
NUREG/CR-6725

TRAC-M/FORTRAN 90
(Version 3.0)
Programmer's Manual

Los Alamos National Laboratory

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001 Owl

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
www.nrc.gov/NRC/ADAMS/index.html.
Publicly released records include, to name a few,
NUREG-series publications; Federal Register notices;
applicant, licensee, and vendor documents and
correspondence; NRC correspondence and internal
memoranda; bulletins and information notices;
inspection and investigative reports; licensee event
reports; and Commission papers and their
attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer,

Reproduction and Distribution
Services Section

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

E-mail: DISTRIBUTION @ nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
www.nrc.gov/NRC/NUREGSfindexnum.html
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was
accessed, the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from

American National Standards Institute
11 West 4 2 nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series
are not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-X)OOX) or agency contractors
(NUREG/CR-XXXX), (2) proceeclings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of
Directors' decisions under Section 2.206 of NRC's
regulations (NUREG-0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Govemment.
Neither the U.S. Govemment nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

NUREG/CR-6725

TRAC-M/FORTRAN 90
(Version 3.0)
Programmer's Manual

Manuscript Completed: April 2001
Date Published: May 2001

Prepared by
B.T. Adams, J.F. Dearing, P.T. Giguere, IRC. Johns,
S.J. Jolly-Woodruff, J.W. Spore, RLG. Steinke, LANL

J.H. Mahaffy, C. Murray, PSU

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Pennsylvania State University
University Park, PA 16802

F. Odar, NRC Project Manager

Prepared for

Division of Systems Analysis and Regulatory Effectiveness

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code W6245

TRAC-M/FORTRAN 90 (VERSION 3.0)
PROGRAMMER'S MANUAL

by

B. T. Adams, J. F. Dearing, P. T. Giguere, R. C. Johns, S. J. Jolly-Woodruff,
J. Mahaffy, C. Murray, J. W. Spore, and R. G. Steinke

ABSTRACT

The Transient Reactor Analysis Code (TRAC) was developed to provide
advanced best-estimate predictions of postulated accidents in light-water
reactors. The TRAC-P program has provided this capability for
pressurized water reactors and for many thermal-hydraulic test facilities
for approximately 20 years. However, the maintenance and portability of
TRAC-P had become cumbersome because of the historical nature of the
code and the inconsistent use of standardized Fortran. Thus, the
Modernized TRAC (TRAC-M) was developed by recoding the TRAC-P
algorithms to take advantage of the advanced features available in the
Fortran 90 programming language while conserving the computational
models available in the original code.

The TRAC code (i.e., both the versions P and M) features a one-, two-, or
three-dimensional (1D, 2D, or 3D) treatment of the pressure VESSEL and
its associated internals, a two-fluid nonequilibrium hydrodynamics model
with a noncondensable-gas field and solute tracking, flow-regime
dependent constitutive equation treatment, optional reflood tracking
capability for bottom- and top-flood and falling-film quench fronts, and a
consistent treatment of the entire set of accident sequences, including the
generation of consistent initial conditions. The stability-enhancing two
step (SETS) numerical algorithm is used in the solution of the 1D, 2D, and
3D hydrodynamics and permits violation of the material Courant
condition. This technique permits large timesteps, and thus, the running
time for slow transients is reduced. A heat-structure (HTSTR) component
is included that allows the user to model heat transfer accurately for
complicated geometries. An improved reflood model that is based on
mechanistic and defensible models has been added. TRAC also contains
improved constitutive models and additions and refinements for several
components.

This manual is one of a four-volume set of documents on TRAC-M. This
manual was developed to assist a programmer and contains information
on the TRAC-M code and data structure, the TRAC-M calculational
sequence, memory management, and data precision. This document
provides a code developer with a single source of information to allow
either modification of or addition to the code. Sufficient information is
provided to permit replacement or modification of physical models and

iii

correlations. Within TRAC, information is passed at two levels. The upper
level of information is passed by systemwide and component-specific data
modules at and above the level of component subroutines. At the lower
level, information is passed through a combination of module-based data
structures and argument lists. This document describes the basic
mechanics involved in the flow of information within the code. This
document directly incorporates significant information regarding the code
models and architecture.

iv

CONTENTS

Page

A BSTR A C T .. iii

AUTHORS AND ACKNOWLEDGMENTS .. xiii

1.0. INTRODUCTION .. 1-1

2.0. TRAC-M CALCULATIONAL SEQUENCE .. 2-1
2.1. General Summary .. 2-2

2.1.1. Constrained Steady State .. 2-7
2.1.2. HPSS Initialization ... 2-9

2.2. Input Processing ... 2-10
2.2.1. 1D Component Input Processing with Subroutine rdcomp 2-14
2.2.2. 3D Component Input Processing with Subroutine rvssl 2-17
2.2.3. Component Input Processing with Subroutine rdrest 2-18

2.3. Initialization .. 2-20
2.3.1. 1D Component Initialization with Subroutine icomp 2-23
2.3.2. 3D Component Initialization with Subroutine civssl 2-27

2.4. Prepass, Outer-Iteration, and Postpass Calculations 2-28
2.4.1. Prepass Calculation ... 2-31

2.4.1.1. 1D Component Prepass Calculation with prepid 2-33
2.4.1.2. 3D Component Prepass Calculation with prep3d 2-34

2.4.2. Outer-Iteration Calculation .. 2-35
2.4.2.1. 1D-Component Outer-Iteration Calculation

w ith ou tv d .. 2-36
2.4.2.2. 3D-Component Outer-Iteration Calculation

w ith ou t3d .. 2-37
2.4.3. Postpass Calculations .. 2-38

2.4.3.1. 1D Component Postpass Calculation with post 2-39
2.4.3.2. 3D-Component Postpass Calculation with post3d 2-39
2.4.3.3. HTSTR-Component Calculation with htstr3 2-39

2.5. Timestep Advancement and Backup .. 2-40
2.6. Output Processing .. 2-41

2.6.1. ASCII Output Processing with edit .. 2-42
2.6.2. Graphics Output Processing with xtvdr .. 2-43

2.6.2.1. Module XtvData (February 2000) 2-45
2.6.2.2. Module XtvSetup (February 2000) 2-45
2.6.2.3. Module XtvComps (February 2000) 2-46
2.6.2.4. Module XtvDump (February 2000) 2-46
2.6.2.5. Module CXtvXFaces (February 2000) 2-46
2.6.2.6. The XTV/XMGR5 C Library (February 2000) 2-46

2.6.3. Binary Restart File Processing with dmpit .. 2-46

V

CONTENTS (cont)

Page

3.0. CODE ARCHITECTURE .. 3-1
3.1. Code Structure .. 3-1

3.1.1. Fortran 90 Modules .. 3-2
3.1.2. Description of All Structural Elements ... 3-2

3.2. Data Structure and Data Communication .. 3-2
3.2.1. Overview ... 3-2

3.2.1.1. TRAC Databases ... 3-3
3.2.1.2. Database Communication ... 3-4
3.2.1.3. Fortran 90 Modules ... 3-5
3.2.1.4. Derived Data Types .. 3-5

3.2.1.4.1. Global-Database-Derived Types 3-6
3.2.1.4.2. Component-Derived Types 3-6
3.2.1.4.3. Control-System-Derived Types 3-6
3.2.1.4.4. Steady-State-Derived Types 3-6
3.2.1.4.5. Radiation-Model-Derived Types 3-6

3.2.1.5. Data Precision .. 3-10
3.2.2. Databases ... 3-10

3.2.2.1. Global Data .. 3-10
3.2.2.1.1. Modules Global and GlobalPnt 3-11
3.2.2.1.2. Flow Equation Solution and System

Services ... 3-13
3.2.2.2. Component-Type Database ... 3-14

3.2.2.2.1. 1D-Hydrodynamic-Component Types
(PIPE, etc.) .. 3-18

3.2.2.2.2. Pseudo-iD Boundary-Condition
Component Types (BREAK, FILL) 3-27

3.2.2.2.3. "OD" Multiple-Connection-Component
Type (PLENUM) ... 3-29

3.2.2.2.4. 3D Hydrodynamic-Component Type
(VESSEL) .. 3-33

3.2.2.2.5. HTSTR-Component Type 3-51
3.2.2.3. Control System Databases ... 3-56
3.2.2.4. Steady-State Databases ... 3-66
3.2.2.5. Radiation Model Databases ... 3-67

3.2.3. Data Communication .. 3-67
3.2.3.1. Intercomponent Communication via System

Services ... 3-67
3.2.3.1.1. Specification of the System Configuration 3-68
3.2.3.1.2. Setup for Boundary Information Transfer 3-75
3.2.3.1.3. System Service Setup Programming

Guidelines .. 3-78
3.2.3.1.4. Transfer of Component Boundary

Information .. 3-80

vi

CONTENTS (cont)

Page
3.2.3.2. Data Access-Instantiated Component with

Task-Crunch A ssociation ... 3-81
3.2.3.3. Data Access-Instantiated Component-No

Task-Crunch A ssociation ... 3-89
3.2.3.4. Data Access-Noninstantiated Component 3-95
3.2.3.5. HTSTR to Fluid Data Communication 3-102

4.0. INPUT/OUTPUT IN SI OR ENGLISH UNITS ... 4-1

5.0. PLATFORM IMPLEMENTATIONS AND PORTABILITY 5-1
5.1. N um erical Precision .. 5-1
5.2. Portability Issues .. 5-1

6.0. CODE DEVELOPMENT AND MAINTENANCE ENVIRONMENT AND
STA N D A RD S ... 6-1
6.1. U pdates and C onfiguration Control ... 6-1

6.1.1. Central Repository ... 6-1
6.1.2. V ersion Control System .. 6-1
6.1.3. U pdate and Version D ocum entation .. 6-1

6.2. Shadow D atabase .. 6-1
6.3. Coding Standards .. 6-1

6.3.1. Source Form at Protocol .. 6-1
6.3.2. U niform Style .. 6-2
6.3.3. D ata Precision ... 6-2

7.0. REFEREN CES ... 7-1

A PPEN D IX A .. A -1

A PPEN D IX B ... B-1
B.1. PROG RAM s ... B-1
B.2. M O D U LEs .. B-1
B.3. IN TERFA CEs ... B-28
B.4. PRO CED UREs .. B-29
B.5. SU BRO U TIN Es .. B-29
B.6. FU N CTIO N s .. B-155
B.7. BLO CK D A TA s ... B-166
B.8. IN CLU D E files ... B-166

A PPEND IX C .. C-1
C.1. M odule Bad ... C-1
C .2. M odule BadInput ... C-1
C .3. M odule Bits .. C-1
C.4. Module Boundary .. C-6

vii

CONTENTS (cont)

Page

C .5. M odule BreakArray .. C -6

C .6. M odule BreakVlt ... ; C -7

C .7. M odule Ccf1 .. C -10
C .8. M odule CompTyp ... C -10

C .9. M odule ControlDat .. C -11
C .10. M odule EngUnits .. C -23

C .L1. M odule EosData ... C -28

C .12. M odule EosIn line .. C -29

C .13. M odule EosNoIn line ... C -30

C .14. M odule FailDat ... C -30

C .15. M odule FillArray .. C -32

C .16. M odule FillV lt ... C -33

C .17. M odule Flt ... C -36

C .18. M odule Gen iDArray .. C -38

C .19. M odule Global ... C -55

C .20. M odule GlobalDat .. C -56
C .21. M odule GlobalDim .. C -69
C .22. M odule GlobalPtr .. C -70

C .23. M odule HSArray ... C -72

C .24. M odule HeatArray .. C -83

C .25. M odule Hp ssDat ... C -84

C .26. M odule IntA rray .. C -87

C .27. M odule IntrT yp e .. C -87
C .28. M odule Io ... C -87

C .29. M odule JunTerm s .. C -89
C .30. M odule Linear ... C -92

C .31. M odule Matrices .. C -92

C .32. M odule Network ... C -109

C .33. M odule OneDDat ... C -110
C .34. M odule Pip eArray .. C -112

C .35. M odule Pipev it ... C -113
C .36. M odule PlenArray .. C -117

C .37. M odule Plen v it ... C-118
C .38. M odule Plenum ... C -120

C .39. M odule PrizeV lt .. C -121

C .40. M odule PumpArray .. C -124
C .41. M odule Pumpv lt ... C -125

C .42. M odule Restart ... C -131
C .43. M odule RodCrunch .. C-132
C .44. M odule RodGlobal .. C -132

C .45. M odule RodHtcref1 .. C -133

C .46. M odule RodVlt ... C -134
C .47. M odule Sem iSolv er .. C -145

viii

CONTENTS (cont)

Page

C.48. M odule Sepd .. C-145
C.49. M odule SepdV lt ... C-146
C.50. M odule SysConfig .. C-148
C.51. M odule SysService .. C-157
C.52. M odule SysTime ... C-160
C.53. M odule Tee .. C-160
C.54. M odule TeeArray .. C-161
C.55. M odule TeeVlt ... C-161
C.56. M odule Temp .. C-170
C.57. Subroutine tf3ds .. C-171

C.58. M odule Thermocple .. C-172
C.59. M odule TimeStepDat ... C-172
C.60. M odule Util .. C-173

C.61. M odule ValveArray .. C-174
C.62. M odule ValveVlt .. C-174
C.63. M odule VectDrag .. C-179
C.64. M odule VessArray .. C-180
C.65. M odule vessArray3 .. C-187
C.66. M odule VessCon ... C-206
C.67. M odule vessMat ... C-208
C.68. M odule VessTf3dc .. C-208
C.69. M odule VessVlt ... C-209
C.70. M odule Xtv .. C-217
C.71. M odule xvo1 .. C-217
C.72. Include File (Comm on-Block) bandw ... C-218
C.73. Include File bignum .. C-218
C.74. Include File (Com m on-Block) cflow ... C-218
C.75. Include File (Comm on-Block) chfint ... C-219
C.76. Include File (Comm on-Block) chgalp ... C-219
C.77. Include File (Com m on-Block) ciflim ... C-220
C.78. Include File (Comm on-Block) cnrslv ... C-220
C.79. Include File (Comm on-Block) concck ... C-221
C.80. Include File (Comm on-Block) condht ... C-221
C.81. Include File (Comm on-Block) constant .. C-221
C.82. Include File (Comm on-Block) decayc ... C-222
C.83. Include File (Comm on-Block) defval ... C-222
C.84. Include File (Comm on-Block) diddle .. C-223
C.85. Include File (Comm on-Block) diddlh ... C-225
C.86. Include File (Comm on-Block) diddli ... C-226
C.87. Include File dlimit (Com m on-Block dlim) .. C-226
C.88. Include File (Comm on-Block) dmpck ... C-227
C.89. Include File (Comm on-Block) dtinfo ... C-228
C.90. Include File (Comm on-Block) elvkf ... C-229

ix

CONTENTS (cont)

Page

C.91. Include File (Common-Block) film .. C-229

C.92. Include File (Common-Block) h2 fdbk ... C-230
C.93. Include File (Common-Block) htcav ... C-230
C.94. Include File (Common-Block) htcref2 .. C-230
C.95. Include File (Common-Block) htcref3 .. C-230
C.96. Include File (Common-Block) htcs .. C-231
C.97. Include File (Common-Block) ifcrs ... C-231
C.98. Include File (Common-Block) infohl ... C-237
C.99. Include File (Common-Block) junction .. C-237
C.100. Include File (Common-Block) massck ... C-237
C.101 Include File (Common-Block) nrcmp ... C-237
C.102. Include File (Common-Block) pmpstb ... C-238
C.103. Include File (Common-Block) refhti ... C-238
C.104. Include File (Commn on-Block) refhti2 .. C-239
C.105. Include File (Common-Block) rows .. C-239
C.106. Include File (Common-Block) sepcb ... C-239
C.107. Include File (Comnmon-Block) solcon ... C-240
C.108. Include File (Common-Block) stncom ... C-240
C.109. Include File (Common-Block) strtnt ... C-241
C.110. Include File (Common-Block) supres ... C-241
C.111. Include File (Common-Block) sys sum ... C-241
C.112. Include File (Common-Block) totals ... C-242
C.113. Include File (Conunon-Block) tst3d ... C-242
C.114. Include File (Common-Block) vckdat ... C-243
C.115. Include File (Common-Block) vdvmod ... C-243
C.116. Include File (Common-Block) vel l im ... C-243
C.117. Include File (Common-Block) webnum ... C-244

APPENDIX D .. D-1

APPENDIX E ... E-1
E.1. Introduction ... E-1
E.2. Global Variable Graphics ... E-1
E.3. Signal-Variable, Control-Block, and Trip-Signal Graphics E-2
E.4. General 1D Hydraulic-Component Graphics ... E-2
E.5. BREAK-Component Graphics ... E-4
E.6. FILL-Component Graphics .. E-5
E.7. HTSTR (Heat-Structure)-Component ROD- or SLAB-Element

Graphics ... E-5
E.8. PIPE-Component Graphics .. E-7
E.9. PLENUM-Component Graphics ... E-7
E.10. PRIZER (Pressurizer)-Component Graphics .. E-8
E.11. PUMP-Component Graphics .. E-8

x

CONTENTS (cont)

Page

E.12. TEE-Component Graphics ... E-8
E.13. VALVE-Component Graphics .. E-9
E.14. 3D VESSEL-Component Graphics .. E-9

APPENDIX F ... F-1

APPENDIX G .. G-1
G.1. New Component Variables .. G-1

G.1.1. Summary ... G-1
G.1.2. Adding a New Variable To Data-Type genTabT (the

component FLT) ... G-3
G.1.3. Adding A New Variable To Data-Types "comp-type"TabT

(The Component VLTs) ... G-13
G.1.4. Adding A New Component Array Variable G-27

G.1.4.1. 1D Hydrodynamic Components G-27
G.1.4.2. 3D Vessel-Component Arrays G-46
G.1.4.3. System Services .. G-57

G.1.5. HTSTR Arrays .. G-57
G.2. Adding A New XTV Graphics Variable ... G-60

G.2.1. Understanding Variable Attributes ... G-60
G.2.2. Steps to be Completed before Adding Variables to Output G-62
G.2.3. PrintVarDesc Interface .. G-66
G.2.4. WriteStaticvx Interface ... G-67
G.2.5. XtvBufx Interface ... G-67
G.2.6. Lumatch Interface ... G-68

APPENDIX H ... H-1
H.1. Dump/Restart .. H-1
H.2. Graphics ... H-1

H.2.1. Overview of Changes in Version 3.0 ... H-1
H.2.2. Summary of XTV Header Format .. H-2
H.2.3. Summary of XTV Data Format .. H-4
H.2.4. Detailed Header File Format .. H-5

xi

FIGURES

Page

Fig. 2-1 TRAC-M computational flow ... 2-3

Fig. 2-2 Transient-calculation flow diagram .. 2-4

Fig. 2-3 Steady-state-calculation flow diagram .. 2-6

Fig. 3-1 Module VessCon .. 3-40

Fig. 3-2 Boundary Array Layout ... 3-69

Fig. 3-3 Graphical representation of the j unComp array .. 3-72

Fig. 3-4 Graphical representation of the coupling between the j unCel 1 s and

j uncomp arrays for a FILL, TEE, PIPE, BREAK, and BREAK system 3-72

Fig. 3-5 Graphical representation of the compSeg array .. 3-73

Fig. 3-6 Flow logic for System Service initialization .. 3-76

TABLES

Page

Table 2-1 First Index of the Component-Junction Array j un 2-16

Table 2-2 Component-Specific Driver Subroutines .. 2-28

Table 3-1 Component Data Types ... 3-7

Table 3-2 Control System Data Types ... 3-9

Table 3-3 Steady-State Data Types .. 3-10

Table 3-4 VESSEL-Array Dimension Variables ... 3-39

Table 3-5 TRAC Component Data-Access Routinesa ... 3-96

xii

AUTHORS AND ACKNOWLEDGMENTS

Many people contributed to recent TRAC-P and TRAC-M code development and to this
report. Because this work was a team effort, there was considerable overlap in
responsibilities and contributions. The participants are listed according to their primary
activity. Those with the prime responsibility for each area are listed first.

Principal Investigators:

Fluid Dynamics:

Heat Transfer:

Neutronics:

J. F. Dearing, John Mahaffy, Jay W. Spore, Susan J.
Jolly-Woodruff, Ju-Chuan Lin, Ralph A. Nelson, and
Robert G. Steinke

Jay W. Spore, Susan J. Jolly-Woodruff, Ju-Chuan Lin,
and Robert G. Steinke

Ralph A. Nelson, Kemal Pasamehmetoglu,
Norman M. Schnurr, and Cetin Unal

Robert G. Steinke and Jay W. Spore

Code Development
and Programming:

Control Procedure:

Graphics:

Report Compilation:

Editing:

Word Processing:

J. F. Dearing, John Mahaffy, C. Murray, Susan J.
Jolly-Woodruff, Paul T. Giguere, Ju-Chuan
Lin, Jay W. Spore, and Robert G. Steinke

Robert G. Steinke

Russell C. Johns, James F. Dearing, Victor Martinez,
and Michael R. Turner

B. Todd Adams and Paul T. Giguere

Lisa G. Rothrock

Ann B. Mascarefias

In addition to those contributors listed above, we acknowledge all others who
contributed to earlier versions of TRAC. In particular, the two-step numerics developed
by John Mahaffy is a major part of TRAC. Dennis R. Liles contributed heavily to the

thermal-hydraulics modeling and to the overall direction of MOD1 code development.

Frank L. Addessio developed the steam-generator component, and Manjit S. Sahota

developed the critical-flow model and the turbine component. Thad D. Knight provided

direction for improvements to TRAC based on assessment-calculation feedback and

coordinated the development of the MOD1 Correlation and Models document. Richard

J. Pryor, Sandia National Laboratories, and James Sicilian, Flow Science, Inc., provided

major contributions to the code architecture. We also acknowledge useful discussions

and technical exchanges with Louis M. Shotkin and Novak Zuber, United States Nuclear

xiii

Regulatory Commission; Terrence F. Bott, Francis H. Harlow, David A. Mandell, and

Burton Wendroff, Los Alamos National Laboratory; John E. Meyer and Peter Griffith,

Massachusetts Institute of Technology; S. George Bankoff, Northwestern University;

Garrett Birkhoff, Harvard University; and Ronald P. Harper, Flow Science Inc.

xiv

1.0. INTRODUCTION

This manual has been developed to assist the Transient Reactor Analysis Code (TRAC)
programmer. Sufficient information is provided to permit replacement or modification of
physical models and correlations, as well as either the addition or modification of system
components. Within TRAC, information is passed at two levels. Information at the upper
level is passed by systemwide and component-specific data modules at and above the
level of "component" subroutines. At the lower level, information is passed through a
combination of module-based data structures and argument lists. This document
describes the mechanics involved in the flow of information within the code. It is written
specifically for Modernized TRAC Fortran 90 (TRAC-M/F90), Version 3.0. We will
usually refer to this code as TRAC or TRAC-M. Topics of discussion addressed in this
manual include the TRAC-M calculational sequence, code and data structure, computer
memory management, and various machine configurations that are supported. Much of
the information contained herein is provided in the appendices, which are self-contained
and meant to be used as references. The table of contents provides a listing of the
appendices. This manual is a complete standalone document for TRAC-M. Occasionally
we refer to TRAC-P constructs, but only for the additional benefit of those already
familiar with that code. The TRAC-M PathFinder, a set of HTML pages containing a
description and source listing for each of the program routines, also has been developed
to allow navigating through the code with the use of a web browser.

This manual is one of four documents that form the basic TRAC-M documentation set.
The other three are the Theory Manual (Ref. 1), the User's Manual (Ref. 2), and the
Developmental Assessment Manual, which is yet to be published. The developmental
assessment of various TRAC-M code versions will be performed by the NRC, and the
results will be published in the future. Some of the material on the TRAC-M's
computational flow was adapted from the Programmer's Manual for TRAC-PF1/MOD2
(Ref. 3).

1-1

2.0. TRAC-M CALCULATIONAL SEQUENCE

The full TRAC-M calculational sequence involves several stages: input processing;
initialization; prepass, outer-iteration, and postpass calculations; timestep advancement
and backup; and output processing. Within TRAC, information is passed via
systemwide and component-specific data modules at and above the level of component
subroutines, such as rpipe, repipe, ipipe, pipel, pipe2, pipe3, dpipe,
xtvpipe and wpipe. Examples of system-level data modules are GlobalDat,
GlobalPnt, and GlobalDim. Examples of component-specific data modules are Pipe,
PipeArray, and PipeVit. Information is passed through a combination of module
based data structures and argument lists below these modules. The code and data
structures are described fully in Section 3, and only the high-level aspects of the
information passing and storage will be discussed within this section. The most complex
and frequently modified interfaces exist in the component-specific subroutines. These
subroutines are provided for each of the nine key stages of TRAC execution:

1. Input of initial component data (e.g., rpipe);

2. Input of restart information for a component (e.g., repipe);

3. Initialization of component-dependent variables (e.g., ipipe);

4. Solution of the stabilizer momentum equation, evaluation of various
old-time quantities, and other bookkeeping at the beginning of each
timestep (e.g., pipel);

5. Iterative solution of basic flow equations for each timestep (e.g.,
pipe2);

6. Solution of stabilizer mass and energy equations, solution of the
conduction equations, and other computations to complete each
timestep (e.g., pipe3);

7. Output of data to the restart dump file (e.g., dpipe);

8. Output of data to the XTV graphics files (e.g., xtvpipe); and

9. Output of data to the ASCII detailed edit file (e.g., wpipe).

Similar component subroutines also exist for each of the nine key stages of TRAC
execution for the other system components, e.g., TEE, FILL, BREAK, PUMP, PRIZER,
SEPD, VALVE, VESSEL, and PLENUM. Each of these stages is discussed in greater
detail, using a PIPE component as an example, in the sections that follow. First, a
summary of the overall calculational sequences for transient and steady-state
calculations is given.

2-1

2.1. General Summary

TRAC-M may perform a steady-state calculation, a transient calculation, or both,
depending on the values of the input parameters stdys t and trans i (Main-Data Card
4). A schematic illustrating TRAC's top-level program flow, with emphasis on the
computational solution of the flow equations for a transient case, is presented in Fig. 2-1.
Referring to the figure, the program construct for advancing the solution one timestep is
controlled by subroutine trans and begins with (1) the prepass to obtain the stabilizer
step for the equation of motion (subroutine prep), followed by (2) a call to the Newton
iteration subroutine hout to perform the outer iteration and thus obtain the basic
solution for all equations (subroutine outer), and concluded with (3) the postpass to
obtain the stabilizer step for mass and energy equations (subroutine post). Within a
given timestep, subroutine prep calls all of the component subroutines twice,
subroutine outer calls all of the component subroutines twice per Newton iteration,
and subroutine post calls all of the component subroutines three times. In each case
(prep, outer, and post), two of the passes provide setup and solution for a set of
equations. Subroutine post adds a third pass to calculate some final end-of-timestep
values for mass flows and mean cell densities. The internal loops in subroutines prep,
outer, and post are indexed by the variable ibks. This variable takes on values of one
and two in prep; values of zero and one in outer; and one, two, and three in post. The
component subroutines use the module OneDDat to pass the value of ibks to lower
level routines to control the flow of the calculation

The subroutines shown in Fig. 2-1 (input, init, steady, trans, prep, outer, and

post) all access lower-level subroutines. A complete calling tree for TRAC-M is
presented in Appendix A (starting at the entry NOMOD: : PROGRAM Trac). The general
control sequences for each type of calculation are outlined in the subsections that follow,
using the PIPE component as an example, with the specific details of the calculational
sequence discussed in more detail.

The complete flow control for subroutine trans is shown in Fig. 2-2. The major control
variables within the timestep loop are nstep, the current timestep number; timet, the
time since the transient began; delt, the current timestep size; and oitno, the current
outer-iteration number. The timestep loop is controlled by module TimeStep and begins
with the selection of the timestep size, delt, by subroutine timstp. Again, a prepass is
performed for each component by subroutine prep to evaluate the control parameters,
stabilizer motion equations, and phenomenological coefficients. At this point in the
calculation, with the current timestep number at zero, trans calls the edit subroutine
to print the system-state parameter values and the xtvdr subroutine to generate a
graphics edit at the beginning of the transient. Subroutine trans then calls subroutine
hout, which performs one or more outer iterations to solve the basic hydrodynamic
equations. Each outer iteration is performed by subroutine outer and corresponds to
one iteration of a Newton-method solution procedure for the fully coupled difference
equations of the flow network. The outer-iteration loop ends when the outer-iteration
convergence criterion (epso on Main Data Card 5) is met. This criterion requires that the
maximum fractional change in the pressure throughout the system during the last
iteration be <epso. Alternatively, the outer-iteration loop may terminate when the num
ber of outer iterations reaches a user-specified limit oitmax (Main Data Card 6). When

2-2

TAC.

Function: Main Program

INIT

Function: Initialization

I
STEADY (See Note)

Function: Calculate steady
state solution

I
TRANS Function: Advance solution

one time step. Control
timetop and dump edits

.IIL

AEND

Note: STEADY has a similar logic to
that detailed for the TRANS routine

1st - Set up stabilizer velocity equations
Pass - Solve stabilizer velocity equations

2nd Store results back into component
Pass data structure

OUTER - OUTID

Function: Basic equations solution for
all equations

-- Sets up calculation of new-time
i velocity coefficient as linear

function of new-time pressures

1st Full solution for pressure

. Pass changes

2nd Generate all new-time
Q Pass pressures, void fractions,

Z and temperatures

POST

Fig. 2-1. TRAC-M computational flow.

2-3

PREP -W PREPID

Function: Stabilizer Step for the equation of
motion (prepass)

Function: Stabilizer Step for mass and energy
equations (postpass)

1st - Set up stabilizer equations
Pass * Solve stabilizer equations

2nd Store results in component
Pass data structure

3rd Calculate mean cell densities and
Pass cell-face mass flow rates

I

f

|

Fig. 2-2. Transient-calculation flow diagram.

2-4

this happens, TRAC-M restores the thermal-hydraulic state of all components to what it
was at the beginning of the timestep, reduces the delt timestep size (with the constraint
that delt be greater than or equal to the dtmin specified on Time Step Data Card 1), and
continues the timestep calculation with the new timestep size. This process comprises a
backup situation and is discussed in greater detail in Sec. 2.5.

Subroutine trans calls the post subroutine to perform a postpass evaluation of the
stabilizer mass and energy equations and the heat-transfer calculation when the outer
iteration converges. The nstep timestep number then is incremented by 1, and the
timet problem time is increased by delt. Finally, subroutine trans invokes the edit,
sedit, dmpit, and xtvdr subroutines by calling subroutine pstepq to provide the
output results required by the user. The calculation is finished when timet reaches the
last tend time (Time Step Data Card 1).

The transient calculation is controlled by a sequence of time domains input with the
Time Step Data Cards and stored within module GlobalDat. During each of these time
domains, the minimum (dtmin) and maximum (dtmax) timestep sizes (Time Step
Data Card 1) and the long- (edint) and short-edit (sedint), dump (dmpint),
and graphics (gfint) time intervals (Time Step Data Card 2) are defined. Note that the
values for these timestep variables may be replaced by the same inputs for the Trip
Initiated Time Step Data Cards 3 and 4 if a trip is activated. When the edit, sedit,
dmpit, and xtvdr subroutines are invoked, they calculate the time when the next
output of the associated type is to occur by incrementing the current time by its time
interval. When trans later finds that timet has reached or exceeded the indicated time,
the corresponding output routine is invoked again. Whenever timet equals or exceeds
the tend ending time for a timestep data domain, the next timestep data domain is read
by subroutine timstp. The output indicators then are set to the sum of the current time
and the newly input values for the output time intervals. Subroutine steady directs
steady-state calculations using the structure shown in Fig. 2-3. Referring to the figure,
the same sequence of evaluations used for a transient calculation also is used for a
steady-state calculation. The main difference in subroutine steady is the addition of a
steady-state convergence test, logic to turn on the steady-state power level, an optional
evaluation of constrained steady-state (CSS) controllers, and an optional hydraulic-path
steady-state (HPSS) initialization of the initial hydraulic-state estimate. To provide
output results, steady, like trans, invokes the edit, sedit, dmpit, and xtvdr
subroutines by calling subroutine pstepq. Subroutine steady is called by the TRAC
main program, regardless of whether a steady-state calculation has been requested by
stdyst (Main Data Card 4). If no steady-state calculation is to be done (stdyst = 0),
steady returns to the TRAC main program. The TRAC main program then calls trans
and performs a transient calculation if requested with itrans = 1 (Main Data Card 4).

Timestep control in steady is identical to that implemented in trans. This includes the
selection of the timestep size, the timing for output, and the backup of a timestep if the
outer-iteration limit is exceeded. In steady, the input variable sitmax (Main Data Card
6) is the maximum number of outer iterations used in place of oitmax. The maximum
fractional rates of change per second of seven thermal-hydraulic parameters are
calculated by subroutines tflds3 [for one-dimensional (1D) components] and ff3d for

2-5

Evaluate One Time
Step as in the

Transient Calculation

NSTEP = NSTEP + 1
TIME = STIME + DELI

Fig. 2-3. Steady-state-calculation flow diagram.

2-6

the three-dimensional (3D) VESSEL components]. These rates and their locations in the
system model are passed to subroutine steady through the array variables fmax and
lok that are located in module GlobalDat. Tests for steady-state convergence are
performed every five timesteps and before every large edit. The maximum fractional
rates of change per second and their locations are written to the TRCMSG and TRCOUT
files, as well as to the terminal. The total reactor core power is initialized to the input
value rpowri (HTSTR Component Card 19) after the problem time, timet, reaches the
value input for namelist variable tpowr when namelist variable ipowr is set to negative
one. The minimum value of the flow velocity, minvel, and its maximum fractional rate
of change, fmxlvz, in the hydraulic channels coupled to powered heat structures
determine when the steady-state power should be set on for the case when namelist
variable ipowr is set to zero (the default). The steady-state power is set to its input
value, rpowri, once either minvel exceeds 0.5 m/s and fmxlvz falls below 0.5 or
timet exceeds input time tpowr. Finally, the total reactor core power is initialized at the
beginning of the steady-state calculation when namelist variable ipowr is set to one. The
steady-state calculation is completed when all maximum fractional rates of change per
second are below the user-specified convergence criterion epss (from Main Data Card
5) or when stime reaches the tend (Time Step Data Card 1) end time of the last time
domain specified in the steady-state calculation timestep data.

Five types of steady-state calculations may be selected based on the value of stdyst
(Main Data Card 4): generalized steady state (GSS) for stdyst = 1 (as described above),
CSS for stdyst = 2, GSS with HPSS initialization for stdyst = 3, CSS with HPSS
initialization for stdyst = 4, and static steady-state (SSS) check for stdyst = 5. A
GSScalculation, as described above, evaluates a pseudo-transient timestep solution that
asymptotically converges to the steady-state solution. A CSS calculation is a GSS
calculation where additional user-defined component-action adjustments are made by a
proportional-integral (PI) controller to achieve either a known or desired hydraulic
steady-state condition. The nature of the available CSS controllers, their evaluation, and
their database are described subsequently. Both generalized and CSS calculations with
HPSS attempt to accelerate convergence by allowing the user to input estimates
regarding the final steady-state condition. An SSS calculation checks for erroneous
momentum and heat sources in a plant model by neglecting evaluation of the pump
momentum source and the heat transfer. Thus, the fluid flow is expected to go to zero
asymptotically with the expectation that the system temperatures will not change.

Both steady-state and transient calculations may be performed during one computer
run. The end of the steady-state timestep cards is signified by a single card containing a
-1.0 . The transient timestep cards should follow immediately. If the steady-state
calculation converges before reaching the end of its last time domain, the remaining
steady-state timestep data are read in but not used so that the transient calculation
proceeds as planned with its own timestep data.

2.1.1. Constrained Steady State
A CSS controller adjusts an uncertain component-action state to achieve a better-known
hydraulic condition in the steady-state solution. The TRAC user can select four types of
CSS controllers. Each type can be applied to one or more components in a plant model. A

2-7

type-1 CSS controller adjusts a pump impeller's rotational speed to achieve a desired
fluid mass flow through the PUMP component. A type-2 CSS controller adjusts a
VALVE's flow-area fraction to achieve a desired adjacent-cell upstream fluid pressure or
fluid mass flow through the VALVE component's adjustable interface. A type-3 CSS
controller performs one of three different adjustments (pump-impeller rotational speed
of a PUMP component, flow-area fraction of a VALVE component, or mass flow in or
out of a FILL component) to achieve a desired fluid mass flow through its component
that equals the fluid mass flow at a designated location in the plant model. A type-5 CSS
controller performs one of four different adjustments to an HTSTR component or its
hydraulically coupled BREAK components (hydraulic-channel fluid pressure at the
inner or outer surface; heat-transfer area at the inner, outer, or both surfaces; thermal
conductivity of the inner, outer, or both surface nodes or of all nodes; or heat-transfer
area of both surfaces and thermal conductivity of all nodes) to achieve a desired single
phase fluid temperature or two-phase gas volume fraction at a designated location in the
plant model. The type-4 CSS controller was eliminated when the STGEN component
was removed from TRAC. It adjusted the secondary-side fluid pressure or the tube inner
and outer heat-transfer areas of a steam generator to achieve a desired primary-side
downstream-location liquid temperature. By remodeling an STGEN component with
PIPE, TEE, and HTSTR components, the functionality of the type-4 CSS controller is
provided by a subset of the functionality of the type-5 CSS controller.

Each of the ncontr (Main Data Card 6) user-defined CSS controllers requires one input
data record CSS-Controller Card with four or five values that will be read by subroutine
input [adjusted-component identification (ID) number, minimum and maximum range
of parameter adjustment, either the type or location of the monitored parameter that is to
have a desired value, and the type of adjusted parameter]. Each CSS controller's desired
hydraulic parameter value is input at its monitored-parameter location in the
component data. CSS-controller data are not written to the dump/restart file and so
need to be reinput by the TRACIN file if the CSS calculation is continued with a restart.
The number of CSS controllers and their input parameters can be changed during a
restart. Components defining the desired hydraulic-parameter value for each CSS
controller also need to be reinput by the TRACIN file. This later requirement makes
restarting a CSS calculation inconvenient. Generally, TRAC users evaluate a CSS
calculation to steady-state convergence without doing a CSS-calculation restart.

Interactive feedback between CSS controllers must be considered by TRAC users when
defining the controllers. Their derived form assumes no interactive feedback. When the
adjustments of two or more CSS controllers are strongly coupled by the thermal
hydraulic solution, their predicted controller adjustments may be bad, causing the
solution to wander and not converge to the desired thermal-hydraulic parameter values.
One such interaction has been programmed for in TRAC. When a type-5 CSS controller
adjusts the fluid pressure where a type-2 CSS controller defines the desired value for an
upstream fluid pressure, the pressure adjustment of the type-5 CSS controller also is
applied to the desired value for the type-2 CSS controller's upstream fluid pressure. The
desired value of the upstream fluid pressure becomes a moving target for the type-2 CSS
controller, just as the desired fluid mass flow at a specified location in the plant model for
a type-3 CSS controller becomes a moving target when it varies each timestep.

2-8

These four CSS-controller types are programmed for user convenience. An equivalent
controller (except for the heat-transfer area and thermal conductivity adjustments of a

type-5 CSS controller) could be defined directly through input with signal variables,
control blocks, and component actions of the TRAC control system. For controller types
that are not programmed, the TRAC user can define them through input as long as the

controller's adjustment is an existing component action (see the TRAC Theory Manual1).
Additional component action and CSS controller types could be programmed if their
availability is required by the user community.

2.1.2. HPSS Initialization
The initial thermal-hydraulic steady-state solution estimate, user specified by the
hydraulic-component input data, generally can be improved by the HPSS initialization
procedure in TRAC before the steady-state calculation is evaluated. Doing this generally
reduces the computational effort of the steady-state calculation. The user selects this
option by adding 2 to the value of stdyst for a GSS and CSS calculation; i.e., stdyst = 1
and 2 for a GSS and CSS calculation, respectively, may be defined as stdyst = 3 and 4
for a GSS and CSS calculation, with its initial thermal-hydraulic steady-state solution
estimate internally initialized by TRAC during the initialization phase of the calculation.

Choosing the HPSS initialization procedure option requires the TRAC user to input
HPSS initialization data in the TRACIN file. These input data are defined by the input
data format description in Section 6.5 of the TRAC User's Manual (Ref. 2). In specifying
this data, the 1D hydraulic component network of the plant model is partitioned into a

number of npaths (specified by variable npaths on HPSS Data Card 1) connecting and
nonoverlapping 1D flow paths. All possible flow paths in the network are considered
unless either the input hydraulic-component data already define such a flow condition
(and are not connected to a PLENUM component) or their steady-state flow is not
expected to be significant. Even paths without flow may be considered to define an
appropriate thermal condition (not defined by the 1D hydraulic-component data). The
input hydraulic-component data need only to be defined as isothermal with no flow
when selecting the HPSS initialization option. During the initialization phase, TRAC
replaces the hydraulic-component gas volume fraction, phasic temperatures, and phasic
velocities input data with the thermal-hydraulic parameter values that are specified by
the I-PSS initialization.

HPSS initialization data are what the TRAC user either knows or estimates the steady

state thermal-hydraulic solution will be along each of the 1D flow paths. Each flow path
has its entrance and exit mesh-cell interfaces defined where inflow and outflow occur to
the path. A known or estimated steady-state phasic-temperatures and phasic-velocities
flow condition is defined at a single mesh-cell interface anywhere within the 1D flow
path (inclusive of its end interfaces). The total and noncondensable-gas pressures may be
defined as constant along each flow path or defined by the hydraulic-component data. A

significant power source or sink along a subrange of mesh cells within the path also
must be defined (such as for heat transfer between the primary and secondary sides of a

heat exchanger). The flow paths can begin and end at any mesh-cell interface, as long as

they are different interfaces and do not overlap internally with the cells of other 1D flow

paths. However, the flow paths must begin and end at (1) the internal-junction interface

2-9

of a TEE component, (2) a junction of a PLENUM component, and (3) a source
connection junction of a VESSEL component. The internal-junction interface of a TEE
component and the junction of a PLENUM component must define the phasic
temperatures and phasic-velocities flow condition of its ID flow path. PLENUM
component junctions are assumed to have no steady-state fluid flow if they do not define
the end interface of a flow path. However, the fluid flow condition at VESSEL
component, source-connection junctions may be either input-specified by hydraulic
component data or initialized by HPSS initialization data. This process provides
sufficient information for TRAC internally to initialize the steady-state, thermal
hydraulic condition of all hydraulic components along each flow path, as well as of all
the PLENUM and VESSEL components to which such 1D flow paths may be connected.

The hydraulic-component wall and HTSTR-component ROD and SLAB temperatures
are defined by the input-component data and are not initialized by the HPSS
initialization procedure. The same applies to the total and noncondensable gas pressures
unless they are initialized with a constant value for all cells of a flow path. Structure
temperatures and coolant pressures need not be initialized accurately because the
steady-state calculation quickly determines their steady-state condition consistent with
the gas volume fraction, phasic temperatures, and phasic velocities defined by the HPSS
initialization procedure. On the other hand, the gas volume fraction, phasic
temperatures, and phasic velocities are the slowest to converge to their steady-state
solution and usually require at least three or four convective-flow passes through each
1D flow path to converge to their steady-state values if a significant change is required in
the initial thermal-hydraulic solution estimate. Providing a good initial estimate for the
gas volume fraction, phasic temperatures, and phasic velocities can significantly reduce
the TRAC evaluation time needed to satisfy the user-input steady-state convergence
criteria.

2.2. Input Processing

The processing of the majority of TRAC-M input data is controlled by the system-level
subroutine input (the exception being that the timestep data are read by subroutine
timstp, which is called directly by either subroutine steady or trans). The data are of
two types: input data retrieved from the ASCII input data file TRACIN and binary
restart data retrieved from the dump-restart file TRCRST. The user has the option of

creating an echo file of the input data contained in file TRACIN by defining namelist
variable inlab = 3. With this option, a file named INLAB (INput LABeled) is created
during input data processing and has all the input data from file TRACIN output to it,
along with variable-name comments contained between asterisks. This provides a useful
means of labeling an otherwise difficult-to-interpret TRACIN file. It also allows the user
to verify the input data being read by TRAC-M. Comments between asterisks in the
original TRACIN file are not output to the INLAB file. All input data from fies TRACIN
and TRCRST are either read or echoed to the TRCOUT and INLAB files by subroutines
loadn, readi, readr, reecho, warray, and wiarr that are called by the component
input (rcomp) and restart (recomp) processing subroutines. The input and output echo
of all input data has been consolidated in these six subroutines. SI- or English-unit
symbols for real-valued input data variables are output echoed to the TRCOUT file

2-10

when namelist variable iunout = 1 (default value). In addition to reading the input data,
this subroutine also performs error checking; organizes the component data in memory;
analyzes the system-model loop structure; and allocates the initial array space for the
Control System, VESSEL, and part of the global arrays. The remainder of the space
necessary for the global array variables is allocated in the initialization stage by the
subroutine init.

The input line is echoed to the standard detailed ASCII output file and a warning
message printed to that file, the message file, and the terminal when input errors are
detected in subroutines at or below subroutine input. The error message is produced by
a call to the subroutine error, with the first argument set to 2 to indicate a warning
rather than a fatal message. By convention, the message (passed as the second argument)
begins with the name of the subroutine processing the input line, bounded by single
asterisks (e.g., "*rpipe* inconsistent init & table power"). When additional diagnostic
information is necessary, including values of variables, direct WRITE statements are
necessary. Pairing of this information to the messages from error requires three writes:
one to the terminal (unit number in variable itty from module Io), one to the standard
detailed ASCII output (unit number in variable lout from module Io), and one to the
message file (unit number in variable imout from module Io).

Termination of input processing is flagged at two levels of severity. The lowest-level
input routines (loadn, readi, readr, and nxtcmp, which are discussed subsequently)
set the value of variable ioerr (located in the module Io) to one when an input error is
detected. Subroutine input checks the value of ioerr after completion of the
component-specific input from the TRACIN file (executed by calling the system-level
subroutine rdcomp) and terminates if it is not zero. The presumption is that input errors
are severe enough that it is not worth any processing of the restart fie or checking of
flow network connectivity. Higher-level routines (input, rpipe, rtee, etc.) flag
problems for later termination by setting the variable j flag (contained in the module
BadInput) to one. One exception to this behavior is subroutine rcomp, which uses a
variable j flagc (contained in the common block concck) for the same purpose. The
class of errors detected at these levels is presumed to be localized enough to make
checking of flow network connectivity profitable. Subroutine input will terminate
execution before returning if j flag or j flagc are not equal to zero.

Subroutine input initially calls subroutine preinp to read Main Data Card 1 and thus
determines whether the TRACIN file is formatted as TRAC or free input. Control simply
returns to subroutine input if the former option is selected. Otherwise, subroutine
preinp reads the free formatted input data file, performs initial error checking, converts
the input data to TRAC format, and writes the resulting data to file TRCINP. Subsequent
execution of subroutine input proceeds in the same manner for both cases, with the
TRCINP file accessed rather than TRACIN if the conversion was performed.

Subroutine input reads Main Data Card 2, using a call to low-level service subroutine
readi for inputting integer card data, and subsequently calls TRACAllo to allocate the
required memory for the Title Cards to follow. The Title Cards then are read, and the
minimum and maximum allowable fluid pressure and liquid/vapor temperatures and

2-11

the choked-flow multipliers are initialized. The namelist data are read with a standard
Fortran construct, the namelist variable units are converted from English to SI units via
calls to uncnvts if namelist variable ioinp = 1, and low-level service subroutine
reecho is called repeatedly to echo the input to the TRCOUT file if variable inopt has
been set to one on Main Data Card 2. Commonly used unit labels are also initialized, and
subroutine namlst is called to check all namelist variables for valid values when these
data are input by the user. The Solubility Parameters Card is read next, using the low
level service routine readr for inputting real card data if a dissolved material other than
boric acid is to be traced by the solute tracker, which is indicted by inputting namelist
variable isolcn as one. The remaining Main Data cards subsequently are read using
calls to the low-level service routines readi and readr. Subroutine input then
initializes the remaining fluid-equation-of-state constants by calling subroutine seteos.
The component ID numbers in the TRACIN file are read into the real static array
scratch, defined in module Temp, using a call to the low-level subroutine loadn (used
to read card data in TRAC LOAD format) from the TRACIN input fie. This portion of
the REAL scratch array is converted and transferred to the static array ig (the integer
global array defined in module GlobalDim) using a call to the low-level service routine
r2ii, and the component numbers subsequently are placed in ascending order by
calling subroutine isort, with array ig passed as an argument. Subroutine input then
performs dynamic memory allocation for the HTSTR array wp and the boundary arrays
bd and vsi by calling allocWp and allocBoundary, respectively (In Version 3.0, the
vsi array has been superseded by the vSign array, which is part of the System Service
package). Next, the System Service arrays junCells, compSeg, and junComp are
allocated with direct use of the Fortran 90 ALLOCATE statement (note that the allocation
for junCells is a conservative estimate because the number of TEE components is not
known at this point in input). The countercurrent flow limitation (CCFL) model input
data are read from the TRACIN file if nccfl (Main Data Card 6) is non-zero, with calls
to the loadn subroutine. These data are also echoed to the TRCOUT file using calls to
the low-level service routine warray (used to convert the namelist ioinp or iolab
units to ioout units and write the respective array to the TRCOUT file as an echo of
input data). The loadn and r2ii subroutines are called again, repetitively, to process
the Material Properties Data, if so requested, by setting nmat to a non-zero value on
Main Data Card 2. Dynamic memory allocation also is performed for Material Properties
Data variable array prtptb by calling allocPrtptb. For the case with stdyst = 3 and
stdyst = 4, the readi subroutine is used to input the HlPSS Data Card 1, TRACAIIo is
called to perform dynamic memory allocation for the derived-type variable hps (defined
in module HpssDat), and Path Cards 1 through 3 are read using the readi and readr
subroutines. Note that the Interactive Control Panel is not supported by TRAC-M. If a
CSS steady-state controller is utilized in the calculation (stdyst = 2 and stdyst = 4),
this is followed by dynamic memory allocation of the derived-type variable cssDat
(defined in module ControlDat), a read of the CSS-Controller Card with calls to readi
and readr, a call to subroutine unnumb to assign the units label to the controlled
parameters, and dynamic memory allocation for derived-type variable cssTp (also
defined in module controlDat) for secondary-side BREAK component numbers that
need to have their pressure adjusted. The remaining Control-System-derived-type
variables are next dynamically allocated, and subroutine input calls subroutine rcntl
to read signal-variable, control-block, and trip control parameter data input from the

2-12

TRACIN file. Subroutine rcntl reads this card data using calls to the readi, readr,
and loadn subroutines. At this point in the calculation, the system-level data input
processing is complete and subroutine input is ready to process the component-specific
input data.

An infinite WHILE loop is used within subroutine input to read the component data
until a card with the component type specified with "end" is read. The subroutine
nxtcmp is first called to find the location of the next component if the TRCINP file is
being accessed (this subroutine simply returns control to subroutine input if the
TRACIN files is being utilized). The component Card 1 input then is read. The
component's number, ID number, and title information is stored in the derived-type
variable genTab [the fixed-length table (FLT) that is generic to all components, defined
in module Flt]. The input-component type is converted to the internal TRAC
CHARACTER variable-component-type representation using a call to subroutine
settype, and the component number is stored in INTEGER global array ig. With the
component type thus determined, either subroutine rdcomp is called to read the input
data for iD components or subroutine rvssl is called to read the 3D VESSEL
component data. During this process, the component number of VALVE components
that are closed and not adjusted by CSS controllers is saved in variable numvc using a
call to subroutine GetValveTab. Control parameter and component data not provided
in the TRACIN file are retrieved from the restart-data file TRCRST by subroutine
rdrest.

The subroutine order is called to arrange the signal variable, control block, and trip ID
numbers in ascending order after all component information has been input. The list of
closed VALVE components unaffected by CSS controllers, previously saved in variable
numvc, then is used by subroutine fbrcss when called by input to determine all
VALVE (type-2 controller adjusted for a desired pressure) and BREAK components that
are hydraulically coupled to HTSTRs; this information is used for CSS type4 and type-5
controllers. Subroutine input calls subroutine srtip to sort through the 1D hydraulic
components of the system model and group them by loops that are isolated from one
another by VESSEL components; the iorder array is rearranged to reflect this grouping
and provide a convenient sequence within each group for the component calculational
order. The ij element of the array iorder is the number of the component that is
processed after the i-1P component but before the i+11 component. In earlier versions of
TRAC, subroutine srtlp played a key role in setting up the network solution logic.
However, this has been superseded by new logic at the start of subroutine init (see
Section 2.3). Currently, srtip determines only the component calculational order (also,
currently, information from srtlp is used indirectly by the HPSS logic for VESSEL
components-see the discussion on the old VESSEL matrix array vmap later in this
section). For problems that contain more than one VESSEL component, the subroutine
vmcell is called to convert a VESSEL-component cell number to a VESSEL-matrix cell
number. Subroutine allocVmap is called to allocate memory dynamically for the
VESSEL matrix array vmap. However, array vmap has been superseded by new network
solution logic that is set up in subroutine init (see Section 2.3); the only remaining use
of vmap is to provide storage for VESSEL-matrix solution by the HPSS logic (subroutine
ihpss3, called by civssl).

2-13

Finally, subroutine asign is called by input to define the component POINTER array,

comptr, according to the order of the iorder array. The it element of array comptr is
the starting location in the ig array of the component iorder (i) data block containing
the component numbers.

2.2.1. 1D Component Input Processing with Subroutine rdcomup
The calling tree associated with subroutine rdcomp can be traced from the
NOMOD: :SUBROUTINE rdcomp entry in Appendix A. Subroutine rdcomp simply calls
the component-specific input processing subroutines to read and process each
component type. These routines have names that begin with the letter "r" followed by
the letters of the component-type name. For example, the PIPE-component input
processing subroutine is named rpipe. In addition to reading hydraulic and HTSTR
component data from the TRACIN file, these component-specific input processing
routines also initialize the FLTs and variable-length tables (VLTs), define the j un array
with component-junction connective information, and register the component with
TRAC's system configuration to establish the intercomponent connectivity. Each ID
component-specific input processing subroutine calls subroutine rcomp to process input
data common to ID hydraulic components. All input data are echoed as output to the
TRCOUT file.

The interface to a ID component follows one basic pattern best seen in the PIPE
component, with minor variations for boundary conditions and TEE-type components.
Throughout this document, the PIPE component is used as the primary vehicle for
discussing the lower-level subroutines in the calling tree. TEEs involve duplication of
PIPE coding and special internal generation of boundary conditions at the internal TEE
junction. Boundary conditions (FILL and BREAK) generate junction boundary
information on the same cycles as a PIPE but perform relatively few other operations.

Input of the initial PIPE data is driven by rpipe, which is called by the subroutine
rdcomp. Creation of a new component similar to a PIPE would require the addition of a
call in rdcomp to process that component's input. As previously stated, the component
type, component number, ID number, and descriptive title are obtained in subroutine
input before it calls rdcomp. This information is passed to rpipe via the module for the
FLT (Fit) as the variable elements type, num, id, and title. The order of the

component in the TRACIN file, cci, is passed to the subroutine via the module Global.
Subroutine rpipe obtains values of other scalar variables for the component from the
ASCII input file, using the subroutines readr and readi, and stores the information in
the derived-type-variable pipeTab (the VLT for PIPE-type components, defined in
module PipeVlt). The readi and readr subroutines also echo this input to the
detailed output file (TRCOUT). Subroutines readr and readi should be used for input
of any scalar data for a component to maintain a consistent interface with the input file
and its reflection to the output. Subroutine rpipe then calls subroutine AllocGenlD to
perform dynamic memory allocation for the arrays that are generic to all ID components
(these arrays previously were accessed using the pointer tables dualpt, hydropt,
intpt, and heatpt in TRAC-P). The arrays are stored in the derived-type variable

giDAr, which is declared in module GeniDArray. Dynamic memory allocation for the
additional arrays that are specific to a PIPE component is performed by subroutine

2-14

rpipe via calls to TRACAIlo. These array data are stored in the derived-type-variable
pipeAr, which is defined in module PipeArray.

Subroutine rpipe then calls the subroutine rcomp to obtain array information on the
geometry and initial state of the fluid for all cells (dx, vol, fa, fric, gravp, elev, hd,
hdht, nff, iccf 1, alpn, vyn, vvn, tin, tvn, pn, pan, and, where appropriate, wfmf 1,
wfmfv, qppp, matid, twn, concn, and sn). This information is common to all iD
hydraulic components. Subroutine rcomp in turn uses the subroutine loadn to bring
array data from the input and the subroutines warray and wiarn, respectively, to echo
real and integer array values to the output. The subroutines loadn and warray also are
used directly by rpipe to obtain additional array information. These subroutines
(rcomp, loadn, warray, and wiarn) are the standard interfaces for reading and echoing
array values from the input file and should be used for this purpose in any new
component.

The input data specific to a PIPE component are read following the return from rcomp
using calls to loadn and echoed to the output file with calls to warray (note that
subroutine wiarn is used for this same purpose by other component-specific
subroutines). Some processing of the input data also is performed by rpipe: scaling of
table input is performed with calls to subroutine scltbl, subroutine unsvcb
determines the units label and units-label subscript of the signal variable or control block
associated with the PIPE component, units conversion is accomplished with calls to
wmxytb, and linear interpolation of input data arrays is performed by subroutine
linintO. These example actions are specific to the PIPE component, and other
component-specific input subroutines (e.g., rvalve) will call different subroutines to
process the input data into the desired format. The lower-level calling trees for the other
TRAC component-specific input routines are given in Appendix A.

Subroutine rpipe and similar component-specific routines have one other important,
but subtle, interface that must be replicated in new components. By supplying values to
the jun array (and incrementing jun's current index jptr), rpipe supplies information
to the system necessary to establish the order of calculation. The j un array is a doubly
subscripted array, jun (4, *). The four values of the first index are defined in Table 2-1.
The second index indicates the order in which the component junctions were
encountered during input processing. The j un array is scanned after all input is
processed when subroutine input calls srtlp (see Appendix A under
TracInput: : SUBROUTINE input) and the order of component processing is placed in
the array iorder.

Formerly, the j un array saw much more use than in the current TRAC version; it has
been superseded largely in recent TRAC versions by new network and intercomponent
communication logic. The new intercomponent communication has been implemented
as a system service. A component must register its flow connections with the system
services to permit correct intercomponent communications. In older versions of TRAC,
this was accomplished within input and restart subroutines (rpipe, repipe, etc.) by
filling in entries to the j un array. The current registration involves passing information
to a junction cell data structure for each junction in a component with a call to subroutine

2-15

Junctions from a component input or restart subroutine (rpipe, repipe, etc.). In
this context, registration is required for both standard intercomponent junctions and
intracomponent junctions, such as the junction of a TEE side leg to the primary leg.
Complete details on subroutine Junctions are given in Section 3.2.3.1. Each
component also must register general information about the computational mesh
segments that it contains, where a mesh segment is defined as a contiguous set of
adjacent cells that are contained entirely within a component. This means that a PIPE,
VALVE, PUMP, PRIZER, or PLENUM each contain just one mesh segment; a TEE
contains two mesh segments (one each for the main leg and side tube); and the FILL and
BREAK do not contain any mesh segments. A single call to subroutine SetSegment is
used to establish the number of mesh segments for the current component. This
currently can be either 0, 1, or 2, depending on the component type. If the number of
mesh segments to be registered is > 0, then an appropriate number of calls to subroutine
AddSegmentlD is made (as described in Section 2.2.2, there is a related routine called
AddSegment3D for VESSELs). More information on segment registration is given in
Section 3.2.3.1.

Subroutines rpump, rvalve, rf ill, and rhtstr determine if their component is
being adjusted by a CSS controller when stdyst = 2 or 4 after reading the component
data from the TRACIN file. If a CSS controller is being applied to the component, the
desired hydraulic-parameter value is obtained from its specified location for type-i, -2,
and -5 controllers. Type-3 CSS controllers get their desired fluid mass flow each timestep

from their specified location in the plant model. For the ith CSS controller (where i = 1, 2,
. .. , ncontr), (Main Data Card 6) a signal variable with ID number 9900 + i is created to

monitor the desired hydraulic-parameter value at its specified location and a PI
controller control block with ID number -(9900 + i) is created to evaluate the adjustment
of the component-action parameter. Signal variable ID numbers >9900 and <9999 and
control-block ID numbers <-9900 and >-9999 are reserved for CSS-controller parameters
defined internally by TRAC.

TABLE 2-1 FIRST INDEX OF THE COMPONENT-JUNCTION ARRAY jun

Index Description

1 Junction number

2 Component number

3 Component type

4 Junction direction flag

0 = positive flow is into the component at this junction (a j uni junction);

1 = positive flow is out of the component at this junction (a j un2 or j un3
junction)

2-16

The kth type-3 CSS controller, which adjusts either a PUMP or VALVE (where k = 1, 2,..
., nconts), requires a second signal variable with ID number 9900 + ncontr + k to monitor
the pump-impeller interface or adjustable-valve interface fluid mass flow. The difference
between the 9900 + ncontr + k signal-variable fluid mass flow and the 9900 + i signal
variable fluid mass flow drives the PI-controller control block adjustment of the pump
impeller rotational speed or the VALVE adjustable-interface flow-area fraction. A PI
controller control block is not defined for a type-3 CSS controller, which adjusts the in- or
out-fluid mass flow of a FILL component, because the 9900 + i signal-variable fluid mass
flow determines the FILL-component fluid mass flow directly for the next timestep. An
absolute-value function control block with ID -(9900 + i) of the 9900 + i signal variable's
fluid mass flow is defined instead. It is this absolute-value fluid mass flow with a
positive sign for outflow from the FILL and a negative sign for inflow to the FILL that is
defined as the adjusted fluid mass flow of the FILL component.

The ncontp type-5 CSS controllers adjust the hydraulic-channel fluid pressure at the
inner or outer surface of an HTSTR component. They each have 50 elements of the
cssDat-derived-type variable reserved to save the ID numbers of all BREAK
components that are hydraulically coupled to the adjusted HTSTR. The HTSTR's PI

controller adjusts the fluid pressure of those hydraulically coupled BREAK components.

As previously stated, an ID list of VALVE components that are closed and not adjusted

by a CSS controller is saved in array numvc (n) for n = 1, 2, . . . nvc (nvc <50) by
subroutine input. This ID list is used by subroutine fbrcss (called by input) to

determine all BREAK components that are hydraulically coupled to the HTSTR.

BREAKs separated from the HTSTR by these VALVE components that are closed and not

adjusted by a CSS controller are not considered to be hydraulically coupled to the
HTSTR component.

2.2.2. 3D Component Input Processing with Subroutine rvssl
Subroutine input calls the routine rvssl to input data from the TRACIN file that is

specific to 3D VESSEL components. In addition to reading VESSEL input data

parameters from the TRACIN file, this subroutine also initializes the FLTs and VLTs,

reads VESSEL general-array and level data, registers the VESSEL component with
TRAC's System Services to support intercomponent communication, and performs
input data testing. As with subroutine rdcomp, this subroutine also uses the low-level

subroutines readi, readr, loadn, and warray to input the data and echo it to the

output file.

The basic geometric input data for the VESSEL-component VLT are first read into the

derived-type variable vessTab (defined in module VessVlt) using a combination of

readi and readr subroutine calls. With this information specified, subroutine

AllocVess is called to perform dynamic memory allocation for the VESSEL general

array data to be stored in the derived-type variable vsAr that is defined in module

VessArray (this information previously was addressed with the VESSEL pointer table

in TRAC-P). The subroutine AllocVess3 subsequently is called to allocate memory
dynamically for the 3D VESSEL level data that will be stored in the derived-type
variable vsAr3 (defined in module vessArray3). Data for the VESSEL general arrays

specified in vsAr next are read from the TRACIN file using the loadn, readr, and

2-17

readi subroutines and echoed to the output file TRCOUT with the warray and wiarn
subroutines.

The System Services junction array junCells is set up, and subroutine Junctions is
called (once for each junction) to register the VESSEL's flow connections. System
Services subroutines SetSegment and AddSegment3D then are called to register
computational mesh segment information for the VESSEL. (Although its structure might
seem to be somewhat discontinuous, a VESSEL is defined as having just one mesh
segment.) Details on the VESSEL's System Services registration are given in Section
3.2.3.1.

Subroutine chksr is called to check the VESSEL source connections after the initial input
processing from TRACIN is completed.

The VESSEL level arrays are specified in TRACIN on a level-by-level basis (data for the
various arrays are grouped together for each successive level). The loadn subroutine is
used to input a level's worth of data for each such array into a rank-one scratch array
called scr. Subroutine rievel is called for each of these chunks of level data to echo the
input data from array scr to file TRCOUT and to call subroutine leveir, which stores
the data into the (rank-three) vsAr3 array. (The VESSEL data structure is described in
detail in Section 3.) Subroutine rievel also checks the cfzv, cfrl, and cfrv arrays for
negative values.

2.2.3. Component Input Processing with Subroutine rdrest
Subroutine rdrest opens file TRCRST and obtains restart data from the data dump
corresponding to the requested timestep number of a previous calculation (as specified
by variable dstep on Main Data Card 3 of file TRACIN). If the requested timestep
number is negative, rdrest uses the last data dump available. If the requested timestep
number is -99, the problem time from the last data dump is replaced by timet (Main
Data Card 3), which is read from file TRACIN. The restart data initialize the 'signal
variable, control block, trip, and component data that were not provided by the TRACIN
file. Component data are read from the TRCRST file by calls to component restart
processing subroutines. These subroutines have names that begin with the letters "re"
followed by the letters of the component-type name. For example, the PIPE component
restart processing subroutine is called repipe. These subroutines function in much the
same way as the component input processing subroutines that begin with the letter "r'.
The restart data common to 1D hydraulic components are processed from the restart
data using a call to subroutine recomp. Details on the structure of the dump restart
TRCRST file are given in Sec. 2.5.3. All restart data are echoed as output to the TRCOUT
file.

The calling tree associated with restart input can be traced from the entry
NOMOD: : SUBROUTINE rdrest in Appendix A. Restart input begins with communica
tion of the lists of all system components iorder (Component List Card) and all
components in the ASCII input deck (nbr) to rdrest via the module Global.
Subroutine bfaloc is used to initialize the TRCRST fie for processing, and the low-level
service routine bf in is used to read all of the header information from the dump restart

2-18

file. An infinite WHILE loop then is entered to read the data for each dump timestep
until the selected dump restart timestep is located. The majority of the data is read using
the bf in subroutine, with the exception being that the Control System data must be read
via a call to subroutine CSRestart. Upon initial entry, subroutine CSRestart performs
the dynamic memory allocation for the temporary-derived-type Control System
variables (defined in module ControlDat) that are only used for input processing of the
TRCRST fie. The restart data are read into these derived-type variables using calls to
bf in. The infinite WHILE loop is exited once the desired timestep data is located, and
the subsequent data are read with multiple calls to bf in and a single call to CSRestart.
Subroutine rdrest then calls subroutine recntl to add the data stored in the
temporary Control System derived-type variables to the information previously read
from the TRACIN file (stored in the permanent Control System derived-type variables)
and calls CSFree to deallocate the temporary variable memory. The subroutine rdcomp
then enters another infinite WHILE loop to read the missing component data contained
on the restart file (exiting the loop occurs when all component data had been read). The
length of the tabular data Icomp (i.e., the sum of the FLT, VLT, and component- specific
array parameter values) and the component number is then read using calls to bf in. If a
missing component is found, subroutine rdcomp calls subroutine GenTabRestart to
read the component FLT information into the derived-type variable array genTab
(defined in module Flt). The component type is included in this data. With the
component type defined, rdcomp calls the appropriate component-specific restart
routine. The PIPE component will again be used as an example. Creation of a new
component similar to a PIPE would require the addition of a call in rdrest to process
that component's input.

Subroutine rdcomp calls repipe to process the PIPE component restart data with the
component number and the pointer to the beginning of the junction array passed as
arguments. The order of the component in the input processing, cci, is passed to the
subroutine via the module Global. Subroutine repipe uses the subroutine rstVLT to
read the PIPE VLT from the restart file into the derived-type variable pipeTab defined
in module PipeVit. It then echoes values of the VLT to the standard detailed output file
using subroutine reecho. Subroutine repipe supplies values to the jun array (and
increments jun's current index jptr) in the same manner as rpipe, previously
discussed. Similarly, subroutine repipe also calls subroutine AllocGenlD to perform
dynamic memory allocation for the arrays that are generic to all 1D components (these
arrays previously were accessed using the pointer tables dualpt, hydropt, intpt, and
heatpt in TRAC-P). The arrays are stored in the derived-type variable giDAr, which is
declared in module GenlDArray. Dynamic memory allocation for the additional arrays
that are specific to a PIPE component is performed by subroutine repipe via calls to
TRACAllo. These component-specific array data are stored in the derived-type variable
pipeAr that is defined in module PipeArray.

Standard arrays required for restart of ID flow (dx, vol, f a, fric, grav, hd, nff, iccfl,
wa, qppp, matid, alpo, alpn, vln, tin, pn, pan, wfmf 1, wfmfv, aran, twn, tvn, alvn,
chtin, vvn, arvn, arln, arevn, areln, rmvm, rvmf, vmn, bitn, hiv, hil, hig, higo,
cifn, rhs, vvt, vlt, gamn, elev, chtan, alven, twan, twen, tcen, and, when
appropriate, sn, concn, and qppc) are acquired by a call to recomp. Those arrays that

2-19

would normally appear in an echo of the input data are printed by a call to wrcomp,
which in turn uses the standard low-level routines warray and wiarn to write array
values to the standard detailed output file. Actual input of either values or arrays of
values in repipe or recomp is accomplished with the subroutine bf in rather than a
direct Fortran READ statement because TRAC contains its own buffered I/O routines
(bfaloc, bf in, bf out) for output to binary files. These buffered I/O subroutines
should be used with any new component, as should standard routines to echo values to
the standard detailed output. At a higher level, component-specific subroutines are used
to process the input restart data into the desired data structure.

Subroutine repipe finishes with calls to System Services subroutines Junctions (two
calls for a PIPE), SetSegment, and AddSegmentlD (see Sections 2.2.1 and 3.2.3.1).

Recall that CSS-controller data are not written to the dump/restart file and so must be
reinput by the TRACIN file if the CSS calculation is continued with a restart. The number
of CSS controllers and their input parameters can be changed during a restart.
Components defining the desired hydraulic parameter value for each CSS controller also
need to be reinput using the TRACIN file.

2.3. Initialization

The calling tree associated with initialization can be traced from the entry
NOMOD: : SUBROUTINE init in Appendix A.

The initialization stage begins with the TRAC main-program calling subroutine init,
which in turn calls four subroutines that set up data structures that are used for the
solution of the governing flow equations: GenJunInfo, SetSysVar, SetSysMat, and
SetJunAvgPtrs.

GenJunInf o processes information about system connectivity to fill out a data structure
describing all junctions between hydrodynamic computational mesh segments. This
data structure is contained in the derived-type array junCells. Subroutine SetSysVar
establishes the structure of the sparse matrices associated with all flow equations,
assigning unique system variable indices to each cell center in the system for pressure,
stabilizer mass, and stabilizer energy equations. Subroutine SetSysVar also assigns a
second set of unique variable indices to cell edges that is associated with the stabilizer
velocities. This information is stored both in the component junction data structure
(junCells) and in a data structure associated with mesh segments named compSeg.
Subroutine SetSysMat assigns space needed for storage of equation information and
creates indices needed to locate matrix coefficients, including those required to make
substitutions between the fundamental equations and the network equations.
Subroutine SetJunAvgPtrs establishes pointers needed to obtain edge-average
quantities at junctions between mesh segments.

Subroutine init then calls subroutine InitBDArray to register into the System Service
transfer tables the information that each hydrodynamic mesh segment needs from
adjacent mesh segments to evaluate the flow equations; this relies on the System

2-20

Configuration set up by the component input routines (see Section 2.2) and
GenJunInfo. InitBDArray sets up a pointer table for transferring information
between TRAC's bd array and the generalized component array data structures.
Detailed information is provided on this setup in Section 3.2.3.1. The elements of the bd
array are described in Section 2.3.1.

Following the call to InitBDArray, subroutine init calls subroutine TableTransAll
to populate the bd array with values that are needed to begin the component
initialization.

Subroutine icomp is called next to perform the initialization of arrays and variables for
each component type that is required by TRAC but is not read in directly from the files
TRACIN and TRCRST. Subroutine icomp is a driver for component-specific
initialization routines. For example, initialization of PIPE data is driven by the
component-specific subroutine ipipe, which is called by icomp. Any new component
would require creating an initialization routine and adding an appropriate call from
icomp.

Following the component initialization by icomp, subroutine init makes another call to
TableTransAll to ensure that the bd array is updated properly before the transient or
steady-state calculation starts.

The init subroutine also initializes the graphics catalog using calls to the subroutines
CSSetLuIdx, xtvinit and xtvdr. Subroutine CSSetLuIdx initializes the control
block, signal, and trip unit label indexes, alleviating the need for further lookup.
Subroutine xtvinit initializes graphics variables and opens the graphics file TRCXTV.
The subroutine xtvdr, which is called by init with the argument xmode set to zero,
simply calls the component-specific graphics routines (e.g., xtvpipe), with xmode again
passed as an argument. The 1D component-specific graphics routines for the PIPE,
PRESSURIZER, PUMP, TEE, and VALVE call the low-level service routine xtvld to
write the generic 1D component information to the graphics file. The remaining
component-specific graphics subroutines write their information to the file directly (i.e.,
without using the low-level service routine). Each of the component-specific subroutines
also calls the routine PrintVarDesc to generate the variable description graphics line
when the argument xmaode is zero.

The overall component-initialization subroutine icomp first calls subroutine TRACAllo
to allocate memory dynamically for the temporary pointer array ij trnPtr that is
required to process the PLENUM component boundary information (this array is
deallocated upon completion of subroutine icomp).

Subroutine icomp then sets the values of arrays j seq (junction sequence) and vsi
(velocity sign indicator), which are no longer used by TRAC. The functionality of arrays
j seq and vsi has been included in the System Service logic (vsi has been superseded
by array vSign).

2-21

Subroutine icomp next calls subroutine cihtst to initialize the data for HTSTR
components, if present. Subroutine cihtst controls the initialization of all HTSTR
components with calls to subroutines irodl and irod. Subroutine irodl initializes
arrays that provide information on the location of hydrodynamic data for heat-transfer
coupling. Subroutine irod initializes various power-related arrays that are not input.

A check is performed next to determine if either steady-state (stdyst) option 3 or 4 is
selected to perform an initial estimate of steady-state temperature and velocity
distributions. TRACAIIo is called to allocate memory dynamically for the derived-type
variable hps (defined in module HpssDat) when this is the case. The subroutine
subsequently enters a DO loop that will cycle either two times for normal execution or
three times if an HPSS initialization is to be performed. The status of the loop counter is
stored in the variable iinl (named common block elvkf) and can take on the values of
0, 1, or 2. Calls to the component-specific initialization subroutines (e.g., ipipe, which
is described subsequently in greater detail) are contained inside this DO loop, but these
calls occur only when iini has values of either 1 or 2. For the initial loop with iini = 0,
the subroutine ihpssl is called for each of the components in the nloop iD hydraulic
paths in the problem. This procedure replaces the phasic-temperature and velocity (and
possibly pressure) values input for the iD hydraulic components with the fluid mass
and energy-conserving values based on input-specified known or estimated thermal
hydraulic flow conditions along ID-flow hydraulic paths of the system model. This
procedure provides a better initial estimate of the thermal-hydraulic solution so that
steady-state solution convergence is satisfied with fewer timesteps and less
computational effort. This saves the TRAC user the effort of inputting such detail in the
solution estimate defined by the component data in order to converge the steady-state
solution more quickly with a better initial-solution estimate.

The basic work of component initialization takes place when iinl = 1. Subroutine
ihpssl again is called for each component in the nloop hydraulic paths to reevaluate
the gas void fraction and phasic velocities donored from two-phase cells; this conserves
the input-specified coolant inventory of the hydraulic loop. The iD component-specific
initialization routines also are called this time through the DO loop. Subroutine setnet
also is called for each hydraulic path to provide the information needed to set up the
network solution matrices. Subroutine allocNet then is called to allocate memory
dynamically for the network solution (array rnet). Subroutines setnet and allocNet
are largely obsolete; most of their functionality has been replaced by TRAC-M's
modularized equation solution logic. Usage of the old network solution variables has
been eliminated from all coding beyond initialization. Some of the network index
information still is used at the end of icomp in a check to enforce the rule that all
VESSEL connections in a given iD loop must be to 3D faces of the same kind (all r, all
theta, or all z), if the SETS numerics have been selected by the user for the VESSEL (using
namelist variable NOSETS). This restriction will be eliminated (and with it the rnet data
structure) once a planned parallel implementation of subroutine Solver has been
completed. Before this loop-connection check, subroutine civssl is called from icomp
to set up arrays for the 3D VESSEL initialization routine ivssl. This subroutine also
calls subroutine ihpss3 to perform HPSS initialization of the VESSEL if this option has
been selected.

2-22

The third iteration of the loop with iini = 2 functions in the same manner as when iinl
= 1, with the major difference being in the actions performed by the component-specific
subroutines such as ipipe. These subroutines check the consistency of cell edge

quantities at the junction, compute elevation changes across components, and convert
loss coefficients to TRAC's specific form of friction factors.

As indicated above, a check for source connections that would couple VESSEL SETS

predictor velocities in off-diagonal directions also is performed in subroutine icomp.

This is necessary to ensure that the predictor and stabilizer velocities remain
independent of one another for numerical stability at high fluid flows.

Finally, subroutine icomp deallocates memory for the pointer array ij trnPtr and

returns control to the calling subroutine init.

2.3.1. 1D Component Initialization with Subroutine iccap
The 1D hydrodynamic-component initialization routines have names that begin
typically with "i" followed by the letters of the component-type name. For example, the

PIPE component initialization subroutine is called ipipe.

Subroutine ipipe begins by obtaining values for indices to the junCells array (which
was set up at the start of Subroutine init-see Section 2.3) for the current and adjacent
component's junction cells and the cco index for each adjacent component (the cco
index is described in Section 3.2). The four junCells indices then are used to obtain

values for six intercomponent communications index variables that are contained in the

derived-type variable pipeTab (pipe VLT, defined in module Pipevlt): j sl, js2,

j siget, j siput, j s2get, and j s2put. Each of these six variables provides a column

index that is necessary for accessing the proper bd array elements (see Sections 2.3 and

3.2.3.1). Currently, j si and j siget have the same value, as do j s2 and j s2get. (The
numbers 1 and 2 indicate the current PIPE's left and right junctions, respectively.)

Junction-data consistency is checked using a call to subroutine chkbd. Subroutine elgr

is called to compute FRICs and GRAVs from input form losses and elevations if these
particular input options are selected using the namelist options ikfac and ielv,
respectively.

Subroutine ipipe next calls to subroutine junsol twice (once for each junction) to set
the elements isollb and isoirb of pipeTab, indicating the nature of the velocity
calculation at the junction. A value of 0 from one of these variables indicates that the

velocity is fixed by a FILL boundary condition. A value of 2 indicates that a BREAK is

across the junction and that no other active component contributes to the momentum
equation. A value of 1 indicates that another active component (PIPE, TEE, VESSEL, etc.)

is on the other side of the junction but that the current component (this PIPE) performs

the evaluation of the momentum equation. A value of -1 indicates that another
component evaluates the momentum equation; that component appears before the

current one in the order of computation. The same calls to junsol initialize the network

index array iou. If the junction being processed is an active participant in the network

solution (isollb or isolrb is +1 or -1), then the input value for that junction number is

2-23

placed in the appropriate location in iou. A later call to setnet from icomp converts
these junction numbers to unique indices for the network junction variables associated
with the component. (Note: Subroutine setnet's functionality has been superseded by

TRAC's new equation solution logic.)

Subroutine volfa is called to calculate volume-averaged cell flow areas and to perform

several input data tests on valid flow-area configurations between cells and cell

interfaces after the junction connection and component sequencing routines. Subroutine
compi is called to initialize several variable arrays (e.g., tilde velocities).

Subroutine ipipe, as with all other existing 1D component initialization routines, uses a

call to the subroutine iprop to initialize dependent fluid-state variables (density,

internal energy, etc.), physical properties such as viscosity, and mixture properties such

as the mean density. Actual computation of these properties is done or driven by the

subroutines thermo, fprop, and mixprp, respectively. Information is communicated
between iprop and these subroutines via their argument lists. Subroutine iprop

communicates the information directly to the component-derived-type data structure
giDAr (defined in Module GeniDArray) and should be used whenever possible for new

components. If a replacement is constructed for a special component, care should be
taken to understand and mimic the use of the variable irest (from module Flt) in
iprop. Many properties (particularly macroscopic densities and energies) must be

generated from more basic variables when a component is first input. However, when

irest = 1, the component data are coming from a restart file, bringing values for many
of these variables from the restart file, which must not be overwritten during
initialization.

Subroutine- ipipe then calls subroutine CheckAcc to determine if the friction factors for

each junction cell opposing the current component (PIPE, in this case) are set according

to the accumulator-phase separation model. If so, it copies the adjacent component's
right-hand junction (jun2) giDAr friction values to the current component's giDAr
locations.

Subroutine ipipe then calls subroutine TimeUpGenlD with argument .TRUE.; this has

TimeUpGenlD copy the values of the generic arrays common to 1D components that are

defined at old and new times from the new-time arrays into the old-time arrays (the
new-time arrays have been set up to this point in input and init).

The last call in ipipe is to subroutine TableTransComp, which updates the bd array

information that the current component provides to each of its neighbors. (A related

routine, TableTransAll, is used elsewhere in the code to perform a similar service on a

systemwide basis.) Note that for TEE components there is also a call to subroutine j bd4

to update the boundary information directly at the TEE's internal junction (using the
bd4 array in the TEE data structure).

Initialization is the first stage at which boundary information is generated and passed.

Currently in TRAC, the destination for component-boundary information transfer is still

a form of the bd array that has been used since the earliest versions of the code. The

2-24

setup of the boundary transfer is driven by System Services subroutine InitBDArray

(see Section 2.3), and the low-level hydrodynamics routines still access boundary
information with the same references to bd as before. The actual bd array is defined in
module Boundary; it is of rank 2 and is referenced in the low-level routines (such as the
hydrodynamic routines) via rank-one dummy arguments bdl or bd2, which correspond
to the left- and right-component junctions [the hydrodynamic routines are passed, via
their argument lists, an appropriate column from bd (7 2, 2 *n un), where the first index
specifies the type of data required, and the second index specifies the junction]. The data
define the current solution state of the adjacent component across the junction and are
evaluated at one of three possible space points: the edge of the mesh cell at the junction,
the midpoint of that mesh cell, or the opposite-side edge of that mesh cell. References to
bdl correspond to junctions j uni and j un4 (the internal junction of a TEE component);
-, to bd2 correspond to either junction j un2 or j un3 (the external junction of the TEE
component side channel). The boundary data for the TEE internal junction are stored in a
special array called bd4 as part of the TEE data structure. The components of the bd
array contain all of the geometry and fluid-state information necessary for one
component to model flow across the junction from another using a first-order difference

method. For the ith junction, the elements of the array are as follows:

bd(1) = adjacent-cell length
bd(2) = adjacent-cell volume

bd(3)= adjacent-cell, old mean density
bd(4) = adjacent-cell, new, macroscopic-gas density
bd(5) = adjacent-cell, new, macroscopic-liquid density

bd(6) = junction-velocity-sign convention translation
bd(7) = adjacent-cell, old void fraction
bd(8) = adjacent-cell, old gas density

bd(9) = adjacent-cell, old liquid density
bd(10) = new-time liquid velocity one face past the junction *vsign

bd(l1) = new-time gas velocity one face past the junction *vsign

bd(12) = TEE side-leg momentum equation coefficient
bd(13) = TEE side-leg momentum equation coefficient

bd(14) = adjacent-cell, old pressure
bd(15) = adjacent-cell, new void fraction

bd(16) = adjacent-cell, new gas density
bd(17) = adjacent-cell, new liquid density

bd(18) = new-stabilizer liquid velocity one face past the junction *vsign

bd(19) = new-stabilizer gas velocity one face past the junction *vsign

bd(20) = TEE side-leg momentum equation coefficient

bd(21) = TEE side-leg momentum equation coefficient

bd(22) = adjacent-cell new pressure

bd(23) = junction, new liquid velocity *vsign

bd(24) = junction, new gas velocity *vsign

bd(25) = adjacent-cell, old surface tension

2-25

bd(26) = junction derivative of liquid velocity with pressure

bd(27) = junction derivative of gas velocity with pressure

bd(28) = adjacent-cell, new, macroscopic-liquid internal energy per volume

bd(29) = adjacent-cell, new, macroscopic-gas internal energy per volume

bd(30) = adjacent-cell, old gas viscosity

bd(31) = adjacent-cell, old liquid viscosity

bd(32) = junction flow area

bd(33) = junction hydraulic diameter

bd(34) = old-stabilizer liquid velocity one face past the junction*vsign

bd(35) = old-stabilizer gas velocity one face past the junction*vsign

bd(36) = adjacent component type

bd(37) = adjacent component number

bd(38) = adjacent-cell, old bit flags

bd(39) = adjacent-cell, old, noncondensable gas density

bd(40) = adjacent-cell, new, noncondensable macroscopic-gas density

bd(41) = adjacent-cell, old, macroscopic-gas density

bd(42) = adjacent-cell, old macroscopic-liquid density

bd(43) = adjacent-cell, old macroscopic-gas internal energy per volume

bd(44) = adjacent-cell, old macroscopic-liquid internal energy per volume

bd(45) = adjacent-cell, void fraction from step before old time

bd(46) = adjacent-cell, old, noncondensable, macroscopic-gas density

bd(47) = adjacent-cell, old, noncondensable partial pressure

bd(48) = adjacent-cell, new gas temperature

bd(49) = adjacent-cell, new liquid temperature

bd(50) = adjacent-cell, center gas velocity*vsign

bd(51) = adjacent-cell, center liquid velocity*vsign

bd(52) = new-time interfacial drag coefficient one face past the junction

bd(53) = adjacent-cell, new bit flags

bd(54) = gravity vector one face past the junction*vsign

bd(55) = adjacent-cell, new solute concentration

bd(56) = adjacent-cell, new mass-transfer term

bd(57) = junction, old liquid velocity*vsign

bd(58) = junction, old gas velocity*vsign

bd(59) = adjacent-cell, liquid-specific internal energy

bd(60) = adjacent-cell, gas-specific internal energy

bd(61) = flow area one face past the junction

bd(62) = junction, new liquid stabilizer velocity*vsign

bd(63) = junction, new gas stabilizer velocity *vsign

bd(64) = junction, old liquid stabilizer velocity *vsign

bd(65) = junction, old gas stabilizer velocity *vsign

bd(66) = junction, liquid wall friction input scale factor

2-26

bd(67) = junction, gas wall friction input scale factor

bd(68) = flow-area fraction of PLENUM faces

bd(69) = flag for "ell"-type TEE components

bd(70) = adjacent-cell, center x position
bd(71) = adjacent-cell, center y position

bd(72) = adjacent-cell, center z position

The current bd array is significantly different from older versions. Adjacent components
no longer share a column of the bd array. Also, columns of the bd array now align with

elements of the junCells array to give direct access to boundary data from the
SysConfig data structure.

2.3.2. 3D Component Initialization with Subroutine civssl
Subroutine civssl assigns junction sequence numbers, performs HPSS initialization for

iini = 1, and controls the remaining initialization of all 3D VESSEL components by

calling subroutine ivssl for the subsequent passes. Subroutine ivssl performs

analogous initializations for the VESSEL component, as does subroutine ipipe for the

PIPE component. Clearly, because of the differences in the 1D and 3D databases, using

many of the same low-level subroutines for initializing both component types is not
possible.

Subroutine ivssl begins by setting up indexing for the VESSEL mass, energy, and
momentum sources (i.e., loop connections) in the axial, radial, and azimuthal directions.
The VESSEL mesh-cell side area and volume parameters are calculated directly within

ivssl, without using a subroutine such as volfa used in the 1D case. This information

is stored in the derived-type variable array vsAr3 that is defined by module

VessArray3. Subroutine wievel is called to write this VESSEL level data to the file

TRCOUT. Subroutine Therm3D is used to initialize fluid thermal-hydraulic properties in

the VESSEL and calls subroutine thermo for the actual property evaluation, as was done

in the 1D case via subroutine iprop. Subroutine Fprop3D also functions similarly to the

1D counterpart and calls fprop for the actual fluid property evaluations. However,
mixture properties such as the mean density and solute concentration are evaluated
directly in ivssl. The subroutine initbc is called to initialize VESSEL phantom cells

and set some boundary conditions. Subroutine rdzmom defines reciprocal cell lengths for

momentum cells (rdxra, rdyta, and rdza) and weighting factors for momentum cell

averages or interpolation of cell-centered quantities. The input friction factors are

divided by the hydraulic diameter in subroutine iwal 13. The stabilizer equations for the

VESSEL are initialized via a call to mix3d if these values have not been read from the

restart file (irest = 0) already. Momentum conservation is improved by setting up

geometric-scale factors for coefficient velocities in cross terms of the momentum

equation and for all velocities in diagonal vVv terms within subroutine scimom

Subroutine dvpscl performs a similar function by initializing scale factors on the

derivative of velocities with respect to pressure for each VESSEL level. After some

additional initialization and checking, subroutine ivssl calls setbdt to set the values

for the boundary of the first VESSEL theta cell equal to values for the last theta cells.

Finally, subroutines set3dbd and TableTransComp are called to set up boundary

2-27

information at the VESSEL's junctions with 1D components (VESSEL sources); set3dbd
uses array vsSrcAr as a target location for bd array pointers that point to the VESSEL
data structure.

2.4. Prepass, Outer-Iteration, and Postpass Calculations

One complete timestep calculation consists of a prepass, outer-iteration, and postpass

stage. These stages of the calculation are controlled by subroutines steady and trans

calling subroutines prep, hout, and post, respectively. The names of the component

specific prepass driver subroutines end with "1", the names for the outer-iteration driver

routines end with "2", and the postpass driver routines end with "3". These driver

routines are identified for each component in Table 2-2. Each of these subroutines is

contained in the associated component module. For example, the Pipe module contains

the PIPE component prepass subroutine called pipel, the outer-iteration subroutine

called pipe2, and the postpass subroutine called pipe3. In the current version of TRAC,

the Separator (SEPD) component is driven by subroutines sepdl, sepd2, and sepd3,

which call teel, tee2, and tee3, respectively (sepdl currently is not used).

The prepass stage is responsible for calculating the control system state, much of the

constitutive package (e.g., interfacial and wall-drag wall-to-fluid heat-transfer

coefficients), and the solution of the stabilizer momentum equations. The outer stage

calculates the interfacial heat transfer and then solves the basic (semi-implicit) equation

set with a Newton iteration. The post stage solves heat conduction within metal

structural elements and solves the stabilizer mass and energy equations.

TABLE 2-2
COMPONENT-SPECIFIC DRIVER SUBROUTINES

Component

Type Prepass Outer Postpass

BREAK breakl break2 break3

FILL filll fill2 fill3

PIPE pipel pipe2 pipe3

PLENUM plenl plen2 plen3

PRIZER przrl przr2 przr3

PUMP pumpi pump2 pump3

ROD or SLAB htstrl htstr3

SEPD or TEE teel tee2 tee3

VALVE vivel vlve2 vlve3

VESSEL vssll vssl2 vssl3

2-28

The basic and stabilizer equations involve very different numbers of equations and
generate two different matrix structures. As a result, two separate subroutines are used
for the solution of global systems of linear equations. The more basic of these, Solver,
operates on equations that are dominantly tridiagonal in structure (the stabilizer
equations and pressure equation). The solution of the more complex linear system
associated with the basic (semi-implicit) step is driven by subroutine BlockSolver.
Subroutine Solver is described in the following subsection, and subroutine
BlockSolver is described in Section 2.4.2 (on the outer-iteration logic).

Subroutine Solver. The interface to this subroutine is relatively simple. It uses the
module Matrices; therefore, it has full access to this data structure. Only two
arguments are passed:

"* an abbreviated name (character string) for the array of independent
variables; and

"* an optional argument set to "factored" when the coefficient matrix already
has been factored by a previous call to Solver (only applicable during the
solution of the stabilizer mass and energy equations).

An example of use of subroutine Solver is the solution of the stabilizer mass and
energy equations driven by subroutine post. The following code is inserted just before
the end of the DO loop on ibks:

IF (ibks.EQ.l) THEN

CALL Solver ('arl')
CALL Solver ('arv')
CALL Solver ('arel', 'factored')
CALL Solver ('arev', 'factored')
CALL Solver ('ara', 'factored')
IF(isolut.NE.0) CALL Solver ('arc', 'factored')
ENDIF

This argument choice permits a single point within Solver for association of auxiliary
arrays needed by solution methods and transfers knowledge of the data structure to a
lower level for parallel methods based on distributed memory machines.

The arrays to be used in the actual solution are selected via pointer association. As an
example, the current implementation contains allocatable arrays in module Matrices,
such as

TYPE (sparseMatrix), ALLOCATABLE, TARGET :: al(:), ag(:)
REAL, POINTER, DIMENSION (:) :: arlS, arvS, &

& arelS arevS, araS, arcS, vvtS, vltS, arlRHS, &
& arvRHS, arelRHS arevRHS, araRHS, arcRHS, &
& vvtRHS, vltRHS

INTEGER, POINTER, DIMENSION (:) splitRowsC, splitRowsE
INTEGER, POINTER, DIMENSION C:) :: splitRows
TYPE (sparseMatrix), POINTER at(:)

2-29

REAL, POINTER, DIMENSION (:) :: rhs(:), ans(:)

Operations within Solver are on generic arrays such as at, rhs, and ans, which are
associated by a call to subroutine SetNetPointers at the beginning of Solver. The
pointers are associated based on the array name passed through from Solver's argument
list. For example:

SELECT CASE (varname)
CASE ('arl')

at => al

rhs => arlS
splitRows => splitRowsC

CASE ('vvt')
at => ag

rhs => vvtS
splitRows => splitRowsE

END SELECT

Following this initial decision on array usage, the solution proceeds as follows. The array
splitRows is used to divide the iD problem into a set of tridiagonal blocks. These block
systems are solved and coefficient arrays are stored for later back-substitution. A
substitution of these results is made into the splitting rows by subroutine
EqnSubstitute to generate the network equation system, which is solved with calls to
Linpack subroutines sgef at and sgeslt. If 3D components are present, the solution of
the network equations involves the generation of coefficient arrays multiplying
undetermined 3D variables. In this case, a section of Solver is used to substitute these
network results into the 3D equations, and the 3D equations are solved for final values of
3D variables. The initial implementation of Solver uses the original TRAC-P Capacitance
Matrix coding (subroutine matsol) to handle the solution of the 3D portion of the
problem.

All three major equation solution stages just outlined use lower-upper (LU) factorization
and store sufficient information so that the factorization need not be repeated. When
subroutine Solver is called with the optional dummy argument "factored" present,
processing jumps immediately to the back-substitution step of the 3D solution, then
proceeds through back-substitution of the network equations and of the initial
tridiagonal systems to obtain the final values for the variables (stored in rhs).

The current separation of the solution steps provides immediate opportunities for more
parallel execution. In previous versions of TRAC, the contents of subroutines such as
femomx (now StbVelX), tf3ds, and stbme3 had to be executed after all similar 1D
subroutines. Now these subroutines, with their reduced scope of activity (they no longer
do the equation solution, but only evaluate their terms) can be executed in parallel with
1D subroutines. A planned later version of Solver will provide the opportunity for
additional parallel computation within the solution process. The order of equation
reduction will be altered so that operations on the sparse blocks associated with 3D
components can be performed at the same time as those for the tridiagonal blocks
associated with 1D components. Only the solution of the network matrix will remain as

2-30

a serial step. The greatly reduced amount of information required by the network matrix
will make solution of the preceding steps more amenable to a distributed memory
environment.

Each stage of the timestep-advancement calculation is described in the following
sections.

2.4.1. Prepass Calculation
This stage of the calculation includes the stabilizer momentum equation solution and
evaluation of various old-time quantities and other bookkeeping necessary at the
beginning of each timestep. The prepass calculation uses the modeled-system solution
state at the completion of the previous timestep (the beginning of the current timestep)
to evaluate numerous quantities to be used during the outer-iteration-stage and
postpass-stage calculations. The calling tree associated with the prepass is controlled by
subroutine prep and can be traced from the NOMOD: :SUBROUTINE prep entry in
Appendix A. The prepass begins by evaluating the signal variables and the control
blocks and determining the set status of all trips for the control procedure. Subroutine
trips (not to be confused with subroutine trip that interrogates a trip's set status to
decide on initiating specific consequences controlled by the trip) calls for these
evaluations. Subroutine prep then loops over all of the components twice via calls to
subroutine prepid (which calls the 1D component-specific prepass subroutines),
htstrl (for HTSTR component prepass processing), and prep3d (for 3D VESSEL
components). The prep loop index number is communicated to these lower-level
routines using the variable ibks (defined in module OneDDat). In the first loop through
prep, each of the component-specific routines called by prepid begins the prepass by
moving its end-of-timestep values (its new-time values) from the previous timestep into
the variable storage for its old-time values for the current timestep. Next, wall and
interfacial friction coefficients are evaluated. The predictor stabilizer velocities (which
are locally defined) and the setup of the stabilizer motion equations are evaluated. For
components that require heat-transfer calculations, the prepass evaluates material
properties and heat-transfer coefficients. The HTSTR component prepass is evaluated
only in the first loop through subroutine prep. The prepass for HTSTR components can
be more complex than that for 1D components. Besides calculating material properties
and heat-transfer coefficients for both average and supplemental rods, the prepass
evaluates quench-front positions and fine-mesh properties if the reflood model has been
activated. Subroutine prep3d also is called from prep in the first pass to evaluate the
3D predictor motion equations and to set up the 3D stabilizer motion equations (prep3d
also handles VESSEL constitutive quantities needed by the motion equations). The
stabilizer motion equations subsequently are solved by calls to subroutine Solver (one
call each for liquid and vapor) at the end of the ibks = 1 pass. The second loop through
the prep subroutine (ibks = 2) stores the results from Solver for the stabilizer
velocities ("tilde" velocities) into the individual components' databases by again calling
prepid and prep3d.

Control System Details: Subroutine trips calls subroutines svset, cbset, and
trpset. Subroutine svset uses beginning-of-timestep values of system-state variables
to define the signal variables. Subroutines cbset and conblk, which are called by

2-31

subroutine cbset, evaluate control-block function operators. Subroutine trpset uses
the current signal-variable and control-block values to determine the set status of trips.

State-Transition Method for Laplace Transforms: TRAC-M uses state-transition
method analytic solutions to evaluate the first-order lag, first-order lead lag, second
order lag Laplace-transform control blocks, and the first-order lag Laplace transform in
the PI- and proportional-integral-derivative (PID)-controller control blocks. These
analytic solutions were developed originally for TRAC-PF1/MOD2 (Version 5.4.02) to
replace explicit numerics for evaluating the three Laplace transform control blocks and
to replace semi-implicit numerics for evaluation of the PI- and PID-controller control
blocks. The state-transition-method analytic solutions are unconditionally stable for all
TRAC-M timestep sizes, whereas explicit numerics limits the TRAC-M timestep size to
be less than the smallest lag constant for a numerically stable solution. For a given
numerically stable timestep size, these analytic solutions are slightly more accurate than
explicit and semi-implicit numerics. Implementing the state-transition method affected
three subroutines: cbset was modified to set up for the three Laplace transforms to pass
additional information in the form of two new actual arguments to subroutine conblk
for the second-order lag Laplace transform and to evaluate the first-order lag function
for the P1- and PID-controller control blocks with the analytic solution; conbik was
modified to perform the analytic solutions for the three Laplace transform control blocks
and to receive the new arguments from cbset; and rcntl was modified to perform
additional input-error checking (on the Laplace-transform function constants). Details
on the implementation and testing of these analytic solutions are given in Ref. 4. Note
that the original update that is described in Ref. 4 used the TRAC-PF1/MOD2 version of
the Control System database. The current Control System database is a direct mapping
of that database onto Fortran 90-derived types; details on the current Control System
database are given in Section 3.2.2.

Stabilizer Velocity Solution Details: In older versions of TRAC, the order of the
velocity variable array was effectively assigned by subroutine srtlp (called by input).
The information needed to set up the network solution matrices was established by
subroutine setnet during initialization. The current code requires storage of more
information to link the component and systemwide views of the equations. Data are
needed within each component for the matrix subscript corresponding to the stabilizer
velocity at each cell face. These data are created by a call to SetSysVar (set system
variables) near the beginning of subroutine init (see Section 2.3.) and stored in the
compSeg data structure as the variable values at the upper and lower bounds of each
mesh segment and the increment (+1 or -1) in system variable index as the local cell
index is increased. Network equations are selected during the matrix setup in subroutine
SetSysMat (called by init). Indices of the matrix rows representing the network
equations are placed into a dynamically allocated pointer array named splitRowsE
("E" for edge) contained in module Matrices. A similar array named splitRowsC
marks network equations for matrices related to cell-centered variables.

The subroutine SetSysMat also stores indices for the off-band coefficients, which are
stored in arrays with the type sparseIndicesT for 1D portions of the matrix and in
arrays with type vssMatIndT for 3D portions. These indices provide information

2-32

necessary to recover actual coefficients from arrays of derived-type sparceMatrixT
(1D) and vssMatrixT (3D). A detailed definition of these derived types is provided in
Appendix C. For the current difference equations, two allocatable sparseIndicesT
arrays and two allocatable vssMatIndT arrays are generated: one set for cell-edge-based
equations (aIndE or i3DE) and one for cell-centered equations (aIndC or i3DC).
Coefficients in ID regions are stored in sparseMatrixT arrays al for liquid and av for
gas equations. Coefficients for 3D regions are stored in vssMatrixT arrays a3Dl for
liquid-cell-centered equations, a3Dv for vapor-centered equations, a3DlE for liquid-cell
edge equations, and a3DvE for vapor-cell-edge equations. If necessary for future
difference methods, this derived type can be cloned to produce types with more than one
bandwidth or altered so that component a is an allocatable pointer. The choice of a fixed
dimension "bandwidth" for main-coefficient-component a was made based on the fixed
structure associated with a given difference method and on timing results on the use of
allocatable pointers within derived types.

Calculation of the coefficients and right-hand side of the stabilizer velocity equations is
performed on a component-by-component basis with calls to StbVellD (1D), and
StbVelx, StbVely, and StbVelz (3D). These subroutines use the component data
structure to obtain basic physical variables and store coefficient information directly into
the systemwide equation data structure (in module Matrices). Solution of these
equations is driven by calls to Solver from subroutine prep at the end of the first pass
through its loop on ibks. Results are stored back into the component data structure by
bksmom (1D), and StbVelx, StbVely, and StbVelz (3D).

Heat-Transfer-Coefficient Details: Subroutine htstrl initially calls subroutine
htstrv to initialize the VESSEL-component hydrodynamic-cell arrays by setting
HTSTR parameters to zero. This occurs before some of their elements have HTSTR
parameters stored in them by subroutine vssrod after subroutine corel evaluates the
HTSTR parameters. Subroutine fltom subsequently is called to transfer hydrodynamic
data into the necessary HTSTR arrays; subroutine corel is called to evaluate heat
transfer coefficients, fine-mesh properties, and quench-front positions; and subroutine
fltom again is called to transfer heat-transfer information back into the hydrodynamic
database. From subroutine corel, subroutine rfdbk is called to evaluate reactivity
feedback, and subroutine rkin is called to evaluate the point-reactor kinetics model.

Note: Subroutine htstrv: In future code versions, subroutine htstrv will be
renamed and its call moved.

2.4.1.1. 1D Component Prepass Calculation with prepid. The PIPE prepass is
driven by subroutine pipel, which is called by prepid. The prepid calling tree can be
traced from the NOMOD: :SUBROUTINE prepid entry in Appendix A. As can be seen
under the prepid entry, the pipel calling tree can be traced from Pipe: : SUBROUTINE

pipel. Creation of a new component similar to a PIPE would require the addition of a
call in prepid to handle the prepass for that component. In the first pass, subroutine
pipel initially calls subroutine savbd to move boundary information for adjacent

components into the derived-type component array glDAr (defined in module
GenlDArray) and to move data from the last completed timestep into the old-time

2-33

arrays via a call to subroutine TimeupGenlD. The first pass through pipel also results
in a call to preper (see Appendix A, GenlD Task: :SUBROUTINE preper, for
preper's call tree). Subroutine preper communicates directly with the component
derived-type data structure glDAr and moves most information to lower levels via
argument lists. Subroutine preper currently handles four types of tasks in its calls to
other subprograms. The first of these is general bookkeeping, including calculation of
the mass flow at the boundaries of the component via calls to flux and a call to volv to
compute cell-centered velocities. The second task is calculation of basic physical
properties, such as wall-friction coefficients (call to fwall), wall-metal properties (call to
mprop), and heat-transfer coefficients for the heat-conduction model that is built into the
PIPE component itself (call to htpipe), and interfacial drag coefficients (StbVel ID). The
third task that is driven by preper is the setup for the stabilizer momentum equations,
also delegated to StbVellD (which is a modified version of the subroutine femom that is
in older TRAC versions). The fourth task is the evaluation of any component-specific
model. For instance, if the component type is a pump, then the subroutine puinpsr is
called to provide pump momentum source terms. For a specific component, any or all
steps may occur during a call to preper by its component prepass driver routine.
Subroutine preper is a transition routine from the standpoint of data communication. It
uses the systemwide and component-specific data structures, but passes on information
on the state of the fluid through the argument lists of lower-level subroutines (more
information on TRAC's data structures and internal data communication is given in
Section 3.2). After preper is called, subroutine pipeix is called to calculate the liquid
volume discharged (qout), collapsed liquid level (z), and volumetric flow rate (vf low).
Subroutine TableTransComp is called to establish the PIPE boundary conditions, and
subroutine evfxxx is called to evaluate the xxx component action function. This
completes the first pass (ibks = 1) of the PIPE prepass calculations.

Note: pipel First Pass. In future code versions, the logic flow in the first prepid
driven passes will be modified.

On the second pass through all components (ibks = 2), subroutine bkanom stores the
results from subroutine solver's global calculation for the. stabilizer momentum
velocities into the individual iD component's databases via a call to subroutine bksmom.

2.4.1.2. 3D Component Prepass Calculation with prep3& ibks = 1: A new-time to
old-time variable update initially is performed in the first pass by vssll calling
subroutine timupd. The subroutine dvpscl is called to initialize scale factors on the
derivative of velocities with respect to pressure if water packing in the VESSEL has been
detected. Subroutine vrdb is called to define velocities in the upstream radial direction
for the inner ring of cylindrical VESSELs. The 3D interfacial shear is initialized with a
call to ifset. Donor-cell weighting factors and mixture densities are initialized, vent
VALVE calculations are performed, and momentum source terms are defined within
vssll. The boundaries of the first and last theta cells are equilibrated with a call to
setbdt. Subroutine cif3 is called to evaluate the interfacial shear coefficients.
Subroutine prefwd is called to evaluate the wall-shear coefficients. Subroutines
StbVelx, StbVely, and StbVelz are called to set up the 3D stabilizer motion equations.
Finally, boundary data are updated by calls to subroutines set3dbd and

2-34

TableTransComp, and (for VESSELs modeled in cylindrical coordinates) subroutine
setbdt matches values for the first and last azimuthal-cell boundaries.

ibks = 2: Subroutines StbVelx, StbVely, and StbVelz are called to store the results
from subroutine Solver for the 3D stabilizer velocities into the individual VESSEL
databases. As on the first pass, boundary data are updated by calls to subroutines
set3dbd and TableTransComp, and (again, for VESSELs modeled in cylindrical
coordinates) subroutine setbdt matches values for the first and last azimuthal-cell
boundaries.

2.4.2. Outer-Iteration Calculation
The hydrodynamic state of the modeled system is analyzed in TRAC-M by a sequence of
Newton iterations that use full inversion of the linearized equations for all 1D hydraulic
component loops and 3D VESSELs during each iteration. The convergence criterion is
based on the calculated pressure changes (specifically, on the variable epso that is
provided by user input). Throughout the sequence of iterations that constitute an outer
calculation (each called an outer iteration within TRAC-M), the majority of the
properties that were evaluated during the prepass and the previous-timestep postpass
remains fixed. Such properties include wall (SLAB and ROD) temperatures, heat
transfer coefficients, wall- and interfacial-shear coefficients, stabilizer tilde velocities,
and quench-front positions. The remaining fluid properties can vary to obtain a
consistent hydrodynamic-model solution.

Subroutine hout controls the overall structure of an outer iteration, as shown under
NOMOD: : SUBROUTINE hout in Appendix A, although the majority of the processing is
handled by the subroutine outer. Subroutine hout contains an infinite loop that
functions only to call subroutine outer and will exit only if the problem converges to
the specified criteria; water-packing occurs as indicated by ipakon = 1 (set by either
subroutine tflds3 for 1D components or subroutine out3d for 3D VESSEL
components); the outer-iteration number oitno exceeds the input limit noitmx; or a
velocity reversal occurs in a cell, as indicated by the logical variable lbckv being set true
in either subroutine tflds3 or subroutine tf3ds3. For the case of water-packing,
subroutine outer resets the outer-iteration-number oitno to zero and control returns
all the way back to either trans or steady. These subroutines subsequently set iofail
to zero and call hout again to retry the timestep. Subroutine outid performs the
timestep backup for water-packing for 1D hydraulic components via calls to
BackUpPlen and BackUpGenlD, whereas subroutine vssl2 calls subroutine backup
for this function. The fluid thermodynamic properties also are reevaluated in this case.
For the cases of a velocity reversal and excessive outer iterations, the number of outer
iterations oitno is set to -100 within subroutine outer, the subroutine post is called
from subroutine outer (the action of the post subroutine under this condition is
described in a subsequent section), and program control is returned to either the
subroutine trans or steady to select a new timestep size.

The outer subroutine calling tree can be traced from NOMOD: :SUBROUTINE outer.
Subroutine outer loops over most component subroutines twice (no action is taken on
HTSTRs), communicating the pass number through the variable ibks in module

2-35

OneDDat. In the outer stage, variable ibks has the values 0 and 1. Subroutine outer calls
outid and out3d for 1D and 3D components, respectively.

Subroutines tflds, tf3ds, and tfpln set equation terms for the individual mesh cells
in 1D components, VESSELs, and PLENUMs, respectively: they generate coefficients for
linearized mass and energy equations and store the coefficients in the blockMatrixT
derived-type array named blocks. After the first loop over all components (ibks = 0),
the solution of the full system of equations is driven by a call to subroutine
BlockSolver from subroutine outer. BlockSolver provides a full solution for the
pressure changes during the current iteration only. Final generation of the new time
pressures, temperatures, and void fractions is accomplished during subroutine outer's
second loop over all components within the subroutines tflds3, tf3ds3, and tfplbk
for 1D components, VESSELs, and PLENUMs, respectively. Details on subroutine
BlockSolver are given in the following subsection.

Subroutine BlockSolver: Subroutine BlockSolver communicates entirely through
module variables. It has no argument list and thus, none of the special pointer
assignments that begin subroutine Solver (see Section 2.4). Solution begins with a block
reduction in a loop over all elements of the derived-type array blocks (type
blockMatrix). Pressure equations are isolated from the reduced system, using
subroutines PressCoeflD, PressCoef 3D, PressCoefJunlD, and PressCoefJun3D.
The results of these operations are stored directly into the sparse matrix data structures
used by subroutine Solver, and Solver then is called to obtain the pressure variations
for the current iteration. Subroutine DpJun calculates the difference between iteration
pressure changes in the two cells adjacent to each mesh segment junction (see Section
2.3) and stores them in blocks%cDp, ending the work performed by BlockSolver.
Completion of the formal solution process involves substitution of pressure-change
values into intermediate equations to obtain the next approximation for all independent
variables (pressures, temperatures, and void fraction). These operations are performed
by subroutines tflds3 (for 1D components), tfplbk (PLENUM components), and
tf3ds3 (VESSEL components).

Variable oitno (named common istat) holds the iteration count; it is updated in

subroutine hout and used to trigger special first-iteration operations in low-level
routines such as tfld and vssl2. There are also tests on oitno as part of the logic for
time-level weighting of convected mass and energy (the xvset logic). The iteration
count also is used by subroutine newdlt as a contribution to the calculation of timestep
size. As previously noted, it also takes on the function as a flag to the postpass

containing a value of -100 in the event of an iteration failure. Subroutine out3d also
temporarily sets this variable to a value of 2000 for problems with multiple VESSEL
components and uses this value as a flag to control the operation of the vssl2 outer

iteration subroutine. The value is reset to the original iteration count following this
processing.

2.4.2.1. ID-Component Outer-Iteration Calculation with outld. All 1D hydraulic

components in a particular loop are handled by a single call to subroutine outld in each
pass. This routine calls the appropriate component-specific, outer-iteration subroutine.

2-36

Component-specific, outer-iteration subroutines have names that begin with the
component type and end with the numeral 2, as previously illustrated in Table 2-2. For
example, the PIPE-component, outer-iteration subroutine is called pipe2. Creating a
new component similar to a PIPE would require adding a call in outid to handle the
outer iteration for that component. The pipe2 outer-iteration routine's calling tree can
be traced from Pipe: : SUBROUTINE pipe2 in Appendix A.

The outer-iteration subroutines for most of the ID hydraulic components call subroutine
inner to perform common functions. Subroutine inner obtains boundary information,
calls subroutine tfld to perform the appropriate hydrodynamic calculation, and resets
the bd array by calling subroutine TableTransComp. Subroutine tfld calls subroutine
tfldsl to set up the initial velocity approximations and their pressure derivatives for
iD components (first outer iteration only), subroutine tflds to solve the basic semi
implicit finite-difference equations, and subroutine tflds3 to obtain the next
approximation to the new-time pressures, temperatures, and void fractions. The
BREAK- and FILL-component, component-specific, outer-iteration subroutines (break2
and fill2, respectively) simply do boundary updating, with no call to inner
performed. The component-specific outer-iteration routine for the PLENUM component,
plen2, also deviates from the norm by calling the lower-level service routines directly
with the actions performed by subroutine t f ld for the other iD components replaced by
those of subroutines tfplen, auxplen, and tfplbk.

2.4.2.2. 3D-Component Outer-Iteration Calculation with out3d.
Subroutine out3d functions in a similar manner to subroutine outid, except that each
3D VESSEL component calls subroutine vssl2 to set up the basic semi-implicit 3D
finite-difference equations and to update its independent variables, with calls to low
level service routines specific to 3D VESSEL components (e.g., tf3dsl, tf3ds, and
tf3ds3). The calling tree from outer to out3d and lower is provided in Appendix A
under NOMOD: : SUBROUTINE outer.

Subroutine outer initially calls subroutine out3d, with both of the variables ibks and
i f f3d set to zero. This subroutine calls the component-specific, outer-iteration routine
vssl2 for each VESSEL present in the problem. Subroutines bakup and Therm3D are
called at this point if a water-packing backup is necessary, as indicated by ipakon = 1.
For the normal case without water packing, the vssl2 subroutine initially calculates the
VESSEL source terms and donor-cell contributions in the first iteration (oitno = 1). This
calculation is followed by a call to tf3dsl to generate an estimate of the new-time
velocities from the motion equations and evaluate the variation of velocities with respect
to pressure. Subroutine cella3 is called to evaluate cell-averaged quantities needed for
the interphasic heat-transfer calculation, and Htif3D is called to perform these
calculations. The boundaries of the first and last theta cells are equilibrated with a call to
setbdt. The mass transfer to the VESSEL from 1D components is determined with a call
to flux. Subroutine tf3ds then is called to set up the basic mass and energy equations,
and setbdt is called a second time.

When vssl2 is called with variable iff3d = 1, subroutine tf3ds3 is called to update
the VESSEL's independent variables (after BlockSolver has been called). Subroutine

2-37

vssssr also is called to perform a steady-state, change-rate calculation for the VESSEL,
if required. Subroutine setbdt also is called to equilibrate the first and last theta cells.

When ibks = 1, VESSEL boundary data are updated with calls to set3dbd and

TableTransComp.

2.4.3. Postpass Calculations
TRAC performs a postpass to solve the stabilizer mass and energy equations and to

evaluate both fluid mixture properties and heat conduction in metal structures after the

modeled-system hydrodynamic state has been evaluated by a sequence of outer

iterations that converge. Subroutine post performs this postpass. This same subroutine

also begins implementation of the timestep backup procedure, which is explained in

detail in the next section. Subroutine post also can initiate a timestep backup if either

the logical variable lbkpst or lbkcyl (defined in module GlobalDat) is set true

during the postpass. Variable lbkpst is set by (1) subroutine bksstb for iD

components, (2) subroutine bkspln for PLENUM components, and (3) subroutine

bkstb3 for 3D VESSEL components. This variable indicates that the backup occurred

because the results of the post calculations either violate required stability criteria or

exceed maximum allowed variations in hydraulic parameters. Logical variable lbkcyl

is set in subroutine htstrp and indicates that the backup is forced because heat-transfer
energy conservation is not satisfied. When either of these conditions occurs, post

returns control to the calling subroutine (either trans or steady), the number of outer

iterations oitno is reset to -100 and iofail is set to 1, and post is called again to begin
the timestep backup.

The calling tree associated with the postpass can be traced from the Appendix A entry

NOMOD: : SUBROUTINE post. The postpass is driven by subroutine post, which loops
through all of the hydraulic components three times. The postpass for the HTSTR

component is treated with a single call to subroutine htstr3 after all hydraulic

components have been processed. As with prep and outer, the index for this loop is the

variable ibks in module OneDDat. However, unlike these other subroutines that

utilized infinite WHILE loops, the variable ibks is a DO loop index within subroutine
post. This stage of the calculation performs the solution of stabilizer mass and energy

equations when ibks = 1 and 2, performs the solution of the conduction equations and

evaluation of fluid properties (viscosity, specific heat, conductivity, surface tension, and

heat of vaporization) when ibks = 2, and performs other minor computations necessary

to complete each timestep (mass flows and mean velocity) when ibks = 3. The

subroutine post receives information on the success of the outer-iteration solution

through the variable oitno, as defined in the module OneDDat. On an iteration failure,

as indicated by the number of outer iterations, oitno having a value of -100, subroutine

post sets the variable ibks to two and thus skips the equation solution steps.

Subroutine post loops over all hydrodynamic components, calling driver routines

specific to the iD components that have the suffix "3" (e.g., pipe3) and subroutine

post3d for VESSEL components. Equation setup is done at the component level by

subroutines stbme, StbME3D, and stbmpl. At the conclusion of the ibks = 1 pass,

subroutines StbMEJun, StbME3DJun, and Solver are called to solve the global

stabilizer mass and energy equations. On the second pass, values are stored in the

2-38

component data structure by subroutines bksstb, bkstb3, and bkspln for ID, 3D, and
PLENUM components, respectively.

2.4.3.1. 1D Component Postpass Calculation with post. Subroutine post calls
each of the 1D hydraulic component-specific postpass routines directly (i.e.,
intermediate subroutines such as either prepid or outid are not used in the 1D
postpass calculations). The call tree of the PIPE-component postpass routine, pipe3, is
shown in Appendix A, starting under entry Pipe: : SUBROUTINE pipe3. At the
component level, boundary information is passed with the same mechanism as in the
prepass.

ibks = 1: Setup of the stabilizer mass and energy equations for the 1D
components is driven by a call to subroutine constb, which in turn calls stbme.

ibks = 2: Subroutine pipe3 first calls subroutine savbd to retrieve bd array
boundary conditions. Subroutine efvxxx is called to evaluate the xxx component action
function, if required. Subroutine poster then is called to update the individual
component's database with the results from Solver with a call to bksstb, along with
several other tasks (including evaluation of fluid properties). Finally, the subroutines
evaldfld and evaldf2d are called in this pass to evaluate the absolute change in
various hydraulic parameters (this information is used in the timestep-size logic). On a
timestep backup condition, poster drives the restoration of all new-time variables to
their original old-time values needed to restart the iteration via a call to TimeUpGenlD,
but most other tasks in poster are suppressed. Subroutine pipe3 skips the table
evaluation of heat sources (call to subroutine evfxxx) for this condition.

ibks = 3: Subroutine post calls poster only in the final postpass. The final call
to subroutine poster functions only to define the end-of-timestep mass-flow void
fraction-to-density ratios for the bd array in this pass.

2.4.3.2. 3D-Component Postpass Calculation with post3d. The intermediate sub
routine post3d is called by post to perform the VESSEL postpass. The calling tree of
post3d can be traced from the entry VessTask: : SUBROUTINE post3d in Appendix A.

As with subroutine out3d for the basic equations, post3d loops over the individual
VESSEL components in the modeled system, in this case calling vssl3 for each VESSEL.
Subroutine post3d calls set3dbd and TableTransComp to update VESSEL boundary
information.

Subroutine vssl3 calls StbME3D to set up the mass and energy stabilizer equations and
stores the results from the global calls to Solver from post (which concluded the ibks
= 1 pass over the hydrodynamics components in post) into the individual VESSEL
components' databases with a call to bkstb3.

2.4.3.3. HTSTR-Component Calculation with htstr3. Subroutine htstr3 con
trols the HTSTR postpass, as shown in Appendix A under the entry
RodTask: :SUBROUTINE htstr3. In the event of a timestep backup, the new-time

values are reset to the values at the beginning of the timestep with calls to TimeUpHS and

2-39

TimeUpHSl. Under normal conditions, the postpass is performed by htstr3 first calling

fitom to transfer data between the HTSTR and hydraulic databases. Subroutine core3

then is called to perform the HTSTR-component postpass calculations. In core3,

subroutine f rod is called to evaluate the temperature distribution and gap heat-transfer

coefficients by calling subroutines rodht and gapht, respectively. Subroutine htstrp

then is called to evaluate the HTSTR instantaneous power and energy in each ROD or

SLAB element.

2.5. Timestep Advancement and Backup

The modeled-system solution state is updated to reflect the new-time (end of the

previous timestep or beginning of the next timestep) conditions upon the successful

completion of a timestep calculation (evaluated by the prepass, outer iteration, and

postpass stages). This is accomplished at the start of the next timestep's prep stage and is

handled on a component-by-component basis within their "1" subroutines, i.e., pipel.

During this step, all dual-time variables are updated by copying the values of the new

time variables into the old-time variables. The prepass, outer iteration, and postpass

steps that follow during the next timestep then attempt to evaluate new values for the

new-time variables for the end-of-timestep condition. This process is repeated as the

problem time advances with each timestep.

Calculating a new timestep size occurs just before the prep stage and is controlled by

subroutine timstp. Two types of algorithms, inhibitive and promotional, are

implemented in subroutine newdit to evaluate the next timestep size. The inhibitive

algorithms limit the new timestep size to ensure stability and reduce finite-difference

error. The promotional algorithm increases the timestep size to improve computational

efficiency (by requiring fewer timesteps during a time interval). A new maximum

timestep size is calculated based on each of the following conditions: the 1D and 3D

material Courant limits; the VESSEL and total mass error limits; the outer-iteration

count; the maximum allowable fractional change in gas volume fraction, temperature,

and pressure; the diffusion number for heat transfer; and the maximum allowable

fractional change in reactor-core power and adjustable-VALVE flow area. The new

timestep size selected is the minimum imposed by the above conditions and the dtmax

maximum timestep size specified by the user in the timestep data (Time Step Data Card

1). Subroutine newdlt is called by timstp to calculate each conditional maximum

timestep size, except for those based on the reactor-core power level and VALVE flow

area adjustment. The reactor-core power-change maximum timestep size is evaluated by

subroutine rkin during the prepass stage for HTSTR components, and the VALVE flow

area adjustment-change maximum timestep size is evaluated by subroutine vivex

during the prepass stage for VALVE components. During the outer-iteration stage,

subroutine hout applies the lesser of these two maximum timestep sizes to define delt

when it is less than the timestep size defined in subroutine newdit.

TRAC-M will back up and try to reevaluate the modeled-system new-time solution state

if a timestep solution is not completed successfully. A backup occurs either when the

outer iteration does not converge (necessitating a reduction in the current timestep size)

or when a flag indicating an extraordinary condition is activated. Either one will require

2-40

that the outer-iteration procedure be reevaluated. It is important to understand that
there are two types of backups, one corresponding to each scenario. When the outer
iteration fails to converge during the outer subroutine, the current timestep size is
reduced and the calculation backs up to the start of the prep stage after the control
parameter evaluation. This is necessary because any variable calculated during the
prepass that is dependent on the timestep size was computed for the original timestep
size and not for the newly reduced timestep size. In addition, all new-time variables are
reset to reflect their beginning-of-timestep values. This enables TRAC-M to begin again
in the prep stage as for any other timestep calculation, except for having reduced the
timestep size because of the backup. When the timestep requires one or more backups,
the timestep size is halved for the first, second, and third backup, quartered for the
fourth and fifth backup, and tenthed for backups thereafter. This backup process
continues until either a small-enough timestep size is reached to allow outer-iteration
convergence to be satisfied or the timestep size needs to be reduced below the dt-min
minimum timestep size from the timestep data, wherein TRAC-M stops the calculation.

The second type of backup is initiated by a flag being set, signaling an extraordinary
condition such as a water pack. This indicates that the outer iteration needs to be
repeated to account for the extraordinary condition. TRAC-M resets any new-time
variables that potentially have been evaluated incorrectly by the current attempt
through subroutine outer with their old-time values, makes appropriate adjustments to
prevent the extraordinary condition, and repeats the outer-iteration calculation. For this
type of backup, the timestep size does not change, making it unnecessary to repeat the
prep-stage calculation.

The difference between the two types of backups is that for a backup to the start of the
prep stage, the timestep size is adjusted, all new-time variables are reset to their
beginning-of-timestep values; and variables evaluated during the prep stage are
reevaluated using the newly adjusted timestep size. For a backup to the start of the outer
iteration, no change occurs in the timestep size and only new-time variables calculated
during the outer iteration are reset to reflect their beginning-of-timestep values.

2.6. Output Processing

The TRAC-M program normally produces four different output files: TRCOUT,
TRCMSG, TRCXTV, and TRCDMP. TRAC-M also may produce a TRAC-format input
data file TRCINP and a labelled input data file INLAB. The TRCOUT-, TRCXTV-,
TRCMSG-, TRACIN- and TRCJNP-, and INLAB-file real-valued variables can have SI or
English units based on the 0 (default value) or 1 value of namelist variables ioout,
iogrf, ioinp, and iolab. SI- or English-units symbols can be output to the TRCOUT
and TRCMSG files along with their real-valued variable values when namelist variable
iunout = 1 (default value). The TRCDMP file real-valued variables have SI units. The
output processing for each timestep during normal execution is performed via a call to
subroutine pstepq from either subroutine trans or steady. Subroutine pstepq calls
subroutines edit (large edit) and sedit (short edit) to write information to the
TRCOUT file, subroutine xtvdr to generate graphics data in the TRCXTV file, and
subroutine dmpit to write information to the TRCDMP fie.

2-41

The TRCOUT file is in ASCII format and contains a user-oriented presentation of the
calculation's input data and output results. During the input process, an echo of the
input and restart data is output, and at selected times during the calculation, values of
the current solution state of the modeled system are output. The TRCMSG file is in ASCII
format and contains diagnostic messages concerning the progress of the calculation. File
TRCINP is output only when input data TRACIN file is in the free format and file
INLAB is output when namelist variable inlab = 3 is input, as was previously discussed
in Sec. 2.2. File TRCXTV is in both ASCII and binary formats; it provides data for XTV
graphics. The TRCDMP fie is a binary file designed to provide solution-state data for
problem restarts by TRAC-M.

Note: XDR Format. For namelist-input variable iogrf = 2, the entire file TRCXTV is
encoded in the XDR format, including the ASCII information that is written for iogrf =

0 or 1. For iogrf = 2, file TRCXTV is suitable for use with XMGR5; it is in SI units.

2.6.1. ASCII Output Processing with edit
Subroutine edit is the main driver routine for program ASCII output and calls
subroutine sedit to write summary information for the time and subroutine wcomp to
output information on the signal variables, control blocks, and components. Subroutine
edit also outputs GSS convergence-test dat and CSS adjusted/monitored data after all
of the components have been processed. The first edit written to the TRCOUT file occurs
during the first timestep after the prep stage via a direct call to subroutine edit from
either steady or trans; however, all subsequent time edits are written after the post
stage when pstepq is called from these subroutines. The calling tree associated with the
output task can be traced from entry NOMOD: :SUBROUTINE edit of Appendix A.
Subroutine wcomp outputs general and control system data first, then invokes lower
level routines to output the solution state of each component. The component-specific
edit routines, which have names that begin with the letter w followed by the letters of the
component-type name, output the variable data that are important for that component to
the TRCOUT file in an appropriate format for readability. For example, the PIPE
component edit routine is called wpipe, and the VESSEL-component edit routine is
called wvss 1. The component-specific subroutines use subroutine ecomp to convert data
to the requested output units (calls to uncnvt) and to write this data to the output file
TRCOUT. The component-specific edit routines also output any additional data special
to that particular component.

The dominant communications channels for the ASCII output edit are modules
(systemwide and component-specific data structures) down to the calls to uncnvt,
which relies on its argument list. The form of the output is very difficult to trace from the
programming. However, the resulting output file is meant to aid the code user and is not
intended as an interface to another program. As a result, no description of this fie is
provided here. This information can be obtained from the TRAC-M/F90 User's Manual
(Ref. 2).

Subroutine input opens the TRCINP file and calls subroutine preinp to determine if
the input data TRACIN file is in free or TRAC format. A free-format TRACIN file is read
as ASCII data and parsed for numerical values to output the input data to the TRCINP

2-42

file in TRAC format. Then either the TRACIN file or the TRCINP file in TRAC format is
read by the readi, readr, warray, and wiarr subroutines to process the TRAC-M
input data.

When namelist variable inlab = 3, the readi, readr, warray, and wiarr
subroutines output to fie INLAB an input data echo of the TRACIN-file data with
variable-name label comments in the free format. Outputting variable-name label
comments between asterisks makes it a free-format fie, even though the input data
values are right-justified in 14-column fields. With a variable-name label above its scalar
value or to the left of its array-element values, file INLAB provides input data with
parameter variables that easily can be identified rather than that require the input data
format description to define them. This makes the input data infinitely more readable in
a standard form that all TRAC-M users become familiar with and that reduces input
data defining errors. File INLAB is renamed TRACIN for use subsequently as the input
data file to TRAC-M. The file-INLAB option also is convenient for converting SI- or
English-units input data in the TRACIN file to English- or SI-units input data. This is
done with namelist variables inlab = 3, ioinp = 0 (SI) or 1 (English) for the TRACIN
file, and iolab = 1 (English) or 0 (SI) for the INLAB fie, respectively.

2.6.2. Graphics Output Processing with xtvdr
Names of subroutines initializing and writing graphics information begin with the
letters "xtv". However, this does not mean that the output is useful only to the graphics
postprocessor named "XTV". This key program interface is well indexed and contains all
of the information necessary to extract data for other data postprocessing, including
translation for use by other graphics packages.

The graphics output is initialized with a call from subroutine init to xtvinit (see
Appendix A, NOMOD: : SUBROUTINE init), which sets the descriptive names of all array
variables to be written to the graphics file TRCXTV and opens TRCXTV. Initialization
continues with a call to subroutine xtvdr, using an argument of zero for the variable
xmode. This value of the dummy argument xmode is propagated to lower-level
subroutines through argument lists and triggers a mode that writes time-independent
component information and index information about time-dependent variables to file
TRCXTV (in ASCII format, unless namelist-input variable iogrf = 2).

The actual binary graphics output is driven by subroutine xtvdr, with a value of one
passed to the dummy argument xmode. This call appears in subroutines trans, steady,
and pstepq. The calling tree associated with the writing of graphics data can be traced
from Appendix A entry Xtv: : SUBROUTINE xtvdr. Subroutine xtvdr begins writing
for a timestep by calling xtvbufs to output the edit time. It then loops over components
calling the component-specific output subroutines (e.g., xtvpipe, xtvtee, xtvvalv,
xtvvsl, and xtvplen). It ends with calls to subroutines to output heat structures
(xtvht); signal variables, control blocks, and trips (xtvcntl); and general problem
parameters (xtvgnpr). Output of timestep data to file TRCXTV is buffered and at the
lowest level written with the C function fwrite.

2-43

File TRCXTV provides data for X-TRAC-VIEW (XTV), a phenomena visualization

package. (In addition, the XDR option selected with iogrf = 2 supports XMGR5.)

Subroutines xtvinit and xtvdr are called to create the XTV graphics catalog in file

TRCXTV. The XTV graphics catalog contains information for setting up the component

and variable visualizations. This includes the component name, type, connectivity, and

geometry, as well as a list of available variables with their types. File TRCXTV contains

timestep-edit information as arrays of Institute of Electrical and Electronics Engineers

(IEEE) double-precision values. Each timestep edit contains the problem time, followed

by all the variables described in the graphics catalog, in the order listed. The graphics

edit frequency is specified by user input, and the maximum size of file TRCXTV is

internally defined (currently 750 Mb). This internal limit can be overridden through the

use of the optional XTVTIN input file, which contains the maximum size of the data file

in megabytes as an integer. If file TRCXTV reaches this limit, no further edits will be

output and an error message will be written to the TRCMSG (message) fie for each time

edit that is not output. A description of the XTV fie format is contained in Appendix H.

The exact contents of the file TRCXTV vary with the components in the problem and

order of execution selected by TRAC for those components. The file begins with the first

line from the TRAC input title information. After that, blocks of information follow for

all components. Special information blocks exist for PLENUM and VESSEL components.

Information for the flow components is followed by blocks for all HTSTR components,

then those for the Control System.

As noted above, TRAC also contains an XDR interface for graphics output. The XDR

interface is implemented via module xtv. The Fortran interface to low-level XDR C

routines is contained in module CXtvxFaces.

Note: XTV/XMGR5 Graphics Output Structure. Future versions of TRAC-M will use

a new XTV/XMGR5 graphics system that is a fairly radical departure in terms of

implementation from the current (Version 3.0) version. The new implementation is

scheduled for February 2000. Foremost among the changes is the adoption of internal

tables that store the component and variable information that is to be output. This

change allows the variable setup and output information to be contained completely in a

single call to a variable setup routine, instead of former implementations that required

two or more synchronized lists to output variables, which allowed bugs to creep in when

the lists became unsynchronized. The second major change in the graphics system is the

adoption of graphics display templates. Each variable references a graphics display

template, which contains all of the information needed to create a display of the variable

in the postprocessor. Because each variable can have its own template, the restrictions on

variables and the complexity of graphics components are significantly reduced. The

remainder of Section 2.6.2 and its subsections (2.6.2.1 through 2.6.2.6) describe the new

TRAC-M graphics system.

The new XTV/XMGR5 graphics fie TRCXTV will utilize XDR encoding, which is

provided through the Open Network Computing group's Remote Procedure Call

Applications Programming Interface, generally referred to as the ONC RPC API. This

provides the graphics system with platform-independent graphics output.

2-44

The new XTV/XMGR5 graphics system uses five Fortran source modules and two* C
source modules to accomplish its task. The data structures, allocation routines, and
parametric settings are all contained within one module, and all of the component
independent subroutines for initializing the tables are in a second module. All of the
component implementations are in a third module, and the routines that output the
information to the graphics file are in the fourth. The last Fortran module provides an
interface specification to the C library. There are still only two routines that are called
outside of the XTV/XMGR5 subsystem, XtvInit and AddXtvDump. Subroutine xtvdr
will be replaced by subroutines CreatextvHeader (for header output) and
AddXtvDump (for data output).

The new XTV/XMGR5 system is initialized by a call to XtvInit inside the regular init
sequence. XtvInit loops through all of the TRAC components, initializing the internal
data tables, and then calls CreateXtvHeader to open the TRCXTV file and output the
header section. Data are output to the graphics file through calls to AddxtvDump. In the
initial implementation of the new XTV/XMGR5 system, AddXtvDump is called from
subroutine pstepq for most dumps, as well as steady or trans at the beginning of a
calculation.

Sections 2.6.2.1 through 2.6.2.6 describe the coding that implements the new XTV/
XMGR5 logic to be incorporated into TRAC-M in February 2000.

2.6.2.1. Module XtvData (February 2000). Module XtvData contains three principal
items: derived type definitions for the graphics component and variable tables, the
parametric constants used as entries in those tables, and the routines associated with
allocating those tables. Eight derived types create the graphics tables for XTV/XMGR5.
The master type is xtvCompT, which is instantiated as xtvCompList. All other derived
types, with the exception of plenAux, are nested inside the xtvCompList structure.
Each derived type has a corresponding allocation routine and a routine to clear the
elements of the derived type. The clearing routine is called by the allocation routine and
need not be externally referenced.

The master variable definition derived type is xtvVarT, which stores a pointer to the
variable, as well as name, length, and a few other generic items. Because Fortran 90
pointers are type and rank specific, there are actually eight pointers in the derived type
and a variable ptType, which identifies which pointer is active; all other pointers are
nullified.

2.6.2.2. Module xtvSetup (February 2000). Module XtvSetup contains the
component-independent routines for initializing the internal graphics tables with
component-specific information. Eight routines are targeted at initializing the
component portions of the internal graphics tables. Eight routines also initialize the
variable description tables. Module xtvsetup employs two generic interfaces to
simplify the use of the internal routines for the component-specific routines. The most
useful is AddXtvVar, which has an essentially identical interface for each type of
variable, differing only in the rank and type of variable input. The second generic

2-45

J

interface initializes templates. Because templates have differing contents, depending on
their internal rank, this is only a cosmetic name change.

2.6.2.3. Module xtvComps (February 2000). Module xtvcomps contains the

individual implementations for each of the TRAC component types, plus the master

initialization routine XtvInit. Subroutine XtvInit is present in this module to avoid

circular module dependencies between xtvComps and xtvSetup. Note that each of the

individual component routines are called only once for each component instance; once

initialized, the pointers contained in the data tables directly access the information for

output. This means that variables cannot be output on the fly from the component

routines. See the VESSEL variable ¢w for an example of calculating a variable for

graphics output. New components will typically require only modifications to this

module; most components will not require any changes to any of the remaining three

graphics modules.

2.6.2.4. Module xtvDwmp (February 2000). Module XtvDump contains all of the

routines that access the graphics file, albeit indirectly. All routines other than

AddXtvDump and CreateXtvHeader are called by one of these two routines. This
module is the only one to reference the C library and its interface specification module

CXtvXFaces. Because of the pointer system used in the internal tables, this module does

not reference individual component data tables, with the exception of the pressurizer

(PRIZER) and VESSEL components, which require special adjustments before entering

the main dump loop. The PRIZER component has the steady-state convergence

adjustments removed before dumping and then reapplied after the graphics edit. See the

routines Adj PrizerDVars and UnAdj PrizerDVars for more details on the PRIZER.
The variable tw is not calculated during the normal course of the VESSEL, so routine

CalcVesselTw is called by AddxtvDumnp before entering the main output loop.

2.6.2.5. Module cxtvxFaces (February 2000). Module CXtvXFaces provides the

Fortran routines with the subroutine interface for accessing the C library. Not only does

this provide error checking for the calls; it is necessary to get proper linkage under

Fortran 90 syntax for arrays. Note that arrays passed to C are passed by supplying the

first value of the array rather than being passed in traditional array format. This is

necessary because Fortran passes a form of platform- and compiler- dependent array

descriptor when passing arrays with explicit interfaces. The interface specification

deliberately misleads the compiler as to what is being passed; be sure to check the C

implementations for the true interface.

2.6.2.6. The XTV/XMGR5 C Library (February 2000). Because of the Fortran to C

interface, the C Library functions are divided into two files: a set of TRAC specific

routines for performing any special Fortran to C adjustments (CXtvXdr.c) and a set of

routines that are used by TRAC and the postprocessors for common access (xtvxdr.c). All

programs accessing the graphics file utilize the second file, xtvxdr.c.

2.6.3. Binary Restart File Processing with dmpit
The TRCDMP file is a structured binary file written with unformatted write statements.

It contains sufficient data to restart the TRAC-M calculation at the problem time of a

2-46

data-dump edit. File TRCDMP consists of a general data section at the beginning
followed by a series of time-edit blocks. A time-edit block is output at each edit time
during a calculation. The number of time-edit blocks output to the file is determined by
the dump-edit frequency specified by the timestep data. The last time-edit block is
followed by a "EOF" to signify the end of file.

File TRCDMP is created by a sequence of calls to subroutine dmpit. As the main driver
routine for dump file generation, subroutine dmpit outputs the dump-header data, calls
the subroutine CSDump to output the control system data, calls the component-specific
data-dump subroutines, and then calls subroutine dhstr to dump the HTSTR
component data to the restart file. The names of the component data-dump subroutines
begin with the letter d followed by the letters of the component-type name. For example,
the PIPE component data-dump routine is called dpipe, whereas the VESSEL
component data-dump routine is called dvssl. All such dump routines ultimately use a
set of five low-level, binary-dump routines that handles all output to the dump file;
examples of their individual use are given in Appendix G. At the very lowest level are
subroutines bf out and bfoutn; in many situations, these routines are first called by
subroutines bfoutis, bfoutni, or bf outs. The 1D hydraulic- component data-dump
routines call subroutine dcomp to output to the TRCDMP fie data common, to 1D
hydraulic components and then output any additional data special to that particular
component using individual low-level calls. The VESSEL-component data-dump routine
dvssl also makes low-level calls to output general VESSEL arrays and calls subroutine
dlevel to output level arrays.

The calling tree associated with the restart dump can be traced from Appendix A entry
NOMOD: :SUBROUTINE dmpit. The restart process is driven by dmpit, which uses
bfout (and bfouts, which calls bf out) to write general variables and writes
component-specific data with subroutines such as dpipe. The vast majority of
communication throughout the chain of calls is via modules associated with systemwide
and component-specific data structures. Switching from modules to argument lists as the
means of communication occurs only at the low-level calls to the binary output routines.

Subroutine dpipe is typical of the component-specific dump routines and is very brief,
using bf out directly to write pipe-specific arrays, and calling dcomp to dump
information generic to 1D components. Subroutine dcomp drives the output of the FLT
with subroutine GenTableDump and the VLT with subroutine dmpVLT (both use the
low-level binary write routines for actual output). It then issues a series of calls to
bfoutn to write the array data that is general to all iD components.

It is important to remember, from the standpoint of the restart data interface, that all data
are routed to the restart dump file via the binary-write set of routines. The structure of
the dump file itself can be deduced fairly quickly by following the string of bfout (or
bfouts) calls under dmpit.

In subroutine dcomp, the variable Icomp is calculated for each iD hydraulic component
and is the total number of all variable values output to the time-edit block for each
component. This is the sum of the number of the variable values output by subroutine

2-47

dcomp and its calling routine. The number of any additional variable values special to a
particular component and output by the component data-dump routine is reflected in
the variable lextra. It is important to remember to increment either the variable lcomp
or lextra accordingly when adding new component-variable values to the TRCDMP
file output.

A more detailed look at the dump logic is given in Section 3 and in Appendix G.

2-48

3.0. CODE ARCHITECTURE

TRAC's architecture comprises the organization of its subroutines into functional
groups, the organization and membership of its various databases, and the interaction of
the subroutines among themselves and with the databases. The logic of TRAC's
calculational sequence is described in Section 2. In Section 3 we describe TRAC's
organization according to the functions of its coding and the structure of and
communication among its databases.

TRAC's architecture is very modular in terms of the organization of its coding, the
organization of its databases, and the appearance of the databases to the code user.
Section 3.1 gives an overview of TRAC's general coding structure in terms of its
functional organization. Section 3.2 gives a detailed description of TRAC's data
structures and the data communication within the code.

3.1. Code Structure

In an effort to strive for a code structure that minimizes the problems of maintaining and
extending the code, the programmers originally developed TRAC as a modular code.
This modularity manifests itself in two important ways. First, because TRAC analyzes
nudear-reactor systems that consist of specific component types (PIPES, VALVES,
PUMPS, etc.), the code is written to utilize subroutines that handle specific component
types. For example, calculations (and data) for a PIPE component are handled separately
from calculations (and data) for a VESSEL component. Component-specific subroutines
typically are called by driver routines that branch according to the component type to be
calculated. The different TRAC components are described in greater detail in the TRAC
User's Manual. The data structures for each component type are described here in
Section 3.1.

Second, TRAC is written to be functionally modular; that is, each TRAC subprogram
performs a specific function. Some low-level subprograms are used by all components,
thereby strengthening this modularity (e.g., this is seen in the organization of the fluid
property routines). Another example of the code's functional modularity is found in the
separation of the control-system logic into clearly defined subroutines.

TRAC comprises the following structural elements:

* PROGRAM TRAC;

* Fortran 90 modules that may both declare data and contain coding;

Fortran 90 and C interfaces that encapsulate routines with a common
functionality (but with differing argument lists, for example) within a
generic name;

* procedures within the Fortran 90 interface(s);

3-1

0 Fortran 90 subroutines;

• Fortran 90 and C functions;

"* Fortran 90 blockdala; and

"* include files (".h" fies).

3.1.1. Fortran 90 Modules
A major advance with the development of TRAC-M is in the organization of the code
into Fortran 90 modules. TRAC's modules provide the framework for the code's
databases and the bulk of its coding. The data and coding are grouped into different
modules according to their specific functionality. This functionality organization of the
Fortran 90 modules further strengthens the original two-fold modularity built into
TRAC: there are component-type-specific modules, and there are generic modules used
by components in common.

A further advantage in TRAC's module structure lies in the dummy/actual argument
checking that Fortran 90 can provide, thereby reducing the chances for errors; this
argument checking is maximized in TRAC by carefully choosing the modules' use
associations. In describing TRAC's database structure, Section 3.2 also indicates the
module organization of the code's routines.

3.1.2. Description of All Structural Elements
Appendix B describes all of TRAC's structural elements: program TRAC and its
modules, interfaces, procedures, subroutines, functions, blockdata, and include files. A
brief description is provided of the purpose of each individual structural element and
the name of the source file where it is located. For each module, lists are given of
elements that are contained in the module, of other modules it uses, and of modules that
use it. For each interface, the name of the module in which it is contained is given. For
each subroutine, function, and procedure, the name of the module (if any) it is contained
in, files it includes, modules it uses, other elements it calls, and elements that call it are
given (for the functions, callers are not listed). For TRAC's blockdata, included files and
its caller are given. For each included file, a cross reference of elements that include the
file is provided.

3.2. Data Structure and Data Communication

3.2.1. Overview
This document describes the structure and internal communication of TRAC's database
at three levels of detail: first there is this overview, which is followed by an expanded
discussion later in this section. Finally, there are detailed examples for modifying the
database in Appendix H. The purpose and use of the code's many individual database
variables are described in Appendix C.

3-2

3.2.1.1. TRAC Databases. The TRAC database comprises a global database and
several databases that are concerned with specific aspects of a calculation: the
component-type database, the control-system database, two databases to support
options for steady-state runs, and the radiation model database. TRAC's databases and
related coding are organized into approximately 102 Fortran 90 modules, with each
module having a well-defined function. Additionally, other variables that support a
calculation are grouped into approximately 44 Fortran 90 header (".h") files; again, each
.h file has a specific function. Some of TRAC's subroutines that are of a generic nature are
not maintained in Fortran 90 modules, but rather are maintained as separate ".f" files.

TRAC's general global data include

"* modules that implement global solution of the flow equations and related
System Services modules that support intercomponent communication;

"* array ag-A container array accessed by pointers that supports the equation
solution;

"• array ag-A container array accessed by a pointer for pressure variations;
and

• four modules with miscellaneous functions, including declaration of arrays
ig and rg and the component-index array compIndices, declaration of the
pointers used by array ig, and initialization of various variables (including
default values).

Note: Global Arrays ig and ag In future code versions, arrays ig and ag will be
removed.

The component-type database includes

"• 1D hydrodynamic component types (PIPE, VALVE, etc.):

FLT, generic for all component types
VLT, specific for each component type
Array data generic for all 1D component types
Array data specific for each 1D component type

"• Pseudo-lD boundary-condition-component types (BREAK, FILL):

FLT, same as for 1D
VLT, specific for each type
Array data generic for all 1D component types (subset of 1D)
Array data specific for each component type

"* "OD" multiple-connection component type (PLENUM):

FLT, same as for 1D

3-3

VLT, specific for PLENUM
Array data generic for all 1D component types (subset of 1D)
Array data specific for PLENUM

"* 3D hydrodynamic component type (VESSEL):

FLT, same as for 1D
VLT, specific for 3D component type
Array data for the 3D component type

" HTSTR-component type (ROD):

FLT, same as for 1D
VLT, specific for HTSTR component
Array data for the HTSTR-component type

* The control system database includes

Signal variables
Trips
Control blocks

* The steady-state databases include

The CSS
The HPSS initialization

The radiation model is related to the HTSTR database but has not yet been implemented
in TRAC-M/F90.

3.2.1.2. Database Communication. TRAC's data and subroutines are grouped into
many Fortran 90 modules that are organized and named according to their function. A
module can both declare data variables and contain routines that operate on those
variables. The use association of these modules is carefully arranged to provide logical
and maintainable paths for data integrity, availability, and communication. TRAC
provides information to its many subroutines through four mechanisms:

* At the most basic level, a module can declare data variables and contain
routines that operate on those variables.

Direct access to data in modules can be made available to a routine through
use association.

Argument lists are passed to lower-level (typically, data-crunching) routines
that do not directly use the data they process.

Interface routines are called to get (and sometimes overwrite) specifically
requested data. Typically, these routines are used for communication among

3-4

different databases. The interface routines have access to the appropriate
modules.

3.2.1.3. Fortran 90 Modules. TRAC's modules often declare data (or access data by
Fortran 90 use association), performing a role in Fortran 90 that is similar to common
blocks but that provides better data integrity. TRAC's modules often contain subroutines
and functions that have a role specific to a certain task and that often involve data also in
the same module or that are used by the module. An important aspect of TRAC's module
use associations is in the explicit procedure-interface checking they allow, thus reducing
the chance for programming errors. A complete list of TRAC's modules is given
Appendix B; this includes a breakdown of the code's use and used-by associations.

Naming Convention: For the initial development of TRAC-M, each module is in a
separate file. If the name of the module is Name, the corresponding fie is called Namem. f
(or, for Version 3.0, NameM. f9 0) (the coding uses Name).

3.2.1.4. Derived Data Types. Much of TRAC's database is organized into many
Fortran 90-derived data types. These include derived types for the global database,
component databases, control system, and steady-state models.

Naming Convention: The names of all derived data types that are defined in TRAC
have a trailing "T". Often a variable that is declared to be of a derived data type is an
array with the name of the derived type minus the "T".

examples -- derived-type naming:

(ftom MODULE PipeVlt)

TYPE pipeTabT <<-- Data-type name
REAL(sdk) bsmass
REAL(sdk) cpow

INTEGER(sik) js2get

INTEGER(sik) js2put
END TYPE pipeTabT

TYPE (pipeTabT) ,DIMENSION (maxComps) pipeTab
Declare variable

(from MODULE GenlDArray)

TYPE glDArrayT <<--- Data-type name
REAL(sdk), POINTER, DIMENSION(:) driv

3-5

REAL(sdk), POINTER, DIMENSION(:) :: tcen
END TYPE glDArrayT

TYPE (glDArrayT), DIMENSION (maxComps) :: glDAr <<<-- Declare variable

In this document, we refer to the entities that are declared within a Fortran 90-derived

data-type definition as the "elements" of that derived data type (the term "component"

also is seen in the literature, which we do not use, to avoid possible confusion with

TRAC's component types). We also use the standard term "array element" when

referring to a specific item in any array [e.g., X (i) is the ith element of array x1.

3.2.1.4.1. Global-Database-Derived Types. These are described in Section 3.2.2.1.2,

with an overview, and in detail in Section 3.2.3.1 and Appendix C.

3.2.1.4.2. Component-Derived Types. TRAC employs Fortran 90-derived data types

for the entire component database. This includes the 1D and 3D hydrodynamic

components, the boundary-condition components, the PLENUM component, and the

HTSTR component. Table 3-1 lists the component data types: column 1 gives the name of

the data type; column 2 gives names of variables that are declared to be of this type; and

column 3 gives the module in which the data type is defined and the purpose of the type.

We are careful to distinguish between TRAC's various Component types (the derived

data types) and the individual Components that are in a given calculation. A typical

Component data reference is

glDAr(cco)%pnf(j)

where cco is the specific component index, pn is one of the data arrays belonging to

glDAr (cco) (in this case the new-time pressure array), and j is the index of the jth mesh

cell in component cco. Details on this construction and on the component-index logic

are given below in the section on the component databases.

3.2.1.4.3. Control-System-Derived Types. Table 3-2 lists the derived data types that

are defined for TRAC's control system. The control-system variables with a name of the

form csrName are used for the dump/restart logic.

3.2.1.4.4. Steady-State Derived Types. The steady-state derived-types hold data for

the CSS options and the HPSS initialization option. Table 3-3 lists these data types.

3.2.1.4.5. Radiation-Model Derived Types. The TRAC-P radiative heat-transfer

model has not been implemented in TRAC-M; it has been retained in commented-out
form.

3-6

TABLE 3-1
COMPONENT DATA TYPES

Type Name Variables Module and Purpose

genTabT genTab FIt-FLTs for all component types

arraylDPtrT arraylDPtrs GenlDArray-data interface to 1D
component generic arrays

arrayNodeT faceArs GenlDArray-data interface to ID
component generic arrays

glDArrayT glDAr GeniDArray-iD-component generic
arrays

heatArrayT heatAr HeatDArray--Arrays for wall-heat
transfer model built into ID
components (not the HTSTR)

intArrayT intAr IntArray--Additional arrays generic
to iD Components

breakTabT breakTab BreakVlt-BREAK VLT

breakArrayT breakAr BreakArray"-Arrays specific to
BREAK

fillTabT fillTab FilIvIt-FILL VLT

fillArrayT fillAr FillArray-Arrays specific to FILL

pipeTabT pipeTab Pipevit-PIPE VLT

pipeArrayT pipeAr PipeArray--Arrays specific to PIPE

plenTabT plenTab PlenVlt-PLENUM VLT

plenumArrayT plenAr PlenArray--Arrays specific to
PLENUM

prizeTabT prizeTab Prizevit-Pressurizer VLT

pumpTabT pumpTab Pumpvlt-Pump VLT

pumpArrayT pumpAr PumpArray--Arrays specific to Pump

rodTabT rodTab RodVlt-HTSTR VLT

hsArrayT hsAr HSArray-Arrays for HTSTR (chs is
chs pointer to hsAr, only to reduce

statement-lengths)

3-7

TABLE 3-1
COMPONENT DATA TYPES (cont)

3-8

Type Name Variables Module and Purpose

sepdTabT sepdTab Sepdvit-Separator (Sepd) VLT

sepdArrayT sepdAr Sepd-Arrays specific to Separator
(Sepd)

teeTabT teeTab TeeVlt-TEE VLT

teeArrayT teeAr TeeArray--Arrays specific to TEE

teeJcellT teeJCellAr TeeVlt-Stores TEE momentum
source coefficients for "eli" and "i"
configurations; acts as target location
for bd array elements.

valveTabT valveTab valvevit-VALVE VLT

valveArrayT valveAr ValveArray-Arrays specific to
VALVE

vessTabT VessTab VessVlt-3D VESSEL VLT

vessArrayT vsAr VessArray-3D VESSEL special
arrays

vsSrcArT vsSrcAr vessArray"-Provides a target
location for bd array pointers that
point to the VESSEL data structure.

vessArray3T vsAr3 VessArray3-3D VESSEL fluid
mesh arrays

TABLE 3-2
CONTROL SYSTEM DATA TYPES

Type Name Variables Module and Purpose

csGlT csGl ControlDat-global data; hold
csrGl storage information and problem

time.

csCPEDT csCPED ControlDat-control parameter
evaluation-pass data

csSigT csSig ControlDat-signal variable data
csrSig

csCBT csCB ControlDat-control block data
csrCB

csULCBT csULCB ControlDat-control block units
csrULCB labels

csULTRT csULTR ControlDat-trip units labels
csrULTR

csULSET c sULSE ControlDat-signal-variable-units
csrULSE labels

csTripT csTrip ControlDat-trip data
csrTrip

csTSET csTSE ControlDat-trip signal expression
csrTSE signal data

csTCTT csTCT ControlDat-trip-controlled-trip
csrTCT signal data

csTSFT csTSF ControlDat-trip-set-point-factor
csrTSF table data

csTDPT csTDP ControlDat-dumpp/problem
csrTDP termination data

csTSDT csTSD ControlDat-trip-initiated timestep
csrTSD data

3-9

TABLE 3-3
STEADY-STATE DATA TYPES

Type Name Variables Module and Purpose

cssGIT cssGl ControlDat-global CSS data
"for storage allocation

cssDatT cssDat ControlDat--CSS input data

cssTPT cssTP controlDat-CSS data for
secondary-side break-pressure
adjustment

hpsT hps HpssDat-lHlSS dynamically
allocated arrays

3.2.1.5. Data Precision. TRAC (approximately) requires the precision of an IEEE 64

bit word to perform the floating-point arithmetic for its hydrodynamics finite-difference
solution. We say "approximately" because the code also runs with Cray 64-bit words and

was originally developed on a 60-bit CDC 7600 computer. TRAC uses a few very large

integers as special-purpose flags, but these all fit within 32 bits.

The precision of variables in TRAC is specified with the Fortran 90 KIND attribute.

Variables sdk and sik are used to specify the precision of real and integer variables,

respectively. Module IntrType has the following declarations for sdk and sik:

MODULE IntrType
IMPLICIT NONE

These same definitions are repeated in all FUNCTION

declarations, for the NagWare F90 compiler

INTEGER, PARAMETER sdk = selectedrealkind (13,307)

INTEGER, PARAMETER sik = kind (10000000)

END MODULE IntrType

3.2.2. Databases
3.2.2.1. Global Data. Among the data that can be considered of a "global" nature in

TRAC are

four modules that contain a variety of data: GlobalDat, GlobalDim,

Global, and GlobalPnt. Uses of the variables in these modules are

described in Appendix C. More detail on modules Global and GlobalPnt

(and the ig and ag arrays they support) is given in Section 3.2.2.1.1.

3-10

* The modules that implement the global flow equation solution and the
System Services modules that support intercomponent communication for
boundary information. These are described in Section 3.2.2.1.2, with an
overview, and in detail in Section 3.2.3.1 and Appendix C.

3.2.2.1.1. Modules Global and GlobalPnt. Module Global declares high-level
variables that are accessed throughout the code. These include an internal buffer for
binary I/O, global arrays ig and ag, and index variables that are used to access the
component database:

MODULE Global

! BEGIN MODULE USE
USE IntrType
USE GlobalDim

Global Database

! Run Title
REAL(sdk), POINTER, DIMENSION(:) RunTitle

! Buffer Container
REAL(sdk), DIMENSION(2047*2) :: Buffer

INTEGER (sik) ifreeIG, ifreeAG
•INTEGER(sik) igSize
PARAMETER (igSize=10000)

INTEGER(sik) ig(igSize) <<<- declare array ig
REAL(sdk) ag(igSize) «<-- declare array ag

replaces lenttl = lorder-ltitle in dmpit, set in input
INTEGER(sik) lentitle

component indices into as input
INTEGER(sik) cci
component indices as reordered in SUB asign
INTEGER(sik) cco

hlInd - component index of first heat struct in tracin
rlInd - component index of first restart comp
rhlInd - component index of first heat struct in restart

INTEGER(sik) hlInd, rlInd, rhlInd
INTEGER(sik) compIndices (maxComps)

DATA hllnd, rlInd, rhllnd/0,0,0/
END MODULE Global

Arrays ig and ag are "mini-container" arrays; they store variables of a global nature,
which typically are arrays themselves. The overall thermal hydraulics of ig and ag'are

3-11

set in module Global by parameter igSize. Array ig holds integers, and ag stores

reals. Arrays ig and ag are accessed by pointers, which are declared in module

GlobalPnt:

MODULE GlobalPnt

BEGIN MODULE USE
USE IntrType

&
&

&INTEGER(sik) licvs,ldpmax,lijvs,lilcmp,liou,lisvf,livcon,
livljn, ljout, ljseq, ljun, llcon, lloopn, lmatb, lmcmsh, lmsct,

lnbr, lnjn, lnsig, lnsigp, lnvcnl,lorder,lptbln,ltitle

INTEGER(sik) lidpcv
INTEGER(sik) lilprb, livlfc,livvto,livlto
INTEGER(sik) nmat,nvcell

END MODULE GlobalPnt

The specific uses of the various subarrays in ig and ag are described in Appendix C (the

only use of array ag is for the pressure-variation array ldpmax, which is new to TRAC

M; it replaces TRAC-P array liitno).

Note: Global arrays ig and ag- In future code versions, arrays ig and ag will be

removed.

The pointer offsets into ig and ag are set in subroutines input and icomp (note the

Fortran comment below about the VESSEL component). Subroutine checks i ze is called

to ensure that the pointer offsets into array ig do not exceed the value of parameter

igSize:

SUBROUTINE input

lorder=1 <<<- start at 1 (cf. TRAC-P)

lilcmp=lorder+ncomp
inbr=lilcmp+ncomp
lmldp=lnbr+ncomp

ldpmax = 1 <<<--- only ag pointer, replaces TRAC-P liitno
llcon=imldp+nhtst
ljun=llcon+ncomp
ljseq=ljun+8*njun
lmatb=ljseq+njun
iptbln=imatb+nmat
ifreeIG=Iptbln+nmat
CALL checksize('ig',ifreeIG,igSize,.TRUE.)

3-12

these are re-evaluated for the VESSEL, leaving holes in ig
lijvs=ifreeIG
lnjn=lijvs+njun
licvs=lnjn+njun
liou=licvs+njun
ifreeIG =liou+njun
CALL checksize(ig ,ifreeIG,igSize,.TRUE.)

it=nlt
l=licvs
livcon=lijvs

ljout=ifreeIG
lisvf=ljout+it+l
lnvcnl=lisvf+ncompt

lidpcv=linvs+nvcon+l
ifreeIG=lidpcv+nvcon
CALL checksize('ig',ifreeIG,igSize,.TRUE.)

define the VESSEL matrix array pointers

liou=ifreeIG
ii= max(3,3*(ig(ljout+nloops)-l))
ifreeIG=liou+ii
CALL checksize('ig',ifreeIG,igSize,.TRUE.)

SUBROUTINE icomp(comptr, jun, jseq, iorder)

livlfc=ifreeIG
livvto=livlfc+nvcon
livlto=livvto+nvcon
lilprb=livlto+nvcon
lidpcv=lilprb+nloops
ifreeIG=lidpcv+nvcon+l
CALL checksize('ig ,ifreeIG,igSize,.TRUE.)

3.2.2.1.2. Flow Equation Solution and System Services. TRAC fully separates the
evaluation of terms in the flow equations from the solution of the resulting system of
linear equations. This provides a well-defined location for equation terms and eliminates

3-13

the need to generate this data for 1D components before evaluating the equations in 3D
components (as was done in older code versions). TRAC also requires only one request

at initialization to establish automatic information passing between components. This

has been implemented as a system service, with sufficient generality to permit later use

by higher-order and more implicit-difference methods.

There are currently four types of computational mesh in TRAC: 1D hydrodynamic, 3D

hydrodynamic, 1D conduction, and 2D conduction. Many subroutines are associated

directly with actions on a computational mesh (e.g., tflds, tf3ds, and rodht), and

various array data structures are linked directly to the computational mesh (e.g., the

contents of GenlDArray, VessArray, and HSArray). TRAC also views components as

collections of mesh segments and contains data describing the relationships between

these mesh segments. In the current version of TRAC, capabilities of mesh-specific
subroutines have been made more general to meet the needs of the range of physical

components. Where possible, direct references to component types have been removed

from mesh-specific subroutines and the necessary features are driven by the components
in a more general way. It is our hope that future programming efforts will continue this

effort to pull component-specific operations up to a higher level in the program or into

component-specific subroutines called from a higher level.

Currently, the system services provide data transfer to a form of TRAC's original bd

array, which is still used by the code's lower-level routines. However, the System Service

logic is general enough to facilitate other uses.

Modules JunTerms, Matrices, SetMat, SemiSolver, SysConfig, and SysService,

which comprise the databases (including derived types) and logic that implement the

global equation solution and system services, are described in detail in Appendix C.

3.2.2.2. Component-Type Database. TRAC currently has 11 component types, which

may be grouped into five functional categories. We list them by their names as they are

generally found in the coding, giving more complete names in parentheses.

1D Hydrodynamic Components
Pipe (PIPE)
Prize (PRIZER, Pressurizer)
Pump (PUMP)
Sepd (SEPD, Separator)
Tee (TEE)
Valve (VALVE)

3D Hydrodynamic Component
Vess (VESSEL)

Pseudo-iD Boundary Condition Components
Break (BREAK)
Fill (FILL)

3-14

"0D" Mulipile-Connection Component
Plen (PLENUM)

Power and Heat Conduction Component
Rod (HTSTR, Heat Structure)

Naming convention: The standard component-type abbreviations are found in
subroutine names, module names, and derived data-type names (and corresponding
instances of those data types). Minor variations in some component-specific subroutine
names were inherited from TRAC-P. Subroutine and module names should start with an
upper-case letter; data-type and variable names should start with a lower-case letter.
Underscores are not used, but identifiable words within a name should start with an
upper-case letter.

Parameter maxcomps: As explained below, the specific data arrays of the component
database are dynamically allocated at runtime as the input is read, but the various array
declarations of the variables that are of TRAC's component-derived types are typically
each dimensioned by parameter maxComps, which is set in module GlobalDir:

MODULE GlobalDim

INTEGER(sik) maxcomps <<<-- declare maxComps
PARAMETER (maxComps=500) <<<- set parameter maxComps

END MODULE GlobalDim

For example, module GeniDArray has the declaration:

TYPE (g1DArrayT) ,DIMENSION(maxComps) glDAr

and module PipeArray has

TYPE (pipeArrayT) ,DIMENSION(maxComps) pipeAr

Parameter maxComps also is used in the more restrictive declarations of the FLT derived
type array (used by all component types) and the component-index array (also used by
component types); therefore, maxComps sets an upper limit on the total number of
components in an input model: this limit includes all components of all component
types in an input model taken together.

Component Indices cci and cco: All direct access to the component database is via
one of two index variables, cci or cco, into the component-derived-type arrays, which
selects a specific component in the calculation. Component-index cci is used at points
in the calculation before subroutine asign is called from subroutine input (where the
component reordering is done for the network-solution logic). Component-index cco is
used after the call to asign. The reordered component indices are stored in array

3-15

compIndices, which has dimension maxComps. We refer to a specific component in a
calculation as being "instantiated" when its data are being referenced directly via either
index-variable cci or index-variable cco.

Component indices cci and cco and array compIndices are declared in module
Global; compIndices is also dimensioned by parameter maxComps in module
Global:

MODULE Global

component indices into as input

INTEGER(sik) cci «<-- declare cci
component indices as reordered in SUB asign

INTEGER(sik) cco «<-- declare cco

hlInd - component index of first heat struct in tracin
rlInd - component index of first restart comp
rhllnd - component index of first heat struct in restart

INTEGER(sik) hllnd, rllnd, rhlInd

INTEGER (sik) compIndices (maxComps) <<<-- declare compIndices

DATA hllnd,rlIndrhlInd/0,0,0/
END MODULE Global

The typical use of array compIndices is shown in the following examples. In the first
example, TRAC is looping over an input model's individual iD hydrodynamic
components, instantiating each of them in turn; in the second example, the value
. TRUE. or . FALSE. is passed to a routine with logical flag reordered that accesses
data from a noninstantiated component.

examples -- use of array compIndices:
.....---.. .

SUBROUTINE outld(imin, imax, iflag)

controls outer calculation for one-thermal-hydraulical
! components.

DO icmp=imin,imax
cco=compIndices (icmp) <<<-- instantiate component (set cco)
icme=icme+l

3-16

IF (.NOT. (genTab(cco) %type.EQ.breakh.OR <<<-use cco
to access specific component

SUBROUTINE GetGenTable (name, compInd, ival, rval, reordered)

LOGICAL reordered

ordInd = compInd
if (reordered) ordInd = compIndices (compInd) <<<-reordered

IF (namne.EQ.'lenvlt') THEN
ival=genTab (ordInd) %lenvlt

ELSEIF
....---.. .

HTSTR-Component Index: The HTSTR indices start after the end of the indices for the

hydrodynamics components:

SUBROUTINE htstrl

first loop over all heat structures

DO icmp=l,inhtstr
cci=icmp+ncomp <<<- add ncomp to obtain HTSTR index

cco=compIndices (cci)

Component Modularity-Logic and Data: There is much commonality and

modularity in the logic (with respect to both data and code) across all of TRAC's 10

component types. The iD component types are similar in data and coding organization

to the other types, and they are very similar among themselves. We begin by using the

PIPE component type as the basic example. Any information specific to the other types is

given in the sections immediately following.

The component FLTs and VLTs contain data elements that are used by a specific

component as a whole (e.g., a variable having the component's type and other variables

having its ID number and total number of mesh cells). The FLT and VLT can include

arrays, but we reserve the term "array data" for data elements specific to an individual

mesh cell in a component (the volume of the jth cell, its void fraction, pressure, etc.). The

3-17

1D component-type arrays are mostly 1D in the Fortran sense (rank 1), but they can be of
higher rank as well (such as the NCELLS x NODES wall-temperature arrays twn and
tw). We have tried to be specific when using the term "ID" as to which meaning is
intended.

3.2.2.2.1. ID-Hydrodynamic-Component Types (PIPE, etc.). FLT, array genTab:
The data elements in the FLT are the same for all 11 component types; FLTs for specific
components in the input deck, for all 11 component types, are stored in array genTab,
which is of derived data-type genTabT and dimension maxComps. All FLT-related logic
is treated by module Flt:

definition of derived data-type genTabT (declaration of its elements):

TYPE genTabT
REAL(sdk) htlsci
REAL(sdk) htlsco

INTEGER(sik) nodes
INTEGER(sik) num
REAL (sdk) type

END TYPE genTabT

"* declaration of array genTab to be of type genTabT and dimension
maxComps:

TYPE(genTabT) ,DIMENSION(maxComps) genTab

" Parameterization of the total length of data-type genTabT (for use by the
dump/restart logic):

INTEGER (sik) genDumpSize
PARAMETER (genDumpSize=24)

Subroutine GenTableDump adds an individual component's variables that
are stored in array genTab to the dump/restart file.

Subroutine GenTableRst reads a component's genTab data from the
dump/restart file.

* Subroutine GetGenTable accesses certain genTab data of a component
other than the current instantiated component (e.g., data that an HTSTR
component needs from a hydrodynamics component that is coupled to its
surface).

3-18

Appendix H gives extensive examples of the data structure and coding in module Flt.

Appendix C gives descriptions of the use by TRAC of all the individual data elements in
genTabT.

VLT, arrays "comp-type" "camp-type"Tab: Each TRAC component type has a set of
data that is used by a given component as a whole (not on a mesh-cell basis), where the
variables are common to all components of a eiven tWpe. These data sets are called the

component VLTs. They comprise mostly scalar variables that are defined by the elements
of one of a set of derived data types; there is a separate derived type for each of the 10
component types. The 11 VLT data types currently defined in TRAC are

breakTabT
fillTabT
pipeTabT
plenTabT
prizeTabT
pumpTabT
rodTabT
sepdTabT
teeTabT
valveTabT
vessTabT

We will refer to these 11 derived data types as a group by the term

"comp-type"TabT.

Eleven arrays, one for each component type and each of dimension maxComps, are

declared to store the "comp-type"TabT (VLT) data for the specific individual

components in the input deck. The array for each component type is declared to be of the

corresponding "comp-type"TabT derived data type and given the name
"comp-type"Tab. For example, the code has the declaration

TYPE(pipeTabT) ,DIMENSION(maxComps) :: pipeTab

to store VLT data for all the individual PIPE components in the input deck. All VLT

related logic for a component type is handled by a module that is specific for that type,
which has a name of the form

MODULE "Comp-type"Vlt.

In Version 3.0 there are 11 "comp-type"Vlt modules, i.e.,

BreakVlt
FillVlt
PipeVlt
PlenVlt

3-19

PrizeVlt
PumpVlt
RodVlt
SepdVlt
TeeV1 t
ValveVlt
VessVlt

The logic in each module "comp-type"vlt comprises

definition of derived data-type "comp-type"TabT (declaration of its
elements):

TYPE pipeTabT
REAL(sdk) bsmass
REAL(sdk) cpow
REAL(sdk) eninp
REAL(sdk) epsw
REAL(sdk) fl(2)
REAL(sdk) fv(2)
REAL(sdk) houtl

INTEGER(sik) js2get

INTEGER(sik) js2put
END TYPE pipeTabT

"* declaration of array "comp-type"Tab to be of type "comp_type"TabT and
dimension maxComps:

TYPE (pipeTabT) ,DIMENSION(maxComps) :: pipeTab

"* Parameterization of the total length of data type "compype"TabT (for
dump/restart):

INTEGER (sik) pipeDumpSize
PARAMETER (pipeDumpSize=60)

"* Subroutine "Comp-type"TableDump adds an individual component's
variables that are stored in array "comp-type"Tab to the dump/restart file:

Subroutine PipeTableDump (ordInd, caller)

"* Subroutine "Comp-type"TableRst reads a component's comp_type"Tab
data from the dump/restart file:

3-20

Subroutine PipeTableRst (ordInd, caller)

There are two additional subroutines that are contained in only some of the
"Comp-type"Vlt modules:

"* Subroutine Get"Comp-type"Tab accesses certain "comp-type"Tab data of a
component other than the current instantiated component (e.g., when
adjusting the power for the heat structures in a neutronics calculation group):

Subroutine GetRodTab (name, compInd, ival, rval, reordered)

" Subroutine Set "Comp-type"Tab sets (overwrites) certain "comp-type"Tab
data of a component other than the current instantiated component (e.g.,
when adjusting the power for the heat structures in a neutronics calculation
group):

Subroutine SetRodTab (name, compInd, ival, rval, reordered)

In Version 3.0 there are Get"Comp-type"Tab subroutines for the ROD, TEE, VALVE,
PUM,, AND VESSEL component types; there is a Set"Comp-type"Tab subroutine only
for the ROD type.

The component-type routines for dump and restart, subroutine
"Comp_type"TableDump and subroutine "Comp-type"'TableRst, are called by generic
driver subroutines dmpVLT and rstVLT, respectively, which branch according to the
component type. Subroutines dmpVLT and rstVLT pass the component index ordInd
to the component-level dump and restart routines; dmpVLT assumes reordering has been
done; rstVLT assumes reordering has not been done.

Array data, generic for all ID-component types (arrays giDAr,.intAr, and heatAr)
declaration: Mesh-cell data for the 1D-component arrays that are common to all the 1D
component types are stored in three derived-type arrays:

giDAr, intAr, and heatAr.

In module GeniDArray, derived data-type glDArrayT is defined, and array giDAr is
declared to be of derived-type giDArrayT and dimension maxComps:

TYPE glDArrayT
REAL(sdk), POINTER, DIMENSION(:) driv

REAL(sdk), POINTER, DIMENSION(:) dx

REAL(sdk), POINTER, DIMENSION(:) fa

REAL(sdk), POINTER, DIMENSION(:) fric

REAL(sdk), POINTER, DIMENSION(:) grav

3-21

REAL(sdk), POINTER, DIMENSION(:) twan

REAL(sdk), POINTER, DIMENSION(:) twen
REAL(sdk), POINTER, DIMENSION(:) tcen

END TYPE glDArrayT

TYPE (glDArrayT),DIMENSION(maxComps) :: glDAr

Array glDAr contains arrays for variables defined at mesh-cell centers (e.g., pressures)
and at cell faces (e.g., velocities). The arrays in giDAr are characterized further by
whether their variables are time-independent (in TRAC-P, these are the hydropt arrays)
or time-dependent; (in TRAC-P, the dualpt arrays), for which typically there are
separate old- and new-time arrays (e.g., array pn for new-time pressures and array p for
old-time values).

Module GenlDArray contains subroutines TimeUpGenlD and BackUpGenlD. These
routines use old- and new-time arrays for timestep advancement and for special (water
packer-type) backups, respectively. Examples of their use are given in Appendix H.

Similarly, arrays intAr and heatAr are declared in modules IntArray and
HeatArray, respectively:

TYPE intArrayT
REAL(sdk), POINTER, DIMENSION(:) idr
REAL(sdk), POINTER, DIMENSION(:) matid
REAL(sdk), POINTER, DIMENSION(:) nff
REAL(sdk), POINTER, DIMENSION(:) :ccf1

END TYPE intArrayT

TYPE (intArrayT),DIMENSION(maxComps) :: intAr

TYPE heatArrayT
REAL(sdk), POINTER, DIMENSION(:,:) cpw

REAL(sdk), POINTER, DIMENSION(:) toy
END TYPE heatArrayT

TYPE (heatArrayT),DIMENSION(maxComps) :: heatAr

Array intAr corresponds to TRAC-P's intpt (note: arrays are real here), and heatAr
corresponds to TRAC-P's heatpt.

Storage Allocation: In module GenlDArrayM, the ID-component-array derived-type
elements are declared to be Fortran 90 pointers, using Fortran 90 colon notation for their
thermal hydraulics:

REAL(sdk), POINTER, DIMENSION(:) :: dx

3-22

REAL(sdk), POINTER, DIMENSION(:,:) :: twn

The actual sizes of the various arrays for each individual component are separately
allocated at run time, using standard Fortran 90 allocate statements, as the input is read
for a specific component (the pointer attribute is required for allocatable arrays that are
derived-type elements; also, some of the arrays in giDAr are used as targets of other
pointer variables, and it is not necessary to give these a target attribute if they are
pointers themselves). Subroutine AllocGenlD, which is contained in module
GeniDArray, is called by the iD-component input routines to allocate all storage for the
data arrays within derived-type arrays giDAr, intAr, and heatAr:

SUBROUTINE AllocGenlD (ncells, nfaces,nods, inflg, ihtflg)

USE GlobalDat <--for value of cci

USE Alloc
USE IntArray <<-- for access to array intAr
USE HeatArray <<-- for access to array heatAr

CALL TRACAlIo (glDAr (cci) %tcen, 1, 1 tcen 0.0 dO) «<-- allocate 1 word
CALL TRACAl1o(glDAr(cci)%twen,i, 'twen' ,0.OdO)
CALL TRACAI1o(glDAr(cci)%twan,i, 'twan' ,0.OdO)

CALL TRACAIlo (glDAr (cci) %vvt, nfaces, I vvt' , 0. OdO) <<<- nfaces words
CALL TRACAIlo(gIDAr(cci)%vlt,nfaces, 'vlt' ,Q.QdO)

CALL TRACA11o (glDAr (cci) %qppc, ncells, ' qppc' 0. OdO) <<<- ncells words

CALL TRACAI1o(intAr(cci)%idr,ncells, 'idr',,0.OdO)

CALL TRACA11o (heatAr (cci) %cpw, ndm1l, ncells, ' cpw , 0. OdO)

Subroutine AllocGenlD calls TRACAIlo to do the actual storage allocations, with one
call for each data array. TRACAIlo is a generic name (Fortran 90 interface) for
subroutines AllocRealOneD, AllocRealTwoD, AllocRealThreeD, and
AllocIntOneD; the actual routine used is determined by the compiler according to the
number and data types of the actual arguments in the particular call TRACAllo
statement. TRACAIIo also can initialize an array to a single value that is passed from its
caller. TRACAIlo is in module Alloc:

3-23

!

3-24

MODULE Alloc

Encapsulation of F90 dynamic allocation and diagnostics for TRAC

INTERFACE TRACAllo
MODULE PROCEDURE AllocRealOneD

MODULE PROCEDURE AllocRealTwoD

MODULE PROCEDURE AllocRealThreeD
MODULE PROCEDURE AllocIntOneD

END INTERFACE

CONTAINS

SUBROUTINE AllocRealOneD (pt, n, name, initialValue)

ALLOCATE (pt (n), STAT=errorStatus) <<<--- allocate real rank-1 array

SUBROUTINE AllocRealTwoD (pt, nl, n2,name, initialValue)

ALLOCATE (pt (nl, n2), STAT=errorStatus) <<<-- real rank-2 array

SUBROUTINE AllocRealThreeD (pt, nl,n2, n3,name, initialValue)

ALLOCATE (pt (nl, n2, n3) , STAT=errorStatus) <<<-- real rank-3 array

SUBROUTINE AllocIntOneD (pt, n, name, initialValue)

ALLOCATE (pt (n) , STAT=errorStatus) <<<--- integer rank-1 array

IF (PRESENT(initialValue)) pt=initialValue <<<--initialize this array

END SUBROUTINE AllocIntOneD

END MODULE Alloc

All TRAC 1D-component types (and also the BREAK, FILL, and PLENUM) have a
module with a name of the form

MODULE "Comp-type".

These modules contain component-type-specific routines for I/O, array storage

allocation, and driving the generic hydrodynamics routines.

For example, module Pipe contains the following routines:

SUBROUTINE dpipe -- add this PIPE to dump file
SUBROUTINE ipipe -- initialize this PIPE after input
SUBROUTINE pipel -- drive prep hydro stage for this PIPE
SUBROUTINE pipelx -- obtain analysis data
SUBROUTINE pipe2 -- drive OUTER hydro stage
SUBROUTINE pipe3 -- drive POST hydro stage
SUBROUTINE repipe -- read restart file; call TRACAllo, AllocGenlD
SUBROUTINE rDiDe -- read input; call TRACAllo, AllocGenlD
SUBROUTINE wpipe -- write text output

The driver input routine (rpipe, repipe, rtee, retee, etc.) for each 1D component
in the input (or restart) deck uses module GeniDArray, which defines derived data
type glDArrayT. AllocGenlD has a call to subroutine TRACAllo for each array that is
a member of arrays giDAr, intAr, and heatAr. As shown in the next section, the input
routines also have direct calls to TRACAllo for each of their component-specific arrays.

Array data, specific for each 1D-component type (arrays "comp-type"Array): For
the 1D-component types, TRAC has these modules to define derived-type arrays for
component-type-specific data (currently, there is no need for a module for the
pressurizer):

PipeArray

PumpArray

TeeArray

ValveArray

For example:

MODULE PipeArray

3-25

Pipe component specific arrays

TYPE pipeArrayT

REAL(sdk), POINTER, DIMENSION(:) powrf

REAL(sdk), POINTER, DIMENSION(:) powtb

REAL(sdk), POINTER, DIMENSION(:) qp3rf

REAL(sdk), POINTER, DIMENSION(:) qp3tb

END TYPE pipeArrayT

TYPE (pipeArrayT),DIMENSION(maxComps) :: pipeAr

END MODULE PipeArray

The separator component has a specific array called sepdAr, which is defined in module

Sepd (which also uses module TeeArray).

The component-specific input routines allocate storage for these arrays with direct calls

to TRACAIIo:

MODULE Pipe

BEGIN MODULE USE
USE PipeArray

CONTAINS

SUBROUTINE repipe(jflag, jun, icomp)

BEGIN MODULE USE

USE Alloc

CALL TRACAllo(pipeAr(cci)%powrf,iabs(pipeTab(cci)%npowrf)*2 &

&,'powrf',0.d0)
CALL TRACAllo(pipeAr(cci)%powtb, iabs(pipeTab(cci)%npowtb)*2 &

&,'powtb',0.d0)

CALL TRACAllo(pipeAr(cci)%qp3rf,iabs(pipeTab(cci)%nqp3rf)*2 &

&,Iqp3rf',O.dO)

CALL TRACAllo(pipeAr(cci)%qp3tb,iabs(pipeTab(cci)%nqp3tb)*i2 &

&, qp3tb,,O.d0)

3-26

There is analogous logic for the PIPE-specific arrays in subroutine rpipe.

3.2.2.2.2. Pseudo-1D Boundary-Condition-Component Types (BREAK, FILL).
FLT, same as for ID: The BREAK and FILL component types use array genTab for
their FLTs in exactly the same manner as the other components.

VLT, specific for each type: The BREAK and FILL VLT data are treated by modules
BreakVlt and FiliVit, respectively; their logic is the same as the other VLT modules.
VLT data for individual BREAK and FILL components are stored in derived-type arrays

breakTab and fillTab.

Array data generic for all 1D-component types (subset of ID): BREAK and FILL
both use the general 1D-component array giDAr and allocate storage for their data
arrays in it with calls to AllocGenlD from their input routines in modules Break and
Fill, respectively. However, the number of mesh cells is hardwired to be one, the
number of wall heat-conduction nodes is hardwired to be zero, the allocation of storage
for the data arrays in intAr and heatAr is turned off, and there are hardwired
assignment statements for the data arrays in rbreak and rf ill:

SUBROUTINE rbreak(j flag, jun)

USE GenlDArray

genTab(cci)%ncellt=1
ncpl=genTab (cci)%ncellt+l
genTab(cci)%nodes=0

<<<- one cell

<<<-- no nodes

initialize general l-d pointers

CALL AllocGenlD(genTab(cci)%ncellt,ncpl,genTab(cci)%nodes, 0,0)
A

no inta- and heatAr allocations

gldAr(cci)%dx(l)=dxin <<<- array assignment

Array data specific for each component type: TRAC has modules for derived-type
data arrays specific to the BREAK and FILL component types:

MODULE BreakArray

MODULE FillArray

3-27

Their logic is similar to that for the 1D-component types:

MODULE BreakArray

TYPE breakArrayT
REAL sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,

END TYPE breakArrayT

DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION (:)
DIMENSION(:)
DIMENSION (:)

TYPE (breakArrayT),DIMENSION(maxComps)

alptb
contb
patb
ptb
rftb
tltb
tvtb

:: breakAr

END MODULE BreakArray

Storage is allocated for these arrays by calls from the component-type input routines to
AllBreakArrays and AllFillArrays, respectively, which are in modules Break and
Fi 11. Subroutines AllBreakArrays and Al1Fi 1lArrays are designed to handle other
common operations on the BREAK- and FILL-specific arrays; they also are responsible
for the dump and restart for these arrays. These routines contain subroutines AllBOp
and AllFOp, respectively:

CALL AllBreakArravs('allocate',breakTab(cci)%ibty
&,breakTab(cci)%isat,breakTab(cci)%nbtb,breakTab(cci)%nbrf,isolut
&,iduml,inbtb2,idum2)

MODULE Break

BEGIN MODULE USE

USE BreakArray
USE Global

CONTAINS

SUBROUTINE AllBreakArrays
& (mode,ibty, isat,ntb,nrf,isolut,ictrl,intb2,words)

IF (ibty.GE.i.AND.ibty.NE.6) THEN
intb2=iabs(ntb)*2
CALL A11BOD(breakAr(cci)%ptb,breakAr(cco)%ptb,intb2, ptbl)

&
&

IF (ibty.NE.l) THEN
CALL A11BOp(breakAr(cci)%tltb,breakAr(cco)%tltb, intb2,'tltb')

3-28

!

CONTAINS

SUBROUTINE AIIBOp (initArray, orderedArray, size, name) <<<- CCi, cCO

BEGIN MODULE USE
USE Alloc
USE Restart

IF(mode.EQ. 'words') THEN
words=words+size

ELSEIF(mode.EQ. 'allocate') THEN

CALL TRACAllo (initArray, size, name, 0. dO) <<<- Call TRACAllo
ELSEIF(mode.EQ. 'dump') THEN

CALL bfoutn(orderedArray, size, ictrl)
ELSEIF (mode. EQ. 'restart') THEN

CALL bfinn(initArray, size, ictrl)
ELSE

STOP 'AllBreakArrays: Unrecognized mode'
ENDIF
END SUBROUTINE A1IBOp

END SUBROUTINE AllBreakArrays

Subroutine AllFillArrays calls and contains the corresponding service routine
AlIFOp:

CALL AIIFOp(fillAr(cci)%alptb, fillAr(cco) %alptb,ntb2, 'alptb')

Note that these routines can use either reordered (cco) or nonreordered (cci)
indexing into the data arrays, according to the situation and task.

3.2.2.2.3. "OD" Multiple-Connection-Component Type (PLENUM). FLT, same as
for 1D: The PLENUM-component type uses array genTab for its FLT in exactly the
same manner as the other components. The PLENUM is the only component type to use
FLT-variable typeIndex (it is set by variable currentPlenumInd in subroutine
rplen), but this logic currently is not used by the code.

VLT, specific for PLENUM: The PLENUM VLT data are treated by module PlenVit,
which has the same logic as the other VLT modules. VLT data for individual PLENUM
components are stored in derived-type array

plenTab.

Array data generic for all 1D-component types (subset of 1D): The PLENUM
component type stores some of its array data in array gidAr, but it does not use a call to
subroutine AllocGenlD. Rather, input routines rplen and replen, in module Plenum,
employ calls to PLENUM-specific allocation routine AllocPlenum, which is also in
module Plenum; rplen and replen have direct calls to loadn and bf inn, which read

3-29

the gldAr data arrays. Many of the PLENUM data arrays are hardwired to a size of one
word; others have storage allocated according to the user-input number of junctions for
the specific PLENUM component. The PLENUM component is the only component type
that associates the pointers for the thermodynamic derivatives and enthalpies in data
type glDArrayT with elements of glDArrayT array driv. For the iD components, driv
is allocated nthm*nf aces words; for the PLENUM, it is allocated nthm words.

MODULE Plenum

CONTAINS

SUBROUTINE AllocPlenum

BEGIN MODULE USE
USE GenIDArray
USE Alloc
USE PlenVlt

CALL TRACAllo(glDAr(cci)%hiv,l, 'hiv',O.OdO)

CALL TRACAI1o(glDAr(cci)%hil,l, 'hil',O.0d0)

CALL TRACAlIo(glDAr(cci)%bitn,I, 'bitn',0.OdO)
CALL TRACAllo(glDAr(cci)%tvni,, 'tvn',O.Od0)

CALL TRACAIlo(glDAr(cci)%tln, 1, tln', O.OdO) <<<-- allocate one word

CALL TRACAllo (glDAr (cci) %driv, nthm, 'driv', 0. OdO) <<<-- allocate driv

gIDAr(cci) %dtsdp=>glDAr(cci) %driv(l:) <<<-- associate pointer to driv
glDAr(cci) %deldp=>glDAr(cci) %driv (2:)

CALL TRACAllo(glDAr(cci)%favol,plenTab(cci)%npljn, 'favol' ,0.OdO)

giDAr (cci) %fa=>glDAr (cci) %favol

CALL TRACAIIo(glDAr(cci)%dx,plenTab(cci)%npljn, 'dx', 0.OdO)
A

allocate npljn words

Array data specific for the PLENUM-component type: TRAC has a module for

derived-type data arrays specific to the PLENUM-component type:

PlenArray

Its logic is similar to that for the iD-component types:

MODULE PlenArray

3-30

Plenum component specific arrays

TYPE plenumArrayT

INTEGER(sik), POINTER, DIMENSION(:)

REAL(sdk),

:: ioj <<<- integer, rank 1

POINTER, DIMENSION(:,:) :: dbnd <<<- real, rank 2

REAL(sdk), POINTER, DIMENSION(:) : : favul <<<-- real, rank 1

END TYPE plenumArrayT

TYPE (plenumArrayT) ,DIMENSION(maxComps) :: plenAr

END MODULE PlenArray

Subroutines rplen and replen have direct calls to TRACAIlo to allocate storage for the
plenAr data arrays. rplen and replen are contained in module Plenum, which uses
module PlenArray.

Adding new variables: These steps are followed when adding a new variable to the 1D
hydrodynamic database for an existing component type. Complete details are given in
Appendix H. See also Section 3.2.3.1 for guidelines for modification of the system
services (when, for example, a new component type is added). At the end of this
subsection, we list a summary of steps for adding a new variable for components when
System Services for the component bd array logic are affected; full details are given in
Section 3.2.3.1.

oenTabT (FLT):

1. Modify the definition of data-type genTabT and the parameterization
of the length of data-type genTabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.

4. Modify subroutine GetGenTable (as needed).

5. Echo new input variable (as needed).

6. Add to edits.

"comy tvpe"TabT (VLTs):

3-31

1. Modify the definition of data type "comp-type"TabT and the

parameterization of the length of data-type "comp_type"TabT.

2. Add the new variable to the dump/restart file.

3. Read the new variable from the dump/restart file.

4. Add or modify subroutine Get"Comp-type"Tab (as needed).

5. Add or modify subroutine Set"Comp-type"Tab (as needed).

6. Echo new input variable (as needed).

7. Add to edits.

Array Data:
For "comp type"-specific arrays:

1. Add declaration of array to TYPE "comp-type"ArrayT in module
"Comp-type"Array.

2. Add allocation of storage for array with call to subroutine TRACAllo
in "comp-type" input routines, which are in module "Comp-type'.

3. Add array to dump file with call to subroutine bfoutn in
"comp-type" dump routine in module "Comp.type".

4. Read array from input file tracin with call to subroutine loadn and

echo to output file trcout with call to subroutine warray, in
"comp-type" input routine in module "Comp-type", after storage
allocation.

5. Read array from restart file trcrst with call to subroutine bf inn and

echo (restart) array to trcout with call to subroutine warray, in
"Ifrcompype" restart routine in module "Comprtype".

6. Write array to large (major) edits in trcout (as needed).

For general data-arrays (glDAr):

1. Add declaration of array to TYPE glDArrayT in module
GenlDArray.

2. Add allocation of storage for array with new call to subroutine
TRACAllo, inserted in subroutine AllocGenlD, which is in module
GenlDArray.

3-32

3. Add array to dump file with call to subroutine bfoutn in subroutine
dcomp.

4. Read array from input file tracin with call to subroutine loadn, and
echo to output file trcout with call to subroutine warray, in
subroutine rcomp, after storage allocation.

5. Read array from restart file trcrst with call to subroutine bf inn and
echo (restart) array to trcout with call to subroutine warray, in
subroutine recomp.

6. Write array to large (major) edits in trcout (as needed) with call to
subroutine wcomp.

7. If the array is in DUALPT, add assignment statements for it to
subroutine TimeUpGenlD (module GeniDArray) (in two places).

8. If appropriate, add an assignment statement for the array to
subroutine BackUpGenlD (module GenlDArray).

9. On an as-needed basis, add a new index variable for the array to the
module GeniDArray data interface and add a corresponding array
reference to the case construct in subroutine GetlDArrayPointer
(module GenlDArray).

bd Array and System Services:

1. Add variable to the bd-array, derived-type structure in module
Boundary. (Note: the bd derived type is not currently implemented.)

2. Increment variable nbd by one.

3. Add call to SetBDVar for the new variable in SetBDJunCell.

4. Add case statement to flipSign logic in SetBDVar, if appropriate.

5. Add case statement to the associated logic in AssignGenlDPtr (in
post-3.0 versions, this routine is called AssignPtr).

If the new variable is isolated for use by only one or two components, then pointers
should be set up specifically for these components. Remaining components should have
this variable pointing to the nul variable in module SysService (in a post-3.0 version,
variable nul wil be moved to module Global).

3.2.2.2.4. 3D Hydrodynamic-Component Type (VESSEL). FLT, same as for ID,
array genTab: The 3D VESSEL component uses the same FLT as the other component
types. FLT data for individual VESSEL components are stored in derived-type array

3-33

genTab.

VLT, specific 3D-component type: The VESSEL VLT data are treated by module
vessVlt; its logic is the same as the other VLT modules. VLT data for individual
VESSEL components are stored in derived-type array

vessTab.

Array data for the VESSEL-component type: Array data for a specific 3D VESSEL
component fall into two categories:

1. Special array variables provide "general" information for a VESSEL,
i.e., data that are not defined at each cell in the 3D mesh. Examples of
such data are arrays that carry the physical lengths of the VESSEL's
radial segments ("rings"), azimuthal segments ("thetas" or "sectors"),
and axial segments ("levels"); these are dimensioned according to the
user-input parameters nrsx, ntsx, and nasx, respectively (for a
VESSEL modeled in Cartesian coordinates, these variables correspond
to the x, y, and z coordinates, respectively). Other examples are arrays
with information for source connections to 1D hydrodynamic
components, dimensioned by input-parameter ncsr (or a multiple
thereof), and arrays for vent-valve information, dimensioned by input
parameter nvent.

All of these arrays are of rank 1; storage for them is allocated at run
time. A special case of the special array variables is that which carries
3D VESSEL information that is only 2D in nature; typically, these data
specify a different single value for each axial column of mesh cells in
the VESSEL and are dimensioned nrsx x ntsx (the number of mesh
cells per level). As shown below, elements of these rank-1 arrays are
accessed by composite indices into the 2D plane.

2. 3D mesh-cell variables carry information that is defined for each cell
in the VESSEL fluid mesh; they are all of rank 3, and storage for them
is allocated at run time. Some of these arrays hold data that are
defined at each cell center (e.g., pressure and liquid temperature), and
some hold data defined at cell faces (e.g., vapor velocity in the radial
direction and liquid velocity in the axial direction). For the face arrays,
information for only three faces per cell is needed because the other
faces are defined at neighboring cells in the mesh.

Special array variables-declaration: The special array variables for all VESSEL

components in a model are stored in derived-type array

vsAr,

3-34

which is of type vessArrayT and dimension maxComps. Module vessArray defines
the elements of data type vessArrayT and declares array vsAr (note that vessArrayT
contains both integer and real arrays):

MODULE VessArray

BEGIN MODULE USE
USE IntrType

USE GlobalDim «<-- parameter maxComps

IMPLICIT NONE

! VESSEL component specific arrays

TYPE vessArrayT
REAL(sdk), POINTER, DIMENSION(:) z
REAL(sdk), POINTER, DIMENSION(:) dz
REAL(sdk), POINTER, DIMENSION(:) rad
REAL(sdk), POINTER, DIMENSION(:) dr
REAL(sdk), POINTER, DIMENSION(:) th

REAL(sdk), POINTER, DIMENSION(:) zsgrd
INTEGER(sik), POINTER, DIMENSION(:) isrl

INTEGER(sik), POINTER, DIMENSION(:) isrc
INTEGER(sik), POINTER, DIMENSION(:) isrf

INTEGER(sik), POINTER, DIMENSION(:) nsrl
REAL(sdk), POINTER, DIMENSION(:) svc
REAL(sdk), POINTER, DIMENSION(:) sac

REAL(sdk), POINTER, DIMENSION(:) alpcn

REAL(sdk), POINTER, DIMENSION(:) alptn
REAL(sdk), POINTER, DIMENSION(:) zchfn
REAL(sdk), POINTER, DIMENSION(:) ztbn

END TYPE vessArrayT

TYPE (vessArrayT), TARGET, DIMENSION (maxComps) vsAr <<<--declare vsAr

Because the elements of data-type vessArrayT are allocatable arrays, they have the
pointer attribute.

Storage allocation: Subroutines rvssl and revssl, which are contained in module
VessTask, call subroutine AllocVess (module VessArray). AllocVess calls
TRACAllo for each array in vsAr:

3-35

MODULE VessArray

CONTAINS

SUBROUTINE AllocVess

BEGIN MODULE USE

USE GlobalDat
USE VessCon
USE VessVlt
USE Alloc

Store dimension data in local variables:
nclx=vessTab(cci)%nclx
nrsx=vessTab(cci)%nrsx
nytv=vessTab(cci)%nytv
nasx=vessTab(cci)%nasx
ntsx=vessTab(cci)%ntsx
ncsr=vessTab(cci)%ncsr
nvent=vessTab(cci)%nvent

CALL TRACAllo(vsAr(cci)%ztbn,nclx,'ztbn ,O.OdO) <- #cells perlevel
CALL TRACAllo(vsAr(cci)%zchfn,nclx,'zchfn',0.OdO)

CALL TRACAllo(vsAr(cci)%jsn,ncsr,'jsn',0) <<<-- # source connections
CALL TRACAllo(vsAr(cci)%juns,ncsr,'juns',0)

CALL TRACAllo (vsAr (cci) %avent, nvent, 'avent , 0.0d0) <<<--- # vent valves
CALL TRACA11o(vsAr(cci) %dth,ntsx, 'dth', .0.OdO) <<<--- # thetas or y-cells
CALL TRACAllo(vsAr(cci)%th,ntsx,'th',0.OdO)
CALL TRACAllo(vsAr(cci)%dr,nrsx,'dr',0.OdO) <<<--# rings or x-cells
CALL TRACAllo(vsAr(cci)%rad,fnrsx,'rad',0.OdO)
CALL TRACAllo(vsAr(cci)%dz,nasx,'dz, 0.OdO) <<<-- # levels or z-cells
CALL TRACAllo(vsAr(cci)%z,nasx,'z',0.OdO)

END SUBROUTINE AllocVess

Accessing special-array 2D elements: The special-array variables that carry 2D
information for the nclx columns in a VESSEL through the (ij) plane are accessed by a
composite index that is calculated as the VESSEL mesh is looped over:

MODULE VessTask

3-36

CONTAINS

SUBROUTINE cif 3 «<-- VESSEL interfacial shear

USE VessVlt <<-- obtain (i,j,k) ranges for this VESSEL
USE VessArray

loop over all levels for each radial and azimuthal mesh

ir=O
DO i=vessTab(cco) %icO,vessTab(cco) %icx,nv <<<--- radial loop

ir=ir+l <<<-

jct=(ir-l)*(vessTab(cco)%jcx-vessTab(cco)%jcO+l)
it=O
DO j=vessTab(cco)%jcO,vessTab(cco)%jcx «<-

it=it+l <<<-

ring counter

* azimuthal loop
theta counter

jct=jct+l <<<- index into
agalp=vsAr(cco)%alpan(jct)
chfalp=vsAr(cco)%alpcn(jct)
rwalp=vsAr(cco)%alprn(jct)
smalp=vsAr(cco)%alpsn(jct)
tbalp=vsAr(cco)%alptn(jct)
agsz=vsAr(cco)%zagsn(jct)
chfz=vsAr(cco)%zchfn(jct)
dfsz=vsAr(cco)%zdfsn(jct)
rwsz=vsAr(cco)%zrwsn(jct)
smsz=vsAr(cco)%zsmsn(jct)
tbz=vsAr(cco)%ztbn(jct)
nrefld=int(vsAr(cco)%refld(jct))
xfunh=vsAr(cco)%funh(jct)
DO k=vessTab (cco) %kcO,vessTab (cco) %kcx ax<--iaal loop

iz=k-nzbcm

set VESSEL location logical variables

3D mesh-cell variables: A TRAC 3D VESSEL component may be modeled in either
cylindrical (r, q, z) or Cartesian (x, y, z) coordinates. All 3D mesh arrays are indexed by
indices (i, j, k) that correspond to either the (r, q, z) or (x, y, z) coordinates, depending
on the particular VESSEL's geometry. When we refer to rings and thetas, we are
indicating in a more general sense the i and j indices, respectively.

Declaration: The mesh arrays for the 3D VESSEL component are stored in a derived
type array of dimension maxComps, in much the same fashion as the generic arrays for
the 1D components. Module VessArray3 defines derived data-type vessArray3T, the

3-37

ti,jJ plane

elements of which are of dimension (, :, :) and have the pointer attribute. Array
vsAr3 is declared to be of TYPE vessArray3T and dimension (maxcomps):

MODULE VessArray3

TYPE vessArray3T
REAL(sdk), POINTER,

REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,

DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)

<<<-- define TYPE vessArray3T
hia
hva

:: q3drl
q3drv
wat

REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,

END TYPE vessArray3T

DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)
DIMENSION(:,:,:)

TYPE (vessArray3T) ,DIMENSION (maxComps) :: vsAr3 <<<--declare vsAr3

Indices for all specific VESSEL components in an input model are stored with the other
component indices in array compIndices (module Global). Typically, array data for
specific Vessels in array vsAr3 are accessed using the same cci and cco index variables
used for the other components.

Storage allocation: Table 3-4 summarizes the variables used in allocating storage for
the VESSEL mesh arrays (also included in Table 3-4 are two parameter variables that
limit the maximum size of any VESSEL component in an input model; these variables
are used only for special purposes).

Each specific VESSEL component has its mesh arrays dynamically allocated at runtime;
this storage allocation is based on the user-input number of mesh cells for each of its
three dimensions [using input variables nrsx (radial or x-coordinate)], ntsx (azimuthal
or y-coordinate), and nasx (axial or z-coordinate), which are stored in the VESSEL's
VLT). Each array is dimensioned according to VESSEL VLT variables ni, nj, and nk,
which specify the lengths of the i, j, and k subscripts, respectively. Variables ni, nj, and
nk include storage for the VESSEL's physical mesh, as input by the user, and also storage
for boundary cells that TRAC uses internally along each coordinate. The number of
boundary cells is specified by six parameter variables in module vessCon (see Table 3-4
and Fig. 3-1) for the low- and high-numbered ends of each of the three coordinates. The
use of the boundary cells is described in the following section.

3-38

xcv
xvl

xv2
xv3
xv4
xv5
xv6
xvs

TABLE 3-4
VESSEL-Array Dimension Variables

Name Storage Purpose
Location

nrsx vessTab The number of physical mesh cells in the radial or x coordinate
(user input).

ntsx vessTab The number of physical mesh cells in the azimuthal or y
coordinate (user input).

nasx vessTab The number of physical mesh cells in the axial or z coordinate
(user input).

nxbcm Module The number of boundary (phantom) mesh cells next to the
vesscon radial ring or x-direction cell 1.

nybcm Module The number of boundary (phantom) mesh cells next to the
VessCon aximuthal sector or y-direction cell 1.

nzbcm Module The number of boundary (phantom) mesh cells next to the axial
VessCon or z-direction cell 1.

nxbcp Module The number of boundary (phantom) mesh cells next to the
VessCon radial ring or x-direction cell nrsx.

nybcp Module The number of boundary (phantom) mesh cells next to the
VessCon azimuthal sector or y-direction cell ntsx.

nzbcp Module The number of boundary (phantom) mesh cells next to the axial
VessCon or z-direction cell nasx.

ni vessTab The total number of computer words allocated for the first
subscript, i (radial or x coordinate), of a VESSEL mesh array:
ni = nrsx + nxbcm + nxbcp

nj vessTab The total number of computer words allocated for the second
subscript, j (azimuthal or y coordinate), of a VESSEL mesh
array:
nj = ntsx.+ nybcm + nybcp

nk vessTab The total number of computer words allocated for the third
subscript, k (axial or z coordinate), of a VESSEL mesh array:
nk = nasx + nzbcm + nzbcp

nxrmx Module The maximum number of radial rings or x-direction cells in the
VessCon 2D or 3D mesh for any VESSEL component in the input model.

Used only to statically dimensioned global array wp and the
HTSTR/VESSEL interface arrays in module RodHtcref 1.

nytmx Module The maximum number of azimuthal sectors or y-direction cells
vesscon in the 2D or 3D mesh for any VESSEL component in the input

model. Used only to statically dimensioned global array wp and
the HTSTR/VESSEL interface arrays in module RodHtcref 1.

3-39

MODULU vess'on

BEGIN MODULE USE
USE IntrType

From parsetl.h:

Parameters nxrmx and nytamc are used only to statically dimension global array
wp and the HTSTR/VESSEL interface arrays in module RodHtcref 1 (via
parameter nxryt):

INTEGER(sik) nxrmx, nytmx
PARAMETER (nxrmx=21,nytmx=12)
INTEGER(sik) nrfmx,nzfmx
PARAMETER (nrfmx=20,nzfmx=250)
INTEGER(sik) nms,ndms
PARAMETER (nms=10,ndms=7+nms)

INTEGER(sik) nxbcm, nybcm, nzbcm
PARAMETER (nxbcm=2,nybcm=2,nzbcm=2) <<<- low-boundary cells
INTEGER(sik) nxbcp,nybcp,nzbcp
PARAMETER (nxbcp=l, nybcp=l, nzbcp=l) <<<-- high-boundary cells
INTEGER (sik) nxryt
PARAMETER (nxryt=nxrmx*nytmx) <<<-- nxryt, used by module

Rodftcref1
INTEGER(sik) nrfmxl,nrzfmx
PARAMETER (nrfmxl=nrfmx+l,nrzfmx=nrfmx*nzfmx)

From parset2. h: <<<--the following is for loop-index logic:

PARAMETER (jc0p=1+nybcm)
PARAMETER (kc0p=l+nzbcm)
PARAMETER (jc0mp=jc0p-1,kc0mp=kc0p-1)
PARAMETER (jc0mmp=jc0p-nybcm, kc0mmp=kc0p-nzbcm)

From parset0.h:

PARAMETER (iseq=l,imfreq=l,idrpeq=0,nfr3eq=2)

END MODULE VessCon

Fig. 3-1. Module VessCon

3-40

Subroutine AllocVess3 (module VessArray3) allocates all storage for the VESSEL
mesh arrays, using calls to TRACAllo for each array. Subroutines rvssl and revssl
(module VessTask) each have a call to AllocVess3. In rvssl, the three input
variables that dimension the physical mesh are first stored in local variables nxr, nyt,
and nzz. Then, ni, nj, and nk are calculated using the six boundary-cell parameter
variables, and TRACAllo is called:

MODULE VessTask

CONTAINS

SUBROUTINE rvssl(icomp,jflag,jun)

--- read nasx, nrsx, and ntsx; store in local variables:

read input parameters to be stored in vlt

CALL readi (iiiii' ,vessTab(cci)%nasx,vessTab(cci)%nrsx
&,vessTab(cci)%ntsx,vessTab(cci) %ncsr,vessTab(cci) %ivssbf, 'nasx' &
&, 'nrsx, 'ntsx', ncsr, 'ivssbf')

j flagd=O
nxr=vessTab (cci) %nrsx
nyt=vessTab (cci) %ntsx
nzz=vessTab (cci) %nasx

calculate ni, nj, and nk; call AllocVess3:

vessTab (cci) %ni=nxr+nxbcm+nxbcp
vessTab (cci) %nj =nyt+nybcm+nybcp
vessTab (cci) %nk=nzz+nzbcm+nzbcp

CALL AllocVess (; < for special arrays
CALL AllocVess3 (vessTab(cci) %ni,vessTab(cci)%nj,vessTab(cci)%nk &

&, cci)

MODULE VessArray3

--- allocate all VESSEL mesh arrays with arguments ni, ni, nk.

CONTAINS

SUBROUTINE AllocVess3 (ni, nj, nk, ccix)

BEGIN MODULE USE
USE Alloc

3-41

IMPLICIT NONE
INTEGER(sik) ni,nj,nk, ccix

CALL TRACAI1o(vsAr3 (ccix) %hla,ni,nj,nk, 'hla' ,O.OdO)

CALL TRACAI1o(vsAr3 (ccix) %hva,ni,nj,nk, 'hva', O.OdO)

CALL TRACAI1o(vsAr3 (ccix) %q3drl,ni,nj,nk, 'q3drl',O.OdQ)

CALL TRACAIio(vsAr3 (ccix)%q3drv,ni,nj,nk, 'q3drv' ,O.OdO)

CALL TRACAIlo(vsAr3 (ccix) %xv6,ni,nj,rnk, 'xv6',O.OdO)

CALL TRACAI1o(vsAr3 (ccix) %xvs,ninj,nk, 'xvs', O.OdO)

END SUBROUTINE AllocVess3

VESSEL boundary (phantom) cells: The VESSEL mesh in TRAC is constructed with
two planes of boundary cells outside the mesh in each of the three lower-numbered
directions, with one plane of boundary cells in each of the higher-numbered directions.
The use of boundary cells allows all references from cells within the physical mesh to
neighboring cells outside the physical mesh to be valid. The extra plane in the lower
numbered directions is necessary to accommodate face-centered data. The number of
boundary cells in each direction is determined by parameter constants that are set in
module VessCon:

INTEGER (sik) nxbcm, nybcm, nzbcm

PARAMETER (nxbcm=2, nybcm=2, nzbcm=2) <<<-- low-boundary cells
INTEGER (sik) nxbcp, nybcp, nzbcp

PARAMETER (nxbcp=l, nybcp=l, nzbcp=l) <<<- high-boundary cells

When using a 3D VESSEL component to model a typical cylindrical-geometry reactor
VESSEL with outer-boundary walls, the data in the bottom and top axial-boundary cells
and in the outer radial-boundary cells do not affect the calculation. However, the inner
radial-boundary cells can be used to incorporate the effect of radial-momentum
convection across the center of the VESSEL. Such a model was implemented using a
different mechanism in TRAC-PF1/MOD1. This model, which is partially implemented
in subroutine vrbd (module VessCrunch), is not currently activated in TRAC. The
azimuthal-boundary cells are used to avoid the special logic necessary to indicate that
the first physical azimuthal sector is adjacent to the last physical azimuthal sector. This is
accomplished by subroutine setbdt (module VessCrunch), which copies the data from
the cells in the first and last physical sectors to their appropriate phantom cells.

The boundary-cell implementation makes it simple to include generalized boundary
conditions at the bottom-axial, top-axial, and outer-radial boundaries of a cylindrical
VESSEL and at all external boundaries of a 3D Cartesian-geometry VESSEL. TRAC
contains the appropriate coding in all VESSEL hydrodynamic routines to allow for fixed
pressure (such as a BREAK component) or fixed-velocity (such as a FILL component)
boundary conditions independently at any of these boundaries. However, this coding
for the radial (or x) and azimuthal (or y) boundaries has not yet been tested. In the
currently released version of TRAC, there is no input-data mechanism to activate this
coding. Input option ivssbf activates only the generalized boundary conditions at the

3-42

lower and upper axial faces. There currently is no coding to allow for the generalized
boundary conditions to be time-dependent. However, implementing such a capability
should not require major changes to TRAC.

In addition to providing for the new generalized boundary conditions, using phantom
cells improves implementation of the standard hydrodynamic algorithms. Without the
use of phantom cells, special program logic is required to calculate expressions,
including gradients and fluxes for cells at the edge of the physical mesh. Such logic
would increase the probability of coding errors and inhibit vectorization on hardware
such as a Cray computer.

For typical coarse-mesh 3D VESSEL components, most of the cells are found at the edges
of the mesh. For example, a VESSEL component with four radial rings and four
azimuthal sectors on each level actually has only 4 of the 16 cells on a level that has
neither a radial nor an azimuthal boundary. Because even straightforward vectorization
generally reduces computation time by more than a factor of 5, it is clearly desirable to
design implementations that are vectorizable for all cells.

As stated previously, if phantom cells are not used, special logic would be required to
carry out calculations for cells at the edge of the physical mesh. On the other hand, when
phantom cells are used, additional procedures are required to define the values
associated with the phantom cells. The amount of code that must be maintained is
similar in either case; however, the phantom-cell methodology is more easily
modularized.

The major disadvantage in using phantom cells is the potential for significantly
increased computer-memory requirements for coarse-mesh VESSEL components. For
our previous example, a VESSEL with 4 radial rings, 4 azimuthal sectors, and 10 axial
levels has only 4 x 4 x 10, or 160, physical mesh cells. However, it will have (4 + 3) x (4 +
3) x (10 + 3), or 637, computational mesh cells when including the boundary cells.
Naturally, the percentage of boundary cells is smaller for more finely noded problems.
The current VESSEL mesh array data contain about 300 different variables; thus, this
example would require about 200,000 words of computer memory for the 48,000 words
of physical mesh-cell array data. However, for most modem computer hardware, this is
not a large amount of memory, and the cost-benefit ratio of this memory increase is
extremely favorable when considering the more efficient coding.

Because both of the lowest-numbered planes of phantom cells in each direction are used
only in conjunction with the generalized boundary-condition option associated with a
fixed-pressure boundary condition, it should be possible to reduce the memory
requirements by changing from 2 to 1 the parameter constants defining the number of
lower-numbered phantom cells for the radial or x and azimuthal or y directions.
However, this reduction has not been tested.

DO-loop limits: The lower and upper limits of the many Fortran DO loops over the
VESSEL mesh arrays in TRAC are stored in variables in each VESSEL component's VLT
(array vessTab). As shown below, these limits are calculated in module VessCon (see

3-43

Fig. 3-1) and in subroutine rvssl (module VessTask) according to the individual input
specifications for each VESSEL component and the number of boundary cells specified
for each coordinate in module vesscon (Fig. 3-1). All array-dimension loop-limit
variable names have the same naming convention, with the first letter, i.e., i, j, and k,
indicating the first (radial- or x-direction), second (azimuthal- or y-direction), and third
(axial- or z-direction) array subscripts, respectively. The letter c in a name denotes a
limit suitable for looping over cells, and the letter f denotes a limit suitable for looping
over cell faces. The convention for cell-face variables in the TRAC-M VESSEL is the same
as in TRAC-P: the cell-face data at the outer (r or x), forward (e or y), or upper (z) face of
a cell have the same index as the data at the cell center. Note that, as indicated above in
the section on boundary cells, cell faces at the VESSEL boundaries are included in the
cell-face loops only when their velocities need to be calculated as a result of using the
generalized boundary-condition ivssbf option for a pressure boundary condition.

The numeral 0 in a name denotes a lower limit, and the letter x denotes an upper limit.
The suffix m denotes a lower limit that includes the boundary cell adjacent to the first
physical cell, and the suffix mm denotes a lower limit that includes all of the low
numbered boundary cells. The suffix p denotes an upper limit that includes the
boundary cell adjacent to the last physical cell, and the suffix a 1l denotes an upper limit
that includes all the high-numbered boundary cells. The variable names for the radial- or
x-direction are

icOmm Lower limit for loop over all radial rings or x-direction cells in the
computational mesh.

icOm Lower limit for loop over radial rings or x-direction cells in the
physical mesh and the adjacent low-numbered phantom or
boundary radial ring or x-direction cell.

ic0 Lower limit for loop over all radial rings or x-direction cells in the
physical mesh.

ifO Lower limit for loop over all radial-ring faces or x-direction cell
faces at which velocities are calculated.

icx Upper limit for loop over all radial rings or x-direction cells in the
physical mesh.

ifx Upper limit for loop over all radial-ring faces or x-direction cell
faces at which velocities are calculated.

icxP Upper limit for loop over radial rings or x-direction cells in the
physical mesh and the adjacent high-numbered phantom or
boundary radial ring or x-direction cell.

iall Upper limit for loop over all radial rings or x-direction cells in the
computational mesh.

3-44

The variable names for the azimuthal or y-direction loop limits can be obtained by
replacing the leading i with a j and those for the axial or z-direction loops by replacing
the leading i with a k. The code developer should not have to change any of the coding
of the loop limits in either module vessCon or in subroutine rvssl. The coding of the
loop limits is described here for completeness. Certain loop limits are hard coded with
parameter statements, which are defined as follows in module vessCon (see Fig. 3-1):

jcop = nybcm + 1
jcOmp = jcOp - 1
jcommp = jc~p- nybcm
kc0p = nzbcm + 1
kcOmp = kc0p - 1
kc0mmp = kc0p - nzbcm

The "p" in these names stands for parameter because they are parameter constants.
These constants are copied to the corresponding vessTab variables jcO, jcOm,
jcOmm, kcO, kcOm, and kc0mm, using the standard naming convention in subroutine
rvssl:

MODULE VessTask

CONTAINS

SUBROUTINE rvssl (icomp, jflag, jun)

vessTab (cci) %jcO=jcop
vessTab(cci) %jc0m=jcOmp
vessTab(cci) %jcOxmm=jcOmmp
vessTab (cci) %kcO=kc0p
vessTab (cci) %kc0m=kcOmp
vessTab(cci) %kc0mm=kc0mmp

Additional radial- or x-direction, azimuthal- or y-direction, and axial or z-direction
lower loop limits, as well as all of the upper loop limits, are defined dynamically for each
3D VESSEL component in subroutine rvssl, where

nxr is the input number of physical radial rings or x-direction cells,

nyt is the input number of physical azimuthal sectors or y-direction cells,

nz z is the input number of physical axial levels or z-direction cells,

3-45

igeom is 0 for cylindrical geometry and 1 for Cartesian geometry,

igbcxr is nonzero for generalized radial- or x-direction boundary conditions,

igbcyt is nonzero for generalized azimuthal- or y-direction boundary
conditions,

igbc z is nonzero for generalized axial-direction boundary conditions,

nxrv is the upper limit corresponding to loop-limit ifx,

nytv is the upper limit corresponding to loop-limit j fx, and

nz zv is the upper limit corresponding to loop-limit kfx.

Variables nxr, nyt, and nzz are the same local variables that are used by rvssl to
dimension the VESSEL fluid-mesh arrays. In the current version of TRAC, IGBCXR and
IGBCYT are always 0 and IGBCZ is only nonzero when the VESSEL outer-boundary
condition input flag, IVSSBF, is nonzero.

nxr=vessTab (cci) %nrsx
nyt=vessTab (cci) %ntsx
nzz=vessTab (cci) %nasx
vessTab (cci) %igbcxr=O
vessTab (cci) %igbcyt=O
vessTab(cci) %igbcz=O
IF (vessTab(cci)%ivssbf.NE.0) THEN

vessTab(cci) %igbcz=l

vessTab (cci) %nxrv=vessTab (cci) %nrsx-1
IF (vessTab(cci)%igeom.EQ.O.AND.vessTab(cci)%igbcxr.NE &

&.0) vessTab(cci) %nxrv=vessTab(cci) %nrsx
IF (vessTab(cci)%igeom.NE.O.AND.vessTab(cci)%igbcxr.NE &

&.0) vessTab(cci) %nxrv=vessTab(ccio)%nrsx+l
vessTab (cci) %nytv=vessTab (cci) %ntsx
IF (vessTab(cci)%igeom.EQ.O.AND.vessTab(cci)%%ntsx.EQ &

&.1) vessTab (cci) %nytv=O
IF (vessTab(cci)%igeom.NE.O.AND.vessTab(cci)%igbcyt.EQ &

&. 0) vessTab (cci) %nytv=vessTab (cci) %ntsx-1
IF (vessTab(cci)%igeom.NE.0.AND.vessTab(cci)%igbcyt.NE &

&. 0) vessTab(cci) %nytv=vessTab (cci) %ntsx+l
vessTab (cci) %nzzv=vessTab (cci) %nasx-I
IF (vessTab(cci) %igbcz.NE.0) vessTab(cci)%nzzv=vessTab(cci) %nasx+l

Set up the start value for the first (x or r) variable index

3-46

vessTab(cci) %icOmm=1
vessTab (cci) %icO=vessTab (cci) %icO0mm+nxbcm
vessTab(cci) %icO0m=vessTab(cci) %icO-1

vessTab (cci) %j fO=vessTab (cci) %j cO
IF (vessTab(cci)%igeom.EQ.1.AND.vessTab(cci)%igbcyt.EQ &

&.1) vessTab(cci)%jfO=vessTab(cci)%jcOm
vessTab(cci) %jcx=vessTab(cci) %jcO+nyt-1
vessTab(cci) %jcxp=vessTab(cci) %jcx+1
vessTab(cci) %jall=vessTab (cci) %jcx+nybcp
vessTab(cci) %nijt=ni*vessTab(cci) %jal1
vessTab(cci) %kfO=vessTab (cci) %kcO
IF (vessTab(cci) %igbcz.EQ.1) vessTab(cci) %kfO=vessTab(cci)%kc0m
vessTab (cci) %kcx=vessTab (cci) %kcO+nzz-1
vessTab(cci) %kcxp=vessTab (cci) %kcx+1
vessTab (cci) %kall=vessTab (cci) %kcx+nzbcp
vessTab(cci) %ifO=vessTab(cci) %icO
IF (vessTab(cci)%igeom.EQ.1.AND.vessTab(cci)%igbcxr.EQ &

&.1) vessTab(cci) %ifO=vessTab(cci)%icOm
vessTab(cci) %icx=vessTab(cci) %icO+ (nxr-1)
vessTab(cci) %icxp=vessTab(cci) %icx+1
vessTab(cci) %iall=vessTab (cci) %icx+nxbcp
vessTab(cci) %jfx=vessTab(cci) %jfO+vessTab(cci) %nytv-1
vessTab(cci)%kfx=vessTab(cci) %kfO+vessTab(cci)%nzzv-1
vessTab(cci) %ifx=vessTab(cci) %ifO+ (vessTab(cci) %nxrv-1)

VESSEL interface to 1D/3D service routines: Subroutines fprop, thermo, htif, and
evaldfld perform services for the hydrodynamic solution that are common to the 1D
and the 3D components. They evaluate fluid properties (fprop andthermo), interfacial
heat transfer (htif), and new-time/old-time fluid changes for the timestep-size logic
(evaldfld). The VESSEL component passes data to these routines and receives data
back from them (with the exception of evaldfld) via interface-module VessTolD,
which contains subroutines Evaldf3D, Fprop3D, Htif3D, and Therm3D. These
interface routines copy required VESSEL 3D mesh data into local rank-1 arrays for a
given VESSEL level, according to the standard TRAC numbering convention of

ring 1, thetas 1--ntsx; ring 2, thetas 1--ntsx; ring nrsx, thetas 1--ntsx.

These rank-1 arrays are then passed to the 1D-3D service routine. The interface routines
also declare local rank-1 arrays for any data to be returned from the service routines via
their argument lists; after the service routine call, these rank-1 arrays are copied into the
3D fluid-mesh arrays.

Note that the service routines expect the thermodynamic-derivative arrays to be in "cell
wise" storage, where each of the various derivatives is stored contiguously for each
mesh cell (as opposed to "mesh-wise" storage, where the elements of each derivative

3-47

array are stored contiguously). The service routines access a given derivative for a given
mesh cell by calculating an offset pointer according to the total number of derivative
arrays; currently, there are 18 thermodynamic-derivative arrays, a value which is
parameterized in variable nthm in module GlobalDin:

PARAMETER (nthm=18).

The interface routines in module VessTolD stack the 18 derivative arrays in a cell-wise
sense before the service routines are called. The interface routines are called once for
each axial level; the (i, j) start and stop indices, the level index, and the number of cells
per level are passed:

MODULE VessTask

CONTAINS

SUBROUTINE vssl2 (isrl,isrc,isrf,jsn,2ir,jsnget,jsnput)

DO k=vessTab (cco) %kcO, vessTab (cco) %kcx <<<- loop over axial levels;
call interface routine:

iz=k-nzbcm
jstart=1

CALL Htif3D(vessTab(cco)%icO,vessTab(cco)%icx
,vessTab(cco)%jc0,vessTab(cco)%jcx,k,vessTab(cco)%nclx)&

&

ENDDO

In this example, the VESSEL index cco is not passed (it is obtained through use

association); for the other interface routines, cco also is passed.

MODULE VessTolD

CONTAINS

SUBROUTINE Htif3D(istart,iend, jstart, jend,k,ncellx)

REAL(sdk) duml(1) <<

REAL(sdk) alpv(ncellx) <<
REAL(sdk) alpov(ncellx)

<-- dummy array, not used by
<--- number of cells per level

htif for 3D

3-48

REAL(sdk) rovv(ncellx)
REAL(sdk) rolv(ncellx)

-REAL(sdk) tsnv(ncellx)
RE-AL(sdk) spifzv(nce11x)

REAL (sdk) drivv (ncellx-nthm) <<<- for derivative arrays

duml(l)=O.OdQ

iv=l <<<- for ordering mesh cells
ivdr=l <<<- for derivative-array stacking
DO i=istart,iend «<-radial loop

DO j =j start, jend «<-theta loop

a1pv(iv) =vsAr3 (cco) %alp (i,ji, k)
alpov(iv)=vsAr3 (cco)%alpo(i, j,k)
rovv(iv) =vsAr3 (cco) %rov(i, j ,k)
rolv(iv) =vsAr3 (cco) %ro1.(i,ji, k)
visvv(iv) =vsAr3 (cco) %visvCi, j ,k)
vislv(iv) =vsAr3 (coo) %visl Ci, j ,k)
pv(iv)=vsAr3 (coo) %p(i,j ,k)

tsnv(iv)=vsAr3(cco)%tsn(i,I ,k)
spifzv(iv)=vsAr3 (cco)%spifz Ci, j,k)

drivv (ivdr) =vsAr3 (coo) %dtsdp (i, j , k) «<-cell-wise stacking
ivdr=ivdr+1
drivv(ivdr)=vsAr3 (cco)%deldp(i,j ,k)
ivdr= ivdr+ 1
drivv(ivdr)=vsAr3 (coo) %degdp(i,j,k)
ivdr=ivdr+l

drivv(ivdr)=vsAr3 (cco)%dradp(i,j,k)
ivdr=ivdr+l
drivv(ivdr)=vsAr3 (coo) %dradt(i,j,k)
ivdr=ivdr+3
iv--iv+1

ENDDO

ENDDO

CALL htif (alpv, alpov, rovv, rolv, visvv, vis1v, pv,arvv, arlv, chtiflv &

& ,alvnv,drivv,watv,tlnv,tvnv,dzzv,volv,ncellx,hlav,clv,roav,cvv &

& ,tssnv,duml,duml,sigv,c5p2v,c5p4v,dalvav,hgamv,hfgv,dum1l &

& , darhsv, dtlrhsv, c5plv, dtvrhsv, dumi, f inanv, bitnv, bitv, dprhsv &

& duml,dparhsv,c5p3v,hlatwv, c5p5v, chtanv,alvenv, tsnv, spifzv &

& vsAr (cco) %funh, vsAr (cco) %zchfl, vsAr(cco) %ztbl, vsAr (cco) %zsms &

& ,vsAr(cco)%zagsn,vsAr(cco)%alpan,vessTab(cco)%icr1 &

& ,vessTab(cco)%icru,vessTab(cco) %icrr,vessTab(cco) %nsgrid &

& , vsAr (cco) %zsgrd, vsAr (cco) %refl1d, ncellx, ncellx, 1, ncellx*nthm)

3-49

iv=l

DO i=istart, iend «<-- put returned data in mesh arrays
DO j=jstart,jend

vsAr3 (cco)%chtin(i,j,k)=chtinv(iv)
vsAr3 (cco)%alvn(i,j, k)=alvnv(iv)
vsAr3 (cco)%wat(i, j,k)=watv(iv)

vsAr3 (cco) %spifz (i, j, k) =spifzv(iv)

iv=iv+l

ENDDO
ENDDO

END SUBROUTINE Htif3D

Unlike this example with htif, subroutine thermo returns the derivative-array
information, and its interface routine does the appropriate unstacking of the derivatives
into the corresponding 3D mesh arrays.

The service routine calculates a pointer offset in order to access a specific
thermodynamic derivative:

MODULE GenHeat

BEGIN MODULE USE
USE IntrType

CONTAINS

SUBROUTINE htif(alp,alpo,rov,rol,visv,visl,p,arv,arl,]chti,alv,dr, &

,DO jj=jstart, jcell <<<---loop over ID or 3D cells
j=jj
j dr=ntbm* (j-) +1 <<<--- offset for passed derivative-array dr

Arrays bitn and bit: TRAC uses bit flags to store a variety of yes/no information for
all the individual mesh cells of the iD and 3D hydrodynamic-component types. These
bit flags are the individually addressed on/off (1 or 0) bit positions of the computer
words in the arrays bitn and bit. For the iD components, arrays bitn and bit are

elements of derived-type giDArrayT; for the 3D VESSEL component, bitn and bit are
elements of derived-type vessArray3T.

3-50

As their storage in both new-time (i.e., bitn) and old-time (bit) arrays indicates, the bit
flags can change as the state of a mesh cell changes (e.g., the direction of the vapor
velocity at a 1D cell's right edge). One exception to this is the bit position that indicates if
the user has chosen to employ the choking model at a cell face.

For the 1D hydrodynamic components, arrays bitn and bit are dimensioned nfaces
(which is ncells + 1) by TRACAIIo. For the 3D VESSEL component, bitn and bit are
dimensioned (ni, nj, nk) by TRACAIlo. The bit flags are accessed with the Fortran 90
intrinsic functions btest, ibset, and ibclr:

btes t -- return status of requested bit position

ibset -- set requested bit to "on" (1)

ibclr -- set requested bit to "off" (0)

TRAC (Version 2.120) currently uses 30 different bit flags (total for ID and 3D
hydrodynamic components). The bit positions for the Fortran 90 bit-intrinsic functions
are accessed from TRAC with parameter variables that have meaningful names. The
parameter values of the bit flags are assigned in module Bits, which also has
documentation on the use of each bit flag. A complete description of all of TRAC's bit
flags is given in Appendix G; this includes the parameter names associated with the bit
positions, the purpose of each bit, and the routines in which the bit is set and tested.

3.2.2.2.5. HTSTR-Component Type. FLT, same as for 1D: The HTSTR-component
type uses array genTab for its FLT in exactly the same manner as the other components.

VLT, specific for HTSTR-component type: The HTSTR VLT data are treated by
module RodVlt; its logic is the same as the other VLT modules. VLT data for individual
HTSTR components are stored in derived-type array

rodTab.

Array data for the HTSTR-component-type (array hsAr) declaration: Data for all
individual HTSTR arrays are stored in derived-type array

hsAr.

In module HSArray, derived data-type hsArrayT is defined, and array hsAr is declared
to be of derived-type hsArrayT and dimension maxComps. A difference from the 1D
hydrodynamics array giDAr is that array hsAr is also given a TARGET attribute, and
variable chs is declared to be a pointer, also of type hsArrayT (but not an array):

MODULE HSArray

3-51

TYPE hsArrayT
REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL(sdk), POINTER,
REAL(sdk), POINTER,

REAL(sdk), POINTER,
REAL(sdk), POINTER,
REAL(sdk), POINTER,

REAL(sdk), POINTER,

REAL sdk), POINTER,
REAL(sdk), POINTER,

REAL(sdk), POINTER,

DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION (:)
DIMENSION (:)

DIMENSION(:)
DIMENSION(:, :)
DIMENSION(:)

REAL(sdk), POINTER, DIMENSION(:)

Time-Dependent Data

REAL(sdk), POINTER,
REAL(sdk), POINTER,

REAL(sdk), POINTER,
REAL(sdk), POINTER,

REAL(sdk), POINTER,
REAL(sdk), POINTER,

DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)
DIMENSION(:)

Rod and slab dependent data
REAL(sdk), POINTER, DIMENSION(:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

INTEGER(sik), POINTER, DIMENSION(:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)
REAL(sdk), POINTER, DIMENSION(:,:)

Time dependent rod data

REAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:)

REAL(sdk), POINTER, DIMENSION(:,:)
REAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

Surface dependent rod data

REAL(sdk), POINTER, DIMENSION(:,:,:)

RJEAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

REAL(sdk), POINTER, DIMENSION(:,:,:)

END TYPE hsArrayT

3-52

rdpwr
rs
cpowr
hs
zpwzt
rpwrt
zpwtb
zpwrf
zpw
zpwf
zpwfb

: pslen

cdg
*: cdh

clen
cdgn
cdhn

: clenn

burn
cnd

noht
cpdr
rndr
rpowf

radr
radrn
drz
drzn
rft
rftn

alpr
alvr

cepwn
cepwo

!
!

!

!

TYPE (hsArrayT),TARGET,DIMENSION(maxComps) :: hsAr <<<--array hsAr
TYPE (hsArrayT),POINTER:: chs <<<--pointer chs

The data arrays in array hsAr include the arrays in the TRAC-P rodpt and rodptl
pointer tables. The TRAC HTSTR component can calculate 2D heat conduction (radial
and axial). Also, information may be needed for wall-to-fluid heat transfer at either one
or two surfaces of an HTSTR (inner and outer). The heat conduction and transfer may be
either on a coarse or a fine axial mesh. Also, the user may specify that a given HTSTR in
the input deck is to be "copied," with the copies in thermal contact with various parts of
a VESSEL core. A further distinction among the copies of an HTSTR is whether a given
copy is "average" (affecting the temperature of the fluid it is coupled to) or
"supplemental" (not affecting fluid temperature). To handle these various requirements
for an HTSTR, there are data arrays in hsAr of rank 1, rank 2, and rank 3, with several
possible dimension sizes. Examples of the allocation of data arrays in hsAr are given in
the next section.

We emphasize that the optional copies for a given HTSTR component are a user
convenience feature for preparing an input deck; all data for the copies are contained in a
single reference to (element of) hsAr (cco or cci) for the specific HTSTR, using the
appropriate subscript in the data array to access the desired copy. Typically, the arrays
for such data include a dimension of ncrx (the number of average rods) or nrods (total
number of copies, including supplemental rods).

Pointer chs is associated with individual HTSTR components for subroutine corel's
calls to subroutines htvssl and htcor and for core3's call to f rod:

SUBROUTINE corel (dt, istdl,ndum2)

chs=>hsAr (cco) <<<- associate pointer chs

CALL htcor(chs%rft(genTab(cco)%nodes+ins, j,ncr) &

The only reason for this pointer association is to allow the call statements to fit within a
maximum of 19 continuation lines (for Fortran 77 source-format compatibility).

Three types of data arrays in hsAr are duplicated to contain old- and new-time
quantities:

1. Time-dependent 1D arrays global to the entire HTSTR component
(including its copies), or global to specific copies of an HTSTR

3-53

example: arrays cdg and cdgn for old- and new-time delayed neutron group
concentrations, each of dimension (ndgx),

2. Time-dependent rod data defined for each copy of the HTSTR and
either on the 2D conduction (radial x axial) grid or in the axial
direction only

example: arrays rft and rftn for old- and new-time fine-mesh rod
temperatures, each of dimension (nodes, nzmax, nrods)

3. The time-dependent portion of the surface-dependent rod data,
defined for each copy of the HTSTR on the axial nodes at the inner
and/or outer surface.

example: arrays hrflo and hrf 1 for old- and new-time fine mesh liquid

heat transfer coefficients, each of dimension nzmax, nsurf, nrods.

Module HSArray contains service subroutines TimeUpHS and TimeUpHSl, which
transfer data from new-time to old-time hsAr arrays, or vice-versa. Examples of the use
of these routines are given in Appendix C.

Storage allocation: The data arrays in array hsAr are dynamically allocated at run time
in much the same manner as the iD-component arrays. There is no module ROD; rather,
all HTSTR data allocation and input are treated in module RodTask. HTSTR input
subroutines rehtst and rhtstr call subroutine pntrod for each HTSTR in the input;
pntrod has individual calls to TRACAI1o for each data array in hsAr (cci). The order
of calls to TRACAIIo matches the order of data-array declarations in the definition of
derived-type hsArrayT; this is not necessary, but it facilitates maintenance of the data.
Some examples of the allocation of the various types of HTSTR arrays follows; the values
used in the allocations already have been read from the input and stored in
genTab (cci) or rodTab (cci) or have been calculated from such values [e.g.,
ndml=genTab (cci) %nodes-1 is calculated at the start of pntrod].

SUBROUTINE pntrod (ibase)

general global arrays:
CALL TRACAllo (hsAr (cci) %rdpwr, genTab (cci) %nodes* (21 &

&-rodTab(cci)'6ipwrad), rdpwr' ,O.OdO)
CALL TRACAIlo(hsAr(cci) %rs,genTab(cci)%nodes &

&*mod(rodTab(cci) •nfbpwt,2), 'rs' ,O.OdO)
CALL TRACAI o(hsAr(cci)%cpowr,rodTab(cci)%ncrx, , cpowr' ,O.OdO)

A

--- one value for each average (power) rod

CALL TRACAIlo(hsAr(cci) %matrd,ndml, 'matrd' , O.OdO) <<<-- nodes-1

dual-time global arrays:

3-54

CALL TRACAllo(hsAr(cci)%cdgrodTab(cci)%ndgx,'cdg',O.OdO)

CALL TRACAllo(hsAr(cci)%cdhrodTab(cci)%ndhx,'cdh',O.OdO)

CALL TRACAllo(hsAr(cci)%clenrodTab(cci)%ncrxlclen,,O.OdO)

CALL TRACAllo(hsAr(cci)%cdgnrodTab(cci)%ndgxlcdgn',O.OdO)

CALL TRACAllo(hsAr(cci)%cdhnrodTab(cci)%ndhxlcdhn',O.OdO)

CALL TRACAllo(hsAr(cci)%clennrodTab(cci)%ncrx,'clenn,,O.OdO)
A

--- one value for each average (power) rod

--- rod- and slab-dependent data:
CALL TRACAllo(hsAr(cci)%burnncrzplrodTab(cci)%nrods,'burn',O &

&.OdO)

CALL TRACAllo(hsAr(cci)%cndgenTab(cci)%nodesncrzp1 &

&,rodTab(cci)%nrodslcnd,,O.OdO)

--- dual-time rod data

CALL TRACAllo(hsAr(cci)%radx-,genTab(cci)%nodesncrzp1 &

&,rodTab(cci)%nrodslradr,,O.OdO)
CALL TRACAllo(hsAr(cci)%rad=,genTab(cci)%nodesncrzpl &

&,rodTab(cci)%nrodslradrn,,O.OdO)

CALL TRACAllo(hsAr(cci)%drzncrzplrodTab(cci)%nrodsldrz',O.OdO)

CALL TRACAllo(hsAr(cci)%drznncrzplrodTab(cci)%nrods,'drzn',O &

&.0do)

CALL TRACAllo(hsAr(cci)%rftgenTab(cci)%nodesrodTab(cci)%nzmax &

&,rodTab(cci)%nrodslrft,,O.OdO)
CALL TRACAllo(hsAr(cci)%rftngenTab(cci)%nodesrodTab(cci)%nzmax &

&,rodTab(cci)%nrodslrftn,,O.OdO)

--- surface-dependent rod data:
nsurf=l

IF (rodTab(cci)%idbci.GT.l.AND.rodTab(cci)%idbco.GT.1) nsurf=2

-CALL TRACAllo(hsAr(cci)%alprncrzp2,nsurfrodTab(cci)%nrodslalprI &

&,O.OdO)
CALL TRACAllo(hsAr(cci)%alvrncrzp2,nsurfrodTab(cci)%nrodslalvrI &

&,O.OdO)

CALL TRACAllo(hsAr(cci)%stnurodTab(cci)%nzmaxnsurf &

&,rodTab(cci)%nrodslstnu',O.OdO)
CALL TRACAllo(hsAr(cci)%tldrodTab(cci)%nzmaxnsurf &

&,rodTab(cci)%nrodsltld,,O.OdO)

dual-time surface-dependent rod data:
CALL TRACAllo(hsAr(cci)%hrfgrodTab(cci)%n--xnsurf &

&,rodTab(cci)%nrodslhrfg,,O.OdO)

CALL TRACAllo(hsAr(cci)%hrfgorodTab(cci)%nzmaxnsurf &

&,rodTab(cci)%nrodslhrfgo',O.OdO)

3-55

3.2.2.3. Control System Databases. We refer to the "Control System data" as those

sets of data that implement TRAC's signal variables, trips, and control blocks, as well as

the data sets that support these capabilities. There are 14 basic types of Control System
data in all:

1. a set of global data that includes 10 integers used to allocate storage
based on the input specifications for the Control System [e.g., ntsv
(the total number of signal variables)], and one REAL variable that
specifies problem time (etime),

2. data for multipass control-parameter evaluation,

3. signal variable data,

4. control block data,

5. control block tabular data,

6. control block user-specified units labels,

7. trip-user-specified units labels,

8. signal variable user-specified units labels,

9. trip data,

10. trip-signal-expression signal data,

11. trip-controlled-trip signal data,

12. trip-set-point-factor table data,

13. trip-initiated restart dump and problem termination data, and

14. trip-initiated time-domain data.

Declaration: Module ControlDat handles the declaration of all Control System data.

Thirteen different derived data types are defined, with a data type for all but one of the

basic kinds of Control System data (only allocatable arrays are needed for the control
block tabular data). The data types have names of the form:

c sNameT.

The corresponding data sets have names of the form:

c sName.

3-56

(The control block tabular data are in array csCBTD.)

The global Control System data are grouped into derived data-type csGIT, and variable
csG1 is declared to be of this type. Of the 12 other derived data types, 11 are used to
declare allocatable arrays, which will be dimensioned according to the user input (the
trip-initiated restart dump and problem termination data are in scalar variable csTDP,
which is of type csTDPT). For 13 of the data sets, variables are also declared with a name
of the form

csrName.

The csr variables are used only as scratch storage to read the restart data for the
corresponding c s variable; they are deallocated after any Control System restart data are
read.

Only one of the declarations of the various individual data-type elements in module
ControlDat uses the pointer attribute, unlike module GeniDArray (the pointer is
required for allocatable arrays that are derived-type elements):

MODULE ControlDat

Global Data

TYPE csGlT <<<- nt variables determined from input
INTEGER(sik) ntsv
INTEGER(sik) ntcb
INTEGER(sik) ntcf
INTEGER(sik) ntrp
INTEGER(sik) ntcp
INTEGER(sik) ntse
INTEGER(sik) ntct
INTEGER(sik) ntsf
INTEGER(sik) ntdp
INTEGER(sik) ntsd
REAL(sdk) etime

END TYPE csGIT

TYPE (csGlT) csGl
TYPE (csGlT) csrGl <<<- csr variable is used to read restart

Signal Variable Data

TYPE csSigT
INTEGER(sik) idsv
INTEGER(sik) isvn
INTEGER(sik) ilcn

3-57

!
!

INTEGER(sik)
INTEGER(sik)
REAL(sdk)
REAL(sdk)

END TYPE csSigT

icnl
icn2
prevVal
presVal

Dynamically dimensioned to csGl%ntsv <<<-- ntsv read from input
TYPE (csSigT),ALLOCATABLE,DIMENSION(:) csSig

TYPE (csSigT),ALLOCATABLE,DIMENSION(:) csrSig

Control Block Tabular Data <<<- only an array needed

Dynamically dimensioned to csGl%ntcf

REAL(sdk),ALLOCATABLE,DIMENSION(:) csCBTD

REAL(sdk),ALLOCATABLE,DIMENSION(:) csrCBTD

Trip Set Point Factor Table Data

TYPE csTSFT
INTEGER(sik) idft
INTEGER(sik) idsg

INTEGER(sik) inft

REAL(sdk) ,DIMENSION(2, 10) setp <<<-- array shape/size known
END TYPE csTSFT

Dynamically dimensioned to csGl%ntsf <<<--- dataset is allocatable
TYPE (csTSFT),ALLOCATABLE,DIMENSION(:) csTSF

TYPE (csTSFT),ALLOCATABLE,DIMENSION(:) csrTSF

Set Point Factor Table --<--

TYPE csTDPT
INTEGER(sik) ndmp
Dynamically dimensioned to csGl%ntdp

INTEGER(sik) ,POINTER,DIMENSION(:) :: tripIDs <--ype element

END TYPE csTDPT

Only One of These

TYPE (csTDPT) csTDP

TYPE (csTDPT) csrTDP

<<<--- scalar derived-type variable

3-58

!
!
!

Storage allocation: Storage for the Control System data is allocated dynamically at run
time, according to the user input for the signal variables, trips, and control blocks.
Subroutine input reads the first five parameters in the Control System global derived
type variable csG1, first into local variables:

SUBROUTINE input

CALL readi(hiiiiil,ntsv,ntcb,ntcf,ntrp,ntcp, 'ntsv, 'ntcb', ntcf', &
& Intrp',lntcp')

Subroutine input subsequently adjusts three of these input parameters for internal use
by the optional CSS logic; ntsv and ntcb are increased to allow for internally created
signal variables and control blocks; and an extra pass is added for input models with
more than one evaluation pass:

IF (.NOT.((stdyst.NE.2).AND.(stdyst.NE.4))) THEN

ntsv=ntsv+ncontr+ncontt+nconts
ntcb=ntcb+ncontr+ncontt
IF (ntcp.GE.2) ntcp=ntcp+l

After the optional CSS logic, subroutine input stores these five local variables in the
corresponding elements of csGl and allocates storage for seven of the Control System
arrays before calling the Control System input-driver rcntl:

csGl%ntsv=ntsv
csGl%ntcb=ntcb
csGl%ntrp=ntrp
csGl%ntcf=ntcf
csGl%ntcp=ntcp

ALLOCATE(csSig(ntsv))
ALLOCATE(csCB(ntcb))
ALLOCATE(csCPED(ntcp))
ALLOCATE(csTrip(ntrp))

ALLOCATE(csCBTD(ntcf))
ALLOCATE(csULCB(ntcb))
ALLOCATE(csULTR(ntrp))

<<<- direct use of F90 allocate

<<<- derived-type variable
<<<- simple array

3-59

IF ((inlab.EQ.3).AND.(ntsv.GE.l)) WRITE (inlab,395)
395 FORMAT (1*1/26(1*')/r* control-parameter data *'/26(1*'))

nrdy=l

CALL rcntl (j flag) <<<- Call rcntl

Subroutine rcntl, which is in module Control, reads the remaining Control System
data; as part of this, it reads the remaining global data and allocates storage for the
remaining Control System arrays. Note that rcntl uses the ntsv and ntcb elements of
csGl to clear the signal variable and control-block arrays (these now include space for
any internally created signal variables and control blocks) but recalculates local variables
for the reading of the signal variable and control block user input:

MODULE Control

CONTAINS

SUBROUTINE rcntl(j flag)

--- recalculate local ntsv to use in reading user input.

IF (csGl%ntsv.GE.l) THEN

ntSv =csGl%ntsv-cssGl%ncontr-cssGl%ncontt-cssGl%nconts

read and edit the signal-variable data cards

DO nsv=l, csGl'ntsv <<<-- loop over all signal variables
csSig (nsv) %idsv=O
csSig(nsv)%isvn=O
csSig (nsv) %ilcn=O
csSig(nsv) %icnl=o
csSig (nsv) %icn2=0
csSig (nsv) %prevVal=O.OdO
csSig (nsv) %presVal=O.OdO

ENDDO

IF (ntsv.GE.1) THEN
IF (inlab.EQ.3) WRITE (inlab,95)

95 FORMAT (*/'* signal variables')
WRITE (iout,96)

96 FORMAT (I' signal-variable data cards'/)

DO n=l, ntsv <<<--- read user-input signal variables into locals
CALL readi('iiiii',idsv,isvn,ilcn,icnl,icn2, 'idsv', 'isvn', &

& ' ilcn','icnl','icn2')
IF (idsv.EQ.0) GOTO 103

3-60

IF (idsv.LT.0) idsv=-idsv

csSig (n) %idsv=idsv <<<-- store local variable in type element
csSig(n)%isvn=isvn
csSig(n)%ilcn=ilcn
csSig(n)%icnl=icnl

IF (csGl%ntcb.GE. 1) THEN <<<-- local ntcb for user input
ntcb=csGl%ntcb-cssGl%ncontr-cssGl%ncontt

read and edit the control-block data cards

DO n=1, csGl9.ntcb <<<-- total number of control blocks
csULCB(n)%data=0.ado
csCB(n)%idcb=O
csCB(n)%icbn=O

DO n=l,ntcb <<<---user input
ra=' I

WRITE (iout,106) ra
CALL readi(Iiiiii',idcb,icbn,icbl,icb2,icb3, idcb,,'icbn', &

& 'icbl','icb2','icb3')

CALL readr(rrrrr',cbgain, cbxmin, cbxmax, cbconl,cbcon2, &
& ,cbgain','cbxmin','cbxmax','cbconl','cbcon2l)

CALL cbedit(idcb, icbn, icbl,icb2,icb3)

csCB (n) %idcb=idcb <<<-- store in corresponding-type element
csCB(n)%icbn=icbn
csCB(n)%icb(1)=icbl
csCB(n)%icb(2)=icb2
csCB(n)%icb(3)=icb3
csCB(n)%cbgain=cbgain
csCB(n)%cbxmin=cbxmin
csCB(n)%cbxmax=cbxmax
csCB(n)%cbconl=cbconl
csCB(n)%cbcon2=cbcon2
csCB(n)%flagl=O.OdO
csCB(n)%flags=transfer('nl',l.OdO)

--- Read remaining global storage data and allocate
- - - remaining arrays:
read and edit the trip-DIMENSION variables card

IF (inlab.EQ.3) WRITE (inlab,145)
145 FORMAT (*'/* trips')

3-61

WRITE (iout,146)
146 FORMAT (/' trip-dimension data card')

CALL readi(iiiii',ntse,ntct,fntsf,rntdp,fntsd, 'ntse', t ntct', &

& 'ntsfl, ntdp','ntsdI)

IF (ntse.LT.0) ntse=0
IF (ntct.LT.0) ntct=O

IF (ntsf.LT.0) ntsf=O
IF (ntdp.LT.0) ntdp=O

IF (ntsd.LT.0) ntsd=O

ALLOCATE (csTDP%tripIDs (ntdp)) <<-- F90 allocate statement
ALLOCATE (csTSD (ntsd))

ALLOCATE (csTSF (ntsf))
ALLOCATE (csTCT (ntct))
ALLOCATE (csTSE (ntse))
ALLOCATE (csULSE (ntse))

One of the allocated arrays here is a data element of variable CSTDP, of data-type
csTDPT, which itself is not an array.

Dump and Restart The Control System dump/restart logic is in module ControlDat,

which contains subroutines CSDump, CSRestart, and CSFree, and in module
Control, which contains subroutine recntl. To add a dump of the current Control

System data to the dump/restart file, subroutine dmpit calls CSDump. The following
code fragment shows the various ways in which the data in module ControlDat are
accessed:

SUBROUTINE dmpit

CALL CSDumD

MODULE ControlDat

CONTAINS

SUBROUTINE CSDumip

BEGIN MODULE USE

USE Restart

IMPLICIT NONE
INTEGER(sik) i,ia

CALL bfoutis (csGl%ntsv, 1, ictrld) «<--first, dump global data
CALL bfoutis (csGl%ntcb, 1, ictrld)

3-62

CALL bfoutis (csGl%ntse, 1, ictrld)
CALL bfouts (csGl%etime, 1, ictrld)

CALL bfoutn (csCBTD, csGl%ntcf, ictrld) <<<--not a derived type

CALL bfoutis (csTDP%ndmp, 1, ictrld)
CALL bfoutni (csTDP%tripIDs, csGl%ntdp, ictrld)

A

type element is array with pointer attribute
DO i=l,csGl%ntsd

CALL bfoutis (csTSD(i) %ndid, 1, ictrld)

DO i=l, csGl%ntse <<<-- loop over ntse array elements
CALL bfoutis(csTSE(i)%idse, 1, ictrld)
CALL bfoutis (csTSE(i) %inse, 1, ictrld)
CALL bfoutis (csTSE(i) %incn, 1, ictrld)

DO ia=l, 10 <<<-- loop over array within this dataset
CALL bfoutni(csTSE(i)%ids(l:,ia) ,3,ictrld)

ENDDO
CALL bfoutn (csTSE (i) %constants, 5, ictrld)

ENDDO

The basic idea of the Control System restart is that any data that are not present in the
current text-input file tracin are obtained from the binary restart file trcrst.
Subroutine input calls the restart-driver routine rdrest after input has called rcntl to
read tracin. Subroutine rdrest makes an initial pass over the restart file to find the
desired (user-specified) dump; as part of this pass, rdrest calls CSRestart to skip over
the Control System portion of the various restart dumps. CSRestart reads a Control
System dump into the csr scratch arrays. First, the global data are read to obtain needed
array sizes, then the various arrays are allocated (including the derived-type arrays, the
simple allocatable array, and the array that is a derived-type element), and then the
remaining data are read. After the csr arrays are allocated on the first call to
CSRestart, logical flag CsAllocate is set to .FALSE..

SUBROUTINE rdrest (ifreex)

LOGICAL :: csAllocate = .TRUE.

Control System

CALL CSRestart (csAllocate)

3-63

MODULE ControlDat

CONTAINS

SUBROUTINE CSRestart(csAllocate)

BEGIN MODULE USE
USE Restart

IMPLICIT NONE
LOGICAL csAllocate
INTEGER(sik) i,ia

CALL bfinis(csrGl%ntsv, 1,ictrlr) <<<- Global data
CALL bfinis(csrGl%ntcb, 1, ictrlr)
CALL bfinis(csrGl%ntrp, 1,ictrlr)
CALL bfinis(csrGl%ntcf, 1,ictrlr)
CALL bfinis(csrGl%ntdp, 1,ictrlr)
CALL bfinis(csrGl%ntsd, 1, ictrlr)
CALL bfinis(csrGl%ntsf, 1,ictrlr)
CALL bfinis(csrGl%ntct, 1, ictrlr)
CALL bfinis(csrGl%ntse, 1,ictrlr)
CALL bfins(csrGl%etime,1,ictrlr)

IF (csAllocate) THEN <<--allocate csr arrays
ALLOCATE(csrSig(csrGl%ntsv))
ALLOCATE(csrCB(csrGl%ntcb))

ALLOCATE (csrTrip (csrGl%ntrp)) <<<-- derived-type array
ALLOCATE (csrCBTD (csrGl%ntcf)) <<<-- simple array
ALLOCATE (csrTDP%tripIDs (csrGl%ntdp)) «<-- array as type element
ALLOCATE(csrTSD(csrGl%ntsd))
ALLOCATE(csrTSF(csrGl%ntsf))
ALLOCATE(csrTCT(csrGl%ntct))
ALLOCATE(csrTSE(csrGl%ntse))
ALLOCATE(csrULCB(csrGI%ntcb))
ALLOCATE(csrULTR(csrGl%ntrp))
ALLOCATE(csrULSE(csrGl%ntse))
csAllocate=.FALSE. <<<- allocate arrays only once

ENDIF
CALL bfinn(csrCBTD, csrGl~ntcf,ictrlr)

CALL bfinis(csrTDP%ndmp, 1,ictrir)
CALL bfinni(csrTDP%tripIDs,csGl%ntdp, ictrlr)

DO i=l,csrGl%ntsd
CALL bfinis(csrTSD(i)%ndid, 1,ictrlr)

3-64

CALL bfinis (csrTSD(i) %ntid, 1, ictrlr)
CALL bfinni (csrTSD(i)%tripIDs, 5, ictrlr)

After the correct dump is found, the Control System data in that dump are first read into
the csr arrays with another call to CSRestart (csAllocate is now .FALSE.); then
subroutine recntl stores only the needed data (data that are not in text file tracin)
from the csr arrays into the regular cs arrays; finally, the storage for the crs arrays is
released with a call to CSFree, which uses the Fortran 90 deallocate statement:

SUBROUTINE rdrest (ifreex)

read control parameter data

CALL
CALL
CALL

CSRestart(csAllocate)
recntl()
CSFree

MODULE Control

CONTAINS

SUBROUTINE recntl()

signal variables from the restart file that were not

input on cards are added to the signal-variable data

jtsv=csGl%ntsv
jsavl=l
IF (jtsv.GE.l) THEN

csSig(jsavl)%idsv=csrSig(i)%idsv <<<--- CSr to CS
csSig(jsavl)%isvn=csrSig(i)%isvn

MODULE ControlDat

3-65

951

!
!
!

CONTAINS

SUBROUTINE CSFree

IMPLICIT NONE

DEALLOCATE (csrSig)
DEALLOCATE (csrCB)

DEALLOCATE (csrTrip)

DEALLOCATE (csrCBTD)

DEALLOCATE (csrTDP%tripIDs)
DEALLOCATE (csrTSD)
DEALLOCATE (csrTSF)

DEALLOCATE (csrTCT)
DEALLOCATE (csrTSE)
DEALLOCATE (csrULCB)

DEALLOCATE (csrULTR)

DEALLOCATE (csrULSE)

END SUBROUTINE CSFree

END MODULE ControlDat

3.2.2.4. Steady-State Databases. The constrained steady state (CSS): The CSS data

are declared in module ControlDat. There are three derived-type variables: cssGl

holds global data that are used for storage allocation, and cssDat and cssTP are

declared as allocatable arrays. Module ControlDat also declares arrays cpv and dsv.

Subroutine input uses local variables corresponding to cssG1 data-elements ncontr

and ncontp to allocate storage for cssDat and cssTP, respectively. Subroutine input

also uses local variables corresponding to cssG1 data-elements ncontr, ncontt, and

nconts to adjust Control System storage variable ntsv for internally created CSS signal

variables, and it uses ncontr and ncontt for a similar adjustment to ntcb for control

block storage. After the allocation of array cssTP, cssGl%ncontp is set to 0. The CSS

data are used by module Control, by the individual component modules and by

subroutines rcomp and edit. The CSS data are not included in the dump/restart file.

The HPSS: The HPSS data are declared in module HpssDat. Derived-type hpsT is

defined; it consists of 22 arrays, all with the pointer attribute. Scalar variable hps is

declared to be of TYPE hpsT. Module HpssDat also declares five other variables and

initializes one of them with a DATA statement.

Subroutine input allocates storage for 18 of the arrays in hps with individual calls to

TRACAllo. Subroutine icomp has four calls to TRACAllo for the remaining hps arrays.

Subroutine input reads the HPSS input-data and does some initializing. The HPSS logic

is in module Hpss, in subroutines ihpssl and ihpss3, which are called from

subroutines icomp and civssl (module VessTask), respectively. The HPSS data are

not included in the dump/restart file.

3-66

3.2.2.5. Radiation Model Databases. The radiation model of TRAC-P is not available
in TRAC-M/F90; its database has not been translated yet.

3.2.3. Data Communication
Data Interfaces: TRAC attempts to protect the integrity of its data from inadvertent
corruption as the code runs (i.e., from bugs) and to provide an easily maintainable
environment for code development. To these ends, TRAC has clean interfaces within
and among the 1D and 3D hydrodynamics database, HTSTR database, control system
database, steady state databases, and radiation database. These interfaces exist both
within the module use associations and subroutine calling chains that primarily
calculate with a particular database and exist among the interactions of the various
models and databases with each other. Two recent development activities have made
further improvements to the code's data interfaces. The first fully separates the
evaluation of terms in the flow equations from the solution of the resulting system of
linear equations, providing a well-defined location for equation terms and eliminating
the need for generation of this data for 1D components before evaluation of the
equations in 3D components (this logic is described in Section 2).

The second development deals directly with the problem of intercomponent data
communication, requiring only one request at initialization to establish automatic
information passing between components. This has been implemented as a system
service, with sufficient generality to permit later use by higher-order and more implicit
difference methods. The System Service logic is described in Section 3.2.3.1.

Naming Conventions: Module names that end with "Task" contain task manager
routines that have access to the global database. Module names that end with "Crunch"
contain worker routines where the access to the array database is through their
argument interface. This convention has been implemented for the HTSTR and 1D
hydrodynamics modules; for the 3D hydrodynamics, the Crunch routines directly access
the 3D-mesh database (the argument lists otherwise would be prohibitively long).

Use Association: A Crunch module is used only by a corresponding Task module.

example -- Task-Crunch use association:

Module RodCrunch is used only by module RodTask and has no global access to the
ROD (HTSTR) array database.

3.2.3.1. Intercomponent Communication via System Services. A request-driven
communications method has been created based on requests from components for
values of specifically named variables beyond end junctions. The request for information
is recorded in a derived-type table that contains the address of the information needed,
the address to which it must be copied, and a notation on whether a change in sign is
required during the copy. Currently, these requests for boundary information are made
only during the initialization phase of a calculation, with a call to subroutine
InitBDArray near the beginning of subroutine init. Later, we plan to develop a
dynamic communication process where the list of variables requested by a given

3-67

component can occur at any time during the calculation. This will be useful in interactive
simulations or for dynamic linking to other programs.

A form of the TRAC bd array (see Section 2.3.1) is still in the current implementation the
destination for boundary information transfers. This was selected to minimize changes
to existing subroutines, which require information on conditions in an adjacent
component. However, the setup and transfer subroutines do not rely heavily on this
particular data structure as a destination for information and can be quickly adapted to

other data structures. The current boundary data array matches the row content of the
TRAC-P bd array. Columns of the new storage have been arranged to align with the new
junction data array named junCells (see the next section), which provides detailed
information on junction properties and connectivity in the system. In this arrangement,
if junCells (j) provides basic information about a junction associated with a given
component, then, for example, bd (7, j) contains the value of the old-time void fraction
in the cell on the other side of that junction. This structure is illustrated in Fig. 3-2 for a
simple component configuration.

3.2.3.1.1. Specification of the System Configuration. A component must register its
flow connections with the system services to permit correct intercomponent
communications. In older versions of TRAC, this was accomplished within input and
restart subroutines (RPIIE, REPIPE, etc.) by filling in entries to the JUN array, which
were used to define the JSEQ array (which is no longer used). The revised registration
involves passing information to a junction cell data structure for each junction in a
component with a call to subroutine Junctions from a component input or restart
subroutine (RPIPE, REPIPE, etc.). In this context, registration is required for both
standard intercomponent junction and intracomponent junctions, such as the junction of
a TEE side leg to the primary leg. Arguments to Junctions are

SUBROUTINE Junctions (compNum, cellNum, junNum, compType,vOutSign, theta,phi,

dist,ncAdj,doEdge, ix, iy, iz)

where the following definitions hold:

compNum - input-component number for the cell with this junction;

cellNum - number for the cell containing the junction to another component
(or to the other section of the same TEE);

junNum - input-component junction number, or generated junction number
for an internal connection;

vOutSign - the sign of the velocity associated with flow out from the cell
through this junction face (+1 or -1);

theta - the angle (degrees) between an inwardly directed normal to the
junction face and the primary positive direction of motion within
the component;

phi - the angle (degrees) between an inwardly directed normal to the
junction face and a reference vector perpendicular to the primary
positive direction of motion within the component;

3-68

W- Break 50

4,9

Fill 10 Pipe 20 Tee 30

35 i)
Break 40

Fill 10 Pipe20 Pipe20 Tee30 Tee30 Tee30 Tee30 Tee30 Break40 Break50
Jun 15 Jun 15 Jun 25 Jun 25 Jun 35 Jun - I Jun - 1 Jun 45 Jun 35 Jun 45
Cell 1 Cell 1 Cell 2 Cell 1 Cell 3 Cell 2 Cell 5 Cell 5 Cell 1 Cell 1

juo ll 8I 91 101
array 1 2I

1 I f If I I fI fIf If
Pipe20 FillO Tee30 Pipe20 Break40 Tee30 Tee30 BreakSO Tee30 Tee30
Jun 15 Jun 15 Jun 25 Jun 25 Jun 35 Jun - 1 Jun - I Jun 45 Jun 35 Jun 45
Cell 1 Cell 1 Cell 1 Cell 2 Cell 1 Cell 5 Cell 2 Cell 1 Cell 3 Cell 5

1 1 2 1 3j 4 1 5 1 6 7 1 10 1

Sdx

-fVol

-arvn

zsm

Fig. 3-2. Boundary Array Layout

3-69

bd
array

11

- the distance between the cell center and the junction face;

doEdge - optional argument that when set to TRUE gives the component
containing this cell control over the evaluation of edge-based
quantities;

ix - optional argument giving the x or radial cell index in a 3D region;

iy - optional argument giving the y or theta cell index in a 3D region;

iz - optional argument giving the z (axial) cell index in a 3D region; and

ncAdj - number of cells in this component adjacent to the junction face in
the direction of the inward normal to the junction face.

When calculating theta in a VESSEL, the primary positive direction of motion is taken to
be the positive z direction. The reference vector for computing phi is taken to be pointing
toward the center of the VESSEL. This results in values of phi of

1. zero for a connection in from the outer radial cell face;

2. 90 degrees for a connection in from the high-numbered cell theta face;

3. 180 degrees for a connection from an inner-radial cell face; and

4. 270 degrees for a connection from the low-numbered cell theta face.

For registration of an intracomponent junction such as a TEE side-leg connection, a
unique junction number must be generated. This is accomplished with a reference to the
function interiorJunNum, which returns a new unique (and negative) number with
each call. For example, in a TEE component, the following coding would be appropriate
for registration associated with the side leg:

junSide = interiorJunNumo()
dist = .5*wjcell(jcell,cost,gldAr(cci)%hd,gldAr(cci)%dx)
angle = acos(cost)*180/pi
CALL junctions (num, jcell, junSide, 1, angle, 0, dist, 1)

CALL junctions (num, ncelll+2, junSide, -1, 0, 0, &

.5*gldAr(cci)%dx(ncelll+2), ncellt-ncelll-l)

The subroutine Junctions installs the information from the dummy argument list into
the derived-type array juncells for further processing to index and locate boundary
information.

TYPE junctionCellsT
INTEGER(sik):: ioc, icmp, compNum, cellNum, junNum, jcTblOrd

INTEGER(sik):: vOutSign, otherSide, ncAdj, iEndAdj, iSeg
INTEGER(sik) ivarC, ivarE, icDp
INTEGER(sik) ix, iy, iz
REAL (sdk) compType
REAL(sdk) theta, phi, cosTheta, dist
LOGICAL :: is3D, doEdge, side
END TYPE junctionCellsT

3-70

dist

TYPE (junctionCellsT), ALLOCATABLE, TARGET :: junCells(:)

The array junComp has been created to permit easy access to the junction information
contained within the j unCells array for any component. It is a derived-type array (of
type RangeT), with only two components for each element (see Fig. 3-3). One array
element exists for each component. Therefore, the maximum size of this array
corresponds to the number of components (ncomp) within the input deck. As with array
junCells, junComp is loaded in the order in which the components are processed
during input/restart processing. The derived-type components serve as pointers (just a
means of indirect addressing-they are not declared with the Fortran 90 pointer
attribute) to the upper and lower elements, which bound each component's junction cell
information in the junCells array. For example, junComp (3) %iLB is the index of the
first entry in junCells for junctions in the third component processed during input,
and j uncomp (3) %iUB is the index of the last entry in j unCells for that component (see
the example in Fig. 34).

Each component also must register general information about the computational mesh
segments that it contains. This completes the picture of system connectivity and makes
access of connection information simpler in mesh-based calculations. This set of
information is stored in the compseg derived-type array (type SegmentT). For purposes
of this array, a mesh segment is defined as a contiguous set of adjacent cells that are
contained entirely within a component. For example, this means that a PIPE, VALVE,
PUMP, PRIZER, or PLENUM each contain just one mesh segment. A TEE (and the SEPD
component that is based on the TEE) contains two mesh segments (one each for the main
leg and side tube). Although its structure might seem to be somewhat discontinuous, a
VESSEL is defined as having just one mesh segment. The FILL and BREAK do not
contain any mesh segments.

Array compSeg clusters such mesh segment information by input component. One
element is allocated for each component. Therefore, the maximum size of this array is
equal to the total number of components in the system, ncomp. Again, the ordering of
component information in this array coincides with the order in which components are
processed from input. Currently, the four components to the compSeg structure are
nseglD, nseg3D, seglD, and seg3D (see Fig. 3-5). The first two variables simply
contain the number of iD and 3D mesh segments owned by the corresponding
component, respectively (currently taking on values of either 0, 1, or 2). The remaining
two variables are derived-type arrays themselves (type segmentlDT and segment3DT,
respectively). The size of each array is allocated dynamically according to the values
contained within nseglD or nseg3D. Derived-type segmentlDT stores information on
the extent of data segments in 1D regions. Derived-type segment3DT stores information
on the extent of data segments in 3D regions. It should be noted that there is intentional
overlap between the junction-oriented and mesh-segment-oriented data structures to
ease other data access and configuration.

3-71

each element contains information
for one component in the system

size corresponds to the
total # of components
in the system

I4r
12 3 3IIomp

-I iLB }
- 0 iUB

These structure elements contain values which correspond
to the upper and lower element indices for a particular
component's information block in the junCells array

Fig. 3-3. Graphical representation of the j unComp array

Fig. 3-4. Graphical representation of the coupling between the junCells and
j unComp arrays for a FILL, TEE, PIPE, BREAK, and BREAK system.

3-72

junCells

internal

junComp

Total # Of

1234 components in the

system

nSegID
SnSeg3D

seg3D Sizes of these arrays

correspond to the total # of

A91 mesh segments within each
component (0,1, or 2)

S compNum

11 geometry

, juninfo

10 ivarLBC

-* ivarLBxE

No ivarLByE

SivarLBzE
1 ivarUBC

10 ivarUBxE

-* ivarUByE
SivarUBzE

Smatseq

Sncells

- njun
SnvarxE

SnvaryE

SnvarzE

i x

Sny

i nz

Fig. 3-5. Graphical representation of the compSeg array.

As with junCells, registration of information in the compSeg array occurs during the
input/restart stage. In fact, the logic designed to accomplish this task is placed just after

the call to Junctions. First, a single call to subroutine Setsegment is used to establish

the number of either 1D or 3D mesh segments for the current component. As stated

above, this currently can be 0, 1, or 2, depending on the component type. If the number

of mesh segments to be registered is > 0, then an appropriate number of calls to either the

3-73

segl D

cellLB

SceilUB

ScompNum

Sinc

SiNet

SiSideJun

SivarLBC

SvarUBC

SivarBE

SivarUBE

SjunCellLB

SjunCellUB

SjunLB

SjunUB

matseq

nSideJun

continuesUB

continuesLB

AddSegmentlD or AddSegment3D routine is made. These routines allocate and register
information in the seglD or seg3D array components of compSeg derived-type
structure arrays, respectively. The interface for each of these subroutines is structured as
follows:

SUBROUTINE SetSegment (nSeglD, nSeg3D)

where the following definitions apply:

nSeglD

nSeg3D

- number of 1D mesh segments in the component

- number of 3D mesh segments in the component

SUBROUTINE AddSegmentlD (compNum, iseg, cellLB, cellUB, junLB,
junUB, nsideJun)

&

where the following definitions apply:

compNum

iseg

cellLB

cellUB

junLB

junUB

nSideJun

- input-component number containing this mesh segment;

- 1D segment identifier (0<iseg<nSeglD);

- component cell number at the lower boundary of the 1D segment;

- component cell number at the upper boundary of the 1D segment;

- junction number at the lower boundary of the 1D segment;

- junction number at the upper boundary of the 1D segment; and

- number of side junctions connected to this mesh segment.

SUBROUTINE AddSegment3D(compNum, iseg, geometry, ncells, nvarxE,

& nvaryE, nvarzE, njun, nx, ny, nz)

where the following definitions apply:

compNum

geometry

ncells

iseg

nvarxE

nvaryE

nvarxE

njun

nx

ny

nz

- input-component number containing this mesh segment;

- mesh geometry (either Cartesian or cylindrical);

- number of computational volumes in this segment;

- 3D-mesh segment identifier (nSeglD<iseg<nSeg3D);

- number of variables at radial (x) cell edges in this segment;

- number of variables at theta (y) cell edges in this segment;

- number of variables at axial (z) cell edges in this segment;

- number of junctions to other mesh segments;

- number of radial (r) or x cells;

- number of azimuthal (theta) or y cells; and

- number of cells in the z direction.

3-74

&

&

Detailed descriptions of derived-types junctionCellsT, segmentlDT, and

segment3DT are available in Appendix C. Further information on subroutines such as

Junctions, AddSegmentlD, and AddSegment3D is provided in Appendix B.

3.2.3.1.2. Setup for Boundary Information Transfer. As previously indicated, setup

for data transfer is driven by subroutine InitBDArray. Calculational flow for this setup

is summarized in Fig. 3-6. As with icomp, InitBDArray establishes a loop over each

component in the system. For each junction cell within any one component, a call is

placed to subroutine SetBDJunCell. This subroutine is responsible for establishing the

necessary indices to the 1D and 3D array information that will populate the bd array and

driving the setup of the pointer table for each boundary variable. The interface to this

subroutine is

SUBROUTINE SetBDJunCell (compNum, junNum, cellNum, offset, bdArray, &

& jindex)

The programmer is responsible for providing the component, junction, and cell number

for the junction cell currently being processed (compNum, junNum, and ceilNum); the

number of cells/faces away from the current junction cell, which will provide the

necessary boundary information (offset); the location in memory where this boundary

information will be stored (bdArray); and the junCells index, which contains the

current junction cell information (j index).

One of the first tasks in SetBDJunCell is to generate the array indices (corresponding to

the offset variable) for the component information to be coupled to the bd array

elements. Indices are generated for cell-centered information (housed in variable

cellIndex) and face-centered information for the first (the junction itself) and second

faces beyond the current junction cell (facelIndex and face2Index). These indices

are declared as module variables and, as such, are usable by any routine during the

pointer table initialization. Logic has been included to deal with special cases such as

FILL, BREAK, PLENUM, VESSEL, and TEE components. Special geometrical

considerations for these components and the associated structure of the bd array require

that the indices to component information be generated in a unique manner.

The primary work in scheduling boundary information transfer is performed by

subroutines SetBDVar and AssignGenlDPtr (in post-3.0 versions, this routine is called

AssignPtr). After the appropriate indices are established, a call is placed to SetBDVar
for each variable in the boundary array. The interface to this routine is given as

SUBROUTINE SetBDVar(localTo, offset, varName)

where

localTo - location to which the boundary information will ultimately reside,

offset - number of cells beyond the current junction cell for which boundary
information is required, and

varName - ASCII string denoting the variable to be registered in the system
service pointer table.

3-75

Fig. 3-6. Flow logic for System Service initialization

3-76

Subroutine SetBDJunCell

Determine JunCelts index
and cell num ber for the
junction cell next door

Set the face and cell
centered Indices to
the component data

structure for the
opposing junction cell

Set sign convention for the
current junction and store in

module array, vSign

Yes

3-77

Determine pointer to
component storage locations

holding boundary data of
interest

S

Subroutine BuildBndryTable

Register pointers in the boundary pointer
table for the current junction cell and

boundary variable

Fig. 3-6. Flow logic for System Service initialization (cont)

This routine establishes the locations to which the pointers in the transfer table will

become associated, first through a call to AssignGenlDPtr (in post-3.0 versions, this

routine is called AssignPtr). Using the indices established in SetBDJunCell and
mnemonic strings for the individual bd variables passed through the argument list,
AssignGenlDPtr provides a series of case statements upon which to establish the target
location of data that are to be transferred to the bd array. This target location is returned

to SetBDVar through the argument list.

Once the target location is created, the pointer table location for the current junction cell

and variable is created via a call to BuildBndryTable. This low-level subroutine has

the following syntax:

SUBROUTINE BuildBndryTable (localFrom, localTo, flipSign)

Localfrom is a pointer to the component information arrays, and localTo is the

boundary storage location (bd array) to which the component information will

ultimately be transferred. FlipSign is a logical variable indicating whether the sign of

the boundary information should be flipped when making the transfer to or from the bd

array. Because each component maintains its own positive and negative direction
vectors, it is possible to have a situation where a velocity in the boundary cell has a sign
that is not compatible with the current component's convention. In other words, given

two horizontal PIPEs that share a common junction, defined as j un2 in both

components, and velocities that move in a left to right direction, these velocities are

considered as positive in the left-hand PIPE and negative in the right-hand PIPE. When
storing the right-hand PIPE's velocities in the left-hand PIPE's boundary information, it

is necessary to flip the sign so that the proper conventions are followed.

3.2.3.1.3. System Service Setup Programming Guidelines. The above routines,
although used exclusively for creating a newly structured bd array, are certainly general
enough that should a programmer require a new set of boundary information for an

enhanced numerical scheme or a new type of component, the amount of work required

to get to that information is small in comparison to what it used to be. The most
daunting task is to ensure that the appropriate indices are determined within the system

service data structure and that the proper CASE statement is available within subroutine
SetBDVar. The following is a list of programming guidelines for using and modifying
the System Service:

* It is absolutely forbidden to modify the bd array directly in any way. All
modification should be through the pointers to component-specific data
structure locations.

If a programmer needs to add some dynamic functionality to a boundary
variable, some local or global storage (depending on whether the
functionality is localized to one component or applies to many) should be
created and the system service data structure modified so that the

appropriate boundary table elements point to this memory location. All
dynamic functionality then applies to this new variable, and all appropriate

3-78

calls to Table Transfer can be used to update the information as needed. Once
parallel capability is built into code, considerable planning and analysis are
required before work is attempted, lest errors be introduced.

* The programmer should use junCells, junComp, and compSeg arrays
whenever possible. This will help ensure component generality and free the
code from logic that is specialized for a given component, thus making it
easier to extend the code's capabilities in the future.

The following is a list of steps necessary for registering a new component in the system
service data structure:

* Add a new case statement to the component loop in InitBDArray for the
new component.

" Within this new case logic, add calls to SetBDJunCell for each junction cell
in the component. Use junCells and junComp arrays to establish variables
that are passed through the argument list.

" A survey should be conducted for each boundary variable to isolate any
specialized behavior with respect to this new component. Specialized
behavior implies one of several conditions: the corresponding component
information in the giDAr, vsAr3, or other applicable array is not stored in
the same manner as the normal iD or 3D components; the boundary variable
has no equivalent in the new component's data structure; the nature of the
solution scheme for the new component requires that the boundary variable
be interpreted in a different manner with respect to the other components; or
the nature of the boundary variable for the new component requires that
there be no static location within the component's data structure with which
to associate to the bd array location for that variable. If any of these
conditions exist, it may be necessary to devise specialized logic to handle the
boundary table set up for that boundary variable. This may include the
following:

"* adding specialized logic to SetBDJunCeK1 to set the indices that are used to
establish the "from" pointer locations (i.e., the originating values used to
populate the bd array). This may require adding new module variables to
avoid conflicts with existing indexing variables (facelIndex, face2 Index,
cellIndex, etc.).

adding IF THEN ELSE statements within the case statement logic in
SetBDVar for a certain boundary variable if it does/does not require a sign
flip during pointer table transfer.

creating a static location within the component's data structure to provide a
target location to which the System Service pointer table can point.

3-79

adding IF THEN ELSE statements within the case statement logic in
AssignGenlDPtr (in post-3.0 versions, this routine is called AssignPtr) for
a certain boundary variable so that the pointer to originating data location is
set properly. Such logic would require using the specialized indices set in
SetBDJunCell.

The following is a list of steps necessary for adding a new variable:

" add a variable to the bd array derived-type structure in module Boundary
(note: the bd derived type is not currently implemented);

"* increment the variable nbd by one;

* add a call to SetBDVar for the new variable in SetBDJunCell;

* add a case statement to flipSign logic in SetBDVar, if appropriate; and

• add a case statement to the associated logic in AssignGenlDPtr
(AssignPtr).

If the new variable is isolated for use by only one or two components, then pointers
should be set up specifically for these components. The remaining components should
have this variable pointing to the nul module variable.

3.2.3.1.4. Transfer of Component Boundary Information. Once transfer has been
scheduled during initialization, the actual transfer process is very simple. Given a
transfer table, data are moved with a simple Fortran loop:

DO i = 1, bdIndex
Copy data from one location to the other

IF(.NOT.table(i)%flipSign) THEN
table(i)%to = table(i)%from

ELSE
Change the sign of the copied
value if such an action is called for

table(i)%to = -table(i)%from
ENDIF

ENDDO

The communication system intentionally prevents direct access by the requesting
component to the storage of the requested information in the adjacent component. This
is an attempt to localize errors in new components and limit poor programming
practices involving alteration of data by unexpected portions of the program. It also lays
a groundwork for parallel processing, providing values of communicating variables that
are updated only at well-defined synchronization points in the execution of the program.

When fully implemented, initialization of intercomponent communication establishes
information transfer on several different schedules. Transfer is scheduled for calculation
setup only, once per timestep or once per cycle through components. Variables

3-80

containing fixed-geometry, index, or flag information are transferred only during the
initialization phase. This transfer occurs at every pass through components during
initialization but does not continue beyond the start of the first timestep. Some variables
become "old-time" quantities simply by transfer of the "new-time" value from the
previous timestep. These are scheduled for transfer at the beginning of each timestep. Of
the remaining variables, some may be generated only once during a specific phase of a
timestep. However, modifications to numerical methods may alter the points at which
such variables are recalculated. To retain maximum flexibility, this information is
transferred after each cycle through all components. Consideration can be given to
further scheduling refinement after the consolidated TRAC-B/TRAC-M code reaches a
higher level of maturity.

Unfortunately, some peculiarities in data flow have prevented full implementa-tion of
this scheme currently. Propagation of information from one component to the next is
currently recovered by driving the portion of the data-transfer table associated with a
given component whenever the component-specific driver (e.g., pipe2) has completed
work. This is accomplished with the subroutine TableTransComp. Work is in progress
to eliminate these data flow problems and, when possible, replace a series of calls to
TableTransComp with a single call to the subroutine TableTransAll at the
completion of the associated loop over all components.

3.2.3.2. Data Access-Instantiated Component with Task-Crunch Association.
The following example is based on the calling tree for the hydrodynamic outer iteration
for 1D components. We concentrate here on the flow of data for a single Newton
iteration and for a single specific PIPE component; the details of the convergence and
backup logic and of the network-solution logic are discussed in Section 2. Examples of
other analogous situations that follow the style of data access shown here are found in
the 3D-hydrodynamics portion of the OUTER stage, the prep and POST stages for 1D
and 3D hydrodynamics, and the ROD power logic (subroutine corel, etc.)

Subroutines trans, hout, and outer are driver routines in the hydrodynamics calling
chain before the instantiation of a specific 1D component; they are standalone files and
are not contained in any module. Subroutine hout loops over the network loops
identified by subroutine srtlp. In turn, subroutine outid loops over the 1D
hydrodynamics components in a specific network loop and instantiates a specific 1D
component, which may be of any of the 1D data types; it is not in any module.

SUBROUTINE trans (file trans.f)
CALL hout (oitmax, iofail, nmfail)

SUBROUTINE hout (noitmx, iofail, nmfail) (file hout.f)
CALL outer()

SUBROUTINE outer (file outer.f)
DO il = 1,nloops

3-81

imin = ig(lloopn+il-1)
imax = ig(lloopn+il)-I

CALL outld (imin, imax, i f lag) <<<-- for il 1hloop

In subroutine outld, only the type of the component to be calculated is needed; this is
in the FLT (array genTab of derived-type genTabT, in module Flt). This information
becomes available when index-variable cco, into array genTab, is looked up.
Subroutines pipe2, pump2, tee2, etc., which are called by outid, are intermediate-level
routines that are specific for a given component type; they call the lower-level general 1D
hydrodynamics routines. These routines (pipe2, etc.) are each contained in a module

that has a name of the form "Comp-type" (e.g., module Pipe). The component-type
modules (Pipe, Pump, etc.) are used by outid only for interface checking of the
subroutines they contain.

SUBROUTINE outld(imin, imax, jflag) (file outld.f)

BEGIN MODULE USE
USE Util
USE CFaces
USE IntrType
USE OneDDat
USE GlobalDat
USE GlobalPnt
USE CompTyp

USE Flt «<-- FLT (module FitM. f)
USE Global
USE Plenum
USE GeniDArray

USE Pipe <<<-- CONTAINS pipel, pipe2, pipe3, etc.

USE Pump <<<- CONTAINS pumpl, pump2, pump3, etc.
USE Prizer
USE Valve
USE Tee
USE Sepd
USE Fill
USE Break
USE Boundary

IMPLICIT NONE

Declaration Generated by genImpDecs.pl 5/98

INTEGER(sik) imax, imin, jflag

controls outer calculation for one-thermal-hydraulical
components.

INCLUDE 'vellim.h'
INTEGER(sik) idum

3-82

!

! read cbmponent data

DO icmp = imin, imax <<<--loop over components in this loop
cco = compIndices (icmp) <<<--- obtain cco for specific component
icme=icme+1

IF (.NOT. (genTab(cco)%type.EQ.breakh.OR.genTab(cco)%type.EQ &
& .fillh.OR.ipakon.NE.i.OR.oitno.GT.1.OR.ibks.EQ.l)) THEN

back up to start of iteration values due to l-d packing

IF(genTab(cco) %type.eq.plenh) THEN
CALL BackUpPlen

ELSE
CALL BackUpGenlD

ENDIF

ENDIF
jvlim=O
msc=0
iphsep=0
nc2=1
CALL cleardfldc
varer=0.OdO
qtp=0 .dO

branch to component type

IF (genTab(cco)%type.EQ.pipeh) THEN <<<-access array genTab
CALL Dime2 (j flag) <<<-- call pipe2 (module Pipe)

ELSEIF (genTab(cco) %type.EQ.pumph) THEN
CALL pump2(jflag)

ELSEIF (genTab(cco)%type.EQ.teeh) THEN
ntee=ntee+l
CALL tee2(jflag)

ELSEIF (genTab(cco)%type.EQ.valveh) THEN
CALL vlve2(jflag)

RETURN
END

Subroutine pipe2 is contained in module Pipe; it needs data from the specific PIPE VLT
for the now-instantiated PIPE component being calculated, which is in array pipeTab of
derived-type pipeTabT and indexed by cco. pipe2 calls general subroutine inner,
which is called by all the 1D hydrodynamic components, and is contained in module
GenlDTask. Therefore, pipe2 uses modules PipeVit (only for this PIPE's data in this
case) and GenlDTask (for subroutine interface checking). Note that component index
variable cco is in module Global; pipe2 has access to cco through module PipeVlt,
which uses Global.

3-83

bd array: The bd array provides needed information from neighboring components at

network junctions to the hydrodynamics Crunch routines for the beginning and end

cells of a component. Details on the bd-array data members are given in Section 2.3.1.

Use of the bd array in the low-level hydrodynamics routines is similar in TRAC-P and

TRAC-M. However, TRAC-M has a "double-sided" bd array, with logic that

distinguishes "putting" and "getting" boundary data. Also, the actual data transfers are

handled in TRAC-M by the System Services.

TRAC-P bd array: In TRAC-P, the bd array is stored in the A array, and a pointer to it is

set in subroutine input:

lvsi=lj seq+nj un
lbd=lvsi+njun
lmatb = 1bd + lenbd*njun
lptbln= lmatb + rnmat

SUBROUTINE outld passes this reference into the A array, for example, to

pipe2:

call pipe2(a(lbd),a(lvsi) ,lenbd,jflag)

and pipe2 has a corresponding dummy argument:

subroutine pipe2 (bd,vsi, lenbd, jflag)

dimension vsi(1) ,bd(lenbd,1)

TRAC-M bd array: TRAC-M declares the bd array and allocates storage for it, with a

call to TRACAllo, in module Boundary. pipe2 has direct access to the bd array by using

Boundary and passes the appropriate bd vector to subroutine inner via an argument

list (as in TRAC-P).

SUBROUTINE pipe2 (j flag)

BEGIN MODULE USE
USE IntrType
USE OneDDat
USE GlobalDat

USE GenlDTask <<<--- use module GenlDTask for call to inner

USE PipeVlt «<--- use module PipeVit for pipeTab;

USE Boundary also, PipeVit uses Global

USE SysService <<<--- Velocity sign convention (vSign)

IMPLICIT NONE

Declaration Generated by genImpDecs.pl 5/98

3-84

INTEGER(sik) iflag

Variables added by Chris Murray, 6/98
They should be removed once tfldsl is fixed for enhanced
parallelism
INTEGER(sik) jcol,jco2

controls pipe outer iteration.

iSegment = 1

iacc2=pipeTab (cco) %iacc <<<- Needs pipeTab data and cco
qtp=pipeTab(cco)%cpow*delt/pipeTab(cco)%plent
isflg=O

! These variables passed to inner are temporary. Should be removed
! when tfldsl is removed from ibks loop.

jcol = pipeTab(cco)%jslget
jco2 = pipeTab(cco)%js2get
CALL inner(bd(l:,pipeTab(cco)%jslget),bd(l:,pipeTab(cco)%js2get) &

&,bd(l:,pipeTab(cco)%jslput),bd(l:,pipeTab(cco)%js2put) &
&,l,pipeTab(cco)%ncells,pipeTab(cco)%isollb,pipeTab(cco)%isolrb &
&,vSign(pipeTab(cco)%jslget),vSign(pipeTab(cco)%js2get),jcoljco2)

RETURN
END SUBROUTINE pipe2

Subroutine inner is called by pipe2, prizr2, pump2, tee2, and vlve2, which are in
modules Pipe, Prizer, Pump, Tee, and Valve, respectively. Some of the actual

arguments in these calls are references to elements in pipeTab(cco), which are passed
to corresponding simple dummy arguments in inner. Subroutine inner also needs
data from genTab for component cco. References to elements of giDAr (cco) appear in
assignment statements on both left- and right-hand sides and in a subroutine call.

SUBROUTINE inner(bdlget,bd2get,bdlput,bd2put,
&istrt,istop,isollb, isolrb,vsl,vs2,jcol,jco2) <<<- istop, isollb,

isolrb
from pipeTab(cco)

BEGIN MODULE USE
USE CFaces
USE GeniDArray <<<-- for gIDAr (cco)
USE OneDDat
USE GlobalDat
USE CompTyp
USE Bad
USE Flt <<<---for genTab(cco)

USE Global <<<---for cco
USE SysService

IF (.NOT.(ipakon.NE.I.OR.oitno.GT.i.OR.ibks.EQ.l)) &
& CALL onll23c(gldAr(cco)%bitn(istrt),istop-istrt+2)

3-85

Note the comments in the source code here (Version 3.0) concerning parallelism.

IF (bdlget(37) .NE.real(genTab(cco)'num)) THEN

isml=istrt-1
vmol=gldAr (cco) •v1n(isml1+1)

.gldAr(cco)o6vln(isml+l)=gldAr (ccoAdj) %vln (faceNum) *vs1

CALL tfld(bdlget,bd2get, istop) <<<-- bd columns for left and right

junctions

END SUBROUTINE inner

Subroutine tfld is also in module GenlDTask; it is the driver for the iD hydrodynamics

Crunch routines tfldsl, tflds, and tflds3, which are in module GenlDCrunch. tf ld also

calls subroutines thermo (module EosNoInline), htif (module GenHeat), and

cellav (which is contained in tfld itself). tfld also performs special-case pointer

associations between members of array giDAr. tfld is at the Task-Crunch interface for

the 1D hydrodynamics; it uses modules GeniDArray (for its data) and GenlDCrunch

(for subroutine interface checking). The Crunch routines tfldsl, tflds, and tflds3

have access only to giDAr data through their argument lists, which are passed from

tfld.

SUBROUTINE tfld(bdl,bd2 ncl) «<-- bd column vectors through arg list

BEGIN MODULE USE
USE IntrType
USE GenIDArray <<<- array giDAr

USE GenlDCrunch <<<- 1D hydrodynamic Crunch routines
USE IntArray
USE OneDDat
USE Xvol
USE GlobalDat

USE GlobalPnt <<<- pointers into array ig
USE Bad

USE Global «<--array ig

USE Eos <<-- uses EosNoInline (for thermo)

USE Network <<<--- array rmet

USE GenHeat «<-- tfld, htif

USE JunTerms
USE SemiSolver

3-86

REAL(sdk) bdl(:),bd2(:) ,duml(l),duin2(1)

IF (ipakon.EQ.1) CALL thermo(gldkr(cco)9jpf,gldAr(cco)%elfl

CALL cellav(gldAr(cco)%alp,gldAr(cco)%vl,gld&r(cco)
9 fa&

CALL htif(gldkx(cco)$6alp,gldAr(cco)%alpo,gldAr(cco)%rov&

CALL tfldsl(gldAr(cco) %alpo,gldAr(cco) %alp,gld~r(cco)%rov &

& gldAr(cco)%bitnl,bdl,bd2,n1cl,gldAr(cco)%vlto,gldAr(cco)%vJvto&

gidAr (cco) %vvx=>gldAr (cco) %vv <<<--- pointer assignment
gldAr(cco) %vlx=>gldAr(cco) %vl

CALL CellFluxes(gldAr(cco) %vlx,gldAr(cco)%vVcm, &

CALL tflds(gldkr(cco)%~alp,gldAr(cco) %p&

CALL tflds3(gldkr(cco)9%&1p,gldAr(CCO)%p,gldAr(cco) %vlt&

CONTA.INS

SUBROUTINE cellav(alp,vl, fa,grav,bdl,bd2,ncells, favol,gravol,

&alpmn,alpmx,vJlvc~fasmlt,vlalp)

END SUBROUTINE cellav
END SUBROUTINE tfld

&

3-87

At the Crunch level, subroutine tf ldsl receives all of its array information about the
specific 1D component through its argument list (it does access the FLT through cco):

SUBROUTINE tfldsl(alpoalprovrollvlvvpvltvvtvlnvvndr, &

& tintvndxhdfavoldfvdpdfldpwfvwflcifgravbitbitnbdl, &

& bd2,ncellsvltovvtopadhldzfavolsigmavvvolvlvolgamlccfl, &

& rarlrarvlarlarvxvlrnfcvsm)

BEGIN MODULE USE

USE CFaces

USE OneDDat

USE GlobalDat

USE GlobalDim

USE Ccfl

USE CompTyp

USE Bad

USE Bits

USE Flt

USE Util

IMPLICIT NONE <<<--Note IMPLICIT NONE

Declaration Generated by genImpDecs.pl 5/98

INTEGER(sik) ibitllibitl2,icichokeichpakifrcrjjdrjmjp, &

& jside2,ltcflfmscOmsclmsc2,ncellsncp

Declaration Generated by genImpDecs.pl 5/98

REAL(sdk) aidcalpgalpialpjmalplalplmalplpalpmalp=nalpom, &

& alpppalpvalpvmalpvpaltmaratiobetabondcapccccvllcvl2, &

& cvvlcvv2,dadtdadxdelrhodetdpdprdxdvldvlodvvdvvodxdc, &

& factfactlfactllfactl2,fadcfihtfluxxgglg2,gammgamphfmax, &

& hgomegapadcpdcracracmracpracpsvralprarlmra=,rarvmrat, &

& rdetrdxrfarhslrhsvrlrldcrolmrolprovmrovprrlmrrvmrv, &

& rvdcsigdcsigmabsigmaptldctvdcvlcvljvlnjvl=axvlrvltj, &

& vltojvmaxttvmxjvoldvolivoljmvvcvvjvvnjvvrvvtj, EC

& vvtojwfmwfpwlwllwlnwlnlwmwmlwvwvlwvnwvnlxlx2,x3,

& xfcxfclxjfxmxwflxwfloxwfvxwfvo

INCLUDE 'vdvmod.hl

INCLUDE 'cflow.h'

INCLUDE 'vellim.hl

INCLUDE 'constant.h,

INCLUDE 'tst3d.h,

INCLUDE 'dtinfo.h'

REAL(sdk) lccfl(:)

REAL(sdk) alpo(:),alp(:),rov(:),rol(:),vl(:),Vv(:),P(:),vlt(:), &

& vvt(:),vln(:),vvn(:),dr(:),tln(:),tvn(:),clx(:),hd(:),fa(:),vol &

& (:),dfvdp(:),dfldp(:),wfv(:),wfl(:),cif(:),grav(:),bit(:),bitn &

& (:),bdl(:),bd2(:),vlto(:),vvto(:),pa(':),dhldz(:),favol(:), &

& sigma(:),vvvol(:),vlvol(:),gam(:),rarl(:),rarv(:),arl(:),arv(:)

REAL(sdk) xvlr(:),nfcvsm(:)

LOGICAL ltl

LOGICAL lpakllpakrlteesl

3-88

DATA fiht,ifrcr/l.OdO,1/

vmaxtt= max(vmaxt,vmaxt3)

alpmm=bdl (7) <<<--- bd array reference
ncp=ncells+l
msc0=0
mscl=0
msc2=0

----- JSIDE2 holds index of 2nd face of tee side tube.
jside2=0

IF (genTab(cco)%type.NE.pumph) msc0=msc «<-- genTab (FLT) reference
IF (msc0.NE.0) THEN

mscl=msc+l
msc2=msc+2

ENDIF
IF (islb.EQ.0) THEN

dfvdp(jstart)=0.d0
dfldp(jstart)=0.d0

ENDIF
IF (isrb.EQ.0) THEN

dfvdp(ncp)=0.d0
dfldp(ncp)=0.d0

ENDIF

explicit calculation of new time velocities

DO j=jstart,ncp
if(nwf.ne.0) wfl(j)=wflx
if(nwf.ne.0) wfv(j)=wfvx

jdr=nthm* (j-l)+l
jp=j+l
jm=j -1
IF (j.NE.jstart) THEN

voljm=vol (jm)
alpjm=alp (jm)

ENDIF
volj=vol (j)
alpj=alp (j)
vvj =vv (j)
vlj=vl (j)
vvnj=vvn(j)
vlnj =vln (j) «<-- array reference

vln(j) = (cvvl*rhsl-cvv2*rhsv) *rdet <<<-- array reference

3.2.3.3. Data Access-Instantiated Component-No Task-Crunch Association.
Here we use as an example the calling chain that adds the data for a specific 1D
component to the dump file, again using the PIPE:

3-89

!

!
!
!

!
!

dmo~it

dpipe (dtee, d etc.)

bfoutn (PIPE-specific arrays)

dcomp

bfoutn (general arrays)

GenTabl eDump dmpVLT

PipeTableDump

SUBROUTINE dmpit (file dmpit. f)

BEGIN MODULE USE
USE IntrType
USE Io
USE EngUnits
USE GlobalDat
USE GlobalPnt
USE Ccfl
USE CompTyp

USE Flt <<

USE Control
USE Global
USE Temp
USE SysTime
USE Eos
USE Rad
USE Plenum

USE Pipe <<<
USE Pump
USE Valve
USE Tee
USE Fill
USE Break
USE RodTask
USE VessTask
USE Restart

loop over components

DO icomp=1,ncomp

cci=icomp

cco=compIndices(icomp) <<<- cco

3-90

:<-- genTab

- dmpit calls dpipe

branch on component type

IF (genTab(cco)%type.EQ.pipeh) THEN

CALL doive(icomp) «<-- pass icomp
ELSEIF (genTab(cco) %type.EQ.teeh) THEN

CALL dtee(icomp)

Subroutine dpipe calls the general 1D dump routine dcomp. dpipe also dumps arrays
specific to the PIPE component, which are in module PipeArray; to do this, dpipe
needs information from module Pipevit (from pipeTab(cco).

MODULE Pipe <<<

BEGIN MODULE USE

USE PipeArray <<<--

CONTAINS

SUBROUTINE dpipe (icomp)

BEGIN MODULE USI
USE IntrType
USE PipeVlt

USE Restart

dpipe is in module Pipe

module PipeArray

<<<-- dpipe

<<<--array pipeTab
<<<-- bfoutn

IMPLICIT REAL(sdk) (a-h,o-z)

dumps pipe data

CALL dcom (icomp) <<<-- pass icomp to dcomp
CALL bfoutn(pipeAr (cco) %powtb, jabs (pipeTab(cco) %npowtb) *2, ictrld)
CALL bfoutn(pipeAr(cco)9%powrf, iabs (pipeTab(cco)"npowrf) *2, ictrld)
i2=2
IF (pipeTab(cco)%p3in.LT.O.OdO) i2=1+pipeTab(cco) %ncells
CALL bfoutn (pipeAr (cco) %qp3tb, iabs (pipeTab (cco) %nqp3tb) *i2, ictrld)
CALL bfoutn(pipeAr(cco)%qp3rf,iabs (pipeTab(cco)%nqp3rf) *2, ictrld)
RETURN
END SUBROUTINE dpipe

Subroutine bfoutn is a service routine for dumping real array data; in this case, dpipe
passes references to (derived-type) elements of pipeAr (cco) to it for dumping, as well
as the number of words to dump, from references to pipeTab (cco).

MODULE Restart

3-91

[
!

CONTAINS

SUBROUTINE bfoutn(aa,nwrx, ictrl)

BEGIN MODULE USE

USE Global

<<<- from pipeAr and pipeTab

<<<--- array Buffer

WRITE (ioc) (Buffer(i),i=istrt,istop) <<<--array Buffer

Subroutine dcomp is a general routine for dumping iD component data from the FLT,

VLT, and array data from arrays glDAr and intAr for component cco. dcomp uses a

local array called aVct for reshaping array qppp (wall heat) before it is dumped. dcomp

calls subroutines GenTabieDump and dmpVLT to dump the FLT and VLT, respectively,
and dumps the array data directly with calls to bfoutn. dcomp also needs information

from the specific component's genTab. Only icomp needs to be passed to

GenTableDump; dmpVLT is a driver routine for all iD components and needs the

component type also. dcomp uses module Flt both for its genTab data and for an

interface to subroutine GenTableDump.

SUBROUTINE dcomp(icomp)

BEGIN MODULE USE

USE IntrType

USE GenIDArray <<-

USE IntArray <<<

USE GlobalDat
USE GlobalDim
USE CompTyp

USE Flt
USE Global

USE Restart <<<---

(file dcomp, f)

array glDAr
- array intAr

genTab and

contains bfoutn

REAL(sdk), DIMENSION(genTab(cco)%nodes*genTab(cco)%ncellt) :: aVct

CALL GenTableDum= (icomp, .TRUE.) <<<-- pass icomp & reordered flag

CALL dmoVLT (ictrld, genTab(cco) %type, icomp, 'dcomp') t<--- ype & icomp

CALL bfoutn(gldAr(cco)'dx, genTab(cco) ncellt, ictrld)

3-92

CALL bfoutn(gldAr(cco)%vol,genTab(cco)%ncellt,ictrld)
CALL bfoutn(gldAr(cco)%fa,genTab(cco)%ncellt+l,ictrld)
CALL bfoutn(gldAr(cco)%fric,nfrcl*(genTab(cco)%ncellt+l),ictrld)
CALL bfoutn(gldAr(cco)%grav, genTab(cco)%ncellt+l,ictrld)
CALL bfoutn(gldAr(cco)%hd,ndial*(genTab(cco)%ncellt+l),ictrld)
CALL bfoutn(intAr(cco)%nff,genTab(cco)%ncellt+l,ictrld)
CALL bfoutn(intAr(cco)%lccfl,genTab(cco)%ncellt+l,ictrld)
CALL bfoutn(gldAr(cco)%wa,genTab(cco)%ncellt,ictrld)
aVct=reshape(gldAr(cco)6ppp, shape(aVct))
CALL bfoutn(aVct,nods*genTab(cco)%ncellt, ictrld)
CALL bfoutn(intAr(cco)'gnatid,ndml,ictrld)

Subroutine GenTableDump has logic to access specific genTab array elements in either
a reordered or nonreordered sense, depending on the value of its second input
argument:

MODULE Flt

CONTAINS

SUBROUTINE GenTableDump(compInd, reordered)

BEGIN MODULE USE
USE Restart

LOGICAL reordered
INTEGER(sik) compInd
INTEGER(sik) ordInd

ordInd = compInd
if(reordered) ordInd = compIndices(compInd)

CALL bfoutn(genTab(ordlnd)6title, 4, ictrld) «<-- dump array

Subroutine dmpVLT uses all the component VLT modules for interfaces to their various
component-type-specific dump routines; it assumes component reordering:

SUBROUTINE dmpVLT (ictrl, typex, compInd, caller) (ifie dmpvlt. f)

BEGIN MODULE USE

3-93

USE
USE
USE
USE

USE

USE
USE
USE
USE
USE
USE
USE
USE

IntrType
CompTyp
Global
PlenVlt

PipeVlt

PumpVlt
TeeVlt
BreakVlt
FillVlt
ValveVlt
PrizeVlt
RodVlt
VessVlt

ordInd = compIndices(compInd)

IF (typex.EQ.pipeh) THEN

CALL PipeTableDump(ordInd, caller)

ELSEIF (typex.EQ.teeh) THEN

CALL TeeTableDump(ordlnd, caller)
ELSEIF (typex.EQ.valveh) THEN

CALL ValveTableDump(ordInd, caller)

ELSE

CALL error(l,'*dmpvlt* component type not recognized 1,4)

ENDIF

Subroutine PipeTableDump is contained in module PipeVlt, along with all of the

PIPE-component VLTs (array pipeTab). All it needs from its caller is an index into
pipeTab (the second argument is for diagnostic use).

MODULE PipeVlt <<<- PIPE VLTs and related routines

BEGIN MODULE USE
USE IntrType
USE Global

INTEGER(sik) is2get

INTEGER(sik) js2put
END TYPE pipeTabT

TYPE(pipeTabT),DIMENSION(maxComps) pipeTab

3-94

<<<- contains subroutine PipeTableDump

CONTAINS

SUBROUTINE PipeTableDump (ordInd, caller)

BEGIN MODULE USE
USE Restart

CALL bfoutn(pipeTab(ordInd) %fl, 2, ictrld) <<<-- dump array fl
CALL bfoutn (pipeTab (ordInd) %fv, 2, ictrld)

3.2.3.4. Data Access-Noninstantiated Component. Often in TRAC one of the
code's databases will need information, from another database. A typical case of this is in
the Control System's need to access data from the component database. TRAC has a suite
of service routines that is designed to provide a uniform interface to the component
database; we refer to these routines as "data-access routines."

Table 3-5 lists all of TRAC's component data-access routines. For each of them, Table 3-5
indicates the module that contains the routine, the routine's name (and whether it is a
function or a subroutine), the module(s) or subroutine(s) it is called from, its read/
overwrite function, and its purpose.

There are data-access routines for the component FLTs (array genTab), specific
hydrodynamic component-type VLTs, the general array for iD components, the 3D
VESSEL fluid mesh array, and HTSTRs.

A typical example of the use of these routines is in module Control's subroutine
svsetl, which determines the values of signal variables that are defined in the 1D
component database:

SUBROUTINE svsetl (isvf, isvl, isv2, icomp, ncelltx)

! isvn=64 valve hydraulic diameter (m)

CALL GetValveTab ('ivps', icomp, ivpsx, rduml, .TRUE.)
csSig (n) %presVal=GetGenlD (icomp, hdInd, ivpsx)
GOTO 980

ELSEIF (nsvn.GE.5.AND.nsvn.LE.7) THEN

3-95

In this example, there is first a call to GetValveTab to obtain the location (index) of a
particular VALVE component's adjustable cell face; then there is a call to function
GetGenlD to obtain the hydraulic diameter at that cell face; the value returned is stored

TABLE 3-5
TRAC Component Data-Access Routines a

Module Routine Called by R/W Purpose

Flt S GetGenTable M Hpss R Provides certain values needed
M RodCrunch from the component's genTab

(FLT).

PumpVit S GetPumpTab M Control R Provides certain values needed
from PUMP component's
pumpTab (VLT).

RodVlt S GetRodTab M Control R Provides certain values needed
M Rodtask from the HTSTR component's

rodTab (VLT).

S SetRodTab M RodTask W Overwrites the HTSTR
component's rodTab (VLT)
element rpowrn for coupled
neutronics group.

TeeVlt S GetTeeTab S icomp R Provides certain values needed
from TEE component's teeTab
(VLT).

ValveVlt S GetValveTab M Control R Provides certain values needed
S input from the VALVE component's

valveTab (VLT).

VessVlt S GetVessTab M RodCrunch R Provides certain values needed
from the 3D VESSEL
component's vessTab (VLT).

GenlDArray F GetEosDrivld M RodTask R Returns EOS data from the 1D
component database.

F GetGenlD M Control R Returns the value of the desired
M Hpss component 1D-array element.
M RodTask

F GetGenlD2D M Control R Returns the value of the desired
ID-component, 2D-array
element.

S GetGenlDArray M Control R (see Returns the value of a pointer
Coding that is associated with a desired
Std. component 1D array.
below)

3-96

TABLE 3-5-TRAC Component Data-Access Routinesa (cont)

Routine Called by R/W Purpose
_________________ 1* I

S GetlDArrayPointer M GenIDArray
(see Purpose)

Associates the pointer with the
desired iD-component 1D
array.
Service routine for:
GetGenlD
GetGenlDArray
CopyGenlDArray
IncrementGenlD

S Get2DArrayPointer M GenlDArray --- Associates the pointer with
(see Purpose) desired component 2D array.

Only set up for twn array (uses
array name).
Service routine for:
GetGenlD2D

S IncrementGenlD M RodTask w Adds the passed value to the
value of the specified
component 1D-array element.
The new value replaces the
original value in the array.

S CopyGenIDArray M Control R Copies a specified number of
1D-component array elements
into an array in the calling
routine.

HSArray F GetHS M Control R Returns the value of the desired
=TSTR component surface

array element (assumes outer
surface).

F GetHSSurf M Control R Returns the value of the desired
STSTR-component surface
array element (assumes outer
surface).

F GetNoht M Control R Returns the value of noht
(number of rows of heat
transfer nodes) for a specified
copy (ROD) of the desired
HTSTR.

F GetHS2d M Control R Returns the value of the desired
HTSTR-component, 2D-array
element.

F GetHS3d M Control R Returns the value of the desired
HTSTR-component, 3D-array
element.

3-97

Module

TABLE 3-5--TRAC Component Data-Access Routinesa (cont)

Routine Called by R/W Purpose

S GetHSIDPtr M HSArray
(see Purpose)

Associates the pointer with the
desired HTSTR-component 1D
array.
Service routine for:
GetHS

S GetHS2DPtr M HSArray --- Associates the pointer with the

(see Purpose) desired HTSTR-component 2D
array.
Service routine for:
GetHS2d

S GetHS3DPtr M HSArray
(see Purpose)

Associates the pointer with the
desired HTSTR-component 3D
array.
Service routine for:
GetHSSurf
GetHS3d

HeatArray S GetHeatArray M Control R (see Returns the value of a pointer
Coding that is associated with a desired
Std. data array in heatAr (part of
below) the 1D-component database).

VessArray3 F GetVSAR MControl R Returns the value of the
element (i,jk) of the specified
VESSEL 3D mesh array.

VessCrunch S copya M VessCrunch R Copies data for one level from
one array to another.

in the Control System database. Another important use of data-access routines is found
in the transfer of data between the hydrodynamic and HTSTR databases. An example is
given in a separate section below.

Some of TRAC's data-access routines assume that the components have been reordered.
Typically, the routines in this category are called with an icmp loop-index actual
argument, contain a compInd dummy argument, and have a

ordInd = compIndices(compInd)

statement.

Some of the data-access routines have reordering logic that is driven by a . TRUE./
.FALSE. actual argument and a "reordered" dummy argument and have these
statements:

3-98

Module

I In columns 2 and 3, "S" = a subroutine, "F"= a function, and "M" = a mod~ule.

ordInd = compInd
if (reordered) ordInd = compIndices(compInd)

Subroutine GetGenlDArray returns the value of a pointer variable that is associated
with the beginning of a specific desired array in the component 1D hydrodynamic-array
database. The pointer array in the caller's actual argument list can be subsequently used
in arithmetic statements in the caller, typically on the right-hand side, but potentially on

the left-hand side. Similarly, subroutine GetHeatArray returns a pointer value from
array heatAr, which is also part of the 1D database. Subroutine CopyGenlDArray
copies the desired component 1D array data into an array (not a pointer array) in the
calling routine.

Coding Standard: Pointer values returned by subroutines such as GetGenlDArray
and GetHeatArray should be used only on the right-hand side of assignment

statements.

Subroutines GetlDArrayPointer and Get2DArrayPointer are service routines in

module GeniDArray, which associate an array pointer variable with a desired iD

component array. For computational efficiency, GetiDArrayPointer operates with a

select case construct, using array-index numbers that are parameterized in module

GenlDArray. Get2DArrayPointer only has to associate the wall temperature array

twn and uses an IF statement on the array name. Both routines will fall through to an

error message if an array is called for which the routines are not set up to handle.

Function GetEosDrivld is specially set up to return one of four EOS variables from the

1D component database. The 1D EOS data are stored in "inverted" form and are

accessed by appropriate offsets into array driv, which is in giDAr.

3D VESSEL Data Access-scratch storage use of old-time arrays: Real function

GetVSAR, contained in module VessArray3, returns a value from a subset of the

VESSEL 3D mesh arrays. GetVSAR takes as input arguments a character string

specifying the desired array name, the VESSEL component index cco, and the (i, j, k)
indices into the array.

Subroutine svset3, in module control, is responsible for evaluating all signal variables

that are defined in a 3D VESSEL component. svset3 calls GetVSAR to obtain all needed

information from a VESSEL. Note that svset3 uses certain old-time VESSEL arrays as

scratch storage for intermediate calculations. The following code fragments show use of

the old-time VESSEL arrays vlyt, viz, and vlxr as scratch storage for determining

liquid-mass-flow signal variables; also shown are signal variables that do not need the
scratch storage.

SUBROUTINE svset3 (isvf, isvl, isv2, icomp)

isvn=31, 32 or 33 : cell lower interface liquid mass flow (kg/s)

3-99

DO k=kl,k2,kk
DO j=j1,j2,jj

DO i=il,i2,ii
ii =i
j :i=j
kl=k
IF (m.EQ.0) THEN

IF (vsAr3(cco)%vlnyt(i,j,k).LT.0.dO) jl=jl &
& +1

overwrite array-»>> vsAr3-(cco)%vlyt(i,j,k)=(l.OdO) &

&-vsAr3(cco)%alpn(il,jl,kl) &
&*vs~r3(cco)%roln(il,jl,kl) &
&*vs~r3(cco)%vlnyt(i,j~k)*vs~r3(cco)%fayt~i,j &
& ,k)

ELSEIF (m.EQ.1) THEN
IF (vsAr3(cco)%vlnz(i~j,k).LT.O.dO) kl=kl &

& +1
vs"x3(cco)%vlz(i,j,k)=(l.OdO &

&-vsAr3(cco)%alpn(il,jl,kl)) &
& *vsAr3(cco)%roln(il,jl,kl)*vs~r3(cco)%vlnz(i &

& ,j,k)*vsAr3(cco)%faz(i,j,k)
ELSEIF (m.EQ.2) THEN

IF (vsAr3(cco)%vlnxr(i,j,k).LT.O.dO) il=il &
& + 1

vsAr3(cco)9sv1xr(i,j,k)~=(l.Qd0 &
& -vsAr3(cco)%alpn(iJ.,jl,kl)) &

& *vsAr3(cco)%roln(il,jl,kl) &
& ~*vsAr3 (cco)%vlnxr(i,j~,k) *vsAr3 (cco)%faxr(i, j &
& ,k)

ENDIF

ENDDO
ENDDO

ENDDO
1=lvlyt+m-l
IF (m.EQ.0) THEN

setup for GetVSAR ->>> vsvNaine=, vlyt
ELSEIF (m.EQ.l) THEN

vsvName= viz I

ELSEIF (m.EQ.2) THEN
vsvNaxne=lvlxr

ENDIF

GOTO 8 50 <<<-calculate the signal variable

--The following does not need scratch space (simply access VESSEL
arrays):

isvn=37, 38 or 39 :lower interface liquid velocity (mis)

l=lvlnyt-im--l
IF (m.EQ.0) THEN

3-100

vsvName='vlnyt I

ELSEIF (m.eq.l) THEN
vsvName='vlnz

ELSEIF (m.eq.2) THEN
vsvName= 'vlnxr

ENDIF
GOTO 850

--- calling GetVSAR (may be accessing scratch array):
isvn is negative : signal value is the parameter difference

vsv=GetVSAR(vsvName,cco, ijl,kl)
csSig (n) %presVal=vsv
vsv=GetVSAR (vsvName, cco, i2, j 2, k2)

csSig (n) %presVal=csSig (n) %presVal-vsv
GOTO 980

ENDIF

the signal value is from celll when cell2 is zero
or from cell2 when celll is zero

vsv=GetVSAR (vsvName, cco, il, j1, kl)
csSig (n) %presVal=vsv

ENDIF

Examples of Data-Access-Routine Coding: Examples of the coding for the

hydrodynamic data-access routines, including their argument lists, are given in

Appendix G.

HTSTR Data Access Routines: The HTSTR data-access routines are contained in

module HSArray, thus providing information to the Control System. They work in much

the same way as the data-access routines for the general 1D hydrodynamic array.

However, the lowest-level service routines GetHSIDPtr, GetHS2DPtr, and

GetHS3DPtr all operate with IF statements on array name strings that are passed to

them (they do not use SELECT CASE).

The HTSTR data-access routines GetHS2d and GetHS3d assume that the requested array

thermal hydraulics are organized according to

REAL (sdkx) FUNCTION GetHS2d (compInd, arrayName, rod, cell)

CALL GetHS2DPtr (arrayName, compInd, arPtr)

GetHS2D=arPtr (cell, rod) <<<- cell, rod (i.e., copy)

REAL (sdkx) FUNCTION GetHS3d (compInd, arrayName, rod, cell,node)

3-101

CALL GetHS3DPtr (arrayName, compInd, arPtr)

GetHS3D=arPtr (node, cell, rod) <<<- node, cell, rod

These functions will return a value from any rank-2 or rank-3 array (assuming it is made
available in the Ptr routines); it is up to the calling routine to know the ordering of
information in the array columns. All of the "surface" HTSTR data arrays are in rank-3
arrays, organized according to

(axial node-row, inner/outer surface index, rod index)

Function GetHSSurf currently needs to return only outer-surface data; therefore, only a

rod index and a node-row index are passed to it

REAL (sdkx) FUNCTION GetHSSurf (compInd, arrayName, rod, cell)

This was implicit in the old code:
(for isvn=91 or 92, only the outer surface is accessed,

irrespective of input)
is = 1

CALL GetHS3DPtr (arrayName, compInd, arPtr)

GetHSSurf=arPtr (cell, is, rod)

END FUNCTION GetHSSurf

Function GetNoht is hardwired to return a value from the noht array for a specified
copy (ROD) of a specified HTSTR (array noht carries the number of rows of heat
transfer nodes for the rod in question).

3.2.3.5. HTSTR to Fluid Data Communication.
Note: HTSTR to Fluid Data Communication. In future code versions, this logic will
be replaced.

HTSTR arrays ichci and Ichco: The HTSTR data array hsAr includes the rank-two
arrays ichci and ichco, which carry information about the hydrodynamic components
to which the inner and outer surfaces of an HTSTR component are coupled. The first
subscript of Ichci and ichco contains the cell number (for iD hydrodynamic
components) or the reordered component index (for 3D VESSEL components) and the
type of the hydrodynamic component. The second subscript contains indices of the

coarse-node, heat-conduction rows. Arrays ichci and 1chco are initialized in the INIT

stage by subroutines irodl, 1chpip, and lchvss (module RodCrunch).

Data-copy subroutines fltom, piprod, and vssro& Currently in TRAC, HTSTR
components may be thermally coupled to the iD and 3D hydrodynamic components

3-102

(but not the PLENUM, BREAK, or FILL components). In the TRAC Prep stage, HTSTR

components need fluid information from the 1D and 3D hydrodynamic component

databases to calculate heat-transfer coefficients and related quantities. The results from

the HTSTR metal-to-fluid calculations subsequently are needed by the 1D and 3D

hydrodynamic components in the Outer stage. In the Post stage, the HTSTRs will need

the new-time fluid temperatures as boundary conditions for their internal-heat

conduction solution. The required data are transferred (copied) between the HTSTR and

the 1D and 3D hydrodynamic databases by service subroutines piprod (module

RodTask for the ID hydrodynamics components) and vssrod (module RodTask for the

3D VESSEL component). piprod and vssrod are driven by subroutine fitom (module

RodTask):

SUBROUTINE htstrl

DO icmp=1,nhtstr
cci=icmp+ncomp
cco=compIndices (cci)
CALL fltom (hsAr(cco)%ichci,hsAr(cco)%Ichco,hsAr(cco)%idrod,)

A

transfer hydrodynamic data to HTSTR

SUBROUTINE fitom (lchci, 1chco, idrod, imf 1) <<<-- lchci and lchco passed

IMFL - FLAG INDICATING OPERATION TO BE PERFORMED
= 1, MOVE HYDRO INFO INTO ROD DATA DURING PRE-PASS

=-1, MOVE ROD DATA INTO HYDRO DATA DURING PRE-PASS

! = 2, MOVE NEW HYDRO FLUID TEMP'S INTO ROD DATA

DURING POST-PASS

--- inner HTSTR surface:
ctyp = lchci(2,nzz) <<---component type
IF (ctyp.EQ.vsslh) THEN

nzl=nzl+l
idum=hsAr (cco) %ntsxx (mrd)

CALL vssrod(int(lchci(i,fnz)) ,int(idrod(nrd)) ,idum &

& , int(hsAr(cco)%hceli(nz)),nzIimfl,fncr,rodTab(cco)%iisnz)
ELSEIF (ctyp.NE.plenh) THEN

CALL oiorod(int (idrod(nrd)) , ig (lorder) &

& , int(hsAr(cco)%hceli(nzz)) ,int(hsAr(cco)%hcomi (nzz)) ,imf1 &

& ,ncr,rodTab(cco)%iis,fnz)
ENDIF

--- outer HTSTR surface:

3-103

ctyp = lchco (2,nzz) <<-- component type
IF (ctyp.EQ.vsslh) THEN

nz2=nz2+1
idum=hsAr (cco) %ntsxx(mrd)
CALL vssrod (int(chco(,nz)),int(idrod(nrd)), idum

& , int(hsAr(cco)%hcelo(nz)),fnz2,imflincr,isurf,nz)
ELSEIF (ctyp.NE.plenh) THEN

CALL piprod(int(idrod(nrd)), ig(lorder) &

& , int(hsAr(cco)%hcelo(nzz)), int(hsAr(cco)%hcomof(nzz)) &

& , imfl,ncr,isurf,nz)
ENDIF

In subroutine piprod, component-index cco accesses the current HTSTR component.

piprod uses data-access routines IncrementGenlD, GetGenlD, and GetEosDrivld

(the index i that is passed to these routines is obtained from comparison of the iorder

array with ihcom):

SUBROUTINE DiDrod (idrod, iorder, ihcel, ihcom, imfl,ncr, isurf,kz)

DO i=1,ncomp

IF (iorder(i) .EQ.ihcom) GOTO 20 <<<- obtain hydrodynamic
component index

ENDDO
20 CONTINUE

move rod data to hydro data <<<--- Prep-stage call

IF (idrod.GE.0) THEN
CALL IncrementGenlD (i, hgamInd, aihcel, &

& hsAr(cco)%hgamr(kz-i,isurf,fncr))

CALL IncrementGenlD(i, finanInd,aihcel, &

& hsAr(cco)%finar(kz-l,isurf,fncr))
ENDIF

move hydro data to rod data

ELSEIF (imfl.GE. 2) THEN «<--- Post-stage call

hsAr(cco) %tlnr(kz, isurf,ncr)=GetGenlD(i, tlnInd,aihcel)

hsAr (cco) %tvnr (kz, isurf,ncr) =GetGenlD (i, tvnInd, aihcel)

ELSE «<-- Prep-stage call

xalp=GetGenlD(i, alpInd, aihcel)

3-104

hsAr (cco) %alpr (kz, isurf,ncr) =xalp
hsAr (cco) %alvr (kz, isurf, ncr) =GetGenlD (i, alvInd, aihcel)

hsAr(cco)%cplr(kz,isurf,fncr)=GetGenlD(i,cplfInd,aihcel)

hsAr (cco) %sr (kz, isurf,ncr) =GetGenlD (i, sInd, aihcel)

hsAr(cco)%drvdt(kz,isurf,ncr)= GetEosDrivld(i, 'drvdt ',aihcel)

hsAr(cco)%drldt(kz,isurf,ncr)= GetEosDrivld(i, 'dridt ',aihcel)

Subroutine vssrod performs a function analogous to that of piprod for the 3D VESSEL
component it is also called by subroutine fitom and handles all HTSTR-to-VESSEL and
VESSEL-to-HTSTR data copies. vssrod also uses component Index cco to access the
current HTSTR component. Unlike piprod, vssrod receives component Index ccov
through its argument list to access the required hydrodynamic (VESSEL) component
(from the ichci and ichco arrays in subroutine fitom). vssrod operates directly on
the VESSEL arrays. In addition to the VESSEL 3D mesh data, vssrod treats some of the

VESSEL Special Array Data.

SUBROUTINE vssrod(ccov, idrodntsxx,iz,nz, imfl,ncr, isurf,kz)

move rod data to hydro data

data in module RodHtcref 1 copied to VESSEL special arrays:
IF (idrod.GE.0) THEN

IF ((newrfd.EQ.1).AND.(nz.EQ.1)) THEN
ij=ias+ (ir-i) *ntsxx
IF (nrefld(ij).EQ.i) vsAr(cco)%refld(ij)=1
IF (int(nhsca(ij)) .EQ.genTab(cco)%num) THEN

vsAr (ccov) %alpan (ij) =aipag2 (ij)
vsAr (ccov) %alpcn (ij) =aipcf2 (ij)

vsAr(ccov)%ztbn(ij)=ztb(ij)
ENDIF

ENDIF

VESSEL mesh arrays:
vsAr3(ccov)%hgam(i,j,k)=hsAr(cco)%hgamr(kz-I,isurf, ncr) &

"& +vsAr3(ccov)%hgam(i,j,k)
vsAr3(ccov)%hla(i,j,k)=hsAr(cco)%hlar(kz-i,isurf, ncr) &

"& +vsAr3(ccov)%hla(i,j,k)

vsAr3(ccov)%ffinan(i,j,k)=hsAr(cco)%finar(kz-I,isurf,fncr)
"& +vsAr3 (ccov)%finan(i, j,k)

ENDIF

3-105

move hydro data to rod data

ELSEIF (imfl.GE.2) THEN

hsAr(cco)%tlnr(kzisurfncr)=vsAr3(ccov)%tln(ijk)

hsAr(cco)%tvnr(kzisurfncr)=vsAr3(ccov)%tvn(ijk)

ELSE

copy into module RodRtcref 1 arrays:
IF ((newrfd.EQ.1).AND.(nz.EQ.1)) THEN

ij=ias+(ir-l)*ntsxx

funh(ij)=vsAr(ccov)%funh(ij)

nhsca(ij)=vsAr(ccov)%nhsca(ij)

alpag2(ij)=vsAr.(ccov)%alpag(ij).

a1prw(ij)=vsAr(ccov)%a1prw(ij)

a1psm(ij)=vsAr(ccov)%a1psm(ij)

zags(ij)=vsAr(ccov)%zags(ij)

zdfs(ij)=vsAr(ccov)%zdfs(ij)

ztws(ij)=vsAr(ccov)%zrws(ij)

zsms(ij)=vsAr(ccov)%zsms(ij)

ENDIF

copy into hsjL-r arrays:
hsAr(cco)%alpr(kzisurfncr)=vsAr3(ccov)%alpn(ijk)

hsAr(cco)%alvr(kzisurfncr)=vsAr3(ccov)%alvn(ijk)

hsAr(cco)%cplr(kzisurfncr)=vsAr3(ccov)%cpl(ijk)

hsAr(cco)%cpvr(kzisurfncr)=vsAr3(ccov)%cpv(ijk)

3-106

