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ABSTRACT 

Circular cylinders of various sizes and perforations were subjected to 

sinusoidally-oscillating flow in a large U-shaped water tunnel. The force

transfer coefficients (drag and inertia) were determined in the range of Keulegan

Carpenter numbers (K) from about 1 to 40. The results have shown that the 

effect of the perforations is to decrease the inertia coefficient and to increase the 

drag coefficient. Thus, perforated cylinders are very efficient dampers and could 

be used in increasing the damping of cables and large structures in the ocean 

environment.
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I. INTRODUCTION 

The unsteady motion is of great interest in the solution of many applied 

technical problems in fluid mechanics, such as the motion of bodies through 

fluids, fluid motion in or about bodies, free surface flow phenomena, and the 

motion of fluids inside machinery. The complexities of unsteady non

equilibrium turbulence with or without separation under a variety of time

dependent flow conditions (periodic flows, transverse or bidirectional 

dynamic response of bodies) are far from understood.  

There are an infinite number of time-dependent flows, and one can 

describe only a few that are caused by some well-defined time-dependence of 

the ambient flow and/or the fluid/structure interaction (e.g., change of 

freestream velocity; large-amplitude, time-dependent oscillations of the mean 

flow; the impulsive start from rest; change of angle of attack; motion of 

helicopter blades, and the dynamic response of a cable).  

The theory of sinusoidally oscillating flow about bodies or the 

sinusoidal oscillation of a body in a viscous fluid otherwise at rest has long 

been of special interest to fluid dynanists. In steady flow, the position of 

the separation points is nearly stationary, except for small excursions about ±3 

degrees (on a circular cylinder). Furthermore, the interference between the 

vortices and the body is confined mostly to the aft-body region. There is no 

obvious relation between the measured lift and drag coefficients and the 

excursion of the separation points. For example, while the separation angle 

remains nearly constant at about 80 degrees in the range of Reynolds numbers 

Re from about 2000 to 20,000, the drag coefficient increases from about 0.8 to,

1
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1.2 and the mean peak value of the lift coefficient varies anywhere from zero 

to 0.6 (see e.g., Sarpkaya and Isaacson 1981).  

Numerical Simulation) and LES (Large Eddy Simulation) techniques 

are not likely to provide anything more than occasional samples for 

comparison with experiments at relatively low Reynolds numbers, at great 

expense even for two-dimensional flows. The most reliable recourse, at least 

at present, seems to be carefully conducted laboratory experiments. In this 

effort, flow visualization can serve as an excellent tool, not merely as an aid 

to understanding the physics of the flow but also as a means to acquire data 

and to guide the numerical calculations.  

The experimental studies of Morison et al (1950) on forces on piles due 

to the action of progressive waves have provided a useful and somewhat 

heuristic approximation. The forces are divided into two parts, one due to 

the drag, as in the case of flow at constant velocity, and the other due to 

acceleration or deceleration of the fluid. This concept necessitates the 

introduction of a drag coefficient Cd and inertia coefficient Cm in the 

expression for the in-line force (Keulegan & Carpenter, 1958). Morison's 

equation does not deal with the transverse force or lift force. If F is the force 

per unit length experienced by a cylinder, then one has 

F iD 2 dU 
F = PCdDIUI +l (1) 

where U and dU/dt represent the undisturbed velocity and the acceleration of 

the fluid, respectively. A detailed discussion of this equation is given by

2
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Sarpkaya and Isaacson (1981) and will not be repeated here. Suffice it to note 

that the most comprehensive data on smooth and sand-roughened circular 

rigid cylinders are given by Sarpkaya (1977, 1986).  

An extensive literature search has shown that there are no studies of 

oscillating flow about perforated cylinders in spite of the fact that they are 

used in various industrial applications, though mostly for filtering purposes.  

In the course of search for realistic solutions to the flow-induced oscillations 

of cables and bodies immersed in the ocean environment it became clear that 

perforated cylinders can be ideally suited for the damping of undesirable 

oscillations. Thus, an extensive investigation has been undertaken through 

the use of a number of carefully selected perforated pipes immersed in a large 

U-shaped oscillating flow tunnel.

3
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II. PRESENTATION AND DISCUSSION OF RESULTS 

Each perforated cylinder was subjected to a sinusoidally oscillating flow in 

a large U-shaped water tunnel (10 m wide and 7.5 m high). The tunnel and 

the force-acquisition system have been designed and constructed in 1974 and 

described a number of times since then (see, e.g., Sarpkaya 1977). These will 

not be repeated here.  

The perforated cylinders were constructed of perforated metal sheets in 

such a manner that they have retained their perfectly circular shape 

throughout the measurements. We will refer to them here by their numbers.  

Perforated cylinder No. 1 had a diameter of 127-mm, a hole size of 0.406 m m 

and a porosity of 30%. Perforated cylinder No. 2 had a diameter of 127 mm, a 

hole size of 0.83 mm and a porosity of 28%. Perforated cylinder No. 3 had a 

diameter of 152 mm, a hole size of 0.50 mm and a porosity of 30%. Perforated 

cylinder No. 4 had a diameter of 127 mm, a hole size of 1.60 mm and a 

porosity of 30%. Perforated cylinder No. 5 had a diameter of 127 mm, a hole 

size of 1.59 mm and a porosity of 23%. Finally, Perforated cylinder No. 6 had 

a diameter of 127 mm, a hole size of 2.50 mm and a porosity of 51%.  

Figures 1 through 6 show the drag and inertia coefficients for the above

perforated cylinders. It evident from a careful perusal of these figures that the 

magnitudes of the two force-transfer coefficients are dictated primarily by the 

porosity. Screen No. 1 through No. 5 yield essentially similar drag and inertia 

coefficients because of the fact that they have nearly identical porosities. On 

the other hand, the cylinder number No. 6 yields considerably smaller drag 

and inertia coefficients. This is in conformity with the expectations that the 

larger the porosity, the larger the flow through the cylinder. Consequently, 

not only the normal pressures on the cylinder but also the flow about the 

cylinder are reduced. The consequence of this reduction is that the region of

5
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separation and vortex shedding is considerably decreased relative to 
perforated cylinders of smaller porosity. However, the most remarkable 
feature of the results is the variation of the inertia coefficients. It is a well
established fact (Sarpkaya 1977, 1986) that the inertia coefficient for K smaller 
than about 4 is nearly constant at a value slightly larger than 2. In the case of 
perforated cylinders, the inertia coefficient in the said region is always smaller 
than 2. For the cylinder No. 6, the inertia coefficient is indeed very small.  

Figure 7 shows the drag and inertia coefficients for a non-porous (solid) 
cylinder of 127-mm diameter. It is clear from a comparison of Figs. 1 through 
6 with Fig. 7 that the drag coefficients of porous cylinders are about an order 
of magnitude larger than those of solid cylinders. This is a consequence of 
the dissipation of large amounts of energy in the vortices generated on both 
sides of the perforations. It is this remarkable feature of the porosity that 
makes perforated cylinders ideally suited for damping of cables and structures 
undergoing hydro-elastic oscillations.  

The investigation is currently underway with cylinders oscillating in a 
fluid otherwise at rest and the results will be reported at a later date.

6



Mam 10 01 08:50a

III. CONCLUSIONS 

Circular cylinders of various sizes and perforations were subjected to 

sinusoidally oscillating flow in a large U-shaped water tunnel. The force

transfer coefficients (drag and inertia) were determined in the range of 

Keulegan-Carpenter numbers (K) from about 1 to 40. The results have shown 

that the effect of the perforations is to decrease the inertia coefficient and to 

increase the drag coefficient. Thus, perforated cylinders are indeed very 

efficient dampers and could be used in increasing the damping of cables and 

large floating structures in the ocean environment, thereby reducing 

considerably the vortex-induced oscillations and hydroacoustic noise.

7
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APPENDIX: FIGURES
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Figure 1. Cd and Cm versus K for screen No. 1.
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Figure 2. Cd and Cm versus K for screen No. 2.
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Figure 3. Cd and Cm versus K for screen No. 3.
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Figure 4. Cd and Cm versus K for screen No.4.
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Figure 5. Cd and Cm versus K for screen No. 5.
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Figure 6. Cd and Cm versus K for screen No. 6.
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Figure 7. Cd and Cm versus K for a solid and perforated cylinder.
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