Docket No. 50-271

Mr. Robert L. Smith Licensing Engineer Vermont Yankee Nuclear Power Corporation 1671 Worcester Road Framingham, MA 01701

Dear Mr. Smith:

The Commission has issued the enclosed Amendment No. 67 to Facility Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station. This amendment consists of changes to the Technical Specifications in response to your application dated June 30, 1981 as supplemented August 26, 1981 and subsequent discussions between the NRC staff and your staff.

These changes to the Technical Specifications incorporate limiting conditions for operation and surveillance requirements related to fire protection modifications which have been implemented at your facility.

On January 13, 1978 we issued our Fire Protection Safety Evaluation Report for the Vermont Yankee Nuclear Power Station which supported Amendment No. 43 to Operating License No. DPR-28. Amendment No. 54 issued September 12, 1979 modified Operating License No. DPR-28 to require a 5-man fire brigade. This amendment adds limiting conditions of operation and surveillance requirements pertaining to fire protection equipment which has been added to the facility.

We have reviewed your submittals and determined that the proposed addition of Limiting Conditions for Operation and Surveillance Requirements for (1) Fire Hose Stations, (2) High Pressure CO2 System, (3) Sprinkler Systems, (4) Foam Systems, and (5) Fire Detection Sensors includes all necessary items contained in our fire protection evaluation and is acceptable. These proposed changes to the Technical Specifications conform where applicable to the most recent Standard Technical Specifications for GE BWRs (NUREG-0123 Rev. 3). Therefore, we find these changes acceptable as an administrative change implementing a previously reviewed and approved action of the Commission.

We have evaluated the potential for environmental impact of plant operation in accordance with the enclosed amendment. We have determined that the amendment does not authorize a change in effluent types or total amounts

							
OFFICE	******************	****************					_
		-	***************************************	***************************************	***************************************	***************************************	
SUHNAME	******************	*****************	******************	*****************	*************		
DATE &	***************************************					******************	*****************
	***************************************		******************	*******************	***************************************	***************************************	******************
RC FORM 318	FORM 318 (10-80) NICCH 2240						

8112030168 811110 PDR ADDCK 05000271

nor an increase in power level and will not result in any significant environmental impact. Having made this determination, we have further concluded that the amendment involves an action which is insignificant from the standpoint of environmental impact and pursuant to 10 CFR Section 51.5(d)(4) that an environmental impact statement, negative declaration or environmental impact appraisal need not be prepared in connection with the issuance of the amendment.

Since the amendment is an administrative action, it does not involve significant new safety information of a type not considered by a previous Commission safety review of the facility. It does not involve a significant increase in the probability or consequences of an accident, does not involve a significant decrease in a safety margin, and therefore does not involve a significant hazards consideration. We have also concluded that there is reasonable assurance that the health and safety of the public will not be endangered by this action.

A copy of a related Notice of Issuance is also enclosed.

Sincerely,

ORIGINAL SIGNED BY

Vernon L. Rooney, Project Manager Operating Reactors Branch #2 Division of Licensing

Enclosures:

- 1. Amendment No. 67 to DPR-28
- Notice 2.

cc: w/ enclosures See next page

Distribution:

Docket File

B. Scharf (10)

NRC PDR

D. Brinkman

Local PDR

ASLAB

ORB#2 Reading

Gray file

D. Eisenhut

J. Olshinski

S. Norris

V. Rooney

OELD

IE (3)

G. Deegan (4)

ACRS (10)

OPA (Clare Miles)

NSIC

TERA

ORB#2 SNorris 11/2/781

ORB#Z/ VRooney pbe T1/%//8T

ORB#2 Tipperit AD:OR THOVA RNOTICE

Amendment +

NRC FORM 318 (10-80) NRCM 0240

OFFICE

DATE

SURNAME

OFFICIAL RECORD COPY

cc:

Mr. W. F. Conway President & Chief Operating Officer Vermont Yankee Nuclear Power Corp. 411 Western Avenue Drawer 2 West Brattleboro, Vermont 05301

Mr. Louis Heider, V. P. Vermont Yankee Nuclear Power Corp. 25 Research Drive Westboro, Massachusetts 05181

John A. Ritscher, Esquire Rope & Gray 225 Franklin Street Boston, Massachusetts 02110

New England Coalition on Nuclear Pollution Hill and Dale Farm R.D. 2, Box 223 Putney, Vermont 05346

Mr. Raymond H. Puffer Chairman Board of Selectman Vernon, Vermont 05354

W. P. Murphy, Plant Superintendent Vermont Yankee Nuclear Power Corp. P.O. Box 157 Vernon, Vermont 05354

Brooks Memorial Library 224 Main Street Brattleboro, Vermont 05301

Raymond N. McCandless
Vermont Division of Occupational
& Radiological Health
Administration Building
10 Baldwin Street
Montpelier, Vermont 05602

Honorable John J. Easton Attorney General State of Vermont 109 State Street Montpelier, Vermont 05602 Mr. E. W. Jackson Manager of Operations Vermont Yankee Nuclear Power Corp. 411 Western Avenue Drawer 2 West Brattleboro, Vermont 05301

U.S. Environmental Protection Agency Region I Office Regional Radiation Representative JFK Federal Building Boston, Massachusetts 02203

Public Service Board State of Vermont 120 State Street Montpelier, Vermont 05602

Vermont Yankee Decommissioning Alliance 53 Frost Street Brattleboro, Vermont 05301

Vermont Yankee Decommissioning Alliance 5 State Street Box 1117 Montpelier, Vermont 05602

Resident Inspector c/o U.S. NRC P.O. Box 176 Vernon, Vermont 05453

Vermont Public Interest Research Group, Inc. 43 State Street Montpelier, VT 05602

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

VERMONT YANKEE NUCLEAR POWER CORPORATION

DOCKET NO. 50-271

VERMONT YANKEE NUCLEAR POWER STATION

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 67
License No. DPR-28

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Vermont Yankee Nuclear Power Corporation (the licensee) dated June 30, 1981 as supplemented August 26, 1981 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 3.B of Facility Operating License No. DPR-28 is hereby amended to read as follows:
 - 2. <u>Technical Specifications</u>

The Technical Specifications contained in Appendix A, as revised through Amendment No. 67 are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of the date of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Thomas A. Ippolito, Chief Operating Reactors Branch #2 Division of Licensing

Attachment: Changes to the Technical Specifications

Date of Issuance: November 10, 1981

ATTACHMENT TO LICENSE AMENDMENT NO. 67

FACILITY OPERATING LICENSE NO. DPR-28

DOCKET NO. 50-271

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the area of change.

Remove	Insert
ii iii iv 187f 187g 187h 187i -	ii iii iv 187f 187g 187h 187i 187i 187j 187k 1871

TABLE OF CONTENTS (Con't)

	LIMITING CONDITIONS OF OPERATION	Page No.		SURVEILLANCE
	D. Butanutia Danasanninatian Guatan	92		. F
	F. Automatic Depressurization System	93		
	G. Reactor Core Isolation Cooling System (RCIC)	94	• • • • • • •	-
	H. Minimum Core and Containment Cooling System Availability.			-
	I Maintenance of Filled Discharge Pipe	95	• • • • • • •	. I
3.6	REACTOR COOLANT SYSTEM	105	-1	. 4.6
	A. Pressure and Temperature Limitations	105		. A
	B. Coolant Chemistry	106		. B
	C. Coolant Leakage	108		. c
	D. Safety and Relief Valves	108		. D
	E. Structural Integrity	109		ь
	F. Jet Pumps	109		. F
	G. Single Loop Operation	110		
	H. Recirculation System	110		
	I. Shock Suppressors	110a		. I
	J. Thermal Hydraulic Stability	110b		
	or inclinal hydradic beamility	1100		•
3.7	STATION CONTAINMENT SYSTEMS	126		• 4.7
	A. Primary Containment	126		. A
	B. Standby Gas Treatment	130		. В
	C. Secondary Containment System	131		. c
	D. Primary Containment Isolation Valves	132		. D
				<u>-</u>
3.8	RADIOACTIVE EFFLUENTS	147		. 4.8
	A. Liquid Effluents	147		. A
	B. Radioactive Liquid Storage	149		
	C. Gaseous Effluents	149		
				•
3.9	RADIOACTIVE EFFLUENT MONITORING SYSTEMS	161	• • • • • • • •	. 4.9
	A. Liquid Effluent Monitoring System	161		. A
	B. Gaseous Effluent Monitoring System	162	• • • • • • •	
	C. Liquid Process Monitors	164		. C
	D. Radiological Monitoring Program	165		
	,	200		. 0

TABLE OF CONTENTS (Con't)

		LIMITING CONDITIONS OF OPERATION	Page No.		SURVEILLANCE
:	3.1	REACTOR PROTECTION SYSTEM	18		. 4.1
1	3.2	PROTECTIVE INSTRUMENT SYSTEMS	32		. 4.2
		A. Emergency Core Cooling System	32	• • • • • • •	. A
		B. Primary Containment Isolation	33		. В
		C. Reactor Building Ventilation Isolation and Standby			
		Gas Treatment System Initiation	33		. c
		D. Air Ejector Off-Gas System Isolation	33	• • • • • • •	. D
		E. Control Rod Block Actuation	33		. E
		F. Mechanical Vacuum Pump Isolation	34		• F
		G. Post-Accident Instrumentation	34		. G
		H. Drywell to Torus ΔP Instrumentation	34		. н
		I. Recirculation Pump Trip Instrumentation	34a		. 1
	3.3	CONTROL ROD SYSTEM	68		. 4.3
		A. Reactivity Limitations	68	· · · · · · · ·	. A
		B. Control Rods	69		. B
		C. Scram Insertion Times	72		. С
		D. Control Rod Accumulators	73		. D
		E. Reactivity Anomalies	74	• • • • • • • •	. E
	3.4	REACTOR STANDBY LIQUID CONTROL SYSTEM	79		. 4.4
		A. Normal Operation	79		. A
		B. Operation with Inoperable Components	80		. B
		C. Liquid Poison Tank - Boron Concentration	80	• • • • • • •	. С
	3.5	CORE AND CONTAINMENT COOLING SYSTEMS	85		. 4.5
		A. Core Spray and Low Pressure Coolant Injection	85		. A
		B. Containment Spray Cooling Capability	87		• B
		C. Residual Heat Removal (RHR) Service Water System	88		• C
		D. Station Service Water and Alternate Cooling Tower Systems	89		D
		E. High Pressure Coolant Injection (HPCI) System	91		-

TABLE OF CONTENTS (Con't)

LIMITING CONDITIONS OF OPERATION	Page No.		SURVETLIANCE
3.10 AUXILIARY ELECTRICAL POWER SYSTEMS	173		4.10
A. Normal Operation	173		A
B. Operation with Inoperable Components	176		В
C. Diesel Fuel	177		С
3.11 REACTOR FUEL ASSEMBLIES	180a	• • • • • • • • •	4.11
A. Average Planar LHGR	180a		Α
B. LliGR	180b		В
C. MCPR	180c		C (
3.12 REFUELING AND SPENT FUEL HANDLING	181	• • • • • • • • • •	4.12
A. Refueling Interlocks	181	• • • • • • • •	Α
B. Core Monitoring	182		В
C. Fuel Storage Pool Water Level	183		С
D. Control Rod and Control Rod Drive Maintenance	184		D
E. Extended Core Maintenance	184		E
F. Fuel Movement	185		F
G. Crane Operability	185		_
H. Spent Fuel Pool Water Temperature	185a		H
3.13 FIRE PROTECTION SYSTEM	187b		4.13

4.13 Surveillance Requirements

C. Fire Hose Stations

- 1. Except as specified in 3.12.C.2 below, all hose stations inside the Reactor Building, Turbine Building, and those inside the Administration Building which provided coverage of the Control Room Building shall be operable whenever equipment in the areas protected by the fire hose stations is required to be operable.
- 2. With one or more of the fire hose stations specified in 3.13.C.l above inoperable, route an additional equivalent capacity fire hose to the unprotected area(s) from an operable hose station within one hour.

D. High Pressure CO2 System

 Except as specified in Specification 3.13.D.2, the CO₂ systems located in the cable vault, switchgear room, and diesel fire pump day tank room shall be operable, whenever equipment in the area protected by the system is required to be operable.

C. Fire Hose Stations

- 1. Each fire hose station shall be verified to be operable:
 - a. At least monthly by visual inspection of the station to assure all equipment is available.
 - b. At least once each 18 months by removing the hose for inspection and replacing degraded coupling gaskets and reracking.
 - c. At least once each year by hydro-statically testing each outside hose at 250 lbs.
 - d. At least once per 3 years by hydro-statically testing inside hose at 150 lbs.
 - e. At least once per 3 years, partially open hose station valves to verify valve open bility and no blockage.

D. High Pressure CO₂ System

- 1. The CO₂ system located in the cable vault, switchgear room, and diesel fire pump day tank room small in demonstrated operable.
 - a. At least once per six months by verifying each CO₂ cylinder does not contain less than 90% of its initial charge.

4.13 Surveillance Requirements

- 2. From and after the date that the CO₂ system in the cable vault or the switchgear room is inoperable, establish a continuous fire watch within one hour with backup fire suppression equipment. Restore the system to operable status within 14 days or submit a report within the next 30 days to the Commission as specified in 6.7.C.2 outlining the cause of inoperability and the plans for restoring the system to operable status.
- 3. From and after the date that the CO₂ system in the diesel fire pump day tank room is inoperable, within one hour a fire watch shall be established to inspect the location at least once every hour. Restore the system to operable status within 14 days or submit a report within the next 30 days to the Commission as specified in 6.7.C.2 outlining the cause of inoperability and the plans for restoring the system to operable status.

E. Vital Fire Barrier Penetration Fire Seals

- Except as specified in Specification 3.13.E.2 below, vital fire barrier penetration seals protecting the Reactor Building, Control Room Building and Diesel Generator Rooms shall be intact.
- 2. From and after the date a vital fire barrier penetration fire seal is not intact, a continuous fire watch shall be established on at least one side of the affected penetration within 1 hour.

3.13.F| Sprinkler Systems

 Except as specified in Specification 3.13.F.2 below, those sprinkler systems listed in Table 3.13.F.1 shall be operable whenever equipment in the area protected by those sprinklers is required to be operable.

- b. At least once per 18 months by verifying that the system, including associated ventilation dampers, will actuate automatically to a simulated actuation signal.
- c. At least once per operating cycle a flow path test shall be performed to verify flow through each nozzle.

E. Vital Fire Barrier Penetration Fire Seals

 Vital fire barrier penetration fire (seals shall be verified to be functional by visual inspection at least once per operating cycle and following any repair.

4.13.F Sprinkler Systems

- 1. Each of the sprinkler systems specified in Table 3.13.F.1 shall be demonstrated operable:
 - a. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.
 - b. At least once each month by verifying each valve in the flow path is in its correct position. (For electrically supervised valves, adequate verification is a visual check of electrical indication.)

2. From and after the date that one of the sprinkler systems specified in Table 3.13.F.l is inoperable, a fire watch shall be established within one hour to inspect the location with the inoperable sprinkler system at least once every hour. Restore the sprinkler system to operable status within 14 days or submit a report within the next 30 days to the Commission as specified in 6.7.C.2 outlining the cause of the malfunction and the plans for restoring the system to operable status.

3.13.G Foam Systems

- 1. Except as specified in Specification 3.13.G.2 below, the Recirculation M.G. Set Foam System shall be operable with its foam concentrate tank full (100 gallons) whenever the Recirculation M.G. Sets are operating.
- 2. From and after the date that the Recirculation M.G. Set Foam System is inoperable, a fire watch shall be established to inspect the location at least once every hour; and a foam nozzle shall be brought to the Reactor Building elevation containing the Recirculation M.G. Sets. A 100 gallon foam concentrate supply shall be available

- c. At least once per 18 months by;
 - 1. Cycling each valve in the flow path that is not testable during plant operation through at least one complete cycle of full travel.
 - 2. A visual inspection of the sprinkler headers to verify their intergrity, and
 - 3. A visual inspection of each nozzle's spray area to verify that the spray pattern is not obstructed.
 - 4. Verifying that automatic valves actuate to their correct position from a test signal.
- d. At least once per 3 years by performing a flow test through each open head sprinkler header and verifying each open head sprinkler nozzle is unobstructed.

4.13.G Foam Systems

4.13 Surveillance Requirements

- 1. The foam system specified in 3.13.G shall be demonstrated operable.
 - a. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.
 - b. At least once per 18 months by:

4.13 Surveillance Requirements

- 3. Except as specified in Specification 3.13.G.4 below, the Turbine Building Foam System shall be operable with its foam concentrate tank full (150 gallons).
- 4. From and after the date that the Turbine Building Foam System is operable a portable foam nozzle shall be brought to the Turbine Building Foam System location. A 150 gallon foam concentrate supply shall be available on site.

- Cycling each valve in the flow path that is not testable during plant operation through at least one complete cycle of full travel.
- A visual inspection of the foam system and equipment to verify intergrity, and
- 3. A visual inspection of the Recirculation MG Set Foam System foam nozzle area to verify that the spray pattern is not obstructed.
- 4. Foam concentrate samples shall be taken and analyzed for acceptability.
- d. At least once per 3 years by performing an air flow test through the Recirculation MG Set foam header and verifying each foam nozzle is unobstructed.

VYNPS

Table 3.13.A.1

Fire Detection Secsors

			imum No. Sen	
	Output Parables	<u>Requi</u> Heat	red to be Op- Flame	erable Smoke
	Sensor Location	neat	Fiame	Shoke
1.	Cable Spreading Room & Station Battery Room	-	-	23
2.	Switchgear Room	-	-	20
3.	Diesel Generator Room (A)	-	-	2
4.	Diesel Generator Room (B)	-	-	2
5.	Intake Structure (Service Water)	1	ì	1
6.	Recirc Motor Generator Set Area	3	-	8
7.a	Control Room Zone 1 (Control Room Ceiling)	-	-	14
7.b	Control Room Zone 2 (Control Room Panels)		-	18
7.c	Control Room Zone 3 (Control Room Panels)	-	-	25
7.d	Control Room Zone 4 (Control Room Panels)	-	**	10
7.e	Control Room zone 5 (Exhaust & Supply Ducts)	-	-	2
8.a	Rx Bldg. Corner Rm NW 232	-	-	1
8.b	Rx Bldg. Corner Rm NW 213 (RCIC)	-	-	1
3.c	Rx Bldg. Corner Rm NE 232	-	-	1
3.đ	Rx Bldg. Corner Rm NE 213	-	~	1
8.e	Rx Bldg. Corner Rm SE 232	-	-	1
8.f	Rx Bldg. Corner Rm SE 213	- .	-	1
8.g	Rx Bldg. Corner Rm SW 232	÷ <u>-</u>	-	1
9.	HPCI Room	-	-	8

Table 3.13.A.1, cont.

		Minimum No. Sensors		
		Requir	ed to be Op	erable
	Sensor Location	Heat	<u>Flame</u>	Smoke
10.	Torus area	12	-	16
11.	Rx Bldg. Cable Penetration Area	-	-	7
12.	Refuel Floor	-	-	13
13.	Diesel Oil Day Tank Room (A)	-	1*	1*
14.	Diesel Oil Day Tank Room (B)	-	1*	1*
15.	Turbine Loading Bay (vehicles)	-	3	-

*NOTE: The Diesel Day Tank Rooms require only one detector operable (1 flame or 1 smoke).

VYNPS Table 3.13.F.1 Sprinkler Systems

- 1. Reactor Building Penetration Area Preaction System
- Diesel Generator Room A System
- 3. Diesel Generator Room B System
- 4. Turbine Loading Bay System
- 5. Diesel-driven Fire Pump System

Bases:

3.13/4.13 Fire Protection Systems

On May 11, 1976, Vermont Yankee received a letter from the NRC requesting that an in-depth evaluation of the existing fire protection systems be performed using Branch Technical Position (BTP) APCSB 9.5-1 as a guide. Concurrent with this evaluation a fire hazards analysis of the entire plant complex was required. In an effort to clarify the BTP an Appendix A was subsequently issued to specifically address operating plants. Enclosed with this Appendix the NRC requested that proposed Technical Specifications on fire protection also be submitted. The subject section 3.13/4.13 and the following specific bases are those specifications evolving from these efforts.

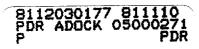
- A. The smoke, heat and flame detectors provide the early warning fire detection capability necessary to detect problems in vital areas of the plant. Surveillance requirements assure these sensors and their associated instruments to be operable. When the equipment protected by the detectors is not required to be operable, specifications covering the sensors and instruments do not apply.
- B,C,D, The Vital Fire Suppression Water System, CO₂ systems, sprinkler systems and foam systems specifications are F and G. provided to meet pre-established levels of system operability in the event of a fire. These systems provide the necessary protection to assure safe reactor shutdown. Periodic surveillance testing provides assurance that vital fire suppression systems are operable.
- E. Vital fire barrier penetration fire seals are provided to assure that the fire resistance rating of barriers is not reduced by a penetration. Surveillance inspections shall be performed to insure that the integrity of these seals is maintained.

The diesel fire pump has a design consumption rate of 18 gallons of fuel per hour; therefore, 150 gallons provides for greater than 8 hours of operation. Additional fuel can be delivered in about one hour and additional fuel is on site. When the equipment protected by the fire protection systems is not required to be operable, the specifications governing the fire protection system do not apply.

UNITED STATES NUCLEAR REGULATORY COMMISSION

DOCKET NO. 50-271

VERMONT YANKEE NUCLEAR POWER CORPORATION


NOTICE OF ISSUANCE OF AMENDMENT TO FACILITY OPERATING LICENSE

The U.S. Nuclear Regulatory Commission (the Commission) has issued Amendment No. 67 to Facility Operating License No. DPR-28 issued to Vermont Yankee Nuclear Power Corporation which revises the Technical Specifications for operation of the Vermont Yankee Nuclear Power Station located in Windham County, Vermont. The amendment is effective as of the date of its issuance.

The amendment revises the Technical Specifications to incorporate limiting conditions for operation and surveillance requirements related to fire protection modifications.

The application for the amendment complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations. The Commission has made appropriate findings as required by the Act and the Commission's rules and regulations in 10 CFR Chapter I, which are set forth in the license amendment. Prior public notice of this amendment was not required since the amendment does not involve a significant hazards consideration.

The Commission has determined that the issuance of this amendment will not result in any significant environmental impact and that pursuant to 10 CFR Section 51.5(d)(4) an environmental impact statement or negative declaration and environmental impact appraisal need not be prepared in connection with issuance of this amendment.

For further details with respect to this action, see (1) the application for amendment dated June 30, 1981 as supplemented August 26, 1981,

(2) Amendment No. 67 to License No. DPR-28, and (3) the Commission's letter to the licensee dated November 10, 1981. All of these items are available for public inspection at the Commission's Public Document Room, 1717 H Street, N.W., Washington, D.C., and at the Brooks Memorial Library, 224 Main Street, Brattleboro, Vermont 05301. A copy of items (2) and (3) may be obtained upon request addressed to the U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, Attention: Director, Division of Licensing.

Dated at Bethesda, Maryland, this 10th day of November 1981.

FOR THE NUCLEAR REGULATORY COMMISSION

Thomas A. Ippolito, Chief Operating Reactors Branch #2 Division of Licensing