August 7, 1985

Docket No. 50-271

Mr. R. W. Capstick Licensing Engineer Vermont Yankee Nuclear Power Corporation 1671 Worcester Road Framingham, Massachusetts 01701

Dear Mr. Capstick:

On July 1, 1985, the Commission approved Technical Specification Bases pages 138, 139 and 139a relating to the Mark I Containment long-term program.

Page 139 failed to incorporate changes made by Amendment No. 88 approved June 6, 1985. Enclosed is a corrected page 139.

We are sorry for any inconvenience this change may have created.

Sincerely,

Original signed by/

Robert A. Hermann, Project Manager **Operating Reactors Branch #2** Division of Licensing

Enclosure: As stated

cc w/enclosure: See next page

DISTRIBUTION			
Docket File	SNorris	BGrimes	OPA, CMiles
NRC PDR	VRooney	TBarnhart (4)	RDiggs
Local PDR	OELD	WJones	Gray File
ORB#2 Reading	LJHarmon	MVirgilio	Extra - 5
HThompson	ELJordan	ACRS (10)	JPartlow

DL:ORB#2 RHermann DL:QRB#2 SNorris:ajs 08/6/85 08/7/85

8508120701 850807 PDR ADOCK 05000271

PDR

Mr. R. W. Capstick Vermont Yankee Nuclear Power Corporation Vermont Yankee Nuclear Power Station

cc:

Mr. W. F. Conway President & Chief Executive Officer Vermont Yankee Nuclear Power Corp. R. D. 5, Box 169 Ferry Road Brattleboro, Vermont 05301

Mr. Donald Hunter, Vice President Vermont Yankee Nuclear Power Corp. 1671 Worcester Road Framingham, Massachusetts 01701

New England Coalition on Nuclear Pollution Hill and Dale Farm R. D. 2, Box 223 Putney, Vermont 05346

Mr. Walter Zaluzny Chairman, Board of Selectman Post Office Box 116 Vernon, Vermont 05345

J. P. Pelletier, Plant Manager Vermont Yankee Nuclear Power Corp. Post Office Box 157 Vernon, Vermont 05354

Raymond N. McCandless Vermont Division of Occupational & Radiological Health Administration Building 10 Baldwin Street Montpelier, Vermont 05602

Honorable John J. Easton Attorney General State of Vermont 109 State Street Montpelier, Vermont 05602

John A. Ritscher, Esquire Ropes & Gray 225 Franklin Street Boston, Massachusetts 02110 W. P. Murphy, Vice President & Manager of Operations
Vermont Yankee Nuclear Power Corp.
R. D. 5, Box 169
Ferry Road
Brattleboro, Vermont 05301

Mr. Gerald Tarrant, Commissioner Vermont Department of Public Service 120 State Street Montpelier, Vermont 05602

Public Service Board State of Vermont 120 State Street Montpelier, Vermont 05602

Vermont Yankee Decommissioning Alliance Box 53 Montpelier, Vermont 05602-0053

Resident Inspector U. S. Nuclear Regulatory Commission Post Office Box 176 Vernon, Vermont 05354

Vermont Public Interest Research Group, Inc. 43 State Street Montpelier, Vermont 05602

Thomas A. Murley Regional Administrator Region I Office U. S. Nuclear Regulatory Commission 631 Park Avenue King of Prussia, Pennsylvania 19406

3.7.A (Cont'd)

In conjunction with the Mark I Containment Long-Term Program, a plant unique analysis was performed (see Vermont Yankee letter, dated April 27, 1984, transmitting Teledyne Engineering Services Company Reports, TR-5319-1, Revision 2, dated November 30, 1983 and TR-5319-2, Revision 0) which demonstrated that all stresses in the suppression chamber structure, including shell, external supports, vent system, internal structures, and attached piping meet the structural acceptance criteria of NUREG-0661. The maintenance of a drywell-suppression chamber differential pressure of 1.7 psid and a suppression chamber water level corresponding to a downcomer submergence range of 4.29 to 4.54 ft. will assure the integrity of the suppression chamber when subjected to post-LOCA suppression pool hydrodynamic forces.

Using a 50° F rise (Section 5.2.4 FSAR) in the suppression chamber water temperature and a minimum water volume of 68,000 ft³, the 170°F temperature which is used for complete condensation would be approached only if the suppression pool temperature is 120°F prior to the DBA-LOCA. Maintaining a pool temperature of 100°F will assure that the 170°F limit is not approached.

Experimental data indicate that excessive steam condensing loads can be avoided if the peak temperature of the suppression pool is maintained below 160°F during any period of relief valve operation with sonic conditions at the discharge exit. Specifications have been placed on the envelope of reactor operating conditions so that the reactor can be depressurized in a timely manner to avoid the regime of potentially high suppression chamber loadings.

In addition to the limits on temperature of the suppression chamber pool water, operating procedures define the action to be taken in the event a relief valve inadvertently opens or sticks open. This action would include: (1) use of all available means to close the valve, (2) initiate suppression pool water cooling heat exchangers, (3) initiate reactor shutdown, and (4) if other relief valves are used to depressurize the reactor, their discharge shall be separated from that of the stuck-open relief valve to assure mixing and uniformity of energy insertion to the pool.

Double isolation values are provided on lines which penetrate the primary containment and open to the free space of the containment. Closure of one of the values in each line would be sufficient to maintain the integrity of the pressure suppression system. Automatic initiation is required to minimize the potential leakage paths from the containment in the event of a loss-of-coolant accident. Details of the isolation values are discussed in Section 5.2 of the FSAR.

Amendment No. 30, 88, Ltr dtd 7/1/85

VYNPS