# **RISK INFORMING URANIUM RECOVERY**

**Present Status of Case Study** 

R. A. Bari and E. Grove

**Brookhaven National Laboratory** 

June 13, 2001



# OUTLINE

- Background and Scope
- Case Study Plan Draft Questions
- Case Study Plan Draft Screening Criteria
- Observations
- Preliminary Conclusions



# **BACKGROUND AND SCOPE**

- In April 2001, Brookhaven National Laboratory began the Case Study for Uranium Recovery
- Focus is Uranium Milling and In-Situ Leaching
- Work-In-Progress
- Background Information Available on Web at: http://www.nrc.gov/NMSS/IMNS/riskassessment.html



# **CASE STUDY DRAFT QUESTIONS**

- Designed to meet objectives related to
  - Current and Potential Value of Risk Information
  - Feasibility and Utility of Safety Goals
  - Information Needs for Risk-Informed Regulatory Approach
- These are categorized as
  - Screening Criteria Analysis/Risk Analysis Questions
    - -Safety Goal Analysis Questions
  - -Questions Upon Developing Draft Safety Goals



# **URANIUM MILLING**

- Focused on White Mesa site in Blanding, Utah, as an example
- Licensed by NRC in 1979
- Has processed 4 million tons thru 1999
- Mill Tailings on Site
- Only operating mill (currently scheduled for transfer to DOE in 2025).



# **IN-SITU LEACHING**

- Focused on Smith Ranch in Wyoming as an example
- Licensed by NRC in 1992
- Demonstrated Annual Production Capacity: 770 tons U
- Current Annual Production Capacity: 580 tons U
- Site has active & inactive wells and has recently been granted license renewal by NRC



- **Risk information currently available:**
- NUREG -1531: Environmental Impact Statement for Atlas
   Uranium Mill
- 1996 ANS Conference paper on Atlas Uranium Mill: "Risk/Cost Analysis: A Case Scenario in the Decommissioning of a Radiological Site"
- NUREG 1508: Crown Point In-Situ Leach facility--informal use of risk information in assessing alternatives
- Risk Assessment by CNWRA on ISLs



#### **Quality of Studies**

Atlas EIS considers both accident risks and "incidentfree" risks: alternative disposal option Atlas Mill Risk Assessment paper supports its conclusions

CNWRA work based on NRC mission related to radiological releases: worker risk and environmental impact



Need for Additional Studies Realism of scenarios Assessment of uncertainties



#### **Use of Risk Information by NRC and Licensees**

- NRC considers risks in transportation
- EIS's for Crown Point ISL and Atlas Mill
- Risk is already considered in Uranium Recovery
- NRC-sponsored Risk Assessment of ISLs by CNWRA



- **Societal Benefit and Public Perception**
- Provides energy resource
- Public perception depends on site-- factors to consider: Environmental Impact and Public Health Economic and Social Value to Community



# **SAFETY GOAL ANALYSIS QUESTIONS**

#### **Basis for the current regulations**

- Uranium Mill Tailings Radiation Control Act of 1978
- Standards set by Environmental Protection Agency
- Working Understandings with other Agencies
- 10 CFR 2, 10 CFR 20, 10 CFR 40, 10 CFR 51, 40 CFR 190,
  40 CFR 192
- 10 CFR 40, Appendix A , Congressionally mandated, not riskinformed
- Development of 10 CFR 41 discontinued by NRC



**Explicit or Implicit Safety Goals in Regulatory Documents** 

Generic Environmental Impact Statement(NUREG-0706): "Operation of uranium mills and the management of mill tailings...to appropriately assure the public health and safety and the preservation of environmental values" <u>Framework Document</u> (SECY 99-100): notes public and worker risks; provides four strawman risk metrics



Basis for the development of the strategic goals, performance goals, measures and metrics

**Current approach follows 10 CFR 40, Appendix A** 

**Standards set by Environmental Protection Agency** 

**Individual State Standards** 



Safety goals, limits, or other criteria implied by decisions or evaluations

 NRC Radiological Concentrations for Air and Water Effluent

- EPA Standard for Groundwater (MCL)
- Occupational Protection Guides and Standards



**Tools/data needed for validation of safety goals for uranium recovery** 

Models and data for risks to workers during operation

Models and data for long-term and short-term environmental impact



Populations potentially at riskDuring normal operations: mainly workersDuring off-normal events: nearby populationAfter operations cease: those in contact with site,including via liquid pathway exposures



**Potential consequences to the populations at risk** 

**Workers:** industrial, transportation, and chemical risks; exposure to radon, other radionuclides

Public:exposure to effluents from off-normal events (e.g.wind-blown particulate, groundwatercontamination); transportation accidents



Parameters to be considered for the safety goals

workers / public

individual / societal

off-normal events / normal operations

acute / latent fatality or serious injury

environmental and property damage



Feasibility of developing safety goals for uranium recovery

Worth pursuing, would help to focus regulatory oversight >>>need input from stakeholders



Methods, data results, safety goals, or regulatory requirements to risk-inform similar cases

For some low-level waste facilities approaches could be similar

**Byproduct** material disposal



## QUESTIONS UPON DEVELOPING SAFETY GOALS

To be addressed in next phase of project



#### **DRAFT SCREENING CRITERIA**

To be tested against specific case studies in order to develop final screening criteria.

Final screening criteria will be used as part of a framework for prioritizing the use of risk information in materials and waste regulatory applications.



- Maintain or improve safety?
- Improve efficiency or effectiveness?
- Reduce unnecessary regulatory burden?
- Help to communicate a regulatory decision?



Do sufficient information and models exist or could they be developed to support a risk informed approach?



Ó

• Can a risk-informed approach be implemented at a reasonable cost and provide a net benefit?



Do others factors exist which would preclude implementing a risk-informed approach?



•

#### **OBSERVATIONS**

- Atlas Risk Studies showed how risk information can provide additional perspective
- ALARA principles demonstrated to be useful to regulation in this area
- Current CNWRA risk study suggests efficacy of riskinformed approaches



#### **PRELIMINARY CONCLUSIONS**

- Expanded use of risk information appears possible for uranium recovery
- Safety Goals may be feasible

Screening criteria have been useful in this case study

