. The transmitters (d/p cells) are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

This is one of the only Functions that requires the bistable output to energize to perform its required action. It is not desirable to have a loss of power actuate containment spray, since the consequences of an inadvertent actuation of containment spray could be serious. Note that this Function also has the inoperable channel placed in bypass rather than trip to decrease the probability of an inadvertent actuation.

Two different logic configurations are typically used. Three and four loop units use four channels in a two-out-of-four logic configuration. This configuration may be called the Containment Pressure - High 3 Setpoint for three and four loop units, and Containment Pressure - High High Setpoint for other units. Some two loop units use three sets of two channels, each set combined in a one-out-of-two configuration, with these outputs combined so that two-out-of-three sets tripped initiates containment spray. This configuration is called Containment Pressure - High 3 Setpoint. Since containment pressure is not used for control, both of these arrangements exceed the minimum redundancy requirements. Additional redundancy is warranted because this Function is energize to trip. Containment Pressure - [High 3] [High High] must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary sides to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to pressurize the containment and reach the Containment Pressure - High 3 (High High) setpoints.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

3. Containment Isolation

Containment Isolation provides isolation of the containment atmosphere, and all process systems that penetrate containment, from the environment. This Function is necessary to prevent or limit the release of radioactivity to the environment in the event of a large break LOCA.

There are two separate Containment Isolation signals, Phase A and Phase B. Phase A isolation isolates all automatically isolable process lines, except component cooling water (CCW), at a relatively low containment pressure indicative of primary or secondary system leaks. For these types of events, forced circulation cooling using the reactor coolant pumps (RCPs) and SGs is the preferred (but not required) method of decay heat removal. Since CCW is required to support RCP operation, not isolating CCW on the low pressure Phase A signal enhances unit safety by allowing operators to use forced RCS circulation to cool the unit. Isolating CCW on the low pressure signal may force the use of feed and bleed cooling, which could prove more difficult to control.

Phase A containment isolation is actuated automatically by SI, or manually via the automatic actuation logic. All process lines penetrating containment, with the exception of CCW, are isolated. CCW is not isolated at this time to permit continued operation of the RCPs with cooling water flow to the thermal barrier heat exchangers and air or oil coolers. All process lines not equipped with remote operated isolation valves are manually closed, or otherwise isolated, prior to reaching MODE 4.

Manual Phase A Containment Isolation is accomplished by either of two switches in the control room. Either switch actuates both trains. Note that manual actuation of Phase A Containment Isolation also actuates Containment Purge and Exhaust Isolation.

The Phase B signal isolates CCW. This occurs at a relatively high containment pressure that is indicative of a large break LOCA or an SLB. For these events, forced circulation using the RCPs is no longer desirable. Isolating the CCW at the higher pressure does not pose a challenge to the containment boundary because the CCW System is a closed loop inside containment. Although some system components do not meet all of the ASME Code requirements applied to the containment itself, the system is continuously

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

pressurized to a pressure greater than the Phase B setpoint. Thus, routine operation demonstrates the integrity of the system pressure boundary for pressures exceeding the Phase B setpoint. Furthermore, because system pressure exceeds the Phase B setpoint, any system leakage prior to initiation of Phase B isolation would be into containment. Therefore, the combination of CCW System design and Phase B isolation ensures the CCW System is not a potential path for radioactive release from containment.

Phase B containment isolation is actuated by Containment Pressure - High 3 or Containment Pressure - High High, or manually, via the automatic actuation logic, as previously discussed. For containment pressure to reach a value high enough to actuate Containment Pressure - High 3 or Containment Pressure - High High, a large break LOCA or SLB must have occurred and containment spray must have been actuated. RCP operation will no longer be required and CCW to the RCPs is, therefore, no longer necessary. The RCPs can be operated with seal injection flow alone and without CCW flow to the thermal barrier heat exchanger.

Manual Phase B Containment Isolation is accomplished by the same switches that actuate Containment Spray. When the two switches in either set are turned simultaneously, Phase B Containment Isolation and Containment Spray will be actuated in both trains.

- a. Containment Isolation Phase A Isolation
 - (1) Phase A Isolation Manual Initiation

Manual Phase A Containment Isolation is actuated by either of two switches in the control room. Either switch actuates both trains. Note that manual initiation of Phase A Containment Isolation also actuates Containment Purge Isolation.

(2) <u>Phase A Isolation - Automatic Actuation Logic and</u> <u>Actuation Relays</u>

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Manual and automatic initiation of Phase A Containment Isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a Phase A Containment Isolation, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase A Containment Isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions.

(3) Phase A Isolation - Safety Injection

Phase A Containment Isolation is also initiated by all Functions that initiate SI. The Phase A Containment Isolation requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements.

b. Containment Isolation - Phase B Isolation

Phase B Containment Isolation is accomplished by Manual Initiation, Automatic Actuation Logic and Actuation Relays, and by Containment Pressure channels (the same channels that actuate Containment Spray, Function 2). The Containment Pressure trip of Phase B Containment Isolation is energized to trip in order to minimize the potential of spurious trips that may damage the RCPs.

- (1) Phase B Isolation Manual Initiation
- (2) <u>Phase B Isolation Automatic Actuation Logic and</u> <u>Actuation Relays</u>

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Manual and automatic initiation of Phase B containment isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE. adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a Phase B containment isolation, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase B containment isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions.

(3) Phase B Isolation - Containment Pressure

The basis for containment pressure MODE applicability is as discussed for ESFAS Function 2.c above.

4. Steam Line Isolation

Isolation of the main steam lines provides protection in the event of an SLB inside or outside containment. Rapid isolation of the steam lines will limit the steam break accident to the blowdown from one SG, at most. For an SLB upstream of the main steam isolation valves (MSIVs), inside or outside of containment, closure of the MSIVs limits the accident to the blowdown from only the affected SG. For an SLB downstream of the MSIVs, closure of the MSIVs terminates the accident as soon as the steam lines depressurize. For units that do not have steam line check valves, Steam Line Isolation also mitigates the effects of a feed line break and ensures a source of steam for the turbine driven AFW pump during a feed line break.

a. Steam Line Isolation - Manual Initiation

Manual initiation of Steam Line Isolation can be accomplished from the control room. There are two switches in the control

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

room and either switch can initiate action to immediately close all MSIVs. The LCO requires two channels to be OPERABLE.

b. <u>Steam Line Isolation - Automatic Actuation Logic and Actuation</u> <u>Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

Manual and automatic initiation of steam line isolation must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the RCS and SGs to have an SLB or other accident. This could result in the release of significant quantities of energy and cause a cooldown of the primary system. The Steam Line Isolation Function is required in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is insufficient energy in the RCS and SGs to experience an SLB or other accident releasing significant quantities of energy.

c. Steam Line Isolation - Containment Pressure - High 2

This Function actuates closure of the MSIVs in the event of a LOCA or an SLB inside containment to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. The transmitters (d/p cells) are located outside containment with the sensing line (high pressure side of the transmitter) located inside containment. Containment Pressure - High 2 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with two-out-of-three logic. However, for enhanced reliability, this Function was designed with four channels and a two-out-of-four logic. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions, and the Trip Setpoint reflects only steady state instrument uncertainties.

Containment Pressure - High 2 must be OPERABLE in MODES 1, 2, and 3, when there is sufficient energy in the primary and secondary side to pressurize the containment following a pipe break. This would cause a significant increase in the containment pressure, thus allowing detection and

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

closure of the MSIVs. The Steam Line Isolation Function remains OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is not enough energy in the primary and secondary sides to pressurize the containment to the Containment Pressure -High 2 setpoint.

- d. Steam Line Isolation Steam Line Pressure
 - (1) Steam Line Pressure Low

Steam Line Pressure - Low provides closure of the MSIVs in the event of an SLB to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. This Function provides closure of the MSIVs in the event of a feed line break to ensure a supply of steam for the turbine driven AFW pump. Steam Line Pressure - Low was discussed previously under SI Function 1.e.1.

Steam Line Pressure - Low Function must be OPERABLE in MODES 1, 2, and 3 (above P-11), with any main steam valve open, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, an inside containment SLB will be terminated by automatic actuation via Containment Pressure - High 2. Stuck valve transients and outside containment SLBs will be terminated by the Steam Line Pressure - Negative Rate - High signal for Steam Line Isolation below P-11 when SI has been manually blocked. The Steam Line Isolation Function is required in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

(2) Steam Line Pressure - Negative Rate - High

Steam Line Pressure - Negative Rate - High provides closure of the MSIVs for an SLB when less than the P-11 setpoint, to maintain at least one unfaulted SG as a heat

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

sink for the reactor, and to limit the mass and energy release to containment. When the operator manually blocks the Steam Line Pressure - Low main steam isolation signal when less than the P-11 setpoint, the Steam Line Pressure - Negative Rate - High signal is automatically enabled. Steam Line Pressure - Negative Rate - High provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy requirements with a two-out-of-three logic on each steam line.

Steam Line Pressure - Negative Rate - High must be OPERABLE in MODE 3 when less than the P-11 setpoint, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). In MODES 1 and 2, and in MODE 3, when above the P-11 setpoint, this signal is automatically disabled and the Steam Line Pressure - Low signal is automatically enabled. The Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to have an SLB or other accident that would result in a release of significant enough quantities of energy to cause a cooldown of the RCS.

While the transmitters may experience elevated ambient temperatures due to an SLB, the trip function is based on rate of change, not the absolute accuracy of the indicated steam pressure. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties.

e, f. <u>Steam Line Isolation - High Steam Flow in Two Steam Lines</u> <u>Coincident with T_{avg} - Low Low or Coincident With Steam Line</u> <u>Pressure - Low (Thre and Four Loop Units)</u>

These Functions (4.e and 4.f) provide closure of the MSIVs during an SLB or inadvertent opening of an SG relief or a safety valve, to maintain at least one unfaulted SG as a heat sink for the reactor and to limit the mass and energy release to containment.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

These Functions were discussed previously as Functions 1.f. and 1.g.

These Functions must be OPERABLE in MODES 1 and 2, and in MODE 3, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. These Functions are not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

g. <u>Steam Line Isolation - High Steam Flow Coincident With Safety</u> Injection and Coincident With T_{ave} - Low Low (Two Loop Units)

This Function provides closure of the MSIVs during an SLB or inadvertent opening of an SG relief or safety valve to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment.

Two steam line flow channels per steam line are required OPERABLE for this Function. These are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-out-of-two configuration allows online testing because trip of one high steam flow channel is not sufficient to cause initiation.

The High Steam Flow Allowable Value is a ΔP corresponding to 25% of full steam flow at no load steam pressure. The Trip Setpoint is similarly calculated.

With the transmitters (d/p cells) typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoints reflect both steady state and adverse environmental instrument uncertainties.

The main steam line isolates only if the high steam flow signal occurs coincident with an SI and low low RCS average temperature. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

Two channels of T_{avg} per loop are required to be OPERABLE. The T_{avg} channels are combined in a logic such that two channels tripped cause a trip for the parameter. The accidents that this Function protects against cause reduction of T_{avg} in the entire primary system. Therefore, the provision of two OPERABLE channels per loop in a two-out-of-four configuration ensures no single random failure disables the T_{avg} - Low Low Function. The T_{avg} channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate. Therefore, additional channels are not required to address control protection interaction issues.

With the T_{avg} resistance temperature detectors (RTDs) located inside the containment, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrumental uncertainties.

This Function must be OPERABLE in MODES 1 and 2, and in MODE 3, when above the P-12 setpoint, when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines. Below P-12 this Function is not required to be OPERABLE because the High High Steam Flow coincident with SI Function provides the required protection. The Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

h. <u>Steam Line Isolation - High High Steam Flow Coincident With</u> Safety Injection (Two Loop Units)

This Function provides closure of the MSIVs during a steam line break (or inadvertent opening of a relief or safety valve) to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Two steam line flow channels per steam line are required to be OPERABLE for this Function. These are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements.

The Allowable Value for high steam flow is a ΔP , corresponding to 130% of full steam flow at full steam pressure. The Trip Setpoint is similarly calculated.

With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties.

The main steam lines isolate only if the high steam flow signal occurs coincident with an SI signal. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident.

5. <u>Turbine Trip and Feedwater Isolation</u>

The primary functions of the Turbine Trip and Feedwater Isolation signals are to prevent damage to the turbine due to water in the steam lines, and to stop the excessive flow of feedwater into the SGs. These Functions are necessary to mitigate the effects of a high water level in the SGs, which could result in carryover of water into the steam lines and excessive cooldown of the primary system. The SG high water level is due to excessive feedwater flows.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The Function is actuated when the level in any SG exceeds the high high setpoint, and performs the following functions:

- Trips the main turbine,
- Trips the MFW pumps,
- Initiates feedwater isolation, and
- Shuts the MFW regulating valves and the bypass feedwater regulating valves.

This Function is actuated by SG Water Level - High High, or by an SI signal. The RTS also initiates a turbine trip signal whenever a reactor trip (P-4) is generated. In the event of SI, the unit is taken off line and the turbine generator must be tripped. The MFW System is also taken out of operation and the AFW System is automatically started. The SI signal was discussed previously.

a. <u>Turbine Trip and Feedwater Isolation - Automatic Actuation</u> Logic and Actuation Relays

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

b. <u>Turbine Trip and Feedwater Isolation - Steam Generator Water</u> Level - High High (P-14)

This signal provides protection against excessive feedwater flow. The ESFAS SG water level instruments provide input to the SG Water Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system (which may then require the protection function actuation) and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in NUREG-1218 (Ref. 7).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

The transmitters (d/p cells) are located inside containment. However, the events that this Function protects against cannot cause a severe environment in containment. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties.

c. Turbine Trip and Feedwater Isolation - Safety Injection

Turbine Trip and Feedwater Isolation is also initiated by all Functions that initiate SI. The Feedwater Isolation Function requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead Function 1, SI, is referenced for all initiating functions and requirements.

Turbine Trip and Feedwater Isolation Functions must be OPERABLE in MODES 1 and 2 [and 3] except when all MFIVs, MFRVs, [and associated bypass valves] are closed and [de-activated] [or isolated by a closed manual valve] when the MFW System is in operation and the turbine generator may be in operation. In MODES [3,] 4, 5, and 6, the MFW System and the turbine generator are not in service and this Function is not required to be OPERABLE.

6. <u>Auxiliary Feedwater</u>

The AFW System is designed to provide a secondary side heat sink for the reactor in the event that the MFW System is not available. The system has two motor driven pumps and a turbine driven pump, making it available during normal unit operation, during a loss of AC power, a loss of MFW, and during a Feedwater System pipe break. The normal source of water for the AFW System is the condensate storage tank (CST) (normally not safety related). A low level in the CST will automatically realign the pump suctions to the Essential Service Water (ESW) System (safety related). The AFW System is aligned so that upon a pump start, flow is initiated to the respective SGs immediately.

a. <u>Auxiliary Feedwater - Automatic Actuation Logic and Actuation</u> <u>Relays (Solid State Protection System)</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

b. <u>Auxiliary Feedwater - Automatic Actuation Logic and Actuation</u> <u>Relays (Balance of Plant ESFAS)</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

c. Auxiliary Feedwater - Steam Generator Water Level - Low Low

SG Water Level - Low Low provides protection against a loss of heat sink. A feed line break, inside or outside of containment, or a loss of MFW, would result in a loss of SG water level. SG Water Level - Low Low provides input to the SG Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system which may then require a protection function actuation and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in Reference 7.

With the transmitters (d/p cells) located inside containment and thus possibly experiencing adverse environmental conditions (feed line break), the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties.

d. Auxiliary Feedwater - Safety Injection

An SI signal starts the motor driven and turbine driven AFW pumps. The AFW initiation functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements.

e. Auxiliary Feedwater - Loss of Offsite Power

A loss of offsite power to the service buses will be accompanied by a loss of reactor coolant pumping power and the subsequent

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

need for some method of decay heat removal. The loss of offsite power is detected by a voltage drop on each service bus. Loss of power to either service bus will start the turbine driven AFW pumps to ensure that at least one SG contains enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip.

Functions 6.a through 6.e must be OPERABLE in MODES 1, 2, and 3 to ensure that the SGs remain the heat sink for the reactor. SG Water Level - Low Low in any operating SG will cause the motor driven AFW pumps to start. The system is aligned so that upon a start of the pump, water immediately begins to flow to the SGs. SG Water Level - Low Low in any two operating SGs will cause the turbine driven pumps to start. These Functions do not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW actuation does not need to be OPERABLE because either AFW or residual heat removal (RHR) will already be in operation to remove decay heat or sufficient time is available to manually place either system in operation.

f. Auxiliary Feedwater - Undervoltage Reactor Coolant Pump

A loss of power on the buses that provide power to the RCPs provides indication of a pending loss of RCP forced flow in the RCS. The Undervoltage RCP Function senses the voltage downstream of each RCP breaker. A loss of power, or an open RCP breaker, on two or more RCPs, will start the turbine driven AFW pump to ensure that at least one SG contains enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip.

g. Auxiliary Feedwater - Trip of All Main Feedwater Pumps

A Trip of all MFW pumps is an indication of a loss of MFW and the subsequent need for some method of decay heat and sensible heat removal to bring the reactor back to no load temperature and pressure. A turbine driven MFW pump is equipped with two pressure switches on the control air/oil line for the speed control system. A low pressure signal from either of these pressure switches indicates a trip of that pump. Motor driven MFW pumps are equipped with a breaker position sensing device. An open supply breaker indicates that the

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

pump is not running. Two OPERABLE channels per pump satisfy redundancy requirements with one-out-of-two taken twice logic. A trip of all MFW pumps starts the motor driven and turbine driven AFW pumps to ensure that at least one SG is available with water to act as the heat sink for the reactor.

Functions 6.f and 6.g must be OPERABLE in MODES 1 and 2. This ensures that at least one SG is provided with water to serve as the heat sink to remove reactor decay heat and sensible heat in the event of an accident. In MODES 3, 4, and 5, the RCPs and MFW pumps may be normally shut down, and thus neither pump trip is indicative of a condition requiring automatic AFW initiation.

h. <u>Auxiliary Feedwater - Pump Suction Transfer on Suction</u> <u>Pressure - Low</u>

A low pressure signal in the AFW pump suction line protects the AFW pumps against a loss of the normal supply of water for the pumps, the CST. Two pressure switches are located on the AFW pump suction line from the CST. A low pressure signal sensed by any one of the switches will cause the emergency supply of water for both pumps to be aligned, or cause the AFW pumps to stop until the emergency source of water is aligned. ESW (safety grade) is then lined up to supply the AFW pumps to ensure an adequate supply of water for the AFW system to maintain at least one of the SGs as the heat sink for reactor decay heat and sensible heat removal.

Since the detectors are located in an area not affected by HELBs or high radiation, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 to ensure a safety grade supply of water for the AFW System to maintain the SGs as the heat sink for the reactor. This Function does not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW automatic suction transfer does not need to be OPERABLE because RHR will already be in operation, or sufficient time is available to place RHR in operation, to remove decay heat.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

7. Automatic Switchover to Containment Sump

At the end of the injection phase of a LOCA, the RWST will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. The low head residual heat removal (RHR) pumps and containment spray pumps draw the water from the containment recirculation sump, the RHR pumps pump the water through the RHR heat exchanger, inject the water back into the RCS, and supply the cooled water to the other ECCS pumps. Switchover from the RWST to the containment sump must occur before the RWST empties to prevent damage to the RHR pumps and a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support ESF pump suction. Furthermore, early switchover must not occur to ensure that sufficient borated water is injected from the RWST. This ensures the reactor remains shut down in the recirculation mode.

a. <u>Automatic Switchover to Containment Sump - Automatic</u> <u>Actuation Logic and Actuation Relays</u>

Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b.

b, c. <u>Automatic Switchover to Containment Sump - Refueling Water</u> <u>Storage Tank (RWST) Level - Low Low Coincident With Safety</u> <u>Injection and Coincident With Containment Sump Level - High</u>

During the injection phase of a LOCA, the RWST is the source of water for all ECCS pumps. A low low level in the RWST coincident with an SI signal provides protection against a loss of water for the ECCS pumps and indicates the end of the injection phase of the LOCA. The RWST is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability.

The RWST - Low Low Allowable Value/Trip Setpoint has both upper and lower limits. The lower limit is selected to ensure

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

switchover occurs before the RWST empties, to prevent ECCS pump damage. The upper limit is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction.

The transmitters are located in an area not affected by HELBs or post accident high radiation. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties.

Automatic switchover occurs only if the RWST low low level signal is coincident with SI. This prevents accidental switchover during normal operation. Accidental switchover could damage ECCS pumps if they are attempting to take suction from an empty sump. The automatic switchover Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements.

- REVIEWER'S NOTE -

In some units, additional protection from spurious switchover is provided by requiring a Containment Sump Level - High signal as well as RWST Level - Low Low and SI. This ensures sufficient water is available in containment to support the recirculation phase of the accident. A Containment Sump Level - High signal must be present, in addition to the SI signal and the RWST Level - Low Low signal, to transfer the suctions of the RHR pumps to the containment sump. The containment sump is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability. The containment sump level Trip Setpoint/Allowable Value is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction. The transmitters are located inside containment and thus possibly experience adverse environmental conditions. Therefore, the trip setpoint reflects the inclusion of both steady state and environmental instrument uncertainties.

Units only have one of the Functions, 7.b or 7.c.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

These Functions must be OPERABLE in MODES 1, 2, 3, and 4 when there is a potential for a LOCA to occur, to ensure a continued supply of water for the ECCS pumps. These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. System pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems.

8. Engineered Safety Feature Actuation System Interlocks

To allow some flexibility in unit operations, several interlocks are included as part of the ESFAS. These interlocks permit the operator to block some signals, automatically enable other signals, prevent some actions from occurring, and cause other actions to occur. The interlock Functions back up manual actions to ensure bypassable functions are in operation under the conditions assumed in the safety analyses.

a. <u>Engineered Safety Feature Actuation System Interlocks -</u> <u>Reactor Trip, P-4</u>

The P-4 interlock is enabled when a reactor trip breaker (RTB) and its associated bypass breaker is open. Once the P-4 interlock is enabled, automatic SI initiation is blocked after a [] second time delay. This Function allows operators to take manual control of SI systems after the initial phase of injection is complete. Once SI is blocked, automatic actuation of SI cannot occur until the RTBs have been manually closed. The functions of the P-4 interlock are:

- Trip the main turbine,
- Isolate MFW with coincident low T_{avo}
- Prevent reactuation of SI after a manual reset of SI,
- Transfer the steam dump from the load rejection controller to the unit trip controller, and

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

• Prevent opening of the MFW isolation valves if they were closed on SI or SG Water Level - High High.

Each of the above Functions is interlocked with P-4 to avert or reduce the continued cooldown of the RCS following a reactor trip. An excessive cooldown of the RCS following a reactor trip could cause an insertion of positive reactivity with a subsequent increase in generated power. To avoid such a situation, the noted Functions have been interlocked with P-4 as part of the design of the unit control and protection system.

None of the noted Functions serves a mitigation function in the unit licensing basis safety analyses. Only the turbine trip Function is explicitly assumed since it is an immediate consequence of the reactor trip Function. Neither turbine trip, nor any of the other four Functions associated with the reactor trip signal, is required to show that the unit licensing basis safety analysis acceptance criteria are not exceeded.

The RTB position switches that provide input to the P-4 interlock only function to energize or de-energize or open or close contacts. Therefore, this Function has no adjustable trip setpoint with which to associate a Trip Setpoint and Allowable Value.

This Function must be OPERABLE in MODES 1, 2, and 3 when the reactor may be critical or approaching criticality. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because the main turbine, the MFW System, and the Steam Dump System are not in operation.

b. <u>Engineered Safety Feature Actuation System Interlocks -</u> <u>Pressurizer Pressure, P-11</u>

The P-11 interlock permits a normal unit cooldown and depressurization without actuation of SI or main steam line isolation. With two-out-of-three pressurizer pressure channels (discussed previously) less than the P-11 setpoint, the operator can manually block the Pressurizer Pressure - Low and Steam Line Pressure - Low SI signals and the Steam Line Pressure -Low steam line isolation signal (previously discussed). When the Steam Line Pressure - Low steam line isolation signal is manually blocked, a main steam isolation signal on Steam Line

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued)

Pressure - Negative Rate - High is enabled. This provides protection for an SLB by closure of the MSIVs. With two-out-of-three pressurizer pressure channels above the P-11 setpoint, the Pressurizer Pressure - Low and Steam Line Pressure - Low SI signals and the Steam Line Pressure - Low steam line isolation signal are automatically enabled. The operator can also enable these trips by use of the respective manual reset buttons. When the Steam Line Pressure - Low steam line isolation signal is enabled, the main steam isolation on Steam Line Pressure - Negative Rate - High is disabled. The Trip Setpoint reflects only steady state instrument uncertainties.

This Function must be OPERABLE in MODES 1, 2, and 3 to allow an orderly cooldown and depressurization of the unit without the actuation of SI or main steam isolation. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because system pressure must already be below the P-11 setpoint for the requirements of the heatup and cooldown curves to be met.

c. <u>Engineered Safety Feature Actuation System Interlocks -</u> <u>T_{avg} - Low Low, P-12</u>

On increasing reactor coolant temperature, the P-12 interlock reinstates SI on High Steam Flow Coincident With Steam Line Pressure - Low or Coincident With T_{avg} - Low Low and provides an arming signal to the Steam Dump System. On decreasing reactor coolant temperature, the P-12 interlock allows the operator to manually block SI on High Steam Flow Coincident With Steam Line Pressure - Low or Coincident with T_{avg} - Low Low. On a decreasing temperature, the P-12 interlock also removes the arming signal to the Steam Dump System to prevent an excessive cooldown of the RCS due to a malfunctioning Steam Dump System.

Since T_{avg} is used as an indication of bulk RCS temperature, this Function meets redundancy requirements with one OPERABLE channel in each loop. In three loop units, these channels are used in two-out-of-three logic. In four loop units, they are used in two-out-of-four logic.
BASES	
APPLICABLE SA	AFETY ANALYSES, LCO, and APPLICABILITY (continued)
	This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to have an accident.
	The ESFAS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
ACTIONS	A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.2-1.
	In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument Loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. When the Required Channels in Table 3.3.2-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate.
	When the number of inoperable channels in a trip function exceed those specified in one or other related Conditions associated with a trip function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation.
	- REVIEWER'S NOTE -
	Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report.
	<u>A.1</u>
	Condition A applies to all ESFAS protection functions.
	Condition A addresses the situation where one or more channels or trains for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.2-1 and to take the Required

ACTIONS (continued)

Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions.

B.1, B.2.1 and B.2.2

Condition B applies to manual initiation of:

- SI,
- Containment Spray,
- Phase A Isolation, and
- Phase B Isolation.

This action addresses the train orientation of the SSPS for the functions listed above. If a channel or train is inoperable, 48 hours is allowed to return it to an OPERABLE status. Note that for containment spray and Phase B isolation, failure of one or both channels in one train renders the train inoperable. Condition B, therefore, encompasses both situations. The specified Completion Time is reasonable considering that there are two automatic actuation trains and another manual initiation train OPERABLE for each Function, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (54 hours total time) and in MODE 5 within an additional 30 hours (84 hours total time). The allowable Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

C.1, C.2.1 and C.2.2

Condition C applies to the automatic actuation logic and actuation relays for the following functions:

- SI,
- Containment Spray,
- Phase A Isolation,

ACTIONS (continued)

- Phase B Isolation, and
- Automatic Switchover to Containment Sump.

This action addresses the train orientation of the SSPS and the master and slave relays. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The specified Completion Time is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (12 hours total time) and in MODE 5 within an additional 30 hours (42 hours total time). The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing, provided the other train is OPERABLE. This allowance is based on the reliability analysis assumption of WCAP-10271-P-A (Ref. 8) that 4 hours is the average time required to perform channel surveillance.

D.1, D.2.1, and D.2.2

Condition D applies to:

- Containment Pressure High 1,
- Pressurizer Pressure Low (two, three, and four loop units),
- Steam Line Pressure Low,
- Steam Line Differential Pressure High,
- High Steam Flow in Two Steam Lines Coincident With T_{avg} Low Low or Coincident With Steam Line Pressure - Low,
- Containment Pressure High 2,
- Steam Line Pressure Negative Rate High,

ACTIONS (conti	nued)
	 High Steam Flow Coincident With Safety Injection Coincident With T_{avg} - Low Low,
	 High High Steam Flow Coincident With Safety Injection,
	 High Steam Flow in Two Steam Lines Coincident With T_{avg} - Low Low,
	 SG Water level - Low Low (two, three, and four loop units), and
	[• SG Water level - High High (P-14) (two, three, and four loop units).]
	If one channel is inoperable, 6 hours are allowed to restore the channel to OPERABLE status or to place it in the tripped condition. Generally this Condition applies to functions that operate on two-out-of-three logic. Therefore, failure of one channel places the Function in a two-out-of-two configuration. One channel must be tripped to place the Function in a one-out-of-three configuration that satisfies redundancy requirements.
	Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours.
	The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE.
	The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to [4] hours for surveillance testing of other channels. The 6 hours allowed to restore the channel to OPERABLE status or to place the inoperable channel in the tripped condition, and the 4 hours allowed for testing, are justified in Reference 8.
	E.1, E.2.1, and E.2.2
	Condition E applies to:
	 Containment Spray Containment Pressure - High 3 (High, High) (two, three, and four loop units), and
WOG STS	B 2 2 2 40 Day 0 04/20/01

ACTIONS (continued)

 Containment Phase B Isolation Containment Pressure - High 3 (High, High).

None of these signals has input to a control function. Thus, two-out-of-three logic is necessary to meet acceptable protective requirements. However, a two-out-of-three design would require tripping a failed channel. This is undesirable because a single failure would then cause spurious containment spray initiation. Spurious spray actuation is undesirable because of the cleanup problems presented. Therefore, these channels are designed with two-out-of-four logic so that a failed channel may be bypassed rather than tripped. Note that one channel may be bypassed and still satisfy the single failure criterion. Furthermore, with one channel bypassed, a single instrumentation channel failure will not spuriously initiate containment spray.

To avoid the inadvertent actuation of containment spray and Phase B containment isolation, the inoperable channel should not be placed in the tripped condition. Instead it is bypassed. Restoring the channel to OPERABLE status, or placing the inoperable channel in the bypass condition within 6 hours, is sufficient to assure that the Function remains OPERABLE and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The Completion Time is further justified based on the low probability of an event occurring during this interval. Failure to restore the inoperable channel to OPERABLE status, or place it in the bypassed condition within 6 hours, requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE.

The Required Actions are modified by a Note that allows one additional channel to be bypassed for up to [4] hours for surveillance testing. Placing a second channel in the bypass condition for up to 4 hours for testing purposes is acceptable based on the results of Reference 8.

F.1, F.2.1, and F.2.2

Condition F applies to:

Manual Initiation of Steam Line Isolation,

ACTIONS (continued)

- Loss of Offsite Power,
- Auxiliary Feedwater Pump Suction Transfer on Suction Pressure -Low, and
- P-4 Interlock.

For the Manual Initiation and the P-4 Interlock Functions, this action addresses the train orientation of the SSPS. For the Loss of Offsite Power Function, this action recognizes the lack of manual trip provision for a failed channel. For the AFW System pump suction transfer channels, this action recognizes that placing a failed channel in trip during operation is not necessarily a conservative action. Spurious trip of this function could align the AFW System to a source that is not immediately capable of supporting pump suction. If a train or channel is inoperable, 48 hours is allowed to return it to OPERABLE status. The specified Completion Time is reasonable considering the nature of these Functions, the available redundancy, and the low probability of an event occurring during this interval. If the Function cannot be returned to OPERABLE status, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power in an orderly manner and without challenging unit systems. In MODE 4, the unit does not have any analyzed transients or conditions that require the explicit use of the protection functions noted above.

G.1, G.2.1 and G.2.2

Condition G applies to the automatic actuation logic and actuation relays for the Steam Line Isolation [,Turbine Trip and Feedwater Isolation,] and AFW actuation Functions.

The action addresses the train orientation of the SSPS and the master and slave relays for these functions. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be returned to OPERABLE status, the unit must be brought to MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly

ACTIONS (continued)

manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above.

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance.

[H.1 and H.2

Condition H applies to the automatic actuation logic and actuation relays for the Turbine Trip and Feedwater Isolation Function.

This action addresses the train orientation of the SSPS and the master and slave relays for this Function. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the following 6 hours. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. These Functions are no longer required in MODE 3. Placing the unit in MODE 3 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above.

The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance.]

1.1 and 1.2

Condition I applies to:

ACTIONS (continued)

- [• SG Water Level High High (P-14) (two, three, and four loop units), and]
- Undervoltage Reactor Coolant Pump.

If one channel is inoperable, 6 hours are allowed to restore one channel to OPERABLE status or to place it in the tripped condition. If placed in the tripped condition, the Function is then in a partial trip condition where one-out-of-two or one-out-of-three logic will result in actuation. The 6 hour Completion Time is justified in Reference 8. Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit to be placed in MODE 3 within the following 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, these Functions are no longer required OPERABLE.

The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to [4] hours for surveillance testing of other channels. The 6 hours allowed to place the inoperable channel in the tripped condition, and the 4 hours allowed for a second channel to be in the bypassed condition for testing, are justified in Reference 8.

J.1 and J.2

Condition J applies to the AFW pump start on trip of all MFW pumps.

This action addresses the train orientation of the SSPS for the auto start function of the AFW System on loss of all MFW pumps. The OPERABILITY of the AFW System must be assured by allowing automatic start of the AFW System pumps. If a channel is inoperable, 48 hours are allowed to return it to an OPERABLE status. If the function cannot be returned to an OPERABLE status, 6 hours are allowed to place the unit in MODE 3. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, the unit does not have any analyzed transients or conditions that require the explicit use of the protection function noted above. The allowance of 48 hours to return the train to an OPERABLE status is justified in Reference 8.

ACTIONS (continued)

K.1, K.2.1 and K.2.2

Condition K applies to:

- RWST Level Low Low Coincident with Safety Injection, and
- RWST Level Low Low Coincident with Safety Injection and Coincident with Containment Sump Level High.

RWST Level - Low Low Coincident With SI and Coincident With Containment Sump Level - High provides actuation of switchover to the containment sump. Note that this Function requires the bistables to energize to perform their required action. The failure of up to two channels will not prevent the operation of this Function. However, placing a failed channel in the tripped condition could result in a premature switchover to the sump, prior to the injection of the minimum volume from the RWST. Placing the inoperable channel in bypass results in a two-out-of-three logic configuration, which satisfies the requirement to allow another failure without disabling actuation of the switchover when required. Restoring the channel to OPERABLE status or placing the inoperable channel in the bypass condition within 6 hours is sufficient to ensure that the Function remains OPERABLE, and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The 6 hour Completion Time is justified in Reference 8. If the channel cannot be returned to OPERABLE status or placed in the bypass condition within 6 hours, the unit must be brought to MODE 3 within the following 6 hours and MODE 5 within the next 30 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 5, the unit does not have any analyzed transients or conditions that require the explicit use of the protection functions noted above.

The Required Actions are modified by a Note that allows placing a second channel in the bypass condition for up to [4] hours for surveillance testing. The total of 12 hours to reach MODE 3 and 4 hours for a second channel to be bypassed is acceptable based on the results of Reference 8.

ACTIONS (continued)	
	L.1, L.2.1 and L.2.2
	Condition L applies to the P-11 and P-12 [and P-14] interlocks.
	With one or more channels inoperable, the operator must verify that the interlock is in the required state for the existing unit condition. This action manually accomplishes the function of the interlock. Determination must be made within 1 hour. The 1 hour Completion Time is equal to the time allowed by LCO 3.0.3 to initiate shutdown actions in the event of a complete loss of ESFAS function. If the interlock is not in the required state (or placed in the required state) for the existing unit condition, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of these interlocks.
SURVEILLANCE REQUIREMENTS	The SRs for each ESFAS Function are identified by the SRs column of Table 3.3.2-1.
	A Note has been added to the SR Table to clarify that Table 3.3.2-1 determines which SRs apply to which ESFAS Functions.
	Note that each channel of process protection supplies both trains of the ESFAS. When testing channel I, train A and train B must be examined. Similarly, train A and train B must be examined when testing channel II, channel III, and channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies.
	- REVIEWER'S NOTE -
	Certain Frequencies are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Frequencies as required by the staff SER for the topical report.
	<u>SR 3.3.2.1</u>
	Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a

SURVEILLANCE REQUIREMENTS (continued)

similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and reliability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.2.2

SR 3.3.2.2 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and that there is an intact voltage signal path to the master relay coils. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data.

SR 3.3.2.3

SR 3.3.2.3 is the performance of an ACTUATION LOGIC TEST as described in SR 3.3.2.2, except that the semiautomatic tester is not used and the continuity check does not have to be performed, as explained in the Note. This SR is applied to the balance of plant actuation logic and relays that do not have the SSPS test circuits installed to utilize the semiautomatic tester or perform the continuity check. This test is also

SURVEILLANCE REQUIREMENTS (continued)

performed every 31 days on a STAGGERED TEST BASIS. The Frequency is adequate based on industry operating experience, considering instrument reliability and operating history data.

<u>SR 3.3.2.4</u>

SR 3.3.2.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The time allowed for the testing (4 hours) and the surveillance interval are justified in Reference 8.

<u>SR 3.3.2.5</u>

SR 3.3.2.5 is the performance of a COT.

A COT is performed on each required channel to ensure the entire channel will perform the intended Function. Setpoints must be found within the Allowable Values specified in Table 3.3.1-1. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology.

The "as found" and "as left" values must also be recorded and reviewed for consistency with the assumptions of the surveillance interval extension analysis (Ref. 8) when applicable.

The Frequency of 92 days is justified in Reference 8.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.2.6</u>

SR 3.3.2.6 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function, or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is adequate, based on industry operating experience, considering instrument reliability and operating history data.

<u>SR 3.3.2.7</u>

SR 3.3.2.7 is the performance of a TADOT every [92] days. This test is a check of the Loss of Offsite Power, Undervoltage RCP, and AFW Pump Suction Transfer on Suction Pressure - Low Functions. Each Function is tested up to, and including, the master transfer relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

The test also includes trip devices that provide actuation signals directly to the SSPS. The SR is modified by a Note that excludes verification of setpoints for relays. Relay setpoints require elaborate bench calibration and are verified during CHANNEL CALIBRATION. The Frequency is adequate. It is based on industry operating experience, considering instrument reliability and operating history data.

SR 3.3.2.8

SR 3.3.2.8 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and AFW pump start on trip of all MFW pumps. It is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of

SURVEILLANCE REQUIREMENTS (continued)

the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The Frequency is adequate, based on industry operating experience and is consistent with the typical refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT for manual initiation Functions. The manual initiation Functions have no associated setpoints.

SR 3.3.2.9

SR 3.3.2.9 is the performance of a CHANNEL CALIBRATION.

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter within the necessary range and accuracy.

CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology.

The Frequency of [18] months is based on the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology.

This SR is modified by a Note stating that this test should include verification that the time constants are adjusted to the prescribed values where applicable.

SR 3.3.2.10

This SR ensures the individual channel ESF RESPONSE TIMES are less than or equal to the maximum values assumed in the accident analysis. Response Time testing acceptance criteria are included in the Technical Requirements Manual, Section 15 (Ref. 9). Individual component response times are not modeled in the analyses. The analyses model the overall or total elapsed time, from the point at which the parameter

SURVEILLANCE REQUIREMENTS (continued)

exceeds the Trip Setpoint value at the sensor, to the point at which the equipment in both trains reaches the required functional state (e.g., pumps at rated discharge pressure, valves in full open or closed position).

For channels that include dynamic transfer functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer functions set to one with the resulting measured response time compared to the appropriate FSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured.

- REVIEWER'S NOTE -

Applicable portions of the following Bases are applicable for plants adopting WCAP-13632-P-A. and/or WCAP-14036-P.

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g. vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," dated January 1996, provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. Response time verification for other sensor types must be demonstrated by test.

[WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," provides the basis and methodology for using allocated signal processing and actuation logic response times in the overall verification of the protection system channel response time.] The allocations for sensor, signal conditioning, and actuation logic response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact

SURVEILLANCE REQUIREMENTS (continued)

response time provided the parts used for repair are of the same type and value. Specific components identified in the WCAP may replaced without verification testing. One example where response time could be affected is replacing the sensing assembly of a transmitter.

ESF RESPONSE TIME tests are conducted on an [18] month STAGGERED TEST BASIS. Testing of the final actuation devices, which make up the bulk of the response time, is included in the testing of each channel. The final actuation device in one train is tested with each channel. Therefore, staggered testing results in response time verification of these devices every [18] months. The [18] month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

This SR is modified by a Note that clarifies that the turbine driven AFW pump is tested within 24 hours after reaching [1000] psig in the SGs.

SR 3.3.2.11

SR 3.3.2.11 is the performance of a TADOT as described in SR 3.3.2.8, except that it is performed for the P-4 Reactor Trip Interlock, and the Frequency is once per RTB cycle. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This Frequency is based on operating experience demonstrating that undetected failure of the P-4 interlock sometimes occurs when the RTB is cycled.

The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Function tested has no associated setpoint.

- REFERENCES 1. FSAR, Chapter [6].
 - 2. FSAR, Chapter [7].
 - 3. FSAR, Chapter [15].
 - 4. IEEE-279-1971.

~.~

REFERENCES (continued)

- 5. 10 CFR 50.49.
- 6. Plant-specific setpoint methodology study.
- 7. NUREG-1218, April 1988.
- 8. WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990.
- 9. Technical Requirements Manual, Section 15, "Response Times."
- 10. Regulatory Guide 1.105, Revision 3, "Setpoints for Safety-Related Instrumentation."
- [11. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," January 1996.]
- [12. WCAP-14036-P, Revision 1, "Elimination of Periodic Protection Channel Response Time Tests," December 1995.]

B 3.3 INSTRUMENTATION

B 3.3.3 Post Accident Monitoring (PAM) Instrumentation

BASES

BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.

The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified by unit specific documents (Ref. 1) addressing the recommendations of Regulatory Guide 1.97 (Ref. 2) as required by Supplement 1 to NUREG-0737 (Ref. 3).

The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category I variables.

Type A variables are included in this LCO because they provide the primary information required for the control room operator to take specific manually controlled actions for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions for DBAs. Because the list of Type A variables differs widely between units, Table 3.3.3-1 in the accompanying LCO contains no examples of Type A variables, except for those that may also be Category I variables.

Category I variables are the key variables deemed risk significant because they are needed to:

- Determine whether other systems important to safety are performing their intended functions,
- Provide information to the operators that will enable them to determine the likelihood of a gross breach of the barriers to radioactivity release, and

BACKGROUND (continued)		
	 Provide information regarding the release of radioactive materials to allow for early indication of the need to initiate action necessary to protect the public, and to estimate the magnitude of any impending threat. 	
	These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1). These analyses identify the unit specific Type A and Category I variables and provide justification for deviating from the NRC proposed list of Category I variables.	
	- REVIEWER'S NOTE - Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 analyses. Table 3.3.3-1 in unit specific Technical Specifications (TS) shall list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's Safety Evaluation Report (SER).	
	The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.	
APPLICABLE SAFETY ANALYSES	The PAM instrumentation ensures the operability of Regulatory Guide 1.97 Type A and Category I variables so that the control room operating staff can:	
	 Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA), 	
	 Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function, 	
	 Determine whether systems important to safety are performing their intended functions, 	
	 Determine the likelihood of a gross breach of the barriers to radioactivity release, 	
	Determine if a gross breach of a barrier has occurred, and	

LCO

APPLICABLE SAFETY ANALYSES (continued)

 Initiate action necessary to protect the public and to estimate the magnitude of any impending threat.

PAM instrumentation that meets the definition of Type A in Regulatory Guide 1.97 satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Category I, non-Type A, instrumentation must be retained in TS because it is intended to assist operators in minimizing the consequences of accidents. Therefore, Category I, non-Type A, variables are important for reducing public risk.

The PAM instrumentation LCO provides OPERABILITY requirements for Regulatory Guide 1.97 Type A monitors, which provide information required by the control room operators to perform certain manual actions specified in the unit Emergency Operating Procedures. These manual actions ensure that a system can accomplish its safety function, and are credited in the safety analyses. Additionally, this LCO addresses Regulatory Guide 1.97 instruments that have been designated Category I, non-Type A.

> The OPERABILITY of the PAM instrumentation ensures there is sufficient information available on selected unit parameters to monitor and assess unit status following an accident. This capability is consistent with the recommendations of Reference 1.

LCO 3.3.3 requires two OPERABLE channels for most Functions. Two OPERABLE channels ensure no single failure prevents operators from getting the information necessary for them to determine the safety status of the unit, and to bring the unit to and maintain it in a safe condition following an accident.

Furthermore, OPERABILITY of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information. More than two channels may be required at some units if the unit specific Regulatory Guide 1.97 analyses (Ref. 1) determined that failure of one accident monitoring channel results in information ambiguity (that is, the redundant displays disagree) that could lead operators to defeat or fail to accomplish a required safety function.

The exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active

LCO (continued)

valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.

Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 (Ref. 1) analyses. Table 3.3.3-1 in unit specific TS should list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's SER.

Type A and Category I variables are required to meet Regulatory Guide 1.97 Category I (Ref. 2) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of display.

Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1. These discussions are intended as examples of what should be provided for each Function when the unit specific list is prepared.

1, 2. <u>Power Range and Source Range Neutron Flux</u>

Power Range and Source Range Neutron Flux indication is provided to verify reactor shutdown. The two ranges are necessary to cover the full range of flux that may occur post accident.

Neutron flux is used for accident diagnosis, verification of subcriticality, and diagnosis of positive reactivity insertion.

3, 4. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures

RCS Hot and Cold Leg Temperatures are Category I variables provided for verification of core cooling and long term surveillance.

RCS hot and cold leg temperatures are used to determine RCS subcooling margin. RCS subcooling margin will allow termination of safety injection (SI), if still in progress, or reinitiation of SI if it has been stopped. RCS subcooling margin is also used for unit stabilization and cooldown control.

LCO (continued)

In addition, RCS cold leg temperature is used in conjunction with RCS hot leg temperature to verify the unit conditions necessary to establish natural circulation in the RCS.

Reactor outlet temperature inputs to the Reactor Protection System are provided by two fast response resistance elements and associated transmitters in each loop. The channels provide indication over a range of 32°F to 700°F.

5. <u>Reactor Coolant System Pressure (Wide Range)</u>

RCS wide range pressure is a Category I variable provided for verification of core cooling and RCS integrity long term surveillance.

RCS pressure is used to verify delivery of SI flow to RCS from at least one train when the RCS pressure is below the pump shutoff head. RCS pressure is also used to verify closure of manually closed spray line valves and pressurizer power operated relief valves (PORVs).

In addition to these verifications, RCS pressure is used for determining RCS subcooling margin. RCS subcooling margin will allow termination of SI, if still in progress, or reinitiation of SI if it has been stopped. RCS pressure can also be used:

- to determine whether to terminate actuated SI or to reinitiate stopped SI,
- to determine when to reset SI and shut off low head SI,
- to manually restart low head SI,
- as reactor coolant pump (RCP) trip criteria, and
- to make a determination on the nature of the accident in progress and where to go next in the procedure.

RCS subcooling margin is also used for unit stabilization and cooldown control.

RCS pressure is also related to three decisions about depressurization. They are:

LCO (continued)		
		 to determine whether to proceed with primary system depressurization,
		 to verify termination of depressurization, and
		 to determine whether to close accumulator isolation valves during a controlled cooldown/depressurization.
		A final use of RCS pressure is to determine whether to operate the pressurizer heaters.
		In some units, RCS pressure is a Type A variable because the operator uses this indication to monitor the cooldown of the RCS following a steam generator tube rupture (SGTR) or small break LOCA. Operator actions to maintain a controlled cooldown, such as adjusting steam generator (SG) pressure or level, would use this indication. Furthermore, RCS pressure is one factor that may be used in decisions to terminate RCP operation.
	6.	Reactor Vessel Water Level
		Reactor Vessel Water Level is provided for verification and long term surveillance of core cooling. It is also used for accident diagnosis and to determine reactor coolant inventory adequacy.
		The Reactor Vessel Water Level Monitoring System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of the collapsed water level is selected because it is a direct indication of the water inventory.
	7.	Containment Sump Water Level (Wide Range)
		Containment Sump Water Level is provided for verification and long term surveillance of RCS integrity.
		Containment Sump Water Level is used to determine:
		containment sump level accident diagnosis,
		• when to begin the recirculation procedure, and

LCO (continued)

- whether to terminate SI, if still in progress.
- 8. Containment Pressure (Wide Range)

Containment Pressure (Wide Range) is provided for verification of RCS and containment OPERABILITY.

Containment pressure is used to verify closure of main steam isolation valves (MSIVs), and containment spray Phase B isolation when High-3 containment pressure is reached.

9. Containment Isolation Valve Position

CIV Position is provided for verification of Containment OPERABILITY, and Phase A and Phase B isolation.

When used to verify Phase A and Phase B isolation, the important information is the isolation status of the containment penetrations. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active CIV in a containment penetration flow path, i.e., two total channels of CIV position indication for a penetration flow path with two active valves. For containment penetrations with only one active CIV having control room indication, Note (b) requires a single channel of valve position indication to be OPERABLE. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve, as applicable, and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE. Note (a) to the Required Channels states that the Function is not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured. Each penetration is treated separately and each penetration flow path is considered a separate function. Therefore, separate Condition entry is allowed for each inoperable penetration flow path.

10. Containment Area Radiation (High Range)

Containment Area Radiation is provided to monitor for the potential of significant radiation releases and to provide release assessment

LCO (continued)

for use by operators in determining the need to invoke site emergency plans. Containment radiation level is used to determine if a high energy line break (HELB) has occurred, and whether the event is inside or outside of containment.

11. Hydrogen Monitors

Hydrogen Monitors are provided to detect high hydrogen concentration conditions that represent a potential for containment breach from a hydrogen explosion. This variable is also important in verifying the adequacy of mitigating actions.

12. Pressurizer Level

Pressurizer Level is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Knowledge of pressurizer water level is also used to verify the unit conditions necessary to establish natural circulation in the RCS and to verify that the unit is maintained in a safe shutdown condition.

13. Steam Generator Water Level (Wide Range)

SG Water Level is provided to monitor operation of decay heat removal via the SGs. The Category I indication of SG level is the extended startup range level instrumentation. The extended startup range level covers a span of ≥ 6 inches to ≤ 394 inches above the lower tubesheet. The measured differential pressure is displayed in inches of water at 68°F.

Temperature compensation of this indication is performed manually by the operator. Redundant monitoring capability is provided by two trains of instrumentation. The uncompensated level signal is input to the unit computer, a control room indicator, and the Emergency Feedwater Control System.

SG Water Level (Wide Range) is used to:

- identify the faulted SG following a tube rupture,
- verify that the intact SGs are an adequate heat sink for the reactor,

WOG STS		B 3.3.3 - 9	Rev. 2, 04/30/0
		from the hotwell.	uie VLAA hailiha
· · · · · · · · · · · · · · · · · · ·		The CST is the initial source of water for the AFW However, as the CST is depleted, manual operator	System. or action is
		The DBAs that require AFW are the loss of electri line break (SLB), and small break LOCA.	c power, steam
		At some units, CST Level is considered a Type A the control room meter and annunciator are consinitiation used by the operator.	variable because dered the primary
		CST Level is provided to ensure water supply for a (AFW). The CST provides the ensured safety gra for the AFW System. The CST consists of two ide connected by a common outlet header. Inventory 0 inch to 144 inch level indication for each tank. C displayed on a control room indicator, strip chart r computer. In addition, a control room annunciator level.	auxiliary feedwate de water supply entical tanks is monitored by a CST Level is ecorder, and unit alarms on low
	14.	Condensate Storage Tank (CST) Level	
		At some units, operator action is based on the cor indication of SG level. The RCS response during small break LOCA depends on the break size. Fo of break sizes, the boiler condenser mode of heat necessary to remove decay heat. Extended startu Type A variable because the operator must manua control SG level to establish boiler condenser hea Operator action is initiated on a loss of subcooled Feedwater flow is increased until the indicated ext range level reaches the boiler condenser setpoint.	trol room a design basis r a certain range transfer is p range level is a ally raise and t transfer. margin. ended startup
		 verify unit conditions for termination of SI dur HELBs outside containment. 	ng secondary uni
		 determine the nature of the accident in progrees SGTR), and 	ess (e.g., verify a

LCO (continued)

15, 16, 17, 18. Core Exit Temperature

Core Exit Temperature is provided for verification and long term surveillance of core cooling.

An evaluation was made of the minimum number of valid core exit thermocouples (CET) necessary for measuring core cooling. The evaluation determined the reduced complement of CETs necessary to detect initial core recovery and trend the ensuing core heatup. The evaluations account for core nonuniformities, including incore effects of the radial decay power distribution, excore effects of condensate runback in the hot legs, and nonuniform inlet temperatures. Based on these evaluations, adequate core cooling is ensured with two valid Core Exit Temperature channels per quadrant with two CETs per required channel. The CET pair are oriented radially to permit evaluation of core radial decay power distribution. Core Exit Temperature is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Core Exit Temperature is also used for unit stabilization and cooldown control.

Two OPERABLE channels of Core Exit Temperature are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Power distribution symmetry was considered in determining the specific number and locations provided for diagnosis of local core problems. Therefore, two randomly selected thermocouples are not sufficient to meet the two thermocouples per channel requirement in any quadrant. The two thermocouples in each channel must meet the additional requirement that one is located near the center of the core and the other near the core perimeter, such that the pair of Core Exit Temperatures indicate the radial temperature gradient across their core quadrant. Unit specific evaluations in response to Item II.F.2 of NUREG-0737 (Ref. 3) should have identified the thermocouple pairings that satisfy these requirements. Two sets of two thermocouples ensure a single failure will not disable the ability to determine the radial temperature gradient.

19. Auxiliary Feedwater Flow

AFW Flow is provided to monitor operation of decay heat removal via the SGs.

LCO (continued)

The AFW Flow to each SG is determined from a differential pressure measurement calibrated for a range of 0 gpm to 1200 gpm. Redundant monitoring capability is provided by two independent trains of instrumentation for each SG. Each differential pressure transmitter provides an input to a control room indicator and the unit computer. Since the primary indication used by the operator during an accident is the control room indicator, the PAM specification deals specifically with this portion of the instrument channel.

AFW flow is used three ways:

- to verify delivery of AFW flow to the SGs,
- to determine whether to terminate SI if still in progress, in conjunction with SG water level (narrow range), and
- to regulate AFW flow so that the SG tubes remain covered.

At some units, AFW flow is a Type A variable because operator action is required to throttle flow during an SLB accident to prevent the AFW pumps from operating in runout conditions. AFW flow is also used by the operator to verify that the AFW System is delivering the correct flow to each SG. However, the primary indication used by the operator to ensure an adequate inventory is SG level.

APPLICABILITY The PAM instrumentation LCO is applicable in MODES 1, 2, and 3. These variables are related to the diagnosis and pre-planned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1, 2, and 3. In MODES 4, 5, and 6, unit conditions are such that the likelihood of an event that would require PAM instrumentation is low; therefore, the PAM instrumentation is not required to be OPERABLE in these MODES.

ACTIONS Note 1 has been added in the ACTIONS to exclude the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require unit shutdown. This exception is acceptable due to the passive function of the instruments, the operator's ability to respond to an accident using alternate instruments and methods, and the low probability of an event requiring these instruments.

PAM Instrumentation B 3.3.3

BASES

ACTIONS (continued)

Note 2 has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.3-1. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies when one or more Functions have one required channel that is inoperable. Required Action A.1 requires restoring the inoperable channel to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channel (or in the case of a Function that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval.

<u>B.1</u>

Condition B applies when the Required Action and associated Completion Time for Condition A are not met. This Required Action specifies initiation of actions in Specification 5.6.7, which requires a written report to be submitted to the NRC immediately. This report discusses the results of the root cause evaluation of the inoperability and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation.

<u>C.1</u>

Condition C applies when one or more Functions have two inoperable required channels (i.e., two channels inoperable in the same Function). Required Action C.1 requires restoring one channel in the Function(s) to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements

ACTIONS (continued)

applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur. Condition C is modified by a Note that excludes hydrogen monitor channels.

<u>D.1</u>

- REVIEWER'S NOTE -

Implementation of WCAP-14986, Rev 1, "Post Accident Sampling System Requirements: A Technical Basis," and the associated NRC Safety Evaluation dated June 14, 2000, allows other core damage assessment capabilities in lieu of the Post Accident Sampling System.

Condition D applies when two hydrogen monitor channels are inoperable. Required Action D.1 requires restoring one hydrogen monitor channel to OPERABLE status within 72 hours. The 72 hour Completion Time is reasonable based on [the backup capability of the Post Accident Sampling System to monitor the hydrogen concentration for evaluation of core damage or other core damage assessment capabilities available and] to provide information for operator decisions. Also, it is unlikely that a LOCA (which would cause core damage) would occur during this time.

<u>E.1</u>

Condition E applies when the Required Action and associated Completion Time of Condition C or D are not met. Required Action E.1 requires entering the appropriate Condition referenced in Table 3.3.3-1 for the channel immediately. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met any Required Action of Condition C or D, and the associated Completion Time has expired, Condition E is entered for that channel and provides for transfer to the appropriate subsequent Condition.

F.1 and F.2

If the Required Action and associated Completion Time of Conditions C or D are not met and Table 3.3.3-1 directs entry into Condition F, the unit must be brought to a MODE where the requirements of this LCO do not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and MODE 4 within 12 hours.

ACTIONS (continued)

The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

<u>G.1</u>

At this unit, alternate means of monitoring Reactor Vessel Water Level and Containment Area Radiation have been developed and tested. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. If these alternate means are used, the Required Action is not to shut down the unit but rather to follow the directions of Specification 5.6.7, in the Administrative Controls section of the TS. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels.

SURVEILLANCEA Note has been added to the SR Table to clarify that SR 3.3.3.1 andREQUIREMENTSSR 3.3.3.3 apply to each PAM instrumentation Function in Table 3.3.3-1.

SR 3.3.3.1

Performance of the CHANNEL CHECK once every 31 days ensures that a gross instrumentation failure has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation should be compared to similar unit instruments located throughout the unit.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE.

SURVEILLANCE REQUIREMENTS (continued)

As specified in the SR, a CHANNEL CHECK is only required for those channels that are normally energized.

The Frequency of 31 days is based on operating experience that demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.3.2</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. The calibration method for neutron detectors is specified in the Bases of LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing element. The Frequency is based on operating experience and consistency with the typical industry refueling cycle.

- REFERENCES [1. Unit specific document (e.g., FSAR, NRC Regulatory Guide 1.97 SER letter).]
 - 2. Regulatory Guide 1.97, [date].
 - 3. NUREG-0737, Supplement 1, "TMI Action Items."

B 3.3 INSTRUMENTATION

B 3.3.4 Remote Shutdown System

BASES

BACKGROUND	The Remote Shutdown System provides the control room operator with sufficient instrumentation and controls to place and maintain the unit in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility that the control room becomes inaccessible. A safe shutdown condition is defined as MODE 3. With the unit in MODE 3, the Auxiliary Feedwater (AFW) System and the steam generator (SG) safety valves or the SG atmospheric dump valves (ADVs) can be used to remove core decay heat and meet all safety requirements. The long term supply of water for the AFW System and the ability to borate the Reactor Coolant System (RCS) from outside the control room allows extended operation in MODE 3.
	If the control room becomes inaccessible, the operators can establish control at the remote shutdown panel, and place and maintain the unit in MODE 3. Not all controls and necessary transfer switches are located at the remote shutdown panel. Some controls and transfer switches will have to be operated locally at the switchgear, motor control panels, or other local stations. The unit automatically reaches MODE 3 following a unit shutdown and can be maintained safely in MODE 3 for an extended period of time.
	The OPERABILITY of the remote shutdown control and instrumentation functions ensures there is sufficient information available on selected unit parameters to place and maintain the unit in MODE 3 should the control room become inaccessible.
APPLICABLE SAFETY ANALYSES	The Remote Shutdown System is required to provide equipment at appropriate locations outside the control room with a capability to promptly shut down and maintain the unit in a safe condition in MODE 3.
	The criteria governing the design and specific system requirements of the Remote Shutdown System are located in 10 CFR 50, Appendix A, GDC 19 (Ref. 1).
	The Remote Shutdown System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

BASES	
LCO	The Remote Shutdown System LCO provides the OPERABILITY requirements of the instrumentation and controls necessary to place and maintain the unit in MODE 3 from a location other than the control room. The instrumentation and controls required are listed in Table B 3.3.4-1.
	The controls, instrumentation, and transfer switches are required for:
	Core reactivity control (initial and long term),
	RCS pressure control,
	 Decay heat removal via the AFW System and the SG safety valves or SG ADVs,
	RCS inventory control via charging flow, and
	 Safety support systems for the above Functions, including service water, component cooling water, and onsite power, including the diesel generators.
	A Function of a Remote Shutdown System is OPERABLE if all instrument and control channels needed to support the Remote Shutdown System Function are OPERABLE. In some cases, Table B 3.3.4-1 may indicate that the required information or control capability is available from several alternate sources. In these cases, the Function is OPERABLE as long as one channel of any of the alternate information or control sources is OPERABLE.
	The remote shutdown instrument and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure the instruments and control circuits will be OPERABLE if unit conditions require that the Remote Shutdown System be placed in operation.
APPLICABILITY	The Remote Shutdown System LCO is applicable in MODES 1, 2, and 3. This is required so that the unit can be placed and maintained in MODE 3 for an extended period of time from a location other than the control room.
	This LCO is not applicable in MODE 4, 5, or 6. In these MODES, the facility is already subcritical and in a condition of reduced RCS energy. Under these conditions, considerable time is available to restore necessary instrument control functions if control room instruments or controls become unavailable.

ACTIONS

Note 1 is included which excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into an applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require a unit shutdown. This exception is acceptable due to the low probability of an event requiring the Remote Shutdown System and because the equipment can generally be repaired during operation without significant risk of spurious trip.

A Remote Shutdown System division is inoperable when each function is not accomplished by at least one designated Remote Shutdown System channel that satisfies the OPERABILITY criteria for the channel's Function. These criteria are outlined in the LCO section of the Bases.

Note 2 has been added to the ACTIONS to clarify the application of Completion Time rules. Separate Condition entry is allowed for each Function. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A addresses the situation where one or more required Functions of the Remote Shutdown System are inoperable. This includes the control and transfer switches for any required Function.

The Required Action is to restore the required Function to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room.

B.1 and B.2

If the Required Action and associated Completion Time of Condition A is not met, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCE SEQUIREMENTS

<u>SR 3.3.4.1</u>

Performance of the CHANNEL CHECK once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are within the criteria, it is an indication that the channels are OPERABLE. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

As specified in the Surveillance, a CHANNEL CHECK is only required for those channels which are normally energized.

The Frequency of 31 days is based upon operating experience which demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.4.2

SR 3.3.4.2 verifies each required Remote Shutdown System control circuit and transfer switch performs the intended function. This verification is performed from the remote shutdown panel and locally, as appropriate. Operation of the equipment from the remote shutdown panel is not necessary. The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the unit can be placed and maintained in MODE 3 from the remote shutdown panel and the local control stations. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. (However, this Surveillance is not required to be performed only during a unit outage.) Operating
SURVEILLANCE REQUIREMENTS (continued)

experience demonstrates that remote shutdown control channels usually pass the Surveillance test when performed at the [18] month Frequency.

SR 3.3.4.3

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the resistance temperature detectors (RTD) sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing element.

The Frequency of [18] months is based upon operating experience and consistency with the typical industry refueling cycle.

[<u>SR 3.3.4.4</u>

SR 3.3.4.4 is the performance of a TADOT every 18 months. This test should verify the OPERABILITY of the reactor trip breakers (RTBs) open and closed indication on the remote shutdown panel, by actuating the RTBs. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Frequency is based upon operating experience and consistency with the typical industry refueling outage.]

REFERENCES 1. 10 CFR 50, Appendix A, GDC 19.

Table B 3.3.4-1 (page 1 of 1)Remote Shutdown System Instrumentation and Controls

	FUNCTION/INSTRUMENT OR CONTROL PARAMETER	REQUIRED NUMBER OF FUNCTIONS
1.	Reactivity Control	
	a. Source Range Neutron Flux	[1]
	b. Reactor Trip Breaker Position	[1 per trip breaker]
	c. Manual Reactor Trip	[2]
2.	Reactor Coolant System (RCS) Pressure Control	
	a. Pressurizer Pressure or	[1]
	 Bressurizer Power Operated Relief Valve (PORV) Control and Block Valve Control 	[1, controls must be for PORV & block valves on same line]
З.	Decay Heat Removal via Steam Generators (SGs)	
	a. RCS Hot Leg Temperature	[1 per loop]
	b. RCS Cold Leg Temperature	[1 per loop]
	c. AFW Controls Condensate Storage Tank Level	[1]
	d. SG Pressure	[1 per SG]
	e. SG Level or	[1 per SG]
	AFW Flow	
4.	RCS Inventory Control	
	a. Pressurizer Level	[1]
	b. Charging Pump Controls	[1]

- REVIEWER'S NOTE -

For channels that fulfill GDC 19 requirements, the number of OPERABLE channels required depends upon the unit licensing basis as described in the NRC unit specific Safety Evaluation Report (SER). Generally, two divisions are required OPERABLE. However, only one channel per a given Function is required if the unit has justified such a design, and NRC's SER accepted the justification.

- REVIEWER'S NOTE -

This Table is for illustration purposes only. It does not attempt to encompass every Function used at every unit, but does contain the types of Functions commonly found.

B 3.3 INSTRUMENTATION

B 3.3.5 Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation

BASES

BACKGROUND The DGs provide a source of emergency power when offsite power is either unavailable or is insufficiently stable to allow safe unit operation. Undervoltage protection will generate an LOP start if a loss of voltage or degraded voltage condition occurs in the switchyard. There are two LOP start signals, one for each 4.16 kV vital bus.

Three undervoltage relays with inverse time characteristics are provided on each 4160 Class 1E instrument bus for detecting a sustained degraded voltage condition or a loss of bus voltage. The relays are combined in a two-out-of-three logic to generate an LOP signal if the voltage is below 75% for a short time or below 90% for a long time. The LOP start actuation is described in FSAR, Section 8.3 (Ref. 1).

The Allowable Value in conjunction with the trip setpoint and LCO establishes the threshold for Engineered Safety Features Actuation System (ESFAS) action to prevent exceeding acceptable limits such that the consequences of Design Basis Accidents (DBAs) will be acceptable. The Allowable Value is considered a limiting value such that a channel is OPERABLE if the setpoint is found not to exceed the Allowable Value during the CHANNEL CALIBRATION. Note that although a channel is OPERABLE under these circumstances, the setpoint must be left adjusted to within the established calibration tolerance band of the setpoint in accordance with uncertainty assumptions stated in the referenced setpoint methodology, (as-left-criteria) and confirmed to be operating within the statistical allowances of the uncertainty terms assigned.

Allowable Values and LOP DG Start Instrumentation Setpoints

- REVIEWER'S NOTE -

Alternatively, a TS format incorporating an Allowable Value only may be proposed by a licensee. In this case the Nominal Trip Setpoint value is located in the TS Bases or in a licensee controlled document outside the TS. Changes to the trip setpoint value would be controlled by 10 CFR 50.59 or administratively as appropriate, and adjusted per the setpoint methodology and applicable surveillance requirements. At their option, the licensee may include the trip setpoint in the surveillance requirement as shown, or suggested by the licensee's setpoint methodology.

BACKGROUND (continued)

The Trip Setpoints used in the relays are based on the analytical limits presented in FSAR, Chapter 15 (Ref. 2). The selection of these trip setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account.

Setpoints adjusted consistent with the requirements of the Allowable Value ensure that the consequences of accidents will be acceptable, providing the unit is operated from within the LCOs at the onset of the accident and that the equipment functions as designed.

Allowable Values and/or Nominal Trip Setpoints are specified for each Function in SR 3.3.5.3. Nominal Trip Setpoints are also specified in the unit specific setpoint calculations. The trip setpoints are selected to ensure that the setpoint measured by the surveillance procedure does not exceed the Allowable Value if the relay is performing as required. If the measured setpoint does not exceed the Allowable Value, the relay is considered OPERABLE. Operation with a trip setpoint less conservative than the nominal Trip Setpoint, but within the Allowable Value, is acceptable provided that operation and testing is consistent with the assumptions of the unit specific setpoint calculation (Ref. 3).

APPLICABLEThe LOP DG start instrumentation is required for the Engineered SafetySAFETYFeatures (ESF) Systems to function in any accident with a loss of offsiteANALYSESpower. Its design basis is that of the ESF Actuation System (ESFAS).

Accident analyses credit the loading of the DG based on the loss of offsite power during a loss of coolant accident (LOCA). The actual DG start has historically been associated with the ESFAS actuation. The DG loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The analyses assume a non-mechanistic DG loading, which does not explicitly account for each individual component of loss of power detection and subsequent actions.

The required channels of LOP DG start instrumentation, in conjunction with the ESF systems powered from the DGs, provide unit protection in the event of any of the analyzed accidents discussed in Reference 2, in which a loss of offsite power is assumed.

The delay times assumed in the safety analysis for the ESF equipment include the 10 second DG start delay, and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS)

.____

APPLICABLE SAFETY ANALYSES (continued)

Instrumentation," include the appropriate DG loading and sequencing delay.

The LOP DG start instrumentation channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The LCO for LOP DG start instrumentation requires that [three] channels per bus of both the loss of voltage and degraded voltage Functions shall be OPERABLE in MODES 1, 2, 3, and 4 when the LOP DG start instrumentation supports safety systems associated with the ESFAS. In MODES 5 and 6, the [three] channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed. A channel is OPERABLE with a trip setpoint value outside its calibration tolerance band provided the trip setpoint "as-found" value does not exceed its associated Allowable Value and provided the trip setpoint "as-left" value is adjusted to a value within the "as-left" calibration tolerance band of the Nominal Trip Setpoint. A trip setpoint may be set more conservative than the Nominal Trip Setpoint as necessary in response to plant conditions. Loss of the LOP DG Start Instrumentation Function could result in the delay of safety systems initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power the DG powers the motor driven auxiliary feedwater pumps. Failure of these pumps to start would leave only one turbine driven pump, as well as an increased potential for a loss of decay heat removal through the secondary system.

APPLICABILITY The LOP DG Start Instrumentation Functions are required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE so that it can perform its function on an LOP or degraded power to the vital bus.

ACTIONS In the event a channel's trip setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then the function that channel provides must be declared inoperable and the LCO Condition entered for the particular protection function affected.

Because the required channels are specified on a per bus basis, the Condition may be entered separately for each bus as appropriate.

A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be

ACTIONS (continued)

entered independently for each Function listed in the LCO. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the LOP DG start Functions with one loss of voltage or one degraded voltage channel per bus inoperable.

If one channel is inoperable, Required Action A.1 requires that channel to be placed in trip within 6 hours. With a channel in trip, the LOP DG start instrumentation channels are configured to provide a one-out-of-three logic to initiate a trip of the incoming offsite power.

A Note is added to allow bypassing an inoperable channel for up to 4 hours for surveillance testing of other channels. This allowance is made where bypassing the channel does not cause an actuation and where at least two other channels are monitoring that parameter.

The specified Completion Time and time allowed for bypassing one channel are reasonable considering the Function remains fully OPERABLE on every bus and the low probability of an event occurring during these intervals.

<u>B.1</u>

Condition B applies when more than one loss of voltage or more than one degraded voltage channel per bus are inoperable.

Required Action B.1 requires restoring all but one channel per bus to OPERABLE status. The 1 hour Completion Time should allow ample time to repair most failures and takes into account the low probability of an event requiring an LOP start occurring during this interval.

<u>C.1</u>

Condition C applies to each of the LOP DG start Functions when the Required Action and associated Completion Time for Condition A or B are not met.

In these circumstances the Conditions specified in LCO 3.8.1, "AC Sources - Operating," or LCO 3.8.2, "AC Sources - Shutdown," for the

ACTIONS (continued)

DG made inoperable by failure of the LOP DG start instrumentation are required to be entered immediately. The actions of those LCOs provide for adequate compensatory actions to assure unit safety.

SURVEILLANCE <u>SR 3.3.5.1</u> REQUIREMENTS

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

SR 3.3.5.2

SR 3.3.5.2 is the performance of a TADOT. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test is performed every [31 days]. The test checks trip devices that provide actuation signals directly, bypassing the analog process control equipment. For these tests, the relay trip setpoints are verified and adjusted as necessary. The Frequency is based on the known reliability

_

SURVEILLANCE REQUIREMENTS (continued)		
	of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience.	
	<u>SR 3.3.5.3</u>	
	SR 3.3.5.3 is the performance of a CHANNEL CALIBRATION.	
	The setpoints, as well as the response to a loss of voltage and a degraded voltage test, shall include a single point verification that the trip occurs within the required time delay, as shown in Reference 1.	
	A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.	
	The Frequency of [18] months is based on operating experience and consistency with the typical industry refueling cycle and is justified by the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.	
REFERENCES	1. FSAR, Section [8.3].	
	2. FSAR, Chapter [15].	
	3. Plant specific setpoint methodology study.	

B 3.3 INSTRUMENTATION

B 3.3.6 Containment Purge and Exhaust Isolation Instrumentation

BASES

BACKGROUND

Containment purge and exhaust isolation instrumentation closes the containment isolation valves in the Mini Purge System and the Shutdown Purge System. This action isolates the containment atmosphere from the environment to minimize releases of radioactivity in the event of an accident. The Mini Purge System may be in use during reactor operation and the Shutdown Purge System will be in use with the reactor shutdown.

Containment purge and exhaust isolation initiates on a automatic safety injection (SI) signal through the Containment Isolation - Phase A Function, or by manual actuation of Phase A Isolation. The Bases for LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," discuss these modes of initiation.

Four radiation monitoring channels are also provided as input to the containment purge and exhaust isolation. The four channels measure containment radiation at two locations. One channel is a containment area gamma monitor, and the other three measure radiation in a sample of the containment purge exhaust. The three purge exhaust radiation detectors are of three different types: gaseous, particulate, and iodine monitors. All four detectors will respond to most events that release radiation to containment. However, analyses have not been conducted to demonstrate that all credible events will be detected by more than one monitor. Therefore, for the purposes of this LCO the four channels are not considered redundant. Instead, they are treated as four one-out-of-one Functions. Since the purge exhaust monitors constitute a sampling system, various components such as sample line valves, sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY.

Each of the purge systems has inner and outer containment isolation valves in its supply and exhaust ducts. A high radiation signal from any one of the four channels initiates containment purge isolation, which closes both inner and outer containment isolation valves in the Mini Purge System and the Shutdown Purge System. These systems are described in the Bases for LCO 3.6.3, "Containment Isolation Valves."

BASES	
APPLICABLE SAFETY ANALYSES	The safety analyses assume that the containment remains intact with penetrations unnecessary for core cooling isolated early in the event, within approximately 60 seconds. The isolation of the purge valves has not been analyzed mechanistically in the dose calculations, although its rapid isolation is assumed. The containment purge and exhaust isolation radiation monitors act as backup to the SI signal to ensure closing of the purge and exhaust valves. They are also the primary means for automatically isolating containment in the event of a fuel handling accident during shutdown. Containment isolation in turn ensures meeting the containment leakage rate assumptions of the safety analyses, and ensures that the calculated accidental offsite radiological doses are below 10 CFR 100 (Ref. 1) limits. [Due to radioactive decay, containment is only required to isolate during fuel handling accidents involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core withing the previous [] days).]
	Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requirements ensure that the instrumentation necessary to initiate Containment Purge and Exhaust Isolation, listed in Table 3.3.6-1, is OPERABLE.
	1. Manual Initiation
	The LCO requires two channels OPERABLE. The operator can initiate Containment Purge Isolation at any time by using either of two switches in the control room. Either switch actuates both trains. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.
	The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.
	Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.
	2. Automatic Actuation Logic and Actuation Relays
	The LCO requires two trains of Automatic Actuation Logic and Actuation Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.

LCO (continued)

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, SI, and ESFAS Function 3.a, Containment Phase A Isolation. The applicable MODES and specified conditions for the containment purge isolation portion of these Functions are different and less restrictive than those for their Phase A isolation and SI roles. If one or more of the SI or Phase A isolation Functions becomes inoperable in such a manner that only the Containment Purge Isolation Function is affected, the Conditions applicable to their SI and Phase A isolation Functions need not be entered. The less restrictive Actions specified for inoperability of the Containment Purge Isolation Functions specify sufficient compensatory measures for this case.

3. Containment Radiation

The LCO specifies four required channels of radiation monitors to ensure that the radiation monitoring instrumentation necessary to initiate Containment Purge Isolation remains OPERABLE.

For sampling systems, channel OPERABILITY involves more than OPERABILITY of the channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses.

4. Containment Isolation - Phase A

Refer to LCO 3.3.2, Function 3.a., for all initiating Functions and requirements.

APPLICABILITY The Manual Initiation, Automatic Actuation Logic and Actuation Relays, Containment Isolation - Phase A, and Containment Radiation Functions are required OPERABLE in MODES 1, 2, 3, and 4, and during movement of [recently] irradiated fuel assemblies [(i.e., fuel that has occupied part of a critical reactor core within the previous [] days)] within containment. Under these conditions, the potential exists for an accident that could release significant fission product radioactivity into containment. Therefore, the containment purge and exhaust isolation instrumentation must be OPERABLE in these MODES.

APPLICABILITY (continued)

While in MODES 5 and 6 without fuel handling in progress, the containment purge and exhaust isolation instrumentation need not be OPERABLE since the potential for radioactive releases is minimized and operator action is sufficient to ensure post accident offsite doses are maintained within the limits of Reference 1.

The Applicability for the containment purge and exhaust isolation on the ESFAS Containment Isolation-Phase A Functions are specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Containment Isolation-Phases A Function Applicability.

ACTIONS

The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.

A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.6-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the failure of one containment purge isolation radiation monitor channel. Since the four containment radiation monitors measure different parameters, failure of a single channel may result in loss of the radiation monitoring Function for certain events. Consequently, the failed channel must be restored to OPERABLE status. The 4 hours allowed to restore the affected channel is justified by the low likelihood of events occurring during this interval, and recognition that one or more of the remaining channels will respond to most events.

ACTIONS (continued)

<u>B.1</u>

Condition B applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the Solid State Protection System (SSPS) and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.1.

If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action for the applicable Conditions of LCO 3.6.3 is met for each valve made inoperable by failure of isolation instrumentation.

A Note is added stating that Condition B is only applicable in MODE 1, 2, 3, or 4.

C.1 and C.2

Condition C applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the SSPS and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.1. If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action to place and maintain containment purge and exhaust isolation valves in their closed position is met or the applicable Conditions of LCO 3.9.4, "Containment Penetrations," are met for each valve made inoperable by failure of isolation instrumentation. The Completion Time for these Required Actions is Immediately.

A Note states that Condition C is applicable during movement of [recently] irradiated fuel assemblies within containment.

SURVEILLANCE REQUIREMENTS

A Note has been added to the SR Table to clarify that Table 3.3.6-1 determines which SRs apply to which Containment Purge and Exhaust Isolation Functions.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.6.2</u>

SR 3.3.6.2 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience.

SR 3.3.6.3

SR 3.3.6.3 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay

SURVEILLANCE REQUIREMENTS (continued)

coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience.

SR 3.3.6.4

A COT is performed every 92 days on each required channel to ensure the entire channel will perform the intended Function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The Frequency is based on the staff recommendation for increasing the availability of radiation monitors according to NUREG-1366 (Ref. 2). This test verifies the capability of the instrumentation to provide the containment purge and exhaust system isolation. The setpoint shall be left consistent with the current unit specific calibration procedure tolerance.

<u>SR 3.3.6.5</u>

SR 3.3.6.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation mode is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation mode is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience.

SR 3.3.6.6

SR 3.3.6.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each

SURVEILLANCE REQUIREMENTS (continued)

	Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.).
	The test also includes trip devices that provide actuation signals directly to the SSPS, bypassing the analog process control equipment. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.
	The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience.
	<u>SR 3.3.6.7</u>
	A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.
	The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.
REFERENCES	1. 10 CFR 100.11.

2. NUREG-1366, [date].

B 3.3 INSTRUMENTATION

B 3.3.7 Control Room Emergency Filtration System (CREFS) Actuation Instrumentation

BASES

BACKGROUND	The CREFS provides an enclosed control room environment from which the unit can be operated following an uncontrolled release of radioactivity. During normal operation, the Auxiliary Building Ventilation System provides control room ventilation. Upon receipt of an actuation signal, the CREFS initiates filtered ventilation and pressurization of the control room. This system is described in the Bases for LCO 3.7.10, "Control Room Emergency Filtration System."
	The actuation instrumentation consists of redundant radiation monitors in the air intakes and control room area. A high radiation signal from any of these detectors will initiate both trains of the CREFS. The control room operator can also initiate CREFS trains by manual switches in the control room. The CREFS is also actuated by a safety injection (SI) signal. The SI Function is discussed in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation."
APPLICABLE SAFETY	The control room must be kept habitable for the operators stationed there during accident recovery and post accident operations.
ANALTSES	The CREFS acts to terminate the supply of unfiltered outside air to the control room, initiate filtration, and pressurize the control room. These actions are necessary to ensure the control room is kept habitable for the operators stationed there during accident recovery and post accident operations by minimizing the radiation exposure of control room personnel.
	In MODES 1, 2, 3, and 4, the radiation monitor actuation of the CREFS is a backup for the SI signal actuation. This ensures initiation of the CREFS during a loss of coolant accident or steam generator tube rupture.
	The radiation monitor actuation of the CREFS in MODES 5 and 6, and during movement of [recently] irradiated fuel assemblies are the primary means to ensure control room habitability in the event of a fuel handling or waste gas decay tank rupture accident.
	The CREFS actuation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

BASES		
LCO	The the	e LCO requirements ensure that instrumentation necessary to initiate CREFS is OPERABLE.
	1.	Manual Initiation
		The LCO requires two channels OPERABLE. The operator can initiate the CREFS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.
		The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.
		Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.
	2.	Automatic Actuation Logic and Actuation Relays
		The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.
		Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the CREFS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the CREFS function is affected, the Conditions applicable to their SI function need not be entered. The less restrictive Actions specified for inoperability of the CREFS Functions specify sufficient compensatory measures for this case.
	3.	Control Room Radiation
		The LCO specifies two required Control Room Atmosphere Radiation Monitors and two required Control Room Air Intake Radiation Monitors to ensure that the radiation monitoring instrumentation necessary to initiate the CREFS remains OPERABLE.

For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter

BASES	
LCO (continued)	motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses.
	 Safety Injection Refer to LCO 3.3.2, Function 1, for all initiating Functions and requirements.
APPLICABILITY	The CREFS Functions must be OPERABLE in MODES 1, 2, 3, 4, and movement of [recently] irradiated fuel assemblies. The Functions must also be OPERABLE in MODES [5 and 6] when required for a waste gas decay tank rupture accident, to ensure a habitable environment for the control room operators.
	The Applicability for the CREFS actuation on the ESFAS Safety Injection Functions are specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Safety Injection Function Applicability.
ACTIONS	The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.
	A Note has been added to the ACTIONS indicating that separate Condition entry is allowed for each Function. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.7-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.
	A.1

ACTIONS (continued)

Condition A applies to the actuation logic train Function of the CREFS, the radiation monitor channel Functions, and the manual channel Functions.

If one train is inoperable, or one radiation monitor channel is inoperable in one or more Functions, 7 days are permitted to restore it to OPERABLE status. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this Completion Time is the same as provided in LCO 3.7.10. If the channel/train cannot be restored to OPERABLE status, one CREFS train must be placed in the emergency radiation protection mode of operation. This accomplishes the actuation instrumentation Function and places the unit in a conservative mode of operation.

The Required Action for Condition A is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation.

B.1.1, B.1.2, and B.2

Condition B applies to the failure of two CREFS actuation trains, two radiation monitor channels, or two manual channels. The first Required Action is to place one CREFS train in the emergency [radiation protection] mode of operation immediately. This accomplishes the actuation instrumentation Function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.10 must also be entered for the CREFS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed upon train inoperability as discussed in the Bases for LCO 3.7.10.

Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the CREFS function is performed even in the presence of a single failure.

The Required Action for Condition B is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation.

ACTIONS (continued)

C.1 and C.2

Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

<u>D.1</u>

Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met when [recently] irradiated fuel assemblies are being moved. Movement of [recently] irradiated fuel assemblies must be suspended immediately to reduce the risk of accidents that would require CREFS actuation.

<u>E.1</u>

Condition E applies when the Required Action and associated Completion Time for Condition A or B have not been met in MODE 5 or 6. Actions must be initiated to restore the inoperable train(s) to OPERABLE status immediately to ensure adequate isolation capability in the event of a waste gas decay tank rupture.

SURVEILLANCEA Note has been added to the SR Table to clarify that Table 3.3.7-1REQUIREMENTSdetermines which SRs apply to which CREFS Actuation Functions.

<u>SR 3.3.7.1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.7.2</u>

A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the CREFS actuation. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience.

<u>SR 3.3.7.3</u>

SR 3.3.7.3 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is justified in WCAP-10271-P-A, Supplement 2, Rev.1.

SR 3.3.7.4

SR 3.3.7.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying

SURVEILLANCE REQUIREMENTS (continued)

contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience.

<u>SR 3.3.7.5</u>

SR 3.3.7.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience.

SR 3.3.7.6

SR 3.3.7.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.).

The test also includes trip devices that provide actuation signals directly to the Solid State Protection System, bypassing the analog process control equipment. The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.3.7.7</u>

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy.

The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.

REFERENCES None.

B 3.3 INSTRUMENTATION

B 3.3.8 Fuel Building Air Cleanup System (FBACS) Actuation Instrumentation

BASES

BACKGROUND	The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident [involving handling recently irradiated fuel] or a loss of coolant accident (LOCA) are filtered and adsorbed prior to exhausting to the environment. The system is described in the Bases for LCO 3.7.13, "Fuel Building Air Cleanup System." The system initiates filtered ventilation of the fuel building automatically following receipt of a high radiation signal (gaseous or particulate) or a safety injection (SI) signal. Initiation may also be performed manually as needed from the main control room. High gaseous and particulate radiation, each monitored by either of two
	monitors, provides FBACS initiation. Each FBACS train is initiated by high radiation detected by a channel dedicated to that train. There are a total of two channels, one for each train. Each channel contains a gaseous and particulate monitor. High radiation detected by any monitor or an SI signal from the Engineered Safety Features Actuation System (ESFAS) initiates fuel building isolation and starts the FBACS. These actions function to prevent exfiltration of contaminated air by initiating filtered ventilation, which imposes a negative pressure on the fuel building. Since the radiation monitors include an air sampling system, various components such as sample line valves, sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY.
APPLICABLE SAFETY ANALYSES	The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident [involving handling recently irradiated fuel] or a LOCA are filtered and adsorbed prior to being exhausted to the environment. This action reduces the radioactive content in the fuel building exhaust following a LOCA or fuel handling accident so that offsite doses remain within the limits specified in 10 CFR 100 (Ref. 1).
	The FBACS actuation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requirements ensure that instrumentation necessary to initiate the FBACS is OPERABLE.

LCO (continued)

1. Manual Initiation

The LCO requires two channels OPERABLE. The operator can initiate the FBACS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals.

The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability.

Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet.

2. Automatic Actuation Logic and Actuation Relays

The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation.

Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the FBACS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the FBACS function is affected, the Conditions applicable to their SI function need not be entered. The less restrictive Actions specified for inoperability of the FBACS functions specify sufficient compensatory measures for this case.

3. Fuel Building Radiation

The LCO specifies two required Gaseous Radiation Monitor channels and two required Particulate Radiation Monitor channels to ensure that the radiation monitoring instrumentation necessary to initiate the FBACS remains OPERABLE.

For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, filter motor operation, detector OPERABILITY, if these supporting features are

BASES	
LCO (continued)	
	necessary for actuation to occur under the conditions assumed by the safety analyses.
	Only the Trip Setpoint is specified for each FBACS Function in the LCO. The Trip Setpoint limits account for instrument uncertainties, which are defined in the Unit Specific Setpoint Calibration Procedure (Ref. 2).
APPLICABILITY	The manual FBACS initiation must be OPERABLE in MODES [1, 2, 3, and 4] and when moving [recently] irradiated fuel assemblies in the fuel building, to ensure the FBACS operates to remove fission products associated with leakage after a LOCA or a fuel handling accident [involving handling recently irradiated fuel]. The automatic FBACS actuation instrumentation is also required in MODES [1, 2, 3, and 4] to remove fission products caused by post LOCA Emergency Core Cooling Systems leakage.
	High radiation initiation of the FBACS must be OPERABLE in any MODE during movement of [recently] irradiated fuel assemblies in the fuel building to ensure automatic initiation of the FBACS when the potential for the limiting fuel handling accident exists. [Due to radioactive decay, the FBACS instrumentation is only required to be OPERABLE during fuel handling involving handling recently irradiated fuel (i.e., fuel that has occupied part of a critical reactor core within the previous [] days).]
	While in MODES 5 and 6 without fuel handling [involving handling recently irradiated fuel] in progress, the FBACS instrumentation need not be OPERABLE since a fuel handling accident [involving handling recently irradiated fuel] cannot occur.
ACTIONS	The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.
	LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the

ACTIONS (continued)

ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.

A second Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.8-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function.

<u>A.1</u>

Condition A applies to the actuation logic train function of the Solid State Protection System (SSPS), the radiation monitor functions, and the manual function. Condition A applies to the failure of a single actuation logic train, radiation monitor channel, or manual channel. If one channel or train is inoperable, a period of 7 days is allowed to restore it to OPERABLE status. If the train cannot be restored to OPERABLE status, one FBACS train must be placed in operation. This accomplishes the actuation instrumentation function and places the unit in a conservative mode of operation. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this time is the same as that provided in LCO 3.7.13.

<u>B.1.1, B.1.2, B.2</u>

Condition B applies to the failure of two FBACS actuation logic trains, two radiation monitors, or two manual channels. The Required Action is to place one FBACS train in operation immediately. This accomplishes the actuation instrumentation function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.13 must also be entered for the FBACS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed on train inoperability as discussed in the Bases for LCO 3.7.13.

ACTIONS (continued)

Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the FBACS Function is performed even in the presence of a single failure.

<u>C.1</u>

Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and [recently] irradiated fuel assemblies are being moved in the fuel building. Movement of [recently] irradiated fuel assemblies in the fuel building must be suspended immediately to eliminate the potential for events that could require FBACS actuation.

D.1 and D.2

Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.

SURVEILLANCEA Note has been added to the SR Table to clarify that table 3.3.8-1REQUIREMENTSdetermines which SRs apply to which FBACS Actuation Functions.

SR 3.3.8.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

SURVEILLANCE REQUIREMENTS (continued)

Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.8.2</u>

A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test verifies the capability of the instrumentation to provide the FBACS actuation. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency of 92 days is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience.

<u>SR 3.3.8.3</u>

[SR 3.3.8.3 is the performance of an ACTUATION LOGIC TEST. The actuation logic is tested every 31 days on a STAGGERED TEST BASIS. All possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency is based on the known reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience.]

<u>SR 3.3.8.4</u>

SR 3.3.8.4 is the performance of a TADOT. This test is a check of the manual actuation functions and is performed every [18] months. Each manual actuation function is tested up to, and including, the master relay

SURVEILLANCE REQUIREMENTS (continued)

coils. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable TADOT of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. In some instances, the test includes actuation of the end device (e.g., pump starts, valve cycles, etc.). The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them.

SR 3.3.8.5

A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle.

REFERENCES 1. 10 CFR 100.11.

2. Unit Specific Setpoint Calibration Procedure.

B 3.3 INSTRUMENTATION

~____

B 3.3.9 Boron Dilution Protection System (BDPS)

BASES		
BACKGROUND	The primary purpose of the BDPS is to mitigate the consequences of the inadvertent addition of unborated primary grade water into the Reactor Coolant System (RCS) when the reactor is in a shutdown condition (i.e., MODES 2, 3, 4, and 5).	
	The BDPS utilizes two channels of source range instrumentation. Each source range channel provides a signal to both trains of the BDPS. A unit computer is used to continuously record the counts per minute provided by these signals. At the end of each minute, an algorithm compares the counts per minute value (flux rate) of that 1 minute interval with the counts per minute value for the previous nine, 1 minute intervals. If the flux rate during a 1 minute interval is greater than or equal to twice the flux rate during any of the prior nine 1 minute intervals, the BDPS provides a signal to initiate mitigating actions.	
	Upon detection of a flux doubling by either source range instrumentation train, an alarm is sounded to alert the operator and valve movement is automatically initiated to terminate the dilution and start boration. Valves that isolate the refueling water storage tank (RWST) are opened to supply 2000 ppm borated water to the suction of the charging pumps, and valves which isolate the Chemical and Volume Control System (CVCS) are closed to terminate the dilution.	
APPLICABLE SAFETY ANALYSES	The BDPS senses abnormal increases in source range counts per minute (flux rate) and actuates CVCS and RWST valves to mitigate the consequences of an inadvertent boron dilution event as described in FSAR, Chapter 15 (Ref. 1). The accident analyses rely on automatic BDPS actuation to mitigate the consequences of inadvertent boron dilution events.	
	The BDPS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).	
LCO	LCO 3.3.9 provides the requirements for OPERABILITY of the instrumentation and controls that mitigate the consequences of a boron dilution event. Two redundant trains are required to be OPERABLE to provide protection against single failure.	
	Because the BDPS utilizes the source range instrumentation as its detection system, the OPERABILITY of the detection system, (i.e., the	

.

LCO (continued)	
	flux doubling algorithm, the alarms, and signals to the various valves) for one SRM is also required for each train in the system to be considered OPERABLE. Therefore, with both SRMs inoperable for supporting the BDPS, both trains are inoperable.
APPLICABILITY	The BDPS must be OPERABLE in MODES [2], 3, 4, and 5 because the safety analysis identifies this system as the primary means to mitigate an inadvertent boron dilution of the RCS.
	The BDPS OPERABILITY requirements are not applicable in MODE[S] 1 [and 2] because an inadvertent boron dilution would be terminated by a source range trip, a trip on the Power Range Neutron Flux - High (low setpoint nominally 25% RTP), or Overtemperature ΔT . These RTS Functions are discussed in LCO 3.3.1, "RTS Instrumentation."
	In MODE 6, a dilution event is precluded by locked valves that isolate the RCS from the potential source of unborated water (according to LCO 3.9.2, "Unborated Water Source Isolation Valves").
	The Applicability is modified by a Note that allows the boron dilution flux doubling signal to be blocked during reactor startup in MODES 2 and 3. Blocking the flux doubling signal is acceptable during startup while in MODE 3, provided the reactor trip breakers are closed with the intent to withdraw rods for startup.
ACTIONS	The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedure. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination of setpoint drift is generally made during the performance of a COT when the process instrumentation is set up for adjustment to bring it to within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered.
	<u>A.1</u>
	With one train of the BDPS OPERABLE, Required Action A.1 requires that the inoperable train must be restored to OPERABLE status within 72 hours. In this Condition, the remaining the BDPS train is adequate to provide protection. The 72 hour Completion Time is based on the BDPS

ACTIONS (continued)

Function and is consistent with Engineered Safety Feature Actuation System Completion Times for loss of one redundant train. Also, the remaining OPERABLE train provides continuous indication of core power status to the operator, has an alarm function, and sends a signal to both trains of the BDPS to assure system actuation.

B.1, B.2.1, B.2.2.1, and B.2.2.2

With two trains inoperable, or the Required Action and associated Completion Time of Condition A not met, the initial action (Required Action B.1) is to suspend all operations involving positive reactivity additions immediately. This includes withdrawal of control or shutdown rods and intentional boron dilution. A Completion Time of 1 hour is provided to restore one train to OPERABLE status.

As an alternate to restoring one train to OPERABLE status (Required Action B.2.1), Required Action B.2.2.1 requires valves listed in LCO 3.9.2 (Required Action A.2) to be secured to prevent the flow of unborated water into the RCS. Once it is recognized that two trains of the BDPS are inoperable, the operators will be aware of the possibility of a boron dilution, and the 1 hour Completion Time is adequate to complete the requirements of LCO 3.9.2.

Required Action B.2.2.2 accompanies Required Action B.2.2.1 to verify the SDM according to SR 3.1.1.1 within 1 hour and once per 12 hours thereafter. This backup action is intended to confirm that no unintended boron dilution has occurred while the BDPS was inoperable, and that the required SDM has been maintained. The specified Completion Time takes into consideration sufficient time for the initial determination of SDM and other information available in the control room related to SDM.

Required Action [] is modified by a note which permits plant temperature changes provided the temperature change is accounted for in the calculated SDM. Introduction of temperature changes, including temperature increases when a positive MTC exists, must be evaluated to ensure they do not result in a loss of required SDM.

SURVEILLANCE The BDPS trains are subject to a COT and a CHANNEL CALIBRATION. REQUIREMENTS

<u>SR 3.3.9.1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK

WOG STS

SURVEILLANCE REQUIREMENTS (continued)

is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure: thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the unit staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the senor or the signal processing equipment has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels.

<u>SR 3.3.9.2</u>

SR 3.3.9.2 requires the performance of a COT every [92] days, to ensure that each train of the BDPS and associated trip setpoint are fully operational. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. This test shall include verification that the boron dilution alarm setpoint is equal to or less than an increase of twice the count rate within a 10 minute period. The Frequency of [92] days is consistent with the requirements for source range channels in WCAP-10271-P-A (Ref. 2).

<u>SR_3.3.9.3</u>

SR 3.3.9.3 is the performance of a CHANNEL CALIBRATION every [18] months. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor except the neutron detector of the SRM circuit. The test verifies that the channel responds to a measured

SURVEILLANCE REQUIREMENTS (continued)

parameter within the necessary range and accuracy. For the BDPS, the CHANNEL CALIBRATION shall include verification that on a simulated or actual boron dilution flux doubling signal the centrifugal charging pump suction valves from the RWST open, and the normal CVCS volume control tank discharge valves close in the required closure time of \leq 20 seconds.

The Frequency is based on operating experience and consistency with the typical industry refueling cycle.

REFERENCES 1. FSAF	I, Chapter [15].
--------------------	------------------

2. WCAP-10271-P-A, Supplement 2, Revision 1, June 1990.

WOG STS
B 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits

BASES BACKGROUND These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within limits assumed in the safety analyses. The safety analyses (Bef. 1) of normal operating conditions and

The safety analyses (Ref. 1) of normal operating conditions and anticipated operational occurrences assume initial conditions within the normal steady state envelope. The limits placed on RCS pressure, temperature, and flow rate ensure that the minimum departure from nucleate boiling ratio (DNBR) will be met for each of the transients analyzed. The RCS pressure limit is consistent with operation within the nominal operational envelope. Pressurizer pressure indications are averaged to come up with a value for comparison to the limit. A lower pressure will cause the reactor core to approach DNB limits. The RCS coolant average temperature limit is consistent with full power operation within the nominal operational envelope. Indications of temperature are averaged to determine a value for comparison to the limit. A higher average temperature will cause the core to approach DNB limits. The RCS flow rate normally remains constant during an operational fuel cycle with all pumps running. The minimum RCS flow limit corresponds to that assumed for DNB analyses. Flow rate indications are averaged to come up with a value for comparison to the limit. A lower RCS flow will cause the core to approach DNB limits. Operation for significant periods of time outside these DNB limits increases the likelihood of a fuel cladding failure in a DNB limited event. The requirements of this LCO represent the initial conditions for DNB APPLICABLE limited transients analyzed in the plant safety analyses (Ref. 1). The SAFETY

ANALYSES

limited transients of this LOO represent the initial conditions for Drub limited transients analyzed in the plant safety analyses (Ref. 1). The safety analyses have shown that transients initiated from the limits of this LCO will result in meeting the DNBR criterion. This is the acceptance limit for the RCS DNB parameters. Changes to the unit that could impact these parameters must be assessed for their impact on the DNBR criteria. The transients analyzed for include loss of coolant flow events and dropped or stuck rod events. A key assumption for the analysis of these events is that the core power distribution is within the limits of

WOG STS

LCO

APPLICABLE SAFETY ANALYSES (continued)

LCO 3.1.6, "Control Bank Insertion Limits," LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)."

The pressurizer pressure limit and RCS average temperature limit specified in the COLR correspond to the analytical limits used in the safety analyses, with allowance for measurement uncertainty.

The RCS DNB parameters satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

This LCO specifies limits on the monitored process variables pressurizer pressure, RCS average temperature, and RCS total flow rate - to ensure the core operates within the limits assumed in the safety analyses. These variables are contained in the COLR to provide operating and analysis flexibility from cycle to cycle. However, the minimum RCS flow, usually based on [maximum analyzed steam generator tube plugging], is retained in the TS LCO. Operating within these limits will result in meeting the DNBR criterion in the event of a DNB limited transient.

RCS total flow rate contains a measurement error based on performing a precision heat balance and using the result to calibrate the RCS flow rate indicators. Potential fouling of the feedwater venturi, which might not be detected, could bias the result from the precision heat balance in a nonconservative manner. Therefore, a penalty for undetected fouling of the feedwater venturi raises the nominal flow measurement allowance for no fouling.

Any fouling that might bias the flow rate measurement greater than the penalty for undetected fouling of the feedwater venturi can be detected by monitoring and trending various plant performance parameters. If detected, either the effect of the fouling shall be quantified and compensated for in the RCS flow rate measurement or the venturi shall be cleaned to eliminate the fouling.

The numerical values for pressure, temperature, and flow rate specified in the COLR are given for the measurement location and have been adjusted for instrument error.

APPLICABILITY In MODE 1, the limits on pressurizer pressure, RCS coolant average temperature, and RCS flow rate must be maintained during steady state operation in order to ensure DNBR criteria will be met in the event of an

APPLICABILITY (continued)

unplanned loss of forced coolant flow or other DNB limited transient. In all other MODES, the power level is low enough that DNB is not a concern.

A Note has been added to indicate the limit on pressurizer pressure is not applicable during short term operational transients such as a THERMAL POWER ramp increase > 5% RTP per minute or a THERMAL POWER step increase > 10% RTP. These conditions represent short term perturbations where actions to control pressure variations might be counterproductive. Also, since they represent transients initiated from power levels < 100% RTP, an increased DNBR margin exists to offset the temporary pressure variations.

The DNBR limit is provided in SL 2.1.1, "Reactor Core SLs." The conditions which define the DNBR limit are less restrictive than the limits of this LCO, but violation of a Safety Limit (SL) merits a stricter, more severe Required Action. Should a violation of this LCO occur, the operator must check whether or not an SL may have been exceeded.

ACTIONS

RCS pressure and RCS average temperature are controllable and measurable parameters. With one or both of these parameters not within LCO limits, action must be taken to restore parameter(s).

RCS total flow rate is not a controllable parameter and is not expected to vary during steady state operation. If the indicated RCS total flow rate is below the LCO limit, power must be reduced, as required by Required Action B.1, to restore DNB margin and eliminate the potential for violation of the accident analysis bounds.

The 2 hour Completion Time for restoration of the parameters provides sufficient time to adjust plant parameters, to determine the cause for the off normal condition, and to restore the readings within limits, and is based on plant operating experience.

<u>B.1</u>

<u>A.1</u>

If Required Action A.1 is not met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. In MODE 2, the reduced power condition eliminates the potential for violation of the accident analysis bounds. The Completion

ACTIONS (continued)			
	Time of 6 hours is reasonable to reach the required plant conditions in an orderly manner.		
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.1.1</u>		
	Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for pressurizer pressure is sufficient to ensure the pressure can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.		
	<u>SR 3.4.1.2</u>		
	Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for RCS average temperature is sufficient to ensure the temperature can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.		
	<u>SR 3.4.1.3</u>		
	The 12 hour Surveillance Frequency for RCS total flow rate is performed using the installed flow instrumentation. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess potential degradation and to verify operation within safety analysis assumptions.		
	<u>SR 3.4.1.4</u>		
	Measurement of RCS total flow rate by performance of a precision calorimetric heat balance once every [18] months allows the installed RCS flow instrumentation to be calibrated and verifies the actual RCS flow rate is greater than or equal to the minimum required RCS flow rate.		
	The Frequency of [18] months reflects the importance of verifying flow after a refueling outage when the core has been altered, which may have caused an alteration of flow resistance.		

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by a Note that allows entry into MODE 1, without having performed the SR, and placement of the unit in the best condition for performing the SR. The Note states that the SR is not required to be performed until 24 hours after \geq [90%] RTP. This exception is appropriate since the heat balance requires the plant to be at a minimum of [90%] RTP to obtain the stated RCS flow accuracies. The Surveillance shall be performed within 24 hours after reaching [90%] RTP.

REFERENCES 1. FSAR, Section [15].

WOG STS

B 3.4.2 RCS Minimum Temperature for Criticality

This LCO is based upon meeting several major considerations before the reactor can be made critical and while the reactor is critical.
The first consideration is moderator temperature coefficient (MTC), LCO 3.1.3, "Moderator Temperature Coefficient (MTC)." In the transient and accident analyses, the MTC is assumed to be in a range from slightly positive to negative and the operating temperature is assumed to be within the nominal operating envelope while the reactor is critical. The LCO on minimum temperature for criticality helps ensure the plant is operated consistent with these assumptions.
The second consideration is the protective instrumentation. Because certain protective instrumentation (e.g., excore neutron detectors) can be affected by moderator temperature, a temperature value within the nominal operating envelope is chosen to ensure proper indication and response while the reactor is critical.
The third consideration is the pressurizer operating characteristics. The transient and accident analyses assume that the pressurizer is within its normal startup and operating range (i.e., saturated conditions and steam bubble present). It is also assumed that the RCS temperature is within its normal expected range for startup and power operation. Since the density of the water, and hence the response of the pressurizer to transients, depends upon the initial temperature of the moderator, a minimum value for moderator temperature within the nominal operating envelope is chosen.
The fourth consideration is that the reactor vessel is above its minimum nil ductility reference temperature when the reactor is critical.
Although the RCS minimum temperature for criticality is not itself an initial condition assumed in Design Basis Accidents (DBAs), the closely aligned temperature for hot zero power (HZP) is a process variable that is an initial condition of DBAs, such as the rod cluster control assembly (RCCA) withdrawal, RCCA ejection, and main steam line break accidents performed at zero power that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier.

APPLICABLE SAFETY ANALYSES (continued)

All low power safety analyses assume initial RCS loop temperatures \geq the HZP temperature of 547°F (Ref. 1). The minimum temperature for criticality limitation provides a small band, 6°F, for critical operation below HZP. This band allows critical operation below HZP during plant startup and does not adversely affect any safety analyses since the MTC is not significantly affected by the small temperature difference between HZP and the minimum temperature for criticality.

The RCS minimum temperature for criticality satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO Compliance with the LCO ensures that the reactor will not be made or maintained critical ($k_{eff} \ge 1.0$) at a temperature less than a small band below the HZP temperature, which is assumed in the safety analysis. Failure to meet the requirements of this LCO may produce initial conditions inconsistent with the initial conditions assumed in the safety analysis.

APPLICABILITY In MODE 1 and MODE 2 with $k_{eff} \ge 1.0$, LCO 3.4.2 is applicable since the reactor can only be critical ($k_{eff} \ge 1.0$) in these MODES.

The special test exception of LCO 3.1.8, "PHYSICS TESTS Exceptions -MODE 2," permits PHYSICS TESTS to be performed at \leq 5% RTP with RCS loop average temperatures slightly lower than normally allowed so that fundamental nuclear characteristics of the core can be verified. In order for nuclear characteristics to be accurately measured, it may be necessary to operate outside the normal restrictions of this LCO. For example, to measure the MTC at beginning of cycle, it is necessary to allow RCS loop average temperatures to fall below T_{no load}, which may cause RCS loop average temperatures to fall below the temperature limit of this LCO.

ACTIONS

A.1

If the parameters that are outside the limit cannot be restored, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 2 with $K_{eff} < 1.0$ within 30 minutes. Rapid reactor shutdown can be readily and practically achieved within a 30 minute period. The allowed time is reasonable, based on operating experience, to reach MODE 2 with $K_{eff} < 1.0$ in an orderly manner and without challenging plant systems.

 \sim

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.2.1</u>		
	RCS loop average temperature is required to be verified at or above [541]°F every 12 hours. The SR to verify RCS loop average temperatures every 12 hours takes into account indications and alarms that are continuously available to the operator in the control room and is consistent with other routine Surveillances which are typically performed once per shift. In addition, operators are trained to be sensitive to RCS temperature during approach to criticality and will ensure that the minimum temperature for criticality is met as criticality is approached.		
REFERENCES	1. FSAR, Section [15.0.3].		

B 3.4.3 RCS Pressure and Temperature (P/T) Limits

BASES

BACKGROUND AI

All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation.

The PTLR contains P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature (Ref. 1).

Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region.

The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure, and the LCO limits apply mainly to the vessel. The limits do not apply to the pressurizer, which has different design characteristics and operating functions.

10 CFR 50, Appendix G (Ref. 2), requires the establishment of P/T limits for specific material fracture toughness requirements of the RCPB materials. Reference 2 requires an adequate margin to brittle failure during normal operation, anticipated operational occurrences, and system hydrostatic tests. It mandates the use of the American Society of Mechanical Engineers (ASME) Code, Section III, Appendix G (Ref. 3).

The neutron embrittlement effect on the material toughness is reflected by increasing the nil ductility reference temperature (RT_{NDT}) as exposure to neutron fluence increases.

The actual shift in the RT_{NDT} of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel material specimens, in accordance with ASTM E 185 (Ref. 4) and Appendix H of 10 CFR 50 (Ref. 5). The operating P/T limit curves will be

BASES

BACKGROUND (continued)

	adjusted, as necessary, based on the evaluation findings and the recommendations of Regulatory Guide 1.99 (Ref. 6).
	The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the reactor vessel will dictate the most restrictive limit. Across the span of the P/T limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions.
	The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls.
	The criticality limit curve includes the Reference 2 requirement that it be $\ge 40^{\circ}$ F above the heatup curve or the cooldown curve, and not less than the minimum permissible temperature for ISLH testing. However, the criticality curve is not operationally limiting; a more restrictive limit exists in LCO 3.4.2, "RCS Minimum Temperature for Criticality."
	The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. The ASME Code, Section XI, Appendix E (Ref. 7), provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits.
APPLICABLE SAFETY ANALYSES	The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, an unanalyzed condition. Reference 1 establishes the methodology for determining the P/T limits. Although the P/T limits are not derived from any DBA, the P/T limits are acceptance limits since they preclude operation in an unanalyzed condition.
	RCS P/T limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

DAGE0			
LCO	The two elements of this LCO are:		
	a. The limit curves for heatup, cooldown, and ISLH testing and		
	b. Limits on the rate of change of temperature.		
	The LCO limits apply to all components of the RCS, except the pressurizer. These limits define allowable operating regions and permit a large number of operating cycles while providing a wide margin to nonductile failure.		
	The limits for the rate of change of temperature control the thermal gradient through the vessel wall and are used as inputs for calculating the heatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal gradients and also ensures the validity of the P/T limit curves.		
	Violating the LCO limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCPB components. The consequences depend on several factors, as follow:		
	 The severity of the departure from the allowable operating P/T regime or the severity of the rate of change of temperature, 		
	 The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced), and 		
	c. The existences, sizes, and orientations of flaws in the vessel material.		
APPLICABILITY	The RCS P/T limits LCO provides a definition of acceptable operation for prevention of nonductile failure in accordance with 10 CFR 50, Appendix G (Ref. 2). Although the P/T limits were developed to provide guidance for operation during heatup or cooldown (MODES 3, 4, and 5) or ISLH testing, their Applicability is at all times in keeping with the concern for nonductile failure. The limits do not apply to the pressurizer.		
	During MODES 1 and 2, other Technical Specifications provide limits for operation that can be more restrictive than or can supplement these P/T limits. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits," LCO 3.4.2, "RCS Minimum		

~~

APPLICABILITY (continued)

maximum pressure. Furthermore, MODES 1 and 2 are above the temperature range of concern for nonductile failure, and stress analyses have been performed for normal maneuvering profiles, such as power ascension or descent.

ACTIONS <u>A.1 and A.2</u>

Operation outside the P/T limits during MODE 1, 2, 3, or 4 must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses.

The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify the RCPB integrity remains acceptable and must be completed before continuing operation. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, new analyses, or inspection of the components.

ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.

The 72 hour Completion Time is reasonable to accomplish the evaluation. The evaluation for a mild violation is possible within this time, but more severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed before continuing to operate.

Condition A is modified by a Note requiring Required Action A.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action A.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.

ACTIONS (continued)

B.1 and B.2

If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained in an unacceptable P/T region for an extended period of increased stress or a sufficiently severe event caused entry into an unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. In reduced pressure and temperature conditions, the possibility of propagation with undetected flaws is decreased.

If the required restoration activity cannot be accomplished within 30 minutes, Required Action B.1 and Required Action B.2 must be implemented to reduce pressure and temperature.

If the required evaluation for continued operation cannot be accomplished within 72 hours or the results are indeterminate or unfavorable, action must proceed to reduce pressure and temperature as specified in Required Action B.1 and Required Action B.2. A favorable evaluation must be completed and documented before returning to operating pressure and temperature conditions.

Pressure and temperature are reduced by bringing the plant to MODE 3 within 6 hours and to MODE 5 with RCS pressure < [500] psig within 36 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 and C.2

Actions must be initiated immediately to correct operation outside of the P/T limits at times other than when in MODE 1, 2, 3, or 4, so that the RCPB is returned to a condition that has been verified by stress analysis.

The immediate Completion Time reflects the urgency of initiating action to restore the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

ACTIONS (continued)

	Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify that the RCPB integrity remains acceptable and must be completed prior to entry into MODE 4. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, or inspection of the components.			
	ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.			
	Condition C is modified by a Note requiring Required Action C.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action C.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.			
SURVEILLANCE	<u>SR 3.4.3.1</u>			
NEQUINEIVIENTS	Verification that operation is within the PTLR limits is required every 30 minutes when RCS pressure and temperature conditions are undergoing planned changes. This Frequency is considered reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits assessment and correction for minor deviations within a reasonable time.			
	Surveillance for heatup, cooldown, or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied.			
	This SR is modified by a Note that only requires this SR to be performed during system heatup, cooldown, and ISLH testing. No SR is given for criticality operations because LCO 3.4.2 contains a more restrictive requirement.			
REFERENCES	1. WCAP-7924-A, April 1975.			
	2. 10 CFR 50, Appendix G.			
	3. ASME, Boiler and Pressure Vessel Code, Section III, Appendix G.			

REFERENCES (continued)

- 4. ASTM E 185-82, July 1982.
- 5. 10 CFR 50, Appendix H.
- 6. Regulatory Guide 1.99, Revision 2, May 1988.
- 7. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix E.

.

B 3.4.4 RCS Loops - MODES 1 and 2

BASES

BACKGROUND	The primary function of the RCS is removal of the heat generated in the fuel due to the fission process, and transfer of this heat, via the steam generators (SGs), to the secondary plant.		
	The secondary functions of the RCS include:		
	a. Moderating the neutron energy level to the thermal state, to increase the probability of fission,		
	b. Improving the neutron economy by acting as a reflector,		
	c. Carrying the soluble neutron poison, boric acid,		
	d. Providing a second barrier against fission product release to the environment, and		
	e. Removing the heat generated in the fuel due to fission product decay following a unit shutdown.		
	The reactor coolant is circulated through [four] loops connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow and temperature instrumentation for both control and protection. The reactor vessel contains the clad fuel. The SGs provide the heat sink to the isolated secondary coolant. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. This forced circulation of the reactor coolant ensures mixing of the coolant for proper boration and chemistry control.		
APPLICABLE SAFETY ANALYSES	Safety analyses contain various assumptions for the design bases accident initial conditions including RCS pressure, RCS temperature, reactor power level, core parameters, and safety system setpoints. The important aspect for this LCO is the reactor coolant forced flow rate, which is represented by the number of RCS loops in service. Both transient and steady state analyses have been performed to establish the effect of flow on the departure from nucleate boiling (DNB). The transient and accident analyses for the plant have been performed assuming [four] RCS loops are in operation. The majority of the plant		

APPLICABLE SAFETY ANALYSES (continued)

safety analyses are based on initial conditions at high core power or zero power. The accident analyses that are most important to RCP operation are the [four] pump coastdown, single pump locked rotor, single pump (broken shaft or coastdown), and rod withdrawal events (Ref. 1).

Steady state DNB analysis has been performed for the [four] RCS loop operation. For [four] RCS loop operation, the steady state DNB analysis, which generates the pressure and temperature Safety Limit (SL) (i.e., the departure from nucleate boiling ratio (DNBR) limit) assumes a maximum power level of 109% RTP. This is the design overpower condition for [four] RCS loop operation. The value for the accident analysis setpoint of the nuclear overpower (high flux) trip is 107% and is based on an analysis assumption that bounds possible instrumentation errors. The DNBR limit defines a locus of pressure and temperature points that result in a minimum DNBR greater than or equal to the critical heat flux correlation limit.

The plant is designed to operate with all RCS loops in operation to maintain DNBR above the SL, during all normal operations and anticipated transients. By ensuring heat transfer in the nucleate boiling region, adequate heat transfer is provided between the fuel cladding and the reactor coolant.

RCS Loops - MODES 1 and 2 satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

The purpose of this LCO is to require an adequate forced flow rate for core heat removal. Flow is represented by the number of RCPs in operation for removal of heat by the SGs. To meet safety analysis acceptance criteria for DNB, [four] pumps are required at rated power.

An OPERABLE RCS loop consists of an OPERABLE RCP in operation providing forced flow for heat transport and an OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program.

APPLICABILITY In MODES 1 and 2, the reactor is critical and thus has the potential to produce maximum THERMAL POWER. Thus, to ensure that the assumptions of the accident analyses remain valid, all RCS loops are required to be OPERABLE and in operation in these MODES to prevent DNB and core damage.

APPLICABILITY (continued)

The decay heat production rate is much lower than the full power heat rate. As such, the forced circulation flow and heat sink requirements are reduced for lower, noncritical MODES as indicated by the LCOs for MODES 3, 4, and 5.

Operation in other MODES is covered by:

LCO 3.4.5,	"RCS Loops - MODE 3,"
LCO 3.4.6,	"RCS Loops - MODE 4,"
LCO 3.4.7,	"RCS Loops - MODE 5, Loops Filled,"
LCO 3.4.8,	"RCS Loops - MODE 5, Loops Not Filled,"
LCO 3.9.5,	"Residual Heat Removal (RHR) and Coolant Circulation -
	High Water Level" (MODE 6), and
LCO 3.9.6,	"Residual Heat Removal (RHR) and Coolant Circulation -
	Low Water Level" (MODE 6).

ACTIONS <u>A.1</u>

If the requirements of the LCO are not met, the Required Action is to reduce power and bring the plant to MODE 3. This lowers power level and thus reduces the core heat removal needs and minimizes the possibility of violating DNB limits.

The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging safety systems.

SURVEILLANCE <u>SR_3.4.4.1</u> REQUIREMENTS

This SR requires verification every 12 hours that each RCS loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal while maintaining the margin to DNB. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance.

REFERENCES 1. FSAR, Section [].

B 3.4.5 RCS Loops - MODE 3

BASES	
BACKGROUND	In MODE 3, the primary function of the reactor coolant is removal of decay heat and transfer of this heat, via the steam generator (SG), to the secondary plant fluid. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.
	The reactor coolant is circulated through [four] RCS loops, connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The reactor vessel contains the clad fuel. The SGs provide the heat sink. The RCPs circulate the water through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage.
	In MODE 3, RCPs are used to provide forced circulation for heat removal during heatup and cooldown. The MODE 3 decay heat removal requirements are low enough that a single RCS loop with one RCP running is sufficient to remove core decay heat. However, [two] RCS loops are required to be OPERABLE to ensure redundant capability for decay heat removal.
APPLICABLE SAFETY ANALYSES	Whenever the reactor trip breakers (RTBs) are in the closed position and the control rod drive mechanisms (CRDMs) are energized, an inadvertent rod withdrawal from subcritical, resulting in a power excursion, is possible. Such a transient could be caused by a malfunction of the rod control system. In addition, the possibility of a power excursion due to the ejection of an inserted control rod is possible with the breakers closed or open. Such a transient could be caused by the mechanical failure of a CRDM.
	Therefore, in MODE 3 with the Rod Control System capable of rod withdrawal, accidental control rod withdrawal from subcritical is postulated and requires at least [two] RCS loops to be OPERABLE and in operation to ensure that the accident analyses limits are met. For those conditions when the Rod Control System is not capable of rod withdrawal, two RCS loops are required to be OPERABLE, but only one RCS loop is required to be in operation to be consistent with MODE 3 accident analyses.

APPLICABLE SAFETY ANALYSES (continued)

Failure to provide decay heat removal may result in challenges to a fission product barrier. The RCS loops are part of the primary success path that functions or actuates to prevent or mitigate a Design Basis Accident or transient that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier.

RCS Loops - MODE 3 satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO The purpose of this LCO is to require that at least [two] RCS loops be OPERABLE. In MODE 3 with the Rod Control System capable of rod withdrawal, [two] RCS loops must be in operation. [Two] RCS loops are required to be in operation in MODE 3 with the Rod Control System capable of rod withdrawal due to the postulation of a power excursion because of an inadvertent control rod withdrawal. The required number of RCS loops in operation ensures that the Safety Limit criteria will be met for all of the postulated accidents.

When the Rod Control System is not capable of rod withdrawal, only one RCS loop in operation is necessary to ensure removal of decay heat from the core and homogenous boron concentration throughout the RCS. An additional RCS loop is required to be OPERABLE to ensure that safety analyses limits are met.

The Note permits all RCPs to not be in operation for ≤ 1 hour per 8 hour period. The purpose of the Note is to perform tests that are designed to validate various accident analyses values. One of these tests is validation of the pump coastdown curve used as input to a number of accident analyses including a loss of flow accident. This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values of the coastdown curve must be revalidated by conducting the test again. Another test performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow.

The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should be performed only once unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests, and operating experience has

BASES			
LCO (continued)			
	shown that boron stratification is not a problem during this short period with no forced flow.		
	Utilization of the Note is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures:		
	a. No operations are permitted that would dilute the RCS boron concentration with coolant at boron concentrations less than required to assure the SDM of LCO 3.1.1, thereby maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and		
	b. Core outlet temperature is maintained at least 10°F below saturati temperature, so that no vapor bubble may form and possibly caus a natural circulation flow obstruction.		
	An OPERABLE RCS loop consists of one OPERABLE RCP and one OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.5.2. An RCP is OPERABLE if it is capable of being powered ar is able to provide forced flow if required.		
APPLICABILITY	In MODE 3, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. The most stringent condition of the LCO, that is, two RCS loops OPERABLE and two RCS loops in operation, applies to MODE 3 with the Rod Control System capable of rod withdrawal. The least stringent condition, that is, two RCS loops OPERABLE and one RCS loop in operation, applies to MODE 3 with the Rod Control System capable 3 with the Rod Control System not capable core and the Rod Control System not capab		
	Operation in other MODES is covered by:		
	LCO 3.4.4, "RCS Loops - MODES 1 and 2," LCO 3.4.6, "RCS Loops - MODE 4," LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," LCO 3.4.8, "RCS Loops - MODE 5, Loops Not Filled," LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation High Water Level" (MODE 6), and		

RCS Loops - MODE 3 B 3.4.5

BASES

APPLICABILITY (continued) LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation -Low Water Level" (MODE 6). ACTIONS <u>A.1</u> If one [required] RCS loop is inoperable, redundancy for heat removal is

It one [required] RCS loop is inoperable, redundancy for heat removal is lost. The Required Action is restoration of the required RCS loop to OPERABLE status within the Completion Time of 72 hours. This time allowance is a justified period to be without the redundant, nonoperating loop because a single loop in operation has a heat transfer capability greater than that needed to remove the decay heat produced in the reactor core and because of the low probability of a failure in the remaining loop occurring during this period.

<u>B.1</u>

If restoration for Required Action A.1 is not possible within 72 hours, the unit must be brought to MODE 4. In MODE 4, the unit may be placed on the Residual Heat Removal System. The additional Completion Time of 12 hours is compatible with required operations to achieve cooldown and depressurization from the existing plant conditions in an orderly manner and without challenging plant systems.

[<u>C.1 and C.2</u>

If one required RCS loop is not in operation, and the Rod Control System is capable of rod withdrawal, the Required Action is either to restore the required RCS loop to operation or to place the Rod Control System in a condition incapable of rod withdrawal (e.g., de-energize all CRDMs by opening the RTBs or de-energizing the motor generator (MG) sets). When the Rod Control System is capable of rod withdrawal, it is postulated that a power excursion could occur in the event of an inadvertent control rod withdrawal. This mandates having the heat transfer capacity of two RCS loops in operation. If only one loop is in operation, the Rod Control System must be rendered incapable of rod withdrawal. The Completion Times of 1 hour, to restore the required RCS loop to operations in an orderly manner without exposing the unit to risk for an undue time period.]

ACTIONS (continued)

D.1, D.2, and D.3

If [two] [required] RCS loops are inoperable or a required RCS loop is not in operation, except as during conditions permitted by the Note in the LCO section, the Rod Control System must be placed in a condition incapable of rod withdrawal (e.g., all CRDMs must be de-energized by opening the RTBs or de-energizing the MG sets). All operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended, and action to restore one of the RCS loops to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and opening the RTBs or de-energizing the MG sets removes the possibility of an inadvertent rod withdrawal. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation.

SURVEILLANCE <u>SR</u> REQUIREMENTS

<u>SR 3.4.5.1</u>

This SR requires verification every 12 hours that the required loops are in operation. Verification includes flow rate, temperature, and pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance.

SR 3.4.5.2

SR 3.4.5.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is \geq [17]% for required RCS loops. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink for removal of the decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to a loss of SG level.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.4.5.3</u>

Verification that each required RCP is OPERABLE ensures that safety analyses limits are met. The requirement also ensures that an additional RCP can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power availability to each required RCP. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

B 3.4.6 RCS Loops - MODE 4

BASES	
BACKGROUND	In MODE 4, the primary function of the reactor coolant is the removal of decay heat and the transfer of this heat to either the steam generator (SG) secondary side coolant or the component cooling water via the residual heat removal (RHR) heat exchangers. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.
	The reactor coolant is circulated through [four] RCS loops connected in parallel to the reactor vessel, each loop containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and to prevent boric acid stratification.
	In MODE 4, either RCPs or RHR loops can be used to provide forced circulation. The intent of this LCO is to provide forced flow from at least one RCP or one RHR loop for decay heat removal and transport. The flow provided by one RCP loop or RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that two paths be available to provide redundancy for decay heat removal.
APPLICABLE SAFETY ANALYSES	In MODE 4, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RCS and RHR loops provide this circulation.
	RCS Loops - MODE 4 satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).
LCO	The purpose of this LCO is to require that at least two loops be OPERABLE in MODE 4 and that one of these loops be in operation. The LCO allows the two loops that are required to be OPERABLE to consist of any combination of RCS loops and RHR loops. Any one loop in operation provides enough flow to remove the decay heat from the core with forced circulation. An additional loop is required to be OPERABLE to provide redundancy for heat removal.
	Note 1 permits all RCPs or RHR pumps to not be in operation for ≤ 1 hour per 8 hour period. The purpose of the Note is to permit tests that are designed to validate various accident analyses values. One of

LCO (continued)

the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow.

Utilization of Note 1 is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures:

- a. No operations are permitted that would dilute the RCS boron concentration with coolant with boron concentrations less than required to meet SDM of LCO 3.1.1, therefore maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and
- b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction.

Note 2 requires that the secondary side water temperature of each SG be $\leq [50]^{\circ}$ F above each of the RCS cold leg temperatures before the start of an RCP with any RCS cold leg temperature $\leq [275^{\circ}F]$ [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR]. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.

An OPERABLE RCS loop comprises an OPERABLE RCP and an OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.6.2.

Similarly for the RHR System, an OPERABLE RHR loop comprises an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RCPs and RHR pumps are

LCO (continued)				
	OPERABLE if they are capable of being powered and are able to provide forced flow if required.			
APPLICABILITY	In MODE 4, this LCO ensures forced circulation of the reactor coolant remove decay heat from the core and to provide proper boron mixing. One loop of either RCS or RHR provides sufficient circulation for these purposes. However, two loops consisting of any combination of RCS a RHR loops are required to be OPERABLE to meet single failure considerations.			
	LCO 3.4.4, LCO 3.4.5, LCO 3.4.7, LCO 3.4.8, LCO 3.9.5, LCO 3.9.6,	"RCS Loops - MODES 1 and 2," "RCS Loops - MODE 3," "RCS Loops - MODE 5, Loops Filled," "RCS Loops - MODE 5, Loops Not Filled," "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6).		

ACTIONS

<u>A.1</u>

If one required loop is inoperable, redundancy for heat removal is lost. Action must be initiated to restore a second RCS or RHR loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.

<u>A.2</u>

If restoration is not accomplished and an RHR loop is OPERABLE, the unit must be brought to MODE 5 within 24 hours. Bringing the unit to MODE 5 is a conservative action with regard to decay heat removal. With only one RHR loop OPERABLE, redundancy for decay heat removal is lost and, in the event of a loss of the remaining RHR loop, it would be safer to initiate that loss from MODE 5 rather than MODE 4. The Completion Time of 24 hours is a reasonable time, based on operating experience, to reach MODE 5 from MODE 4 in an orderly manner and without challenging plant systems.

ACTIONS (continued)

This Required Action is modified by a Note which indicates that the unit must be placed in MODE 5 only if a RHR loop is OPERABLE. With no RHR loop OPERABLE, the unit is in a condition with only limited cooldown capabilities. Therefore, the actions are to be concentrated on the restoration of a RHR loop, rather than a cooldown of extended duration.

B.1 and B.2

If two required loops are inoperable or a required loop is not in operation. except during conditions permitted by Note 1 in the LCO section, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action to restore one RCS or RHR loop to OPERABLE status and operation must be initiated. The required margin to criticality must not be reduced in this type of operation. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Times reflect the importance of maintaining operation for decay heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation.

SURVEILLANCE REQUIREMENTS

<u>SR 3.4.6.1</u>

This SR requires verification every 12 hours that the required RCS or RHR loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS and RHR loop performance.

<u>SR 3.4.6.2</u>

SR 3.4.6.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is $\geq [17]$ %. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink necessary for removal of decay heat. The 12 hour Frequency is considered adequate in view of other

SURVEILLANCE REQUIREMENTS (continued)

indications available in the control room to alert the operator to the loss of SG level.

SR 3.4.6.3

Verification that each required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

B 3.4.7 RCS Loops - MODE 5, Loops Filled

BASES

BACKGROUND

In MODE 5 with the RCS loops filled, the primary function of the reactor coolant is the removal of decay heat and transfer this heat either to the steam generator (SG) secondary side coolant via natural circulation (Ref. 1) or the component cooling water via the residual heat removal (RHR) heat exchangers. While the principal means for decay heat removal is via the RHR System, the SGs via natural circulation (Ref. 1) are specified as a backup means for redundancy. Even though the SGs cannot produce steam in this MODE, they are capable of being a heat sink due to their large contained volume of secondary water. As long as the SG secondary side water is at a lower temperature than the reactor coolant, heat transfer will occur. The rate of heat transfer is directly proportional to the temperature difference. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.

In MODE 5 with RCS loops filled, the reactor coolant is circulated by means of two RHR loops connected to the RCS, each loop containing an RHR heat exchanger, an RHR pump, and appropriate flow and temperature instrumentation for control, protection, and indication. One RHR pump circulates the water through the RCS at a sufficient rate to prevent boric acid stratification.

The number of loops in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR loop for decay heat removal and transport. The flow provided by one RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that a second path be available to provide redundancy for heat removal.

The LCO provides for redundant paths of decay heat removal capability. The first path can be an RHR loop that must be OPERABLE and in operation. The second path can be another OPERABLE RHR loop or maintaining two SGs with secondary side water levels \geq [17]% to provide an alternate method for decay heat removal via natural circulation (Ref.1).

BASES			
APPLICABLE SAFETY ANALYSES	In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation.		
	RCS Loops - MODE 5 (Loops Filled) satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).		
LCO	The purpose of this LCO is to require that at least one of the RHR loops be OPERABLE and in operation with an additional RHR loop OPERABLE or two SGs with secondary side water level \geq [17]%. One RHR loop provides sufficient forced circulation to perform the safety functions of the reactor coolant under these conditions. An additional RHR loop is required to be OPERABLE to meet single failure considerations. However, if the standby RHR loop is not OPERABLE, an acceptable alternate method is two SGs with their secondary side water levels \geq [17]%. Should the operating RHR loop fail, the SGs could be used to remove the decay heat via natural circulation.		
	Note 1 permits all RHR pumps to not be in operation ≤ 1 hour per 8 hour period. The purpose of the Note is to permit tests designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not likely during this short period with no forced flow.		
	Utilization of Note 1 is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures:		
	a. No operations are permitted that would dilute the RCS boron concentration with coolant with boron concentrations less than required to meet SDM of LCO 3.1.1, therefore maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and		

	b. Core outlet temperature is maintained at least 10°F below saturatio temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction.			
	Note 2 allows one RHR loop to be inoperable for a period of up to 2 hours, provided that the other RHR loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when such testing is safe and possible.			
	Note 3 requires that the secondary side water temperature of each SG b \leq [50]°F above each of the RCS cold leg temperatures before the start of a reactor coolant pump (RCP) with an RCS cold leg temperature \leq [275°F] [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR]. This restriction is to prevent a low temperature overpressure event due to a thermal transient when an RCF is started.			
	Note 4 provides for an orderly transition from MODE 5 to MODE 4 during a planned heatup by permitting removal of RHR loops from operation when at least one RCS loop is in operation. This Note provides for the transition to MODE 4 where an RCS loop is permitted to be in operation and replaces the RCS circulation function provided by the RHR loops.			
	RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. An OPERABLE SG can perform as heat sink via natural circulation when it has an adequate water level and is OPERABLE in accordance with the Steam Generator Tube Surveillance Program.			
APPLICABILITY	In MODE 5 with RCS loops filled, this LCO requires forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of RHR provides sufficient circulation for these purposes. However, one additional RHR loop is required to be OPERABLE, or the secondary side water level of at least [two] SGs is required to be \geq [17]%.			
· .	Operation in other MODES is covered by:			
	LCO 3.4.4, "RCS Loops - MODES 1 and 2;" LCO 3.4.5, "RCS Loops - MODE 3;"			

~

APPLICABILITY (co	ontinued)	······································			
	LCO 3.9.5, LCO 3.9.6,	"Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6).			
ACTIONS	A.1, A.2, B.1 and B.2				
	If one RHR loop is OPERABLE and the required SGs have secondary side water levels < [17]%, redundancy for heat removal is lost. Action must be initiated immediately to restore a second RHR loop to OPERABLE status or to restore the secondary side water levels to within limits for the required SGs. Either Required Action will restore redundant heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.				
	C.1 and C.2				
	If a required RHR loop is not in operation, except during conditions permitted by Note 1, or if no required loop is OPERABLE, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action to restore one RHR loop to OPERABLE status and operation must be initiated. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Times reflect the importance of maintaining operation for heat removal.				
SURVEILLANCE	<u>SR 3.4.7.1</u>				
REQUIREMENTS	This SR requision operation. Vi monitoring, w The Frequen alarms availa performance.	tires verification every 12 hours that the required loop is in erification includes flow rate, temperature, or pump status which help ensure that forced flow is providing heat removal. cy of 12 hours is sufficient considering other indications and able to the operator in the control room to monitor RHR loop			

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.4.7.2</u>

Verifying that at least two SGs are OPERABLE by ensuring their secondary side narrow range water levels are \geq [17]% ensures an alternate decay heat removal method via natural circulation in the event that the second RHR loop is not OPERABLE. If both RHR loops are OPERABLE, this Surveillance is not needed. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level.

<u>SR 3.4.7.3</u>

Verification that each required RHR pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required RHR pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. If secondary side water level is \geq [17]% in at least two SGs, this Surveillance is not needed. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES 1. NRC Information Notice 95-35, "Degraded Ability of Steam Generators to Remove Decay Heat by Natural Circulation."

B 3.4.8 RCS Loops - MODE 5, Loops Not Filled

BASES

BACKGROUND	In MODE 5 with the RCS loops not filled, the primary function of the reactor coolant is the removal of decay heat generated in the fuel, and the transfer of this heat to the component cooling water via the residual heat removal (RHR) heat exchangers. The steam generators (SGs) are not available as a heat sink when the loops are not filled. The secondary function of the reactor coolant is to act as a carrier for the soluble neutron poison, boric acid.
	In MODE 5 with loops not filled, only RHR pumps can be used for coolant circulation. The number of pumps in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR pump for decay heat removal and transport and to require that two paths be available to provide redundancy for heat removal.
APPLICABLE SAFETY ANALYSES	In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. The flow provided by one RHR loop is adequate for heat removal and for boron mixing.
	RCS loops in MODE 5 (loops not filled) satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).
LCO	The purpose of this LCO is to require that at least two RHR loops be OPERABLE and one of these loops be in operation. An OPERABLE loop is one that has the capability of transferring heat from the reactor coolant at a controlled rate. Heat cannot be removed via the RHR System unless forced flow is used. A minimum of one running RHR pump meets the LCO requirement for one loop in operation. An additional RHR loop is required to be OPERABLE to meet single failure considerations.
	Note 1 permits all RHR pumps to not be in operation for \leq 15 minutes when switching from one loop to another. The circumstances for stopping both RHR pumps are to be limited to situations when the outage time is short [and core outlet temperature is maintained > 10°F below saturation temperature]. The Note prohibits boron dilution with coolant at boron concentrations less than required to assure SDM of LCO 3.1.1 is maintained or draining operations when RHR forced flow is stopped.

BASES			
LCO (continued)			
	Note 2 allows one RHR loop to be inoperable for a period of \leq 2 hours, provided that the other loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when these tests are safe and possible.		
	An OPERABLE RHR loop is comprised of an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required.		
APPLICABILITY	In MODE 5 with loops not filled, this LCO requires core heat removal and coolant circulation by the RHR System.		
	Operation in other MODES is covered by:		
	 LCO 3.4.4, "RCS Loops - MODES 1 and 2," LCO 3.4.5, "RCS Loops - MODE 3," LCO 3.4.6, "RCS Loops - MODE 4," LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation - High Water Level" (MODE 6), and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation - Low Water Level" (MODE 6). 		
ACTIONS	<u>A.1</u>		
	If one required RHR loop is inoperable, redundancy for RHR is lost. Action must be initiated to restore a second loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal.		
	B.1 and B.2		
	If no required RHR loop is OPERABLE or the required loop is not in operation, except during conditions permitted by Note 1, all operations involving introduction of coolant into the RCS with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 must be suspended and action must be initiated immediately to restore an RHR loop to OPERABLE status and operation. The required margin to criticality must not be reduced in this type of operation. Suspending the introduction of coolant into the RCS of coolant with boron concentration less than required to meet the minimum SDM of LCO 3.1.1 is required to		
ACTIONS (continued)

assure continued safe operation. With coolant added without forced circulation, unmixed coolant could be introduced to the core, however coolant added with boron concentration meeting the minimum SDM maintains acceptable margin to subcritical operations. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must continue until one loop is restored to OPERABLE status and operation.

SURVEILLANCE <u>SR 3.4.8.1</u> REQUIREMENTS

This SR requires verification every 12 hours that the required loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance.

SR 3.4.8.2

Verification that each required pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to each required pump. Alternatively, verification that a pump is in operation also verifies proper breaker alignment and power availability. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

This SR is modified by a Note that states the SR is not required to be performed until 24 hours after a required pump is not in operation.

REFERENCES None.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.9 Pressurizer

BASES

BACKGROUND

The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation, and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients.

The pressure control components addressed by this LCO include the pressurizer water level, the required heaters, and their controls and emergency power supplies. Pressurizer safety valves and pressurizer power operated relief valves are addressed by LCO 3.4.10, "Pressurizer Safety Valves," and LCO 3.4.11, "Pressurizer Power Operated Relief Valves (PORVs)," respectively.

The intent of the LCO is to ensure that a steam bubble exists in the pressurizer prior to power operation to minimize the consequences of potential overpressure transients. The presence of a steam bubble is consistent with analytical assumptions. Relatively small amounts of noncondensible gases can inhibit the condensation heat transfer between the pressurizer spray and the steam, and diminish the spray effectiveness for pressure control.

Electrical immersion heaters, located in the lower section of the pressurizer vessel, keep the water in the pressurizer at saturation temperature and maintain a constant operating pressure. A minimum required available capacity of pressurizer heaters ensures that the RCS pressure can be maintained. The capability to maintain and control system pressure is important for maintaining subcooled conditions in the RCS and ensuring the capability to remove core decay heat by either forced or natural circulation of reactor coolant. Unless adequate heater capacity is available, the hot, high pressure condition cannot be maintained indefinitely and still provide the required subcooling margin in the primary system. Inability to control the system pressure and maintain subcooling under conditions of natural circulation flow in the primary system could lead to a loss of single phase natural circulation and decreased capability to remove core decay heat.

BASES				
APPLICABLE SAFETY ANALYSES	In MODES 1, 2, and 3, the LCO requirement for a steam bubble is reflected implicitly in the accident analyses. Safety analyses performed for lower MODES are not limiting. All analyses performed from a critical reactor condition assume the existence of a steam bubble and saturated conditions in the pressurizer. In making this assumption, the analyses neglect the small fraction of noncondensible gases normally present.			
	Safety analyses presented in the FSAR (Ref. 1) do not take credit for pressurizer heater operation; however, an implicit initial condition assumption of the safety analyses is that the RCS is operating at normal pressure.			
	The maximum pressurizer water level limit, which ensures that a steam bubble exists in the pressurizer, satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Although the heaters are not specifically used in accident analysis, the need to maintain subcooling in the long term during loss of offsite power, as indicated in NUREG-0737 (Ref. 2), is the reason for providing an LCO.			
200	- REVIEWER'S NOTE - Plants licensed prior to the issuance of NUREG-0737 may not have a requirement on the number of pressurizer groups.			
	The LCO requirement for the pressurizer to be OPERABLE with a water volume ≤ [1240] cubic feet, which is equivalent to [92]%, ensures that a steam bubble exists. Limiting the LCO maximum operating water level preserves the steam space for pressure control. The LCO has been established to ensure the capability to establish and maintain pressure control for steady state operation and to minimize the consequences of potential overpressure transients. Requiring the presence of a steam bubble is also consistent with analytical assumptions.			
	The LCO requires [two groups of] OPERABLE pressurizer heaters, [each] with a capacity \geq [125] kW, [capable of being powered from either the offsite power source or the emergency power supply]. The minimum heater capacity required is sufficient to maintain the RCS near normal operating pressure when accounting for heat losses through the pressurizer insulation. By maintaining the pressure near the operating conditions, a wide margin to subcooling can be obtained in the loops. The exact design value of [125 kW is derived from the use of seven heaters rated at 17.9 kW each]. The amount needed to maintain pressure is dependent on the heat losses.			

BASES					
APPLICABILITY	The need for pressure control is most pertinent when core heat can cause the greatest effect on RCS temperature, resulting in the greatest effect on pressurizer level and RCS pressure control. Thus, applicability has been designated for MODES 1 and 2. The applicability is also provided for MODE 3. The purpose is to prevent solid water RCS operation during heatup and cooldown to avoid rapid pressure rises caused by normal operational perturbation, such as reactor coolant pump startup.				
	In MODES 1, 2, and 3, there is need to maintain the availability of pressurizer heaters, capable of being powered from an emergency power supply. In the event of a loss of offsite power, the initial conditions of these MODES give the greatest demand for maintaining the RCS in a hot pressurized condition with loop subcooling for an extended period. For MODE 4, 5, or 6, it is not necessary to control pressure (by heaters) to ensure loop subcooling for heat transfer when the Residual Heat Removal (RHR) System is in service, and therefore, the LCO is not applicable.				
ACTIONS	A.1, A.2, A.3, and A.4				
	Pressurizer water level control malfunctions or other plant evolutions may result in a pressurizer water level above the nominal upper limit, even with the plant at steady state conditions. Normally the plant will trip in this event since the upper limit of this LCO is the same as the Pressurizer Water Level - High Trip.				
	If the pressurizer water level is not within the limit, action must be taken to bring the plant to a MODE in which the LCO does not apply. To achieve this status, within 6 hours the unit must be brought to MODE 3 with all rods fully inserted and incapable of withdrawal. Additionally, the unit must be brought to MODE 4 within 12 hours. This takes the unit out of the applicable MODES.				
	The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.				
	<u>B.1</u>				
	If one [required] group of pressurizer heaters is inoperable, restoration is required within 72 hours. The Completion Time of 72 hours is reasonable considering the anticipation that a demand caused by loss of offsite				

ACTIONS (continued)

power would be unlikely in this period. Pressure control may be maintained during this time using normal station powered heaters.

C.1 and C.2

If one group of pressurizer heaters are inoperable and cannot be restored in the allowed Completion Time of Required Action B.1, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.4.9.1</u> REQUIREMENTS

This SR requires that during steady state operation, pressurizer level is maintained below the nominal upper limit to provide a minimum space for a steam bubble. The Surveillance is performed by observing the indicated level. The Frequency of 12 hours corresponds to verifying the parameter each shift. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess level for any deviation and verify that operation is within safety analyses assumption of ensuring that a steam bubble exists in the pressurizer. Alarms are also available for early detection of abnormal level indications.

<u>SR 3.4.9.2</u>

- REVIEWER'S NOTE -

The frequency for performing Pressurizer heater capacity testing shall be either 18 months or 92 days, depending on whether or not the plant has dedicated safety-related heaters. For dedicated safety-related heaters, which do not normally operate, 92 days is applied. For non-dedicated safety-related heaters, which normally operate, 18 months is applied.

The SR is satisfied when the power supplies are demonstrated to be capable of producing the minimum power and the associated pressurizer heaters are verified to be at their design rating. This may be done by testing the power supply output and by performing an electrical check on heater element continuity and resistance. The Frequency of [18] months is considered adequate to detect heater degradation and has been shown by operating experience to be acceptable.

SURVEILLANCE REQUIREMENTS (continued)

[<u>SR 3.4.9.3</u>

This SR is not applicable if the heaters are permanently powered by Class 1E power supplies.

This Surveillance demonstrates that the heaters can be manually transferred from the normal to the emergency power supply and energized. The Frequency of 18 months is based on a typical fuel cycle and is consistent with similar verifications of emergency power supplies.]

REFERENCES 1. FSAR, Section [].

2. NUREG-0737, November 1980.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.10 Pressurizer Safety Valves

BASES

BACKGROUND

The pressurizer safety valves provide, in conjunction with the Reactor Protection System, overpressure protection for the RCS. The pressurizer safety valves are totally enclosed pop type, spring loaded, self actuated valves with backpressure compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), [2735] psig, which is 110% of the design pressure.

Because the safety valves are totally enclosed and self actuating, they are considered independent components. The relief capacity for each valve, [380,000] lb/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine. This event results in the maximum surge rate into the pressurizer, which specifies the minimum relief capacity for the safety valves. The discharge flow from the pressurizer safety valves is directed to the pressurizer relief tank. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves or increase in the pressurizer relief tank temperature or level.

Overpressure protection is required in MODES 1, 2, 3, 4, and 5; however, in MODE 4, with one or more RCS cold leg temperatures $\leq [275^{\circ}F]$ [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR], and MODE 5 and MODE 6 with the reactor vessel head on, overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System."

The upper and lower pressure limits are based on the \pm 1% tolerance requirement (Ref. 1) for lifting pressures above 1000 psig. The lift setting is for the ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established.

The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that the RCS pressure will be limited to 110% of design pressure. The consequences of exceeding the American Society of Mechanical Engineers (ASME) pressure limit (Ref. 1) could include damage to RCS components, increased leakage, or a requirement to perform additional stress analyses prior to resumption of reactor operation.

DAGLO					
APPLICABLE SAFETY ANALYSES	All accident and safety analyses in the FSAR (Ref. 2) that require safety valve actuation assume operation of three pressurizer safety valves to limit increases in RCS pressure. The overpressure protection analysis (Ref. 3) is also based on operation of [three] safety valves. Accidents that could result in overpressurization if not properly terminated include:				
	a. Uncontrolled rod withdrawal from full power,				
	b. Loss of reactor coolant flow,				
	c. Loss of external electrical load,				
	d. Loss of normal feedwater,				
	e. Loss of all AC power to station auxiliaries, and				
	f. Locked rotor.				
	Detailed analyses of the above transients are contained in Reference 2. Safety valve actuation is required in events c, d, and e (above) to limit the pressure increase. Compliance with this LCO is consistent with the design bases and accident analyses assumptions.				
	Pressurizer safety valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).				
LCO	The [three] pressurizer safety valves are set to open at the RCS design pressure (2500 psia), and within the ASME specified tolerance, to avoid exceeding the maximum design pressure SL, to maintain accident analyses assumptions, and to comply with ASME requirements. The upper and lower pressure tolerance limits are based on the \pm 1% tolerance requirements (Ref. 1) for lifting pressures above 1000 psig. The limit protected by this Specification is the reactor coolant pressure boundary (RCPB) SL of 110% of design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage, or additional stress analysis being required prior to resumption of reactor operation.				
APPLICABILITY	In MODES 1, 2, and 3, and portions of MODE 4 above the LTOP arming temperature, OPERABILITY of [three] valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents. MODE 3 and portions				

APPLICABILITY (continued)

of MODE 4 are conservatively included, although the listed accidents may not require the safety valves for protection.

The LCO is not applicable in MODE 4 when any RCS cold leg temperatures are \leq [275°F] [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR] or in MODE 5 because LTOP is provided. Overpressure protection is not required in MODE 6 with reactor vessel head detensioned.

The Note allows entry into MODES 3 and 4 with the lift settings outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The [54] hour exception is based on 18 hour outage time for each of the [three] valves. The 18 hour period is derived from operating experience that hot testing can be performed in this timeframe.

ACTIONS

<u>A.1</u>

With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.

B.1 and B.2

If the Required Action of A.1 cannot be met within the required Completion Time or if two or more pressurizer safety valves are inoperable, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with any RCS cold leg temperatures $\leq [275^{\circ}F]$ [Low Temperature Overpressure Protection (LTOP) arming temperature specified in the PTLR] within [24] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With any RCS cold leg temperatures at or below [275°F] [Low Temperature Overpressure (LTOP) arming temperature specified in the PTLR], overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core

Pressurizer Safety Valves B 3.4.10

BASES

ACTIONS (continued	d)				
	power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by [three] pressurizer safety valves.				
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.10.1</u> SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of Section XI of the ASME Code (Ref. 4), which provides the activities and Frequencies				
	necessary to satisfy the SRs. No additional requirements are specified.				
	The pressurizer safety valve setpoint is \pm [3]% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift.				
REFERENCES	1. ASME, Boiler and Pressure Vessel Code, Section III.				
	2. FSAR, Chapter [15].				
	3. WCAP-7769, Rev. 1, June 1972.				
	4. ASME, Boiler and Pressure Vessel Code, Section XI.				

.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.11 Pressurizer Power Operated Relief Valves (PORVs)

BASES

BACKGROUND The pressurizer is equipped with two types of devices for pressure relief: pressurizer safety valves and PORVs. The PORVs are air operated valves that are controlled to open at a specific set pressure when the pressurizer pressure increases and close when the pressurizer pressure decreases. The PORVs may also be manually operated from the control room.

Block valves, which are normally open, are located between the pressurizer and the PORVs. The block valves are used to isolate the PORVs in case of excessive leakage or a stuck open PORV. Block valve closure is accomplished manually using controls in the control room. A stuck open PORV is, in effect, a small break loss of coolant accident (LOCA). As such, block valve closure terminates the RCS depressurization and coolant inventory loss.

The PORVs and their associated block valves may be used by plant operators to depressurize the RCS to recover from certain transients if normal pressurizer spray is not available. Additionally, the series arrangement of the PORVs and their block valves permit performance of surveillances on the valves during power operation.

The PORVs may also be used for feed and bleed core cooling in the case of multiple equipment failure events that are not within the design basis, such as a total loss of feedwater.

The PORVs, their block valves, and their controls are powered from the vital buses that normally receive power from offsite power sources, but are also capable of being powered from emergency power sources in the event of a loss of offsite power. Two PORVs and their associated block valves are powered from two separate safety trains (Ref. 1).

The plant has two PORVs, each having a relief capacity of 210,000 lb/hr at 2335 psig. The functional design of the PORVs is based on maintaining pressure below the Pressurizer Pressure - High reactor trip setpoint following a step reduction of 50% of full load with steam dump. In addition, the PORVs minimize challenges to the pressurizer safety valves and also may be used for low temperature overpressure protection (LTOP). See LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System."

Pressurizer PORVs B 3.4.11

BASES	
APPLICABLE SAFETY ANALYSES	Plant operators employ the PORVs to depressurize the RCS in response to certain plant transients if normal pressurizer spray is not available. For the Steam Generator Tube Rupture (SGTR) event, the safety analysis assumes that manual operator actions are required to mitigate the event. A loss of offsite power is assumed to accompany the event, and thus, normal pressurizer spray is unavailable to reduce RCS pressure. The PORVs are assumed to be used for RCS depressurization, which is one of the steps performed to equalize the primary and secondary pressures in order to terminate the primary to secondary break flow and the radioactive releases from the affected steam generator.
	The PORVs are also modeled in safety analyses for events that result in increasing RCS pressure for which departure from nucleate boiling ratio (DNBR) criteria are critical (Ref. 2). By assuming PORV actuation, the primary pressure remains below the high pressurizer pressure trip setpoint; thus, the DNBR calculation is more conservative. As such, this actuation is not required to mitigate these events, and PORV automatic operation is, therefore, not an assumed safety function.
	Pressurizer PORVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requires the PORVs and their associated block valves to be OPERABLE for manual operation to mitigate the effects associated with an SGTR.
	By maintaining two PORVs and their associated block valves OPERABLE, the single failure criterion is satisfied. An OPERABLE block valve may be either open and energized with the capability to be closed, or closed and energized with the capability to be opened, since the required safety function is accomplished by manual operation. Although typically open to allow PORV operation, the block valves may be OPERABLE when closed to isolate the flow path of an inoperable PORV that is capable of being manually cycled (e.g., as in the case of excessive PORV leakage). Similarly, isolation of an OPERABLE PORV does not render that PORV or block valve inoperable provided the relief function remains available with manual action.
	An OPERABLE PORV is required to be capable of manually opening and closing, and not experiencing excessive seat leakage. Excessive seat leakage, although not associated with a specific acceptance criteria, exists when conditions dictate closure of the block valve to limit leakage.
	Satisfying the LCO helps minimize challenges to fission product barriers.

APPLICABILITY In MODES 1, 2, and 3, the PORV and its block valve are required to be OPERABLE to limit the potential for a small break LOCA through the flow path. The most likely cause for a PORV small break LOCA is a result of a pressure increase transient that causes the PORV to open. Imbalances in the energy output of the core and heat removal by the secondary system can cause the RCS pressure to increase to the PORV opening setpoint. The most rapid increases will occur at the higher operating power and pressure conditions of MODES 1 and 2. The PORVs are also required to be OPERABLE in MODES 1, 2, and 3 for manual actuation to mitigate a steam generator tube rupture event.

> Pressure increases are less prominent in MODE 3 because the core input energy is reduced, but the RCS pressure is high. Therefore, the LCO is applicable in MODES 1, 2, and 3. The LCO is not applicable in MODES 4, 5, and 6 with the reactor vessel head in place when both pressure and core energy are decreased and the pressure surges become much less significant. LCO 3.4.12 addresses the PORV requirements in these MODES.

ACTIONS

Note 1 has been added to clarify that all pressurizer PORVs and block valves are treated as separate entities, each with separate Completion Times (i.e., the Completion Time is on a component basis). The exception for LCO 3.0.4, Note 2, permits entry into MODES 1, 2, and 3 to perform cycling of the PORVs or block valves to verify their OPERABLE status in the event that testing was not satisfactorily performed in lower MODES.

- REVIEWER'S NOTE -

The bracketed options in Conditions B, C, E, and F are to accommodate plants with three PORVs and associated block valves.

<u>A.1</u>

PORVs may be inoperable and capable of being manually cycled (e.g., excessive seat leakage). In this condition, either the PORVs must be restored or the flow path isolated within 1 hour. The associated block valve is required to be closed, but power must be maintained to the associated block valve, since removal of power would render the block valve inoperable. This permits operation of the plant until the next refueling outage (MODE 6) so that maintenance can be performed on the PORVs to eliminate the problem condition.

ACTIONS (continued)

Quick access to the PORV for pressure control can be made when power remains on the closed block valve. The Completion Time of 1 hour is based on plant operating experience that has shown that minor problems can be corrected or closure accomplished in this time period.

B.1, B.2, and B.3

If one [or two] PORV[s] is inoperable and not capable of being manually cycled, it must be either restored, or isolated by closing the associated block valve and removing the power to the associated block valve. The Completion Times of 1 hour are reasonable, based on challenges to the PORVs during this time period, and provide the operator adequate time to correct the situation. If the inoperable valve cannot be restored to OPERABLE status, it must be isolated within the specified time. Because there is at least one PORV that remains OPERABLE, an additional 72 hours is provided to restore the inoperable PORV to OPERABLE status. If the PORV cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D.

C.1 and C.2

If one [or two] block valve(s) are inoperable, then it is necessary to either restore the block valve(s) to OPERABLE status within the Completion Time of 1 hour or place the associated PORV in manual control. The prime importance for the capability to close the block valve(s) is to isolate a stuck open PORV. Therefore, if the block valve(s) cannot be restored to OPERABLE status within 1 hour, the Required Action is to place the PORV in manual control to preclude its automatic opening for an overpressure event and to avoid the potential for a stuck open PORV at a time that the block valve(s) are inoperable. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time period, and provides the operator time to correct the situation. Because at least one PORV remains OPERABLE, the operator is permitted a Completion Time of 72 hours to restore the inoperable block valve(s) to OPERABLE status. The time allowed to restore the block valve(s) is based upon the Completion Time for restoring an inoperable PORV in Condition B, since the PORVs may not be capable of mitigating an event if the inoperable block valve(s) are not full open. If the block valve(s) are restored within the Completion Time of 72 hours, the PORV may be restored to automatic operation. If it cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D.

ACTIONS (continued)

The Required Actions C.1 and C.2 are modified by a Note stating that the Required Actions do not apply if the sole reason for the block valve being declared inoperable is as a result of power being removed to comply with other Required Actions. In this event, the Required Actions for inoperable PORV(s) (which require the block valve power to be removed once it is closed) are adequate to address the condition. While it may be desirable to also place the PORV(s) in manual control, this may not be possible for all causes of Condition B or E entry with PORV(s) inoperable and not capable of being manually cycled (e.g., as a result of failed control power fuse(s) or control switch malfunctions(s)).

D.1 and D.2

If the Required Action of Condition A, B, or C is not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

E.1, E.2, E.3, and E.4

If more than one PORV is inoperable and not capable of being manually cycled, it is necessary to either restore at least one valve within the Completion Time of 1 hour or isolate the flow path by closing and removing the power to the associated block valves. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time and provides the operator time to correct the situation. If no PORVs are restored within the Completion Time, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

<u>F.1</u>

If two [or three] block valve(s) are inoperable, it is necessary to restore at least one block valve within 2 hours. The Completion Time is reasonable,

Pressurizer PORVs B 3.4.11

BASES

ACTIONS (continued)

based on the small potential for challenges to the system during this time and provide the operator time to correct the situation.

The Required Actions F.1, F.2, and F.3 are modified by a Note stating that the Required Actions do not apply if the sole reason for the block valve being declared inoperable is a result of power being removed to comply with other Required Actions. In this event, the Required Actions for inoperable PORV(s) (which require the block valve power to be removed once it is closed) are adequate to address the condition. While it may be desirable to also place the PORV(s) in manual control, this may not be possible for all causes of Condition B or E entry with PORV(s) inoperable and not capable of being manually cycled (e.g., as a result of failed control power fuse(s) or control switch malfunctions(s)).

G.1 and G.2

If the Required Actions of Condition F are not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, automatic PORV OPERABILITY may be required. See LCO 3.4.12.

SURVEILLANCE <u>SR</u> REQUIREMENTS

<u>SR 3.4.11.1</u>

Block valve cycling verifies that the valve(s) can be opened and closed if needed. The basis for the Frequency of 92 days is the ASME Code, Section XI (Ref. 3).

This SR is modified by two Notes. Note 1 modifies this SR by stating that it is not required to be performed with the block valve closed in accordance with the Required Actions of this LCO. Opening the block valve in this condition increases the risk of an unisolable leak from the RCS since the PORV is already inoperable. Note 2 modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature and pressure conditions, prior to entering MODE 1 or 2. [In accordance with Reference 4, administrative controls require this test be performed in MODE 3 or 4 to adequately simulate operating temperature and pressure effects on PORV operation.]

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.4.11.2</u>

SR 3.4.11.2 requires a complete cycle of each PORV. Operating a PORV through one complete cycle ensures that the PORV can be manually actuated for mitigation of an SGTR. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice.

The Note modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature and pressure conditions, prior to entering MODE 1 or 2. [In accordance with Reference 4, administrative controls require this test be performed in MODE 3 or 4 to adequately simulate operating temperature and pressure effects on PORV operation.]

[<u>SR 3.4.11.3</u>

Operating the solenoid air control valves and check valves on the air accumulators ensures the PORV control system actuates properly when called upon. The Frequency of [18] months is based on a typical refueling cycle and the Frequency of the other Surveillances used to demonstrate PORV OPERABILITY.]

[<u>SR 3.4.11.4</u>

This Surveillance is not required for plants with permanent 1E power supplies to the valves.

The Surveillance demonstrates that emergency power can be provided and is performed by transferring power from normal to emergency supply and cycling the valves. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice.]

REFERENCES	1.	Regulatory Guide 1.32, February	1977.
------------	----	---------------------------------	-------

- 2. FSAR, Section [15.2].
- 3. ASME, Boiler and Pressure Vessel Code, Section XI.

Pressurizer PORVs B 3.4.11

BASES

REFERENCES (continued)

[4. Generic Letter 90-06, "Resolution of Generic Issue 70, 'Power-Operated Relief Valve and Block Valve Reliability,' and Generic Issue 94, 'Additional Low-Temperature Overpressure for Light-Water Reactors,' Pursuant to 10 CFR 50.54(f)," June 25, 1990.]

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.12 Low Temperature Overpressure Protection (LTOP) System

BASES

BACKGROUND The LTOP System controls RCS pressure at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating the pressure and temperature (P/T) limits of 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. The PTLR provides the maximum allowable actuation logic setpoints for the power operated relief valves (PORVs) and the maximum RCS pressure for the existing RCS cold leg temperature during cooldown, shutdown, and heatup to meet the Reference 1 requirements during the LTOP MODES.

The reactor vessel material is less tough at low temperatures than at normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is increased only as temperature is increased.

The potential for vessel overpressurization is most acute when the RCS is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the RCS P/T limits by a significant amount could cause brittle cracking of the reactor vessel. LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," requires administrative control of RCS pressure and temperature during heatup and cooldown to prevent exceeding the PTLR limits.

This LCO provides RCS overpressure protection by having a minimum coolant input capability and having adequate pressure relief capacity. Limiting coolant input capability requires all but [one] [high pressure injection (HPI)] pump [and one charging pump] incapable of injection into the RCS and isolating the accumulators. The pressure relief capacity requires either two redundant RCS relief valves or a depressurized RCS and an RCS vent of sufficient size. One RCS relief valve or the open RCS vent is the overpressure protection device that acts to terminate an increasing pressure event.

With minimum coolant input capability, the ability to provide core coolant addition is restricted. The LCO does not require the makeup control system deactivated or the safety injection (SI) actuation circuits blocked. Due to the lower pressures in the LTOP MODES and the expected core

BACKGROUND (continued)

decay heat levels, the makeup system can provide adequate flow via the makeup control valve. If conditions require the use of more than one [HPI or] charging pump for makeup in the event of loss of inventory, then pumps can be made available through manual actions.

The LTOP System for pressure relief consists of two PORVs with reduced lift settings, or two residual heat removal (RHR) suction relief valves, or one PORV and one RHR suction relief valve, or a depressurized RCS and an RCS vent of sufficient size. Two RCS relief valves are required for redundancy. One RCS relief valve has adequate relieving capability to keep from overpressurization for the required coolant input capability.

PORV Requirements

As designed for the LTOP System, each PORV is signaled to open if the RCS pressure approaches a limit determined by the LTOP actuation logic. The LTOP actuation logic monitors both RCS temperature and RCS pressure and determines when a condition not acceptable in the PTLR limits is approached. The wide range RCS temperature indications are auctioneered to select the lowest temperature signal.

The lowest temperature signal is processed through a function generator that calculates a pressure limit for that temperature. The calculated pressure limit is then compared with the indicated RCS pressure from a wide range pressure channel. If the indicated pressure meets or exceeds the calculated value, a PORV is signaled to open.

The PTLR presents the PORV setpoints for LTOP. The setpoints are normally staggered so only one valve opens during a low temperature overpressure transient. Having the setpoints of both valves within the limits in the PTLR ensures that the Reference 1 limits will not be exceeded in any analyzed event.

When a PORV is opened in an increasing pressure transient, the release of coolant will cause the pressure increase to slow and reverse. As the PORV releases coolant, the RCS pressure decreases until a reset pressure is reached and the valve is signaled to close. The pressure continues to decrease below the reset pressure as the valve closes.

BACKGROUND (continued)

[RHR Suction Relief Valve Requirements

During LTOP MODES, the RHR System is operated for decay heat removal and low pressure letdown control. Therefore, the RHR suction isolation valves are open in the piping from the RCS hot legs to the inlets of the RHR pumps. While these valves are open and the RHR suction valves are open, the RHR suction relief valves are exposed to the RCS and are able to relieve pressure transients in the RCS.

The RHR suction isolation valves and the RHR suction valves must be open to make the RHR suction relief valves OPERABLE for RCS overpressure mitigation. Autoclosure interlocks are not permitted to cause the RHR suction isolation valves to close. The RHR suction relief valves are spring loaded, bellows type water relief valves with pressure tolerances and accumulation limits established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves.]

RCS Vent Requirements

Once the RCS is depressurized, a vent exposed to the containment atmosphere will maintain the RCS at containment ambient pressure in an RCS overpressure transient, if the relieving requirements of the transient do not exceed the capabilities of the vent. Thus, the vent path must be capable of relieving the flow resulting from the limiting LTOP mass or heat input transient, and maintaining pressure below the P/T limits. The required vent capacity may be provided by one or more vent paths.

For an RCS vent to meet the flow capacity requirement, it requires removing a pressurizer safety valve, removing a PORV's internals, and disabling its block valve in the open position, or similarly establishing a vent by opening an RCS vent valve. The vent path(s) must be above the level of reactor coolant, so as not to drain the RCS when open.

APPLICABLE Safety analyses (Ref. 4) demonstrate that the reactor vessel is adequately protected against exceeding the Reference 1 P/T limits. In ANALYSES MODES 1, 2, and 3, and in MODE 4 with RCS cold leg temperature exceeding [275°F] [LTOP arming temperature specified in the PTLR], the pressurizer safety valves will prevent RCS pressure from exceeding the Reference 1 limits. At about [275°F] [LTOP arming temperature specified in the PTLR] and below, overpressure prevention falls to two OPERABLE RCS relief valves or to a depressurized RCS and a sufficient

APPLICABLE SAFETY ANALYSES (continued)

sized RCS vent. Each of these means has a limited overpressure relief capability.

The actual temperature at which the pressure in the P/T limit curve falls below the pressurizer safety valve setpoint increases as the reactor vessel material toughness decreases due to neutron embrittlement. Each time the PTLR curves are revised, the LTOP System must be re-evaluated to ensure its functional requirements can still be met using the RCS relief valve method or the depressurized and vented RCS condition.

The PTLR contains the acceptance limits that define the LTOP requirements. Any change to the RCS must be evaluated against the Reference 4 analyses to determine the impact of the change on the LTOP acceptance limits.

Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients, examples of which follow:

Mass Input Type Transients

- a. Inadvertent safety injection or
- b. Charging/letdown flow mismatch.

Heat Input Type Transients

- a. Inadvertent actuation of pressurizer heaters,
- b. Loss of RHR cooling, or
- c. Reactor coolant pump (RCP) startup with temperature asymmetry within the RCS or between the RCS and steam generators.

The following are required during the LTOP MODES to ensure that mass and heat input transients do not occur, which either of the LTOP overpressure protection means cannot handle:

- a. Rendering all but [one] [HPI] pump [and one charging pump] incapable of injection,
- b. Deactivating the accumulator discharge isolation valves in their closed positions, and

APPLICABLE SAFETY ANALYSES (continued)

c. Disallowing start of an RCP if secondary temperature is more than [50]°F above primary temperature in any one loop. LCO 3.4.6, "RCS Loops - MODE 4," and LCO 3.4.7, "RCS Loops - MODE 5, Loops Filled," provide this protection.

The Reference 4 analyses demonstrate that either one RCS relief valve or the depressurized RCS and RCS vent can maintain RCS pressure below limits when only one [HPI] pump [and one charging pump are] is [are] actuated. Thus, the LCO allows only [one] [HPI] pump [and one charging pump] OPERABLE during the LTOP MODES. Since neither one RCS relief valve nor the RCS vent can handle the pressure transient need from accumulator injection, when RCS temperature is low, the LCO also requires the accumulators isolation when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR.

The isolated accumulators must have their discharge valves closed and the valve power supply breakers fixed in their open positions. The analyses show the effect of accumulator discharge is over a narrower RCS temperature range ([175]°F and below) than that of the LCO ([275]°F and below).

Fracture mechanics analyses established the temperature of LTOP Applicability at [275°F] [LTOP arming temperature specified in the PTLR].

The consequences of a small break loss of coolant accident (LOCA) in LTOP MODE 4 conform to 10 CFR 50.46 and 10 CFR 50, Appendix K (Refs. 5 and 6), requirements by having a maximum of [one] [HPI] pump [and one charging pump] OPERABLE and SI actuation enabled.

PORV Performance

The fracture mechanics analyses show that the vessel is protected when the PORVs are set to open at or below the limit shown in the PTLR. The setpoints are derived by analyses that model the performance of the LTOP System, assuming the limiting LTOP transient of [one] [HPI] pump [and one charging pump] injecting into the RCS. These analyses consider pressure overshoot and undershoot beyond the PORV opening and closing, resulting from signal processing and valve stroke times. The PORV setpoints at or below the derived limit ensures the Reference 1 P/T limits will be met.

APPLICABLE SAFETY ANALYSES (continued)

The PORV setpoints in the PTLR will be updated when the revised P/T limits conflict with the LTOP analysis limits. The P/T limits are periodically modified as the reactor vessel material toughness decreases due to neutron embrittlement caused by neutron irradiation. Revised limits are determined using neutron fluence projections and the results of examinations of the reactor vessel material irradiation surveillance specimens. The Bases for LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," discuss these examinations.

The PORVs are considered active components. Thus, the failure of one PORV is assumed to represent the worst case, single active failure.

[RHR Suction Relief Valve Performance

The RHR suction relief valves do not have variable pressure and temperature lift setpoints like the PORVs. Analyses must show that one RHR suction relief valve with a setpoint at or between [436.5] psig and [463.5] psig will pass flow greater than that required for the limiting LTOP transient while maintaining RCS pressure less than the P/T limit curve. Assuming all relief flow requirements during the limiting LTOP event, an RHR suction relief valve will maintain RCS pressure to within the valve rated lift setpoint, plus an accumulation \leq 10% of the rated lift setpoint.

Although each RHR suction relief valve may itself meet single failure criteria, its inclusion and location within the RHR System does not allow it to meet single failure criteria when spurious RHR suction isolation valve closure is postulated. Also, as the RCS P/T limits are decreased to reflect the loss of toughness in the reactor vessel materials due to neutron embrittlement, the RHR suction relief valves must be analyzed to still accommodate the design basis transients for LTOP.

The RHR suction relief valves are considered active components. Thus, the failure of one valve is assumed to represent the worst case single active failure.]

RCS Vent Performance

With the RCS depressurized, analyses show a vent size of 2.07 square inches is capable of mitigating the allowed LTOP overpressure transient. The capacity of a vent this size is greater than the flow of the limiting transient for the LTOP configuration, [one] HPI pump [and one charging pump] OPERABLE, maintaining RCS pressure less than the maximum pressure on the P/T limit curve.

APPLICABLE SAFETY ANALYSES (continued)

The RCS vent size will be re-evaluated for compliance each time the P/T limit curves are revised based on the results of the vessel material surveillance.

The RCS vent is passive and is not subject to active failure.

The LTOP System satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

This LCO requires that the LTOP System is OPERABLE. The LTOP System is OPERABLE when the minimum coolant input and pressure relief capabilities are OPERABLE. Violation of this LCO could lead to the loss of low temperature overpressure mitigation and violation of the Reference 1 limits as a result of an operational transient.

To limit the coolant input capability, the LCO requires that a maximum of [one] [HPI] pump [and one charging pump] be capable of injecting into the RCS, and all accumulator discharge isolation valves be closed and immobilized (when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR).

The LCO is modified by two Notes. Note 1 allows [two charging pumps] to be made capable of injecting for \leq 1 hour during pump swap operations. One hour provides sufficient time to safely complete the actual transfer and to complete the administrative controls and surveillance requirements associated with the swap. The intent is to minimize the actual time that more than [one] charging pump is physically capable of injection. Note 2 states that accumulator isolation is only required when the accumulator pressure is more than or at the maximum RCS pressure for the existing temperature, as allowed by the P/T limit curves. This Note permits the accumulator discharge isolation valve Surveillance to be performed only under these pressure and temperature conditions.

The elements of the LCO that provide low temperature overpressure mitigation through pressure relief are:

a. Two OPERABLE PORVs,

A PORV is OPERABLE for LTOP when its block valve is open, its lift setpoint is set to the limit required by the PTLR and testing proves its ability to open at this setpoint, and motive power is available to the two valves and their control circuits.

LCO (continued)						
	[b.	Two OPERABLE RHR suction relief valves,				
		An RHR suction relief valve is OPERABLE for LTOP when its RHR suction isolation valve and its RHR suction valve are open, its setpoint is at or between [436.5] psig and [463.5] psig, and testing has proven its ability to open at this setpoint.				
	C.	One OPERABLE PORV and one OPERABLE RHR suction relief valve, or]				
	d.	A depressurized RCS and an RCS vent.				
	An RCS vent is OPERABLE when open with an area of \geq [2.07] square inches.					
	Eacl mitig	h of these methods of overpressure prevention is capable of gating the limiting LTOP transient.				
APPLICABILITY	This LCO is applicable in MODE 4 when any RCS cold leg temperature is \leq [[]°F] [LTOP arming temperature specified in the PTLR], in MODE 5, and in MODE 6 when the reactor vessel head is on. The pressurizer safety valves provide overpressure protection that meets the Reference 1 P/T limits above [275°F] [LTOP arming temperature specified in the PTLR]. When the reactor vessel head is off, overpressurization cannot occur.					
	LCC LCC the I MOI tem	0 3.4.3 provides the operational P/T limits for all MODES. 0 3.4.10, "Pressurizer Safety Valves," requires the OPERABILITY of pressurizer safety valves that provide overpressure protection during DES 1, 2, and 3, and MODE 4 above [275°F] [LTOP arming perature specified in the PTLR].				
	Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure when little or no time allows operator action to mitigate the event.					
ACTIONS	A.1 and [B.1]					
	With over	n two or more HPI pumps capable of injecting into the RCS, RCS rpressurization is possible.				

ACTIONS (continued)

To immediately initiate action to restore restricted coolant input capability to the RCS reflects the urgency of removing the RCS from this condition.

C.1, D.1, and D.2

An unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS pressure for the existing temperature allowed by the P/T limit curves.

If isolation is needed and cannot be accomplished in 1 hour, Required Action D.1 and Required Action D.2 provide two options, either of which must be performed in the next 12 hours. By increasing the RCS temperature to > [°F] [LTOP arming temperature specified in the PTLR], an accumulator pressure of [600] psig cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection.

The Completion Times are based on operating experience that these activities can be accomplished in these time periods and on engineering evaluations indicating that an event requiring LTOP is not likely in the allowed times.

<u>E.1</u>

In MODE 4 when any RCS cold leg temperature is $\leq [275^{\circ}F]$ [LTOP arming temperature specified in the PTLR], with one required RCS relief valve inoperable, the RCS relief valve must be restored to OPERABLE status within a Completion Time of 7 days. Two RCS relief valves [in any combination of the PORVS and the RHR suction relief valves] are required to provide low temperature overpressure mitigation while withstanding a single failure of an active component.

The Completion Time considers the facts that only one of the RCS relief valves is required to mitigate an overpressure transient and that the likelihood of an active failure of the remaining valve path during this time period is very low.

<u>F.1</u>

The consequences of operational events that will overpressurize the RCS are more severe at lower temperature (Ref. 7). Thus, with one of the two RCS relief valves inoperable in MODE 5 or in MODE 6 with the head on,

ACTIONS (continued)

the Completion Time to restore two valves to OPERABLE status is 24 hours.

The Completion Time represents a reasonable time to investigate and repair several types of relief valve failures without exposure to a lengthy period with only one OPERABLE RCS relief valve to protect against overpressure events.

<u>G.1</u>

The RCS must be depressurized and a vent must be established within 12 hours when:

- a. Both required RCS relief valves are inoperable,
- b. A Required Action and associated Completion Time of Condition A, [B], D, E, or F is not met, or
- c. The LTOP System is inoperable for any reason other than Condition A, [B], C, D, E, or F.

The vent must be sized \geq [2.07] square inches to ensure that the flow capacity is greater than that required for the worst case mass input transient reasonable during the applicable MODES. This action is needed to protect the RCPB from a low temperature overpressure event and a possible brittle failure of the reactor vessel.

The Completion Time considers the time required to place the plant in this Condition and the relatively low probability of an overpressure event during this time period due to increased operator awareness of administrative control requirements.

To minimize the potential for a low temperature overpressure event by limiting the mass input capability, a maximum of [one] [HPI] pump [and a maximum of one charging pump] are verified incapable of injecting into the RCS and the accumulator discharge isolation valves are verified closed and locked out. The [HPI] pump[s] and charging pump[s] are rendered incapable of injecting into the RCS through removing the power from the pumps by racking the breakers out under administrative control. An alternate method of LTOP control may be employed using at least two independent means to prevent a pump start such that a single failure or

SURVEILLANCE REQUIREMENTS (continued)

single action will not result in an injection into the RCS. This may be accomplished through the pump control switch being placed in [pull to lock] and at least one valve in the discharge flow path being closed.

The Frequency of 12 hours is sufficient, considering other indications and alarms available to the operator in the control room, to verify the required status of the equipment.

[<u>SR 3.4.12.4</u>

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valves are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.7 for the RHR suction isolation valve Surveillance.) This Surveillance is only required to be performed if the RHR suction relief valve is being used to meet this LCO.

The RHR suction valve is verified to be opened every 12 hours. The Frequency is considered adequate in view of other administrative controls such as valve status indications available to the operator in the control room that verify the RHR suction valve remains open.

The ASME Code, Section XI (Ref. 8), test per Inservice Testing Program verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint.]

SR 3.4.12.5

The RCS vent of \geq [2.07] square inches is proven OPERABLE by verifying its open condition either:

- a. Once every 12 hours for a valve that is not locked (valves that are sealed or secured in the open position are considered "locked" in this context) or
- b. Once every 31 days for other vent path(s) (e.g., a vent valve that is locked, sealed, or secured in position or a removed pressurizer safety valve or open manway also fits this category).

The passive vent path arrangement must only be open to be OPERABLE. This Surveillance is required to be met if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.12d.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.12.6

The PORV block valve must be verified open every 72 hours to provide the flow path for each required PORV to perform its function when actuated. The valve must be remotely verified open in the main control room. [This Surveillance is performed if the PORV satisfies the LCO.]

The block valve is a remotely controlled, motor operated valve. The power to the valve operator is not required removed, and the manual operator is not required locked in the inactive position. Thus, the block valve can be closed in the event the PORV develops excessive leakage or does not close (sticks open) after relieving an overpressure situation.

The 72 hour Frequency is considered adequate in view of other administrative controls available to the operator in the control room, such as valve position indication, that verify that the PORV block valve remains open.

[<u>SR_3.4.12.7</u>

Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valve are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.4 for the RHR suction valve Surveillance and for a description of the requirements of the Inservice Testing Program.) This Surveillance is only performed if the RHR suction relief valve is being used to satisfy this LCO.]

Every 31 days the RHR suction isolation valve is verified locked open, with power to the valve operator removed, to ensure that accidental closure will not occur. The "locked open" valve must be locally verified in its open position with the manual actuator locked in its inactive position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve position.

SR 3.4.12.8

Performance of a COT is required within 12 hours after decreasing RCS temperature to \leq [275°F] [LTOP arming temperature specified in the PTLR] and every 31 days on each required PORV to verify and, as necessary, adjust its lift setpoint. A successful test of the required contact(s) of a channel relay may be performed by the verification of the

SURVEILLANCE REQUIREMENTS (continued)

change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The COT will verify the setpoint is within the PTLR allowed maximum limits in the PTLR. PORV actuation could depressurize the RCS and is not required.

The 12 hour Frequency considers the unlikelihood of a low temperature overpressure event during this time.

A Note has been added indicating that this SR is required to be performed 12 hours after decreasing RCS cold leg temperature to ≤ [275°F] [LTOP arming temperature specified in the PTLR]. The COT cannot be performed until in the LTOP MODES when the PORV lift setpoint can be reduced to the LTOP setting. The test must be performed within 12 hours after entering the LTOP MODES.

SR 3.4.12.9

Performance of a CHANNEL CALIBRATION on each required PORV actuation channel is required every [18] months to adjust the whole channel so that it responds and the valve opens within the required range and accuracy to known input.

REFERENCES 1	. 10	CFR 50,	Appendix G.
--------------	------	---------	-------------

- 2. Generic Letter 88-11.
- 3. ASME, Boiler and Pressure Vessel Code, Section III.
- 4. FSAR, Chapter [15]
- 5. 10 CFR 50, Section 50.46.
- 6. 10 CFR 50, Appendix K.
- 7. Generic Letter 90-06.
- 8. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.13 RCS Operational LEAKAGE

BASES

1

BACKGROUND	Components that contain or transport the coolant to or from the reactor core make up the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS.
	During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE.
	10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.
	The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public.
	A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection.
	This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA).

BASES					
APPLICABLE SAFETY ANALYSES	Except for primary to secondary LEAKAGE, the safety analyses do not address operational LEAKAGE. However, other operational LEAKAGE is related to the safety analyses for LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 1 gpm primary to secondary LEAKAGE as the initial condition.				
	Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid.				
	The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is only briefly released via safety valves and the majority is steamed to the condenser. The 1 gpm primary to secondary LEAKAGE is relatively inconsequential.				
	The SLB is more limiting for site radiation releases. The safety analysis for the SLB accident assumes 1 gpm primary to secondary LEAKAGE in one generator as an initial condition. The dose consequences resulting from the SLB accident are well within the limits defined in 10 CFR 100 or the staff approved licensing basis (i.e., a small fraction of these limits).				
	The RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).				
LCO	RCS operational LEAKAGE shall be limited to:				
	a. Pressure Boundary LEAKAGE				
	No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE.				
	b. Unidentified LEAKAGE				
	One gallon per minute (gpm) of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring and containment sump level monitoring equipment can detect within a reasonable time period. Violation of this LCO could				

LCO (continued)			
		result in continued degradation of the RCPB, if the LEAKAGE is from the pressure boundary.	
	C.	Identified LEAKAGE	
		Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of unidentified LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered LEAKAGE). Violation of this LCO could result in continued degradation of a component or system.	
	d.	Primary to Secondary LEAKAGE through All Steam Generators (SGs)	
		Total primary to secondary LEAKAGE amounting to 1 gpm through all SGs produces acceptable offsite doses in the SLB accident analysis. Violation of this LCO could exceed the offsite dose limits for this accident. Primary to secondary LEAKAGE must be included in the total allowable limit for identified LEAKAGE.	
	e.	Primary to Secondary LEAKAGE through Any One SG	
		The [500] gallons per day limit on one SG is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line rupture. If leaked through many cracks, the cracks are very small, and the above assumption is conservative.	
APPLICABILITY	In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized.		
	In I rea red	MODES 5 and 6, LEAKAGE limits are not required because the actor coolant pressure is far lower, resulting in lower stresses and luced potentials for LEAKAGE.	
	LC lea PIV doe	O 3.4.14, "RCS Pressure Isolation Valve (PIV) Leakage," measures kage through each individual PIV and can impact this LCO. Of the two /s in series in each isolated line, leakage measured through one PIV es not result in RCS LEAKAGE when the other is leak tight. If both	

APPLICABILITY (continued)

valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable identified LEAKAGE.

ACTIONS <u>A.1</u>

Unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB.

B.1 and B.2

If any pressure boundary LEAKAGE exists, or if unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE cannot be reduced to within limits within 4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

SURVEILLANCE <u>SR 3.4.13.1</u> REQUIREMENTS

Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance. Primary to secondary LEAKAGE is also measured by performance of an RCS water inventory balance in conjunction with effluent monitoring within the secondary steam and feedwater systems.

SURVEILLANCE REQUIREMENTS (continued)

The RCS water inventory balance must be met with the reactor at steady state operating conditions. Therefore, a Note is added allowing that this SR is not required to be performed until 12 hours after establishing steady state operation. The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established.

Steady state operation is required to perform a proper inventory balance since calculations during maneuvering are not useful. For RCS operational LEAKAGE determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the containment atmosphere radioactivity and the containment sump level. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These leakage detection systems are specified in LCO 3.4.15, "RCS Leakage Detection Instrumentation."

The 72 hour Frequency is a reasonable interval to trend LEAKAGE and recognizes the importance of early leakage detection in the prevention of accidents.

<u>SR 3.4.13.2</u>

This SR provides the means necessary to determine SG OPERABILITY in an operational MODE. The requirement to demonstrate SG tube integrity in accordance with the Steam Generator Tube Surveillance Program emphasizes the importance of SG tube integrity, even though this Surveillance cannot be performed at normal operating conditions.

REFERENCES	1.	10 CFR 50, Appendix A, GDC 30.

- 2. Regulatory Guide 1.45, May 1973.
- 3. FSAR, Section [15].
B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.14 RCS Pressure Isolation Valve (PIV) Leakage

BASES

BACKGROUND 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3), define RCS PIVs as any two normally closed valves in series within the reactor coolant pressure boundary (RCPB), which separate the high pressure RCS from an attached low pressure system. During their lives, these valves can produce varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration. The RCS PIV Leakage LCO allows RCS high pressure operation when leakage through these valves exists in amounts that do not compromise safety.

The PIV leakage limit applies to each individual valve. Leakage through both series PIVs in a line must be included as part of the identified LEAKAGE, governed by LCO 3.4.13, "RCS Operational LEAKAGE." This is true during operation only when the loss of RCS mass through two series valves is determined by a water inventory balance (SR 3.4.13.1). A known component of the identified LEAKAGE before operation begins is the least of the two individual leak rates determined for leaking series PIVs during the required surveillance testing; leakage measured through one PIV in a line is not RCS operational LEAKAGE if the other is leaktight.

Although this specification provides a limit on allowable PIV leakage rate, its main purpose is to prevent overpressure failure of the low pressure portions of connecting systems. The leakage limit is an indication that the PIVs between the RCS and the connecting systems are degraded or degrading. PIV leakage could lead to overpressure of the low pressure piping or components. Failure consequences could be a loss of coolant accident (LOCA) outside of containment, an unanalyzed accident, that could degrade the ability for low pressure injection.

The basis for this LCO is the 1975 NRC "Reactor Safety Study" (Ref. 4) that identified potential intersystem LOCAs as a significant contributor to the risk of core melt. A subsequent study (Ref. 5) evaluated various PIV configurations to determine the probability of intersystem LOCAs.

PIVs are provided to isolate the RCS from the following typically connected systems:

a. Residual Heat Removal (RHR) System,

RCS PIV Leakage B 3.4.14

BACKGROUND (continued)		
	b. Safety Injection System, and	
	c. Chemical and Volume Control System.	
	The PIVs are listed in the FSAR, Section [] (Ref. 6).	
	Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system and the loss of the integrity of a fission product barrier.	
APPLICABLE SAFETY ANALYSES	Reference 4 identified potential intersystem LOCAs as a significant contributor to the risk of core melt. The dominant accident sequence in the intersystem LOCA category is the failure of the low pressure portion of the RHR System outside of containment. The accident is the result of a postulated failure of the PIVs, which are part of the RCPB, and the subsequent pressurization of the RHR System downstream of the PIVs from the RCS. Because the low pressure portion of the RHR System is typically designed for 600 psig, overpressurization failure of the RHR low pressure line would result in a LOCA outside containment and subsequent risk of core melt.	
	Reference 5 evaluated various PIV configurations, leakage testing of the valves, and operational changes to determine the effect on the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce the probability of an intersystem LOCA.	
	RCS PIV leakage satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).	
LCO	RCS PIV leakage is identified LEAKAGE into closed systems connected to the RCS. Isolation valve leakage is usually on the order of drops per minute. Leakage that increases significantly suggests that something is operationally wrong and corrective action must be taken.	
	The LCO PIV leakage limit is 0.5 gpm per nominal inch of valve size with a maximum limit of 5 gpm. The previous criterion of 1 gpm for all valve sizes imposed an unjustified penalty on the larger valves without providing information on potential valve degradation and resulted in higher personnel radiation exposures. A study concluded a leakage rate limit based on valve size was superior to a single allowable value.	

1

LCO (continued)	
	Reference 7 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential) in those types of valves in which the higher service pressure will tend to diminish the overall leakage channel opening. In such cases, the observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one half power.
APPLICABILITY	In MODES 1, 2, 3, and 4, this LCO applies because the PIV leakage potential is greatest when the RCS is pressurized. In MODE 4, valves in the RHR flow path are not required to meet the requirements of this LCO when in, or during the transition to or from, the RHR mode of operation.
	In MODES 5 and 6, leakage limits are not provided because the lower reactor coolant pressure results in a reduced potential for leakage and for a LOCA outside the containment.
ACTIONS	The Actions are modified by two Notes. Note 1 provides clarification that each flow path allows separate entry into a Condition. This is allowed based upon the functional independence of the flow path. Note 2 requires an evaluation of affected systems if a PIV is inoperable. The leakage may have affected system operability, or isolation of a leaking flow path with an alternate valve may have degraded the ability of the interconnected system to perform its safety function.
	A.1 and A.2
	The flow path must be isolated by two valves. Required Actions A.1 and A.2 are modified by a Note that the valves used for isolation must meet the same leakage requirements as the PIVs and must be within the RCPB [or the high pressure portion of the system].
	Required Action A.1 requires that the isolation with one valve must be performed within 4 hours. Four hours provides time to reduce leakage in excess of the allowable limit and to isolate the affected system if leakage cannot be reduced. The 4 hour Completion Time allows the actions and restricts the operation with leaking isolation valves.
	[Required Action A.2 specifies that the double isolation barrier of two valves be restored by closing some other valve qualified for isolation or

ACTIONS (continued)

restoring one leaking PIV. The 72 hour Completion Time after exceeding the limit considers the time required to complete the Action and the low probability of a second valve failing during this time period.

[or]

The 72 hour Completion Time after exceeding the limit allows for the restoration of the leaking PIV to OPERABLE status. This timeframe considers the time required to complete this Action and the low probability of a second valve failing during this period.]

- REVIEWER'S NOTE -

Two options are provided for Required Action A.2. The second option (72 hour restoration) is appropriate if isolation of a second valve would place the unit in an unanalyzed condition.

B.1 and B.2

If leakage cannot be reduced, [the system can not be isolated,] or the other Required Actions accomplished, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This Action may reduce the leakage and also reduces the potential for a LOCA outside the containment. The allowed Completion Times are reasonable based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>C.1</u>

The inoperability of the RHR autoclosure interlock renders the RHR suction isolation valves incapable of isolating in response to a high pressure condition and preventing inadvertent opening of the valves at RCS pressures in excess of the RHR systems design pressure. If the RHR autoclosure interlock is inoperable, operation may continue as long as the affected RHR suction penetration is closed by at least one closed manual or deactivated automatic valve within 4 hours. This Action accomplishes the purpose of the autoclosure function.

SURVEILLANCE REQUIREMENTS

<u>SR 3.4.14.1</u>

Performance of leakage testing on each RCS PIV or isolation valve used to satisfy Required Action A.1 and Required Action A.2 is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition.

For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

Testing is to be performed every [18] months, a typical refueling cycle, if the plant does not go into MODE 5 for at least 7 days. The [18 month] Frequency is consistent with 10 CFR 50.55a(g) (Ref. 8) as contained in the Inservice Testing Program, is within frequency allowed by the American Society of Mechanical Engineers (ASME) Code, Section XI (Ref. 7), and is based on the need to perform such surveillances under the conditions that apply during an outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

In addition, testing must be performed once after the valve has been opened by flow or exercised to ensure tight reseating. PIVs disturbed in the performance of this Surveillance should also be tested unless documentation shows that an infinite testing loop cannot practically be avoided. Testing must be performed within 24 hours after the valve has been reseated. Within 24 hours is a reasonable and practical time limit for performing this test after opening or reseating a valve.

The leakage limit is to be met at the RCS pressure associated with MODES 1 and 2. This permits leakage testing at high differential pressures with stable conditions not possible in the MODES with lower pressures.

Entry into MODES 3 and 4 is allowed to establish the necessary differential pressures and stable conditions to allow for performance of this Surveillance. The Note that allows this provision is complementary to the Frequency of prior to entry into MODE 2 whenever the unit has been in MODE 5 for 7 days or more, if leakage testing has not been performed in the previous 9 months. In addition, this Surveillance is not required to

SURVEILLANCE REQUIREMENTS (continued)

be performed on the RHR System when the RHR System is aligned to the RCS in the shutdown cooling mode of operation. PIVs contained in the RHR shutdown cooling flow path must be leakage rate tested after RHR is secured and stable unit conditions and the necessary differential pressures are established.

[SR 3.4.14.2 and SR 3.4.14.3

Verifying that the RHR autoclosure interlocks are OPERABLE ensures that RCS pressure will not pressurize the RHR system beyond 125% of its design pressure of [600] psig. The interlock setpoint that prevents the valves from being opened is set so the actual RCS pressure must be < [425] psig to open the valves. This setpoint ensures the RHR design pressure will not be exceeded and the RHR relief valves will not lift. The [18] month Frequency is based on the need to perform the Surveillance under conditions that apply during a plant outage. The [18] month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment.

These SRs are modified by Notes allowing the RHR autoclosure function to be disabled when using the RHR System suction relief valves for cold overpressure protection in accordance with SR 3.4.12.7.]

- REFERENCES 1. 10 CFR 50.2.
 - 2. 10 CFR 50.55a(c).
 - 3. 10 CFR 50, Appendix A, Section V, GDC 55.
 - 4. WASH-1400 (NUREG-75/014), Appendix V, October 1975.
 - 5. NUREG-0677, May 1980.
 - [6. Document containing list of PIVs.]
 - 7. ASME, Boiler and Pressure Vessel Code, Section XI.
 - 8. 10 CFR 50.55a(g).

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.15 RCS Leakage Detection Instrumentation

BASES

BACKGROUND GDC 30 of Appendix A to 10 CFR 50 (Ref. 1) requires means for detecting and, to the extent practical, identifying the location of the source of RCS LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.

Leakage detection systems must have the capability to detect significant reactor coolant pressure boundary (RCPB) degradation as soon after occurrence as practical to minimize the potential for propagation to a gross failure. Thus, an early indication or warning signal is necessary to permit proper evaluation of all unidentified LEAKAGE.

Industry practice has shown that water flow changes of 0.5 to 1.0 gpm can be readily detected in contained volumes by monitoring changes in water level, in flow rate, or in the operating frequency of a pump. The containment sump used to collect unidentified LEAKAGE [is] [(or) and air cooler condensate flow rate monitor] [are] instrumented to alarm for increases of 0.5 to 1.0 gpm in the normal flow rates. This sensitivity is acceptable for detecting increases in unidentified LEAKAGE.

The reactor coolant contains radioactivity that, when released to the containment, can be detected by radiation monitoring instrumentation. Reactor coolant radioactivity levels will be low during initial reactor startup and for a few weeks thereafter, until activated corrosion products have been formed and fission products appear from fuel element cladding contamination or cladding defects. Instrument sensitivities of $10^{-9} \,\mu$ Ci/cc radioactivity for particulate monitoring and of $10^{-6} \,\mu$ Ci/cc radioactivity for gaseous monitoring are practical for these leakage detection systems. Radioactivity detection systems are included for monitoring both particulate and gaseous activities because of their sensitivities and rapid responses to RCS LEAKAGE.

An increase in humidity of the containment atmosphere would indicate release of water vapor to the containment. Dew point temperature measurements can thus be used to monitor humidity levels of the containment atmosphere as an indicator of potential RCS LEAKAGE. A 1°F increase in dew point is well within the sensitivity range of available instruments.

Since the humidity level is influenced by several factors, a quantitative evaluation of an indicated leakage rate by this means may be

BACKGROUND (continued)

	questionable and should be compared to observed increases in liquid flow into or from the containment sump [and condensate flow from air coolers]. Humidity level monitoring is considered most useful as an indirect alarm or indication to alert the operator to a potential problem. Humidity monitors are not required by this LCO.
	Air temperature and pressure monitoring methods may also be used to infer unidentified LEAKAGE to the containment. Containment temperature and pressure fluctuate slightly during plant operation, but a rise above the normally indicated range of values may indicate RCS leakage into the containment. The relevance of temperature and pressure measurements are affected by containment free volume and, for temperature, detector location. Alarm signals from these instruments can be valuable in recognizing rapid and sizable leakage to the containment. Temperature and pressure monitors are not required by this LCO.
APPLICABLE SAFETY ANALYSES	The need to evaluate the severity of an alarm or an indication is important to the operators, and the ability to compare and verify with indications from other systems is necessary. The system response times and sensitivities are described in the FSAR (Ref. 3). Multiple instrument locations are utilized, if needed, to ensure that the transport delay time of the leakage from its source to an instrument location yields an acceptable overall response time.
	The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring RCS LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE provides quantitative information to the operators, allowing them to take corrective action should a leakage occur detrimental to the safety of the unit and the public.
	RCS leakage detection instrumentation satisfies Criterion 1 of 10 CFR 50.36(c)(2)(ii).
LCO	One method of protecting against large RCS leakage derives from the ability of instruments to rapidly detect extremely small leaks. This LCO requires instruments of diverse monitoring principles to be OPERABLE to provide a high degree of confidence that extremely small leaks are detected in time to allow actions to place the plant in a safe condition, when RCS LEAKAGE indicates possible RCPB degradation.

BASES	
LCO (continued)	
	The LCO is satisfied when monitors of diverse measurement means are available. Thus, the containment sump monitor, in combination with a gaseous or particulate radioactivity monitor [and a containment air cooler condensate flow rate monitor], provides an acceptable minimum.
APPLICABILITY	Because of elevated RCS temperature and pressure in MODES 1, 2, 3, and 4, RCS leakage detection instrumentation is required to be OPERABLE.
	In MODE 5 or 6, the temperature is to be $\leq 200^{\circ}$ F and pressure is maintained low or at atmospheric pressure. Since the temperatures and pressures are far lower than those for MODES 1, 2, 3, and 4, the likelihood of leakage and crack propagation are much smaller. Therefore, the requirements of this LCO are not applicable in MODES 5 and 6.
ACTIONS	The Actions are modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when the containment sump and required radiation monitors are inoperable. This allowance is provided because other instrumentation is available to monitor RCS LEAKAGE.
	A.1 and A.2
	With the required containment sump monitor inoperable, no other form of sampling can provide the equivalent information; however, the containment atmosphere radioactivity monitor will provide indications of changes in leakage. Together with the atmosphere monitor, the periodic surveillance for RCS water inventory balance, SR 3.4.13.1, must be performed at an increased frequency of 24 hours to provide information that is adequate to detect leakage. A Note is added allowing that SR 3.4.13.1 is not required to be performed until 12 hours after establishing steady state operation (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and [RCP sea injection and return flows]). The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established.
	Restoration of the required sump monitor to OPERABLE status within a Completion Time of 30 days is required to regain the function after the monitor's failure. This time is acceptable, considering the Frequency and

~~~

## ACTIONS (continued)

adequacy of the RCS water inventory balance required by Required Action A.1.

# B.1.1, B.1.2, B.2.1, and B.2.2

With both gaseous and particulate containment atmosphere radioactivity monitoring instrumentation channels inoperable, alternative action is required. Either grab samples of the containment atmosphere must be taken and analyzed or water inventory balances, in accordance with SR 3.4.13.1, must be performed to provide alternate periodic information.

With a sample obtained and analyzed or water inventory balance performed every 24 hours, the reactor may be operated for up to 30 days to allow restoration of the required containment atmosphere radioactivity monitors. Alternatively, continued operation is allowed if the air cooler condensate flow rate monitoring system is OPERABLE, provided grab samples or water inventory balances performed are taken every 24 hours.

The 24 hour interval provides periodic information that is adequate to detect leakage. A Note is added allowing that SR 3.4.13.1 is not required to be performed until 12 hours after establishing steady state operation (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and [RCP seal injection and return flows]). The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established. The 30 day Completion Time recognizes at least one other form of leakage detection is available.

## [ C.1 and C.2

With the required containment air cooler condensate flow rate monitor inoperable, alternative action is again required. Either SR 3.4.15.1 must be performed or water inventory balances, in accordance with SR 3.4.13.1, must be performed to provide alternate periodic information. Provided a CHANNEL CHECK is performed every 8 hours or a water inventory balance is performed every 24 hours, reactor operation may continue while awaiting restoration of the containment air cooler condensate flow rate monitor to OPERABLE status.

The 24 hour interval provides periodic information that is adequate to detect RCS LEAKAGE. A Note is added allowing that SR 3.4.13.1 is not required to be performed until 12 hours after establishing steady state

## ACTIONS (continued)

operation (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and [RCP seal injection and return flows]). The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established. ]

# [ D.1 and D.2

With the required containment atmosphere radioactivity monitor and the required containment air cooler condensate flow rate monitor inoperable, the only means of detecting leakage is the containment sump monitor. This Condition does not provide the required diverse means of leakage detection. The Required Action is to restore either of the inoperable required monitors to OPERABLE status within 30 days to regain the intended leakage detection diversity. The 30 day Completion Time ensures that the plant will not be operated in a reduced configuration for a lengthy time period. ]

# E.1 and E.2

If a Required Action of Condition A, B, [C], or [D] cannot be met, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

# <u>F.1</u>

With all required monitors inoperable, no automatic means of monitoring leakage are available, and immediate plant shutdown in accordance with LCO 3.0.3 is required.

# SURVEILLANCE <u>SR 3.4.15.1</u> REQUIREMENTS SR 3.4.15.1 required containm

SR 3.4.15.1 requires the performance of a CHANNEL CHECK of the required containment atmosphere radioactivity monitor. The check gives reasonable confidence that the channel is operating properly. The Frequency of 12 hours is based on instrument reliability and is reasonable for detecting off normal conditions.

#### SURVEILLANCE REQUIREMENTS (continued)

#### <u>SR 3.4.15.2</u>

| SR 3.4.15.2 requires the performance of a COT on the required               |
|-----------------------------------------------------------------------------|
| containment atmosphere radioactivity monitor. The test ensures that the     |
| monitor can perform its function in the desired manner. A successful test   |
| of the required contact(s) of a channel relay may be performed by the       |
| verification of the change of state of a single contact of the relay. This  |
| clarifies what is an acceptable CHANNEL OPERATIONAL TEST of a               |
| relay. This is acceptable because all of the other required contacts of the |
| relay are verified by other Technical Specifications and non-Technical      |
| Specifications tests at least once per refueling interval with applicable   |
| extensions. The test verifies the alarm setpoint and relative accuracy of   |
| the instrument string. The Frequency of 92 days considers instrument        |
| reliability, and operating experience has shown that it is proper for       |
| detecting degradation.                                                      |

SR 3.4.15.3, [SR 3.4.15.4, and SR 3.4.15.5]

These SRs require the performance of a CHANNEL CALIBRATION for each of the RCS leakage detection instrumentation channels. The calibration verifies the accuracy of the instrument string, including the instruments located inside containment. The Frequency of [18] months is a typical refueling cycle and considers channel reliability. Again, operating experience has proven that this Frequency is acceptable.

- REFERENCES 1. 10 CFR 50, Appendix A, Section IV, GDC 30.
  - 2. Regulatory Guide 1.45.
  - 3. FSAR, Section [].

# B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.16 RCS Specific Activity

/

| BASES                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACKGROUND                       | The maximum dose to the whole body and the thyroid that an individual<br>at the site boundary can receive for 2 hours during an accident is<br>specified in 10 CFR 100 (Ref. 1). The limits on specific activity ensure<br>that the doses are held to a small fraction of the 10 CFR 100 limits durin<br>analyzed transients and accidents.                                                                                                                                                                                                                                                                                    |
|                                  | The RCS specific activity LCO limits the allowable concentration level of radionuclides in the reactor coolant. The LCO limits are established to minimize the offsite radioactivity dose consequences in the event of a steam generator tube rupture (SGTR) accident.                                                                                                                                                                                                                                                                                                                                                         |
|                                  | The LCO contains specific activity limits for both DOSE EQUIVALENT<br>I-131 and gross specific activity. The allowable levels are intended to<br>limit the 2 hour dose at the site boundary to a small fraction of the<br>10 CFR 100 dose guideline limits. The limits in the LCO are<br>standardized, based on parametric evaluations of offsite radioactivity<br>dose consequences for typical site locations.                                                                                                                                                                                                               |
|                                  | The parametric evaluations showed the potential offsite dose levels for a SGTR accident were an appropriately small fraction of the 10 CFR 100 dose guideline limits. Each evaluation assumes a broad range of site applicable atmospheric dispersion factors in a parametric evaluation.                                                                                                                                                                                                                                                                                                                                      |
| APPLICABLE<br>SAFETY<br>ANALYSES | The LCO limits on the specific activity of the reactor coolant ensures that<br>the resulting 2 hour doses at the site boundary will not exceed a small<br>fraction of the 10 CFR 100 dose guideline limits following a SGTR<br>accident. The SGTR safety analysis (Ref. 2) assumes the specific<br>activity of the reactor coolant at the LCO limit and an existing reactor<br>coolant steam generator (SG) tube leakage rate of 1 gpm. The safety<br>analysis assumes the specific activity of the secondary coolant at its lim<br>of 0.1 $\mu$ Ci/gm DOSE EQUIVALENT I-131 from LCO 3.7.6, "Secondary<br>Specific Activity." |
|                                  | The analysis for the SGTR accident establishes the acceptance limits for RCS specific activity. Reference to this analysis is used to assess changes to the unit that could affect RCS specific activity, as they relate to the acceptance limits.                                                                                                                                                                                                                                                                                                                                                                             |

# APPLICABLE SAFETY ANALYSES (continued)

The analysis is for two cases of reactor coolant specific activity. One case assumes specific activity at 1.0  $\mu$ Ci/gm DOSE EQUIVALENT I-131 with a concurrent large iodine spike that increases the I-131 activity in the reactor coolant by a factor of about 50 immediately after the accident. The second case assumes the initial reactor coolant iodine activity at 60.0  $\mu$ Ci/gm DOSE EQUIVALENT I-131 due to a pre-accident iodine spike caused by an RCS transient. In both cases, the noble gas activity in the reactor coolant assumes 1% failed fuel, which closely equals the LCO limit of 100/ $\bar{E}$   $\mu$ Ci/gm for gross specific activity.

The analysis also assumes a loss of offsite power at the same time as the SGTR event. The SGTR causes a reduction in reactor coolant inventory. The reduction initiates a reactor trip from a low pressurizer pressure signal or an RCS overtemperature  $\Delta T$  signal.

The coincident loss of offsite power causes the steam dump valves to close to protect the condenser. The rise in pressure in the ruptured SG discharges radioactively contaminated steam to the atmosphere through the SG power operated relief valves and the main steam safety valves. The unaffected SGs remove core decay heat by venting steam to the atmosphere until the cooldown ends.

The safety analysis shows the radiological consequences of an SGTR accident are within a small fraction of the Reference 1 dose guideline limits. Operation with iodine specific activity levels greater than the LCO limit is permissible, if the activity levels do not exceed the limits shown in Figure 3.4.16-1, in the applicable specification, for more than 48 hours. The safety analysis has concurrent and pre-accident iodine spiking levels up to 60.0  $\mu$ Ci/gm DOSE EQUIVALENT I-131.

The remainder of the above limit permissible iodine levels shown in Figure 3.4.16-1 are acceptable because of the low probability of a SGTR accident occurring during the established 48 hour time limit. The occurrence of an SGTR accident at these permissible levels could increase the site boundary dose levels, but still be within 10 CFR 100 dose guideline limits.

The limits on RCS specific activity are also used for establishing standardization in radiation shielding and plant personnel radiation protection practices.

RCS specific activity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

| DAGLO         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCO           | The specific iodine activity is limited to 1.0 $\mu$ Ci/gm DOSE EQUIVALENT I-131, and the gross specific activity in the reactor coolant is limited to the number of $\mu$ Ci/gm equal to 100 divided by $\mathbb{E}$ (average disintegration energy of the sum of the average beta and gamma energies of the coolant nuclides). The limit on DOSE EQUIVALENT I-131 ensures the 2 hour thyroid dose to an individual at the site boundary during the Design Basis Accident (DBA) will be a small fraction of the allowed thyroid dose to an individual at the site boundary during the 2 hour whole body dose to an individual at the site boundary during the DBA will be a small fraction of the allowed whole body dose. |
|               | The SGTR accident analysis (Ref. 2) shows that the 2 hour site boundary dose levels are within acceptable limits. Violation of the LCO may result in reactor coolant radioactivity levels that could, in the event of an SGTR, lead to site boundary doses that exceed the 10 CFR 100 dose guideline limits.                                                                                                                                                                                                                                                                                                                                                                                                                |
| APPLICABILITY | In MODES 1 and 2, and in MODE 3 with RCS average temperature $\geq 500^{\circ}$ F, operation within the LCO limits for DOSE EQUIVALENT I-131 and gross specific activity are necessary to contain the potential consequences of an SGTR to within the acceptable site boundary dose values.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | For operation in MODE 3 with RCS average temperature < 500°F, and in MODES 4 and 5, the release of radioactivity in the event of a SGTR is unlikely since the saturation pressure of the reactor coolant is below the lift pressure settings of the main steam safety valves.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ACTIONS       | A.1 and A.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | With the DOSE EQUIVALENT I-131 greater than the LCO limit, samples<br>at intervals of 4 hours must be taken to demonstrate that the limits of<br>Figure 3.4.16-1 are not exceeded. The Completion Time of 4 hours is<br>required to obtain and analyze a sample. Sampling is done to continue to<br>provide a trend.                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | The DOSE EQUIVALENT I-131 must be restored to within limits within 48 hours. The Completion Time of 48 hours is required, if the limit violation resulted from normal iodine spiking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | A Note to the Required Action of Condition A excludes the MODE change<br>restriction of LCO 3.0.4. This exception allows entry into the applicable<br>MODE(S) while relying on the ACTIONS even though the ACTIONS may<br>eventually require plant shutdown. This exception is acceptable due to                                                                                                                                                                                                                                                                                                                                                                                                                            |

## ACTIONS (continued)

the significant conservatism incorporated into the specific activity limit, the low probability of an event which is limiting due to exceeding this limit, and the ability to restore transient specific activity excursions while the plant remains at, or proceeds to power operation.

## <u>B.1</u>

With the gross specific activity in excess of the allowed limit, the unit must be placed in a MODE in which the requirement does not apply.

The change within 6 hours to MODE 3 and RCS average temperature < 500°F lowers the saturation pressure of the reactor coolant below the setpoints of the main steam safety valves and prevents venting the SG to the environment in an SGTR event. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems.

# <u>C.1</u>

If a Required Action and the associated Completion Time of Condition A is not met or if the DOSE EQUIVALENT I-131 is in the unacceptable region of Figure 3.4.16-1, the reactor must be brought to MODE 3 with RCS average temperature < 500°F within 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems.

### SURVEILLANCE REQUIREMENTS

# <u>SR 3.4.16.1</u>

SR 3.4.16.1 requires performing a gamma isotopic analysis as a measure of the gross specific activity of the reactor coolant at least once every 7 days. While basically a quantitative measure of radionuclides with half lives longer than 15 minutes, excluding iodines, this measurement is the sum of the degassed gamma activities and the gaseous gamma activities in the sample taken. This Surveillance provides an indication of any increase in gross specific activity.

Trending the results of this Surveillance allows proper remedial action to be taken before reaching the LCO limit under normal operating conditions. The Surveillance is applicable in MODES 1 and 2, and in MODE 3 with  $T_{avg}$  at least 500°F. The 7 day Frequency considers the unlikelihood of a gross fuel failure during the time.

#### SURVEILLANCE REQUIREMENTS (continued)

#### SR 3.4.16.2

This Surveillance is performed in MODE 1 only to ensure iodine remains within limit during normal operation and following fast power changes when fuel failure is more apt to occur. The 14 day Frequency is adequate to trend changes in the iodine activity level, considering gross activity is monitored every 7 days. The Frequency, between 2 and 6 hours after a power change  $\geq$  15% RTP within a 1 hour period, is established because the iodine levels peak during this time following fuel failure; samples at other times would provide inaccurate results.

#### SR 3.4.16.3

A radiochemical analysis for  $\overline{E}$  determination is required every 184 days (6 months) with the plant operating in MODE 1 equilibrium conditions. The  $\overline{E}$  determination directly relates to the LCO and is required to verify plant operation within the specified gross activity LCO limit. The analysis for  $\overline{E}$  is a measurement of the average energies per disintegration for isotopes with half lives longer than 15 minutes, excluding iodines. The Frequency of 184 days recognizes  $\overline{E}$  does not change rapidly.

This SR has been modified by a Note that indicates sampling is required to be performed within 31 days after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for at least 48 hours. This ensures that the radioactive materials are at equilibrium so the analysis for  $\vec{E}$  is representative and not skewed by a crud burst or other similar abnormal event.

REFERENCES 1. 10 CFR 100.11, 1973.

2. FSAR, Section [15.6.3].

# B 3.4 REACTOR COOLANT SYSTEM (RCS)

# B 3.4.17 RCS Loop Isolation Valves

~

| BASES                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACKGROUND                       | The reactor coolant loops are equipped with loop isolation valves that<br>permit any loop to be isolated from the reactor vessel. One valve is<br>installed on each hot leg and one on each cold leg. The loop isolation<br>valves are used to perform maintenance on an isolated loop. Power<br>operation with a loop isolated is not permitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | To ensure that inadvertent closure of a loop isolation valve does not<br>occur, the valves must be open with power to the valve operators<br>removed in MODES 1, 2, 3 and 4. If the valves are closed, a set of<br>administrative controls and equipment interlocks must be satisfied prior to<br>opening the isolation valves as described in LCO 3.4.18, "RCS Isolated<br>Loop Startup."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| APPLICABLE<br>SAFETY<br>ANALYSES | The safety analyses performed for the reactor at power assume that all reactor coolant loops are initially in operation and the loop isolation valves are open. This LCO places controls on the loop isolation valves to ensure that the valves are not inadvertently closed in MODES 1, 2, 3 and 4. The inadvertent closure of a loop isolation valve when the Reactor Coolant Pumps (RCPs) are operating will result in a partial loss of forced reactor coolant flow (Ref. 1). If the reactor is at power at the time of the event, the effect of the partial loss of forced coolant flow is a rapid increase in the coolant temperature which could result in DNB with subsequent fuel damage if the reactor is not tripped by the Low Flow reactor trip. If the reactor is shutdown and an RCS loop is in operation removing decay heat, closure of the loop isolation valve associated with the operating loop could also result in increasing coolant temperature and the possibility of fuel damage. RCS Loop Isolation Valves satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). |
| LCO                              | This LCO ensures that the loop isolation valves are open and power to<br>the valve operators is removed. Loop isolation valves are used for<br>performing maintenance in MODES 5 and 6. The safety analyses<br>assume that the loop isolation valves are open in any RCS loops required<br>to be OPERABLE by LCO 3.4.4, "RCS Loops - MODES 1 and 2," LCO<br>3.4.5, "RCS Loops - MODE 3," or LCO 3.4.6, "RCS Loops - MODE 4."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| In MODES 1 through 4, this LCO ensures that the loop isolation valves<br>are open and power to the valve operators is removed. The safety<br>analyses assume that the loop isolation valves are open in any RCS<br>loops required to be OPERABLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In MODES 5 and 6, the loop isolation valves may be closed. Controlled startup of an isolated loop is governed by the requirements of LCO 3.4.18, "RCS Isolated Loop Startup."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The Actions have been provided with a Note to clarify that all RCS loop isolation valves for this LCO are treated as separate entities, each with separate Completion Times, i.e., the Completion Time is on a component basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>A.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| If power is inadvertently restored to one or more loop isolation valve<br>operators, the potential exists for accidental isolation of a loop. The loop<br>isolation valves have motor operators. Therefore, these valves will<br>maintain their last position when power is removed from the valve<br>operator. With power applied to the valve operators, only the interlocks<br>prevent the valve from being operated. Although operating procedures<br>and interlocks make the occurrence of this event unlikely, the prudent<br>action is to remove power from the loop isolation valve operators. The<br>Completion Time of 30 minutes to remove power from the loop isolation<br>valve operators is sufficient considering the complexity of the task.                                                                                                                                                                    |
| B.1, B.2, and B.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Should a loop isolation valve be closed in MODES 1 through 4, the affected loop must be fully isolated immediately and the plant placed in MODE 5. Once in MODE 5, the isolated loop may be started in a controlled manner in accordance with LCO 3.4.18, "RCS Isolated Loop Startup." Opening the closed isolation valve in MODES 1 through 4 could result in colder water or water at a lower boron concentration being mixed with the operating RCS loops resulting in positive reactivity insertion. The Completion Time of Required Action B.1 allows time for borating the operating loops to a shutdown boration level such that the plant can be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

.

#### SURVEILLANCE <u>SR 3.4.17.1</u> REQUIREMENTS

The Surveillance is performed at least once per 31 days to ensure that the RCS loop isolation valves are open, with power removed from the loop isolation valve operators. The primary function of this Surveillance is to ensure that power is removed from the valve operators, since SR 3.4.4.1 of LCO 3.4.4, "RCS Loops - MODES 1 and 2," ensures that the loop isolation valves are open by verifying every 12 hours that all loops are operating and circulating reactor coolant. The Frequency of 31 days ensures that the required flow can be made available, is based on engineering judgment, and has proven to be acceptable. Operating experience has shown that the failure rate is so low that the 31 day Frequency is justified.

REFERENCES 1. FSAR, Section [15.2.6].

WOG STS

## B 3.4 REACTOR COOLANT SYSTEM

# B 3.4.18 RCS Isolated Loop Startup

# BASES

· \_\_\_\_\_

| BACKGROUND | The<br>to p<br>pote<br>In th<br>with<br>caus<br>SDM | RCS may be operated with loops isolated in MODES 5 and 6 in order<br>erform maintenance. While operating with a loop isolated, there is<br>ential for inadvertently opening the isolation valves in the isolated loop.<br>his event, the coolant in the isolated loop would suddenly begin to mix<br>the coolant in the operating loops. This situation has the potential of<br>sing a positive reactivity addition with a corresponding reduction of<br><i>A</i> if either: |
|------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | a.                                                  | The temperature in the isolated loop is lower than the temperature in the operating loops (cold water incident) or                                                                                                                                                                                                                                                                                                                                                           |
|            | b.                                                  | The boron concentration in the isolated loop is lower than the boron concentration required to meet the SDM of LCO 3.1.1 or boron concentration of LCO 3.9.1 (boron dilution incident).                                                                                                                                                                                                                                                                                      |
|            | As c<br>in a<br>addi                                | discussed in the FSAR (Ref. 1), the startup of an isolated loop is done controlled manner that virtually eliminates any sudden reactivity ition from cold water or boron dilution because:                                                                                                                                                                                                                                                                                   |
|            | a.                                                  | This LCO and plant operating procedures require that the boron<br>concentration in the isolated loop be maintained higher than the<br>boron concentration of the operating loops, thus eliminating the<br>potential for introducing coolant from the isolated loop that could<br>dilute the boron concentration in the operating loops,                                                                                                                                      |
|            | b.                                                  | The cold leg loop isolation valve cannot be opened unless the temperatures of both the hot leg and cold leg of the isolated loop are within 20°F of the operating loops. Compliance with the temperature requirement is ensured by operating procedures and automatic interlocks, and                                                                                                                                                                                        |
|            | C.                                                  | Other automatic interlocks prevent opening the hot leg loop isolation valve unless the cold leg loop isolation valve is fully closed. All of the interlocks are part of the Reactor Protection System.                                                                                                                                                                                                                                                                       |

| BASES                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPLICABLE<br>SAFETY<br>ANALYSES | During startup of an isolated loop, the cold leg loop isolation valve<br>interlocks and operating procedures prevent opening the valve until the<br>isolated loop and operating loop boron concentrations and temperatures<br>are equalized. This ensures that any undesirable reactivity effect from<br>the isolated loop does not occur.                                                                                                                                    |
|                                  | The safety analyses assume a minimum SDM as an initial condition for Design Basis Accidents. Violation of this LCO could result in the SDM being reduced in the operating loops to less than that assumed in the safety analyses.                                                                                                                                                                                                                                             |
|                                  | The boron concentration of an isolated loop may affect SDM and therefore RCS isolated loop startup satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).                                                                                                                                                                                                                                                                                                                           |
| LCO                              | Loop isolation values are used for performing maintenance when the<br>plant is in MODE 5 or 6. This LCO ensures that the loop isolation values<br>remain closed until the differentials of temperature and boron<br>concentration between the operating loops and the isolated loops are<br>within acceptable limits.                                                                                                                                                         |
| APPLICABILITY                    | In MODES 5 and 6, the SDM of the operating loops is large enough to permit operation with isolated loops. Controlled startup of isolated loops is possible without significant risk of inadvertent criticality. This LCO is applicable under these conditions.                                                                                                                                                                                                                |
| ACTIONS                          | A.1 and A.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | Required Action A.1 and Required Action A.2 assume that the<br>prerequisites of the LCO are not met and a loop isolation valve has been<br>inadvertently opened. Therefore, the Actions require immediate closure<br>of isolation valves to preclude a boron dilution event or a cold water<br>event. However, each Required Action is preceded by a Note that states<br>that Action is required only when a specific concentration or temperature<br>requirement is not met. |
| SURVEILLANCE<br>REQUIREMENTS     | <u>SR 3.4.18.1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  | This Surveillance is performed to ensure that the temperature differential between the isolated loop and the operating loops is $\leq [20]^{\circ}$ F. Performing the Surveillance 30 minutes prior to opening the cold leg isolation valve in the isolated loop provides reasonable assurance, based on engineering judgment, that the temperature differential will stay within                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### SURVEILLANCE REQUIREMENTS (continued)

limits until the cold leg isolation valve is opened. This Frequency has been shown to be acceptable through operating experience.

#### SR 3.4.18.2

To ensure that the boron concentration of the isolated loop is greater than or equal to the boron concentration required to meet the SDM of LCO 3.1.1 or boron concentration of LCO 3.9.1, a Surveillance is performed 2 hours prior to opening either the hot or cold leg isolation valve. Performing the Surveillance 2 hours prior to opening either the hot or cold leg isolation valve provides reasonable assurance the boron concentration difference will stay within acceptable limits until the loop is unisolated. This Frequency has been shown to be acceptable through operating experience.

REFERENCES 1. FSAR, Section [15.2.6].