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TRAC-M/FORTRAN 90 (VERSION 3.0) 
PROGRAMMER'S MANUAL 

by 

B. T. Adams, J. F. Dearing, P. T. Giguere, R. C. Johns, S. J. Jolly-Woodruff, 
J. Mahaffy, C. Murray, J. W. Spore, and R. G. Steinke 

ABSTRACT 

The Transient Reactor Analysis Code (TRAC) was developed to provide 
advanced best-estimate predictions of postulated accidents in light-water 
reactors. The TRAC-P program has provided this capability for 
pressurized water reactors and for many thermal-hydraulic test facilities 
for approximately 20 years. However, the maintenance and portability of 
TRAC-P had become cumbersome because of the historical nature of the 
code and the inconsistent use of standardized Fortran. Thus, the 
Modernized TRAC (TRAC-M) was developed by recoding the TRAC-P 
algorithms to take advantage of the advanced features available in the 
Fortran 90 programming language while conserving the computational 
models available in the original code.  

The TRAC code (i.e., both the versions P and M) features a one-, two-, or 
three-dimensional (1D, 2D, or 3D) treatment of the pressure VESSEL and 
its associated internals, a two-fluid nonequilibrium hydrodynamics model 
with a noncondensable-gas field and solute tracking, flow-regime
dependent constitutive equation treatment, optional reflood tracking 
capability for bottom- and top-flood and falling-film quench fronts, and a 
consistent treatment of the entire set of accident sequences, including the 
generation of consistent initial conditions. The stability-enhancing two
step (SETS) numerical algorithm is used in the solution of the 1D, 2D, and 
3D hydrodynamics and permits violation of the material Courant 
condition. This technique permits large timesteps, and thus, the running 
time for slow transients is reduced. A heat-structure (HTSTR) component 
is included that allows the user to model heat transfer accurately for 
complicated geometries. An improved reflood model that is based on 
mechanistic and defensible models has been added. TRAC also contains 
improved constitutive models and additions and refinements for several 
components.  

This manual is one of a four-volume set of documents on TRAC-M. This 
manual was developed to assist a programmer and contains information 
on the TRAC-M code and data structure, the TRAC-M calculational 
sequence, memory management, and data precision. This document 
provides a code developer with a single source of information to allow 
either modification of or addition to the code. Sufficient information is 
provided to permit replacement or modification of physical models and
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correlations. Within TRAC, information is passed at two levels. The upper 
level of information is passed by systemwide and component-specific data 
modules at and above the level of component subroutines. At the lower 
level, information is passed through a combination of module-based data 
structures and argument lists. This document describes the basic 
mechanics involved in the flow of information within the code. This 
document directly incorporates significant information regarding the code 
models and architecture.
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1.0. INTRODUCTION

This manual has been developed to assist the Transient Reactor Analysis Code (TRAC) 
programmer. Sufficient information is provided to permit replacement or modification of 
physical models and correlations, as well as either the addition or modification of system 
components. Within TRAC, information is passed at two levels. Information at the upper 
level is passed by systemwide and component-specific data modules at and above the 
level of "component" subroutines. At the lower level, information is passed through a 
combination of module-based data structures and argument lists. This document 
describes the mechanics involved in the flow of information within the code. It is written 
specifically for Modernized TRAC Fortran 90 (TRAC-M/F90), Version 3.0. We will 
usually refer to this code as TRAC or TRAC-M. Topics of discussion addressed in this 
manual include the TRAC-M calculational sequence, code and data structure, computer
memory management, and various machine configurations that are supported. Much of 
the information contained herein is provided in the appendices, which are self-contained 
and meant to be used as references. The table of contents provides a listing of the 
appendices. This manual is a complete standalone document for TRAC-M. Occasionally 
we refer to TRAC-P constructs, but only for the additional benefit of those already 
familiar with that code. The TRAC-M PathFinder, a set of HTML pages containing a 
description and source listing for each of the program routines, also has been developed 
to allow navigating through the code with the use of a web browser.  

This manual is one of four documents that form the basic TRAC-M documentation set.  
The other three are the Theory Manual (Ref. 1), the User's Manual (Ref. 2), and the 
Developmental Assessment Manual, which is yet to be published. The developmental 
assessment of various TRAC-M code versions will be performed by the NRC, and the 
results will be published in the future. Some of the material on the TRAC-M's 
computational flow was adapted from the Programmer's Manual for TRAC-PF1/MOD2 
(Ref. 3).
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2.0. TRAC-M CALCULATIONAL SEQUENCE

The full TRAC-M calculational sequence involves several stages: input processing; 
initialization; prepass, outer-iteration, and postpass calculations; timestep advancement 
and backup; and output processing. Within TRAC, information is passed via 
systemwide and component-specific data modules at and above the level of component 
subroutines, such as rpipe, repipe, ipipe, pipel, pipe2, pipe3, dpipe, 
xtvpipe and wpipe. Examples of system-level data modules are GlobalDat, 
GlobalPnt, and GlobalDim. Examples of component-specific data modules are Pipe, 
PipeArray, and PipeVit. Information is passed through a combination of module
based data structures and argument lists below these modules. The code and data 
structures are described fully in Section 3, and only the high-level aspects of the 
information passing and storage will be discussed within this section. The most complex 
and frequently modified interfaces exist in the component-specific subroutines. These 
subroutines are provided for each of the nine key stages of TRAC execution: 

1. Input of initial component data (e.g., rpipe); 

2. Input of restart information for a component (e.g., repipe); 

3. Initialization of component-dependent variables (e.g., ipipe); 

4. Solution of the stabilizer momentum equation, evaluation of various 
old-time quantities, and other bookkeeping at the beginning of each 
timestep (e.g., pipel); 

5. Iterative solution of basic flow equations for each timestep (e.g., 
pipe2); 

6. Solution of stabilizer mass and energy equations, solution of the 
conduction equations, and other computations to complete each 
timestep (e.g., pipe3); 

7. Output of data to the restart dump file (e.g., dpipe); 

8. Output of data to the XTV graphics files (e.g., xtvpipe); and 

9. Output of data to the ASCII detailed edit file (e.g., wpipe).  

Similar component subroutines also exist for each of the nine key stages of TRAC 
execution for the other system components, e.g., TEE, FILL, BREAK, PUMP, PRIZER, 
SEPD, VALVE, VESSEL, and PLENUM. Each of these stages is discussed in greater 
detail, using a PIPE component as an example, in the sections that follow. First, a 
summary of the overall calculational sequences for transient and steady-state 
calculations is given.

2-1



2.1. General Summary 

TRAC-M may perform a steady-state calculation, a transient calculation, or both, 
depending on the values of the input parameters stdys t and trans i (Main-Data Card 
4). A schematic illustrating TRAC's top-level program flow, with emphasis on the 
computational solution of the flow equations for a transient case, is presented in Fig. 2-1.  
Referring to the figure, the program construct for advancing the solution one timestep is 
controlled by subroutine trans and begins with (1) the prepass to obtain the stabilizer 
step for the equation of motion (subroutine prep), followed by (2) a call to the Newton 
iteration subroutine hout to perform the outer iteration and thus obtain the basic 
solution for all equations (subroutine outer), and concluded with (3) the postpass to 
obtain the stabilizer step for mass and energy equations (subroutine post). Within a 
given timestep, subroutine prep calls all of the component subroutines twice, 
subroutine outer calls all of the component subroutines twice per Newton iteration, 
and subroutine post calls all of the component subroutines three times. In each case 
(prep, outer, and post), two of the passes provide setup and solution for a set of 
equations. Subroutine post adds a third pass to calculate some final end-of-timestep 
values for mass flows and mean cell densities. The internal loops in subroutines prep, 
outer, and post are indexed by the variable ibks. This variable takes on values of one 
and two in prep; values of zero and one in outer; and one, two, and three in post. The 
component subroutines use the module OneDDat to pass the value of ibks to lower
level routines to control the flow of the calculation 

The subroutines shown in Fig. 2-1 (input, init, steady, trans, prep, outer, and 

post) all access lower-level subroutines. A complete calling tree for TRAC-M is 
presented in Appendix A (starting at the entry NOMOD: : PROGRAM Trac). The general 
control sequences for each type of calculation are outlined in the subsections that follow, 
using the PIPE component as an example, with the specific details of the calculational 
sequence discussed in more detail.  

The complete flow control for subroutine trans is shown in Fig. 2-2. The major control 
variables within the timestep loop are nstep, the current timestep number; timet, the 
time since the transient began; delt, the current timestep size; and oitno, the current 
outer-iteration number. The timestep loop is controlled by module TimeStep and begins 
with the selection of the timestep size, delt, by subroutine timstp. Again, a prepass is 
performed for each component by subroutine prep to evaluate the control parameters, 
stabilizer motion equations, and phenomenological coefficients. At this point in the 
calculation, with the current timestep number at zero, trans calls the edit subroutine 
to print the system-state parameter values and the xtvdr subroutine to generate a 
graphics edit at the beginning of the transient. Subroutine trans then calls subroutine 
hout, which performs one or more outer iterations to solve the basic hydrodynamic 
equations. Each outer iteration is performed by subroutine outer and corresponds to 
one iteration of a Newton-method solution procedure for the fully coupled difference 
equations of the flow network. The outer-iteration loop ends when the outer-iteration 
convergence criterion (epso on Main Data Card 5) is met. This criterion requires that the 
maximum fractional change in the pressure throughout the system during the last 
iteration be <epso. Alternatively, the outer-iteration loop may terminate when the num
ber of outer iterations reaches a user-specified limit oitmax (Main Data Card 6). When
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Fig. 2-1. TRAC-M computational flow.  
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Fig. 2-2. Transient-calculation flow diagram.  
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this happens, TRAC-M restores the thermal-hydraulic state of all components to what it 
was at the beginning of the timestep, reduces the delt timestep size (with the constraint 
that delt be greater than or equal to the dtmin specified on Time Step Data Card 1), and 
continues the timestep calculation with the new timestep size. This process comprises a 
backup situation and is discussed in greater detail in Sec. 2.5.  

Subroutine trans calls the post subroutine to perform a postpass evaluation of the 
stabilizer mass and energy equations and the heat-transfer calculation when the outer 
iteration converges. The nstep timestep number then is incremented by 1, and the 
timet problem time is increased by delt. Finally, subroutine trans invokes the edit, 
sedit, dmpit, and xtvdr subroutines by calling subroutine pstepq to provide the 
output results required by the user. The calculation is finished when timet reaches the 
last tend time (Time Step Data Card 1).  

The transient calculation is controlled by a sequence of time domains input with the 
Time Step Data Cards and stored within module GlobalDat. During each of these time 
domains, the minimum (dtmin) and maximum (dtmax) timestep sizes (Time Step 
Data Card 1) and the long- (edint) and short-edit (sedint), dump (dmpint), 
and graphics (gfint) time intervals (Time Step Data Card 2) are defined. Note that the 
values for these timestep variables may be replaced by the same inputs for the Trip
Initiated Time Step Data Cards 3 and 4 if a trip is activated. When the edit, sedit, 
dmpit, and xtvdr subroutines are invoked, they calculate the time when the next 
output of the associated type is to occur by incrementing the current time by its time 
interval. When trans later finds that timet has reached or exceeded the indicated time, 
the corresponding output routine is invoked again. Whenever timet equals or exceeds 
the tend ending time for a timestep data domain, the next timestep data domain is read 
by subroutine timstp. The output indicators then are set to the sum of the current time 
and the newly input values for the output time intervals. Subroutine steady directs 
steady-state calculations using the structure shown in Fig. 2-3. Referring to the figure, 
the same sequence of evaluations used for a transient calculation also is used for a 
steady-state calculation. The main difference in subroutine steady is the addition of a 
steady-state convergence test, logic to turn on the steady-state power level, an optional 
evaluation of constrained steady-state (CSS) controllers, and an optional hydraulic-path 
steady-state (HPSS) initialization of the initial hydraulic-state estimate. To provide 
output results, steady, like trans, invokes the edit, sedit, dmpit, and xtvdr 
subroutines by calling subroutine pstepq. Subroutine steady is called by the TRAC 
main program, regardless of whether a steady-state calculation has been requested by 
stdyst (Main Data Card 4). If no steady-state calculation is to be done (stdyst = 0), 
steady returns to the TRAC main program. The TRAC main program then calls trans 
and performs a transient calculation if requested with itrans = 1 (Main Data Card 4).  

Timestep control in steady is identical to that implemented in trans. This includes the 
selection of the timestep size, the timing for output, and the backup of a timestep if the 
outer-iteration limit is exceeded. In steady, the input variable sitmax (Main Data Card 
6) is the maximum number of outer iterations used in place of oitmax. The maximum 
fractional rates of change per second of seven thermal-hydraulic parameters are 
calculated by subroutines tflds3 [for one-dimensional (1D) components] and ff3d for
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Fig. 2-3. Steady-state-calculation flow diagram.
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the three-dimensional (3D) VESSEL components]. These rates and their locations in the 
system model are passed to subroutine steady through the array variables fmax and 
lok that are located in module GlobalDat. Tests for steady-state convergence are 
performed every five timesteps and before every large edit. The maximum fractional 
rates of change per second and their locations are written to the TRCMSG and TRCOUT 
files, as well as to the terminal. The total reactor core power is initialized to the input 
value rpowri (HTSTR Component Card 19) after the problem time, timet, reaches the 
value input for namelist variable tpowr when namelist variable ipowr is set to negative 
one. The minimum value of the flow velocity, minvel, and its maximum fractional rate 
of change, fmxlvz, in the hydraulic channels coupled to powered heat structures 
determine when the steady-state power should be set on for the case when namelist 
variable ipowr is set to zero (the default). The steady-state power is set to its input 
value, rpowri, once either minvel exceeds 0.5 m/s and fmxlvz falls below 0.5 or 
timet exceeds input time tpowr. Finally, the total reactor core power is initialized at the 
beginning of the steady-state calculation when namelist variable ipowr is set to one. The 
steady-state calculation is completed when all maximum fractional rates of change per 
second are below the user-specified convergence criterion epss (from Main Data Card 
5) or when stime reaches the tend (Time Step Data Card 1) end time of the last time 
domain specified in the steady-state calculation timestep data.  

Five types of steady-state calculations may be selected based on the value of stdyst 
(Main Data Card 4): generalized steady state (GSS) for stdyst = 1 (as described above), 
CSS for stdyst = 2, GSS with HPSS initialization for stdyst = 3, CSS with HPSS 
initialization for stdyst = 4, and static steady-state (SSS) check for stdyst = 5. A 
GSScalculation, as described above, evaluates a pseudo-transient timestep solution that 
asymptotically converges to the steady-state solution. A CSS calculation is a GSS 
calculation where additional user-defined component-action adjustments are made by a 
proportional-integral (PI) controller to achieve either a known or desired hydraulic 
steady-state condition. The nature of the available CSS controllers, their evaluation, and 
their database are described subsequently. Both generalized and CSS calculations with 
HPSS attempt to accelerate convergence by allowing the user to input estimates 
regarding the final steady-state condition. An SSS calculation checks for erroneous 
momentum and heat sources in a plant model by neglecting evaluation of the pump 
momentum source and the heat transfer. Thus, the fluid flow is expected to go to zero 
asymptotically with the expectation that the system temperatures will not change.  

Both steady-state and transient calculations may be performed during one computer 
run. The end of the steady-state timestep cards is signified by a single card containing a 
-1.0 . The transient timestep cards should follow immediately. If the steady-state 
calculation converges before reaching the end of its last time domain, the remaining 
steady-state timestep data are read in but not used so that the transient calculation 
proceeds as planned with its own timestep data.  

2.1.1. Constrained Steady State 
A CSS controller adjusts an uncertain component-action state to achieve a better-known 
hydraulic condition in the steady-state solution. The TRAC user can select four types of 
CSS controllers. Each type can be applied to one or more components in a plant model. A

2-7



type-1 CSS controller adjusts a pump impeller's rotational speed to achieve a desired 
fluid mass flow through the PUMP component. A type-2 CSS controller adjusts a 
VALVE's flow-area fraction to achieve a desired adjacent-cell upstream fluid pressure or 
fluid mass flow through the VALVE component's adjustable interface. A type-3 CSS 
controller performs one of three different adjustments (pump-impeller rotational speed 
of a PUMP component, flow-area fraction of a VALVE component, or mass flow in or 
out of a FILL component) to achieve a desired fluid mass flow through its component 
that equals the fluid mass flow at a designated location in the plant model. A type-5 CSS 
controller performs one of four different adjustments to an HTSTR component or its 
hydraulically coupled BREAK components (hydraulic-channel fluid pressure at the 
inner or outer surface; heat-transfer area at the inner, outer, or both surfaces; thermal 
conductivity of the inner, outer, or both surface nodes or of all nodes; or heat-transfer 
area of both surfaces and thermal conductivity of all nodes) to achieve a desired single
phase fluid temperature or two-phase gas volume fraction at a designated location in the 
plant model. The type-4 CSS controller was eliminated when the STGEN component 
was removed from TRAC. It adjusted the secondary-side fluid pressure or the tube inner 
and outer heat-transfer areas of a steam generator to achieve a desired primary-side 
downstream-location liquid temperature. By remodeling an STGEN component with 
PIPE, TEE, and HTSTR components, the functionality of the type-4 CSS controller is 
provided by a subset of the functionality of the type-5 CSS controller.  

Each of the ncontr (Main Data Card 6) user-defined CSS controllers requires one input
data record CSS-Controller Card with four or five values that will be read by subroutine 
input [adjusted-component identification (ID) number, minimum and maximum range 
of parameter adjustment, either the type or location of the monitored parameter that is to 
have a desired value, and the type of adjusted parameter]. Each CSS controller's desired 
hydraulic parameter value is input at its monitored-parameter location in the 
component data. CSS-controller data are not written to the dump/restart file and so 
need to be reinput by the TRACIN file if the CSS calculation is continued with a restart.  
The number of CSS controllers and their input parameters can be changed during a 
restart. Components defining the desired hydraulic-parameter value for each CSS 
controller also need to be reinput by the TRACIN file. This later requirement makes 
restarting a CSS calculation inconvenient. Generally, TRAC users evaluate a CSS 
calculation to steady-state convergence without doing a CSS-calculation restart.  

Interactive feedback between CSS controllers must be considered by TRAC users when 
defining the controllers. Their derived form assumes no interactive feedback. When the 
adjustments of two or more CSS controllers are strongly coupled by the thermal
hydraulic solution, their predicted controller adjustments may be bad, causing the 
solution to wander and not converge to the desired thermal-hydraulic parameter values.  
One such interaction has been programmed for in TRAC. When a type-5 CSS controller 
adjusts the fluid pressure where a type-2 CSS controller defines the desired value for an 
upstream fluid pressure, the pressure adjustment of the type-5 CSS controller also is 
applied to the desired value for the type-2 CSS controller's upstream fluid pressure. The 
desired value of the upstream fluid pressure becomes a moving target for the type-2 CSS 
controller, just as the desired fluid mass flow at a specified location in the plant model for 
a type-3 CSS controller becomes a moving target when it varies each timestep.

2-8



These four CSS-controller types are programmed for user convenience. An equivalent 
controller (except for the heat-transfer area and thermal conductivity adjustments of a 

type-5 CSS controller) could be defined directly through input with signal variables, 
control blocks, and component actions of the TRAC control system. For controller types 
that are not programmed, the TRAC user can define them through input as long as the 

controller's adjustment is an existing component action (see the TRAC Theory Manual1).  
Additional component action and CSS controller types could be programmed if their 
availability is required by the user community.  

2.1.2. HPSS Initialization 
The initial thermal-hydraulic steady-state solution estimate, user specified by the 
hydraulic-component input data, generally can be improved by the HPSS initialization 
procedure in TRAC before the steady-state calculation is evaluated. Doing this generally 
reduces the computational effort of the steady-state calculation. The user selects this 
option by adding 2 to the value of stdyst for a GSS and CSS calculation; i.e., stdyst = 1 
and 2 for a GSS and CSS calculation, respectively, may be defined as stdyst = 3 and 4 
for a GSS and CSS calculation, with its initial thermal-hydraulic steady-state solution 
estimate internally initialized by TRAC during the initialization phase of the calculation.  

Choosing the HPSS initialization procedure option requires the TRAC user to input 
HPSS initialization data in the TRACIN file. These input data are defined by the input 
data format description in Section 6.5 of the TRAC User's Manual (Ref. 2). In specifying 
this data, the 1D hydraulic component network of the plant model is partitioned into a 

number of npaths (specified by variable npaths on HPSS Data Card 1) connecting and 
nonoverlapping 1D flow paths. All possible flow paths in the network are considered 
unless either the input hydraulic-component data already define such a flow condition 
(and are not connected to a PLENUM component) or their steady-state flow is not 
expected to be significant. Even paths without flow may be considered to define an 
appropriate thermal condition (not defined by the 1D hydraulic-component data). The 
input hydraulic-component data need only to be defined as isothermal with no flow 
when selecting the HPSS initialization option. During the initialization phase, TRAC 
replaces the hydraulic-component gas volume fraction, phasic temperatures, and phasic 
velocities input data with the thermal-hydraulic parameter values that are specified by 
the I-PSS initialization.  

HPSS initialization data are what the TRAC user either knows or estimates the steady

state thermal-hydraulic solution will be along each of the 1D flow paths. Each flow path 
has its entrance and exit mesh-cell interfaces defined where inflow and outflow occur to 
the path. A known or estimated steady-state phasic-temperatures and phasic-velocities 
flow condition is defined at a single mesh-cell interface anywhere within the 1D flow 
path (inclusive of its end interfaces). The total and noncondensable-gas pressures may be 
defined as constant along each flow path or defined by the hydraulic-component data. A 

significant power source or sink along a subrange of mesh cells within the path also 
must be defined (such as for heat transfer between the primary and secondary sides of a 

heat exchanger). The flow paths can begin and end at any mesh-cell interface, as long as 

they are different interfaces and do not overlap internally with the cells of other 1D flow 

paths. However, the flow paths must begin and end at (1) the internal-junction interface
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of a TEE component, (2) a junction of a PLENUM component, and (3) a source
connection junction of a VESSEL component. The internal-junction interface of a TEE 
component and the junction of a PLENUM component must define the phasic
temperatures and phasic-velocities flow condition of its ID flow path. PLENUM
component junctions are assumed to have no steady-state fluid flow if they do not define 
the end interface of a flow path. However, the fluid flow condition at VESSEL
component, source-connection junctions may be either input-specified by hydraulic
component data or initialized by HPSS initialization data. This process provides 
sufficient information for TRAC internally to initialize the steady-state, thermal
hydraulic condition of all hydraulic components along each flow path, as well as of all 
the PLENUM and VESSEL components to which such 1D flow paths may be connected.  

The hydraulic-component wall and HTSTR-component ROD and SLAB temperatures 
are defined by the input-component data and are not initialized by the HPSS 
initialization procedure. The same applies to the total and noncondensable gas pressures 
unless they are initialized with a constant value for all cells of a flow path. Structure 
temperatures and coolant pressures need not be initialized accurately because the 
steady-state calculation quickly determines their steady-state condition consistent with 
the gas volume fraction, phasic temperatures, and phasic velocities defined by the HPSS 
initialization procedure. On the other hand, the gas volume fraction, phasic 
temperatures, and phasic velocities are the slowest to converge to their steady-state 
solution and usually require at least three or four convective-flow passes through each 
1D flow path to converge to their steady-state values if a significant change is required in 
the initial thermal-hydraulic solution estimate. Providing a good initial estimate for the 
gas volume fraction, phasic temperatures, and phasic velocities can significantly reduce 
the TRAC evaluation time needed to satisfy the user-input steady-state convergence 
criteria.  

2.2. Input Processing 

The processing of the majority of TRAC-M input data is controlled by the system-level 
subroutine input (the exception being that the timestep data are read by subroutine 
timstp, which is called directly by either subroutine steady or trans). The data are of 
two types: input data retrieved from the ASCII input data file TRACIN and binary 
restart data retrieved from the dump-restart file TRCRST. The user has the option of 

creating an echo file of the input data contained in file TRACIN by defining namelist 
variable inlab = 3. With this option, a file named INLAB (INput LABeled) is created 
during input data processing and has all the input data from file TRACIN output to it, 
along with variable-name comments contained between asterisks. This provides a useful 
means of labeling an otherwise difficult-to-interpret TRACIN file. It also allows the user 
to verify the input data being read by TRAC-M. Comments between asterisks in the 
original TRACIN file are not output to the INLAB file. All input data from fies TRACIN 
and TRCRST are either read or echoed to the TRCOUT and INLAB files by subroutines 
loadn, readi, readr, reecho, warray, and wiarr that are called by the component 
input (rcomp) and restart (recomp) processing subroutines. The input and output echo 
of all input data has been consolidated in these six subroutines. SI- or English-unit 
symbols for real-valued input data variables are output echoed to the TRCOUT file
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when namelist variable iunout = 1 (default value). In addition to reading the input data, 
this subroutine also performs error checking; organizes the component data in memory; 
analyzes the system-model loop structure; and allocates the initial array space for the 
Control System, VESSEL, and part of the global arrays. The remainder of the space 
necessary for the global array variables is allocated in the initialization stage by the 
subroutine init.  

The input line is echoed to the standard detailed ASCII output file and a warning 
message printed to that file, the message file, and the terminal when input errors are 
detected in subroutines at or below subroutine input. The error message is produced by 
a call to the subroutine error, with the first argument set to 2 to indicate a warning 
rather than a fatal message. By convention, the message (passed as the second argument) 
begins with the name of the subroutine processing the input line, bounded by single 
asterisks (e.g., "*rpipe* inconsistent init & table power"). When additional diagnostic 
information is necessary, including values of variables, direct WRITE statements are 
necessary. Pairing of this information to the messages from error requires three writes: 
one to the terminal (unit number in variable itty from module Io), one to the standard 
detailed ASCII output (unit number in variable lout from module Io), and one to the 
message file (unit number in variable imout from module Io).  

Termination of input processing is flagged at two levels of severity. The lowest-level 
input routines (loadn, readi, readr, and nxtcmp, which are discussed subsequently) 
set the value of variable ioerr (located in the module Io) to one when an input error is 
detected. Subroutine input checks the value of ioerr after completion of the 
component-specific input from the TRACIN file (executed by calling the system-level 
subroutine rdcomp) and terminates if it is not zero. The presumption is that input errors 
are severe enough that it is not worth any processing of the restart fie or checking of 
flow network connectivity. Higher-level routines (input, rpipe, rtee, etc.) flag 
problems for later termination by setting the variable j flag (contained in the module 
BadInput) to one. One exception to this behavior is subroutine rcomp, which uses a 
variable j flagc (contained in the common block concck) for the same purpose. The 
class of errors detected at these levels is presumed to be localized enough to make 
checking of flow network connectivity profitable. Subroutine input will terminate 
execution before returning if j flag or j flagc are not equal to zero.  

Subroutine input initially calls subroutine preinp to read Main Data Card 1 and thus 
determines whether the TRACIN file is formatted as TRAC or free input. Control simply 
returns to subroutine input if the former option is selected. Otherwise, subroutine 
preinp reads the free formatted input data file, performs initial error checking, converts 
the input data to TRAC format, and writes the resulting data to file TRCINP. Subsequent 
execution of subroutine input proceeds in the same manner for both cases, with the 
TRCINP file accessed rather than TRACIN if the conversion was performed.  

Subroutine input reads Main Data Card 2, using a call to low-level service subroutine 
readi for inputting integer card data, and subsequently calls TRACAllo to allocate the 
required memory for the Title Cards to follow. The Title Cards then are read, and the 
minimum and maximum allowable fluid pressure and liquid/vapor temperatures and
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the choked-flow multipliers are initialized. The namelist data are read with a standard 
Fortran construct, the namelist variable units are converted from English to SI units via 
calls to uncnvts if namelist variable ioinp = 1, and low-level service subroutine 
reecho is called repeatedly to echo the input to the TRCOUT file if variable inopt has 
been set to one on Main Data Card 2. Commonly used unit labels are also initialized, and 
subroutine namlst is called to check all namelist variables for valid values when these 
data are input by the user. The Solubility Parameters Card is read next, using the low
level service routine readr for inputting real card data if a dissolved material other than 
boric acid is to be traced by the solute tracker, which is indicted by inputting namelist 
variable isolcn as one. The remaining Main Data cards subsequently are read using 
calls to the low-level service routines readi and readr. Subroutine input then 
initializes the remaining fluid-equation-of-state constants by calling subroutine seteos.  
The component ID numbers in the TRACIN file are read into the real static array 
scratch, defined in module Temp, using a call to the low-level subroutine loadn (used 
to read card data in TRAC LOAD format) from the TRACIN input fie. This portion of 
the REAL scratch array is converted and transferred to the static array ig (the integer 
global array defined in module GlobalDim) using a call to the low-level service routine 
r2ii, and the component numbers subsequently are placed in ascending order by 
calling subroutine isort, with array ig passed as an argument. Subroutine input then 
performs dynamic memory allocation for the HTSTR array wp and the boundary arrays 
bd and vsi by calling allocWp and allocBoundary, respectively (In Version 3.0, the 
vsi array has been superseded by the vSign array, which is part of the System Service 
package). Next, the System Service arrays junCells, compSeg, and junComp are 
allocated with direct use of the Fortran 90 ALLOCATE statement (note that the allocation 
for junCells is a conservative estimate because the number of TEE components is not 
known at this point in input). The countercurrent flow limitation (CCFL) model input 
data are read from the TRACIN file if nccfl (Main Data Card 6) is non-zero, with calls 
to the loadn subroutine. These data are also echoed to the TRCOUT file using calls to 
the low-level service routine warray (used to convert the namelist ioinp or iolab 
units to ioout units and write the respective array to the TRCOUT file as an echo of 
input data). The loadn and r2ii subroutines are called again, repetitively, to process 
the Material Properties Data, if so requested, by setting nmat to a non-zero value on 
Main Data Card 2. Dynamic memory allocation also is performed for Material Properties 
Data variable array prtptb by calling allocPrtptb. For the case with stdyst = 3 and 
stdyst = 4, the readi subroutine is used to input the HlPSS Data Card 1, TRACAIIo is 
called to perform dynamic memory allocation for the derived-type variable hps (defined 
in module HpssDat), and Path Cards 1 through 3 are read using the readi and readr 
subroutines. Note that the Interactive Control Panel is not supported by TRAC-M. If a 
CSS steady-state controller is utilized in the calculation (stdyst = 2 and stdyst = 4), 
this is followed by dynamic memory allocation of the derived-type variable cssDat 
(defined in module ControlDat), a read of the CSS-Controller Card with calls to readi 
and readr, a call to subroutine unnumb to assign the units label to the controlled 
parameters, and dynamic memory allocation for derived-type variable cssTp (also 
defined in module controlDat) for secondary-side BREAK component numbers that 
need to have their pressure adjusted. The remaining Control-System-derived-type 
variables are next dynamically allocated, and subroutine input calls subroutine rcntl 
to read signal-variable, control-block, and trip control parameter data input from the
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TRACIN file. Subroutine rcntl reads this card data using calls to the readi, readr, 
and loadn subroutines. At this point in the calculation, the system-level data input 
processing is complete and subroutine input is ready to process the component-specific 
input data.  

An infinite WHILE loop is used within subroutine input to read the component data 
until a card with the component type specified with "end" is read. The subroutine 
nxtcmp is first called to find the location of the next component if the TRCINP file is 
being accessed (this subroutine simply returns control to subroutine input if the 
TRACIN files is being utilized). The component Card 1 input then is read. The 
component's number, ID number, and title information is stored in the derived-type 
variable genTab [the fixed-length table (FLT) that is generic to all components, defined 
in module Flt]. The input-component type is converted to the internal TRAC 
CHARACTER variable-component-type representation using a call to subroutine 
settype, and the component number is stored in INTEGER global array ig. With the 
component type thus determined, either subroutine rdcomp is called to read the input 
data for iD components or subroutine rvssl is called to read the 3D VESSEL
component data. During this process, the component number of VALVE components 
that are closed and not adjusted by CSS controllers is saved in variable numvc using a 
call to subroutine GetValveTab. Control parameter and component data not provided 
in the TRACIN file are retrieved from the restart-data file TRCRST by subroutine 
rdrest.  

The subroutine order is called to arrange the signal variable, control block, and trip ID 
numbers in ascending order after all component information has been input. The list of 
closed VALVE components unaffected by CSS controllers, previously saved in variable 
numvc, then is used by subroutine fbrcss when called by input to determine all 
VALVE (type-2 controller adjusted for a desired pressure) and BREAK components that 
are hydraulically coupled to HTSTRs; this information is used for CSS type4 and type-5 
controllers. Subroutine input calls subroutine srtip to sort through the 1D hydraulic 
components of the system model and group them by loops that are isolated from one 
another by VESSEL components; the iorder array is rearranged to reflect this grouping 
and provide a convenient sequence within each group for the component calculational 
order. The ij element of the array iorder is the number of the component that is 
processed after the i-1P component but before the i+11 component. In earlier versions of 
TRAC, subroutine srtlp played a key role in setting up the network solution logic.  
However, this has been superseded by new logic at the start of subroutine init (see 
Section 2.3). Currently, srtip determines only the component calculational order (also, 
currently, information from srtlp is used indirectly by the HPSS logic for VESSEL 
components-see the discussion on the old VESSEL matrix array vmap later in this 
section). For problems that contain more than one VESSEL component, the subroutine 
vmcell is called to convert a VESSEL-component cell number to a VESSEL-matrix cell 
number. Subroutine allocVmap is called to allocate memory dynamically for the 
VESSEL matrix array vmap. However, array vmap has been superseded by new network
solution logic that is set up in subroutine init (see Section 2.3); the only remaining use 
of vmap is to provide storage for VESSEL-matrix solution by the HPSS logic (subroutine 
ihpss3, called by civssl).
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Finally, subroutine asign is called by input to define the component POINTER array, 

comptr, according to the order of the iorder array. The it element of array comptr is 
the starting location in the ig array of the component iorder (i) data block containing 
the component numbers.  

2.2.1. 1D Component Input Processing with Subroutine rdcomup 
The calling tree associated with subroutine rdcomp can be traced from the 
NOMOD: :SUBROUTINE rdcomp entry in Appendix A. Subroutine rdcomp simply calls 
the component-specific input processing subroutines to read and process each 
component type. These routines have names that begin with the letter "r" followed by 
the letters of the component-type name. For example, the PIPE-component input 
processing subroutine is named rpipe. In addition to reading hydraulic and HTSTR
component data from the TRACIN file, these component-specific input processing 
routines also initialize the FLTs and variable-length tables (VLTs), define the j un array 
with component-junction connective information, and register the component with 
TRAC's system configuration to establish the intercomponent connectivity. Each ID 
component-specific input processing subroutine calls subroutine rcomp to process input 
data common to ID hydraulic components. All input data are echoed as output to the 
TRCOUT file.  

The interface to a ID component follows one basic pattern best seen in the PIPE 
component, with minor variations for boundary conditions and TEE-type components.  
Throughout this document, the PIPE component is used as the primary vehicle for 
discussing the lower-level subroutines in the calling tree. TEEs involve duplication of 
PIPE coding and special internal generation of boundary conditions at the internal TEE 
junction. Boundary conditions (FILL and BREAK) generate junction boundary 
information on the same cycles as a PIPE but perform relatively few other operations.  

Input of the initial PIPE data is driven by rpipe, which is called by the subroutine 
rdcomp. Creation of a new component similar to a PIPE would require the addition of a 
call in rdcomp to process that component's input. As previously stated, the component 
type, component number, ID number, and descriptive title are obtained in subroutine 
input before it calls rdcomp. This information is passed to rpipe via the module for the 
FLT (Fit) as the variable elements type, num, id, and title. The order of the 

component in the TRACIN file, cci, is passed to the subroutine via the module Global.  
Subroutine rpipe obtains values of other scalar variables for the component from the 
ASCII input file, using the subroutines readr and readi, and stores the information in 
the derived-type-variable pipeTab (the VLT for PIPE-type components, defined in 
module PipeVlt). The readi and readr subroutines also echo this input to the 
detailed output file (TRCOUT). Subroutines readr and readi should be used for input 
of any scalar data for a component to maintain a consistent interface with the input file 
and its reflection to the output. Subroutine rpipe then calls subroutine AllocGenlD to 
perform dynamic memory allocation for the arrays that are generic to all ID components 
(these arrays previously were accessed using the pointer tables dualpt, hydropt, 
intpt, and heatpt in TRAC-P). The arrays are stored in the derived-type variable 

giDAr, which is declared in module GeniDArray. Dynamic memory allocation for the 
additional arrays that are specific to a PIPE component is performed by subroutine
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rpipe via calls to TRACAIlo. These array data are stored in the derived-type-variable 
pipeAr, which is defined in module PipeArray.  

Subroutine rpipe then calls the subroutine rcomp to obtain array information on the 
geometry and initial state of the fluid for all cells (dx, vol, fa, fric, gravp, elev, hd, 
hdht, nff, iccf 1, alpn, vyn, vvn, tin, tvn, pn, pan, and, where appropriate, wfmf 1, 
wfmfv, qppp, matid, twn, concn, and sn). This information is common to all iD 
hydraulic components. Subroutine rcomp in turn uses the subroutine loadn to bring 
array data from the input and the subroutines warray and wiarn, respectively, to echo 
real and integer array values to the output. The subroutines loadn and warray also are 
used directly by rpipe to obtain additional array information. These subroutines 
(rcomp, loadn, warray, and wiarn) are the standard interfaces for reading and echoing 
array values from the input file and should be used for this purpose in any new 
component.  

The input data specific to a PIPE component are read following the return from rcomp 
using calls to loadn and echoed to the output file with calls to warray (note that 
subroutine wiarn is used for this same purpose by other component-specific 
subroutines). Some processing of the input data also is performed by rpipe: scaling of 
table input is performed with calls to subroutine scltbl, subroutine unsvcb 
determines the units label and units-label subscript of the signal variable or control block 
associated with the PIPE component, units conversion is accomplished with calls to 
wmxytb, and linear interpolation of input data arrays is performed by subroutine 
linintO. These example actions are specific to the PIPE component, and other 
component-specific input subroutines (e.g., rvalve) will call different subroutines to 
process the input data into the desired format. The lower-level calling trees for the other 
TRAC component-specific input routines are given in Appendix A.  

Subroutine rpipe and similar component-specific routines have one other important, 
but subtle, interface that must be replicated in new components. By supplying values to 
the jun array (and incrementing jun's current index jptr), rpipe supplies information 
to the system necessary to establish the order of calculation. The j un array is a doubly 
subscripted array, jun (4, *). The four values of the first index are defined in Table 2-1.  
The second index indicates the order in which the component junctions were 
encountered during input processing. The j un array is scanned after all input is 
processed when subroutine input calls srtlp (see Appendix A under 
TracInput: : SUBROUTINE input) and the order of component processing is placed in 
the array iorder.  

Formerly, the j un array saw much more use than in the current TRAC version; it has 
been superseded largely in recent TRAC versions by new network and intercomponent
communication logic. The new intercomponent communication has been implemented 
as a system service. A component must register its flow connections with the system 
services to permit correct intercomponent communications. In older versions of TRAC, 
this was accomplished within input and restart subroutines (rpipe, repipe, etc.) by 
filling in entries to the j un array. The current registration involves passing information 
to a junction cell data structure for each junction in a component with a call to subroutine
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Junctions from a component input or restart subroutine (rpipe, repipe, etc.). In 
this context, registration is required for both standard intercomponent junctions and 
intracomponent junctions, such as the junction of a TEE side leg to the primary leg.  
Complete details on subroutine Junctions are given in Section 3.2.3.1. Each 
component also must register general information about the computational mesh 
segments that it contains, where a mesh segment is defined as a contiguous set of 
adjacent cells that are contained entirely within a component. This means that a PIPE, 
VALVE, PUMP, PRIZER, or PLENUM each contain just one mesh segment; a TEE 
contains two mesh segments (one each for the main leg and side tube); and the FILL and 
BREAK do not contain any mesh segments. A single call to subroutine SetSegment is 
used to establish the number of mesh segments for the current component. This 
currently can be either 0, 1, or 2, depending on the component type. If the number of 
mesh segments to be registered is > 0, then an appropriate number of calls to subroutine 
AddSegmentlD is made (as described in Section 2.2.2, there is a related routine called 
AddSegment3D for VESSELs). More information on segment registration is given in 
Section 3.2.3.1.  

Subroutines rpump, rvalve, rf ill, and rhtstr determine if their component is 
being adjusted by a CSS controller when stdyst = 2 or 4 after reading the component 
data from the TRACIN file. If a CSS controller is being applied to the component, the 
desired hydraulic-parameter value is obtained from its specified location for type-i, -2, 
and -5 controllers. Type-3 CSS controllers get their desired fluid mass flow each timestep 

from their specified location in the plant model. For the ith CSS controller (where i = 1, 2, 
. .. , ncontr), (Main Data Card 6) a signal variable with ID number 9900 + i is created to 

monitor the desired hydraulic-parameter value at its specified location and a PI
controller control block with ID number -(9900 + i) is created to evaluate the adjustment 
of the component-action parameter. Signal variable ID numbers >9900 and <9999 and 
control-block ID numbers <-9900 and >-9999 are reserved for CSS-controller parameters 
defined internally by TRAC.  

TABLE 2-1 FIRST INDEX OF THE COMPONENT-JUNCTION ARRAY jun 

Index Description 

1 Junction number 

2 Component number 

3 Component type 

4 Junction direction flag 

0 = positive flow is into the component at this junction (a j uni junction); 

1 = positive flow is out of the component at this junction (a j un2 or j un3 
junction)
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The kth type-3 CSS controller, which adjusts either a PUMP or VALVE (where k = 1, 2,..  
., nconts), requires a second signal variable with ID number 9900 + ncontr + k to monitor 
the pump-impeller interface or adjustable-valve interface fluid mass flow. The difference 
between the 9900 + ncontr + k signal-variable fluid mass flow and the 9900 + i signal
variable fluid mass flow drives the PI-controller control block adjustment of the pump
impeller rotational speed or the VALVE adjustable-interface flow-area fraction. A PI
controller control block is not defined for a type-3 CSS controller, which adjusts the in- or 
out-fluid mass flow of a FILL component, because the 9900 + i signal-variable fluid mass 
flow determines the FILL-component fluid mass flow directly for the next timestep. An 
absolute-value function control block with ID -(9900 + i) of the 9900 + i signal variable's 
fluid mass flow is defined instead. It is this absolute-value fluid mass flow with a 
positive sign for outflow from the FILL and a negative sign for inflow to the FILL that is 
defined as the adjusted fluid mass flow of the FILL component.  

The ncontp type-5 CSS controllers adjust the hydraulic-channel fluid pressure at the 
inner or outer surface of an HTSTR component. They each have 50 elements of the 
cssDat-derived-type variable reserved to save the ID numbers of all BREAK 
components that are hydraulically coupled to the adjusted HTSTR. The HTSTR's PI

controller adjusts the fluid pressure of those hydraulically coupled BREAK components.  

As previously stated, an ID list of VALVE components that are closed and not adjusted 

by a CSS controller is saved in array numvc (n) for n = 1, 2, . . . nvc (nvc <50) by 
subroutine input. This ID list is used by subroutine fbrcss (called by input) to 

determine all BREAK components that are hydraulically coupled to the HTSTR.  

BREAKs separated from the HTSTR by these VALVE components that are closed and not 

adjusted by a CSS controller are not considered to be hydraulically coupled to the 
HTSTR component.  

2.2.2. 3D Component Input Processing with Subroutine rvssl 
Subroutine input calls the routine rvssl to input data from the TRACIN file that is 

specific to 3D VESSEL components. In addition to reading VESSEL input data 

parameters from the TRACIN file, this subroutine also initializes the FLTs and VLTs, 

reads VESSEL general-array and level data, registers the VESSEL component with 
TRAC's System Services to support intercomponent communication, and performs 
input data testing. As with subroutine rdcomp, this subroutine also uses the low-level 

subroutines readi, readr, loadn, and warray to input the data and echo it to the 

output file.  

The basic geometric input data for the VESSEL-component VLT are first read into the 

derived-type variable vessTab (defined in module VessVlt) using a combination of 

readi and readr subroutine calls. With this information specified, subroutine 

AllocVess is called to perform dynamic memory allocation for the VESSEL general 

array data to be stored in the derived-type variable vsAr that is defined in module 

VessArray (this information previously was addressed with the VESSEL pointer table 

in TRAC-P). The subroutine AllocVess3 subsequently is called to allocate memory 
dynamically for the 3D VESSEL level data that will be stored in the derived-type 
variable vsAr3 (defined in module vessArray3). Data for the VESSEL general arrays 

specified in vsAr next are read from the TRACIN file using the loadn, readr, and
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readi subroutines and echoed to the output file TRCOUT with the warray and wiarn 
subroutines.  

The System Services junction array junCells is set up, and subroutine Junctions is 
called (once for each junction) to register the VESSEL's flow connections. System 
Services subroutines SetSegment and AddSegment3D then are called to register 
computational mesh segment information for the VESSEL. (Although its structure might 
seem to be somewhat discontinuous, a VESSEL is defined as having just one mesh 
segment.) Details on the VESSEL's System Services registration are given in Section 
3.2.3.1.  

Subroutine chksr is called to check the VESSEL source connections after the initial input 
processing from TRACIN is completed.  

The VESSEL level arrays are specified in TRACIN on a level-by-level basis (data for the 
various arrays are grouped together for each successive level). The loadn subroutine is 
used to input a level's worth of data for each such array into a rank-one scratch array 
called scr. Subroutine rievel is called for each of these chunks of level data to echo the 
input data from array scr to file TRCOUT and to call subroutine leveir, which stores 
the data into the (rank-three) vsAr3 array. (The VESSEL data structure is described in 
detail in Section 3.) Subroutine rievel also checks the cfzv, cfrl, and cfrv arrays for 
negative values.  

2.2.3. Component Input Processing with Subroutine rdrest 
Subroutine rdrest opens file TRCRST and obtains restart data from the data dump 
corresponding to the requested timestep number of a previous calculation (as specified 
by variable dstep on Main Data Card 3 of file TRACIN). If the requested timestep 
number is negative, rdrest uses the last data dump available. If the requested timestep 
number is -99, the problem time from the last data dump is replaced by timet (Main 
Data Card 3), which is read from file TRACIN. The restart data initialize the 'signal 
variable, control block, trip, and component data that were not provided by the TRACIN 
file. Component data are read from the TRCRST file by calls to component restart 
processing subroutines. These subroutines have names that begin with the letters "re" 
followed by the letters of the component-type name. For example, the PIPE component 
restart processing subroutine is called repipe. These subroutines function in much the 
same way as the component input processing subroutines that begin with the letter "r'.  
The restart data common to 1D hydraulic components are processed from the restart 
data using a call to subroutine recomp. Details on the structure of the dump restart 
TRCRST file are given in Sec. 2.5.3. All restart data are echoed as output to the TRCOUT 
file.  

The calling tree associated with restart input can be traced from the entry 
NOMOD: : SUBROUTINE rdrest in Appendix A. Restart input begins with communica
tion of the lists of all system components iorder (Component List Card) and all 
components in the ASCII input deck (nbr) to rdrest via the module Global.  
Subroutine bfaloc is used to initialize the TRCRST fie for processing, and the low-level 
service routine bf in is used to read all of the header information from the dump restart
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file. An infinite WHILE loop then is entered to read the data for each dump timestep 
until the selected dump restart timestep is located. The majority of the data is read using 
the bf in subroutine, with the exception being that the Control System data must be read 
via a call to subroutine CSRestart. Upon initial entry, subroutine CSRestart performs 
the dynamic memory allocation for the temporary-derived-type Control System 
variables (defined in module ControlDat) that are only used for input processing of the 
TRCRST fie. The restart data are read into these derived-type variables using calls to 
bf in. The infinite WHILE loop is exited once the desired timestep data is located, and 
the subsequent data are read with multiple calls to bf in and a single call to CSRestart.  
Subroutine rdrest then calls subroutine recntl to add the data stored in the 
temporary Control System derived-type variables to the information previously read 
from the TRACIN file (stored in the permanent Control System derived-type variables) 
and calls CSFree to deallocate the temporary variable memory. The subroutine rdcomp 
then enters another infinite WHILE loop to read the missing component data contained 
on the restart file (exiting the loop occurs when all component data had been read). The 
length of the tabular data Icomp (i.e., the sum of the FLT, VLT, and component- specific 
array parameter values) and the component number is then read using calls to bf in. If a 
missing component is found, subroutine rdcomp calls subroutine GenTabRestart to 
read the component FLT information into the derived-type variable array genTab 
(defined in module Flt). The component type is included in this data. With the 
component type defined, rdcomp calls the appropriate component-specific restart 
routine. The PIPE component will again be used as an example. Creation of a new 
component similar to a PIPE would require the addition of a call in rdrest to process 
that component's input.  

Subroutine rdcomp calls repipe to process the PIPE component restart data with the 
component number and the pointer to the beginning of the junction array passed as 
arguments. The order of the component in the input processing, cci, is passed to the 
subroutine via the module Global. Subroutine repipe uses the subroutine rstVLT to 
read the PIPE VLT from the restart file into the derived-type variable pipeTab defined 
in module PipeVit. It then echoes values of the VLT to the standard detailed output file 
using subroutine reecho. Subroutine repipe supplies values to the jun array (and 
increments jun's current index jptr) in the same manner as rpipe, previously 
discussed. Similarly, subroutine repipe also calls subroutine AllocGenlD to perform 
dynamic memory allocation for the arrays that are generic to all 1D components (these 
arrays previously were accessed using the pointer tables dualpt, hydropt, intpt, and 
heatpt in TRAC-P). The arrays are stored in the derived-type variable giDAr, which is 
declared in module GenlDArray. Dynamic memory allocation for the additional arrays 
that are specific to a PIPE component is performed by subroutine repipe via calls to 
TRACAllo. These component-specific array data are stored in the derived-type variable 
pipeAr that is defined in module PipeArray.  

Standard arrays required for restart of ID flow (dx, vol, f a, fric, grav, hd, nff, iccfl, 
wa, qppp, matid, alpo, alpn, vln, tin, pn, pan, wfmf 1, wfmfv, aran, twn, tvn, alvn, 
chtin, vvn, arvn, arln, arevn, areln, rmvm, rvmf, vmn, bitn, hiv, hil, hig, higo, 
cifn, rhs, vvt, vlt, gamn, elev, chtan, alven, twan, twen, tcen, and, when 
appropriate, sn, concn, and qppc) are acquired by a call to recomp. Those arrays that
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would normally appear in an echo of the input data are printed by a call to wrcomp, 
which in turn uses the standard low-level routines warray and wiarn to write array 
values to the standard detailed output file. Actual input of either values or arrays of 
values in repipe or recomp is accomplished with the subroutine bf in rather than a 
direct Fortran READ statement because TRAC contains its own buffered I/O routines 
(bfaloc, bf in, bf out) for output to binary files. These buffered I/O subroutines 
should be used with any new component, as should standard routines to echo values to 
the standard detailed output. At a higher level, component-specific subroutines are used 
to process the input restart data into the desired data structure.  

Subroutine repipe finishes with calls to System Services subroutines Junctions (two 
calls for a PIPE), SetSegment, and AddSegmentlD (see Sections 2.2.1 and 3.2.3.1).  

Recall that CSS-controller data are not written to the dump/restart file and so must be 
reinput by the TRACIN file if the CSS calculation is continued with a restart. The number 
of CSS controllers and their input parameters can be changed during a restart.  
Components defining the desired hydraulic parameter value for each CSS controller also 
need to be reinput using the TRACIN file.  

2.3. Initialization 

The calling tree associated with initialization can be traced from the entry 
NOMOD: : SUBROUTINE init in Appendix A.  

The initialization stage begins with the TRAC main-program calling subroutine init, 
which in turn calls four subroutines that set up data structures that are used for the 
solution of the governing flow equations: GenJunInfo, SetSysVar, SetSysMat, and 
SetJunAvgPtrs.  

GenJunInf o processes information about system connectivity to fill out a data structure 
describing all junctions between hydrodynamic computational mesh segments. This 
data structure is contained in the derived-type array junCells. Subroutine SetSysVar 
establishes the structure of the sparse matrices associated with all flow equations, 
assigning unique system variable indices to each cell center in the system for pressure, 
stabilizer mass, and stabilizer energy equations. Subroutine SetSysVar also assigns a 
second set of unique variable indices to cell edges that is associated with the stabilizer 
velocities. This information is stored both in the component junction data structure 
(junCells) and in a data structure associated with mesh segments named compSeg.  
Subroutine SetSysMat assigns space needed for storage of equation information and 
creates indices needed to locate matrix coefficients, including those required to make 
substitutions between the fundamental equations and the network equations.  
Subroutine SetJunAvgPtrs establishes pointers needed to obtain edge-average 
quantities at junctions between mesh segments.  

Subroutine init then calls subroutine InitBDArray to register into the System Service 
transfer tables the information that each hydrodynamic mesh segment needs from 
adjacent mesh segments to evaluate the flow equations; this relies on the System
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Configuration set up by the component input routines (see Section 2.2) and 
GenJunInfo. InitBDArray sets up a pointer table for transferring information 
between TRAC's bd array and the generalized component array data structures.  
Detailed information is provided on this setup in Section 3.2.3.1. The elements of the bd 
array are described in Section 2.3.1.  

Following the call to InitBDArray, subroutine init calls subroutine TableTransAll 
to populate the bd array with values that are needed to begin the component 
initialization.  

Subroutine icomp is called next to perform the initialization of arrays and variables for 
each component type that is required by TRAC but is not read in directly from the files 
TRACIN and TRCRST. Subroutine icomp is a driver for component-specific 
initialization routines. For example, initialization of PIPE data is driven by the 
component-specific subroutine ipipe, which is called by icomp. Any new component 
would require creating an initialization routine and adding an appropriate call from 
icomp.  

Following the component initialization by icomp, subroutine init makes another call to 
TableTransAll to ensure that the bd array is updated properly before the transient or 
steady-state calculation starts.  

The init subroutine also initializes the graphics catalog using calls to the subroutines 
CSSetLuIdx, xtvinit and xtvdr. Subroutine CSSetLuIdx initializes the control 
block, signal, and trip unit label indexes, alleviating the need for further lookup.  
Subroutine xtvinit initializes graphics variables and opens the graphics file TRCXTV.  
The subroutine xtvdr, which is called by init with the argument xmode set to zero, 
simply calls the component-specific graphics routines (e.g., xtvpipe), with xmode again 
passed as an argument. The 1D component-specific graphics routines for the PIPE, 
PRESSURIZER, PUMP, TEE, and VALVE call the low-level service routine xtvld to 
write the generic 1D component information to the graphics file. The remaining 
component-specific graphics subroutines write their information to the file directly (i.e., 
without using the low-level service routine). Each of the component-specific subroutines 
also calls the routine PrintVarDesc to generate the variable description graphics line 
when the argument xmaode is zero.  

The overall component-initialization subroutine icomp first calls subroutine TRACAllo 
to allocate memory dynamically for the temporary pointer array ij trnPtr that is 
required to process the PLENUM component boundary information (this array is 
deallocated upon completion of subroutine icomp).  

Subroutine icomp then sets the values of arrays j seq (junction sequence) and vsi 
(velocity sign indicator), which are no longer used by TRAC. The functionality of arrays 
j seq and vsi has been included in the System Service logic (vsi has been superseded 
by array vSign).
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Subroutine icomp next calls subroutine cihtst to initialize the data for HTSTR 
components, if present. Subroutine cihtst controls the initialization of all HTSTR 
components with calls to subroutines irodl and irod. Subroutine irodl initializes 
arrays that provide information on the location of hydrodynamic data for heat-transfer 
coupling. Subroutine irod initializes various power-related arrays that are not input.  

A check is performed next to determine if either steady-state (stdyst) option 3 or 4 is 
selected to perform an initial estimate of steady-state temperature and velocity 
distributions. TRACAIIo is called to allocate memory dynamically for the derived-type 
variable hps (defined in module HpssDat) when this is the case. The subroutine 
subsequently enters a DO loop that will cycle either two times for normal execution or 
three times if an HPSS initialization is to be performed. The status of the loop counter is 
stored in the variable iinl (named common block elvkf) and can take on the values of 
0, 1, or 2. Calls to the component-specific initialization subroutines (e.g., ipipe, which 
is described subsequently in greater detail) are contained inside this DO loop, but these 
calls occur only when iini has values of either 1 or 2. For the initial loop with iini = 0, 
the subroutine ihpssl is called for each of the components in the nloop iD hydraulic 
paths in the problem. This procedure replaces the phasic-temperature and velocity (and 
possibly pressure) values input for the iD hydraulic components with the fluid mass
and energy-conserving values based on input-specified known or estimated thermal
hydraulic flow conditions along ID-flow hydraulic paths of the system model. This 
procedure provides a better initial estimate of the thermal-hydraulic solution so that 
steady-state solution convergence is satisfied with fewer timesteps and less 
computational effort. This saves the TRAC user the effort of inputting such detail in the 
solution estimate defined by the component data in order to converge the steady-state 
solution more quickly with a better initial-solution estimate.  

The basic work of component initialization takes place when iinl = 1. Subroutine 
ihpssl again is called for each component in the nloop hydraulic paths to reevaluate 
the gas void fraction and phasic velocities donored from two-phase cells; this conserves 
the input-specified coolant inventory of the hydraulic loop. The iD component-specific 
initialization routines also are called this time through the DO loop. Subroutine setnet 
also is called for each hydraulic path to provide the information needed to set up the 
network solution matrices. Subroutine allocNet then is called to allocate memory 
dynamically for the network solution (array rnet). Subroutines setnet and allocNet 
are largely obsolete; most of their functionality has been replaced by TRAC-M's 
modularized equation solution logic. Usage of the old network solution variables has 
been eliminated from all coding beyond initialization. Some of the network index 
information still is used at the end of icomp in a check to enforce the rule that all 
VESSEL connections in a given iD loop must be to 3D faces of the same kind (all r, all 
theta, or all z), if the SETS numerics have been selected by the user for the VESSEL (using 
namelist variable NOSETS). This restriction will be eliminated (and with it the rnet data 
structure) once a planned parallel implementation of subroutine Solver has been 
completed. Before this loop-connection check, subroutine civssl is called from icomp 
to set up arrays for the 3D VESSEL initialization routine ivssl. This subroutine also 
calls subroutine ihpss3 to perform HPSS initialization of the VESSEL if this option has 
been selected.
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The third iteration of the loop with iini = 2 functions in the same manner as when iinl 
= 1, with the major difference being in the actions performed by the component-specific 
subroutines such as ipipe. These subroutines check the consistency of cell edge 

quantities at the junction, compute elevation changes across components, and convert 
loss coefficients to TRAC's specific form of friction factors.  

As indicated above, a check for source connections that would couple VESSEL SETS 

predictor velocities in off-diagonal directions also is performed in subroutine icomp.  

This is necessary to ensure that the predictor and stabilizer velocities remain 
independent of one another for numerical stability at high fluid flows.  

Finally, subroutine icomp deallocates memory for the pointer array ij trnPtr and 

returns control to the calling subroutine init.  

2.3.1. 1D Component Initialization with Subroutine iccap 
The 1D hydrodynamic-component initialization routines have names that begin 
typically with "i" followed by the letters of the component-type name. For example, the 

PIPE component initialization subroutine is called ipipe.  

Subroutine ipipe begins by obtaining values for indices to the junCells array (which 
was set up at the start of Subroutine init-see Section 2.3) for the current and adjacent 
component's junction cells and the cco index for each adjacent component (the cco 
index is described in Section 3.2). The four junCells indices then are used to obtain 

values for six intercomponent communications index variables that are contained in the 

derived-type variable pipeTab (pipe VLT, defined in module Pipevlt): j sl, js2, 

j siget, j siput, j s2get, and j s2put. Each of these six variables provides a column 

index that is necessary for accessing the proper bd array elements (see Sections 2.3 and 

3.2.3.1). Currently, j si and j siget have the same value, as do j s2 and j s2get. (The 
numbers 1 and 2 indicate the current PIPE's left and right junctions, respectively.) 

Junction-data consistency is checked using a call to subroutine chkbd. Subroutine elgr 

is called to compute FRICs and GRAVs from input form losses and elevations if these 
particular input options are selected using the namelist options ikfac and ielv, 
respectively.  

Subroutine ipipe next calls to subroutine junsol twice (once for each junction) to set 
the elements isollb and isoirb of pipeTab, indicating the nature of the velocity 
calculation at the junction. A value of 0 from one of these variables indicates that the 

velocity is fixed by a FILL boundary condition. A value of 2 indicates that a BREAK is 

across the junction and that no other active component contributes to the momentum 
equation. A value of 1 indicates that another active component (PIPE, TEE, VESSEL, etc.) 

is on the other side of the junction but that the current component (this PIPE) performs 

the evaluation of the momentum equation. A value of -1 indicates that another 
component evaluates the momentum equation; that component appears before the 

current one in the order of computation. The same calls to junsol initialize the network 

index array iou. If the junction being processed is an active participant in the network 

solution (isollb or isolrb is +1 or -1), then the input value for that junction number is
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placed in the appropriate location in iou. A later call to setnet from icomp converts 
these junction numbers to unique indices for the network junction variables associated 
with the component. (Note: Subroutine setnet's functionality has been superseded by 

TRAC's new equation solution logic.) 

Subroutine volfa is called to calculate volume-averaged cell flow areas and to perform 

several input data tests on valid flow-area configurations between cells and cell 

interfaces after the junction connection and component sequencing routines. Subroutine 
compi is called to initialize several variable arrays (e.g., tilde velocities).  

Subroutine ipipe, as with all other existing 1D component initialization routines, uses a 

call to the subroutine iprop to initialize dependent fluid-state variables (density, 

internal energy, etc.), physical properties such as viscosity, and mixture properties such 

as the mean density. Actual computation of these properties is done or driven by the 

subroutines thermo, fprop, and mixprp, respectively. Information is communicated 
between iprop and these subroutines via their argument lists. Subroutine iprop 

communicates the information directly to the component-derived-type data structure 
giDAr (defined in Module GeniDArray) and should be used whenever possible for new 

components. If a replacement is constructed for a special component, care should be 
taken to understand and mimic the use of the variable irest (from module Flt) in 
iprop. Many properties (particularly macroscopic densities and energies) must be 

generated from more basic variables when a component is first input. However, when 

irest = 1, the component data are coming from a restart file, bringing values for many 
of these variables from the restart file, which must not be overwritten during 
initialization.  

Subroutine- ipipe then calls subroutine CheckAcc to determine if the friction factors for 

each junction cell opposing the current component (PIPE, in this case) are set according 

to the accumulator-phase separation model. If so, it copies the adjacent component's 
right-hand junction (jun2) giDAr friction values to the current component's giDAr 
locations.  

Subroutine ipipe then calls subroutine TimeUpGenlD with argument .TRUE.; this has 

TimeUpGenlD copy the values of the generic arrays common to 1D components that are 

defined at old and new times from the new-time arrays into the old-time arrays (the 
new-time arrays have been set up to this point in input and init).  

The last call in ipipe is to subroutine TableTransComp, which updates the bd array 

information that the current component provides to each of its neighbors. (A related 

routine, TableTransAll, is used elsewhere in the code to perform a similar service on a 

systemwide basis.) Note that for TEE components there is also a call to subroutine j bd4 

to update the boundary information directly at the TEE's internal junction (using the 
bd4 array in the TEE data structure).  

Initialization is the first stage at which boundary information is generated and passed.  

Currently in TRAC, the destination for component-boundary information transfer is still 

a form of the bd array that has been used since the earliest versions of the code. The
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setup of the boundary transfer is driven by System Services subroutine InitBDArray 

(see Section 2.3), and the low-level hydrodynamics routines still access boundary 
information with the same references to bd as before. The actual bd array is defined in 
module Boundary; it is of rank 2 and is referenced in the low-level routines (such as the 
hydrodynamic routines) via rank-one dummy arguments bdl or bd2, which correspond 
to the left- and right-component junctions [the hydrodynamic routines are passed, via 
their argument lists, an appropriate column from bd (7 2, 2 *n un), where the first index 
specifies the type of data required, and the second index specifies the junction]. The data 
define the current solution state of the adjacent component across the junction and are 
evaluated at one of three possible space points: the edge of the mesh cell at the junction, 
the midpoint of that mesh cell, or the opposite-side edge of that mesh cell. References to 
bdl correspond to junctions j uni and j un4 (the internal junction of a TEE component); 
-, to bd2 correspond to either junction j un2 or j un3 (the external junction of the TEE
component side channel). The boundary data for the TEE internal junction are stored in a 
special array called bd4 as part of the TEE data structure. The components of the bd 
array contain all of the geometry and fluid-state information necessary for one 
component to model flow across the junction from another using a first-order difference 

method. For the ith junction, the elements of the array are as follows: 

bd(1) = adjacent-cell length 
bd(2) = adjacent-cell volume 

bd(3)= adjacent-cell, old mean density 
bd(4) = adjacent-cell, new, macroscopic-gas density 
bd(5) = adjacent-cell, new, macroscopic-liquid density 

bd(6) = junction-velocity-sign convention translation 
bd(7) = adjacent-cell, old void fraction 
bd(8) = adjacent-cell, old gas density 

bd(9) = adjacent-cell, old liquid density 
bd(10) = new-time liquid velocity one face past the junction *vsign 

bd(l1) = new-time gas velocity one face past the junction *vsign 

bd(12) = TEE side-leg momentum equation coefficient 
bd(13) = TEE side-leg momentum equation coefficient 

bd(14) = adjacent-cell, old pressure 
bd(15) = adjacent-cell, new void fraction 

bd(16) = adjacent-cell, new gas density 
bd(17) = adjacent-cell, new liquid density 

bd(18) = new-stabilizer liquid velocity one face past the junction *vsign 

bd(19) = new-stabilizer gas velocity one face past the junction *vsign 

bd(20) = TEE side-leg momentum equation coefficient 

bd(21) = TEE side-leg momentum equation coefficient 

bd(22) = adjacent-cell new pressure 

bd(23) = junction, new liquid velocity *vsign 

bd(24) = junction, new gas velocity *vsign 

bd(25) = adjacent-cell, old surface tension
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bd(26) = junction derivative of liquid velocity with pressure 

bd(27) = junction derivative of gas velocity with pressure 

bd(28) = adjacent-cell, new, macroscopic-liquid internal energy per volume 

bd(29) = adjacent-cell, new, macroscopic-gas internal energy per volume 

bd(30) = adjacent-cell, old gas viscosity 

bd(31) = adjacent-cell, old liquid viscosity 

bd(32) = junction flow area 

bd(33) = junction hydraulic diameter 

bd(34) = old-stabilizer liquid velocity one face past the junction*vsign 

bd(35) = old-stabilizer gas velocity one face past the junction*vsign 

bd(36) = adjacent component type 

bd(37) = adjacent component number 

bd(38) = adjacent-cell, old bit flags 

bd(39) = adjacent-cell, old, noncondensable gas density 

bd(40) = adjacent-cell, new, noncondensable macroscopic-gas density 

bd(41) = adjacent-cell, old, macroscopic-gas density 

bd(42) = adjacent-cell, old macroscopic-liquid density 

bd(43) = adjacent-cell, old macroscopic-gas internal energy per volume 

bd(44) = adjacent-cell, old macroscopic-liquid internal energy per volume 

bd(45) = adjacent-cell, void fraction from step before old time 

bd(46) = adjacent-cell, old, noncondensable, macroscopic-gas density 

bd(47) = adjacent-cell, old, noncondensable partial pressure 

bd(48) = adjacent-cell, new gas temperature 

bd(49) = adjacent-cell, new liquid temperature 

bd(50) = adjacent-cell, center gas velocity*vsign 

bd(51) = adjacent-cell, center liquid velocity*vsign 

bd(52) = new-time interfacial drag coefficient one face past the junction 

bd(53) = adjacent-cell, new bit flags 

bd(54) = gravity vector one face past the junction*vsign 

bd(55) = adjacent-cell, new solute concentration 

bd(56) = adjacent-cell, new mass-transfer term 

bd(57) = junction, old liquid velocity*vsign 

bd(58) = junction, old gas velocity*vsign 

bd(59) = adjacent-cell, liquid-specific internal energy 

bd(60) = adjacent-cell, gas-specific internal energy 

bd(61) = flow area one face past the junction 

bd(62) = junction, new liquid stabilizer velocity*vsign 

bd(63) = junction, new gas stabilizer velocity *vsign 

bd(64) = junction, old liquid stabilizer velocity *vsign 

bd(65) = junction, old gas stabilizer velocity *vsign 

bd(66) = junction, liquid wall friction input scale factor
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bd(67) = junction, gas wall friction input scale factor 

bd(68) = flow-area fraction of PLENUM faces 

bd(69) = flag for "ell"-type TEE components 

bd(70) = adjacent-cell, center x position 
bd(71) = adjacent-cell, center y position 

bd(72) = adjacent-cell, center z position 

The current bd array is significantly different from older versions. Adjacent components 
no longer share a column of the bd array. Also, columns of the bd array now align with 

elements of the junCells array to give direct access to boundary data from the 
SysConfig data structure.  

2.3.2. 3D Component Initialization with Subroutine civssl 
Subroutine civssl assigns junction sequence numbers, performs HPSS initialization for 

iini = 1, and controls the remaining initialization of all 3D VESSEL components by 

calling subroutine ivssl for the subsequent passes. Subroutine ivssl performs 

analogous initializations for the VESSEL component, as does subroutine ipipe for the 

PIPE component. Clearly, because of the differences in the 1D and 3D databases, using 

many of the same low-level subroutines for initializing both component types is not 
possible.  

Subroutine ivssl begins by setting up indexing for the VESSEL mass, energy, and 
momentum sources (i.e., loop connections) in the axial, radial, and azimuthal directions.  
The VESSEL mesh-cell side area and volume parameters are calculated directly within 

ivssl, without using a subroutine such as volfa used in the 1D case. This information 

is stored in the derived-type variable array vsAr3 that is defined by module 

VessArray3. Subroutine wievel is called to write this VESSEL level data to the file 

TRCOUT. Subroutine Therm3D is used to initialize fluid thermal-hydraulic properties in 

the VESSEL and calls subroutine thermo for the actual property evaluation, as was done 

in the 1D case via subroutine iprop. Subroutine Fprop3D also functions similarly to the 

1D counterpart and calls fprop for the actual fluid property evaluations. However, 
mixture properties such as the mean density and solute concentration are evaluated 
directly in ivssl. The subroutine initbc is called to initialize VESSEL phantom cells 

and set some boundary conditions. Subroutine rdzmom defines reciprocal cell lengths for 

momentum cells (rdxra, rdyta, and rdza) and weighting factors for momentum cell 

averages or interpolation of cell-centered quantities. The input friction factors are 

divided by the hydraulic diameter in subroutine iwal 13. The stabilizer equations for the 

VESSEL are initialized via a call to mix3d if these values have not been read from the 

restart file (irest = 0) already. Momentum conservation is improved by setting up 

geometric-scale factors for coefficient velocities in cross terms of the momentum 

equation and for all velocities in diagonal vVv terms within subroutine scimom 

Subroutine dvpscl performs a similar function by initializing scale factors on the 

derivative of velocities with respect to pressure for each VESSEL level. After some 

additional initialization and checking, subroutine ivssl calls setbdt to set the values 

for the boundary of the first VESSEL theta cell equal to values for the last theta cells.  

Finally, subroutines set3dbd and TableTransComp are called to set up boundary
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information at the VESSEL's junctions with 1D components (VESSEL sources); set3dbd 
uses array vsSrcAr as a target location for bd array pointers that point to the VESSEL 
data structure.  

2.4. Prepass, Outer-Iteration, and Postpass Calculations 

One complete timestep calculation consists of a prepass, outer-iteration, and postpass 

stage. These stages of the calculation are controlled by subroutines steady and trans 

calling subroutines prep, hout, and post, respectively. The names of the component

specific prepass driver subroutines end with "1", the names for the outer-iteration driver 

routines end with "2", and the postpass driver routines end with "3". These driver 

routines are identified for each component in Table 2-2. Each of these subroutines is 

contained in the associated component module. For example, the Pipe module contains 

the PIPE component prepass subroutine called pipel, the outer-iteration subroutine 

called pipe2, and the postpass subroutine called pipe3. In the current version of TRAC, 

the Separator (SEPD) component is driven by subroutines sepdl, sepd2, and sepd3, 

which call teel, tee2, and tee3, respectively (sepdl currently is not used).  

The prepass stage is responsible for calculating the control system state, much of the 

constitutive package (e.g., interfacial and wall-drag wall-to-fluid heat-transfer 

coefficients), and the solution of the stabilizer momentum equations. The outer stage 

calculates the interfacial heat transfer and then solves the basic (semi-implicit) equation 

set with a Newton iteration. The post stage solves heat conduction within metal 

structural elements and solves the stabilizer mass and energy equations.  

TABLE 2-2 
COMPONENT-SPECIFIC DRIVER SUBROUTINES 

Component 

Type Prepass Outer Postpass 

BREAK breakl break2 break3 

FILL filll fill2 fill3 

PIPE pipel pipe2 pipe3 

PLENUM plenl plen2 plen3 

PRIZER przrl przr2 przr3 

PUMP pumpi pump2 pump3 

ROD or SLAB htstrl htstr3 

SEPD or TEE teel tee2 tee3 

VALVE vivel vlve2 vlve3 

VESSEL vssll vssl2 vssl3
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The basic and stabilizer equations involve very different numbers of equations and 
generate two different matrix structures. As a result, two separate subroutines are used 
for the solution of global systems of linear equations. The more basic of these, Solver, 
operates on equations that are dominantly tridiagonal in structure (the stabilizer 
equations and pressure equation). The solution of the more complex linear system 
associated with the basic (semi-implicit) step is driven by subroutine BlockSolver.  
Subroutine Solver is described in the following subsection, and subroutine 
BlockSolver is described in Section 2.4.2 (on the outer-iteration logic).  

Subroutine Solver. The interface to this subroutine is relatively simple. It uses the 
module Matrices; therefore, it has full access to this data structure. Only two 
arguments are passed: 

"* an abbreviated name (character string) for the array of independent 
variables; and 

"* an optional argument set to "factored" when the coefficient matrix already 
has been factored by a previous call to Solver (only applicable during the 
solution of the stabilizer mass and energy equations).  

An example of use of subroutine Solver is the solution of the stabilizer mass and 
energy equations driven by subroutine post. The following code is inserted just before 
the end of the DO loop on ibks: 

IF (ibks.EQ.l) THEN 

CALL Solver ( 'arl') 
CALL Solver ('arv') 
CALL Solver ('arel', 'factored') 
CALL Solver ('arev', 'factored') 
CALL Solver ('ara', 'factored') 
IF( isolut.NE.0) CALL Solver ('arc', 'factored') 
ENDIF 

This argument choice permits a single point within Solver for association of auxiliary 
arrays needed by solution methods and transfers knowledge of the data structure to a 
lower level for parallel methods based on distributed memory machines.  

The arrays to be used in the actual solution are selected via pointer association. As an 
example, the current implementation contains allocatable arrays in module Matrices, 
such as 

TYPE (sparseMatrix), ALLOCATABLE, TARGET :: al(:), ag(:) 
REAL, POINTER, DIMENSION (:) :: arlS, arvS, & 

& arelS arevS, araS, arcS, vvtS, vltS, arlRHS, & 
& arvRHS, arelRHS arevRHS, araRHS, arcRHS, & 
& vvtRHS, vltRHS 

INTEGER, POINTER, DIMENSION (:) splitRowsC, splitRowsE 
INTEGER, POINTER, DIMENSION C:) :: splitRows 
TYPE (sparseMatrix), POINTER at(:)
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REAL, POINTER, DIMENSION (:) :: rhs(:), ans(:)

Operations within Solver are on generic arrays such as at, rhs, and ans, which are 
associated by a call to subroutine SetNetPointers at the beginning of Solver. The 
pointers are associated based on the array name passed through from Solver's argument 
list. For example: 

SELECT CASE (varname) 
CASE ('arl') 

at => al 

rhs => arlS 
splitRows => splitRowsC 

CASE ('vvt') 
at => ag 

rhs => vvtS 
splitRows => splitRowsE 

END SELECT 

Following this initial decision on array usage, the solution proceeds as follows. The array 
splitRows is used to divide the iD problem into a set of tridiagonal blocks. These block 
systems are solved and coefficient arrays are stored for later back-substitution. A 
substitution of these results is made into the splitting rows by subroutine 
EqnSubstitute to generate the network equation system, which is solved with calls to 
Linpack subroutines sgef at and sgeslt. If 3D components are present, the solution of 
the network equations involves the generation of coefficient arrays multiplying 
undetermined 3D variables. In this case, a section of Solver is used to substitute these 
network results into the 3D equations, and the 3D equations are solved for final values of 
3D variables. The initial implementation of Solver uses the original TRAC-P Capacitance 
Matrix coding (subroutine matsol) to handle the solution of the 3D portion of the 
problem.  

All three major equation solution stages just outlined use lower-upper (LU) factorization 
and store sufficient information so that the factorization need not be repeated. When 
subroutine Solver is called with the optional dummy argument "factored" present, 
processing jumps immediately to the back-substitution step of the 3D solution, then 
proceeds through back-substitution of the network equations and of the initial 
tridiagonal systems to obtain the final values for the variables (stored in rhs).  

The current separation of the solution steps provides immediate opportunities for more 
parallel execution. In previous versions of TRAC, the contents of subroutines such as 
femomx (now StbVelX), tf3ds, and stbme3 had to be executed after all similar 1D 
subroutines. Now these subroutines, with their reduced scope of activity (they no longer 
do the equation solution, but only evaluate their terms) can be executed in parallel with 
1D subroutines. A planned later version of Solver will provide the opportunity for 
additional parallel computation within the solution process. The order of equation 
reduction will be altered so that operations on the sparse blocks associated with 3D 
components can be performed at the same time as those for the tridiagonal blocks 
associated with 1D components. Only the solution of the network matrix will remain as
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a serial step. The greatly reduced amount of information required by the network matrix 
will make solution of the preceding steps more amenable to a distributed memory 
environment.  

Each stage of the timestep-advancement calculation is described in the following 
sections.  

2.4.1. Prepass Calculation 
This stage of the calculation includes the stabilizer momentum equation solution and 
evaluation of various old-time quantities and other bookkeeping necessary at the 
beginning of each timestep. The prepass calculation uses the modeled-system solution 
state at the completion of the previous timestep (the beginning of the current timestep) 
to evaluate numerous quantities to be used during the outer-iteration-stage and 
postpass-stage calculations. The calling tree associated with the prepass is controlled by 
subroutine prep and can be traced from the NOMOD: :SUBROUTINE prep entry in 
Appendix A. The prepass begins by evaluating the signal variables and the control 
blocks and determining the set status of all trips for the control procedure. Subroutine 
trips (not to be confused with subroutine trip that interrogates a trip's set status to 
decide on initiating specific consequences controlled by the trip) calls for these 
evaluations. Subroutine prep then loops over all of the components twice via calls to 
subroutine prepid (which calls the 1D component-specific prepass subroutines), 
htstrl (for HTSTR component prepass processing), and prep3d (for 3D VESSEL 
components). The prep loop index number is communicated to these lower-level 
routines using the variable ibks (defined in module OneDDat). In the first loop through 
prep, each of the component-specific routines called by prepid begins the prepass by 
moving its end-of-timestep values (its new-time values) from the previous timestep into 
the variable storage for its old-time values for the current timestep. Next, wall and 
interfacial friction coefficients are evaluated. The predictor stabilizer velocities (which 
are locally defined) and the setup of the stabilizer motion equations are evaluated. For 
components that require heat-transfer calculations, the prepass evaluates material 
properties and heat-transfer coefficients. The HTSTR component prepass is evaluated 
only in the first loop through subroutine prep. The prepass for HTSTR components can 
be more complex than that for 1D components. Besides calculating material properties 
and heat-transfer coefficients for both average and supplemental rods, the prepass 
evaluates quench-front positions and fine-mesh properties if the reflood model has been 
activated. Subroutine prep3d also is called from prep in the first pass to evaluate the 
3D predictor motion equations and to set up the 3D stabilizer motion equations (prep3d 
also handles VESSEL constitutive quantities needed by the motion equations). The 
stabilizer motion equations subsequently are solved by calls to subroutine Solver (one 
call each for liquid and vapor) at the end of the ibks = 1 pass. The second loop through 
the prep subroutine (ibks = 2) stores the results from Solver for the stabilizer 
velocities ("tilde" velocities) into the individual components' databases by again calling 
prepid and prep3d.  

Control System Details: Subroutine trips calls subroutines svset, cbset, and 
trpset. Subroutine svset uses beginning-of-timestep values of system-state variables 
to define the signal variables. Subroutines cbset and conblk, which are called by
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subroutine cbset, evaluate control-block function operators. Subroutine trpset uses 
the current signal-variable and control-block values to determine the set status of trips.  

State-Transition Method for Laplace Transforms: TRAC-M uses state-transition
method analytic solutions to evaluate the first-order lag, first-order lead lag, second
order lag Laplace-transform control blocks, and the first-order lag Laplace transform in 
the PI- and proportional-integral-derivative (PID)-controller control blocks. These 
analytic solutions were developed originally for TRAC-PF1/MOD2 (Version 5.4.02) to 
replace explicit numerics for evaluating the three Laplace transform control blocks and 
to replace semi-implicit numerics for evaluation of the PI- and PID-controller control 
blocks. The state-transition-method analytic solutions are unconditionally stable for all 
TRAC-M timestep sizes, whereas explicit numerics limits the TRAC-M timestep size to 
be less than the smallest lag constant for a numerically stable solution. For a given 
numerically stable timestep size, these analytic solutions are slightly more accurate than 
explicit and semi-implicit numerics. Implementing the state-transition method affected 
three subroutines: cbset was modified to set up for the three Laplace transforms to pass 
additional information in the form of two new actual arguments to subroutine conblk 
for the second-order lag Laplace transform and to evaluate the first-order lag function 
for the P1- and PID-controller control blocks with the analytic solution; conbik was 
modified to perform the analytic solutions for the three Laplace transform control blocks 
and to receive the new arguments from cbset; and rcntl was modified to perform 
additional input-error checking (on the Laplace-transform function constants). Details 
on the implementation and testing of these analytic solutions are given in Ref. 4. Note 
that the original update that is described in Ref. 4 used the TRAC-PF1/MOD2 version of 
the Control System database. The current Control System database is a direct mapping 
of that database onto Fortran 90-derived types; details on the current Control System 
database are given in Section 3.2.2.  

Stabilizer Velocity Solution Details: In older versions of TRAC, the order of the 
velocity variable array was effectively assigned by subroutine srtlp (called by input).  
The information needed to set up the network solution matrices was established by 
subroutine setnet during initialization. The current code requires storage of more 
information to link the component and systemwide views of the equations. Data are 
needed within each component for the matrix subscript corresponding to the stabilizer 
velocity at each cell face. These data are created by a call to SetSysVar (set system 
variables) near the beginning of subroutine init (see Section 2.3.) and stored in the 
compSeg data structure as the variable values at the upper and lower bounds of each 
mesh segment and the increment (+1 or -1) in system variable index as the local cell 
index is increased. Network equations are selected during the matrix setup in subroutine 
SetSysMat (called by init). Indices of the matrix rows representing the network 
equations are placed into a dynamically allocated pointer array named splitRowsE 
("E" for edge) contained in module Matrices. A similar array named splitRowsC 
marks network equations for matrices related to cell-centered variables.  

The subroutine SetSysMat also stores indices for the off-band coefficients, which are 
stored in arrays with the type sparseIndicesT for 1D portions of the matrix and in 
arrays with type vssMatIndT for 3D portions. These indices provide information
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necessary to recover actual coefficients from arrays of derived-type sparceMatrixT 
(1D) and vssMatrixT (3D). A detailed definition of these derived types is provided in 
Appendix C. For the current difference equations, two allocatable sparseIndicesT 
arrays and two allocatable vssMatIndT arrays are generated: one set for cell-edge-based 
equations (aIndE or i3DE) and one for cell-centered equations (aIndC or i3DC).  
Coefficients in ID regions are stored in sparseMatrixT arrays al for liquid and av for 
gas equations. Coefficients for 3D regions are stored in vssMatrixT arrays a3Dl for 
liquid-cell-centered equations, a3Dv for vapor-centered equations, a3DlE for liquid-cell
edge equations, and a3DvE for vapor-cell-edge equations. If necessary for future 
difference methods, this derived type can be cloned to produce types with more than one 
bandwidth or altered so that component a is an allocatable pointer. The choice of a fixed
dimension "bandwidth" for main-coefficient-component a was made based on the fixed 
structure associated with a given difference method and on timing results on the use of 
allocatable pointers within derived types.  

Calculation of the coefficients and right-hand side of the stabilizer velocity equations is 
performed on a component-by-component basis with calls to StbVellD (1D), and 
StbVelx, StbVely, and StbVelz (3D). These subroutines use the component data 
structure to obtain basic physical variables and store coefficient information directly into 
the systemwide equation data structure (in module Matrices). Solution of these 
equations is driven by calls to Solver from subroutine prep at the end of the first pass 
through its loop on ibks. Results are stored back into the component data structure by 
bksmom (1D), and StbVelx, StbVely, and StbVelz (3D).  

Heat-Transfer-Coefficient Details: Subroutine htstrl initially calls subroutine 
htstrv to initialize the VESSEL-component hydrodynamic-cell arrays by setting 
HTSTR parameters to zero. This occurs before some of their elements have HTSTR 
parameters stored in them by subroutine vssrod after subroutine corel evaluates the 
HTSTR parameters. Subroutine fltom subsequently is called to transfer hydrodynamic 
data into the necessary HTSTR arrays; subroutine corel is called to evaluate heat
transfer coefficients, fine-mesh properties, and quench-front positions; and subroutine 
fltom again is called to transfer heat-transfer information back into the hydrodynamic 
database. From subroutine corel, subroutine rfdbk is called to evaluate reactivity 
feedback, and subroutine rkin is called to evaluate the point-reactor kinetics model.  

Note: Subroutine htstrv: In future code versions, subroutine htstrv will be 
renamed and its call moved.  

2.4.1.1. 1D Component Prepass Calculation with prepid. The PIPE prepass is 
driven by subroutine pipel, which is called by prepid. The prepid calling tree can be 
traced from the NOMOD: :SUBROUTINE prepid entry in Appendix A. As can be seen 
under the prepid entry, the pipel calling tree can be traced from Pipe: : SUBROUTINE 

pipel. Creation of a new component similar to a PIPE would require the addition of a 
call in prepid to handle the prepass for that component. In the first pass, subroutine 
pipel initially calls subroutine savbd to move boundary information for adjacent 

components into the derived-type component array glDAr (defined in module 
GenlDArray) and to move data from the last completed timestep into the old-time
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arrays via a call to subroutine TimeupGenlD. The first pass through pipel also results 
in a call to preper (see Appendix A, GenlD Task: :SUBROUTINE preper, for 
preper's call tree). Subroutine preper communicates directly with the component
derived-type data structure glDAr and moves most information to lower levels via 
argument lists. Subroutine preper currently handles four types of tasks in its calls to 
other subprograms. The first of these is general bookkeeping, including calculation of 
the mass flow at the boundaries of the component via calls to flux and a call to volv to 
compute cell-centered velocities. The second task is calculation of basic physical 
properties, such as wall-friction coefficients (call to fwall), wall-metal properties (call to 
mprop), and heat-transfer coefficients for the heat-conduction model that is built into the 
PIPE component itself (call to htpipe), and interfacial drag coefficients (StbVel ID). The 
third task that is driven by preper is the setup for the stabilizer momentum equations, 
also delegated to StbVellD (which is a modified version of the subroutine femom that is 
in older TRAC versions). The fourth task is the evaluation of any component-specific 
model. For instance, if the component type is a pump, then the subroutine puinpsr is 
called to provide pump momentum source terms. For a specific component, any or all 
steps may occur during a call to preper by its component prepass driver routine.  
Subroutine preper is a transition routine from the standpoint of data communication. It 
uses the systemwide and component-specific data structures, but passes on information 
on the state of the fluid through the argument lists of lower-level subroutines (more 
information on TRAC's data structures and internal data communication is given in 
Section 3.2). After preper is called, subroutine pipeix is called to calculate the liquid 
volume discharged (qout), collapsed liquid level (z), and volumetric flow rate (vf low).  
Subroutine TableTransComp is called to establish the PIPE boundary conditions, and 
subroutine evfxxx is called to evaluate the xxx component action function. This 
completes the first pass (ibks = 1) of the PIPE prepass calculations.  

Note: pipel First Pass. In future code versions, the logic flow in the first prepid
driven passes will be modified.  

On the second pass through all components (ibks = 2), subroutine bkanom stores the 
results from subroutine solver's global calculation for the. stabilizer momentum 
velocities into the individual iD component's databases via a call to subroutine bksmom.  

2.4.1.2. 3D Component Prepass Calculation with prep3& ibks = 1: A new-time to 
old-time variable update initially is performed in the first pass by vssll calling 
subroutine timupd. The subroutine dvpscl is called to initialize scale factors on the 
derivative of velocities with respect to pressure if water packing in the VESSEL has been 
detected. Subroutine vrdb is called to define velocities in the upstream radial direction 
for the inner ring of cylindrical VESSELs. The 3D interfacial shear is initialized with a 
call to ifset. Donor-cell weighting factors and mixture densities are initialized, vent
VALVE calculations are performed, and momentum source terms are defined within 
vssll. The boundaries of the first and last theta cells are equilibrated with a call to 
setbdt. Subroutine cif3 is called to evaluate the interfacial shear coefficients.  
Subroutine prefwd is called to evaluate the wall-shear coefficients. Subroutines 
StbVelx, StbVely, and StbVelz are called to set up the 3D stabilizer motion equations.  
Finally, boundary data are updated by calls to subroutines set3dbd and
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TableTransComp, and (for VESSELs modeled in cylindrical coordinates) subroutine 
setbdt matches values for the first and last azimuthal-cell boundaries.  

ibks = 2: Subroutines StbVelx, StbVely, and StbVelz are called to store the results 
from subroutine Solver for the 3D stabilizer velocities into the individual VESSEL 
databases. As on the first pass, boundary data are updated by calls to subroutines 
set3dbd and TableTransComp, and (again, for VESSELs modeled in cylindrical 
coordinates) subroutine setbdt matches values for the first and last azimuthal-cell 
boundaries.  

2.4.2. Outer-Iteration Calculation 
The hydrodynamic state of the modeled system is analyzed in TRAC-M by a sequence of 
Newton iterations that use full inversion of the linearized equations for all 1D hydraulic 
component loops and 3D VESSELs during each iteration. The convergence criterion is 
based on the calculated pressure changes (specifically, on the variable epso that is 
provided by user input). Throughout the sequence of iterations that constitute an outer 
calculation (each called an outer iteration within TRAC-M), the majority of the 
properties that were evaluated during the prepass and the previous-timestep postpass 
remains fixed. Such properties include wall (SLAB and ROD) temperatures, heat
transfer coefficients, wall- and interfacial-shear coefficients, stabilizer tilde velocities, 
and quench-front positions. The remaining fluid properties can vary to obtain a 
consistent hydrodynamic-model solution.  

Subroutine hout controls the overall structure of an outer iteration, as shown under 
NOMOD: : SUBROUTINE hout in Appendix A, although the majority of the processing is 
handled by the subroutine outer. Subroutine hout contains an infinite loop that 
functions only to call subroutine outer and will exit only if the problem converges to 
the specified criteria; water-packing occurs as indicated by ipakon = 1 (set by either 
subroutine tflds3 for 1D components or subroutine out3d for 3D VESSEL 
components); the outer-iteration number oitno exceeds the input limit noitmx; or a 
velocity reversal occurs in a cell, as indicated by the logical variable lbckv being set true 
in either subroutine tflds3 or subroutine tf3ds3. For the case of water-packing, 
subroutine outer resets the outer-iteration-number oitno to zero and control returns 
all the way back to either trans or steady. These subroutines subsequently set iofail 
to zero and call hout again to retry the timestep. Subroutine outid performs the 
timestep backup for water-packing for 1D hydraulic components via calls to 
BackUpPlen and BackUpGenlD, whereas subroutine vssl2 calls subroutine backup 
for this function. The fluid thermodynamic properties also are reevaluated in this case.  
For the cases of a velocity reversal and excessive outer iterations, the number of outer 
iterations oitno is set to -100 within subroutine outer, the subroutine post is called 
from subroutine outer (the action of the post subroutine under this condition is 
described in a subsequent section), and program control is returned to either the 
subroutine trans or steady to select a new timestep size.  

The outer subroutine calling tree can be traced from NOMOD: :SUBROUTINE outer.  
Subroutine outer loops over most component subroutines twice (no action is taken on 
HTSTRs), communicating the pass number through the variable ibks in module
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OneDDat. In the outer stage, variable ibks has the values 0 and 1. Subroutine outer calls 
outid and out3d for 1D and 3D components, respectively.  

Subroutines tflds, tf3ds, and tfpln set equation terms for the individual mesh cells 
in 1D components, VESSELs, and PLENUMs, respectively: they generate coefficients for 
linearized mass and energy equations and store the coefficients in the blockMatrixT 
derived-type array named blocks. After the first loop over all components (ibks = 0), 
the solution of the full system of equations is driven by a call to subroutine 
BlockSolver from subroutine outer. BlockSolver provides a full solution for the 
pressure changes during the current iteration only. Final generation of the new time 
pressures, temperatures, and void fractions is accomplished during subroutine outer's 
second loop over all components within the subroutines tflds3, tf3ds3, and tfplbk 
for 1D components, VESSELs, and PLENUMs, respectively. Details on subroutine 
BlockSolver are given in the following subsection.  

Subroutine BlockSolver: Subroutine BlockSolver communicates entirely through 
module variables. It has no argument list and thus, none of the special pointer 
assignments that begin subroutine Solver (see Section 2.4). Solution begins with a block 
reduction in a loop over all elements of the derived-type array blocks (type 
blockMatrix). Pressure equations are isolated from the reduced system, using 
subroutines PressCoeflD, PressCoef 3D, PressCoefJunlD, and PressCoefJun3D.  
The results of these operations are stored directly into the sparse matrix data structures 
used by subroutine Solver, and Solver then is called to obtain the pressure variations 
for the current iteration. Subroutine DpJun calculates the difference between iteration 
pressure changes in the two cells adjacent to each mesh segment junction (see Section 
2.3) and stores them in blocks%cDp, ending the work performed by BlockSolver.  
Completion of the formal solution process involves substitution of pressure-change 
values into intermediate equations to obtain the next approximation for all independent 
variables (pressures, temperatures, and void fraction). These operations are performed 
by subroutines tflds3 (for 1D components), tfplbk (PLENUM components), and 
tf3ds3 (VESSEL components).  

Variable oitno (named common istat) holds the iteration count; it is updated in 

subroutine hout and used to trigger special first-iteration operations in low-level 
routines such as tfld and vssl2. There are also tests on oitno as part of the logic for 
time-level weighting of convected mass and energy (the xvset logic). The iteration 
count also is used by subroutine newdlt as a contribution to the calculation of timestep 
size. As previously noted, it also takes on the function as a flag to the postpass 

containing a value of -100 in the event of an iteration failure. Subroutine out3d also 
temporarily sets this variable to a value of 2000 for problems with multiple VESSEL 
components and uses this value as a flag to control the operation of the vssl2 outer

iteration subroutine. The value is reset to the original iteration count following this 
processing.  

2.4.2.1. ID-Component Outer-Iteration Calculation with outld. All 1D hydraulic 

components in a particular loop are handled by a single call to subroutine outld in each 
pass. This routine calls the appropriate component-specific, outer-iteration subroutine.
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Component-specific, outer-iteration subroutines have names that begin with the 
component type and end with the numeral 2, as previously illustrated in Table 2-2. For 
example, the PIPE-component, outer-iteration subroutine is called pipe2. Creating a 
new component similar to a PIPE would require adding a call in outid to handle the 
outer iteration for that component. The pipe2 outer-iteration routine's calling tree can 
be traced from Pipe: : SUBROUTINE pipe2 in Appendix A.  

The outer-iteration subroutines for most of the ID hydraulic components call subroutine 
inner to perform common functions. Subroutine inner obtains boundary information, 
calls subroutine tfld to perform the appropriate hydrodynamic calculation, and resets 
the bd array by calling subroutine TableTransComp. Subroutine tfld calls subroutine 
tfldsl to set up the initial velocity approximations and their pressure derivatives for 
iD components (first outer iteration only), subroutine tflds to solve the basic semi
implicit finite-difference equations, and subroutine tflds3 to obtain the next 
approximation to the new-time pressures, temperatures, and void fractions. The 
BREAK- and FILL-component, component-specific, outer-iteration subroutines (break2 
and fill2, respectively) simply do boundary updating, with no call to inner 
performed. The component-specific outer-iteration routine for the PLENUM component, 
plen2, also deviates from the norm by calling the lower-level service routines directly 
with the actions performed by subroutine t f ld for the other iD components replaced by 
those of subroutines tfplen, auxplen, and tfplbk.  

2.4.2.2. 3D-Component Outer-Iteration Calculation with out3d.  
Subroutine out3d functions in a similar manner to subroutine outid, except that each 
3D VESSEL component calls subroutine vssl2 to set up the basic semi-implicit 3D 
finite-difference equations and to update its independent variables, with calls to low
level service routines specific to 3D VESSEL components (e.g., tf3dsl, tf3ds, and 
tf3ds3). The calling tree from outer to out3d and lower is provided in Appendix A 
under NOMOD: : SUBROUTINE outer.  

Subroutine outer initially calls subroutine out3d, with both of the variables ibks and 
i f f3d set to zero. This subroutine calls the component-specific, outer-iteration routine 
vssl2 for each VESSEL present in the problem. Subroutines bakup and Therm3D are 
called at this point if a water-packing backup is necessary, as indicated by ipakon = 1.  
For the normal case without water packing, the vssl2 subroutine initially calculates the 
VESSEL source terms and donor-cell contributions in the first iteration (oitno = 1). This 
calculation is followed by a call to tf3dsl to generate an estimate of the new-time 
velocities from the motion equations and evaluate the variation of velocities with respect 
to pressure. Subroutine cella3 is called to evaluate cell-averaged quantities needed for 
the interphasic heat-transfer calculation, and Htif3D is called to perform these 
calculations. The boundaries of the first and last theta cells are equilibrated with a call to 
setbdt. The mass transfer to the VESSEL from 1D components is determined with a call 
to flux. Subroutine tf3ds then is called to set up the basic mass and energy equations, 
and setbdt is called a second time.  

When vssl2 is called with variable iff3d = 1, subroutine tf3ds3 is called to update 
the VESSEL's independent variables (after BlockSolver has been called). Subroutine
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vssssr also is called to perform a steady-state, change-rate calculation for the VESSEL, 
if required. Subroutine setbdt also is called to equilibrate the first and last theta cells.  

When ibks = 1, VESSEL boundary data are updated with calls to set3dbd and 

TableTransComp.  

2.4.3. Postpass Calculations 
TRAC performs a postpass to solve the stabilizer mass and energy equations and to 

evaluate both fluid mixture properties and heat conduction in metal structures after the 

modeled-system hydrodynamic state has been evaluated by a sequence of outer 

iterations that converge. Subroutine post performs this postpass. This same subroutine 

also begins implementation of the timestep backup procedure, which is explained in 

detail in the next section. Subroutine post also can initiate a timestep backup if either 

the logical variable lbkpst or lbkcyl (defined in module GlobalDat) is set true 

during the postpass. Variable lbkpst is set by (1) subroutine bksstb for iD 

components, (2) subroutine bkspln for PLENUM components, and (3) subroutine 

bkstb3 for 3D VESSEL components. This variable indicates that the backup occurred 

because the results of the post calculations either violate required stability criteria or 

exceed maximum allowed variations in hydraulic parameters. Logical variable lbkcyl 

is set in subroutine htstrp and indicates that the backup is forced because heat-transfer 
energy conservation is not satisfied. When either of these conditions occurs, post 

returns control to the calling subroutine (either trans or steady), the number of outer 

iterations oitno is reset to -100 and iofail is set to 1, and post is called again to begin 
the timestep backup.  

The calling tree associated with the postpass can be traced from the Appendix A entry 

NOMOD: : SUBROUTINE post. The postpass is driven by subroutine post, which loops 
through all of the hydraulic components three times. The postpass for the HTSTR 

component is treated with a single call to subroutine htstr3 after all hydraulic 

components have been processed. As with prep and outer, the index for this loop is the 

variable ibks in module OneDDat. However, unlike these other subroutines that 

utilized infinite WHILE loops, the variable ibks is a DO loop index within subroutine 
post. This stage of the calculation performs the solution of stabilizer mass and energy 

equations when ibks = 1 and 2, performs the solution of the conduction equations and 

evaluation of fluid properties (viscosity, specific heat, conductivity, surface tension, and 

heat of vaporization) when ibks = 2, and performs other minor computations necessary 

to complete each timestep (mass flows and mean velocity) when ibks = 3. The 

subroutine post receives information on the success of the outer-iteration solution 

through the variable oitno, as defined in the module OneDDat. On an iteration failure, 

as indicated by the number of outer iterations, oitno having a value of -100, subroutine 

post sets the variable ibks to two and thus skips the equation solution steps.  

Subroutine post loops over all hydrodynamic components, calling driver routines 

specific to the iD components that have the suffix "3" (e.g., pipe3) and subroutine 

post3d for VESSEL components. Equation setup is done at the component level by 

subroutines stbme, StbME3D, and stbmpl. At the conclusion of the ibks = 1 pass, 

subroutines StbMEJun, StbME3DJun, and Solver are called to solve the global 

stabilizer mass and energy equations. On the second pass, values are stored in the
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component data structure by subroutines bksstb, bkstb3, and bkspln for ID, 3D, and 
PLENUM components, respectively.  

2.4.3.1. 1D Component Postpass Calculation with post. Subroutine post calls 
each of the 1D hydraulic component-specific postpass routines directly (i.e., 
intermediate subroutines such as either prepid or outid are not used in the 1D 
postpass calculations). The call tree of the PIPE-component postpass routine, pipe3, is 
shown in Appendix A, starting under entry Pipe: : SUBROUTINE pipe3. At the 
component level, boundary information is passed with the same mechanism as in the 
prepass.  

ibks = 1: Setup of the stabilizer mass and energy equations for the 1D 
components is driven by a call to subroutine constb, which in turn calls stbme.  

ibks = 2: Subroutine pipe3 first calls subroutine savbd to retrieve bd array 
boundary conditions. Subroutine efvxxx is called to evaluate the xxx component action 
function, if required. Subroutine poster then is called to update the individual 
component's database with the results from Solver with a call to bksstb, along with 
several other tasks (including evaluation of fluid properties). Finally, the subroutines 
evaldfld and evaldf2d are called in this pass to evaluate the absolute change in 
various hydraulic parameters (this information is used in the timestep-size logic). On a 
timestep backup condition, poster drives the restoration of all new-time variables to 
their original old-time values needed to restart the iteration via a call to TimeUpGenlD, 
but most other tasks in poster are suppressed. Subroutine pipe3 skips the table 
evaluation of heat sources (call to subroutine evfxxx) for this condition.  

ibks = 3: Subroutine post calls poster only in the final postpass. The final call 
to subroutine poster functions only to define the end-of-timestep mass-flow void
fraction-to-density ratios for the bd array in this pass.  

2.4.3.2. 3D-Component Postpass Calculation with post3d. The intermediate sub
routine post3d is called by post to perform the VESSEL postpass. The calling tree of 
post3d can be traced from the entry VessTask: : SUBROUTINE post3d in Appendix A.  

As with subroutine out3d for the basic equations, post3d loops over the individual 
VESSEL components in the modeled system, in this case calling vssl3 for each VESSEL.  
Subroutine post3d calls set3dbd and TableTransComp to update VESSEL boundary 
information.  

Subroutine vssl3 calls StbME3D to set up the mass and energy stabilizer equations and 
stores the results from the global calls to Solver from post (which concluded the ibks 
= 1 pass over the hydrodynamics components in post) into the individual VESSEL 
components' databases with a call to bkstb3.  

2.4.3.3. HTSTR-Component Calculation with htstr3. Subroutine htstr3 con
trols the HTSTR postpass, as shown in Appendix A under the entry 
RodTask: :SUBROUTINE htstr3. In the event of a timestep backup, the new-time 

values are reset to the values at the beginning of the timestep with calls to TimeUpHS and
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TimeUpHSl. Under normal conditions, the postpass is performed by htstr3 first calling 

fitom to transfer data between the HTSTR and hydraulic databases. Subroutine core3 

then is called to perform the HTSTR-component postpass calculations. In core3, 

subroutine f rod is called to evaluate the temperature distribution and gap heat-transfer 

coefficients by calling subroutines rodht and gapht, respectively. Subroutine htstrp 

then is called to evaluate the HTSTR instantaneous power and energy in each ROD or 

SLAB element.  

2.5. Timestep Advancement and Backup 

The modeled-system solution state is updated to reflect the new-time (end of the 

previous timestep or beginning of the next timestep) conditions upon the successful 

completion of a timestep calculation (evaluated by the prepass, outer iteration, and 

postpass stages). This is accomplished at the start of the next timestep's prep stage and is 

handled on a component-by-component basis within their "1" subroutines, i.e., pipel.  

During this step, all dual-time variables are updated by copying the values of the new

time variables into the old-time variables. The prepass, outer iteration, and postpass 

steps that follow during the next timestep then attempt to evaluate new values for the 

new-time variables for the end-of-timestep condition. This process is repeated as the 

problem time advances with each timestep.  

Calculating a new timestep size occurs just before the prep stage and is controlled by 

subroutine timstp. Two types of algorithms, inhibitive and promotional, are 

implemented in subroutine newdit to evaluate the next timestep size. The inhibitive 

algorithms limit the new timestep size to ensure stability and reduce finite-difference 

error. The promotional algorithm increases the timestep size to improve computational 

efficiency (by requiring fewer timesteps during a time interval). A new maximum 

timestep size is calculated based on each of the following conditions: the 1D and 3D 

material Courant limits; the VESSEL and total mass error limits; the outer-iteration 

count; the maximum allowable fractional change in gas volume fraction, temperature, 

and pressure; the diffusion number for heat transfer; and the maximum allowable 

fractional change in reactor-core power and adjustable-VALVE flow area. The new 

timestep size selected is the minimum imposed by the above conditions and the dtmax 

maximum timestep size specified by the user in the timestep data (Time Step Data Card 

1). Subroutine newdlt is called by timstp to calculate each conditional maximum 

timestep size, except for those based on the reactor-core power level and VALVE flow

area adjustment. The reactor-core power-change maximum timestep size is evaluated by 

subroutine rkin during the prepass stage for HTSTR components, and the VALVE flow

area adjustment-change maximum timestep size is evaluated by subroutine vivex 

during the prepass stage for VALVE components. During the outer-iteration stage, 

subroutine hout applies the lesser of these two maximum timestep sizes to define delt 

when it is less than the timestep size defined in subroutine newdit.  

TRAC-M will back up and try to reevaluate the modeled-system new-time solution state 

if a timestep solution is not completed successfully. A backup occurs either when the 

outer iteration does not converge (necessitating a reduction in the current timestep size) 

or when a flag indicating an extraordinary condition is activated. Either one will require
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that the outer-iteration procedure be reevaluated. It is important to understand that 
there are two types of backups, one corresponding to each scenario. When the outer 
iteration fails to converge during the outer subroutine, the current timestep size is 
reduced and the calculation backs up to the start of the prep stage after the control
parameter evaluation. This is necessary because any variable calculated during the 
prepass that is dependent on the timestep size was computed for the original timestep 
size and not for the newly reduced timestep size. In addition, all new-time variables are 
reset to reflect their beginning-of-timestep values. This enables TRAC-M to begin again 
in the prep stage as for any other timestep calculation, except for having reduced the 
timestep size because of the backup. When the timestep requires one or more backups, 
the timestep size is halved for the first, second, and third backup, quartered for the 
fourth and fifth backup, and tenthed for backups thereafter. This backup process 
continues until either a small-enough timestep size is reached to allow outer-iteration 
convergence to be satisfied or the timestep size needs to be reduced below the dt-min 
minimum timestep size from the timestep data, wherein TRAC-M stops the calculation.  

The second type of backup is initiated by a flag being set, signaling an extraordinary 
condition such as a water pack. This indicates that the outer iteration needs to be 
repeated to account for the extraordinary condition. TRAC-M resets any new-time 
variables that potentially have been evaluated incorrectly by the current attempt 
through subroutine outer with their old-time values, makes appropriate adjustments to 
prevent the extraordinary condition, and repeats the outer-iteration calculation. For this 
type of backup, the timestep size does not change, making it unnecessary to repeat the 
prep-stage calculation.  

The difference between the two types of backups is that for a backup to the start of the 
prep stage, the timestep size is adjusted, all new-time variables are reset to their 
beginning-of-timestep values; and variables evaluated during the prep stage are 
reevaluated using the newly adjusted timestep size. For a backup to the start of the outer 
iteration, no change occurs in the timestep size and only new-time variables calculated 
during the outer iteration are reset to reflect their beginning-of-timestep values.  

2.6. Output Processing 

The TRAC-M program normally produces four different output files: TRCOUT, 
TRCMSG, TRCXTV, and TRCDMP. TRAC-M also may produce a TRAC-format input 
data file TRCINP and a labelled input data file INLAB. The TRCOUT-, TRCXTV-, 
TRCMSG-, TRACIN- and TRCJNP-, and INLAB-file real-valued variables can have SI or 
English units based on the 0 (default value) or 1 value of namelist variables ioout, 
iogrf, ioinp, and iolab. SI- or English-units symbols can be output to the TRCOUT 
and TRCMSG files along with their real-valued variable values when namelist variable 
iunout = 1 (default value). The TRCDMP file real-valued variables have SI units. The 
output processing for each timestep during normal execution is performed via a call to 
subroutine pstepq from either subroutine trans or steady. Subroutine pstepq calls 
subroutines edit (large edit) and sedit (short edit) to write information to the 
TRCOUT file, subroutine xtvdr to generate graphics data in the TRCXTV file, and 
subroutine dmpit to write information to the TRCDMP fie.
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The TRCOUT file is in ASCII format and contains a user-oriented presentation of the 
calculation's input data and output results. During the input process, an echo of the 
input and restart data is output, and at selected times during the calculation, values of 
the current solution state of the modeled system are output. The TRCMSG file is in ASCII 
format and contains diagnostic messages concerning the progress of the calculation. File 
TRCINP is output only when input data TRACIN file is in the free format and file 
INLAB is output when namelist variable inlab = 3 is input, as was previously discussed 
in Sec. 2.2. File TRCXTV is in both ASCII and binary formats; it provides data for XTV 
graphics. The TRCDMP fie is a binary file designed to provide solution-state data for 
problem restarts by TRAC-M.  

Note: XDR Format. For namelist-input variable iogrf = 2, the entire file TRCXTV is 
encoded in the XDR format, including the ASCII information that is written for iogrf = 

0 or 1. For iogrf = 2, file TRCXTV is suitable for use with XMGR5; it is in SI units.  

2.6.1. ASCII Output Processing with edit 
Subroutine edit is the main driver routine for program ASCII output and calls 
subroutine sedit to write summary information for the time and subroutine wcomp to 
output information on the signal variables, control blocks, and components. Subroutine 
edit also outputs GSS convergence-test dat and CSS adjusted/monitored data after all 
of the components have been processed. The first edit written to the TRCOUT file occurs 
during the first timestep after the prep stage via a direct call to subroutine edit from 
either steady or trans; however, all subsequent time edits are written after the post 
stage when pstepq is called from these subroutines. The calling tree associated with the 
output task can be traced from entry NOMOD: :SUBROUTINE edit of Appendix A.  
Subroutine wcomp outputs general and control system data first, then invokes lower
level routines to output the solution state of each component. The component-specific 
edit routines, which have names that begin with the letter w followed by the letters of the 
component-type name, output the variable data that are important for that component to 
the TRCOUT file in an appropriate format for readability. For example, the PIPE
component edit routine is called wpipe, and the VESSEL-component edit routine is 
called wvss 1. The component-specific subroutines use subroutine ecomp to convert data 
to the requested output units (calls to uncnvt) and to write this data to the output file 
TRCOUT. The component-specific edit routines also output any additional data special 
to that particular component.  

The dominant communications channels for the ASCII output edit are modules 
(systemwide and component-specific data structures) down to the calls to uncnvt, 
which relies on its argument list. The form of the output is very difficult to trace from the 
programming. However, the resulting output file is meant to aid the code user and is not 
intended as an interface to another program. As a result, no description of this fie is 
provided here. This information can be obtained from the TRAC-M/F90 User's Manual 
(Ref. 2).  

Subroutine input opens the TRCINP file and calls subroutine preinp to determine if 
the input data TRACIN file is in free or TRAC format. A free-format TRACIN file is read 
as ASCII data and parsed for numerical values to output the input data to the TRCINP
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file in TRAC format. Then either the TRACIN file or the TRCINP file in TRAC format is 
read by the readi, readr, warray, and wiarr subroutines to process the TRAC-M 
input data.  

When namelist variable inlab = 3, the readi, readr, warray, and wiarr 
subroutines output to fie INLAB an input data echo of the TRACIN-file data with 
variable-name label comments in the free format. Outputting variable-name label 
comments between asterisks makes it a free-format fie, even though the input data 
values are right-justified in 14-column fields. With a variable-name label above its scalar 
value or to the left of its array-element values, file INLAB provides input data with 
parameter variables that easily can be identified rather than that require the input data 
format description to define them. This makes the input data infinitely more readable in 
a standard form that all TRAC-M users become familiar with and that reduces input 
data defining errors. File INLAB is renamed TRACIN for use subsequently as the input 
data file to TRAC-M. The file-INLAB option also is convenient for converting SI- or 
English-units input data in the TRACIN file to English- or SI-units input data. This is 
done with namelist variables inlab = 3, ioinp = 0 (SI) or 1 (English) for the TRACIN 
file, and iolab = 1 (English) or 0 (SI) for the INLAB fie, respectively.  

2.6.2. Graphics Output Processing with xtvdr 
Names of subroutines initializing and writing graphics information begin with the 
letters "xtv". However, this does not mean that the output is useful only to the graphics 
postprocessor named "XTV". This key program interface is well indexed and contains all 
of the information necessary to extract data for other data postprocessing, including 
translation for use by other graphics packages.  

The graphics output is initialized with a call from subroutine init to xtvinit (see 
Appendix A, NOMOD: : SUBROUTINE init), which sets the descriptive names of all array 
variables to be written to the graphics file TRCXTV and opens TRCXTV. Initialization 
continues with a call to subroutine xtvdr, using an argument of zero for the variable 
xmode. This value of the dummy argument xmode is propagated to lower-level 
subroutines through argument lists and triggers a mode that writes time-independent 
component information and index information about time-dependent variables to file 
TRCXTV (in ASCII format, unless namelist-input variable iogrf = 2).  

The actual binary graphics output is driven by subroutine xtvdr, with a value of one 
passed to the dummy argument xmode. This call appears in subroutines trans, steady, 
and pstepq. The calling tree associated with the writing of graphics data can be traced 
from Appendix A entry Xtv: : SUBROUTINE xtvdr. Subroutine xtvdr begins writing 
for a timestep by calling xtvbufs to output the edit time. It then loops over components 
calling the component-specific output subroutines (e.g., xtvpipe, xtvtee, xtvvalv, 
xtvvsl, and xtvplen). It ends with calls to subroutines to output heat structures 
(xtvht); signal variables, control blocks, and trips (xtvcntl); and general problem 
parameters (xtvgnpr). Output of timestep data to file TRCXTV is buffered and at the 
lowest level written with the C function fwrite.
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File TRCXTV provides data for X-TRAC-VIEW (XTV), a phenomena visualization 

package. (In addition, the XDR option selected with iogrf = 2 supports XMGR5.) 

Subroutines xtvinit and xtvdr are called to create the XTV graphics catalog in file 

TRCXTV. The XTV graphics catalog contains information for setting up the component 

and variable visualizations. This includes the component name, type, connectivity, and 

geometry, as well as a list of available variables with their types. File TRCXTV contains 

timestep-edit information as arrays of Institute of Electrical and Electronics Engineers 

(IEEE) double-precision values. Each timestep edit contains the problem time, followed 

by all the variables described in the graphics catalog, in the order listed. The graphics

edit frequency is specified by user input, and the maximum size of file TRCXTV is 

internally defined (currently 750 Mb). This internal limit can be overridden through the 

use of the optional XTVTIN input file, which contains the maximum size of the data file 

in megabytes as an integer. If file TRCXTV reaches this limit, no further edits will be 

output and an error message will be written to the TRCMSG (message) fie for each time 

edit that is not output. A description of the XTV fie format is contained in Appendix H.  

The exact contents of the file TRCXTV vary with the components in the problem and 

order of execution selected by TRAC for those components. The file begins with the first 

line from the TRAC input title information. After that, blocks of information follow for 

all components. Special information blocks exist for PLENUM and VESSEL components.  

Information for the flow components is followed by blocks for all HTSTR components, 

then those for the Control System.  

As noted above, TRAC also contains an XDR interface for graphics output. The XDR 

interface is implemented via module xtv. The Fortran interface to low-level XDR C 

routines is contained in module CXtvxFaces.  

Note: XTV/XMGR5 Graphics Output Structure. Future versions of TRAC-M will use 

a new XTV/XMGR5 graphics system that is a fairly radical departure in terms of 

implementation from the current (Version 3.0) version. The new implementation is 

scheduled for February 2000. Foremost among the changes is the adoption of internal 

tables that store the component and variable information that is to be output. This 

change allows the variable setup and output information to be contained completely in a 

single call to a variable setup routine, instead of former implementations that required 

two or more synchronized lists to output variables, which allowed bugs to creep in when 

the lists became unsynchronized. The second major change in the graphics system is the 

adoption of graphics display templates. Each variable references a graphics display 

template, which contains all of the information needed to create a display of the variable 

in the postprocessor. Because each variable can have its own template, the restrictions on 

variables and the complexity of graphics components are significantly reduced. The 

remainder of Section 2.6.2 and its subsections (2.6.2.1 through 2.6.2.6) describe the new 

TRAC-M graphics system.  

The new XTV/XMGR5 graphics fie TRCXTV will utilize XDR encoding, which is 

provided through the Open Network Computing group's Remote Procedure Call 

Applications Programming Interface, generally referred to as the ONC RPC API. This 

provides the graphics system with platform-independent graphics output.
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The new XTV/XMGR5 graphics system uses five Fortran source modules and two* C 
source modules to accomplish its task. The data structures, allocation routines, and 
parametric settings are all contained within one module, and all of the component 
independent subroutines for initializing the tables are in a second module. All of the 
component implementations are in a third module, and the routines that output the 
information to the graphics file are in the fourth. The last Fortran module provides an 
interface specification to the C library. There are still only two routines that are called 
outside of the XTV/XMGR5 subsystem, XtvInit and AddXtvDump. Subroutine xtvdr 
will be replaced by subroutines CreatextvHeader (for header output) and 
AddXtvDump (for data output).  

The new XTV/XMGR5 system is initialized by a call to XtvInit inside the regular init 
sequence. XtvInit loops through all of the TRAC components, initializing the internal 
data tables, and then calls CreateXtvHeader to open the TRCXTV file and output the 
header section. Data are output to the graphics file through calls to AddxtvDump. In the 
initial implementation of the new XTV/XMGR5 system, AddXtvDump is called from 
subroutine pstepq for most dumps, as well as steady or trans at the beginning of a 
calculation.  

Sections 2.6.2.1 through 2.6.2.6 describe the coding that implements the new XTV/ 
XMGR5 logic to be incorporated into TRAC-M in February 2000.  

2.6.2.1. Module XtvData (February 2000). Module XtvData contains three principal 
items: derived type definitions for the graphics component and variable tables, the 
parametric constants used as entries in those tables, and the routines associated with 
allocating those tables. Eight derived types create the graphics tables for XTV/XMGR5.  
The master type is xtvCompT, which is instantiated as xtvCompList. All other derived 
types, with the exception of plenAux, are nested inside the xtvCompList structure.  
Each derived type has a corresponding allocation routine and a routine to clear the 
elements of the derived type. The clearing routine is called by the allocation routine and 
need not be externally referenced.  

The master variable definition derived type is xtvVarT, which stores a pointer to the 
variable, as well as name, length, and a few other generic items. Because Fortran 90 
pointers are type and rank specific, there are actually eight pointers in the derived type 
and a variable ptType, which identifies which pointer is active; all other pointers are 
nullified.  

2.6.2.2. Module xtvSetup (February 2000). Module XtvSetup contains the 
component-independent routines for initializing the internal graphics tables with 
component-specific information. Eight routines are targeted at initializing the 
component portions of the internal graphics tables. Eight routines also initialize the 
variable description tables. Module xtvsetup employs two generic interfaces to 
simplify the use of the internal routines for the component-specific routines. The most 
useful is AddXtvVar, which has an essentially identical interface for each type of 
variable, differing only in the rank and type of variable input. The second generic
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interface initializes templates. Because templates have differing contents, depending on 
their internal rank, this is only a cosmetic name change.  

2.6.2.3. Module xtvComps (February 2000). Module xtvcomps contains the 

individual implementations for each of the TRAC component types, plus the master 

initialization routine XtvInit. Subroutine XtvInit is present in this module to avoid 

circular module dependencies between xtvComps and xtvSetup. Note that each of the 

individual component routines are called only once for each component instance; once 

initialized, the pointers contained in the data tables directly access the information for 

output. This means that variables cannot be output on the fly from the component 

routines. See the VESSEL variable ¢w for an example of calculating a variable for 

graphics output. New components will typically require only modifications to this 

module; most components will not require any changes to any of the remaining three 

graphics modules.  

2.6.2.4. Module xtvDwmp (February 2000). Module XtvDump contains all of the 

routines that access the graphics file, albeit indirectly. All routines other than 

AddXtvDump and CreateXtvHeader are called by one of these two routines. This 
module is the only one to reference the C library and its interface specification module 

CXtvXFaces. Because of the pointer system used in the internal tables, this module does 

not reference individual component data tables, with the exception of the pressurizer 

(PRIZER) and VESSEL components, which require special adjustments before entering 

the main dump loop. The PRIZER component has the steady-state convergence 

adjustments removed before dumping and then reapplied after the graphics edit. See the 

routines Adj PrizerDVars and UnAdj PrizerDVars for more details on the PRIZER.  
The variable tw is not calculated during the normal course of the VESSEL, so routine 

CalcVesselTw is called by AddxtvDumnp before entering the main output loop.  

2.6.2.5. Module cxtvxFaces (February 2000). Module CXtvXFaces provides the 

Fortran routines with the subroutine interface for accessing the C library. Not only does 

this provide error checking for the calls; it is necessary to get proper linkage under 

Fortran 90 syntax for arrays. Note that arrays passed to C are passed by supplying the 

first value of the array rather than being passed in traditional array format. This is 

necessary because Fortran passes a form of platform- and compiler- dependent array 

descriptor when passing arrays with explicit interfaces. The interface specification 

deliberately misleads the compiler as to what is being passed; be sure to check the C 

implementations for the true interface.  

2.6.2.6. The XTV/XMGR5 C Library (February 2000). Because of the Fortran to C 

interface, the C Library functions are divided into two files: a set of TRAC specific 

routines for performing any special Fortran to C adjustments (CXtvXdr.c) and a set of 

routines that are used by TRAC and the postprocessors for common access (xtvxdr.c). All 

programs accessing the graphics file utilize the second file, xtvxdr.c.  

2.6.3. Binary Restart File Processing with dmpit 
The TRCDMP file is a structured binary file written with unformatted write statements.  

It contains sufficient data to restart the TRAC-M calculation at the problem time of a
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data-dump edit. File TRCDMP consists of a general data section at the beginning 
followed by a series of time-edit blocks. A time-edit block is output at each edit time 
during a calculation. The number of time-edit blocks output to the file is determined by 
the dump-edit frequency specified by the timestep data. The last time-edit block is 
followed by a "EOF" to signify the end of file.  

File TRCDMP is created by a sequence of calls to subroutine dmpit. As the main driver 
routine for dump file generation, subroutine dmpit outputs the dump-header data, calls 
the subroutine CSDump to output the control system data, calls the component-specific 
data-dump subroutines, and then calls subroutine dhstr to dump the HTSTR 
component data to the restart file. The names of the component data-dump subroutines 
begin with the letter d followed by the letters of the component-type name. For example, 
the PIPE component data-dump routine is called dpipe, whereas the VESSEL
component data-dump routine is called dvssl. All such dump routines ultimately use a 
set of five low-level, binary-dump routines that handles all output to the dump file; 
examples of their individual use are given in Appendix G. At the very lowest level are 
subroutines bf out and bfoutn; in many situations, these routines are first called by 
subroutines bfoutis, bfoutni, or bf outs. The 1D hydraulic- component data-dump 
routines call subroutine dcomp to output to the TRCDMP fie data common, to 1D 
hydraulic components and then output any additional data special to that particular 
component using individual low-level calls. The VESSEL-component data-dump routine 
dvssl also makes low-level calls to output general VESSEL arrays and calls subroutine 
dlevel to output level arrays.  

The calling tree associated with the restart dump can be traced from Appendix A entry 
NOMOD: :SUBROUTINE dmpit. The restart process is driven by dmpit, which uses 
bfout (and bfouts, which calls bf out) to write general variables and writes 
component-specific data with subroutines such as dpipe. The vast majority of 
communication throughout the chain of calls is via modules associated with systemwide 
and component-specific data structures. Switching from modules to argument lists as the 
means of communication occurs only at the low-level calls to the binary output routines.  

Subroutine dpipe is typical of the component-specific dump routines and is very brief, 
using bf out directly to write pipe-specific arrays, and calling dcomp to dump 
information generic to 1D components. Subroutine dcomp drives the output of the FLT 
with subroutine GenTableDump and the VLT with subroutine dmpVLT (both use the 
low-level binary write routines for actual output). It then issues a series of calls to 
bfoutn to write the array data that is general to all iD components.  

It is important to remember, from the standpoint of the restart data interface, that all data 
are routed to the restart dump file via the binary-write set of routines. The structure of 
the dump file itself can be deduced fairly quickly by following the string of bfout (or 
bfouts) calls under dmpit.  

In subroutine dcomp, the variable Icomp is calculated for each iD hydraulic component 
and is the total number of all variable values output to the time-edit block for each 
component. This is the sum of the number of the variable values output by subroutine

2-47



dcomp and its calling routine. The number of any additional variable values special to a 
particular component and output by the component data-dump routine is reflected in 
the variable lextra. It is important to remember to increment either the variable lcomp 
or lextra accordingly when adding new component-variable values to the TRCDMP
file output.  

A more detailed look at the dump logic is given in Section 3 and in Appendix G.
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3.0. CODE ARCHITECTURE

TRAC's architecture comprises the organization of its subroutines into functional 
groups, the organization and membership of its various databases, and the interaction of 
the subroutines among themselves and with the databases. The logic of TRAC's 
calculational sequence is described in Section 2. In Section 3 we describe TRAC's 
organization according to the functions of its coding and the structure of and 
communication among its databases.  

TRAC's architecture is very modular in terms of the organization of its coding, the 
organization of its databases, and the appearance of the databases to the code user.  
Section 3.1 gives an overview of TRAC's general coding structure in terms of its 
functional organization. Section 3.2 gives a detailed description of TRAC's data 
structures and the data communication within the code.  

3.1. Code Structure 

In an effort to strive for a code structure that minimizes the problems of maintaining and 
extending the code, the programmers originally developed TRAC as a modular code.  
This modularity manifests itself in two important ways. First, because TRAC analyzes 
nudear-reactor systems that consist of specific component types (PIPES, VALVES, 
PUMPS, etc.), the code is written to utilize subroutines that handle specific component 
types. For example, calculations (and data) for a PIPE component are handled separately 
from calculations (and data) for a VESSEL component. Component-specific subroutines 
typically are called by driver routines that branch according to the component type to be 
calculated. The different TRAC components are described in greater detail in the TRAC 
User's Manual. The data structures for each component type are described here in 
Section 3.1.  

Second, TRAC is written to be functionally modular; that is, each TRAC subprogram 
performs a specific function. Some low-level subprograms are used by all components, 
thereby strengthening this modularity (e.g., this is seen in the organization of the fluid
property routines). Another example of the code's functional modularity is found in the 
separation of the control-system logic into clearly defined subroutines.  

TRAC comprises the following structural elements: 

* PROGRAM TRAC; 

* Fortran 90 modules that may both declare data and contain coding; 

Fortran 90 and C interfaces that encapsulate routines with a common 
functionality (but with differing argument lists, for example) within a 
generic name; 

* procedures within the Fortran 90 interface(s);
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0 Fortran 90 subroutines;

• Fortran 90 and C functions; 

"* Fortran 90 blockdala; and 

"* include files (".h" fies).  

3.1.1. Fortran 90 Modules 
A major advance with the development of TRAC-M is in the organization of the code 
into Fortran 90 modules. TRAC's modules provide the framework for the code's 
databases and the bulk of its coding. The data and coding are grouped into different 
modules according to their specific functionality. This functionality organization of the 
Fortran 90 modules further strengthens the original two-fold modularity built into 
TRAC: there are component-type-specific modules, and there are generic modules used 
by components in common.  

A further advantage in TRAC's module structure lies in the dummy/actual argument 
checking that Fortran 90 can provide, thereby reducing the chances for errors; this 
argument checking is maximized in TRAC by carefully choosing the modules' use 
associations. In describing TRAC's database structure, Section 3.2 also indicates the 
module organization of the code's routines.  

3.1.2. Description of All Structural Elements 
Appendix B describes all of TRAC's structural elements: program TRAC and its 
modules, interfaces, procedures, subroutines, functions, blockdata, and include files. A 
brief description is provided of the purpose of each individual structural element and 
the name of the source file where it is located. For each module, lists are given of 
elements that are contained in the module, of other modules it uses, and of modules that 
use it. For each interface, the name of the module in which it is contained is given. For 
each subroutine, function, and procedure, the name of the module (if any) it is contained 
in, files it includes, modules it uses, other elements it calls, and elements that call it are 
given (for the functions, callers are not listed). For TRAC's blockdata, included files and 
its caller are given. For each included file, a cross reference of elements that include the 
file is provided.  

3.2. Data Structure and Data Communication 

3.2.1. Overview 
This document describes the structure and internal communication of TRAC's database 
at three levels of detail: first there is this overview, which is followed by an expanded 
discussion later in this section. Finally, there are detailed examples for modifying the 
database in Appendix H. The purpose and use of the code's many individual database 
variables are described in Appendix C.
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3.2.1.1. TRAC Databases. The TRAC database comprises a global database and 
several databases that are concerned with specific aspects of a calculation: the 
component-type database, the control-system database, two databases to support 
options for steady-state runs, and the radiation model database. TRAC's databases and 
related coding are organized into approximately 102 Fortran 90 modules, with each 
module having a well-defined function. Additionally, other variables that support a 
calculation are grouped into approximately 44 Fortran 90 header (".h") files; again, each 
.h file has a specific function. Some of TRAC's subroutines that are of a generic nature are 
not maintained in Fortran 90 modules, but rather are maintained as separate ".f" files.  

TRAC's general global data include 

"* modules that implement global solution of the flow equations and related 
System Services modules that support intercomponent communication; 

"* array ag-A container array accessed by pointers that supports the equation 
solution; 

"• array ag-A container array accessed by a pointer for pressure variations; 
and 

• four modules with miscellaneous functions, including declaration of arrays 
ig and rg and the component-index array compIndices, declaration of the 
pointers used by array ig, and initialization of various variables (including 
default values).  

Note: Global Arrays ig and ag In future code versions, arrays ig and ag will be 
removed.  

The component-type database includes 

"• 1D hydrodynamic component types (PIPE, VALVE, etc.): 

FLT, generic for all component types 
VLT, specific for each component type 
Array data generic for all 1D component types 
Array data specific for each 1D component type 

"• Pseudo-lD boundary-condition-component types (BREAK, FILL): 

FLT, same as for 1D 
VLT, specific for each type 
Array data generic for all 1D component types (subset of 1D) 
Array data specific for each component type 

"* "OD" multiple-connection component type (PLENUM): 

FLT, same as for 1D
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VLT, specific for PLENUM 
Array data generic for all 1D component types (subset of 1D) 
Array data specific for PLENUM 

"* 3D hydrodynamic component type (VESSEL): 

FLT, same as for 1D 
VLT, specific for 3D component type 
Array data for the 3D component type 

" HTSTR-component type (ROD): 

FLT, same as for 1D 
VLT, specific for HTSTR component 
Array data for the HTSTR-component type 

* The control system database includes 

Signal variables 
Trips 
Control blocks 

* The steady-state databases include 

The CSS 
The HPSS initialization 

The radiation model is related to the HTSTR database but has not yet been implemented 
in TRAC-M/F90.  

3.2.1.2. Database Communication. TRAC's data and subroutines are grouped into 
many Fortran 90 modules that are organized and named according to their function. A 
module can both declare data variables and contain routines that operate on those 
variables. The use association of these modules is carefully arranged to provide logical 
and maintainable paths for data integrity, availability, and communication. TRAC 
provides information to its many subroutines through four mechanisms: 

* At the most basic level, a module can declare data variables and contain 
routines that operate on those variables.  

Direct access to data in modules can be made available to a routine through 
use association.  

Argument lists are passed to lower-level (typically, data-crunching) routines 
that do not directly use the data they process.  

Interface routines are called to get (and sometimes overwrite) specifically 
requested data. Typically, these routines are used for communication among

3-4



different databases. The interface routines have access to the appropriate 
modules.  

3.2.1.3. Fortran 90 Modules. TRAC's modules often declare data (or access data by 
Fortran 90 use association), performing a role in Fortran 90 that is similar to common 
blocks but that provides better data integrity. TRAC's modules often contain subroutines 
and functions that have a role specific to a certain task and that often involve data also in 
the same module or that are used by the module. An important aspect of TRAC's module 
use associations is in the explicit procedure-interface checking they allow, thus reducing 
the chance for programming errors. A complete list of TRAC's modules is given 
Appendix B; this includes a breakdown of the code's use and used-by associations.  

Naming Convention: For the initial development of TRAC-M, each module is in a 
separate file. If the name of the module is Name, the corresponding fie is called Namem. f 
(or, for Version 3.0, NameM. f9 0) (the coding uses Name).  

3.2.1.4. Derived Data Types. Much of TRAC's database is organized into many 
Fortran 90-derived data types. These include derived types for the global database, 
component databases, control system, and steady-state models.  

Naming Convention: The names of all derived data types that are defined in TRAC 
have a trailing "T". Often a variable that is declared to be of a derived data type is an 
array with the name of the derived type minus the "T".  

examples -- derived-type naming: 

(ftom MODULE PipeVlt) 

TYPE pipeTabT <<-- Data-type name 
REAL(sdk) bsmass 
REAL(sdk) cpow 

INTEGER(sik) js2get 

INTEGER(sik) js2put 
END TYPE pipeTabT 

TYPE (pipeTabT) ,DIMENSION (maxComps) pipeTab 
Declare variable 

(from MODULE GenlDArray) 

TYPE glDArrayT <<--- Data-type name 
REAL(sdk), POINTER, DIMENSION(:) driv
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REAL(sdk), POINTER, DIMENSION(:) :: tcen 
END TYPE glDArrayT 

TYPE (glDArrayT), DIMENSION (maxComps) :: glDAr <<<-- Declare variable 

In this document, we refer to the entities that are declared within a Fortran 90-derived 

data-type definition as the "elements" of that derived data type (the term "component" 

also is seen in the literature, which we do not use, to avoid possible confusion with 

TRAC's component types). We also use the standard term "array element" when 

referring to a specific item in any array [e.g., X (i) is the ith element of array x1.  

3.2.1.4.1. Global-Database-Derived Types. These are described in Section 3.2.2.1.2, 

with an overview, and in detail in Section 3.2.3.1 and Appendix C.  

3.2.1.4.2. Component-Derived Types. TRAC employs Fortran 90-derived data types 

for the entire component database. This includes the 1D and 3D hydrodynamic 

components, the boundary-condition components, the PLENUM component, and the 

HTSTR component. Table 3-1 lists the component data types: column 1 gives the name of 

the data type; column 2 gives names of variables that are declared to be of this type; and 

column 3 gives the module in which the data type is defined and the purpose of the type.  

We are careful to distinguish between TRAC's various Component types (the derived 

data types) and the individual Components that are in a given calculation. A typical 

Component data reference is 

glDAr(cco)%pnf(j) 

where cco is the specific component index, pn is one of the data arrays belonging to 

glDAr (cco) (in this case the new-time pressure array), and j is the index of the jth mesh 

cell in component cco. Details on this construction and on the component-index logic 

are given below in the section on the component databases.  

3.2.1.4.3. Control-System-Derived Types. Table 3-2 lists the derived data types that 

are defined for TRAC's control system. The control-system variables with a name of the 

form csrName are used for the dump/restart logic.  

3.2.1.4.4. Steady-State Derived Types. The steady-state derived-types hold data for 

the CSS options and the HPSS initialization option. Table 3-3 lists these data types.  

3.2.1.4.5. Radiation-Model Derived Types. The TRAC-P radiative heat-transfer 

model has not been implemented in TRAC-M; it has been retained in commented-out 
form.
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TABLE 3-1 
COMPONENT DATA TYPES

Type Name Variables Module and Purpose 

genTabT genTab FIt-FLTs for all component types 

arraylDPtrT arraylDPtrs GenlDArray-data interface to 1D
component generic arrays 

arrayNodeT faceArs GenlDArray-data interface to ID
component generic arrays 

glDArrayT glDAr GeniDArray-iD-component generic 
arrays 

heatArrayT heatAr HeatDArray--Arrays for wall-heat
transfer model built into ID 
components (not the HTSTR) 

intArrayT intAr IntArray--Additional arrays generic 
to iD Components 

breakTabT breakTab BreakVlt-BREAK VLT 

breakArrayT breakAr BreakArray"-Arrays specific to 
BREAK 

fillTabT fillTab FilIvIt-FILL VLT 

fillArrayT fillAr FillArray-Arrays specific to FILL 

pipeTabT pipeTab Pipevit-PIPE VLT 

pipeArrayT pipeAr PipeArray--Arrays specific to PIPE 

plenTabT plenTab PlenVlt-PLENUM VLT 

plenumArrayT plenAr PlenArray--Arrays specific to 
PLENUM 

prizeTabT prizeTab Prizevit-Pressurizer VLT 

pumpTabT pumpTab Pumpvlt-Pump VLT 

pumpArrayT pumpAr PumpArray--Arrays specific to Pump 

rodTabT rodTab RodVlt-HTSTR VLT 

hsArrayT hsAr HSArray-Arrays for HTSTR (chs is 
chs pointer to hsAr, only to reduce 

statement-lengths)
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TABLE 3-1 
COMPONENT DATA TYPES (cont)

3-8

Type Name Variables Module and Purpose 

sepdTabT sepdTab Sepdvit-Separator (Sepd) VLT 

sepdArrayT sepdAr Sepd-Arrays specific to Separator 
(Sepd) 

teeTabT teeTab TeeVlt-TEE VLT 

teeArrayT teeAr TeeArray--Arrays specific to TEE 

teeJcellT teeJCellAr TeeVlt-Stores TEE momentum 
source coefficients for "eli" and "i" 
configurations; acts as target location 
for bd array elements.  

valveTabT valveTab valvevit-VALVE VLT 

valveArrayT valveAr ValveArray-Arrays specific to 
VALVE 

vessTabT VessTab VessVlt-3D VESSEL VLT 

vessArrayT vsAr VessArray-3D VESSEL special 
arrays 

vsSrcArT vsSrcAr vessArray"-Provides a target 
location for bd array pointers that 
point to the VESSEL data structure.  

vessArray3T vsAr3 VessArray3-3D VESSEL fluid
mesh arrays



TABLE 3-2 
CONTROL SYSTEM DATA TYPES 

Type Name Variables Module and Purpose 

csGlT csGl ControlDat-global data; hold 
csrGl storage information and problem 

time.  

csCPEDT csCPED ControlDat-control parameter 
evaluation-pass data 

csSigT csSig ControlDat-signal variable data 
csrSig 

csCBT csCB ControlDat-control block data 
csrCB 

csULCBT csULCB ControlDat-control block units 
csrULCB labels 

csULTRT csULTR ControlDat-trip units labels 
csrULTR 

csULSET c sULSE ControlDat-signal-variable-units 
csrULSE labels 

csTripT csTrip ControlDat-trip data 
csrTrip 

csTSET csTSE ControlDat-trip signal expression 
csrTSE signal data 

csTCTT csTCT ControlDat-trip-controlled-trip 
csrTCT signal data 

csTSFT csTSF ControlDat-trip-set-point-factor 
csrTSF table data 

csTDPT csTDP ControlDat-dumpp/problem 
csrTDP termination data 

csTSDT csTSD ControlDat-trip-initiated timestep 
csrTSD data
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TABLE 3-3 
STEADY-STATE DATA TYPES

Type Name Variables Module and Purpose 

cssGIT cssGl ControlDat-global CSS data 
"for storage allocation 

cssDatT cssDat ControlDat--CSS input data 

cssTPT cssTP controlDat-CSS data for 
secondary-side break-pressure 
adjustment 

hpsT hps HpssDat-lHlSS dynamically 
allocated arrays 

3.2.1.5. Data Precision. TRAC (approximately) requires the precision of an IEEE 64

bit word to perform the floating-point arithmetic for its hydrodynamics finite-difference 
solution. We say "approximately" because the code also runs with Cray 64-bit words and 

was originally developed on a 60-bit CDC 7600 computer. TRAC uses a few very large 

integers as special-purpose flags, but these all fit within 32 bits.  

The precision of variables in TRAC is specified with the Fortran 90 KIND attribute.  

Variables sdk and sik are used to specify the precision of real and integer variables, 

respectively. Module IntrType has the following declarations for sdk and sik: 

MODULE IntrType 
IMPLICIT NONE 

These same definitions are repeated in all FUNCTION 

declarations, for the NagWare F90 compiler 

INTEGER, PARAMETER sdk = selectedrealkind (13,307) 

INTEGER, PARAMETER sik = kind (10000000) 

END MODULE IntrType 

3.2.2. Databases 
3.2.2.1. Global Data. Among the data that can be considered of a "global" nature in 

TRAC are 

four modules that contain a variety of data: GlobalDat, GlobalDim, 

Global, and GlobalPnt. Uses of the variables in these modules are 

described in Appendix C. More detail on modules Global and GlobalPnt 

(and the ig and ag arrays they support) is given in Section 3.2.2.1.1.
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* The modules that implement the global flow equation solution and the 
System Services modules that support intercomponent communication for 
boundary information. These are described in Section 3.2.2.1.2, with an 
overview, and in detail in Section 3.2.3.1 and Appendix C.  

3.2.2.1.1. Modules Global and GlobalPnt. Module Global declares high-level 
variables that are accessed throughout the code. These include an internal buffer for 
binary I/O, global arrays ig and ag, and index variables that are used to access the 
component database: 

MODULE Global 

! BEGIN MODULE USE 
USE IntrType 
USE GlobalDim 

Global Database 

! Run Title 
REAL(sdk), POINTER, DIMENSION(:) RunTitle 

! Buffer Container 
REAL(sdk), DIMENSION(2047*2) :: Buffer 

INTEGER (sik) ifreeIG, ifreeAG 
•INTEGER(sik) igSize 
PARAMETER (igSize=10000) 

INTEGER(sik) ig(igSize) <<<- declare array ig 
REAL(sdk) ag(igSize) «<-- declare array ag 

replaces lenttl = lorder-ltitle in dmpit, set in input 
INTEGER(sik) lentitle 

component indices into as input 
INTEGER(sik) cci 
component indices as reordered in SUB asign 
INTEGER(sik) cco 

hlInd - component index of first heat struct in tracin 
rlInd - component index of first restart comp 
rhlInd - component index of first heat struct in restart 

INTEGER(sik) hlInd, rlInd, rhlInd 
INTEGER(sik) compIndices (maxComps) 

DATA hllnd, rlInd, rhllnd/0,0,0/ 
END MODULE Global 

Arrays ig and ag are "mini-container" arrays; they store variables of a global nature, 
which typically are arrays themselves. The overall thermal hydraulics of ig and ag'are

3-11



set in module Global by parameter igSize. Array ig holds integers, and ag stores 

reals. Arrays ig and ag are accessed by pointers, which are declared in module 

GlobalPnt: 

MODULE GlobalPnt 

BEGIN MODULE USE 
USE IntrType

& 
&

&INTEGER(sik) licvs,ldpmax,lijvs,lilcmp,liou,lisvf,livcon, 
livljn, ljout, ljseq, ljun, llcon, lloopn, lmatb, lmcmsh, lmsct, 

lnbr, lnjn, lnsig, lnsigp, lnvcnl,lorder,lptbln,ltitle

INTEGER(sik) lidpcv 
INTEGER(sik) lilprb, livlfc,livvto,livlto 
INTEGER(sik) nmat,nvcell

END MODULE GlobalPnt

The specific uses of the various subarrays in ig and ag are described in Appendix C (the 

only use of array ag is for the pressure-variation array ldpmax, which is new to TRAC

M; it replaces TRAC-P array liitno).  

Note: Global arrays ig and ag- In future code versions, arrays ig and ag will be 

removed.  

The pointer offsets into ig and ag are set in subroutines input and icomp (note the 

Fortran comment below about the VESSEL component). Subroutine checks i ze is called 

to ensure that the pointer offsets into array ig do not exceed the value of parameter 

igSize: 

SUBROUTINE input 

lorder=1 <<<- start at 1 (cf. TRAC-P)

lilcmp=lorder+ncomp 
inbr=lilcmp+ncomp 
lmldp=lnbr+ncomp 

ldpmax = 1 <<<--- only ag pointer, replaces TRAC-P liitno 
llcon=imldp+nhtst 
ljun=llcon+ncomp 
ljseq=ljun+8*njun 
lmatb=ljseq+njun 
iptbln=imatb+nmat 
ifreeIG=Iptbln+nmat 
CALL checksize('ig',ifreeIG,igSize,.TRUE.)
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these are re-evaluated for the VESSEL, leaving holes in ig 
lijvs=ifreeIG 
lnjn=lijvs+njun 
licvs=lnjn+njun 
liou=licvs+njun 
ifreeIG =liou+njun 
CALL checksize( ig ,ifreeIG,igSize,.TRUE.) 

it=nlt 
l=licvs 
livcon=lijvs 

ljout=ifreeIG 
lisvf=ljout+it+l 
lnvcnl=lisvf+ncompt 

lidpcv=linvs+nvcon+l 
ifreeIG=lidpcv+nvcon 
CALL checksize('ig',ifreeIG,igSize,.TRUE.) 

define the VESSEL matrix array pointers 

liou=ifreeIG 
ii= max(3,3*(ig(ljout+nloops)-l)) 
ifreeIG=liou+ii 
CALL checksize('ig',ifreeIG,igSize,.TRUE.) 

SUBROUTINE icomp(comptr, jun, jseq, iorder) 

livlfc=ifreeIG 
livvto=livlfc+nvcon 
livlto=livvto+nvcon 
lilprb=livlto+nvcon 
lidpcv=lilprb+nloops 
ifreeIG=lidpcv+nvcon+l 
CALL checksize('ig ,ifreeIG,igSize,.TRUE.) 

3.2.2.1.2. Flow Equation Solution and System Services. TRAC fully separates the 
evaluation of terms in the flow equations from the solution of the resulting system of 
linear equations. This provides a well-defined location for equation terms and eliminates
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the need to generate this data for 1D components before evaluating the equations in 3D 
components (as was done in older code versions). TRAC also requires only one request 

at initialization to establish automatic information passing between components. This 

has been implemented as a system service, with sufficient generality to permit later use 

by higher-order and more implicit-difference methods.  

There are currently four types of computational mesh in TRAC: 1D hydrodynamic, 3D 

hydrodynamic, 1D conduction, and 2D conduction. Many subroutines are associated 

directly with actions on a computational mesh (e.g., tflds, tf3ds, and rodht), and 

various array data structures are linked directly to the computational mesh (e.g., the 

contents of GenlDArray, VessArray, and HSArray). TRAC also views components as 

collections of mesh segments and contains data describing the relationships between 

these mesh segments. In the current version of TRAC, capabilities of mesh-specific 
subroutines have been made more general to meet the needs of the range of physical 

components. Where possible, direct references to component types have been removed 

from mesh-specific subroutines and the necessary features are driven by the components 
in a more general way. It is our hope that future programming efforts will continue this 

effort to pull component-specific operations up to a higher level in the program or into 

component-specific subroutines called from a higher level.  

Currently, the system services provide data transfer to a form of TRAC's original bd 

array, which is still used by the code's lower-level routines. However, the System Service 

logic is general enough to facilitate other uses.  

Modules JunTerms, Matrices, SetMat, SemiSolver, SysConfig, and SysService, 

which comprise the databases (including derived types) and logic that implement the 

global equation solution and system services, are described in detail in Appendix C.  

3.2.2.2. Component-Type Database. TRAC currently has 11 component types, which 

may be grouped into five functional categories. We list them by their names as they are 

generally found in the coding, giving more complete names in parentheses.  

1D Hydrodynamic Components 
Pipe (PIPE) 
Prize (PRIZER, Pressurizer) 
Pump (PUMP) 
Sepd (SEPD, Separator) 
Tee (TEE) 
Valve (VALVE) 

3D Hydrodynamic Component 
Vess (VESSEL) 

Pseudo-iD Boundary Condition Components 
Break (BREAK) 
Fill (FILL)
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"0D" Mulipile-Connection Component 
Plen (PLENUM) 

Power and Heat Conduction Component 
Rod (HTSTR, Heat Structure) 

Naming convention: The standard component-type abbreviations are found in 
subroutine names, module names, and derived data-type names (and corresponding 
instances of those data types). Minor variations in some component-specific subroutine 
names were inherited from TRAC-P. Subroutine and module names should start with an 
upper-case letter; data-type and variable names should start with a lower-case letter.  
Underscores are not used, but identifiable words within a name should start with an 
upper-case letter.  

Parameter maxcomps: As explained below, the specific data arrays of the component 
database are dynamically allocated at runtime as the input is read, but the various array 
declarations of the variables that are of TRAC's component-derived types are typically 
each dimensioned by parameter maxComps, which is set in module GlobalDir: 

MODULE GlobalDim 

INTEGER(sik) maxcomps <<<-- declare maxComps 
PARAMETER (maxComps=500) <<<- set parameter maxComps 

END MODULE GlobalDim 

For example, module GeniDArray has the declaration: 

TYPE (g1DArrayT) ,DIMENSION(maxComps) glDAr 

and module PipeArray has 

TYPE (pipeArrayT) ,DIMENSION(maxComps) pipeAr 

Parameter maxComps also is used in the more restrictive declarations of the FLT derived
type array (used by all component types) and the component-index array (also used by 
component types); therefore, maxComps sets an upper limit on the total number of 
components in an input model: this limit includes all components of all component 
types in an input model taken together.  

Component Indices cci and cco: All direct access to the component database is via 
one of two index variables, cci or cco, into the component-derived-type arrays, which 
selects a specific component in the calculation. Component-index cci is used at points 
in the calculation before subroutine asign is called from subroutine input (where the 
component reordering is done for the network-solution logic). Component-index cco is 
used after the call to asign. The reordered component indices are stored in array
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compIndices, which has dimension maxComps. We refer to a specific component in a 
calculation as being "instantiated" when its data are being referenced directly via either 
index-variable cci or index-variable cco.  

Component indices cci and cco and array compIndices are declared in module 
Global; compIndices is also dimensioned by parameter maxComps in module 
Global: 

MODULE Global 

component indices into as input 

INTEGER(sik) cci «<-- declare cci 
component indices as reordered in SUB asign 

INTEGER(sik) cco «<-- declare cco 

hlInd - component index of first heat struct in tracin 
rlInd - component index of first restart comp 
rhllnd - component index of first heat struct in restart 

INTEGER(sik) hllnd, rllnd, rhlInd 

INTEGER (sik) compIndices (maxComps) <<<-- declare compIndices 

DATA hllnd,rlIndrhlInd/0,0,0/ 
END MODULE Global 

The typical use of array compIndices is shown in the following examples. In the first 
example, TRAC is looping over an input model's individual iD hydrodynamic 
components, instantiating each of them in turn; in the second example, the value 
. TRUE. or . FALSE. is passed to a routine with logical flag reordered that accesses 
data from a noninstantiated component.  

examples -- use of array compIndices: 
..... ..... ..... ..... ..... ..... ..... .....---------------------------------------------------.. .  

SUBROUTINE outld(imin, imax, iflag) 

controls outer calculation for one-thermal-hydraulical 
! components.  

DO icmp=imin,imax 
cco=compIndices (icmp) <<<-- instantiate component (set cco) 
icme=icme+l
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IF (.NOT. (genTab(cco) %type.EQ.breakh.OR ..... <<<-use cco 
to access specific component 

SUBROUTINE GetGenTable (name, compInd, ival, rval, reordered) 

LOGICAL reordered 

ordInd = compInd 
if (reordered) ordInd = compIndices (compInd) <<<-reordered 

IF (namne.EQ.'lenvlt') THEN 
ival=genTab (ordInd) %lenvlt 

ELSEIF ............  
.... .... ... .... ... .... ... .... ... .... ...-----------------------------------------------------.. .  

HTSTR-Component Index: The HTSTR indices start after the end of the indices for the 

hydrodynamics components: 

SUBROUTINE htstrl 

first loop over all heat structures 

DO icmp=l,inhtstr 
cci=icmp+ncomp <<<- add ncomp to obtain HTSTR index 

cco=compIndices (cci) 

Component Modularity-Logic and Data: There is much commonality and 

modularity in the logic (with respect to both data and code) across all of TRAC's 10 

component types. The iD component types are similar in data and coding organization 

to the other types, and they are very similar among themselves. We begin by using the 

PIPE component type as the basic example. Any information specific to the other types is 

given in the sections immediately following.  

The component FLTs and VLTs contain data elements that are used by a specific 

component as a whole (e.g., a variable having the component's type and other variables 

having its ID number and total number of mesh cells). The FLT and VLT can include 

arrays, but we reserve the term "array data" for data elements specific to an individual 

mesh cell in a component (the volume of the jth cell, its void fraction, pressure, etc.). The
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1D component-type arrays are mostly 1D in the Fortran sense (rank 1), but they can be of 
higher rank as well (such as the NCELLS x NODES wall-temperature arrays twn and 
tw). We have tried to be specific when using the term "ID" as to which meaning is 
intended.  

3.2.2.2.1. ID-Hydrodynamic-Component Types (PIPE, etc.). FLT, array genTab: 
The data elements in the FLT are the same for all 11 component types; FLTs for specific 
components in the input deck, for all 11 component types, are stored in array genTab, 
which is of derived data-type genTabT and dimension maxComps. All FLT-related logic 
is treated by module Flt: 

definition of derived data-type genTabT (declaration of its elements): 

TYPE genTabT 
REAL(sdk) htlsci 
REAL(sdk) htlsco 

INTEGER(sik) nodes 
INTEGER(sik) num 
REAL (sdk) type 

END TYPE genTabT 

"* declaration of array genTab to be of type genTabT and dimension 
maxComps: 

TYPE(genTabT) ,DIMENSION(maxComps) genTab 

" Parameterization of the total length of data-type genTabT (for use by the 
dump/restart logic): 

INTEGER (sik) genDumpSize 
PARAMETER (genDumpSize=24) 

Subroutine GenTableDump adds an individual component's variables that 
are stored in array genTab to the dump/restart file.  

Subroutine GenTableRst reads a component's genTab data from the 
dump/restart file.  

* Subroutine GetGenTable accesses certain genTab data of a component 
other than the current instantiated component (e.g., data that an HTSTR 
component needs from a hydrodynamics component that is coupled to its 
surface).
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Appendix H gives extensive examples of the data structure and coding in module Flt.  

Appendix C gives descriptions of the use by TRAC of all the individual data elements in 
genTabT.  

VLT, arrays "comp-type" "camp-type"Tab: Each TRAC component type has a set of 
data that is used by a given component as a whole (not on a mesh-cell basis), where the 
variables are common to all components of a eiven tWpe. These data sets are called the 

component VLTs. They comprise mostly scalar variables that are defined by the elements 
of one of a set of derived data types; there is a separate derived type for each of the 10 
component types. The 11 VLT data types currently defined in TRAC are 

breakTabT 
fillTabT 
pipeTabT 
plenTabT 
prizeTabT 
pumpTabT 
rodTabT 
sepdTabT 
teeTabT 
valveTabT 
vessTabT 

We will refer to these 11 derived data types as a group by the term 

"comp-type"TabT.  

Eleven arrays, one for each component type and each of dimension maxComps, are 

declared to store the "comp-type"TabT (VLT) data for the specific individual 

components in the input deck. The array for each component type is declared to be of the 

corresponding "comp-type"TabT derived data type and given the name 
"comp-type"Tab. For example, the code has the declaration 

TYPE(pipeTabT) ,DIMENSION(maxComps) :: pipeTab 

to store VLT data for all the individual PIPE components in the input deck. All VLT

related logic for a component type is handled by a module that is specific for that type, 
which has a name of the form 

MODULE "Comp-type"Vlt.  

In Version 3.0 there are 11 "comp-type"Vlt modules, i.e., 

BreakVlt 
FillVlt 
PipeVlt 
PlenVlt
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PrizeVlt 
PumpVlt 
RodVlt 
SepdVlt 
TeeV1 t 
ValveVlt 
VessVlt 

The logic in each module "comp-type"vlt comprises 

definition of derived data-type "comp-type"TabT (declaration of its 
elements): 

TYPE pipeTabT 
REAL(sdk) bsmass 
REAL(sdk) cpow 
REAL(sdk) eninp 
REAL(sdk) epsw 
REAL(sdk) fl(2) 
REAL(sdk) fv(2) 
REAL(sdk) houtl 

INTEGER(sik) js2get 

INTEGER(sik) js2put 
END TYPE pipeTabT 

"* declaration of array "comp-type"Tab to be of type "comp_type"TabT and 
dimension maxComps: 

TYPE (pipeTabT) ,DIMENSION(maxComps) :: pipeTab 

"* Parameterization of the total length of data type "compype"TabT (for 
dump/restart): 

INTEGER (sik) pipeDumpSize 
PARAMETER (pipeDumpSize=60) 

"* Subroutine "Comp-type"TableDump adds an individual component's 
variables that are stored in array "comp-type"Tab to the dump/restart file: 

Subroutine PipeTableDump (ordInd, caller) 

"* Subroutine "Comp-type"TableRst reads a component's comp_type"Tab 
data from the dump/restart file:
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Subroutine PipeTableRst (ordInd, caller)

There are two additional subroutines that are contained in only some of the 
"Comp-type"Vlt modules: 

"* Subroutine Get"Comp-type"Tab accesses certain "comp-type"Tab data of a 
component other than the current instantiated component (e.g., when 
adjusting the power for the heat structures in a neutronics calculation group): 

Subroutine GetRodTab (name, compInd, ival, rval, reordered) 

" Subroutine Set "Comp-type"Tab sets (overwrites) certain "comp-type"Tab 
data of a component other than the current instantiated component (e.g., 
when adjusting the power for the heat structures in a neutronics calculation 
group): 

Subroutine SetRodTab (name, compInd, ival, rval, reordered) 

In Version 3.0 there are Get"Comp-type"Tab subroutines for the ROD, TEE, VALVE, 
PUM,, AND VESSEL component types; there is a Set"Comp-type"Tab subroutine only 
for the ROD type.  

The component-type routines for dump and restart, subroutine 
"Comp_type"TableDump and subroutine "Comp-type"'TableRst, are called by generic 
driver subroutines dmpVLT and rstVLT, respectively, which branch according to the 
component type. Subroutines dmpVLT and rstVLT pass the component index ordInd 
to the component-level dump and restart routines; dmpVLT assumes reordering has been 
done; rstVLT assumes reordering has not been done.  

Array data, generic for all ID-component types (arrays giDAr,.intAr, and heatAr) 
declaration: Mesh-cell data for the 1D-component arrays that are common to all the 1D
component types are stored in three derived-type arrays: 

giDAr, intAr, and heatAr.  

In module GeniDArray, derived data-type glDArrayT is defined, and array giDAr is 
declared to be of derived-type giDArrayT and dimension maxComps: 

TYPE glDArrayT 
REAL(sdk), POINTER, DIMENSION(:) driv 

REAL(sdk), POINTER, DIMENSION(:) dx 

REAL(sdk), POINTER, DIMENSION(:) fa 

REAL(sdk), POINTER, DIMENSION(:) fric 

REAL(sdk), POINTER, DIMENSION(:) grav

3-21



REAL(sdk), POINTER, DIMENSION(:) twan 

REAL(sdk), POINTER, DIMENSION(:) twen 
REAL(sdk), POINTER, DIMENSION(:) tcen 

END TYPE glDArrayT 

TYPE (glDArrayT),DIMENSION(maxComps) :: glDAr 

Array glDAr contains arrays for variables defined at mesh-cell centers (e.g., pressures) 
and at cell faces (e.g., velocities). The arrays in giDAr are characterized further by 
whether their variables are time-independent (in TRAC-P, these are the hydropt arrays) 
or time-dependent; (in TRAC-P, the dualpt arrays), for which typically there are 
separate old- and new-time arrays (e.g., array pn for new-time pressures and array p for 
old-time values).  

Module GenlDArray contains subroutines TimeUpGenlD and BackUpGenlD. These 
routines use old- and new-time arrays for timestep advancement and for special (water
packer-type) backups, respectively. Examples of their use are given in Appendix H.  

Similarly, arrays intAr and heatAr are declared in modules IntArray and 
HeatArray, respectively: 

TYPE intArrayT 
REAL(sdk), POINTER, DIMENSION(:) idr 
REAL(sdk), POINTER, DIMENSION(:) matid 
REAL(sdk), POINTER, DIMENSION(:) nff 
REAL(sdk), POINTER, DIMENSION(:) :ccf1 

END TYPE intArrayT 

TYPE (intArrayT),DIMENSION(maxComps) :: intAr 

TYPE heatArrayT 
REAL(sdk), POINTER, DIMENSION(:,:) cpw 

REAL(sdk), POINTER, DIMENSION(:) toy 
END TYPE heatArrayT 

TYPE (heatArrayT),DIMENSION(maxComps) :: heatAr 

Array intAr corresponds to TRAC-P's intpt (note: arrays are real here), and heatAr 
corresponds to TRAC-P's heatpt.  

Storage Allocation: In module GenlDArrayM, the ID-component-array derived-type 
elements are declared to be Fortran 90 pointers, using Fortran 90 colon notation for their 
thermal hydraulics: 

REAL(sdk), POINTER, DIMENSION(:) :: dx
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REAL(sdk), POINTER, DIMENSION(:,:) :: twn 

The actual sizes of the various arrays for each individual component are separately 
allocated at run time, using standard Fortran 90 allocate statements, as the input is read 
for a specific component (the pointer attribute is required for allocatable arrays that are 
derived-type elements; also, some of the arrays in giDAr are used as targets of other 
pointer variables, and it is not necessary to give these a target attribute if they are 
pointers themselves). Subroutine AllocGenlD, which is contained in module 
GeniDArray, is called by the iD-component input routines to allocate all storage for the 
data arrays within derived-type arrays giDAr, intAr, and heatAr: 

SUBROUTINE AllocGenlD (ncells, nfaces,nods, inflg, ihtflg) 

USE GlobalDat <--for value of cci 

USE Alloc 
USE IntArray <<-- for access to array intAr 
USE HeatArray <<-- for access to array heatAr 

CALL TRACAlIo (glDAr (cci) %tcen, 1, 1 tcen 0.0 dO) «<-- allocate 1 word 
CALL TRACAl1o(glDAr(cci)%twen,i, 'twen' ,0.OdO) 
CALL TRACAI1o(glDAr(cci)%twan,i, 'twan' ,0.OdO) 

CALL TRACAIlo (glDAr (cci) %vvt, nfaces, I vvt' , 0. OdO) <<<- nfaces words 
CALL TRACAIlo(gIDAr(cci)%vlt,nfaces, 'vlt' ,Q.QdO) 

CALL TRACA11o (glDAr (cci) %qppc, ncells, ' qppc' 0. OdO) <<<- ncells words 

CALL TRACAI1o(intAr(cci)%idr,ncells, 'idr',,0.OdO) 

CALL TRACA11o (heatAr (cci) %cpw, ndm1l, ncells, ' cpw , 0. OdO) 

Subroutine AllocGenlD calls TRACAIlo to do the actual storage allocations, with one 
call for each data array. TRACAIlo is a generic name (Fortran 90 interface) for 
subroutines AllocRealOneD, AllocRealTwoD, AllocRealThreeD, and 
AllocIntOneD; the actual routine used is determined by the compiler according to the 
number and data types of the actual arguments in the particular call TRACAllo 
statement. TRACAIIo also can initialize an array to a single value that is passed from its 
caller. TRACAIlo is in module Alloc:
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MODULE Alloc 

Encapsulation of F90 dynamic allocation and diagnostics for TRAC 

INTERFACE TRACAllo 
MODULE PROCEDURE AllocRealOneD 

MODULE PROCEDURE AllocRealTwoD 

MODULE PROCEDURE AllocRealThreeD 
MODULE PROCEDURE AllocIntOneD 

END INTERFACE 

CONTAINS 

SUBROUTINE AllocRealOneD (pt, n, name, initialValue) 

ALLOCATE (pt (n), STAT=errorStatus) <<<--- allocate real rank-1 array 

SUBROUTINE AllocRealTwoD (pt, nl, n2,name, initialValue) 

ALLOCATE (pt (nl, n2), STAT=errorStatus) <<<-- real rank-2 array 

SUBROUTINE AllocRealThreeD (pt, nl,n2, n3,name, initialValue) 

ALLOCATE (pt (nl, n2, n3) , STAT=errorStatus) <<<-- real rank-3 array 

SUBROUTINE AllocIntOneD (pt, n, name, initialValue) 

ALLOCATE (pt (n) , STAT=errorStatus) <<<--- integer rank-1 array 

IF (PRESENT(initialValue)) pt=initialValue <<<--initialize this array



END SUBROUTINE AllocIntOneD

END MODULE Alloc 

All TRAC 1D-component types (and also the BREAK, FILL, and PLENUM) have a 
module with a name of the form 

MODULE "Comp-type".  

These modules contain component-type-specific routines for I/O, array storage 

allocation, and driving the generic hydrodynamics routines.  

For example, module Pipe contains the following routines: 

SUBROUTINE dpipe -- add this PIPE to dump file 
SUBROUTINE ipipe -- initialize this PIPE after input 
SUBROUTINE pipel -- drive prep hydro stage for this PIPE 
SUBROUTINE pipelx -- obtain analysis data 
SUBROUTINE pipe2 -- drive OUTER hydro stage 
SUBROUTINE pipe3 -- drive POST hydro stage 
SUBROUTINE repipe -- read restart file; call TRACAllo, AllocGenlD 
SUBROUTINE rDiDe -- read input; call TRACAllo, AllocGenlD 
SUBROUTINE wpipe -- write text output 

The driver input routine (rpipe, repipe, rtee, retee, etc.) for each 1D component 
in the input (or restart) deck uses module GeniDArray, which defines derived data
type glDArrayT. AllocGenlD has a call to subroutine TRACAllo for each array that is 
a member of arrays giDAr, intAr, and heatAr. As shown in the next section, the input 
routines also have direct calls to TRACAllo for each of their component-specific arrays.  

Array data, specific for each 1D-component type (arrays "comp-type"Array): For 
the 1D-component types, TRAC has these modules to define derived-type arrays for 
component-type-specific data (currently, there is no need for a module for the 
pressurizer): 

PipeArray 

PumpArray 

TeeArray 

ValveArray 

For example: 

MODULE PipeArray
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Pipe component specific arrays

TYPE pipeArrayT 

REAL(sdk), POINTER, DIMENSION(:) powrf 

REAL(sdk), POINTER, DIMENSION(:) powtb 

REAL(sdk), POINTER, DIMENSION(:) qp3rf 

REAL(sdk), POINTER, DIMENSION(:) qp3tb 

END TYPE pipeArrayT 

TYPE (pipeArrayT),DIMENSION(maxComps) :: pipeAr 

END MODULE PipeArray 

The separator component has a specific array called sepdAr, which is defined in module 

Sepd (which also uses module TeeArray).  

The component-specific input routines allocate storage for these arrays with direct calls 

to TRACAIIo: 

MODULE Pipe 

BEGIN MODULE USE 
USE PipeArray 

CONTAINS 

SUBROUTINE repipe(jflag, jun, icomp) 

BEGIN MODULE USE 

USE Alloc 

CALL TRACAllo(pipeAr(cci)%powrf,iabs(pipeTab(cci)%npowrf)*2 & 

&,'powrf',0.d0) 
CALL TRACAllo(pipeAr(cci)%powtb, iabs(pipeTab(cci)%npowtb)*2 & 

&,'powtb',0.d0) 

CALL TRACAllo(pipeAr(cci)%qp3rf,iabs(pipeTab(cci)%nqp3rf)*2 & 

&,Iqp3rf',O.dO) 

CALL TRACAllo(pipeAr(cci)%qp3tb,iabs(pipeTab(cci)%nqp3tb)*i2 & 

&, qp3tb,,O.d0)
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There is analogous logic for the PIPE-specific arrays in subroutine rpipe.  

3.2.2.2.2. Pseudo-1D Boundary-Condition-Component Types (BREAK, FILL).  
FLT, same as for ID: The BREAK and FILL component types use array genTab for 
their FLTs in exactly the same manner as the other components.  

VLT, specific for each type: The BREAK and FILL VLT data are treated by modules 
BreakVlt and FiliVit, respectively; their logic is the same as the other VLT modules.  
VLT data for individual BREAK and FILL components are stored in derived-type arrays 

breakTab and fillTab.  

Array data generic for all 1D-component types (subset of ID): BREAK and FILL 
both use the general 1D-component array giDAr and allocate storage for their data 
arrays in it with calls to AllocGenlD from their input routines in modules Break and 
Fill, respectively. However, the number of mesh cells is hardwired to be one, the 
number of wall heat-conduction nodes is hardwired to be zero, the allocation of storage 
for the data arrays in intAr and heatAr is turned off, and there are hardwired 
assignment statements for the data arrays in rbreak and rf ill: 

SUBROUTINE rbreak(j flag, jun) 

USE GenlDArray

genTab(cci)%ncellt=1 
ncpl=genTab (cci)%ncellt+l 
genTab(cci)%nodes=0

<<<- one cell 

<<<-- no nodes

initialize general l-d pointers 

CALL AllocGenlD(genTab(cci)%ncellt,ncpl,genTab(cci)%nodes, 0,0) 
A 

no inta- and heatAr allocations

gldAr(cci)%dx(l)=dxin <<<- array assignment

Array data specific for each component type: TRAC has modules for derived-type 
data arrays specific to the BREAK and FILL component types:

MODULE BreakArray 

MODULE FillArray
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Their logic is similar to that for the 1D-component types:

MODULE BreakArray

TYPE breakArrayT 
REAL sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

END TYPE breakArrayT

DIMENSION(:) 
DIMENSION(:) 
DIMENSION( :) 
DIMENSION(:) 
DIMENSION (:) 
DIMENSION(:) 
DIMENSION (:)

TYPE (breakArrayT),DIMENSION(maxComps)

alptb 
contb 
patb 
ptb 
rftb 
tltb 
tvtb

:: breakAr

END MODULE BreakArray 

Storage is allocated for these arrays by calls from the component-type input routines to 
AllBreakArrays and AllFillArrays, respectively, which are in modules Break and 
Fi 11. Subroutines AllBreakArrays and Al1Fi 1lArrays are designed to handle other 
common operations on the BREAK- and FILL-specific arrays; they also are responsible 
for the dump and restart for these arrays. These routines contain subroutines AllBOp 
and AllFOp, respectively:

CALL AllBreakArravs('allocate',breakTab(cci)%ibty 
&,breakTab(cci)%isat,breakTab(cci)%nbtb,breakTab(cci)%nbrf,isolut 
&,iduml,inbtb2,idum2) 

MODULE Break 

BEGIN MODULE USE 

USE BreakArray 
USE Global 

CONTAINS 

SUBROUTINE AllBreakArrays 
& (mode,ibty, isat,ntb,nrf,isolut,ictrl,intb2,words) 

IF (ibty.GE.i.AND.ibty.NE.6) THEN 
intb2=iabs(ntb)*2 
CALL A11BOD(breakAr(cci)%ptb,breakAr(cco)%ptb,intb2, ptbl)

& 
&

IF (ibty.NE.l) THEN 
CALL A11BOp(breakAr(cci)%tltb,breakAr(cco)%tltb, intb2,'tltb')
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CONTAINS

SUBROUTINE AIIBOp (initArray, orderedArray, size, name) <<<- CCi, cCO 

BEGIN MODULE USE 
USE Alloc 
USE Restart 

IF(mode.EQ. 'words') THEN 
words=words+size 

ELSEIF(mode.EQ. 'allocate') THEN 

CALL TRACAllo (initArray, size, name, 0. dO) <<<- Call TRACAllo 
ELSEIF(mode.EQ. 'dump') THEN 

CALL bfoutn(orderedArray, size, ictrl) 
ELSEIF (mode. EQ. 'restart' ) THEN 

CALL bfinn(initArray, size, ictrl) 
ELSE 

STOP 'AllBreakArrays: Unrecognized mode' 
ENDIF 
END SUBROUTINE A1IBOp 

END SUBROUTINE AllBreakArrays 

Subroutine AllFillArrays calls and contains the corresponding service routine 
AlIFOp: 

CALL AIIFOp(fillAr(cci)%alptb, fillAr(cco) %alptb,ntb2, 'alptb') 

Note that these routines can use either reordered (cco) or nonreordered (cci) 
indexing into the data arrays, according to the situation and task.  

3.2.2.2.3. "OD" Multiple-Connection-Component Type (PLENUM). FLT, same as 
for 1D: The PLENUM-component type uses array genTab for its FLT in exactly the 
same manner as the other components. The PLENUM is the only component type to use 
FLT-variable typeIndex (it is set by variable currentPlenumInd in subroutine 
rplen), but this logic currently is not used by the code.  

VLT, specific for PLENUM: The PLENUM VLT data are treated by module PlenVit, 
which has the same logic as the other VLT modules. VLT data for individual PLENUM 
components are stored in derived-type array 

plenTab.  

Array data generic for all 1D-component types (subset of 1D): The PLENUM
component type stores some of its array data in array gidAr, but it does not use a call to 
subroutine AllocGenlD. Rather, input routines rplen and replen, in module Plenum, 
employ calls to PLENUM-specific allocation routine AllocPlenum, which is also in 
module Plenum; rplen and replen have direct calls to loadn and bf inn, which read
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the gldAr data arrays. Many of the PLENUM data arrays are hardwired to a size of one 
word; others have storage allocated according to the user-input number of junctions for 
the specific PLENUM component. The PLENUM component is the only component type 
that associates the pointers for the thermodynamic derivatives and enthalpies in data
type glDArrayT with elements of glDArrayT array driv. For the iD components, driv 
is allocated nthm*nf aces words; for the PLENUM, it is allocated nthm words.  

MODULE Plenum 

CONTAINS 

SUBROUTINE AllocPlenum 

BEGIN MODULE USE 
USE GenIDArray 
USE Alloc 
USE PlenVlt 

CALL TRACAllo(glDAr(cci)%hiv,l, 'hiv',O.OdO) 

CALL TRACAI1o(glDAr(cci)%hil,l, 'hil',O.0d0) 

CALL TRACAlIo(glDAr(cci)%bitn,I, 'bitn',0.OdO) 
CALL TRACAllo(glDAr(cci)%tvni,, 'tvn',O.Od0) 

CALL TRACAIlo(glDAr(cci)%tln, 1, tln', O.OdO) <<<-- allocate one word 

CALL TRACAllo (glDAr (cci) %driv, nthm, 'driv', 0. OdO) <<<-- allocate driv 

gIDAr(cci) %dtsdp=>glDAr(cci) %driv(l:) <<<-- associate pointer to driv 
glDAr(cci) %deldp=>glDAr(cci) %driv (2:) 

CALL TRACAllo(glDAr(cci)%favol,plenTab(cci)%npljn, 'favol' ,0.OdO) 

giDAr (cci) %fa=>glDAr (cci) %favol 

CALL TRACAIIo(glDAr(cci)%dx,plenTab(cci)%npljn, 'dx', 0.OdO) 
A 

allocate npljn words 

Array data specific for the PLENUM-component type: TRAC has a module for 

derived-type data arrays specific to the PLENUM-component type: 

PlenArray 

Its logic is similar to that for the iD-component types: 

MODULE PlenArray
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Plenum component specific arrays 

TYPE plenumArrayT 

INTEGER(sik), POINTER, DIMENSION(:)

REAL(sdk),

:: ioj <<<- integer, rank 1

POINTER, DIMENSION(:,:) :: dbnd <<<- real, rank 2

REAL(sdk), POINTER, DIMENSION(:) : : favul <<<-- real, rank 1

END TYPE plenumArrayT 

TYPE (plenumArrayT) ,DIMENSION(maxComps) :: plenAr 

END MODULE PlenArray 

Subroutines rplen and replen have direct calls to TRACAIlo to allocate storage for the 
plenAr data arrays. rplen and replen are contained in module Plenum, which uses 
module PlenArray.  

Adding new variables: These steps are followed when adding a new variable to the 1D 
hydrodynamic database for an existing component type. Complete details are given in 
Appendix H. See also Section 3.2.3.1 for guidelines for modification of the system 
services (when, for example, a new component type is added). At the end of this 
subsection, we list a summary of steps for adding a new variable for components when 
System Services for the component bd array logic are affected; full details are given in 
Section 3.2.3.1.  

oenTabT (FLT): 

1. Modify the definition of data-type genTabT and the parameterization 
of the length of data-type genTabT.  

2. Add the new variable to the dump/restart file.  

3. Read the new variable from the dump/restart file.  

4. Modify subroutine GetGenTable (as needed).  

5. Echo new input variable (as needed).  

6. Add to edits.  

"comy tvpe"TabT (VLTs):

3-31



1. Modify the definition of data type "comp-type"TabT and the 

parameterization of the length of data-type "comp_type"TabT.  

2. Add the new variable to the dump/restart file.  

3. Read the new variable from the dump/restart file.  

4. Add or modify subroutine Get"Comp-type"Tab (as needed).  

5. Add or modify subroutine Set"Comp-type"Tab (as needed).  

6. Echo new input variable (as needed).  

7. Add to edits.  

Array Data: 
For "comp type"-specific arrays: 

1. Add declaration of array to TYPE "comp-type"ArrayT in module 
"Comp-type"Array.  

2. Add allocation of storage for array with call to subroutine TRACAllo 
in "comp-type" input routines, which are in module "Comp-type'.  

3. Add array to dump file with call to subroutine bfoutn in 
"comp-type" dump routine in module "Comp.type".  

4. Read array from input file tracin with call to subroutine loadn and 

echo to output file trcout with call to subroutine warray, in 
"comp-type" input routine in module "Comp-type", after storage 
allocation.  

5. Read array from restart file trcrst with call to subroutine bf inn and 

echo (restart) array to trcout with call to subroutine warray, in 
"Ifrcompype" restart routine in module "Comprtype".  

6. Write array to large (major) edits in trcout (as needed).  

For general data-arrays (glDAr): 

1. Add declaration of array to TYPE glDArrayT in module 
GenlDArray.  

2. Add allocation of storage for array with new call to subroutine 
TRACAllo, inserted in subroutine AllocGenlD, which is in module 
GenlDArray.
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3. Add array to dump file with call to subroutine bfoutn in subroutine 
dcomp.  

4. Read array from input file tracin with call to subroutine loadn, and 
echo to output file trcout with call to subroutine warray, in 
subroutine rcomp, after storage allocation.  

5. Read array from restart file trcrst with call to subroutine bf inn and 
echo (restart) array to trcout with call to subroutine warray, in 
subroutine recomp.  

6. Write array to large (major) edits in trcout (as needed) with call to 
subroutine wcomp.  

7. If the array is in DUALPT, add assignment statements for it to 
subroutine TimeUpGenlD (module GeniDArray) (in two places).  

8. If appropriate, add an assignment statement for the array to 
subroutine BackUpGenlD (module GenlDArray).  

9. On an as-needed basis, add a new index variable for the array to the 
module GeniDArray data interface and add a corresponding array 
reference to the case construct in subroutine GetlDArrayPointer 
(module GenlDArray).  

bd Array and System Services: 

1. Add variable to the bd-array, derived-type structure in module 
Boundary. (Note: the bd derived type is not currently implemented.) 

2. Increment variable nbd by one.  

3. Add call to SetBDVar for the new variable in SetBDJunCell.  

4. Add case statement to flipSign logic in SetBDVar, if appropriate.  

5. Add case statement to the associated logic in AssignGenlDPtr (in 
post-3.0 versions, this routine is called AssignPtr).  

If the new variable is isolated for use by only one or two components, then pointers 
should be set up specifically for these components. Remaining components should have 
this variable pointing to the nul variable in module SysService (in a post-3.0 version, 
variable nul wil be moved to module Global).  

3.2.2.2.4. 3D Hydrodynamic-Component Type (VESSEL). FLT, same as for ID, 
array genTab: The 3D VESSEL component uses the same FLT as the other component 
types. FLT data for individual VESSEL components are stored in derived-type array
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genTab.

VLT, specific 3D-component type: The VESSEL VLT data are treated by module 
vessVlt; its logic is the same as the other VLT modules. VLT data for individual 
VESSEL components are stored in derived-type array 

vessTab.  

Array data for the VESSEL-component type: Array data for a specific 3D VESSEL 
component fall into two categories: 

1. Special array variables provide "general" information for a VESSEL, 
i.e., data that are not defined at each cell in the 3D mesh. Examples of 
such data are arrays that carry the physical lengths of the VESSEL's 
radial segments ("rings"), azimuthal segments ("thetas" or "sectors"), 
and axial segments ("levels"); these are dimensioned according to the 
user-input parameters nrsx, ntsx, and nasx, respectively (for a 
VESSEL modeled in Cartesian coordinates, these variables correspond 
to the x, y, and z coordinates, respectively). Other examples are arrays 
with information for source connections to 1D hydrodynamic 
components, dimensioned by input-parameter ncsr (or a multiple 
thereof), and arrays for vent-valve information, dimensioned by input 
parameter nvent.  

All of these arrays are of rank 1; storage for them is allocated at run 
time. A special case of the special array variables is that which carries 
3D VESSEL information that is only 2D in nature; typically, these data 
specify a different single value for each axial column of mesh cells in 
the VESSEL and are dimensioned nrsx x ntsx (the number of mesh 
cells per level). As shown below, elements of these rank-1 arrays are 
accessed by composite indices into the 2D plane.  

2. 3D mesh-cell variables carry information that is defined for each cell 
in the VESSEL fluid mesh; they are all of rank 3, and storage for them 
is allocated at run time. Some of these arrays hold data that are 
defined at each cell center (e.g., pressure and liquid temperature), and 
some hold data defined at cell faces (e.g., vapor velocity in the radial 
direction and liquid velocity in the axial direction). For the face arrays, 
information for only three faces per cell is needed because the other 
faces are defined at neighboring cells in the mesh.  

Special array variables-declaration: The special array variables for all VESSEL 

components in a model are stored in derived-type array 

vsAr,

3-34



which is of type vessArrayT and dimension maxComps. Module vessArray defines 
the elements of data type vessArrayT and declares array vsAr (note that vessArrayT 
contains both integer and real arrays): 

MODULE VessArray 

BEGIN MODULE USE 
USE IntrType 

USE GlobalDim «<-- parameter maxComps 

IMPLICIT NONE 

! VESSEL component specific arrays 

TYPE vessArrayT 
REAL(sdk), POINTER, DIMENSION(:) z 
REAL(sdk), POINTER, DIMENSION(:) dz 
REAL(sdk), POINTER, DIMENSION(:) rad 
REAL(sdk), POINTER, DIMENSION(:) dr 
REAL(sdk), POINTER, DIMENSION(:) th 

REAL(sdk), POINTER, DIMENSION(:) zsgrd 
INTEGER(sik), POINTER, DIMENSION(:) isrl 

INTEGER(sik), POINTER, DIMENSION(:) isrc 
INTEGER(sik), POINTER, DIMENSION(:) isrf 

INTEGER(sik), POINTER, DIMENSION(:) nsrl 
REAL(sdk), POINTER, DIMENSION(:) svc 
REAL(sdk), POINTER, DIMENSION(:) sac 

REAL(sdk), POINTER, DIMENSION(:) alpcn 

REAL(sdk), POINTER, DIMENSION(:) alptn 
REAL(sdk), POINTER, DIMENSION(:) zchfn 
REAL(sdk), POINTER, DIMENSION(:) ztbn 

END TYPE vessArrayT 

TYPE (vessArrayT), TARGET, DIMENSION (maxComps) vsAr <<<--declare vsAr 

Because the elements of data-type vessArrayT are allocatable arrays, they have the 
pointer attribute.  

Storage allocation: Subroutines rvssl and revssl, which are contained in module 
VessTask, call subroutine AllocVess (module VessArray). AllocVess calls 
TRACAllo for each array in vsAr:
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MODULE VessArray

CONTAINS 

SUBROUTINE AllocVess 

BEGIN MODULE USE 

USE GlobalDat 
USE VessCon 
USE VessVlt 
USE Alloc 

Store dimension data in local variables: 
nclx=vessTab(cci)%nclx 
nrsx=vessTab(cci)%nrsx 
nytv=vessTab(cci)%nytv 
nasx=vessTab(cci)%nasx 
ntsx=vessTab(cci)%ntsx 
ncsr=vessTab(cci)%ncsr 
nvent=vessTab(cci)%nvent 

CALL TRACAllo(vsAr(cci)%ztbn,nclx,'ztbn ,O.OdO) <- #cells perlevel 
CALL TRACAllo(vsAr(cci)%zchfn,nclx,'zchfn',0.OdO) 

CALL TRACAllo(vsAr(cci)%jsn,ncsr,'jsn',0) <<<-- # source connections 
CALL TRACAllo(vsAr(cci)%juns,ncsr,'juns',0) 

CALL TRACAllo (vsAr (cci) %avent, nvent, 'avent , 0.0d0) <<<--- # vent valves 
CALL TRACA11o(vsAr(cci) %dth,ntsx, 'dth', .0.OdO) <<<--- # thetas or y-cells 
CALL TRACAllo(vsAr(cci)%th,ntsx,'th',0.OdO) 
CALL TRACAllo(vsAr(cci)%dr,nrsx,'dr',0.OdO) <<<--# rings or x-cells 
CALL TRACAllo(vsAr(cci)%rad,fnrsx,'rad',0.OdO) 
CALL TRACAllo(vsAr(cci)%dz,nasx,'dz, 0.OdO) <<<-- # levels or z-cells 
CALL TRACAllo(vsAr(cci)%z,nasx,'z',0.OdO) 

END SUBROUTINE AllocVess 

Accessing special-array 2D elements: The special-array variables that carry 2D 
information for the nclx columns in a VESSEL through the (ij) plane are accessed by a 
composite index that is calculated as the VESSEL mesh is looped over: 

MODULE VessTask
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CONTAINS 

SUBROUTINE cif 3 «<-- VESSEL interfacial shear 

USE VessVlt <<-- obtain (i,j,k) ranges for this VESSEL 
USE VessArray 

loop over all levels for each radial and azimuthal mesh 

ir=O 
DO i=vessTab(cco) %icO,vessTab(cco) %icx,nv <<<--- radial loop

ir=ir+l <<<-

jct=(ir-l)*(vessTab(cco)%jcx-vessTab(cco)%jcO+l) 
it=O 
DO j=vessTab(cco)%jcO,vessTab(cco)%jcx «<-

it=it+l <<<-

ring counter

* azimuthal loop 
theta counter

jct=jct+l <<<- index into 
agalp=vsAr(cco)%alpan(jct) 
chfalp=vsAr(cco)%alpcn(jct) 
rwalp=vsAr(cco)%alprn(jct) 
smalp=vsAr(cco)%alpsn(jct) 
tbalp=vsAr(cco)%alptn(jct) 
agsz=vsAr(cco)%zagsn(jct) 
chfz=vsAr(cco)%zchfn(jct) 
dfsz=vsAr(cco)%zdfsn(jct) 
rwsz=vsAr(cco)%zrwsn(jct) 
smsz=vsAr(cco)%zsmsn(jct) 
tbz=vsAr(cco)%ztbn(jct) 
nrefld=int(vsAr(cco)%refld(jct)) 
xfunh=vsAr(cco)%funh(jct) 
DO k=vessTab (cco) %kcO,vessTab (cco) %kcx ax<--iaal loop 

iz=k-nzbcm 

set VESSEL location logical variables

3D mesh-cell variables: A TRAC 3D VESSEL component may be modeled in either 
cylindrical (r, q, z) or Cartesian (x, y, z) coordinates. All 3D mesh arrays are indexed by 
indices (i, j, k) that correspond to either the (r, q, z) or (x, y, z) coordinates, depending 
on the particular VESSEL's geometry. When we refer to rings and thetas, we are 
indicating in a more general sense the i and j indices, respectively.  

Declaration: The mesh arrays for the 3D VESSEL component are stored in a derived
type array of dimension maxComps, in much the same fashion as the generic arrays for 
the 1D components. Module VessArray3 defines derived data-type vessArray3T, the
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elements of which are of dimension ( , :, : ) and have the pointer attribute. Array 
vsAr3 is declared to be of TYPE vessArray3T and dimension (maxcomps): 

MODULE VessArray3

TYPE vessArray3T 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER,

DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:)

<<<-- define TYPE vessArray3T 
hia 
hva 

:: q3drl 
q3drv 
wat

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

END TYPE vessArray3T

DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:) 
DIMENSION(:,:,:)

TYPE (vessArray3T) ,DIMENSION (maxComps) :: vsAr3 <<<--declare vsAr3 

Indices for all specific VESSEL components in an input model are stored with the other 
component indices in array compIndices (module Global). Typically, array data for 
specific Vessels in array vsAr3 are accessed using the same cci and cco index variables 
used for the other components.  

Storage allocation: Table 3-4 summarizes the variables used in allocating storage for 
the VESSEL mesh arrays (also included in Table 3-4 are two parameter variables that 
limit the maximum size of any VESSEL component in an input model; these variables 
are used only for special purposes).  

Each specific VESSEL component has its mesh arrays dynamically allocated at runtime; 
this storage allocation is based on the user-input number of mesh cells for each of its 
three dimensions [using input variables nrsx (radial or x-coordinate)], ntsx (azimuthal 
or y-coordinate), and nasx (axial or z-coordinate), which are stored in the VESSEL's 
VLT). Each array is dimensioned according to VESSEL VLT variables ni, nj, and nk, 
which specify the lengths of the i, j, and k subscripts, respectively. Variables ni, nj, and 
nk include storage for the VESSEL's physical mesh, as input by the user, and also storage 
for boundary cells that TRAC uses internally along each coordinate. The number of 
boundary cells is specified by six parameter variables in module vessCon (see Table 3-4 
and Fig. 3-1) for the low- and high-numbered ends of each of the three coordinates. The 
use of the boundary cells is described in the following section.
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TABLE 3-4 
VESSEL-Array Dimension Variables

Name Storage Purpose 
Location 

nrsx vessTab The number of physical mesh cells in the radial or x coordinate 
(user input).  

ntsx vessTab The number of physical mesh cells in the azimuthal or y 
coordinate (user input).  

nasx vessTab The number of physical mesh cells in the axial or z coordinate 
(user input).  

nxbcm Module The number of boundary (phantom) mesh cells next to the 
vesscon radial ring or x-direction cell 1.  

nybcm Module The number of boundary (phantom) mesh cells next to the 
VessCon aximuthal sector or y-direction cell 1.  

nzbcm Module The number of boundary (phantom) mesh cells next to the axial 
VessCon or z-direction cell 1.  

nxbcp Module The number of boundary (phantom) mesh cells next to the 
VessCon radial ring or x-direction cell nrsx.  

nybcp Module The number of boundary (phantom) mesh cells next to the 
VessCon azimuthal sector or y-direction cell ntsx.  

nzbcp Module The number of boundary (phantom) mesh cells next to the axial 
VessCon or z-direction cell nasx.  

ni vessTab The total number of computer words allocated for the first 
subscript, i (radial or x coordinate), of a VESSEL mesh array: 
ni = nrsx + nxbcm + nxbcp 

nj vessTab The total number of computer words allocated for the second 
subscript, j (azimuthal or y coordinate), of a VESSEL mesh 
array: 
nj = ntsx.+ nybcm + nybcp 

nk vessTab The total number of computer words allocated for the third 
subscript, k (axial or z coordinate), of a VESSEL mesh array: 
nk = nasx + nzbcm + nzbcp 

nxrmx Module The maximum number of radial rings or x-direction cells in the 
VessCon 2D or 3D mesh for any VESSEL component in the input model.  

Used only to statically dimensioned global array wp and the 
HTSTR/VESSEL interface arrays in module RodHtcref 1.  

nytmx Module The maximum number of azimuthal sectors or y-direction cells 
vesscon in the 2D or 3D mesh for any VESSEL component in the input 

model. Used only to statically dimensioned global array wp and 
the HTSTR/VESSEL interface arrays in module RodHtcref 1.
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MODULU vess'on

BEGIN MODULE USE 
USE IntrType 

From parsetl.h: 

Parameters nxrmx and nytamc are used only to statically dimension global array 
wp and the HTSTR/VESSEL interface arrays in module RodHtcref 1 (via 
parameter nxryt): 

INTEGER(sik) nxrmx, nytmx 
PARAMETER (nxrmx=21,nytmx=12) 
INTEGER(sik) nrfmx,nzfmx 
PARAMETER (nrfmx=20,nzfmx=250) 
INTEGER(sik) nms,ndms 
PARAMETER (nms=10,ndms=7+nms) 

INTEGER(sik) nxbcm, nybcm, nzbcm 
PARAMETER (nxbcm=2,nybcm=2,nzbcm=2) <<<- low-boundary cells 
INTEGER(sik) nxbcp,nybcp,nzbcp 
PARAMETER (nxbcp=l, nybcp=l, nzbcp=l) <<<-- high-boundary cells 
INTEGER (sik) nxryt 
PARAMETER (nxryt=nxrmx*nytmx) <<<-- nxryt, used by module 

Rodftcref1 
INTEGER(sik) nrfmxl,nrzfmx 
PARAMETER (nrfmxl=nrfmx+l,nrzfmx=nrfmx*nzfmx) 

From parset2. h: <<<--the following is for loop-index logic: 

PARAMETER (jc0p=1+nybcm) 
PARAMETER (kc0p=l+nzbcm) 
PARAMETER (jc0mp=jc0p-1,kc0mp=kc0p-1) 
PARAMETER (jc0mmp=jc0p-nybcm, kc0mmp=kc0p-nzbcm) 

From parset0.h: 

PARAMETER (iseq=l,imfreq=l,idrpeq=0,nfr3eq=2) 

END MODULE VessCon 

Fig. 3-1. Module VessCon
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Subroutine AllocVess3 (module VessArray3) allocates all storage for the VESSEL 
mesh arrays, using calls to TRACAllo for each array. Subroutines rvssl and revssl 
(module VessTask) each have a call to AllocVess3. In rvssl, the three input 
variables that dimension the physical mesh are first stored in local variables nxr, nyt, 
and nzz. Then, ni, nj, and nk are calculated using the six boundary-cell parameter 
variables, and TRACAllo is called: 

MODULE VessTask 

CONTAINS 

SUBROUTINE rvssl(icomp,jflag,jun) 

--- read nasx, nrsx, and ntsx; store in local variables: 

read input parameters to be stored in vlt 

CALL readi ( iiiii' ,vessTab(cci)%nasx,vessTab(cci)%nrsx 
&,vessTab(cci)%ntsx,vessTab(cci) %ncsr,vessTab(cci) %ivssbf, 'nasx' & 
&, 'nrsx, 'ntsx', ncsr, 'ivssbf') 

j flagd=O 
nxr=vessTab (cci) %nrsx 
nyt=vessTab (cci) %ntsx 
nzz=vessTab (cci) %nasx 

calculate ni, nj, and nk; call AllocVess3: 

vessTab (cci) %ni=nxr+nxbcm+nxbcp 
vessTab (cci) %nj =nyt+nybcm+nybcp 
vessTab (cci) %nk=nzz+nzbcm+nzbcp 

CALL AllocVess (; < for special arrays 
CALL AllocVess3 (vessTab(cci) %ni,vessTab(cci)%nj,vessTab(cci)%nk & 

&, cci) 

MODULE VessArray3 

--- allocate all VESSEL mesh arrays with arguments ni, ni, nk.  

CONTAINS 

SUBROUTINE AllocVess3 (ni, nj, nk, ccix) 

BEGIN MODULE USE 
USE Alloc
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IMPLICIT NONE 
INTEGER(sik) ni,nj,nk, ccix 

CALL TRACAI1o(vsAr3 (ccix) %hla,ni,nj,nk, 'hla' ,O.OdO) 

CALL TRACAI1o(vsAr3 (ccix) %hva,ni,nj,nk, 'hva', O.OdO) 

CALL TRACAI1o(vsAr3 (ccix) %q3drl,ni,nj,nk, 'q3drl',O.OdQ) 

CALL TRACAIio(vsAr3 (ccix)%q3drv,ni,nj,nk, 'q3drv' ,O.OdO) 

CALL TRACAIlo(vsAr3 (ccix) %xv6,ni,nj,rnk, 'xv6',O.OdO) 

CALL TRACAI1o(vsAr3 (ccix) %xvs,ninj,nk, 'xvs', O.OdO) 

END SUBROUTINE AllocVess3 

VESSEL boundary (phantom) cells: The VESSEL mesh in TRAC is constructed with 
two planes of boundary cells outside the mesh in each of the three lower-numbered 
directions, with one plane of boundary cells in each of the higher-numbered directions.  
The use of boundary cells allows all references from cells within the physical mesh to 
neighboring cells outside the physical mesh to be valid. The extra plane in the lower
numbered directions is necessary to accommodate face-centered data. The number of 
boundary cells in each direction is determined by parameter constants that are set in 
module VessCon: 

INTEGER (sik) nxbcm, nybcm, nzbcm 

PARAMETER (nxbcm=2, nybcm=2, nzbcm=2) <<<-- low-boundary cells 
INTEGER (sik) nxbcp, nybcp, nzbcp 

PARAMETER (nxbcp=l, nybcp=l, nzbcp=l) <<<- high-boundary cells 

When using a 3D VESSEL component to model a typical cylindrical-geometry reactor 
VESSEL with outer-boundary walls, the data in the bottom and top axial-boundary cells 
and in the outer radial-boundary cells do not affect the calculation. However, the inner 
radial-boundary cells can be used to incorporate the effect of radial-momentum 
convection across the center of the VESSEL. Such a model was implemented using a 
different mechanism in TRAC-PF1/MOD1. This model, which is partially implemented 
in subroutine vrbd (module VessCrunch), is not currently activated in TRAC. The 
azimuthal-boundary cells are used to avoid the special logic necessary to indicate that 
the first physical azimuthal sector is adjacent to the last physical azimuthal sector. This is 
accomplished by subroutine setbdt (module VessCrunch), which copies the data from 
the cells in the first and last physical sectors to their appropriate phantom cells.  

The boundary-cell implementation makes it simple to include generalized boundary 
conditions at the bottom-axial, top-axial, and outer-radial boundaries of a cylindrical 
VESSEL and at all external boundaries of a 3D Cartesian-geometry VESSEL. TRAC 
contains the appropriate coding in all VESSEL hydrodynamic routines to allow for fixed
pressure (such as a BREAK component) or fixed-velocity (such as a FILL component) 
boundary conditions independently at any of these boundaries. However, this coding 
for the radial (or x) and azimuthal (or y) boundaries has not yet been tested. In the 
currently released version of TRAC, there is no input-data mechanism to activate this 
coding. Input option ivssbf activates only the generalized boundary conditions at the
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lower and upper axial faces. There currently is no coding to allow for the generalized 
boundary conditions to be time-dependent. However, implementing such a capability 
should not require major changes to TRAC.  

In addition to providing for the new generalized boundary conditions, using phantom 
cells improves implementation of the standard hydrodynamic algorithms. Without the 
use of phantom cells, special program logic is required to calculate expressions, 
including gradients and fluxes for cells at the edge of the physical mesh. Such logic 
would increase the probability of coding errors and inhibit vectorization on hardware 
such as a Cray computer.  

For typical coarse-mesh 3D VESSEL components, most of the cells are found at the edges 
of the mesh. For example, a VESSEL component with four radial rings and four 
azimuthal sectors on each level actually has only 4 of the 16 cells on a level that has 
neither a radial nor an azimuthal boundary. Because even straightforward vectorization 
generally reduces computation time by more than a factor of 5, it is clearly desirable to 
design implementations that are vectorizable for all cells.  

As stated previously, if phantom cells are not used, special logic would be required to 
carry out calculations for cells at the edge of the physical mesh. On the other hand, when 
phantom cells are used, additional procedures are required to define the values 
associated with the phantom cells. The amount of code that must be maintained is 
similar in either case; however, the phantom-cell methodology is more easily 
modularized.  

The major disadvantage in using phantom cells is the potential for significantly 
increased computer-memory requirements for coarse-mesh VESSEL components. For 
our previous example, a VESSEL with 4 radial rings, 4 azimuthal sectors, and 10 axial 
levels has only 4 x 4 x 10, or 160, physical mesh cells. However, it will have (4 + 3) x (4 + 
3) x (10 + 3), or 637, computational mesh cells when including the boundary cells.  
Naturally, the percentage of boundary cells is smaller for more finely noded problems.  
The current VESSEL mesh array data contain about 300 different variables; thus, this 
example would require about 200,000 words of computer memory for the 48,000 words 
of physical mesh-cell array data. However, for most modem computer hardware, this is 
not a large amount of memory, and the cost-benefit ratio of this memory increase is 
extremely favorable when considering the more efficient coding.  

Because both of the lowest-numbered planes of phantom cells in each direction are used 
only in conjunction with the generalized boundary-condition option associated with a 
fixed-pressure boundary condition, it should be possible to reduce the memory 
requirements by changing from 2 to 1 the parameter constants defining the number of 
lower-numbered phantom cells for the radial or x and azimuthal or y directions.  
However, this reduction has not been tested.  

DO-loop limits: The lower and upper limits of the many Fortran DO loops over the 
VESSEL mesh arrays in TRAC are stored in variables in each VESSEL component's VLT 
(array vessTab). As shown below, these limits are calculated in module VessCon (see
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Fig. 3-1) and in subroutine rvssl (module VessTask) according to the individual input 
specifications for each VESSEL component and the number of boundary cells specified 
for each coordinate in module vesscon (Fig. 3-1). All array-dimension loop-limit 
variable names have the same naming convention, with the first letter, i.e., i, j, and k, 
indicating the first (radial- or x-direction), second (azimuthal- or y-direction), and third 
(axial- or z-direction) array subscripts, respectively. The letter c in a name denotes a 
limit suitable for looping over cells, and the letter f denotes a limit suitable for looping 
over cell faces. The convention for cell-face variables in the TRAC-M VESSEL is the same 
as in TRAC-P: the cell-face data at the outer (r or x), forward (e or y), or upper (z) face of 
a cell have the same index as the data at the cell center. Note that, as indicated above in 
the section on boundary cells, cell faces at the VESSEL boundaries are included in the 
cell-face loops only when their velocities need to be calculated as a result of using the 
generalized boundary-condition ivssbf option for a pressure boundary condition.  

The numeral 0 in a name denotes a lower limit, and the letter x denotes an upper limit.  
The suffix m denotes a lower limit that includes the boundary cell adjacent to the first 
physical cell, and the suffix mm denotes a lower limit that includes all of the low
numbered boundary cells. The suffix p denotes an upper limit that includes the 
boundary cell adjacent to the last physical cell, and the suffix a 1l denotes an upper limit 
that includes all the high-numbered boundary cells. The variable names for the radial- or 
x-direction are 

icOmm Lower limit for loop over all radial rings or x-direction cells in the 
computational mesh.  

icOm Lower limit for loop over radial rings or x-direction cells in the 
physical mesh and the adjacent low-numbered phantom or 
boundary radial ring or x-direction cell.  

ic0 Lower limit for loop over all radial rings or x-direction cells in the 
physical mesh.  

ifO Lower limit for loop over all radial-ring faces or x-direction cell 
faces at which velocities are calculated.  

icx Upper limit for loop over all radial rings or x-direction cells in the 
physical mesh.  

ifx Upper limit for loop over all radial-ring faces or x-direction cell 
faces at which velocities are calculated.  

icxP Upper limit for loop over radial rings or x-direction cells in the 
physical mesh and the adjacent high-numbered phantom or 
boundary radial ring or x-direction cell.  

iall Upper limit for loop over all radial rings or x-direction cells in the 
computational mesh.
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The variable names for the azimuthal or y-direction loop limits can be obtained by 
replacing the leading i with a j and those for the axial or z-direction loops by replacing 
the leading i with a k. The code developer should not have to change any of the coding 
of the loop limits in either module vessCon or in subroutine rvssl. The coding of the 
loop limits is described here for completeness. Certain loop limits are hard coded with 
parameter statements, which are defined as follows in module vessCon (see Fig. 3-1): 

jcop = nybcm + 1 
jcOmp = jcOp - 1 
jcommp = jc~p- nybcm 
kc0p = nzbcm + 1 
kcOmp = kc0p - 1 
kc0mmp = kc0p - nzbcm 

The "p" in these names stands for parameter because they are parameter constants.  
These constants are copied to the corresponding vessTab variables jcO, jcOm, 
jcOmm, kcO, kcOm, and kc0mm, using the standard naming convention in subroutine 
rvssl: 

MODULE VessTask 

CONTAINS 

SUBROUTINE rvssl (icomp, jflag, jun) 

vessTab (cci) %jcO=jcop 
vessTab(cci) %jc0m=jcOmp 
vessTab(cci) %jcOxmm=jcOmmp 
vessTab (cci) %kcO=kc0p 
vessTab (cci) %kc0m=kcOmp 
vessTab(cci) %kc0mm=kc0mmp 

Additional radial- or x-direction, azimuthal- or y-direction, and axial or z-direction 
lower loop limits, as well as all of the upper loop limits, are defined dynamically for each 
3D VESSEL component in subroutine rvssl, where 

nxr is the input number of physical radial rings or x-direction cells, 

nyt is the input number of physical azimuthal sectors or y-direction cells, 

nz z is the input number of physical axial levels or z-direction cells,
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igeom is 0 for cylindrical geometry and 1 for Cartesian geometry,

igbcxr is nonzero for generalized radial- or x-direction boundary conditions, 

igbcyt is nonzero for generalized azimuthal- or y-direction boundary 
conditions, 

igbc z is nonzero for generalized axial-direction boundary conditions, 

nxrv is the upper limit corresponding to loop-limit ifx, 

nytv is the upper limit corresponding to loop-limit j fx, and 

nz zv is the upper limit corresponding to loop-limit kfx.  

Variables nxr, nyt, and nzz are the same local variables that are used by rvssl to 
dimension the VESSEL fluid-mesh arrays. In the current version of TRAC, IGBCXR and 
IGBCYT are always 0 and IGBCZ is only nonzero when the VESSEL outer-boundary
condition input flag, IVSSBF, is nonzero.  

nxr=vessTab (cci) %nrsx 
nyt=vessTab (cci) %ntsx 
nzz=vessTab (cci) %nasx 
vessTab (cci) %igbcxr=O 
vessTab (cci) %igbcyt=O 
vessTab(cci) %igbcz=O 
IF (vessTab(cci)%ivssbf.NE.0) THEN 

vessTab(cci) %igbcz=l 

vessTab (cci) %nxrv=vessTab (cci) %nrsx-1 
IF (vessTab(cci)%igeom.EQ.O.AND.vessTab(cci)%igbcxr.NE & 

&.0) vessTab(cci) %nxrv=vessTab(cci) %nrsx 
IF (vessTab(cci)%igeom.NE.O.AND.vessTab(cci)%igbcxr.NE & 

&.0) vessTab(cci) %nxrv=vessTab(ccio)%nrsx+l 
vessTab (cci) %nytv=vessTab (cci) %ntsx 
IF (vessTab(cci)%igeom.EQ.O.AND.vessTab(cci)%%ntsx.EQ & 

&.1) vessTab (cci) %nytv=O 
IF (vessTab(cci)%igeom.NE.O.AND.vessTab(cci)%igbcyt.EQ & 

&. 0) vessTab (cci) %nytv=vessTab (cci) %ntsx-1 
IF (vessTab(cci)%igeom.NE.0.AND.vessTab(cci)%igbcyt.NE & 

&. 0) vessTab(cci) %nytv=vessTab (cci) %ntsx+l 
vessTab (cci) %nzzv=vessTab (cci) %nasx-I 
IF (vessTab(cci) %igbcz.NE.0) vessTab(cci)%nzzv=vessTab(cci) %nasx+l 

Set up the start value for the first (x or r) variable index

3-46



vessTab(cci) %icOmm=1 
vessTab (cci) %icO=vessTab (cci) %icO0mm+nxbcm 
vessTab(cci) %icO0m=vessTab(cci) %icO-1 

vessTab (cci) %j fO=vessTab (cci) %j cO 
IF (vessTab(cci)%igeom.EQ.1.AND.vessTab(cci)%igbcyt.EQ & 

&.1) vessTab(cci)%jfO=vessTab(cci)%jcOm 
vessTab(cci) %jcx=vessTab(cci) %jcO+nyt-1 
vessTab(cci) %jcxp=vessTab(cci) %jcx+1 
vessTab(cci) %jall=vessTab (cci) %jcx+nybcp 
vessTab(cci) %nijt=ni*vessTab(cci) %jal1 
vessTab(cci) %kfO=vessTab (cci) %kcO 
IF (vessTab(cci) %igbcz.EQ.1) vessTab(cci) %kfO=vessTab(cci)%kc0m 
vessTab (cci) %kcx=vessTab (cci) %kcO+nzz-1 
vessTab(cci) %kcxp=vessTab (cci) %kcx+1 
vessTab (cci) %kall=vessTab (cci) %kcx+nzbcp 
vessTab(cci) %ifO=vessTab(cci) %icO 
IF (vessTab(cci)%igeom.EQ.1.AND.vessTab(cci)%igbcxr.EQ & 

&.1) vessTab(cci) %ifO=vessTab(cci)%icOm 
vessTab(cci) %icx=vessTab(cci) %icO+ (nxr-1) 
vessTab(cci) %icxp=vessTab(cci) %icx+1 
vessTab(cci) %iall=vessTab (cci) %icx+nxbcp 
vessTab(cci) %jfx=vessTab(cci) %jfO+vessTab(cci) %nytv-1 
vessTab(cci)%kfx=vessTab(cci) %kfO+vessTab(cci)%nzzv-1 
vessTab(cci) %ifx=vessTab(cci) %ifO+ (vessTab(cci) %nxrv-1) 

VESSEL interface to 1D/3D service routines: Subroutines fprop, thermo, htif, and 
evaldfld perform services for the hydrodynamic solution that are common to the 1D 
and the 3D components. They evaluate fluid properties (fprop andthermo), interfacial 
heat transfer (htif), and new-time/old-time fluid changes for the timestep-size logic 
(evaldfld). The VESSEL component passes data to these routines and receives data 
back from them (with the exception of evaldfld) via interface-module VessTolD, 
which contains subroutines Evaldf3D, Fprop3D, Htif3D, and Therm3D. These 
interface routines copy required VESSEL 3D mesh data into local rank-1 arrays for a 
given VESSEL level, according to the standard TRAC numbering convention of 

ring 1, thetas 1--ntsx; ring 2, thetas 1--ntsx; ........ ring nrsx, thetas 1--ntsx.  

These rank-1 arrays are then passed to the 1D-3D service routine. The interface routines 
also declare local rank-1 arrays for any data to be returned from the service routines via 
their argument lists; after the service routine call, these rank-1 arrays are copied into the 
3D fluid-mesh arrays.  

Note that the service routines expect the thermodynamic-derivative arrays to be in "cell
wise" storage, where each of the various derivatives is stored contiguously for each 
mesh cell (as opposed to "mesh-wise" storage, where the elements of each derivative
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array are stored contiguously). The service routines access a given derivative for a given 
mesh cell by calculating an offset pointer according to the total number of derivative 
arrays; currently, there are 18 thermodynamic-derivative arrays, a value which is 
parameterized in variable nthm in module GlobalDin: 

PARAMETER (nthm=18).  

The interface routines in module VessTolD stack the 18 derivative arrays in a cell-wise 
sense before the service routines are called. The interface routines are called once for 
each axial level; the (i, j) start and stop indices, the level index, and the number of cells 
per level are passed: 

MODULE VessTask 

CONTAINS 

SUBROUTINE vssl2 (isrl,isrc,isrf,jsn,2ir,jsnget,jsnput) 

DO k=vessTab ( cco) %kcO, vessTab (cco) %kcx <<<- loop over axial levels; 
call interface routine: 

iz=k-nzbcm 
jstart=1

CALL Htif3D(vessTab(cco)%icO,vessTab(cco)%icx 
,vessTab(cco)%jc0,vessTab(cco)%jcx,k,vessTab(cco)%nclx)&

&

ENDDO 

In this example, the VESSEL index cco is not passed (it is obtained through use 

association); for the other interface routines, cco also is passed.

MODULE VessTolD 

CONTAINS 

SUBROUTINE Htif3D(istart,iend, jstart, jend,k,ncellx)

REAL(sdk) duml(1) << 

REAL(sdk) alpv(ncellx) << 
REAL(sdk) alpov(ncellx)

<-- dummy array, not used by 
<--- number of cells per level

htif for 3D

3-48



REAL(sdk) rovv(ncellx) 
REAL(sdk) rolv(ncellx) 

-REAL(sdk) tsnv(ncellx) 
RE-AL(sdk) spifzv(nce11x) 

REAL (sdk) drivv (ncellx-nthm) <<<- for derivative arrays 

duml(l)=O.OdQ 

iv=l <<<- for ordering mesh cells 
ivdr=l <<<- for derivative-array stacking 
DO i=istart,iend «<-radial loop 

DO j =j start, jend «<-theta loop 

a1pv(iv) =vsAr3 (cco) %alp (i,ji, k) 
alpov(iv)=vsAr3 (cco)%alpo(i, j,k) 
rovv(iv) =vsAr3 (cco) %rov(i, j ,k) 
rolv(iv) =vsAr3 (cco) %ro1.(i,ji, k) 
visvv(iv) =vsAr3 (cco) %visvCi, j ,k) 
vislv(iv) =vsAr3 (coo) %visl Ci, j ,k) 
pv(iv)=vsAr3 (coo) %p(i,j ,k) 

tsnv(iv)=vsAr3(cco)%tsn(i,I ,k) 
spifzv(iv)=vsAr3 (cco)%spifz Ci, j,k) 

drivv (ivdr) =vsAr3 (coo) %dtsdp ( i, j , k) «<-cell-wise stacking 
ivdr=ivdr+1 
drivv(ivdr)=vsAr3 (cco)%deldp(i,j ,k) 
ivdr= ivdr+ 1 
drivv(ivdr)=vsAr3 (coo) %degdp(i,j,k) 
ivdr=ivdr+l 

drivv(ivdr)=vsAr3 (cco)%dradp(i,j,k) 
ivdr=ivdr+l 
drivv(ivdr)=vsAr3 (coo) %dradt(i,j,k) 
ivdr=ivdr+3
iv--iv+1 

ENDDO 

ENDDO 

CALL htif (alpv, alpov, rovv, rolv, visvv, vis1v, pv,arvv, arlv, chtiflv & 

& ,alvnv,drivv,watv,tlnv,tvnv,dzzv,volv,ncellx,hlav,clv,roav,cvv & 

& ,tssnv,duml,duml,sigv,c5p2v,c5p4v,dalvav,hgamv,hfgv,dum1l & 

& , darhsv, dtlrhsv, c5plv, dtvrhsv, dumi, f inanv, bitnv, bitv, dprhsv & 

& duml,dparhsv,c5p3v,hlatwv, c5p5v, chtanv,alvenv, tsnv, spifzv & 

& vsAr (cco) %funh, vsAr (cco) %zchfl, vsAr(cco) %ztbl, vsAr (cco) %zsms & 

& ,vsAr(cco)%zagsn,vsAr(cco)%alpan,vessTab(cco)%icr1 & 

& ,vessTab(cco)%icru,vessTab(cco) %icrr,vessTab(cco) %nsgrid & 

& , vsAr (cco) %zsgrd, vsAr (cco) %refl1d, ncellx, ncellx, 1, ncellx*nthm)
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iv=l 

DO i=istart, iend «<-- put returned data in mesh arrays 
DO j=jstart,jend 

vsAr3 (cco)%chtin(i,j,k)=chtinv(iv) 
vsAr3 (cco)%alvn(i,j, k)=alvnv(iv) 
vsAr3 (cco)%wat(i, j,k)=watv(iv) 

vsAr3 (cco) %spifz (i, j, k) =spifzv(iv) 

iv=iv+l 

ENDDO 
ENDDO 

END SUBROUTINE Htif3D 

Unlike this example with htif, subroutine thermo returns the derivative-array 
information, and its interface routine does the appropriate unstacking of the derivatives 
into the corresponding 3D mesh arrays.  

The service routine calculates a pointer offset in order to access a specific 
thermodynamic derivative: 

MODULE GenHeat 

BEGIN MODULE USE 
USE IntrType 

CONTAINS 

SUBROUTINE htif(alp,alpo,rov,rol,visv,visl,p,arv,arl,]chti,alv,dr, & 

,DO jj=jstart, jcell <<<---loop over ID or 3D cells 
j=jj 
j dr=ntbm* (j-) +1 <<<--- offset for passed derivative-array dr 

Arrays bitn and bit: TRAC uses bit flags to store a variety of yes/no information for 
all the individual mesh cells of the iD and 3D hydrodynamic-component types. These 
bit flags are the individually addressed on/off (1 or 0) bit positions of the computer 
words in the arrays bitn and bit. For the iD components, arrays bitn and bit are 

elements of derived-type giDArrayT; for the 3D VESSEL component, bitn and bit are 
elements of derived-type vessArray3T.
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As their storage in both new-time (i.e., bitn) and old-time (bit) arrays indicates, the bit 
flags can change as the state of a mesh cell changes (e.g., the direction of the vapor 
velocity at a 1D cell's right edge). One exception to this is the bit position that indicates if 
the user has chosen to employ the choking model at a cell face.  

For the 1D hydrodynamic components, arrays bitn and bit are dimensioned nfaces 
(which is ncells + 1) by TRACAIIo. For the 3D VESSEL component, bitn and bit are 
dimensioned (ni, nj, nk) by TRACAIlo. The bit flags are accessed with the Fortran 90 
intrinsic functions btest, ibset, and ibclr: 

btes t -- return status of requested bit position 

ibset -- set requested bit to "on" (1) 

ibclr -- set requested bit to "off" (0) 

TRAC (Version 2.120) currently uses 30 different bit flags (total for ID and 3D 
hydrodynamic components). The bit positions for the Fortran 90 bit-intrinsic functions 
are accessed from TRAC with parameter variables that have meaningful names. The 
parameter values of the bit flags are assigned in module Bits, which also has 
documentation on the use of each bit flag. A complete description of all of TRAC's bit 
flags is given in Appendix G; this includes the parameter names associated with the bit 
positions, the purpose of each bit, and the routines in which the bit is set and tested.  

3.2.2.2.5. HTSTR-Component Type. FLT, same as for 1D: The HTSTR-component 
type uses array genTab for its FLT in exactly the same manner as the other components.  

VLT, specific for HTSTR-component type: The HTSTR VLT data are treated by 
module RodVlt; its logic is the same as the other VLT modules. VLT data for individual 
HTSTR components are stored in derived-type array 

rodTab.  

Array data for the HTSTR-component-type (array hsAr) declaration: Data for all 
individual HTSTR arrays are stored in derived-type array 

hsAr.  

In module HSArray, derived data-type hsArrayT is defined, and array hsAr is declared 
to be of derived-type hsArrayT and dimension maxComps. A difference from the 1D 
hydrodynamics array giDAr is that array hsAr is also given a TARGET attribute, and 
variable chs is declared to be a pointer, also of type hsArrayT (but not an array): 

MODULE HSArray
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TYPE hsArrayT 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 

REAL sdk), POINTER, 
REAL(sdk), POINTER, 

REAL(sdk), POINTER,

DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION (:) 
DIMENSION (:) 

DIMENSION(:) 
DIMENSION(:, :) 
DIMENSION(:)

REAL(sdk), POINTER, DIMENSION(:)

Time-Dependent Data 

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 
REAL(sdk), POINTER, 

REAL(sdk), POINTER, 
REAL(sdk), POINTER,

DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:) 
DIMENSION(:)

Rod and slab dependent data 
REAL(sdk), POINTER, DIMENSION(:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

INTEGER(sik), POINTER, DIMENSION(:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 
REAL(sdk), POINTER, DIMENSION(:,:) 

Time dependent rod data 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:) 

REAL(sdk), POINTER, DIMENSION(:,:) 
REAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

Surface dependent rod data 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

RJEAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

REAL(sdk), POINTER, DIMENSION(:,:,:) 

END TYPE hsArrayT
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rs 
cpowr 
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zpwzt 
rpwrt 
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*: cdh 
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cdgn 
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cnd 
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cpdr 
rndr 
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radr 
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drzn 
rft 
rftn 

alpr 
alvr 

cepwn 
cepwo
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TYPE (hsArrayT),TARGET,DIMENSION(maxComps) :: hsAr <<<--array hsAr 
TYPE (hsArrayT),POINTER:: chs <<<--pointer chs 

The data arrays in array hsAr include the arrays in the TRAC-P rodpt and rodptl 
pointer tables. The TRAC HTSTR component can calculate 2D heat conduction (radial 
and axial). Also, information may be needed for wall-to-fluid heat transfer at either one 
or two surfaces of an HTSTR (inner and outer). The heat conduction and transfer may be 
either on a coarse or a fine axial mesh. Also, the user may specify that a given HTSTR in 
the input deck is to be "copied," with the copies in thermal contact with various parts of 
a VESSEL core. A further distinction among the copies of an HTSTR is whether a given 
copy is "average" (affecting the temperature of the fluid it is coupled to) or 
"supplemental" (not affecting fluid temperature). To handle these various requirements 
for an HTSTR, there are data arrays in hsAr of rank 1, rank 2, and rank 3, with several 
possible dimension sizes. Examples of the allocation of data arrays in hsAr are given in 
the next section.  

We emphasize that the optional copies for a given HTSTR component are a user
convenience feature for preparing an input deck; all data for the copies are contained in a 
single reference to (element of) hsAr (cco or cci) for the specific HTSTR, using the 
appropriate subscript in the data array to access the desired copy. Typically, the arrays 
for such data include a dimension of ncrx (the number of average rods) or nrods (total 
number of copies, including supplemental rods).  

Pointer chs is associated with individual HTSTR components for subroutine corel's 
calls to subroutines htvssl and htcor and for core3's call to f rod: 

SUBROUTINE corel (dt, istdl,ndum2) 

chs=>hsAr (cco) <<<- associate pointer chs 

CALL htcor(chs%rft(genTab(cco)%nodes+ins, j,ncr) & 

The only reason for this pointer association is to allow the call statements to fit within a 
maximum of 19 continuation lines (for Fortran 77 source-format compatibility).  

Three types of data arrays in hsAr are duplicated to contain old- and new-time 
quantities: 

1. Time-dependent 1D arrays global to the entire HTSTR component 
(including its copies), or global to specific copies of an HTSTR
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example: arrays cdg and cdgn for old- and new-time delayed neutron group 
concentrations, each of dimension (ndgx), 

2. Time-dependent rod data defined for each copy of the HTSTR and 
either on the 2D conduction (radial x axial) grid or in the axial 
direction only 

example: arrays rft and rftn for old- and new-time fine-mesh rod 
temperatures, each of dimension (nodes, nzmax, nrods) 

3. The time-dependent portion of the surface-dependent rod data, 
defined for each copy of the HTSTR on the axial nodes at the inner 
and/or outer surface.  

example: arrays hrflo and hrf 1 for old- and new-time fine mesh liquid 

heat transfer coefficients, each of dimension nzmax, nsurf, nrods.  

Module HSArray contains service subroutines TimeUpHS and TimeUpHSl, which 
transfer data from new-time to old-time hsAr arrays, or vice-versa. Examples of the use 
of these routines are given in Appendix C.  

Storage allocation: The data arrays in array hsAr are dynamically allocated at run time 
in much the same manner as the iD-component arrays. There is no module ROD; rather, 
all HTSTR data allocation and input are treated in module RodTask. HTSTR input 
subroutines rehtst and rhtstr call subroutine pntrod for each HTSTR in the input; 
pntrod has individual calls to TRACAI1o for each data array in hsAr (cci). The order 
of calls to TRACAIIo matches the order of data-array declarations in the definition of 
derived-type hsArrayT; this is not necessary, but it facilitates maintenance of the data.  
Some examples of the allocation of the various types of HTSTR arrays follows; the values 
used in the allocations already have been read from the input and stored in 
genTab (cci) or rodTab (cci) or have been calculated from such values [e.g., 
ndml=genTab (cci) %nodes-1 is calculated at the start of pntrod].  

SUBROUTINE pntrod (ibase) 

general global arrays: 
CALL TRACAllo (hsAr (cci) %rdpwr, genTab (cci) %nodes* (21 & 

&-rodTab(cci)'6ipwrad), rdpwr' ,O.OdO) 
CALL TRACAIlo(hsAr(cci) %rs,genTab(cci)%nodes & 

&*mod(rodTab(cci) •nfbpwt,2), 'rs' ,O.OdO) 
CALL TRACAI o(hsAr(cci)%cpowr,rodTab(cci)%ncrx, , cpowr' ,O.OdO) 

A 

--- one value for each average (power) rod 

CALL TRACAIlo(hsAr(cci) %matrd,ndml, 'matrd' , O.OdO) <<<-- nodes-1 

dual-time global arrays:

3-54



CALL TRACAllo(hsAr(cci)%cdgrodTab(cci)%ndgx,'cdg',O.OdO) 

CALL TRACAllo(hsAr(cci)%cdhrodTab(cci)%ndhx,'cdh',O.OdO) 

CALL TRACAllo(hsAr(cci)%clenrodTab(cci)%ncrxlclen,,O.OdO) 

CALL TRACAllo(hsAr(cci)%cdgnrodTab(cci)%ndgxlcdgn',O.OdO) 

CALL TRACAllo(hsAr(cci)%cdhnrodTab(cci)%ndhxlcdhn',O.OdO) 

CALL TRACAllo(hsAr(cci)%clennrodTab(cci)%ncrx,'clenn,,O.OdO) 
A 

--- one value for each average (power) rod 

--- rod- and slab-dependent data: 
CALL TRACAllo(hsAr(cci)%burnncrzplrodTab(cci)%nrods,'burn',O & 

&.OdO) 

CALL TRACAllo(hsAr(cci)%cndgenTab(cci)%nodesncrzp1 & 

&,rodTab(cci)%nrodslcnd,,O.OdO) 

--- dual-time rod data 

CALL TRACAllo(hsAr(cci)%radx-,genTab(cci)%nodesncrzp1 & 

&,rodTab(cci)%nrodslradr,,O.OdO) 
CALL TRACAllo(hsAr(cci)%rad=,genTab(cci)%nodesncrzpl & 

&,rodTab(cci)%nrodslradrn,,O.OdO) 

CALL TRACAllo(hsAr(cci)%drzncrzplrodTab(cci)%nrodsldrz',O.OdO) 

CALL TRACAllo(hsAr(cci)%drznncrzplrodTab(cci)%nrods,'drzn',O & 

&.0do) 

CALL TRACAllo(hsAr(cci)%rftgenTab(cci)%nodesrodTab(cci)%nzmax & 

&,rodTab(cci)%nrodslrft,,O.OdO) 
CALL TRACAllo(hsAr(cci)%rftngenTab(cci)%nodesrodTab(cci)%nzmax & 

&,rodTab(cci)%nrodslrftn,,O.OdO) 

--- surface-dependent rod data: 
nsurf=l 

IF (rodTab(cci)%idbci.GT.l.AND.rodTab(cci)%idbco.GT.1) nsurf=2 

-CALL TRACAllo(hsAr(cci)%alprncrzp2,nsurfrodTab(cci)%nrodslalprI & 

&,O.OdO) 
CALL TRACAllo(hsAr(cci)%alvrncrzp2,nsurfrodTab(cci)%nrodslalvrI & 

&,O.OdO) 

CALL TRACAllo(hsAr(cci)%stnurodTab(cci)%nzmaxnsurf & 

&,rodTab(cci)%nrodslstnu',O.OdO) 
CALL TRACAllo(hsAr(cci)%tldrodTab(cci)%nzmaxnsurf & 

&,rodTab(cci)%nrodsltld,,O.OdO) 

dual-time surface-dependent rod data: 
CALL TRACAllo(hsAr(cci)%hrfgrodTab(cci)%n--xnsurf & 

&,rodTab(cci)%nrodslhrfg,,O.OdO) 

CALL TRACAllo(hsAr(cci)%hrfgorodTab(cci)%nzmaxnsurf & 

&,rodTab(cci)%nrodslhrfgo',O.OdO)

3-55



3.2.2.3. Control System Databases. We refer to the "Control System data" as those 

sets of data that implement TRAC's signal variables, trips, and control blocks, as well as 

the data sets that support these capabilities. There are 14 basic types of Control System 
data in all: 

1. a set of global data that includes 10 integers used to allocate storage 
based on the input specifications for the Control System [e.g., ntsv 
(the total number of signal variables)], and one REAL variable that 
specifies problem time (etime), 

2. data for multipass control-parameter evaluation, 

3. signal variable data, 

4. control block data, 

5. control block tabular data, 

6. control block user-specified units labels, 

7. trip-user-specified units labels, 

8. signal variable user-specified units labels, 

9. trip data, 

10. trip-signal-expression signal data, 

11. trip-controlled-trip signal data, 

12. trip-set-point-factor table data, 

13. trip-initiated restart dump and problem termination data, and 

14. trip-initiated time-domain data.  

Declaration: Module ControlDat handles the declaration of all Control System data.  

Thirteen different derived data types are defined, with a data type for all but one of the 

basic kinds of Control System data (only allocatable arrays are needed for the control 
block tabular data). The data types have names of the form: 

c sNameT.  

The corresponding data sets have names of the form: 

c sName.
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(The control block tabular data are in array csCBTD.)

The global Control System data are grouped into derived data-type csGIT, and variable 
csG1 is declared to be of this type. Of the 12 other derived data types, 11 are used to 
declare allocatable arrays, which will be dimensioned according to the user input (the 
trip-initiated restart dump and problem termination data are in scalar variable csTDP, 
which is of type csTDPT). For 13 of the data sets, variables are also declared with a name 
of the form 

csrName.  

The csr variables are used only as scratch storage to read the restart data for the 
corresponding c s variable; they are deallocated after any Control System restart data are 
read.  

Only one of the declarations of the various individual data-type elements in module 
ControlDat uses the pointer attribute, unlike module GeniDArray (the pointer is 
required for allocatable arrays that are derived-type elements): 

MODULE ControlDat 

Global Data 

TYPE csGlT <<<- nt variables determined from input 
INTEGER(sik) ntsv 
INTEGER(sik) ntcb 
INTEGER(sik) ntcf 
INTEGER(sik) ntrp 
INTEGER(sik) ntcp 
INTEGER(sik) ntse 
INTEGER(sik) ntct 
INTEGER(sik) ntsf 
INTEGER(sik) ntdp 
INTEGER(sik) ntsd 
REAL(sdk) etime 

END TYPE csGIT 

TYPE (csGlT) csGl 
TYPE (csGlT) csrGl <<<- csr variable is used to read restart

Signal Variable Data 

TYPE csSigT 
INTEGER(sik) idsv 
INTEGER(sik) isvn 
INTEGER(sik) ilcn
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INTEGER(sik) 
INTEGER(sik) 
REAL(sdk) 
REAL(sdk) 

END TYPE csSigT

icnl 
icn2 
prevVal 
presVal

Dynamically dimensioned to csGl%ntsv <<<-- ntsv read from input 
TYPE (csSigT),ALLOCATABLE,DIMENSION(:) csSig 

TYPE (csSigT),ALLOCATABLE,DIMENSION(:) csrSig 

Control Block Tabular Data <<<- only an array needed 

Dynamically dimensioned to csGl%ntcf 

REAL(sdk),ALLOCATABLE,DIMENSION(:) csCBTD 

REAL(sdk),ALLOCATABLE,DIMENSION(:) csrCBTD

Trip Set Point Factor Table Data 

TYPE csTSFT 
INTEGER(sik) idft 
INTEGER(sik) idsg 

INTEGER(sik) inft 

REAL(sdk) ,DIMENSION(2, 10) setp <<<-- array shape/size known 
END TYPE csTSFT 

Dynamically dimensioned to csGl%ntsf <<<--- dataset is allocatable 
TYPE (csTSFT),ALLOCATABLE,DIMENSION(:) csTSF 

TYPE (csTSFT),ALLOCATABLE,DIMENSION(:) csrTSF 

Set Point Factor Table --<--

TYPE csTDPT 
INTEGER(sik) ndmp 
Dynamically dimensioned to csGl%ntdp 

INTEGER(sik) ,POINTER,DIMENSION(:) :: tripIDs <--ype element 

END TYPE csTDPT

Only One of These 

TYPE (csTDPT) csTDP 

TYPE (csTDPT) csrTDP

<<<--- scalar derived-type variable
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Storage allocation: Storage for the Control System data is allocated dynamically at run 
time, according to the user input for the signal variables, trips, and control blocks.  
Subroutine input reads the first five parameters in the Control System global derived
type variable csG1, first into local variables: 

SUBROUTINE input 

CALL readi(hiiiiil,ntsv,ntcb,ntcf,ntrp,ntcp, 'ntsv, 'ntcb', ntcf', & 
& Intrp',lntcp') 

Subroutine input subsequently adjusts three of these input parameters for internal use 
by the optional CSS logic; ntsv and ntcb are increased to allow for internally created 
signal variables and control blocks; and an extra pass is added for input models with 
more than one evaluation pass: 

IF (.NOT.((stdyst.NE.2).AND.(stdyst.NE.4))) THEN 

ntsv=ntsv+ncontr+ncontt+nconts 
ntcb=ntcb+ncontr+ncontt 
IF (ntcp.GE.2) ntcp=ntcp+l 

After the optional CSS logic, subroutine input stores these five local variables in the 
corresponding elements of csGl and allocates storage for seven of the Control System 
arrays before calling the Control System input-driver rcntl: 

csGl%ntsv=ntsv 
csGl%ntcb=ntcb 
csGl%ntrp=ntrp 
csGl%ntcf=ntcf 
csGl%ntcp=ntcp

ALLOCATE(csSig(ntsv)) 
ALLOCATE(csCB(ntcb)) 
ALLOCATE(csCPED(ntcp)) 
ALLOCATE(csTrip(ntrp)) 

ALLOCATE(csCBTD(ntcf)) 
ALLOCATE(csULCB(ntcb)) 
ALLOCATE(csULTR(ntrp))

<<<- direct use of F90 allocate 

<<<- derived-type variable 
<<<- simple array

3-59



IF ((inlab.EQ.3).AND.(ntsv.GE.l)) WRITE (inlab,395) 
395 FORMAT (1*1/26(1*')/r* control-parameter data *'/26(1*')) 

nrdy=l 

CALL rcntl (j flag) <<<- Call rcntl 

Subroutine rcntl, which is in module Control, reads the remaining Control System 
data; as part of this, it reads the remaining global data and allocates storage for the 
remaining Control System arrays. Note that rcntl uses the ntsv and ntcb elements of 
csGl to clear the signal variable and control-block arrays (these now include space for 
any internally created signal variables and control blocks) but recalculates local variables 
for the reading of the signal variable and control block user input: 

MODULE Control 

CONTAINS 

SUBROUTINE rcntl(j flag) 

--- recalculate local ntsv to use in reading user input.  

IF (csGl%ntsv.GE.l) THEN 

ntSv =csGl%ntsv-cssGl%ncontr-cssGl%ncontt-cssGl%nconts 

read and edit the signal-variable data cards 

DO nsv=l, csGl'ntsv <<<-- loop over all signal variables 
csSig (nsv) %idsv=O 
csSig(nsv)%isvn=O 
csSig (nsv) %ilcn=O 
csSig(nsv) %icnl=o 
csSig (nsv) %icn2=0 
csSig (nsv) %prevVal=O.OdO 
csSig (nsv) %presVal=O.OdO 

ENDDO 

IF (ntsv.GE.1) THEN 
IF (inlab.EQ.3) WRITE (inlab,95) 

95 FORMAT (*/'* signal variables') 
WRITE (iout,96) 

96 FORMAT (I' signal-variable data cards'/) 

DO n=l, ntsv <<<--- read user-input signal variables into locals 
CALL readi('iiiii',idsv,isvn,ilcn,icnl,icn2, 'idsv', 'isvn', & 

& ' ilcn','icnl','icn2') 
IF (idsv.EQ.0) GOTO 103
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IF (idsv.LT.0) idsv=-idsv 

csSig (n) %idsv=idsv <<<-- store local variable in type element 
csSig(n)%isvn=isvn 
csSig(n)%ilcn=ilcn 
csSig(n)%icnl=icnl 

IF (csGl%ntcb.GE. 1) THEN <<<-- local ntcb for user input 
ntcb=csGl%ntcb-cssGl%ncontr-cssGl%ncontt 

read and edit the control-block data cards 

DO n=1, csGl9.ntcb <<<-- total number of control blocks 
csULCB(n)%data=0.ado 
csCB(n)%idcb=O 
csCB(n)%icbn=O 

DO n=l,ntcb <<<---user input 
ra=' I 

WRITE (iout,106) ra 
CALL readi(Iiiiii',idcb,icbn,icbl,icb2,icb3, idcb,,'icbn', & 

& 'icbl','icb2','icb3') 

CALL readr( rrrrr',cbgain, cbxmin, cbxmax, cbconl,cbcon2, & 
& ,cbgain','cbxmin','cbxmax','cbconl','cbcon2l) 

CALL cbedit(idcb, icbn, icbl,icb2,icb3) 

csCB (n) %idcb=idcb <<<-- store in corresponding-type element 
csCB(n)%icbn=icbn 
csCB(n)%icb(1)=icbl 
csCB(n)%icb(2)=icb2 
csCB(n)%icb(3)=icb3 
csCB(n)%cbgain=cbgain 
csCB(n)%cbxmin=cbxmin 
csCB(n)%cbxmax=cbxmax 
csCB(n)%cbconl=cbconl 
csCB(n)%cbcon2=cbcon2 
csCB(n)%flagl=O.OdO 
csCB(n)%flags=transfer('nl',l.OdO) 

--- Read remaining global storage data and allocate 
- - - remaining arrays: 
read and edit the trip-DIMENSION variables card 

IF (inlab.EQ.3) WRITE (inlab,145) 
145 FORMAT (*'/* trips')
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WRITE (iout,146) 
146 FORMAT (/' trip-dimension data card') 

CALL readi( iiiii',ntse,ntct,fntsf,rntdp,fntsd, 'ntse', t ntct', & 

& 'ntsfl, ntdp','ntsdI) 

IF (ntse.LT.0) ntse=0 
IF (ntct.LT.0) ntct=O 

IF (ntsf.LT.0) ntsf=O 
IF (ntdp.LT.0) ntdp=O 

IF (ntsd.LT.0) ntsd=O 

ALLOCATE (csTDP%tripIDs (ntdp)) <<-- F90 allocate statement 
ALLOCATE (csTSD (ntsd)) 

ALLOCATE (csTSF (ntsf)) 
ALLOCATE (csTCT (ntct)) 
ALLOCATE (csTSE (ntse)) 
ALLOCATE (csULSE (ntse)) 

One of the allocated arrays here is a data element of variable CSTDP, of data-type 
csTDPT, which itself is not an array.  

Dump and Restart The Control System dump/restart logic is in module ControlDat, 

which contains subroutines CSDump, CSRestart, and CSFree, and in module 
Control, which contains subroutine recntl. To add a dump of the current Control 

System data to the dump/restart file, subroutine dmpit calls CSDump. The following 
code fragment shows the various ways in which the data in module ControlDat are 
accessed: 

SUBROUTINE dmpit 

CALL CSDumD 

MODULE ControlDat 

CONTAINS 

SUBROUTINE CSDumip 

BEGIN MODULE USE 

USE Restart 

IMPLICIT NONE 
INTEGER(sik) i,ia 

CALL bfoutis (csGl%ntsv, 1, ictrld) «<--first, dump global data 
CALL bfoutis (csGl%ntcb, 1, ictrld)
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CALL bfoutis (csGl%ntse, 1, ictrld) 
CALL bfouts (csGl%etime, 1, ictrld) 

CALL bfoutn (csCBTD, csGl%ntcf, ictrld) <<<--not a derived type 

CALL bfoutis (csTDP%ndmp, 1, ictrld) 
CALL bfoutni (csTDP%tripIDs, csGl%ntdp, ictrld) 

A 

type element is array with pointer attribute 
DO i=l,csGl%ntsd 

CALL bfoutis (csTSD(i) %ndid, 1, ictrld) 

DO i=l, csGl%ntse <<<-- loop over ntse array elements 
CALL bfoutis(csTSE(i)%idse, 1, ictrld) 
CALL bfoutis (csTSE(i) %inse, 1, ictrld) 
CALL bfoutis (csTSE(i) %incn, 1, ictrld) 

DO ia=l, 10 <<<-- loop over array within this dataset 
CALL bfoutni(csTSE(i)%ids(l:,ia) ,3,ictrld) 

ENDDO 
CALL bfoutn (csTSE (i) %constants, 5, ictrld) 

ENDDO 

The basic idea of the Control System restart is that any data that are not present in the 
current text-input file tracin are obtained from the binary restart file trcrst.  
Subroutine input calls the restart-driver routine rdrest after input has called rcntl to 
read tracin. Subroutine rdrest makes an initial pass over the restart file to find the 
desired (user-specified) dump; as part of this pass, rdrest calls CSRestart to skip over 
the Control System portion of the various restart dumps. CSRestart reads a Control 
System dump into the csr scratch arrays. First, the global data are read to obtain needed 
array sizes, then the various arrays are allocated (including the derived-type arrays, the 
simple allocatable array, and the array that is a derived-type element), and then the 
remaining data are read. After the csr arrays are allocated on the first call to 
CSRestart, logical flag CsAllocate is set to .FALSE..  

SUBROUTINE rdrest (ifreex) 

LOGICAL :: csAllocate = .TRUE.  

Control System 

CALL CSRestart (csAllocate)
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MODULE ControlDat 

CONTAINS 

SUBROUTINE CSRestart(csAllocate) 

BEGIN MODULE USE 
USE Restart 

IMPLICIT NONE 
LOGICAL csAllocate 
INTEGER(sik) i,ia 

CALL bfinis(csrGl%ntsv, 1,ictrlr) <<<- Global data 
CALL bfinis(csrGl%ntcb, 1, ictrlr) 
CALL bfinis(csrGl%ntrp, 1,ictrlr) 
CALL bfinis(csrGl%ntcf, 1,ictrlr) 
CALL bfinis(csrGl%ntdp, 1,ictrlr) 
CALL bfinis(csrGl%ntsd, 1, ictrlr) 
CALL bfinis(csrGl%ntsf, 1,ictrlr) 
CALL bfinis(csrGl%ntct, 1, ictrlr) 
CALL bfinis(csrGl%ntse, 1,ictrlr) 
CALL bfins(csrGl%etime,1,ictrlr) 

IF (csAllocate) THEN <<--allocate csr arrays 
ALLOCATE(csrSig(csrGl%ntsv)) 
ALLOCATE(csrCB(csrGl%ntcb)) 

ALLOCATE (csrTrip (csrGl%ntrp)) <<<-- derived-type array 
ALLOCATE (csrCBTD (csrGl%ntcf)) <<<-- simple array 
ALLOCATE (csrTDP%tripIDs (csrGl%ntdp)) «<-- array as type element 
ALLOCATE(csrTSD(csrGl%ntsd)) 
ALLOCATE(csrTSF(csrGl%ntsf)) 
ALLOCATE(csrTCT(csrGl%ntct)) 
ALLOCATE(csrTSE(csrGl%ntse)) 
ALLOCATE(csrULCB(csrGI%ntcb)) 
ALLOCATE(csrULTR(csrGl%ntrp)) 
ALLOCATE(csrULSE(csrGl%ntse)) 
csAllocate=.FALSE. <<<- allocate arrays only once 

ENDIF 
CALL bfinn(csrCBTD, csrGl~ntcf,ictrlr) 

CALL bfinis(csrTDP%ndmp, 1,ictrir) 
CALL bfinni(csrTDP%tripIDs,csGl%ntdp, ictrlr) 

DO i=l,csrGl%ntsd 
CALL bfinis(csrTSD(i)%ndid, 1,ictrlr)
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CALL bfinis (csrTSD(i) %ntid, 1, ictrlr) 
CALL bfinni (csrTSD(i)%tripIDs, 5, ictrlr) 

After the correct dump is found, the Control System data in that dump are first read into 
the csr arrays with another call to CSRestart (csAllocate is now .FALSE.); then 
subroutine recntl stores only the needed data (data that are not in text file tracin) 
from the csr arrays into the regular cs arrays; finally, the storage for the crs arrays is 
released with a call to CSFree, which uses the Fortran 90 deallocate statement: 

SUBROUTINE rdrest (ifreex) 

read control parameter data

CALL 
CALL 
CALL

CSRestart(csAllocate) 
recntl() 
CSFree

MODULE Control 

CONTAINS 

SUBROUTINE recntl() 

signal variables from the restart file that were not 

input on cards are added to the signal-variable data 

jtsv=csGl%ntsv 
jsavl=l 
IF (jtsv.GE.l) THEN

csSig(jsavl)%idsv=csrSig(i)%idsv <<<--- CSr to CS 
csSig(jsavl)%isvn=csrSig(i)%isvn 

MODULE ControlDat
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CONTAINS 

SUBROUTINE CSFree 

IMPLICIT NONE 

DEALLOCATE (csrSig) 
DEALLOCATE (csrCB) 

DEALLOCATE (csrTrip) 

DEALLOCATE (csrCBTD) 

DEALLOCATE (csrTDP%tripIDs) 
DEALLOCATE (csrTSD) 
DEALLOCATE (csrTSF) 

DEALLOCATE (csrTCT) 
DEALLOCATE (csrTSE) 
DEALLOCATE (csrULCB) 

DEALLOCATE (csrULTR) 

DEALLOCATE (csrULSE) 

END SUBROUTINE CSFree 

END MODULE ControlDat 

3.2.2.4. Steady-State Databases. The constrained steady state (CSS): The CSS data 

are declared in module ControlDat. There are three derived-type variables: cssGl 

holds global data that are used for storage allocation, and cssDat and cssTP are 

declared as allocatable arrays. Module ControlDat also declares arrays cpv and dsv.  

Subroutine input uses local variables corresponding to cssG1 data-elements ncontr 

and ncontp to allocate storage for cssDat and cssTP, respectively. Subroutine input 

also uses local variables corresponding to cssG1 data-elements ncontr, ncontt, and 

nconts to adjust Control System storage variable ntsv for internally created CSS signal 

variables, and it uses ncontr and ncontt for a similar adjustment to ntcb for control 

block storage. After the allocation of array cssTP, cssGl%ncontp is set to 0. The CSS 

data are used by module Control, by the individual component modules and by 

subroutines rcomp and edit. The CSS data are not included in the dump/restart file.  

The HPSS: The HPSS data are declared in module HpssDat. Derived-type hpsT is 

defined; it consists of 22 arrays, all with the pointer attribute. Scalar variable hps is 

declared to be of TYPE hpsT. Module HpssDat also declares five other variables and 

initializes one of them with a DATA statement.  

Subroutine input allocates storage for 18 of the arrays in hps with individual calls to 

TRACAllo. Subroutine icomp has four calls to TRACAllo for the remaining hps arrays.  

Subroutine input reads the HPSS input-data and does some initializing. The HPSS logic 

is in module Hpss, in subroutines ihpssl and ihpss3, which are called from 

subroutines icomp and civssl (module VessTask), respectively. The HPSS data are 

not included in the dump/restart file.
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3.2.2.5. Radiation Model Databases. The radiation model of TRAC-P is not available 
in TRAC-M/F90; its database has not been translated yet.  

3.2.3. Data Communication 
Data Interfaces: TRAC attempts to protect the integrity of its data from inadvertent 
corruption as the code runs (i.e., from bugs) and to provide an easily maintainable 
environment for code development. To these ends, TRAC has clean interfaces within 
and among the 1D and 3D hydrodynamics database, HTSTR database, control system 
database, steady state databases, and radiation database. These interfaces exist both 
within the module use associations and subroutine calling chains that primarily 
calculate with a particular database and exist among the interactions of the various 
models and databases with each other. Two recent development activities have made 
further improvements to the code's data interfaces. The first fully separates the 
evaluation of terms in the flow equations from the solution of the resulting system of 
linear equations, providing a well-defined location for equation terms and eliminating 
the need for generation of this data for 1D components before evaluation of the 
equations in 3D components (this logic is described in Section 2).  

The second development deals directly with the problem of intercomponent data 
communication, requiring only one request at initialization to establish automatic 
information passing between components. This has been implemented as a system 
service, with sufficient generality to permit later use by higher-order and more implicit 
difference methods. The System Service logic is described in Section 3.2.3.1.  

Naming Conventions: Module names that end with "Task" contain task manager 
routines that have access to the global database. Module names that end with "Crunch" 
contain worker routines where the access to the array database is through their 
argument interface. This convention has been implemented for the HTSTR and 1D
hydrodynamics modules; for the 3D hydrodynamics, the Crunch routines directly access 
the 3D-mesh database (the argument lists otherwise would be prohibitively long).  

Use Association: A Crunch module is used only by a corresponding Task module.  

example -- Task-Crunch use association: 

Module RodCrunch is used only by module RodTask and has no global access to the 
ROD (HTSTR) array database.  

3.2.3.1. Intercomponent Communication via System Services. A request-driven 
communications method has been created based on requests from components for 
values of specifically named variables beyond end junctions. The request for information 
is recorded in a derived-type table that contains the address of the information needed, 
the address to which it must be copied, and a notation on whether a change in sign is 
required during the copy. Currently, these requests for boundary information are made 
only during the initialization phase of a calculation, with a call to subroutine 
InitBDArray near the beginning of subroutine init. Later, we plan to develop a 
dynamic communication process where the list of variables requested by a given
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component can occur at any time during the calculation. This will be useful in interactive 
simulations or for dynamic linking to other programs.  

A form of the TRAC bd array (see Section 2.3.1) is still in the current implementation the 
destination for boundary information transfers. This was selected to minimize changes 
to existing subroutines, which require information on conditions in an adjacent 
component. However, the setup and transfer subroutines do not rely heavily on this 
particular data structure as a destination for information and can be quickly adapted to 

other data structures. The current boundary data array matches the row content of the 
TRAC-P bd array. Columns of the new storage have been arranged to align with the new 
junction data array named junCells (see the next section), which provides detailed 
information on junction properties and connectivity in the system. In this arrangement, 
if junCells (j) provides basic information about a junction associated with a given 
component, then, for example, bd (7, j ) contains the value of the old-time void fraction 
in the cell on the other side of that junction. This structure is illustrated in Fig. 3-2 for a 
simple component configuration.  

3.2.3.1.1. Specification of the System Configuration. A component must register its 
flow connections with the system services to permit correct intercomponent 
communications. In older versions of TRAC, this was accomplished within input and 
restart subroutines (RPIIE, REPIPE, etc.) by filling in entries to the JUN array, which 
were used to define the JSEQ array (which is no longer used). The revised registration 
involves passing information to a junction cell data structure for each junction in a 
component with a call to subroutine Junctions from a component input or restart 
subroutine (RPIPE, REPIPE, etc.). In this context, registration is required for both 
standard intercomponent junction and intracomponent junctions, such as the junction of 
a TEE side leg to the primary leg. Arguments to Junctions are 

SUBROUTINE Junctions (compNum, cellNum, junNum, compType,vOutSign, theta,phi, 

dist,ncAdj,doEdge, ix, iy, iz) 

where the following definitions hold: 

compNum - input-component number for the cell with this junction; 

cellNum - number for the cell containing the junction to another component 
(or to the other section of the same TEE); 

junNum - input-component junction number, or generated junction number 
for an internal connection; 

vOutSign - the sign of the velocity associated with flow out from the cell 
through this junction face (+1 or -1); 

theta - the angle (degrees) between an inwardly directed normal to the 
junction face and the primary positive direction of motion within 
the component; 

phi - the angle (degrees) between an inwardly directed normal to the 
junction face and a reference vector perpendicular to the primary 
positive direction of motion within the component;
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- the distance between the cell center and the junction face;

doEdge - optional argument that when set to TRUE gives the component 
containing this cell control over the evaluation of edge-based 
quantities; 

ix - optional argument giving the x or radial cell index in a 3D region; 

iy - optional argument giving the y or theta cell index in a 3D region; 

iz - optional argument giving the z (axial) cell index in a 3D region; and 

ncAdj - number of cells in this component adjacent to the junction face in 
the direction of the inward normal to the junction face.  

When calculating theta in a VESSEL, the primary positive direction of motion is taken to 
be the positive z direction. The reference vector for computing phi is taken to be pointing 
toward the center of the VESSEL. This results in values of phi of 

1. zero for a connection in from the outer radial cell face; 

2. 90 degrees for a connection in from the high-numbered cell theta face; 

3. 180 degrees for a connection from an inner-radial cell face; and 

4. 270 degrees for a connection from the low-numbered cell theta face.  

For registration of an intracomponent junction such as a TEE side-leg connection, a 
unique junction number must be generated. This is accomplished with a reference to the 
function interiorJunNum, which returns a new unique (and negative) number with 
each call. For example, in a TEE component, the following coding would be appropriate 
for registration associated with the side leg: 

junSide = interiorJunNumo() 
dist = .5*wjcell(jcell,cost,gldAr(cci)%hd,gldAr(cci)%dx) 
angle = acos(cost)*180/pi 
CALL junctions (num, jcell, junSide, 1, angle, 0, dist, 1) 

CALL junctions (num, ncelll+2, junSide, -1, 0, 0, & 

.5*gldAr(cci)%dx(ncelll+2), ncellt-ncelll-l ) 

The subroutine Junctions installs the information from the dummy argument list into 
the derived-type array juncells for further processing to index and locate boundary 
information.  

TYPE junctionCellsT 
INTEGER(sik):: ioc, icmp, compNum, cellNum, junNum, jcTblOrd 

INTEGER(sik):: vOutSign, otherSide, ncAdj, iEndAdj, iSeg 
INTEGER(sik) ivarC, ivarE, icDp 
INTEGER(sik) ix, iy, iz 
REAL (sdk) compType 
REAL(sdk) theta, phi, cosTheta, dist 
LOGICAL :: is3D, doEdge, side 
END TYPE junctionCellsT
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TYPE (junctionCellsT), ALLOCATABLE, TARGET :: junCells(:)

The array junComp has been created to permit easy access to the junction information 
contained within the j unCells array for any component. It is a derived-type array (of 
type RangeT), with only two components for each element (see Fig. 3-3). One array 
element exists for each component. Therefore, the maximum size of this array 
corresponds to the number of components (ncomp) within the input deck. As with array 
junCells, junComp is loaded in the order in which the components are processed 
during input/restart processing. The derived-type components serve as pointers (just a 
means of indirect addressing-they are not declared with the Fortran 90 pointer 
attribute) to the upper and lower elements, which bound each component's junction cell 
information in the junCells array. For example, junComp (3) %iLB is the index of the 
first entry in junCells for junctions in the third component processed during input, 
and j uncomp (3) %iUB is the index of the last entry in j unCells for that component (see 
the example in Fig. 34).  

Each component also must register general information about the computational mesh 
segments that it contains. This completes the picture of system connectivity and makes 
access of connection information simpler in mesh-based calculations. This set of 
information is stored in the compseg derived-type array (type SegmentT). For purposes 
of this array, a mesh segment is defined as a contiguous set of adjacent cells that are 
contained entirely within a component. For example, this means that a PIPE, VALVE, 
PUMP, PRIZER, or PLENUM each contain just one mesh segment. A TEE (and the SEPD 
component that is based on the TEE) contains two mesh segments (one each for the main 
leg and side tube). Although its structure might seem to be somewhat discontinuous, a 
VESSEL is defined as having just one mesh segment. The FILL and BREAK do not 
contain any mesh segments.  

Array compSeg clusters such mesh segment information by input component. One 
element is allocated for each component. Therefore, the maximum size of this array is 
equal to the total number of components in the system, ncomp. Again, the ordering of 
component information in this array coincides with the order in which components are 
processed from input. Currently, the four components to the compSeg structure are 
nseglD, nseg3D, seglD, and seg3D (see Fig. 3-5). The first two variables simply 
contain the number of iD and 3D mesh segments owned by the corresponding 
component, respectively (currently taking on values of either 0, 1, or 2). The remaining 
two variables are derived-type arrays themselves (type segmentlDT and segment3DT, 
respectively). The size of each array is allocated dynamically according to the values 
contained within nseglD or nseg3D. Derived-type segmentlDT stores information on 
the extent of data segments in 1D regions. Derived-type segment3DT stores information 
on the extent of data segments in 3D regions. It should be noted that there is intentional 
overlap between the junction-oriented and mesh-segment-oriented data structures to 
ease other data access and configuration.
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each element contains information 
for one component in the system

size corresponds to the 
total # of components 
in the system

I4r
12 3 3IIomp

-I iLB } 
- 0 iUB

These structure elements contain values which correspond 
to the upper and lower element indices for a particular 
component's information block in the junCells array

Fig. 3-3. Graphical representation of the j unComp array

Fig. 3-4. Graphical representation of the coupling between the junCells and 
j unComp arrays for a FILL, TEE, PIPE, BREAK, and BREAK system.
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Fig. 3-5. Graphical representation of the compSeg array.  

As with junCells, registration of information in the compSeg array occurs during the 
input/restart stage. In fact, the logic designed to accomplish this task is placed just after 

the call to Junctions. First, a single call to subroutine Setsegment is used to establish 

the number of either 1D or 3D mesh segments for the current component. As stated 

above, this currently can be 0, 1, or 2, depending on the component type. If the number 

of mesh segments to be registered is > 0, then an appropriate number of calls to either the
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AddSegmentlD or AddSegment3D routine is made. These routines allocate and register 
information in the seglD or seg3D array components of compSeg derived-type 
structure arrays, respectively. The interface for each of these subroutines is structured as 
follows: 

SUBROUTINE SetSegment (nSeglD, nSeg3D) 

where the following definitions apply:

nSeglD 

nSeg3D

- number of 1D mesh segments in the component 

- number of 3D mesh segments in the component

SUBROUTINE AddSegmentlD (compNum, iseg, cellLB, cellUB, junLB, 
junUB, nsideJun)

&

where the following definitions apply:

compNum 

iseg 

cellLB 

cellUB 

junLB 

junUB 

nSideJun

- input-component number containing this mesh segment; 

- 1D segment identifier (0<iseg<nSeglD); 

- component cell number at the lower boundary of the 1D segment; 

- component cell number at the upper boundary of the 1D segment; 

- junction number at the lower boundary of the 1D segment; 

- junction number at the upper boundary of the 1D segment; and 

- number of side junctions connected to this mesh segment.

SUBROUTINE AddSegment3D(compNum, iseg, geometry, ncells, nvarxE, 

& nvaryE, nvarzE, njun, nx, ny, nz) 

where the following definitions apply:

compNum 

geometry 

ncells 

iseg 

nvarxE 

nvaryE 

nvarxE 

njun 

nx 

ny 

nz

- input-component number containing this mesh segment; 

- mesh geometry (either Cartesian or cylindrical); 

- number of computational volumes in this segment; 

- 3D-mesh segment identifier (nSeglD<iseg<nSeg3D); 

- number of variables at radial (x) cell edges in this segment; 

- number of variables at theta (y) cell edges in this segment; 

- number of variables at axial (z) cell edges in this segment; 

- number of junctions to other mesh segments; 

- number of radial (r) or x cells; 

- number of azimuthal (theta) or y cells; and 

- number of cells in the z direction.
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Detailed descriptions of derived-types junctionCellsT, segmentlDT, and 

segment3DT are available in Appendix C. Further information on subroutines such as 

Junctions, AddSegmentlD, and AddSegment3D is provided in Appendix B.  

3.2.3.1.2. Setup for Boundary Information Transfer. As previously indicated, setup 

for data transfer is driven by subroutine InitBDArray. Calculational flow for this setup 

is summarized in Fig. 3-6. As with icomp, InitBDArray establishes a loop over each 

component in the system. For each junction cell within any one component, a call is 

placed to subroutine SetBDJunCell. This subroutine is responsible for establishing the 

necessary indices to the 1D and 3D array information that will populate the bd array and 

driving the setup of the pointer table for each boundary variable. The interface to this 

subroutine is 

SUBROUTINE SetBDJunCell (compNum, junNum, cellNum, offset, bdArray, & 

& jindex) 

The programmer is responsible for providing the component, junction, and cell number 

for the junction cell currently being processed (compNum, junNum, and ceilNum); the 

number of cells/faces away from the current junction cell, which will provide the 

necessary boundary information (offset); the location in memory where this boundary 

information will be stored (bdArray); and the junCells index, which contains the 

current junction cell information (j index).  

One of the first tasks in SetBDJunCell is to generate the array indices (corresponding to 

the offset variable) for the component information to be coupled to the bd array 

elements. Indices are generated for cell-centered information (housed in variable 

cellIndex) and face-centered information for the first (the junction itself) and second 

faces beyond the current junction cell (facelIndex and face2Index). These indices 

are declared as module variables and, as such, are usable by any routine during the 

pointer table initialization. Logic has been included to deal with special cases such as 

FILL, BREAK, PLENUM, VESSEL, and TEE components. Special geometrical 

considerations for these components and the associated structure of the bd array require 

that the indices to component information be generated in a unique manner.  

The primary work in scheduling boundary information transfer is performed by 

subroutines SetBDVar and AssignGenlDPtr (in post-3.0 versions, this routine is called 

AssignPtr). After the appropriate indices are established, a call is placed to SetBDVar 
for each variable in the boundary array. The interface to this routine is given as 

SUBROUTINE SetBDVar(localTo, offset, varName) 

where 

localTo - location to which the boundary information will ultimately reside, 

offset - number of cells beyond the current junction cell for which boundary 
information is required, and 

varName - ASCII string denoting the variable to be registered in the system 
service pointer table.
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Fig. 3-6. Flow logic for System Service initialization 
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S

Subroutine BuildBndryTable

Register pointers in the boundary pointer 
table for the current junction cell and 

boundary variable

Fig. 3-6. Flow logic for System Service initialization (cont)



This routine establishes the locations to which the pointers in the transfer table will 

become associated, first through a call to AssignGenlDPtr (in post-3.0 versions, this 

routine is called AssignPtr). Using the indices established in SetBDJunCell and 
mnemonic strings for the individual bd variables passed through the argument list, 
AssignGenlDPtr provides a series of case statements upon which to establish the target 
location of data that are to be transferred to the bd array. This target location is returned 

to SetBDVar through the argument list.  

Once the target location is created, the pointer table location for the current junction cell 

and variable is created via a call to BuildBndryTable. This low-level subroutine has 

the following syntax: 

SUBROUTINE BuildBndryTable (localFrom, localTo, flipSign) 

Localfrom is a pointer to the component information arrays, and localTo is the 

boundary storage location (bd array) to which the component information will 

ultimately be transferred. FlipSign is a logical variable indicating whether the sign of 

the boundary information should be flipped when making the transfer to or from the bd 

array. Because each component maintains its own positive and negative direction 
vectors, it is possible to have a situation where a velocity in the boundary cell has a sign 
that is not compatible with the current component's convention. In other words, given 

two horizontal PIPEs that share a common junction, defined as j un2 in both 

components, and velocities that move in a left to right direction, these velocities are 

considered as positive in the left-hand PIPE and negative in the right-hand PIPE. When 
storing the right-hand PIPE's velocities in the left-hand PIPE's boundary information, it 

is necessary to flip the sign so that the proper conventions are followed.  

3.2.3.1.3. System Service Setup Programming Guidelines. The above routines, 
although used exclusively for creating a newly structured bd array, are certainly general 
enough that should a programmer require a new set of boundary information for an 

enhanced numerical scheme or a new type of component, the amount of work required 

to get to that information is small in comparison to what it used to be. The most 
daunting task is to ensure that the appropriate indices are determined within the system 

service data structure and that the proper CASE statement is available within subroutine 
SetBDVar. The following is a list of programming guidelines for using and modifying 
the System Service: 

* It is absolutely forbidden to modify the bd array directly in any way. All 
modification should be through the pointers to component-specific data
structure locations.  

If a programmer needs to add some dynamic functionality to a boundary 
variable, some local or global storage (depending on whether the 
functionality is localized to one component or applies to many) should be 
created and the system service data structure modified so that the 

appropriate boundary table elements point to this memory location. All 
dynamic functionality then applies to this new variable, and all appropriate
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calls to Table Transfer can be used to update the information as needed. Once 
parallel capability is built into code, considerable planning and analysis are 
required before work is attempted, lest errors be introduced.  

* The programmer should use junCells, junComp, and compSeg arrays 
whenever possible. This will help ensure component generality and free the 
code from logic that is specialized for a given component, thus making it 
easier to extend the code's capabilities in the future.  

The following is a list of steps necessary for registering a new component in the system 
service data structure: 

* Add a new case statement to the component loop in InitBDArray for the 
new component.  

" Within this new case logic, add calls to SetBDJunCell for each junction cell 
in the component. Use junCells and junComp arrays to establish variables 
that are passed through the argument list.  

" A survey should be conducted for each boundary variable to isolate any 
specialized behavior with respect to this new component. Specialized 
behavior implies one of several conditions: the corresponding component 
information in the giDAr, vsAr3, or other applicable array is not stored in 
the same manner as the normal iD or 3D components; the boundary variable 
has no equivalent in the new component's data structure; the nature of the 
solution scheme for the new component requires that the boundary variable 
be interpreted in a different manner with respect to the other components; or 
the nature of the boundary variable for the new component requires that 
there be no static location within the component's data structure with which 
to associate to the bd array location for that variable. If any of these 
conditions exist, it may be necessary to devise specialized logic to handle the 
boundary table set up for that boundary variable. This may include the 
following: 

"* adding specialized logic to SetBDJunCeK1 to set the indices that are used to 
establish the "from" pointer locations (i.e., the originating values used to 
populate the bd array). This may require adding new module variables to 
avoid conflicts with existing indexing variables (facelIndex, face2 Index, 
cellIndex, etc.).  

adding IF THEN ELSE statements within the case statement logic in 
SetBDVar for a certain boundary variable if it does/does not require a sign 
flip during pointer table transfer.  

creating a static location within the component's data structure to provide a 
target location to which the System Service pointer table can point.
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adding IF THEN ELSE statements within the case statement logic in 
AssignGenlDPtr (in post-3.0 versions, this routine is called AssignPtr) for 
a certain boundary variable so that the pointer to originating data location is 
set properly. Such logic would require using the specialized indices set in 
SetBDJunCell.  

The following is a list of steps necessary for adding a new variable: 

" add a variable to the bd array derived-type structure in module Boundary 
(note: the bd derived type is not currently implemented); 

"* increment the variable nbd by one; 

* add a call to SetBDVar for the new variable in SetBDJunCell; 

* add a case statement to flipSign logic in SetBDVar, if appropriate; and 

• add a case statement to the associated logic in AssignGenlDPtr 
(AssignPtr).  

If the new variable is isolated for use by only one or two components, then pointers 
should be set up specifically for these components. The remaining components should 
have this variable pointing to the nul module variable.  

3.2.3.1.4. Transfer of Component Boundary Information. Once transfer has been 
scheduled during initialization, the actual transfer process is very simple. Given a 
transfer table, data are moved with a simple Fortran loop: 

DO i = 1, bdIndex 
Copy data from one location to the other 

IF(.NOT.table(i)%flipSign) THEN 
table(i)%to = table(i)%from 

ELSE 
Change the sign of the copied 
value if such an action is called for 

table(i)%to = -table(i)%from 
ENDIF 

ENDDO 

The communication system intentionally prevents direct access by the requesting 
component to the storage of the requested information in the adjacent component. This 
is an attempt to localize errors in new components and limit poor programming 
practices involving alteration of data by unexpected portions of the program. It also lays 
a groundwork for parallel processing, providing values of communicating variables that 
are updated only at well-defined synchronization points in the execution of the program.  

When fully implemented, initialization of intercomponent communication establishes 
information transfer on several different schedules. Transfer is scheduled for calculation 
setup only, once per timestep or once per cycle through components. Variables
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containing fixed-geometry, index, or flag information are transferred only during the 
initialization phase. This transfer occurs at every pass through components during 
initialization but does not continue beyond the start of the first timestep. Some variables 
become "old-time" quantities simply by transfer of the "new-time" value from the 
previous timestep. These are scheduled for transfer at the beginning of each timestep. Of 
the remaining variables, some may be generated only once during a specific phase of a 
timestep. However, modifications to numerical methods may alter the points at which 
such variables are recalculated. To retain maximum flexibility, this information is 
transferred after each cycle through all components. Consideration can be given to 
further scheduling refinement after the consolidated TRAC-B/TRAC-M code reaches a 
higher level of maturity.  

Unfortunately, some peculiarities in data flow have prevented full implementa-tion of 
this scheme currently. Propagation of information from one component to the next is 
currently recovered by driving the portion of the data-transfer table associated with a 
given component whenever the component-specific driver (e.g., pipe2) has completed 
work. This is accomplished with the subroutine TableTransComp. Work is in progress 
to eliminate these data flow problems and, when possible, replace a series of calls to 
TableTransComp with a single call to the subroutine TableTransAll at the 
completion of the associated loop over all components.  

3.2.3.2. Data Access-Instantiated Component with Task-Crunch Association.  
The following example is based on the calling tree for the hydrodynamic outer iteration 
for 1D components. We concentrate here on the flow of data for a single Newton 
iteration and for a single specific PIPE component; the details of the convergence and 
backup logic and of the network-solution logic are discussed in Section 2. Examples of 
other analogous situations that follow the style of data access shown here are found in 
the 3D-hydrodynamics portion of the OUTER stage, the prep and POST stages for 1D 
and 3D hydrodynamics, and the ROD power logic (subroutine corel, etc.) 

Subroutines trans, hout, and outer are driver routines in the hydrodynamics calling 
chain before the instantiation of a specific 1D component; they are standalone files and 
are not contained in any module. Subroutine hout loops over the network loops 
identified by subroutine srtlp. In turn, subroutine outid loops over the 1D 
hydrodynamics components in a specific network loop and instantiates a specific 1D 
component, which may be of any of the 1D data types; it is not in any module.  

SUBROUTINE trans (file trans.f) 
CALL hout (oitmax, iofail, nmfail) 

SUBROUTINE hout (noitmx, iofail, nmfail) (file hout.f) 
CALL outer() 

SUBROUTINE outer (file outer.f) 
DO il = 1,nloops
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imin = ig(lloopn+il-1) 
imax = ig(lloopn+il)-I 

CALL outld (imin, imax, i f lag) <<<-- for il 1hloop 

In subroutine outld, only the type of the component to be calculated is needed; this is 
in the FLT (array genTab of derived-type genTabT, in module Flt). This information 
becomes available when index-variable cco, into array genTab, is looked up.  
Subroutines pipe2, pump2, tee2, etc., which are called by outid, are intermediate-level 
routines that are specific for a given component type; they call the lower-level general 1D 
hydrodynamics routines. These routines (pipe2, etc.) are each contained in a module 

that has a name of the form "Comp-type" (e.g., module Pipe). The component-type 
modules (Pipe, Pump, etc.) are used by outid only for interface checking of the 
subroutines they contain.

SUBROUTINE outld(imin, imax, jflag) (file outld.f)

BEGIN MODULE USE 
USE Util 
USE CFaces 
USE IntrType 
USE OneDDat 
USE GlobalDat 
USE GlobalPnt 
USE CompTyp 

USE Flt «<-- FLT (module FitM. f) 
USE Global 
USE Plenum 
USE GeniDArray 

USE Pipe <<<-- CONTAINS pipel, pipe2, pipe3, etc.  

USE Pump <<<- CONTAINS pumpl, pump2, pump3, etc.  
USE Prizer 
USE Valve 
USE Tee 
USE Sepd 
USE Fill 
USE Break 
USE Boundary 

IMPLICIT NONE 

Declaration Generated by genImpDecs.pl 5/98 

INTEGER(sik) imax, imin, jflag 

controls outer calculation for one-thermal-hydraulical 
components.  

INCLUDE 'vellim.h' 
INTEGER(sik) idum
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! read cbmponent data 

DO icmp = imin, imax <<<--loop over components in this loop 
cco = compIndices (icmp) <<<--- obtain cco for specific component 
icme=icme+1 

IF (.NOT. (genTab(cco)%type.EQ.breakh.OR.genTab(cco)%type.EQ & 
& .fillh.OR.ipakon.NE.i.OR.oitno.GT.1.OR.ibks.EQ.l)) THEN 

back up to start of iteration values due to l-d packing 

IF(genTab(cco) %type.eq.plenh) THEN 
CALL BackUpPlen 

ELSE 
CALL BackUpGenlD 

ENDIF 

ENDIF 
jvlim=O 
msc=0 
iphsep=0 
nc2=1 
CALL cleardfldc 
varer=0.OdO 
qtp=0 .dO 

branch to component type 

IF (genTab(cco)%type.EQ.pipeh) THEN <<<-access array genTab 
CALL Dime2 (j flag) <<<-- call pipe2 (module Pipe) 

ELSEIF (genTab(cco) %type.EQ.pumph) THEN 
CALL pump2(jflag) 

ELSEIF (genTab(cco)%type.EQ.teeh) THEN 
ntee=ntee+l 
CALL tee2(jflag) 

ELSEIF (genTab(cco)%type.EQ.valveh) THEN 
CALL vlve2(jflag) 

RETURN 
END 

Subroutine pipe2 is contained in module Pipe; it needs data from the specific PIPE VLT 
for the now-instantiated PIPE component being calculated, which is in array pipeTab of 
derived-type pipeTabT and indexed by cco. pipe2 calls general subroutine inner, 
which is called by all the 1D hydrodynamic components, and is contained in module 
GenlDTask. Therefore, pipe2 uses modules PipeVit (only for this PIPE's data in this 
case) and GenlDTask (for subroutine interface checking). Note that component index
variable cco is in module Global; pipe2 has access to cco through module PipeVlt, 
which uses Global.
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bd array: The bd array provides needed information from neighboring components at 

network junctions to the hydrodynamics Crunch routines for the beginning and end 

cells of a component. Details on the bd-array data members are given in Section 2.3.1.  

Use of the bd array in the low-level hydrodynamics routines is similar in TRAC-P and 

TRAC-M. However, TRAC-M has a "double-sided" bd array, with logic that 

distinguishes "putting" and "getting" boundary data. Also, the actual data transfers are 

handled in TRAC-M by the System Services.  

TRAC-P bd array: In TRAC-P, the bd array is stored in the A array, and a pointer to it is 

set in subroutine input: 

lvsi=lj seq+nj un 
lbd=lvsi+njun 
lmatb = 1bd + lenbd*njun 
lptbln= lmatb + rnmat 

SUBROUTINE outld passes this reference into the A array, for example, to 

pipe2: 

call pipe2(a(lbd),a(lvsi) ,lenbd,jflag) 

and pipe2 has a corresponding dummy argument: 

subroutine pipe2 (bd,vsi, lenbd, jflag) 

dimension vsi(1) ,bd(lenbd,1) 

TRAC-M bd array: TRAC-M declares the bd array and allocates storage for it, with a 

call to TRACAllo, in module Boundary. pipe2 has direct access to the bd array by using 

Boundary and passes the appropriate bd vector to subroutine inner via an argument 

list (as in TRAC-P).  

SUBROUTINE pipe2 (j flag) 

BEGIN MODULE USE 
USE IntrType 
USE OneDDat 
USE GlobalDat 

USE GenlDTask <<<--- use module GenlDTask for call to inner 

USE PipeVlt «<--- use module PipeVit for pipeTab; 

USE Boundary also, PipeVit uses Global 

USE SysService <<<--- Velocity sign convention (vSign) 

IMPLICIT NONE 

Declaration Generated by genImpDecs.pl 5/98

3-84



INTEGER(sik) iflag 

Variables added by Chris Murray, 6/98 
They should be removed once tfldsl is fixed for enhanced 
parallelism 
INTEGER(sik) jcol,jco2 

controls pipe outer iteration.  

iSegment = 1 

iacc2=pipeTab (cco) %iacc <<<- Needs pipeTab data and cco 
qtp=pipeTab(cco)%cpow*delt/pipeTab(cco)%plent 
isflg=O 

! These variables passed to inner are temporary. Should be removed 
! when tfldsl is removed from ibks loop.  

jcol = pipeTab(cco)%jslget 
jco2 = pipeTab(cco)%js2get 
CALL inner(bd(l:,pipeTab(cco)%jslget),bd(l:,pipeTab(cco)%js2get) & 

&,bd(l:,pipeTab(cco)%jslput),bd(l:,pipeTab(cco)%js2put) & 
&,l,pipeTab(cco)%ncells,pipeTab(cco)%isollb,pipeTab(cco)%isolrb & 
&,vSign(pipeTab(cco)%jslget),vSign(pipeTab(cco)%js2get),jcoljco2) 

RETURN 
END SUBROUTINE pipe2 

Subroutine inner is called by pipe2, prizr2, pump2, tee2, and vlve2, which are in 
modules Pipe, Prizer, Pump, Tee, and Valve, respectively. Some of the actual 

arguments in these calls are references to elements in pipeTab(cco), which are passed 
to corresponding simple dummy arguments in inner. Subroutine inner also needs 
data from genTab for component cco. References to elements of giDAr (cco) appear in 
assignment statements on both left- and right-hand sides and in a subroutine call.  

SUBROUTINE inner(bdlget,bd2get,bdlput,bd2put, 
&istrt,istop,isollb, isolrb,vsl,vs2,jcol,jco2) <<<- istop, isollb, 

isolrb 
from pipeTab(cco) 

BEGIN MODULE USE 
USE CFaces 
USE GeniDArray <<<-- for gIDAr (cco) 
USE OneDDat 
USE GlobalDat 
USE CompTyp 
USE Bad 
USE Flt <<<---for genTab(cco) 

USE Global <<<---for cco 
USE SysService 

IF (.NOT.(ipakon.NE.I.OR.oitno.GT.i.OR.ibks.EQ.l)) & 
& CALL onll23c(gldAr(cco)%bitn(istrt),istop-istrt+2)
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Note the comments in the source code here (Version 3.0) concerning parallelism.  

IF (bdlget(37) .NE.real(genTab(cco)'num)) THEN 

isml=istrt-1 
vmol=gldAr (cco) •v1n(isml1+1) 

.gldAr(cco)o6vln(isml+l)=gldAr (ccoAdj) %vln (faceNum) *vs1 

CALL tfld(bdlget,bd2get, istop) <<<-- bd columns for left and right 

junctions 

END SUBROUTINE inner 

Subroutine tfld is also in module GenlDTask; it is the driver for the iD hydrodynamics 

Crunch routines tfldsl, tflds, and tflds3, which are in module GenlDCrunch. tf ld also 

calls subroutines thermo (module EosNoInline), htif (module GenHeat), and 

cellav (which is contained in tfld itself). tfld also performs special-case pointer 

associations between members of array giDAr. tfld is at the Task-Crunch interface for 

the 1D hydrodynamics; it uses modules GeniDArray (for its data) and GenlDCrunch 

(for subroutine interface checking). The Crunch routines tfldsl, tflds, and tflds3 

have access only to giDAr data through their argument lists, which are passed from 

tfld.  

SUBROUTINE tfld(bdl,bd2 ncl) «<-- bd column vectors through arg list 

BEGIN MODULE USE 
USE IntrType 
USE GenIDArray <<<- array giDAr 

USE GenlDCrunch <<<- 1D hydrodynamic Crunch routines 
USE IntArray 
USE OneDDat 
USE Xvol 
USE GlobalDat 

USE GlobalPnt <<<- pointers into array ig 
USE Bad 

USE Global «<--array ig 

USE Eos <<-- uses EosNoInline (for thermo) 

USE Network <<<--- array rmet 

USE GenHeat «<-- tfld, htif 

USE JunTerms 
USE SemiSolver
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REAL(sdk) bdl(:),bd2(:) ,duml(l),duin2(1) 

IF (ipakon.EQ.1) CALL thermo(gldkr(cco)9jpf,gldAr(cco)%elfl 

CALL cellav(gldAr(cco)%alp,gldAr(cco)%vl,gld&r(cco)
9 fa& 

CALL htif(gldkx(cco)$6alp,gldAr(cco)%alpo,gldAr(cco)%rov& 

CALL tfldsl(gldAr(cco) %alpo,gldAr(cco) %alp,gld~r(cco)%rov & 

& gldAr(cco)%bitnl,bdl,bd2,n1cl,gldAr(cco)%vlto,gldAr(cco)%vJvto& 

gidAr (cco) %vvx=>gldAr (cco) %vv <<<--- pointer assignment 
gldAr(cco) %vlx=>gldAr(cco) %vl 

CALL CellFluxes(gldAr(cco) %vlx,gldAr(cco)%vVcm, & 

CALL tflds(gldkr(cco)%~alp,gldAr(cco) %p& 

CALL tflds3(gldkr(cco)9%&1p,gldAr(CCO)%p,gldAr(cco) %vlt&

CONTA.INS 

SUBROUTINE cellav(alp,vl, fa,grav,bdl,bd2,ncells, favol,gravol, 

&alpmn,alpmx,vJlvc~fasmlt,vlalp) 

END SUBROUTINE cellav 
END SUBROUTINE tfld

&
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At the Crunch level, subroutine tf ldsl receives all of its array information about the 
specific 1D component through its argument list (it does access the FLT through cco): 

SUBROUTINE tfldsl(alpoalprovrollvlvvpvltvvtvlnvvndr, & 

& tintvndxhdfavoldfvdpdfldpwfvwflcifgravbitbitnbdl, & 

& bd2,ncellsvltovvtopadhldzfavolsigmavvvolvlvolgamlccfl, & 

& rarlrarvlarlarvxvlrnfcvsm) 

BEGIN MODULE USE 

USE CFaces 

USE OneDDat 

USE GlobalDat 

USE GlobalDim 

USE Ccfl 

USE CompTyp 

USE Bad 

USE Bits 

USE Flt 

USE Util 

IMPLICIT NONE <<<--Note IMPLICIT NONE 

Declaration Generated by genImpDecs.pl 5/98 

INTEGER(sik) ibitllibitl2,icichokeichpakifrcrjjdrjmjp, & 

& jside2,ltcflfmscOmsclmsc2,ncellsncp 

Declaration Generated by genImpDecs.pl 5/98 

REAL(sdk) aidcalpgalpialpjmalplalplmalplpalpmalp=nalpom, & 

& alpppalpvalpvmalpvpaltmaratiobetabondcapccccvllcvl2, & 

& cvvlcvv2,dadtdadxdelrhodetdpdprdxdvldvlodvvdvvodxdc, & 

& factfactlfactllfactl2,fadcfihtfluxxgglg2,gammgamphfmax, & 

& hgomegapadcpdcracracmracpracpsvralprarlmra=,rarvmrat, & 

& rdetrdxrfarhslrhsvrlrldcrolmrolprovmrovprrlmrrvmrv, & 

& rvdcsigdcsigmabsigmaptldctvdcvlcvljvlnjvl=axvlrvltj, & 

& vltojvmaxttvmxjvoldvolivoljmvvcvvjvvnjvvrvvtj, EC 

& vvtojwfmwfpwlwllwlnwlnlwmwmlwvwvlwvnwvnlxlx2,x3, 

& xfcxfclxjfxmxwflxwfloxwfvxwfvo 

INCLUDE 'vdvmod.hl 

INCLUDE 'cflow.h' 

INCLUDE 'vellim.hl 

INCLUDE 'constant.h, 

INCLUDE 'tst3d.h, 

INCLUDE 'dtinfo.h' 

REAL(sdk) lccfl(:) 

REAL(sdk) alpo(:),alp(:),rov(:),rol(:),vl(:),Vv(:),P(:),vlt(:), & 

& vvt(:),vln(:),vvn(:),dr(:),tln(:),tvn(:),clx(:),hd(:),fa(:),vol & 

& (:),dfvdp(:),dfldp(:),wfv(:),wfl(:),cif(:),grav(:),bit(:),bitn & 

& (:),bdl(:),bd2(:),vlto(:),vvto(:),pa(':),dhldz(:),favol(:), & 

& sigma(:),vvvol(:),vlvol(:),gam(:),rarl(:),rarv(:),arl(:),arv(:) 

REAL(sdk) xvlr(:),nfcvsm(:) 

LOGICAL ltl 

LOGICAL lpakllpakrlteesl
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DATA fiht,ifrcr/l.OdO,1/

vmaxtt= max(vmaxt,vmaxt3) 

alpmm=bdl (7) <<<--- bd array reference 
ncp=ncells+l 
msc0=0 
mscl=0 
msc2=0 

----- JSIDE2 holds index of 2nd face of tee side tube.  
jside2=0 

IF (genTab(cco)%type.NE.pumph) msc0=msc «<-- genTab (FLT) reference 
IF (msc0.NE.0) THEN 

mscl=msc+l 
msc2=msc+2 

ENDIF 
IF (islb.EQ.0) THEN 

dfvdp(jstart)=0.d0 
dfldp(jstart)=0.d0 

ENDIF 
IF (isrb.EQ.0) THEN 

dfvdp(ncp)=0.d0 
dfldp(ncp)=0.d0 

ENDIF

explicit calculation of new time velocities 

DO j=jstart,ncp 
if(nwf.ne.0) wfl(j)=wflx 
if(nwf.ne.0) wfv(j)=wfvx 

jdr=nthm* (j-l)+l 
jp=j+l 
jm=j -1 
IF (j.NE.jstart) THEN 

voljm=vol (jm) 
alpjm=alp (jm) 

ENDIF 
volj=vol (j) 
alpj=alp (j) 
vvj =vv (j) 
vlj=vl (j) 
vvnj=vvn(j) 
vlnj =vln (j) «<-- array reference

vln(j ) = (cvvl*rhsl-cvv2*rhsv) *rdet <<<-- array reference

3.2.3.3. Data Access-Instantiated Component-No Task-Crunch Association.  
Here we use as an example the calling chain that adds the data for a specific 1D 
component to the dump file, again using the PIPE:
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dmo~it

dpipe (dtee, d etc.) 

bfoutn (PIPE-specific arrays) 

dcomp 

bfoutn (general arrays)

GenTabl eDump dmpVLT

PipeTableDump 

SUBROUTINE dmpit (file dmpit. f)

BEGIN MODULE USE 
USE IntrType 
USE Io 
USE EngUnits 
USE GlobalDat 
USE GlobalPnt 
USE Ccfl 
USE CompTyp 

USE Flt << 

USE Control 
USE Global 
USE Temp 
USE SysTime 
USE Eos 
USE Rad 
USE Plenum 

USE Pipe <<<
USE Pump 
USE Valve 
USE Tee 
USE Fill 
USE Break 
USE RodTask 
USE VessTask 
USE Restart

loop over components 

DO icomp=1,ncomp 

cci=icomp 

cco=compIndices(icomp) <<<- cco
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branch on component type 

IF (genTab(cco)%type.EQ.pipeh) THEN 

CALL doive(icomp) «<-- pass icomp 
ELSEIF (genTab(cco) %type.EQ.teeh) THEN 

CALL dtee(icomp)

Subroutine dpipe calls the general 1D dump routine dcomp. dpipe also dumps arrays 
specific to the PIPE component, which are in module PipeArray; to do this, dpipe 
needs information from module Pipevit (from pipeTab(cco).

MODULE Pipe <<<

BEGIN MODULE USE 

USE PipeArray <<<--

CONTAINS 

SUBROUTINE dpipe (icomp)

BEGIN MODULE USI 
USE IntrType 
USE PipeVlt 

USE Restart

dpipe is in module Pipe 

module PipeArray

<<<-- dpipe

<<<--array pipeTab 
<<<-- bfoutn

IMPLICIT REAL(sdk) (a-h,o-z)

dumps pipe data

CALL dcom (icomp) <<<-- pass icomp to dcomp 
CALL bfoutn(pipeAr (cco) %powtb, jabs (pipeTab(cco) %npowtb) *2, ictrld) 
CALL bfoutn(pipeAr(cco)9%powrf, iabs (pipeTab(cco)"npowrf) *2, ictrld) 
i2=2 
IF (pipeTab(cco)%p3in.LT.O.OdO) i2=1+pipeTab(cco) %ncells 
CALL bfoutn (pipeAr (cco) %qp3tb, iabs (pipeTab (cco) %nqp3tb) *i2, ictrld) 
CALL bfoutn(pipeAr(cco)%qp3rf,iabs (pipeTab(cco)%nqp3rf) *2, ictrld) 
RETURN 
END SUBROUTINE dpipe 

Subroutine bfoutn is a service routine for dumping real array data; in this case, dpipe 
passes references to (derived-type) elements of pipeAr (cco) to it for dumping, as well 
as the number of words to dump, from references to pipeTab (cco).  

MODULE Restart
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CONTAINS

SUBROUTINE bfoutn(aa,nwrx, ictrl)

BEGIN MODULE USE 

USE Global

<<<- from pipeAr and pipeTab

<<<--- array Buffer

WRITE (ioc) (Buffer(i),i=istrt,istop) <<<--array Buffer 

Subroutine dcomp is a general routine for dumping iD component data from the FLT, 

VLT, and array data from arrays glDAr and intAr for component cco. dcomp uses a 

local array called aVct for reshaping array qppp (wall heat) before it is dumped. dcomp 

calls subroutines GenTabieDump and dmpVLT to dump the FLT and VLT, respectively, 
and dumps the array data directly with calls to bfoutn. dcomp also needs information 

from the specific component's genTab. Only icomp needs to be passed to 

GenTableDump; dmpVLT is a driver routine for all iD components and needs the 

component type also. dcomp uses module Flt both for its genTab data and for an 

interface to subroutine GenTableDump.

SUBROUTINE dcomp(icomp) 

BEGIN MODULE USE 

USE IntrType 

USE GenIDArray <<-

USE IntArray <<<

USE GlobalDat 
USE GlobalDim 
USE CompTyp 

USE Flt 
USE Global 

USE Restart <<<---

(file dcomp, f)

array glDAr 
- array intAr 

genTab and 

contains bfoutn

REAL(sdk), DIMENSION(genTab(cco)%nodes*genTab(cco)%ncellt) :: aVct 

CALL GenTableDum= (icomp, .TRUE.) <<<-- pass icomp & reordered flag 

CALL dmoVLT (ictrld, genTab(cco) %type, icomp, 'dcomp') t<--- ype & icomp 

CALL bfoutn(gldAr(cco)'dx, genTab(cco) ncellt, ictrld)
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CALL bfoutn(gldAr(cco)%vol,genTab(cco)%ncellt,ictrld) 
CALL bfoutn(gldAr(cco)%fa,genTab(cco)%ncellt+l,ictrld) 
CALL bfoutn(gldAr(cco)%fric,nfrcl*(genTab(cco)%ncellt+l),ictrld) 
CALL bfoutn(gldAr(cco)%grav, genTab(cco)%ncellt+l,ictrld) 
CALL bfoutn(gldAr(cco)%hd,ndial*(genTab(cco)%ncellt+l),ictrld) 
CALL bfoutn(intAr(cco)%nff,genTab(cco)%ncellt+l,ictrld) 
CALL bfoutn(intAr(cco)%lccfl,genTab(cco)%ncellt+l,ictrld) 
CALL bfoutn(gldAr(cco)%wa,genTab(cco)%ncellt,ictrld) 
aVct=reshape(gldAr(cco)6ppp, shape(aVct)) 
CALL bfoutn(aVct,nods*genTab(cco)%ncellt, ictrld) 
CALL bfoutn(intAr(cco)'gnatid,ndml,ictrld) 

Subroutine GenTableDump has logic to access specific genTab array elements in either 
a reordered or nonreordered sense, depending on the value of its second input 
argument: 

MODULE Flt 

CONTAINS 

SUBROUTINE GenTableDump(compInd, reordered) 

BEGIN MODULE USE 
USE Restart 

LOGICAL reordered 
INTEGER(sik) compInd 
INTEGER(sik) ordInd 

ordInd = compInd 
if(reordered) ordInd = compIndices(compInd) 

CALL bfoutn(genTab(ordlnd)6title, 4, ictrld) «<-- dump array 

Subroutine dmpVLT uses all the component VLT modules for interfaces to their various 
component-type-specific dump routines; it assumes component reordering: 

SUBROUTINE dmpVLT (ictrl, typex, compInd, caller) (ifie dmpvlt. f) 

BEGIN MODULE USE
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USE 
USE 
USE 
USE 

USE 

USE 
USE 
USE 
USE 
USE 
USE 
USE 
USE

IntrType 
CompTyp 
Global 
PlenVlt 

PipeVlt 

PumpVlt 
TeeVlt 
BreakVlt 
FillVlt 
ValveVlt 
PrizeVlt 
RodVlt 
VessVlt

ordInd = compIndices(compInd)

IF (typex.EQ.pipeh) THEN 

CALL PipeTableDump(ordInd, caller) 

ELSEIF (typex.EQ.teeh) THEN 

CALL TeeTableDump(ordlnd, caller) 
ELSEIF (typex.EQ.valveh) THEN 

CALL ValveTableDump(ordInd, caller) 

ELSE 

CALL error(l,'*dmpvlt* component type not recognized 1,4) 

ENDIF 

Subroutine PipeTableDump is contained in module PipeVlt, along with all of the 

PIPE-component VLTs (array pipeTab). All it needs from its caller is an index into 
pipeTab (the second argument is for diagnostic use).  

MODULE PipeVlt <<<- PIPE VLTs and related routines 

BEGIN MODULE USE 
USE IntrType 
USE Global 

INTEGER(sik) is2get 

INTEGER(sik) js2put 
END TYPE pipeTabT 

TYPE(pipeTabT),DIMENSION(maxComps) pipeTab
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CONTAINS 

SUBROUTINE PipeTableDump (ordInd, caller) 

BEGIN MODULE USE 
USE Restart 

CALL bfoutn(pipeTab(ordInd) %fl, 2, ictrld) <<<-- dump array fl 
CALL bfoutn (pipeTab (ordInd) %fv, 2, ictrld) 

3.2.3.4. Data Access-Noninstantiated Component. Often in TRAC one of the 
code's databases will need information, from another database. A typical case of this is in 
the Control System's need to access data from the component database. TRAC has a suite 
of service routines that is designed to provide a uniform interface to the component 
database; we refer to these routines as "data-access routines." 

Table 3-5 lists all of TRAC's component data-access routines. For each of them, Table 3-5 
indicates the module that contains the routine, the routine's name (and whether it is a 
function or a subroutine), the module(s) or subroutine(s) it is called from, its read/ 
overwrite function, and its purpose.  

There are data-access routines for the component FLTs (array genTab), specific 
hydrodynamic component-type VLTs, the general array for iD components, the 3D 
VESSEL fluid mesh array, and HTSTRs.  

A typical example of the use of these routines is in module Control's subroutine 
svsetl, which determines the values of signal variables that are defined in the 1D 
component database: 

SUBROUTINE svsetl (isvf, isvl, isv2, icomp, ncelltx) 

! isvn=64 valve hydraulic diameter (m) 

CALL GetValveTab ('ivps', icomp, ivpsx, rduml, .TRUE.) 
csSig (n) %presVal=GetGenlD (icomp, hdInd, ivpsx) 
GOTO 980 

ELSEIF (nsvn.GE.5.AND.nsvn.LE.7) THEN
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In this example, there is first a call to GetValveTab to obtain the location (index) of a 
particular VALVE component's adjustable cell face; then there is a call to function 
GetGenlD to obtain the hydraulic diameter at that cell face; the value returned is stored 

TABLE 3-5 
TRAC Component Data-Access Routines a

Module Routine Called by R/W Purpose

Flt S GetGenTable M Hpss R Provides certain values needed 
M RodCrunch from the component's genTab 

(FLT).  

PumpVit S GetPumpTab M Control R Provides certain values needed 
from PUMP component's 
pumpTab (VLT).  

RodVlt S GetRodTab M Control R Provides certain values needed 
M Rodtask from the HTSTR component's 

rodTab (VLT).  

S SetRodTab M RodTask W Overwrites the HTSTR 
component's rodTab (VLT) 
element rpowrn for coupled 
neutronics group.  

TeeVlt S GetTeeTab S icomp R Provides certain values needed 
from TEE component's teeTab 
(VLT).  

ValveVlt S GetValveTab M Control R Provides certain values needed 
S input from the VALVE component's 

valveTab (VLT).  

VessVlt S GetVessTab M RodCrunch R Provides certain values needed 
from the 3D VESSEL 
component's vessTab (VLT).  

GenlDArray F GetEosDrivld M RodTask R Returns EOS data from the 1D
component database.  

F GetGenlD M Control R Returns the value of the desired 
M Hpss component 1D-array element.  
M RodTask 

F GetGenlD2D M Control R Returns the value of the desired 
ID-component, 2D-array 
element.  

S GetGenlDArray M Control R (see Returns the value of a pointer 
Coding that is associated with a desired 
Std. component 1D array.  
below)
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TABLE 3-5-TRAC Component Data-Access Routinesa (cont)

Routine Called by R/W Purpose
_________________ 1* I

S GetlDArrayPointer M GenIDArray 
(see Purpose)

Associates the pointer with the 
desired iD-component 1D 
array.  
Service routine for: 
GetGenlD 
GetGenlDArray 
CopyGenlDArray 
IncrementGenlD

S Get2DArrayPointer M GenlDArray --- Associates the pointer with 
(see Purpose) desired component 2D array.  

Only set up for twn array (uses 
array name).  
Service routine for: 
GetGenlD2D

S IncrementGenlD M RodTask w Adds the passed value to the 
value of the specified 
component 1D-array element.  
The new value replaces the 
original value in the array.

S CopyGenIDArray M Control R Copies a specified number of 
1D-component array elements 
into an array in the calling 
routine.  

HSArray F GetHS M Control R Returns the value of the desired 
=TSTR component surface

array element (assumes outer 
surface).  

F GetHSSurf M Control R Returns the value of the desired 
STSTR-component surface
array element (assumes outer 
surface).  

F GetNoht M Control R Returns the value of noht 
(number of rows of heat
transfer nodes) for a specified 
copy (ROD) of the desired 
HTSTR.  

F GetHS2d M Control R Returns the value of the desired 
HTSTR-component, 2D-array 
element.  

F GetHS3d M Control R Returns the value of the desired 
HTSTR-component, 3D-array 
element.
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TABLE 3-5--TRAC Component Data-Access Routinesa (cont)

Routine Called by R/W Purpose

S GetHSIDPtr M HSArray 
(see Purpose)

Associates the pointer with the 
desired HTSTR-component 1D 
array.  
Service routine for: 
GetHS

S GetHS2DPtr M HSArray --- Associates the pointer with the 

(see Purpose) desired HTSTR-component 2D 
array.  
Service routine for: 
GetHS2d

S GetHS3DPtr M HSArray 
(see Purpose)

Associates the pointer with the 
desired HTSTR-component 3D 
array.  
Service routine for: 
GetHSSurf 
GetHS3d

HeatArray S GetHeatArray M Control R (see Returns the value of a pointer 
Coding that is associated with a desired 
Std. data array in heatAr (part of 
below) the 1D-component database).  

VessArray3 F GetVSAR MControl R Returns the value of the 
element (i,jk) of the specified 
VESSEL 3D mesh array.  

VessCrunch S copya M VessCrunch R Copies data for one level from 
one array to another.

in the Control System database. Another important use of data-access routines is found 
in the transfer of data between the hydrodynamic and HTSTR databases. An example is 
given in a separate section below.  

Some of TRAC's data-access routines assume that the components have been reordered.  
Typically, the routines in this category are called with an icmp loop-index actual 
argument, contain a compInd dummy argument, and have a 

ordInd = compIndices(compInd) 

statement.  

Some of the data-access routines have reordering logic that is driven by a . TRUE./ 
.FALSE. actual argument and a "reordered" dummy argument and have these 
statements:
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ordInd = compInd 
if (reordered) ordInd = compIndices(compInd) 

Subroutine GetGenlDArray returns the value of a pointer variable that is associated 
with the beginning of a specific desired array in the component 1D hydrodynamic-array 
database. The pointer array in the caller's actual argument list can be subsequently used 
in arithmetic statements in the caller, typically on the right-hand side, but potentially on 

the left-hand side. Similarly, subroutine GetHeatArray returns a pointer value from 
array heatAr, which is also part of the 1D database. Subroutine CopyGenlDArray 
copies the desired component 1D array data into an array (not a pointer array) in the 
calling routine.  

Coding Standard: Pointer values returned by subroutines such as GetGenlDArray 
and GetHeatArray should be used only on the right-hand side of assignment 

statements.  

Subroutines GetlDArrayPointer and Get2DArrayPointer are service routines in 

module GeniDArray, which associate an array pointer variable with a desired iD

component array. For computational efficiency, GetiDArrayPointer operates with a 

select case construct, using array-index numbers that are parameterized in module 

GenlDArray. Get2DArrayPointer only has to associate the wall temperature array 

twn and uses an IF statement on the array name. Both routines will fall through to an 

error message if an array is called for which the routines are not set up to handle.  

Function GetEosDrivld is specially set up to return one of four EOS variables from the 

1D component database. The 1D EOS data are stored in "inverted" form and are 

accessed by appropriate offsets into array driv, which is in giDAr.  

3D VESSEL Data Access-scratch storage use of old-time arrays: Real function 

GetVSAR, contained in module VessArray3, returns a value from a subset of the 

VESSEL 3D mesh arrays. GetVSAR takes as input arguments a character string 

specifying the desired array name, the VESSEL component index cco, and the (i, j, k) 
indices into the array.  

Subroutine svset3, in module control, is responsible for evaluating all signal variables 

that are defined in a 3D VESSEL component. svset3 calls GetVSAR to obtain all needed 

information from a VESSEL. Note that svset3 uses certain old-time VESSEL arrays as 

scratch storage for intermediate calculations. The following code fragments show use of 

the old-time VESSEL arrays vlyt, viz, and vlxr as scratch storage for determining 

liquid-mass-flow signal variables; also shown are signal variables that do not need the 
scratch storage.  

SUBROUTINE svset3 (isvf, isvl, isv2, icomp) 

isvn=31, 32 or 33 : cell lower interface liquid mass flow (kg/s)
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DO k=kl,k2,kk 
DO j=j1,j2,jj 

DO i=il,i2,ii 
ii =i 
j :i=j 
kl=k 
IF (m.EQ.0) THEN 

IF (vsAr3(cco)%vlnyt(i,j,k).LT.0.dO) jl=jl & 
& +1 

overwrite array-»>> vsAr3-(cco)%vlyt(i,j,k)=(l.OdO) & 

&-vsAr3(cco)%alpn(il,jl,kl) & 
&*vs~r3(cco)%roln(il,jl,kl) & 
&*vs~r3(cco)%vlnyt(i,j~k)*vs~r3(cco)%fayt~i,j & 
& ,k) 

ELSEIF (m.EQ.1) THEN 
IF (vsAr3(cco)%vlnz(i~j,k).LT.O.dO) kl=kl & 

& +1 
vs"x3(cco)%vlz(i,j,k)=(l.OdO & 

&-vsAr3(cco)%alpn(il,jl,kl)) & 
& *vsAr3(cco)%roln(il,jl,kl)*vs~r3(cco)%vlnz(i & 

& ,j,k)*vsAr3(cco)%faz(i,j,k) 
ELSEIF (m.EQ.2) THEN 

IF (vsAr3(cco)%vlnxr(i,j,k).LT.O.dO) il=il & 
& + 1 

vsAr3(cco)9sv1xr(i,j,k)~=(l.Qd0 & 
& -vsAr3(cco)%alpn(iJ.,jl,kl)) & 

& *vsAr3(cco)%roln(il,jl,kl) & 
& ~*vsAr3 (cco)%vlnxr(i,j~,k) *vsAr3 (cco)%faxr(i, j & 
& ,k) 

ENDIF 

ENDDO 
ENDDO 

ENDDO 
1=lvlyt+m-l 
IF (m.EQ.0) THEN 

setup for GetVSAR ->>> vsvNaine=, vlyt 
ELSEIF (m.EQ.l) THEN 

vsvName= viz I 

ELSEIF (m.EQ.2) THEN 
vsvNaxne=lvlxr 

ENDIF 

GOTO 8 50 <<<-calculate the signal variable 

--The following does not need scratch space (simply access VESSEL 
arrays): 

isvn=37, 38 or 39 :lower interface liquid velocity (mis) 

l=lvlnyt-im--l 
IF (m.EQ.0) THEN
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vsvName='vlnyt I 

ELSEIF (m.eq.l) THEN 
vsvName='vlnz 

ELSEIF (m.eq.2) THEN 
vsvName= 'vlnxr 

ENDIF 
GOTO 850 

--- calling GetVSAR (may be accessing scratch array): 
isvn is negative : signal value is the parameter difference 

vsv=GetVSAR(vsvName,cco, ijl,kl) 
csSig (n) %presVal=vsv 
vsv=GetVSAR (vsvName, cco, i2, j 2, k2) 

csSig (n) %presVal=csSig (n) %presVal-vsv 
GOTO 980 

ENDIF 

the signal value is from celll when cell2 is zero 
or from cell2 when celll is zero 

vsv=GetVSAR (vsvName, cco, il, j1, kl) 
csSig (n) %presVal=vsv 

ENDIF 

Examples of Data-Access-Routine Coding: Examples of the coding for the 

hydrodynamic data-access routines, including their argument lists, are given in 

Appendix G.  

HTSTR Data Access Routines: The HTSTR data-access routines are contained in 

module HSArray, thus providing information to the Control System. They work in much 

the same way as the data-access routines for the general 1D hydrodynamic array.  

However, the lowest-level service routines GetHSIDPtr, GetHS2DPtr, and 

GetHS3DPtr all operate with IF statements on array name strings that are passed to 

them (they do not use SELECT CASE).  

The HTSTR data-access routines GetHS2d and GetHS3d assume that the requested array 

thermal hydraulics are organized according to 

REAL (sdkx) FUNCTION GetHS2d (compInd, arrayName, rod, cell) 

CALL GetHS2DPtr (arrayName, compInd, arPtr) 

GetHS2D=arPtr (cell, rod) <<<- cell, rod (i.e., copy) 

REAL (sdkx) FUNCTION GetHS3d (compInd, arrayName, rod, cell,node)
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CALL GetHS3DPtr (arrayName, compInd, arPtr) 

GetHS3D=arPtr (node, cell, rod) <<<- node, cell, rod 

These functions will return a value from any rank-2 or rank-3 array (assuming it is made 
available in the Ptr routines); it is up to the calling routine to know the ordering of 
information in the array columns. All of the "surface" HTSTR data arrays are in rank-3 
arrays, organized according to 

(axial node-row, inner/outer surface index, rod index) 

Function GetHSSurf currently needs to return only outer-surface data; therefore, only a 

rod index and a node-row index are passed to it 

REAL (sdkx) FUNCTION GetHSSurf (compInd, arrayName, rod, cell) 

This was implicit in the old code: 
(for isvn=91 or 92, only the outer surface is accessed, 

irrespective of input) 
is = 1 

CALL GetHS3DPtr (arrayName, compInd, arPtr) 

GetHSSurf=arPtr (cell, is, rod) 

END FUNCTION GetHSSurf 

Function GetNoht is hardwired to return a value from the noht array for a specified 
copy (ROD) of a specified HTSTR (array noht carries the number of rows of heat
transfer nodes for the rod in question).  

3.2.3.5. HTSTR to Fluid Data Communication.  
Note: HTSTR to Fluid Data Communication. In future code versions, this logic will 
be replaced.  

HTSTR arrays ichci and Ichco: The HTSTR data array hsAr includes the rank-two 
arrays ichci and ichco, which carry information about the hydrodynamic components 
to which the inner and outer surfaces of an HTSTR component are coupled. The first 
subscript of Ichci and ichco contains the cell number (for iD hydrodynamic 
components) or the reordered component index (for 3D VESSEL components) and the 
type of the hydrodynamic component. The second subscript contains indices of the 

coarse-node, heat-conduction rows. Arrays ichci and 1chco are initialized in the INIT 

stage by subroutines irodl, 1chpip, and lchvss (module RodCrunch).  

Data-copy subroutines fltom, piprod, and vssro& Currently in TRAC, HTSTR 
components may be thermally coupled to the iD and 3D hydrodynamic components
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(but not the PLENUM, BREAK, or FILL components). In the TRAC Prep stage, HTSTR 

components need fluid information from the 1D and 3D hydrodynamic component 

databases to calculate heat-transfer coefficients and related quantities. The results from 

the HTSTR metal-to-fluid calculations subsequently are needed by the 1D and 3D 

hydrodynamic components in the Outer stage. In the Post stage, the HTSTRs will need 

the new-time fluid temperatures as boundary conditions for their internal-heat

conduction solution. The required data are transferred (copied) between the HTSTR and 

the 1D and 3D hydrodynamic databases by service subroutines piprod (module 

RodTask for the ID hydrodynamics components) and vssrod (module RodTask for the 

3D VESSEL component). piprod and vssrod are driven by subroutine fitom (module 

RodTask): 

SUBROUTINE htstrl 

DO icmp=1,nhtstr 
cci=icmp+ncomp 
cco=compIndices (cci) 
CALL fltom (hsAr(cco)%ichci,hsAr(cco)%Ichco,hsAr(cco)%idrod, ) 

A 

transfer hydrodynamic data to HTSTR 

SUBROUTINE fitom (lchci, 1chco, idrod, imf 1) <<<-- lchci and lchco passed 

IMFL - FLAG INDICATING OPERATION TO BE PERFORMED 
= 1, MOVE HYDRO INFO INTO ROD DATA DURING PRE-PASS 

=-1, MOVE ROD DATA INTO HYDRO DATA DURING PRE-PASS 

! = 2, MOVE NEW HYDRO FLUID TEMP'S INTO ROD DATA 

DURING POST-PASS 

--- inner HTSTR surface: 
ctyp = lchci(2,nzz) <<---component type 
IF (ctyp.EQ.vsslh) THEN 

nzl=nzl+l 
idum=hsAr (cco) %ntsxx (mrd) 

CALL vssrod(int(lchci(i,fnz) ) ,int(idrod(nrd)) ,idum & 

& , int(hsAr(cco)%hceli(nz)),nzIimfl,fncr,rodTab(cco)%iisnz) 
ELSEIF (ctyp.NE.plenh) THEN 

CALL oiorod( int (idrod(nrd)) , ig (lorder) & 

& , int(hsAr(cco)%hceli(nzz)) ,int(hsAr(cco)%hcomi (nzz)) ,imf1 & 

& ,ncr,rodTab(cco)%iis,fnz) 
ENDIF 

--- outer HTSTR surface:
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ctyp = lchco (2,nzz) <<-- component type 
IF (ctyp.EQ.vsslh) THEN 

nz2=nz2+1 
idum=hsAr (cco) %ntsxx(mrd) 
CALL vssrod (int(chco(,nz)),int(idrod(nrd)), idum 

& , int(hsAr(cco)%hcelo(nz)),fnz2,imflincr,isurf,nz) 
ELSEIF (ctyp.NE.plenh) THEN 

CALL piprod(int(idrod(nrd)), ig(lorder) & 

& , int(hsAr(cco)%hcelo(nzz)), int(hsAr(cco)%hcomof(nzz)) & 

& , imfl,ncr,isurf,nz) 
ENDIF 

In subroutine piprod, component-index cco accesses the current HTSTR component.  

piprod uses data-access routines IncrementGenlD, GetGenlD, and GetEosDrivld 

(the index i that is passed to these routines is obtained from comparison of the iorder 

array with ihcom): 

SUBROUTINE DiDrod (idrod, iorder, ihcel, ihcom, imfl,ncr, isurf,kz) 

DO i=1,ncomp 

IF (iorder(i) .EQ.ihcom) GOTO 20 <<<- obtain hydrodynamic
component index 

ENDDO 
20 CONTINUE 

move rod data to hydro data <<<--- Prep-stage call 

IF (idrod.GE.0) THEN 
CALL IncrementGenlD (i, hgamInd, aihcel, & 

& hsAr(cco)%hgamr(kz-i,isurf,fncr)) 

CALL IncrementGenlD(i, finanInd,aihcel, & 

& hsAr(cco)%finar(kz-l,isurf,fncr)) 
ENDIF 

move hydro data to rod data 

ELSEIF (imfl.GE. 2) THEN «<--- Post-stage call 

hsAr(cco) %tlnr(kz, isurf,ncr)=GetGenlD(i, tlnInd,aihcel) 

hsAr (cco) %tvnr (kz, isurf,ncr) =GetGenlD ( i, tvnInd, aihcel) 

ELSE «<-- Prep-stage call 

xalp=GetGenlD(i, alpInd, aihcel)
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hsAr (cco) %alpr (kz, isurf,ncr) =xalp 
hsAr (cco) %alvr (kz, isurf, ncr) =GetGenlD (i, alvInd, aihcel) 

hsAr(cco)%cplr(kz,isurf,fncr)=GetGenlD(i,cplfInd,aihcel) 

hsAr (cco) %sr (kz, isurf,ncr) =GetGenlD (i, sInd, aihcel) 

hsAr(cco)%drvdt(kz,isurf,ncr)= GetEosDrivld(i, 'drvdt ',aihcel) 

hsAr(cco)%drldt(kz,isurf,ncr)= GetEosDrivld(i, 'dridt ',aihcel) 

Subroutine vssrod performs a function analogous to that of piprod for the 3D VESSEL 
component it is also called by subroutine fitom and handles all HTSTR-to-VESSEL and 
VESSEL-to-HTSTR data copies. vssrod also uses component Index cco to access the 
current HTSTR component. Unlike piprod, vssrod receives component Index ccov 
through its argument list to access the required hydrodynamic (VESSEL) component 
(from the ichci and ichco arrays in subroutine fitom). vssrod operates directly on 
the VESSEL arrays. In addition to the VESSEL 3D mesh data, vssrod treats some of the 

VESSEL Special Array Data.  

SUBROUTINE vssrod(ccov, idrodntsxx,iz,nz, imfl,ncr, isurf,kz) 

move rod data to hydro data 

data in module RodHtcref 1 copied to VESSEL special arrays: 
IF (idrod.GE.0) THEN 

IF ((newrfd.EQ.1).AND.(nz.EQ.1)) THEN 
ij=ias+ (ir-i) *ntsxx 
IF (nrefld(ij).EQ.i) vsAr(cco)%refld(ij)=1 
IF (int(nhsca(ij)) .EQ.genTab(cco)%num) THEN 

vsAr (ccov) %alpan (ij) =aipag2 (ij) 
vsAr (ccov) %alpcn (ij) =aipcf2 (ij) 

vsAr(ccov)%ztbn(ij )=ztb(ij) 
ENDIF 

ENDIF 

VESSEL mesh arrays: 
vsAr3(ccov)%hgam(i,j,k)=hsAr(cco)%hgamr(kz-I,isurf, ncr) & 

"& +vsAr3(ccov)%hgam(i,j,k) 
vsAr3(ccov)%hla(i,j,k)=hsAr(cco)%hlar(kz-i,isurf, ncr) & 

"& +vsAr3(ccov)%hla(i,j,k) 

vsAr3(ccov)%ffinan(i,j,k)=hsAr(cco)%finar(kz-I,isurf,fncr) 
"& +vsAr3 (ccov)%finan(i, j,k) 

ENDIF
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move hydro data to rod data

ELSEIF (imfl.GE.2) THEN 

hsAr(cco)%tlnr(kzisurfncr)=vsAr3(ccov)%tln(ijk) 

hsAr(cco)%tvnr(kzisurfncr)=vsAr3(ccov)%tvn(ijk) 

ELSE 

copy into module RodRtcref 1 arrays: 
IF ((newrfd.EQ.1).AND.(nz.EQ.1)) THEN 

ij=ias+(ir-l)*ntsxx 

funh(ij)=vsAr(ccov)%funh(ij) 

nhsca(ij)=vsAr(ccov)%nhsca(ij) 

alpag2(ij)=vsAr.(ccov)%alpag(ij).  

a1prw(ij)=vsAr(ccov)%a1prw(ij) 

a1psm(ij)=vsAr(ccov)%a1psm(ij) 

zags(ij)=vsAr(ccov)%zags(ij) 

zdfs(ij)=vsAr(ccov)%zdfs(ij) 

ztws(ij)=vsAr(ccov)%zrws(ij) 

zsms(ij)=vsAr(ccov)%zsms(ij) 

ENDIF 

copy into hsjL-r arrays: 
hsAr(cco)%alpr(kzisurfncr)=vsAr3(ccov)%alpn(ijk) 

hsAr(cco)%alvr(kzisurfncr)=vsAr3(ccov)%alvn(ijk) 

hsAr(cco)%cplr(kzisurfncr)=vsAr3(ccov)%cpl(ijk) 

hsAr(cco)%cpvr(kzisurfncr)=vsAr3(ccov)%cpv(ijk)
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