

MAY 2 2 2001 L-2001-124 10 CFR 50.54(q) 10 CFR 50 Appendix E

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D. C. 20555

Re: Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 Emergency Plan Implementing Procedure Revision

The following document has been revised:

0-EPIP-20126, Offsite Dose Calculations

The implementation date was April 26, 2001. Pursuant to the requirements of 10 CFR 50.54(q) and 10 CFR 50 Appendix E, one copy of the revised document is enclosed. A summary of changes to the document is attached. FPL has determined that the changes described do not result in a decrease in the effectiveness of the Emergency Plan.

Very truly yours,

R. J. Hovey Vice President Turkey Point Plant

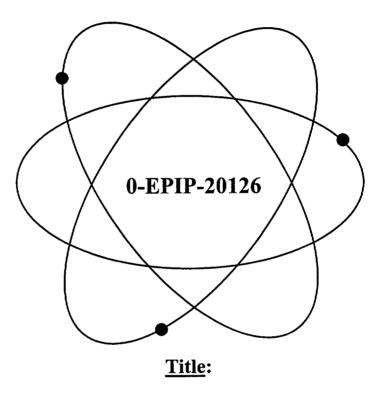
CLM

Attachment, enclosures

cc: Regional Administrator, Region II, USNRC (2 copies) Senior Resident Inspector, USNRC, Turkey Point Plant (w/o enclosure) Attachment to L-2001-124 Page 1 of 1

SUMMMARY OF CHANGES

0-EPIP-20126, Offsite Dose Calculations


Changes to this procedure were due to a great number of minor errors that were introduced during the procedure conversion by word processing. In addition, there were minor enhancements made for clarification.

Specific Changes

- 1. Pages 17, 18, 29, 43, 45, 47, 48, 51, 52, 54, 55, 56, 57, 58, 59, and 60 had typos, due to the word processing conversion.
- 2. Page 17, corrected containment exhaust fan to the appropriate value of 35,000 scfm. Added information about the CHRRMS (Containment High Range Radiation Monitoring System) for completeness.
- 3. Page 20, change made to align procedure to LAN-based rather than stand-alone.
- 4. Page 24, step added to begin print function.
- 5. Page 31, Meteorological Data Worksheet, replaced with a better copy.
- 6. Page 33-42, clarified the correct calculation time. Calculations are based on sample time and not when one actually begins to do them.
- 7. Page 47, added reactor trip date and time, because they are needed to complete form. A note was added to remind dose assessor to consult Attachment 4 for additional adjustments to the values in the worksheet. Added step 13 to remind dose assessor to check if the data of this worksheet should be used elsewhere.
- 8. Page 55, added new step to direct dose assessor to the new SGTR worksheet.
- 9. Page 60, clarified the use of the date and time of sample.

Florida Power & Light Company

Turkey Point Nuclear Plant

Off-site Dose Calculations

Safaty	Related	Procedure
Salety	Relateu	FIOCEUUIE

Responsible Department:	Emergency Preparedness
Revision Approval Date:	3/26/01
Periodic Review Due:	5/1/03

RTSs 97-1404P, 99-0286, 00-0212, 00-0741

0-EPIP-20126

Procedure Title:

Off-site Dose Calculations

Page: 2 Approval Date: 3/26/01

LIST OF EFFECTIVE PAGES

<u>Page</u>	Revision Date	Page	Revision Date
1	03/26/01	32	06/01/00
2	03/26/01	33	03/26/01
3	03/26/01	34	03/26/01
4	03/26/01	35	03/26/01
5	06/01/00	36	03/26/01
6	06/01/00	37	03/26/01
7	06/01/00	38	03/26/01
8	06/01/00	39	03/26/01
9	06/01/00	40	03/26/01
10	06/01/00	41	03/26/01
11	06/01/00	42	03/26/01
12	06/01/00	43	03/26/01
13	06/01/00	44	03/26/01
14	06/01/00	45	03/26/01
15	06/01/00	46	03/26/01
16	06/01/00	47	03/26/01
17	03/26/01	48	03/26/01
18	03/26/01	49	03/26/01
19	06/01/00	50	03/26/01
20	03/26/01	51	03/26/01
21	06/01/00	52	03/26/01
22	06/01/00	53	03/26/01
23	06/01/00	54	03/26/01
24	03/26/01	55	03/26/01
25	03/26/01	56	03/26/01
26	06/01/00	57	03/26/01
27	06/01/00	58	03/26/01
28	06/01/00	59	03/26/01
29	03/26/01	60	03/26/01
30	06/01/00	61	03/26/01
31	03/26/01	62	03/26/01
		63	03/26/01

Tiocedui	e No.:	Procedure Title: Page:	2
		Approval D	3 ate:
0-E	PIP-20126	••	/26/01
		TABLE OF CONTENTS	
	Section		<u>Page</u>
1.0	PURPOSE		5
2.0	<u>REFERENC</u> COMMITM	<u>ES/RECORDS REQUIRED/</u> ENT DOCUMENTS	5
3.0	RESPONSIE	BILITIES	7
4.0	DEFINITIO	<u>NS</u>	8
5.0	PROCEDUR	<u>E</u>	9
	ENCLOSUR	ES/ATTACHMENTS	
	Enclosure 1		
	Syster	n Parameters and Conversion Factors	17
	Enclosure 2		
	OFF-S	Site Dose Calculations - Computer Method	20
	Attachment 1		
	Meteo	prological Data Worksheet	26
	Attachment 2		
	Dose	Calculation Worksheets	33
	Attachment 3		
	Radio	active Release Worksheet	43
	Attachment 4		
	Loca	Release Rate Determinations Worksheet	50

Procedure No.:

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

4

Procedure Title:

0-EPIP-20126

5

1.0 PURPOSE

- 1.1 This procedure provides a method for estimating Emergency Off-site Doses to support Protective Action Recommendation (PAR) formulation.
- 1.2 This procedure provides a method for reporting Reportable Quantities (RQ) of radionuclides releases pursuant to 40 CFR 302 and 40 CFR 355.

2.0 REFERENCES/RECORDS REQUIRED/COMMITMENT DOCUMENTS

- 2.1 <u>References</u>
 - 2.1.1 Plant Procedures
 - 1. 0-ADM-115, Notification of Plant Events
 - 2. 0-EPIP-20101, Duties of Emergency Coordinator
 - 3. 0-NCAP-104, Primary to Secondary Leak Detection

2.1.2 <u>Regulatory Guides</u>

- 1. 10 CFR 20, Appendix B
- 2. 40 CFR 302, Reportable Quantity Adjustment Radionuclides
- 3. 40 CFR 355, Emergency Planning and Notification
- 2.1.3 <u>Miscellaneous Documents</u> (i.e., PC/Ms, Correspondence)
 - 1. Turkey Point Plant Radiological Emergency Plan
 - 2. Turkey Point Units 3 and 4 Off-site Dose Calculation Manual
 - a. Section 2.0, Table 2.2-1
 - b. Section 3.0, Tables 3.1-1, 3.2-1
 - 3. Class A, Emergency Off-site Dose Calculation System User's Manual
 - 4. EPA-520, Rev 6/79

0-EPIP-20126

Procedure Title:

6

2.1.3 (Cont'd)

- 5. NRC Response Technical Manual, RTM-91
- JPE-PTPO-85-74, Containment Break Calculations 6.
- 7. JPE-LR-87-033, Steam Generator Tube Rupture FSAR Model PTN 3 and
- 8. PTN-ENG-SENS-97-088, Revision 1, Engineering Evaluation Related to Pre-planned Alternative Monitoring for the Containment High Range **Radiation Monitors**
- 9. PSL-BFJM-93-032, Revision 0, Method to Estimate Post-Accident Containment Release

2.2 **Records** Required

- Records of meteorological conditions used to calculate dose rates and doses shall 2.2.1 be kept on the attached worksheets or forms containing similar information.
- 2.2.2 A copy of the completed Dose Calculation Worksheet, or computer generated forms conveying similar information, shall be given to the Emergency Coordinator, and shall contain:
 - 1. Meteorological conditions (wind speed, wind direction, and affected sectors).
 - Emergency Off-site Doses at 1, 2, 5 and 10 miles, including sectors affected. 2.
 - 3. Default values or actual measurements that were used for dose estimates.
- 2.2.3 Completed copies of the below listed item(s) constitute Quality Assurance Records and shall be transmitted to QA Records for retention in accordance with **Ouality Assurance Records Program requirements:**
 - 1. A form similar to Attachment 2 or computer generated forms conveying similar information.
- 2.3 **Commitment Documents**
 - 2.3.1 None

Procedure No.:	Procedure Title:	Page:
		7
		Approval Date:
0-EPIP-20126	Off-site Dose Calculations	6/1/00

3.0 **RESPONSIBILITIES**

- 3.1 The Emergency Coordinator is responsible for directing the performance of emergency off-site dose calculations during an emergency which involves a release of radioactivity to the environment.
- 3.2 The HP/Chemistry Department representatives are responsible for performing the following:
 - 3.2.1 Calculations in accordance with this procedure.
 - 3.2.2 Ensuring that the Emergency Coordinator receives the most current dose calculations as soon as possible after request of emergency off-site dose information.
 - 3.2.3 Performance of Reportable Quantity (RQ) calculations, as necessary.
 - 3.2.4 Notifying the Chemistry Supervisor or designee as soon as practical for verification of release data. Notification to the Emergency Coordinator will not be delayed because of notification process with the Chemistry Supervisor.
 - 3.2.5 Ensuring that the initial EOF Responders are updated with copies (e.g., facsimile) of dose calculations. The dose calculation summary sheet, if using the computer method, contains the minimum information needed by the initial EOF Responders. Attachment 2 contains the minimum information needed if using the manual calculation method.

Procedure No.:		Procedure Title:	Page: 8			
0-EPIP-2	0126	Off-site Dose Calculations	Approval Date: 6/1/00			
4.0 <u>DEF</u>	4.0 DEFINITIONS					
4.1	<u>Core O</u> by:	verheating/Melting - Severe core damage, beyond gap failure	, typically indicated			
	4.1.1	The core being uncovered, by coolant, for 30 minutes or more				
	4.1.2	CHRRM reading 1.3 E+4 R/hr or more.				
		<u></u> <u>NOTE</u>				
po in	int for pot an overh	core exit thermocouple value used in other procedures signifies th rential core melting. The value used in this procedure signifies that t eat condition, melting is imminent and the release may include pa ns, Cesiums, Strontiums, etc.).	he core is			
	4.1.3	Valid Core Exit Thermocouple reading(s) in excess of 1700°F				
4.2	equival	<u>bose Equivalent (DDE)</u> - Applies to External Whole Body Expo ent at a tissue depth of 1cm. The computerized version of es a plume immersion dose (DDE), which is a best estimate of eading.	this procedure also			
4.3	Emerge as eithe release.	ency Off-site Doses - The Total Dose (TEDE) and Thyroid Dose r rates of exposure to the dose commitment or the total dose	se (CDE), calculated committed from the			
4.4	ten tim radioac	e - During any declared emergency, any effluent monitor increates, or one decade above pre-transient values, or Health Physitivity levels in excess of 25 percent DAC outside of plant build usent directly associated with the declared plant emergency.	cs detected airborne			
4.5	<u>Thyroid</u> the radi	<u>d Dose (CDE)</u> - The Committed Dose Equivalent to an adult the ioiodine in the plume.	nyroid from inhaling			
4.6	whole	<u>Dose (TEDE)</u> - The Total Effective Dose Equivalent, the sum body from immersion in a plume containing radioactive mater g the plume, and an assumed four days of exposure to plume de	rial, the CEDE from			
W97:JR/ev/ev/e	v					

.

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

Approval Date: 6/1/00

9

5.0 PROCEDURE

CAUTIONS

- Doses determined in this procedure will be given to the Emergency Coordinator, who will evaluate doses and plant conditions with criteria listed in 0-EPIP-20101, Duties of Emergency Coordinator.
- Dose Projections should be made on a best estimate basis by projecting the duration of the release, if possible. If no reasonable duration of release can be projected, the default value listed in Part D of Attachment 3 should be used.
- Releases greater than Off-site Dose Calculation Manual limits or Reportable Quantities shall require reports or notifications to the NRC even if no off-site action is required. Ensure reports are performed as required by 0-ADM-115. Notification of Plant Events.
- The following steps apply to the use of this procedure for the performance of a manual calculation. As soon as possible, the computerized Emergency Off-site Dose Calculation Method should be used for dose calculations. The instructions for using the computer program, which parallels this procedure. are in Enclosure 2.
- 5.1 Discussion
 - 5.1.1 During any emergency involving release of radioactivity to the environment, the Emergency Plan requires Emergency Off-site Doses be calculated for areas up to 10 miles from the plant. This information will be used in making Protective Action Recommendations and will be an input to the State of Florida Division of Emergency Management (DEM) in determining what off-site protective actions When the Technical Support Center or the Emergency should be taken. Operations Facility are operational, the function of dose calculation will be shifted to one of these locations.

Procedure No.:

Procedure Title:

Page:

0-EPIP-20126

10

The Chemistry Department Representative should use the computer dose calculation model in the Technical Support Center, when time and manpower resources are available, along with this procedure for estimating Emergency Offsite Doses when releases of radioactivity occur during an emergency. The computer model closely parallels this procedure. The instructions for using the computer program, which parallels this procedure, are in Enclosure 2. Additional instructions for use of the computer are located in the Emergency Off-site Dose Calculation User's Manual located in the Health Physics/Chemistry Area of the TSC and the EOF.
ERDADS may be used to display effluent monitor and meteorological data required by this procedure and the computerized Emergency Off-site Dose Calculation Method.
The various meteorological data processing methods deal with sea-breeze. Sea- breeze is a coastal phenomena where an artificial ceiling may exist. Our methods assume that this ceiling acts as a limit to vertical mixing; that is, the plume is below the ceiling. This leads to a slightly higher concentration for a given stability class. The computer program will state Sea-breeze : Yes when the procedure states No impact . The computer model is stating that sea-breeze may exist although there is no impact; the ceiling is too high to affect the vertical mixing within 10 miles of the plant.
The various release rate determination methods in the procedure and computer program require asking the Emergency Coordinator if the core is overheating or melting (typical indications listed in the definitions section). The purpose of the question is to determine:
1. if there is a core damage sequence in progress, or
2. if the damage has gone beyond gap failure?
<u>IF</u> there is overheating or melting in progress, <u>THEN</u> the off-site TEDE dose multiplier is increased to 4.4 to reflect the additional dose from the presence of particulates in the plume.
Pursuant to 40 CFR 302, Radionuclides are designated as a hazardous substance, which if released, other than federally permitted, (within Technical Specification limits) in a quantity equal to or greater than the revised Reportable Quantities (RQ) Table, requires notification to various Agencies.

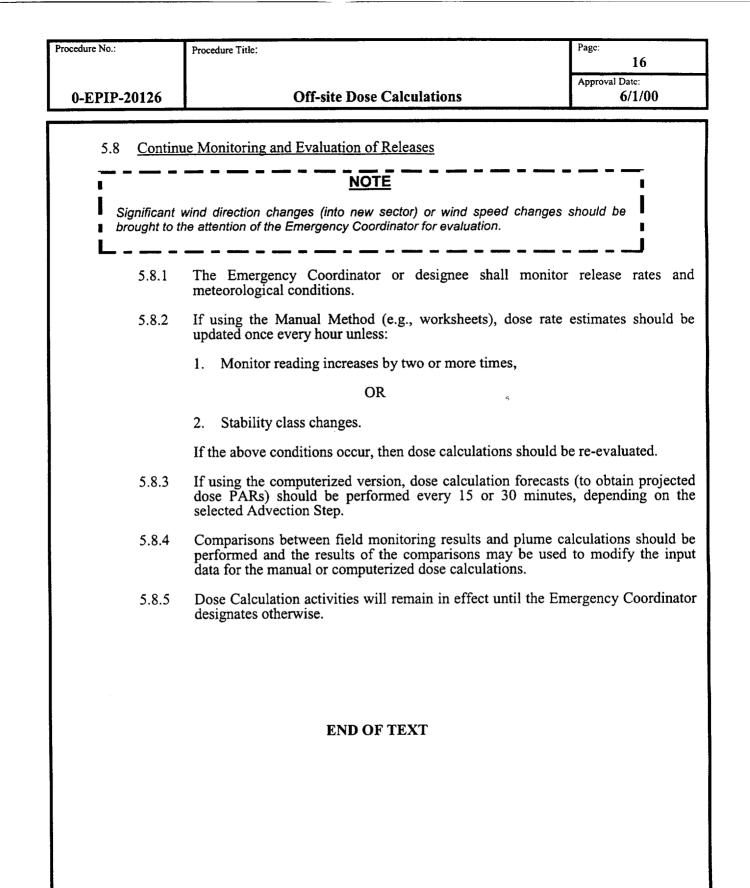
rocedure No.:		Procedure Title:	Page: 11
0-EPIP-2	20126	Off-site Dose Calculations	Approval Date: 6/1/00
5.2	Meteor	ological Conditions Determination	
	5.2.1	Complete applicable worksheets in Attachment 1. The three preferential order. Use the next method, in order to suppleme Indicate the method used on the selected worksheet in Attachmeter.	ent any missing dat
		CAUTIONS	
	Sigma-	Tower Data for Wind Speed, Wind Direction, Delta Tempera Theta are averaged over 15 minutes by the instrumentation for d o charts and ERDADS.	
•	Theta v	ological Wind Speed, Wind Direction, Delta Temperature, an values should vary with time, i.e., Chart Recorders in the Cont not be straight lining. Investigate data that is unchanging.	
		 Plant Meteorology Towers - Data from the primary and be evaluated by following the instructions of Attachment 1, 1 Met Tower data, with backup Met Tower data being use primary Met Tower data. 	Part Á. Use primai
 I		<u>NOTE</u>	 I
		Meteorological data from the NWS is not required to be averaged.	
		 National Weather Service (NWS) - Meteorological observices NWS are evaluated by following the instructions on Attac 	
		3. Default Values - Daytime and nighttime default va Attachment 1, Part C.	alues are listed
5.3	Dose C	alculation Worksheets	
	5.3.1	Select the appropriate Dose Calculation Worksheet from a worksheets, numbered 1 through 10, are tied to the Stability 0 impact. The class and impact are noted on the first row of the	Class and Sea-bree:

Procedure No.:	Procedure Title:	Page: 12
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 6/1/00
5.4 <u>Relea</u> s	se Rate Determination	
5.4.1	Perform Release Rate Calculations using Worksheets as appropriate. Indicate the method used on the worksheet.	
 	<u>NOTES</u>	
availal held u	gh grab sampling is the primary method, it is unlikely the ole in the early phases of an emergency situation. Dose asse to waiting grab sample results, therefore, the Effluent Monitor In the initial dose assessment. Grab Sampling should be peri- le.	essment cannot be method should be
CHRR Sampl	accident is a Loss of Coolant Accident (LOCA), a release of M Data Worksheet should be added to the release rates de ing or Effluent Monitor Readings to account for the potent re, for example, through penetrations.	etermined by Grab
	1. Grab Sample - Grab Sample results are evinstructions on Attachment 3, Part A.	valuated by following th
	<u>NOTES</u>	 I
	nt Monitor Data should be used when Grab Sample Data is s insufficient time to perform Method 1, as in the early phase on.	
be co permit lodine	it will be difficult to analyze grab samples quickly, Effluent M mputed throughout the release and related to Grab Sampl a continuous release rate estimate even when grab sample o release rate factors may be modified if two or more grab sample stors should be modified.	e Data. This will data is unavailable.
	 Effluent Monitors - Effluent Monitor readings and instructions on Attachment 3, Part B. SPING preference to associated PRMS data. 	e evaluated by following th G-4 data should be used i
W97:JR/ev/ev/ev		

•

ocedure No.:	Procedure Title:		Page: 13
0-EPIP-20126		Off-site Dose Calculations	Approval Date: 6/1/00
	5.4.1 (Cont'd	<u>[]</u>	· · · · · · · · · · · · · · · · · · ·
		<u>NOTE</u>	 I
accident (Lu vent monito isolation is design leak	CA) has occur reading is ap reventing a rel ate from contai	Id be used in addition to Methods 1 or 2, if a red. For example, if the CHRRM reading is his proximately normal, this probably indicates the ease from containment to the plant vent. How inment should still be taken into consideration, register on effluent monitors.	igh but the plant hat containment vever, the FSAR
	3. Containr are evalu	ment High Range Radiation Monitor (CH) uated by following the instructions on Attac	RRM) -CHRRM reading the second s
		Values - default noble gas and iodine r nent 3, Part D, for the following accidents:	elease rates are listed
	a. Lo	oss of Coolant (LOCA)	
	b. Ste	eam Generator Tube Rupture (SGTR)	
	c. Sp	ent Fuel Handling	
	rates bas with con	ent 4 provides methods to adjust or replace sed on known plant parameters. Guidanc ntainment failure releases, either rapid dep ion size failure.	ce is provided for copin
	rupture c is also p	nent 5 provides methods to adjust the steam default release rates based on known plant p rovided for estimating a release rate using s in Steam Line.	parameters. Guidance
	7. Attachm a release	ent 6 provides a method, using factors in t rate from field team centerline survey met	this procedure, to estima er readings.

W97:JR/ev/ev/ev


÷

.

Procedure No.:	Procedure Title:	Page: 14
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 6/1/00
5.5 <u>Dose F</u>	Rates and Projected Doses	
👔 giving a co	NOTE nemistry Supervisor or designee as soon as practical to verify release opy of the dose calculation worksheet to the Emergency Coordinato cations to the Emergency Coordinator.	
5.5.1	Dose rates and projected doses are calculated by following Attachment 2 selected at Subsection 5.3.	g the instructions on
5.6 <u>Comp</u>	uterized Emergency Off-site Dose Calculation Method	
5.6.1	The computerized Emergency Off-site Dose Calculation Me for dose calculations, (in preference to manual method). instructions on use of computer program.	ethod should be used See Enclosure 2 for
5.7 <u>Evalua</u>	ating EPA Reportability	
i L	Attachment 7 contains forms to assist in this activity.	
5.7.1	Determine if the following condition has occurred during the	Radioactive release:
و میں ہے جو ا	<u>NOTE</u>	
or damage	Incident means any occurrence of bodily injury, sickness, disease, de to property or loss of use of property (Off-site Evacuation) resultir , toxic, explosive, or other hazardous properties of source, special material.	ng from the 📲
	1. Dose exceeds any applicable Technical Specification Off-site Dose Calculation Manual (ODCM) <u>AND</u> the sunder a nuclear incident.	n, or section of the release is <u>not</u> exempt
W97:JR/ev/ev/ev		

~

Procedure No.:	Procedure Title:	Page: 15
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 6/1/00
5.7.2	If the condition in Substep 5.7.1.1 is <u>not</u> met, proceed to Subse	ection 5.8.
5.7.3	Using Radionuclide Reportable Quantities (RQs) listed in Ap 302.4, determine if a RQ limit has been exceeded using the fol	
	1. If the identity and quantity (in curies) of each Radionuc solution is known, the ratio between the quantity released Radionuclide must be determined for each Radionuclide if the sum of the ratios of the Radionuclides is equal to [Grab Sample method only]	and the RQ for the An RQ is reached
	2. If the identity of each Radionuclide in a released mix known, but the quantity of one or more of the radionuc RQ is reached if the total quantity (in curies) of the released is equal to or greater than the lowest RQ of any mixture or solution. (Methods other than Grab Sample]	lides is unknown, a mixture or solution
	3. If the identity of one or more of the Radionuclides in a solution is unknown, a RQ is reached if the total quantity is either equal to or greater than one curie or the lowes individual Radionuclide in the mixture or solution, w [Methods other than Grab Sample]	(in curies) released t RQ of any known
5.7.4	If the release exceeds the permissible RQ limits, compaccordingly.	plete Attachment 7
5.7.5	Request the Chemistry Supervisor, or designee to notify th Attachment 7, of the release.	e agencies listed in
	1. Provide each agency with the information required in Atta	achment 7.
	2. Record Date/Time and name of person contacted for each	agency.
5.7.6	This event shall be reportable to the NRC. Ensure notification of Plant Events, are main	ications and reports de.

Procedure No.:

.

Procedure Title:

Page:

0-EPIP-20126

Off-site Dose Calculations

17 Approval Date: 3/26/01

ENCLOSURE 1 (Page 1 of 3)						
	SYSTEM P	ARAMETERS	AND CONVERS	SION FACTORS		
	system parameters and c ximated in that the valu an 12,345:					
System Volum	ies					
Spent	inment 4.4 E+10 cc Fuel Pit: 60,000 ft ³ (1.7 mulators 6545 gal each 70,000 gal	' E+9 cc) Level Indi	icator: 650 gal/in 40 f	t=312,000 gal		
Steam Press RWS VCT	n Generators secondary urizer 9725 gal max 583 T 320,000 gal 748 gal liquid and 200 ft 35,000 gal	³ gas	nax	20,000 gal operating, p	rimary 6921 gal max	
	Decay Tank ninment Sump	525 ft ³ 629,326 gal max	10 gal/in 0-32 in	1376 gal/in	32-489 in	
		027,020 gui muit	i o gub in o be in	10,0 gus in		
System Flows						
Aux I Stand Conta Spent	Steam Dump @ 1100 psi28 lbm/secEach ADV = 1.3 E+4 cc/secAux Feed Flow800 gpm eachStandby Feedwater1350 gpmContainment Exhaust 35,000 scfm/unit (1.65 E+7 cc/sec)1Spent Fuel Pit Exhaust 20,000 scfm (9.44 E+6 cc/sec)					
Air ej Instru Safet	88,500 gpm per pump ector ment Air Bleed y Injection ging Pump	30 scfm (1.42 E U-3 20 scfm (94 375 gpm 77 gpm each		U-4 25 scfm (11800 cc	/sec)	
Process Radiat	tion Monitoring System					
Monitor	Description	Units	Range Min - Max	Typical Routine Reading	Typical response factor (uCi/cc/cpm)	
R-11	Containment Particula		1.0E-09 - 1.0E-06	1.0E-08	7.36E-12	
R-12	Containment Gas	μCi/cc	1.0E-06 - 1.0E-03	1.0E-05 500	3.48E-08 5.0E-09	
R-14 R-15	Plant Vent Gas Air Ejector Gas	cpm cpm	0-300,000 0-300,000	400	2.5E-09	
R-13 R-17	CCW	cpm	0-250,000	750	2.0E-07	
R-18	Liquid Rad Waste	cpm	0-250,000	5000	2.0E-08	
R-19	S/G Blowdown	cpm	0-250,000	750	5.0E-09	
R-20	Letdown	mr/hr	0.1 - 10,000	100		
DAM-1 SPINGs	Main Steam	μCi/cc	1.0E+00 - 1.0E+05			
Ch-5	Low Range Noble Gas		1.0E-07 - 6.0E-02	5.0E-07		
Ch-7	Mid Range Noble Gas		2.5E-02 - 4.0E+02			
Ch-9	High Range Noble Ga		1.0E+00 - 1.0E+05			
CHRRM	Containment High Range Radiation Monitor	R/hr	1.0E+00-1.0E+08	1.0E+00	 	
W97:JR/ev/ev/e	v					

Procedure No.:	Procedure Title:					Page: 18
0-EPIP-20126		Off-site Dose	Calcula	ations		Approval Date: 3/26/01
ENCLOSURE 1 (Page 2 of 3)						
S	SYSTEM PARA	METERS AND	O CON	VERSION FA	CTORS	
The Core:						
	ies I-131 DEQ (as ies of 'core mix'(g			for estimating p	ourposes))
For LOCA						
100% of total Design base l	core iodine invent core gas inventor eak rate is 1273 c te boundary for a	ry is assumed to c/sec. (0.25% p) be ava er day)	ilable for releas	se.	body.
For Steam Generator	Tube Rupture			a		
102,700 lbs o 55,000 lbs of With 1% defe Approximate Approximate	Isolation of steam generators should occur within 30 minutes. 102,700 lbs of RCS will leak into the steam generator. 55,000 lbs of steam will be discharged into the atmosphere. With 1% defective fuel: Approximately 11,196 Ci of noble gas is released Approximately 7.6 Ci of I-131 DEQ is released Dose at the site boundary <1.0 Rem thyroid, <0.1 Rem whole body					
Primary to Se	Primary to Secondary Leak Rate					
Leak Rate (ga	allons/hour) =	<u>S/G μCi/ml</u> RCS μCi/ml		<u>Blowdown (lbm</u> 3.33 (lbm/gallon		
Ci/sec = (Lea	k Rate, gph)*(378	85 ml/gal)*(2.78	8 E-04 I	hr/sec)*(RCS μ	.Ci/ml)*((1.0 E-6 Ci/µCi)
Conversion Factors						
1 gallon = 8.3	33 lbm (@STP)=3	785 ml	1	$ft^3 = 28317 cm$	n ³	
$1 \text{ lb/ft}^3 \times 0.0$	$1 \text{ lb/ft}^3 \times 0.0160 = \text{g/cm}^3$ 1CFM x 472 = cc/sec					
1 lbm/hr stear	$m \ge 0.126 = ml/se$	ec condensed lic	quid			
1 lb x 454 = g	grams					
1 mph x 0.44	1 mph x $0.447 = \text{meter/sec}$ 1 meter/sec x $2.23 = \text{miles per hour}$					
1 mph ÷ 1.15	1 mph \div 1.15 = knot knot x 1.15 = mph 1 mile = 1609 meters					
1 μCi/cc equi	librium noble gas	s = 3.6 E + 5 mres	m/hr (E	DDE) immersion	n dose ra	ite
1 μCi/cc Iodi	$1 \ \mu \text{Ci/cc Iodine-131}$ (or mix as DEQ) = 1.3 E+9 mrem/hr (CDE) Adult Thyroid from inhalation					
X/Q (FSAR o	lefault) = 1.5 E-4	sec/meter ³		(class F, 4.5	mph)	

.

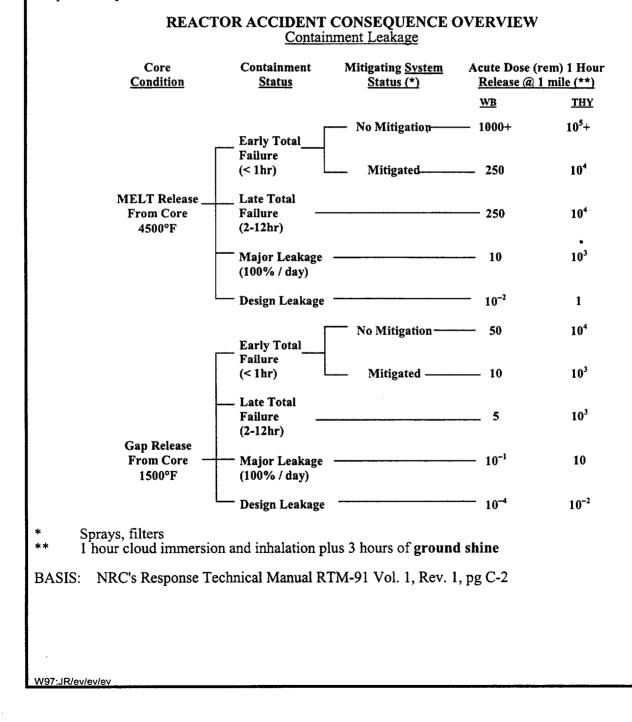
Procedure No.:

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

6/1/00


19

ENCLOSURE 1 (Page 3 of 3) (

SYSTEM PARAMETERS AND CONVERSION FACTORS

Use this method IF there is not radiological data (e.g., CHRRM, containment grab sample, etc.,) AND the accident has progressed past gap failure AND the containment has undergone catastrophic failure (e.g., know there should be pressure and there is none).

Note that the following method provides DOSES, not release rates. Doses based on stability class D and 4 mph wind speed.

Procedure No.:

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

ENCLOSURE 2 (Page 1 of 6)

OFF-SITE DOSE CALCULATIONS - COMPUTER METHOD

1.0 Discussion

1.1 The computer based Class A Dose Calculation Program utilizes inputs and processes similar to the manual procedure. However, the refinements available in the computer based process allow for a wider range of input information and mathematical complexity than available in the manual method. This procedure provides guidance for using the computer based process to derive calculated off-site doses in a manner similar to that discussed for the manual calculation. Personnel having expertise in dose calculation methodology may utilize this expertise in combination with the advanced methods available through the screen driven menus to modify and refine these basic calculations.

<u>NOTE</u>: If the EOF and TSC are manned and operational, dose assessment personnel at these locations should coordinate their efforts in order to calculate the most accurate available off site dose assessment.

A. <u>Computer Startup</u>

- 1. Energize the uninterruptible power supply to the computer, to prevent data loss if a power interruption occurs.
- 2. Ensure that the floppy disk drive is empty.
- 3. <u>IF</u> turned off, <u>THEN</u> turn on the display monitor, the printer, the computer and the print buffer if attached.
- 4. Acquire the Class-A User's Manual while computer is starting up.

<u>NOTE</u>

Log-off when computer is no longer required.

- 5. Log on to the computer.
 - a. Log into the LAN by entering your SLID and password.
 - b. Double click on the icon FPL Class A to launch Off-Site Dose Calculation software.

Procedure No.:	Procedure Title:	Page:					
0-EPIP-20126	Off-site Dose Calculations	21 Approval Date: 6/1/00					
	ENCLOSURE 2 (Page 2 of 6)						
OF	F-SITE DOSE CALCULATIONS - COMPUTER METHO	D					
В.	Pre-Use QC Check						
	1. <u>IF</u> time and manpower permit, <u>THEN</u> a pre-use verifinput data from the User's Manual should be performed dose calculations.	ication check using prior to conducting					
	2. <u>WHEN</u> the pre-use check is completed, <u>THEN</u> exit to th proceed to Step 3 of Conducting Calculations, below.	e Main Menu, <u>AND</u>					
C.	Conducting Calculations						
	1. <u>WHEN</u> the plant site menu is displayed, <u>THEN</u> depres (i.e., F3-Unit 3 or F4-Unit 4) to select the affected Turkey	ss the Function Key Point Plant Unit.					
	2. <u>WHEN</u> the program asks, Is this an exercise [Y/N appropriately and depress the ENTER key.]?, <u>THEN</u> answer					
	3. <u>WHEN</u> the Main Menu is displayed, <u>THEN</u> select the start calculations.	F1 Function Key to					
	4. <u>WHEN</u> prompted by the program, Warning - Star destroy previous dose values. OK [Y/N]?, <u>THEN</u> ENTER key to reinitialize the data files.	t calculations will depress Y and the					
	<u></u> <u>NOTES</u>	— <u>-</u> -					
-	inute advection steps are normally used except for fuel handing acc 5 minutes advection time steps should be used.	idents, for					
	lvection time is selected, it should not be changed while running the nt generating errors.	e program					
	5. <u>SELECT</u> from the screen functions displayed on the Information Worksheet to edit the type of accident, react start time, and advection step in the format shown depressing the corresponding Function Keys, F1, F2, F3, then depress ENTER after each new entry.	or trip time, release on the screen by					
	6. <u>WHEN</u> the correct accident type, reactor trip time, release advection time step have been entered, <u>THEN</u> depress the to accept the inputs.	e start time, and the he F5 Function Key					
W97:JR/ev/ev/ev							

Procedure No .:

W97:JR/ev/ev/ev

Procedure Title'

0-EPIP-20126

Off-site Dose Calculations

22

ENCLOSURE 2 (Page 3 of 6)

OFF-SITE DOSE CALCULATIONS - COMPUTER METHOD

- WHEN the Input Menu is displayed, THEN depress the F1 Function Key to 7. bring up the Meteorological Data menu.
- WHEN the Meteorological Data Summary Menu is displayed, SELECT the 8. data sheet corresponding to the source of the data [i.e., Site Tower [ERDADS, chart recorder), Airport (NOAA, NWS), Default].

CAUTION

When determining the atmospheric stability class, the Class A computer program will select the most recently entered indicator (Delta-T or Sigma-Theta) of stability. Since Delta-T is the preferred indicator, ensure that Delta-T data is entered last when available.

- ENTER the meteorological data gathered in the format shown using the 9. displayed Function Keys, THEN depress the ENTER key after each new entry.
- 10. <u>WHEN</u> all necessary meteorological data has been entered, THEN depress the appropriate Function Key to ACCEPT the data and go to the Meteorological Data Summary Menu.
- 11. Review the entered meteorological data, Depress the F5 Function Key to accept the data and then return to the Input Menu.
- 12. WHEN the Input Menu is displayed, THEN depress the F2 Function Key to bring up the Source Term Data menu.

NOTE

If editing is required, edit the information in accordance with the displayed instructions.

- 13. IF the accident type is a LOCA or SGTR, THEN respond appropriately to the question about the Core Damage Situation.
- 14. IF the accident type is a LOCA, THEN respond appropriately to the question about the Iodine Removal System Status.
- 15. WHEN the Source Term Summary Menu is displayed, THEN select the data sheet corresponding to the source of the data (i.e., Grab Sampling, Effluent Monitors, CHRRM, Default).

xedure No.:	Procedure Title:	Page: 23		
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 6/1/00		
	ENCLOSURE 2 (Page 4 of 6)			
0	FF-SITE DOSE CALCULATIONS - COMPUTER ME	THOD		
	 ENTER the source term data gathered in the displayed Function Keys, <u>THEN</u> depress the <u>EN</u> entry. 	format shown using the TER key after each new		
	17. <u>WHEN</u> the input of source term information has be <u>THEN</u> depress the appropriate Function Key to AC return to the Source Term Summary Menu.			
	 <u>IF</u> the entered source term data is acceptable, <u>THEN</u> depress the F7 function key and return to the INPUT menu, <u>OR</u> go to Step 15 to re-enter the data. 			
	19. <u>IF</u> a final check of data accuracy is needed, <u>THEN</u> Key to review a summary of the meteorologica Depress the F1 Function Key to print or the F2 Func-	al and source term data		
	20. IF the meteorological or source term data needs to Step 7 or Step 12 above, respectively.	be revised, <u>THEN</u> go to		
	 DEPRESS the F4 Function Key at the screen calculations [Y/N]?, <u>AND</u> answer Y, <u>THEN</u> deputed begin calculations. 			
	22. <u>WHEN</u> the Output Menu is displayed, <u>THEN</u> dep to select Print Reports .	press the F3 Function Key		
	23. <u>WHEN</u> the Printed Report Menu is displayed, <u>TH</u> Function Keys to select the desired reports.	EN depress the displayed		
	CAUTION	· · · ·		
proceeding	at the printer and print buffer, if used, are on line and ready g with the printing task. If either device is not ready for use e dose calculation program.			

24. <u>**DEPRESS**</u> lower case **x** to escape from the task or any other key to begin printing.

- 25. <u>WHEN</u> the Output Menu is displayed, <u>THEN</u> depress the F6 Function Key to select the Run Mode Menu.
- 26. <u>WHEN</u> the Run Mode Menu is displayed, <u>THEN</u> depress the F1 Function Key to select the Actual Calculation Mode and perform the next advection step (cumulative dose calculation) **OR** depress the F2 Function Key to select the Forecast Calculation Mode.

Procedure No.:	Procedure Title:	Page: 24
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 3/26/01
	ENCLOSURE 2 (Page 5 of 6)	
0	FF-SITE DOSE CALCULATIONS - COMPUTER METH	łOD
	<u></u> <u>NOTES</u>	
1. Forecas	t periods are typically 2 hours.	l
	ted doses assume release rates and meteorological condit t during the forecasting period chosen.	ions remain
	er the reasonableness of assuming constant meteorological co rates for forecasting periods exceeding 2 hours.	nditions and
	27. Edit the forecast period as desired using the displayed i	instructions.
	28. <u>WHEN</u> the forecast period has been accepted, the I Calculation mode will be displayed, <u>THEN</u> Depress to Keys to review and/or edit the inputs as necessary.	nput Menu: Forecast the displayed Function
	29. When all inputs are acceptable, <u>THEN</u> depress the perform calculations, at the screen prompt, Proce [Y/N]?, <u>AND</u> answer Y, and depress the ENTER key is	ed with calculations
	30. <u>WHEN</u> the Output Menu - Forecast Calculations models depress the F3 Function Key to select Print Reports .	le is displayed, <u>THEN</u>
	31. <u>WHEN</u> the Printed Report Menu is displayed, <u>THEN</u> Function Keys to select the desired reports.	depress the displayed
	CAUTION	
Ens	sure that the printer and print buffer, if used, are on line and re	eady.
	32 <u>DEPRESS</u> lower case x to escape from the task or any begin printing.	other key to
	<u>NOTES</u>	·
	nergency Coordinator should be provided with a printout of actu Protective Action Recommendations (PARs), and as requested	
	nergency Coordinator should be updated every 30 minutes durin r potential off-site release.	ng periods of
	 <u>WHEN</u> the reports have been printed, <u>THEN</u> return t to update information and repeat the dose calculation to release rate or meteorological changes. 	o the Run Mode Menu process as needed due
W97:JR/ev/ev/ev		

.

Procedure	No.:
-----------	------

Procedure Title:

0-EPIP-20126

3/26/01

ENCLOSURE 2 (Page 6 of 6)

OFF-SITE DOSE CALCULATIONS - COMPUTER METHOD

- 34. <u>**DEPRESS</u>** the F1 Function Key for the Actual Calculation Mode **OR** the F2 Function Key for the Forecast Calculation Mode **OR** the F3 Function Key to return to the Main Menu and quit.</u>
- 35. <u>**REVIEW</u>** the Summary of Met and Source Data displays for all subsequent calculations even if the inputs do not change so that they can be reviewed and accepted. Also ensure that the Noble Gas Reduction Factor is reset to its proper value.</u>

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

Approval Date:

26

6/1/00

ATTACHMENT 1 (Page 1 of 7)

METEOROLOGICAL DATA WORKSHEET

Part A - MET Tower Worksheet

1. Date and Time of observations: ____/ ___, ____,

- 2. If using ERDADS, press the purple **RAD** key on the ERDADS keyboard. For a terminal outside the Control Room, to change from one unit to the other, type PUP (space) UNIT# (where # is either 3 or 4) and press EXEC (execute).
- 3. Copy the observations into the following table:

Desired Data	Source of the	Source of the Met Data			
Desired Data	Primary	Backup	Value	Unit	
Wind Speed	10m Tower	So Dade (60m) Tower		mph	
Wind (from) Direction	10m Tower	So Dade (60m) Tower		degrees	
Primary Stability Class Indicator	So Dade (60m) Tower Delta-T, ∆T	///////////////////////////////////////		deg F / 50 meters	
Alternate Stability Class Indicator	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10m Tower Sigma-Theta		degrees	
Ambient Air Temperature	ERDADS	Airport		degrees F	

4. Using the Wind (from) Direction, circle the Affected Sectors in the table:

<u>NOTE</u>: If the wind direction is directly on the edge of two sectors (e.g., 11°, 33°, 56°, etc.), an additional sector should be added to the protective action recommendations. For example, if the wind direction is from 78°, then the affected sectors for PARs should be L, M, N, and P.

Wind From	Affected Sectors	Wind From	Affected Sectors	Wind From	Affected Sectors
348 - 11	нјк	123 - 146	PQR	258 - 281	DEF
11 - 33	JKL	146 - 168	QRA	281 - 303	EFG
33 - 56	KLM	168 - 191	RAB	303 - 326	· FGH
56 - 78	LMN	191 - 213	ABC	326 - 348	GHJ
78 - 101	MNP	213 - 236	BCD	<u> </u>	Note:
101 - 123	NPQ	236 - 258	CDE	there is no sector I and O	

Proced	ure No.:		Procedure	Title:							Page:	·	
												27	
0-	EPIP-	20126			Off-si	ite Dose Calculations					Approval Date: 6/1/00		
			····										
					Al	(Page 2	MENT 1 of 7)	1					
			N	1ETEO	ROLOG	GICAL	DATA V	VORK	SHEET				
					Part A -	Met Tov	wer Wor	ksheet					
5.	Usii	ng the Sta	ability C	lass Indi	cator, de	etermine	and circ	le the St	tability C	lass:			
		 If us	ing Delta	a-Τ, ΔΤ		lfu	ising Sig	ma-The	ta, σθ	St	ability Cla	ss	
		$\frac{\text{If using Delta-T, } \Delta T}{\Delta T \leq -1.7}$					σθ≥	≥ 22.5			A		
		-1.	.7 < ΔT :	≤ −1.5			22.5 >	σθ≥ 17 .	.5		В		
		-1.	.5 < ΔT :	≤ –1.4			17.5 >	σθ≥ 12 .	.5		С		
		-1.	4 < ΔT :	≤ -0.5			12.5 >	$\sigma\theta \geq 7.5$	5		D		
		-0.	.5 < ΔT :	≤ +1.4			7.5 >	$\sigma\theta \geq 3.8$,		E		
		+1.	.4 <∆T :	≤ +3.6		3.8 > σθ ≥ 2.1					F		
			+3.6 <	ΔT		2.1 > σθ					G		
6.	Eva	luate Sea	breeze Iı	mpact. if	any of	the follo	wing for	r is No.	then Im	nact is	NO		
0.	2.4							,					
				CIRC	LE IM	PACT:	YE	S	NO				
	a.	Stabilit	y Class	is A, B, d	or C								
	b.		f day is										
	U.		•		-								
	c.	Wind i	s from:	$\geq 20 \deg$	rees to :	≤ 220 de	grees.						
	d.	Observ	ed Air T	emperat	ure is al	oove (i.e	., warme	r than) y	value in t	able (d	lefault is Y	YES)	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	66	68	73	_ 77	80	84	86	85	84	80	74	69	
7.	Sele	ect the Do	ose Calci	ulation V	Vorkshe	et (Attac	hment 2).					
		lf		And	Т	hen	If		And		Then		
		Stability		abreeze		Jse ksheet	Stab	-	Seabre Is	eze	Use #		
		Class Is	B	mpact Is	wor	#	ls	•	15		#		
		A YES A NO B YES			2			NO N/A		6			
				3			N/A		8				
		B YES B NO				4	F		N/A		9		
		С		YES		5	G	6	N/A		10		
8.	Cor	y inform	ation to	Attachm	ent 2:								
	a.	•				TED SI	ECTOR	S and M	IETHOI	to Li	ne A.		
	b.		SPEEL	-									
	c.	Place a	ı check i	n the bla	nk to th	e left of	Met Tov	ver on L	ine A.				
9.	Thi	s worksh	eet is con	mpleted,	proceed	i to relea	ise rate d	letermin	ation, At	tachme	ent 3.		

-

-

0-E]	PIP-20126		Off-sit	e Dose Ca	lculations		Approval
			4.77				·····
				TACHMI (Page 3 of			
		METE			TA WORK	SHEET	ſ
				- NWS W			
In the ev	GATHER DAT		eteorologica	l strip chart i	recorder or ER	DADS, us	e the following pro
1.			Time:			of observa	tions
							o be connected to I
		rcial phone numbe					
		urrent weather ons as follows:	WIND I WIND S	DIRECTIO	N:	•	Degrees
			Sky Con	dition:	Broke Overc	red:	·······
				en or overcas copy ceiling			······
2.	<u>IF</u> DAYTIME	(1 hour after sunris	THEN c	opy ceiling	height:		
	_	(1 hour after sunris	THEN c se to 1 hour b	opy ceiling	height:		
	NIGHTTIME (THEN c se to 1 hour b	copy ceiling	height:		
	NIGHTTIME (CALCULATIONS	THEN c se to 1 hour b	copy ceiling	height: t), <u>THEN</u> go to		
	NIGHTTIME (A. Determi	CALCULATIONS	<u>THEN</u> c se to 1 hour b Characterist	copy ceiling to pefore sunset tics:	height: t), <u>THEN</u> go to	Step 4 (1 adiation	next page).
	NIGHTTIME (A. Determi <u>Sky Condition</u>	CALCULATIONS	<u>THEN</u> c se to 1 hour b Characterist <u>Ceiling</u>	copy ceiling to pefore sunset tics:	height: t), <u>THEN</u> go to <u>P</u> TES	Step 4 (1 adiation	next page).
	NIGHTTIME (A. Determi <u>Sky Condition</u> OVERCAST BROKEN	CALCULATIONS ine Solar Radiation	<u>THEN</u> c se to 1 hour b Characterist <u>Ceiling</u>	copy ceiling to pefore sunset tics:	height: t), <u>THEN</u> go to <u>P</u> TES	adiation	next page).
2. 3.	NIGHTTIME (A. Determi Sky Condition OVERCAST BROKEN	CALCULATIONS ine Solar Radiation	THEN c se to 1 hour b Characterist <u>Ceiling</u> 	copy ceiling to be fore sunset tics:	height: t), <u>THEN</u> go to <u>P</u> TES	o Step 4 (1 adiation ► NII	next page).
	NIGHTTIME (A. Determi Sky Condition OVERCAST BROKEN CLEAR OR S B. Circle S	CALCULATIONS ine Solar Radiation	THEN c se to 1 hour b Characterist <u>Ceiling</u> <7,000 L D through G	<pre>copy ceiling for sunset tics: yy)</pre>	height: t), <u>THEN</u> go to <u>P</u> TES <u>NO</u>	adiation	next page).
	NIGHTTIME (A. Determi Sky Condition OVERCAST BROKEN	CALCULATIONS ine Solar Radiation	THEN c se to 1 hour b Characterist <u>Ceiling</u> <7,000 L D through G	<pre>copy ceiling for sunset tics:) Speed (mph</pre>	height: t), <u>THEN</u> go to <u>P</u> TES <u>NO</u>	adiation	next page).
	NIGHTTIME (A. Determi <u>Sky Condition</u> OVERCAST BROKEN CLEAR OR S B. Circle S Solar	CALCULATIONS ine Solar Radiation 	THEN c se to 1 hour h Characterist <u>Ceiling</u> <a com="" href="https://www.com/second/second-com/com/com/com/second-com/com/com/com/second-com/com/com/com/com/com/com/com/com/com/</td><td><pre>copy ceiling for sunset
tics:
)
Speed (mph</pre></td><td>height:
t), <u>THEN</u> go to
<u>P</u>
TES <u>NO</u>
TES <u>NO</u>
TES <u>NO</u>
TES <u>NO</u>
D
D
D
D
D
D
D
D</td><td>adiation</td><td>LUSS</td></tr><tr><td></td><td>NIGHTTIME (
A. Determi
Sky Condition
OVERCAST
BROKEN
CLEAR OR S
B. Circle S
Solar
Radiation
Nil
Weak L
Strong I</td><td>CALCULATIONS
ine Solar Radiation
</td><td>THEN c
se to 1 hour b
Characterist
<u>Ceiling</u>
 <a href=" https:="" sta<="" states="" td="" www.com=""><td>copy ceiling before sunset tics:</td><td>height: t), <u>THEN</u> go to \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} TES NO TES TES TES TES TES TES TES TES TES TES</td><td>adiation adiation NII NII NII NII NII NII NII D D</td><td>LOSS G LOSS 12 and above D D</td>	copy ceiling before sunset tics:	height: t), <u>THEN</u> go to \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} NO \underline{R} TES NO \underline{R} TES NO TES TES TES TES TES TES TES TES TES TES	adiation adiation NII NII NII NII NII NII NII D D	LOSS G LOSS 12 and above D D

-

.

cedure N 0-EP		0126	Procedure T	nie.	Off-s	ite Dose	Calculat	ions		Page: Appro	29 oval Date: 3/26/	
	· / · ·		MI	ETEC		(Page 4	MENT 1 4 of 7) DATA W	/ORKSH	IEET	· · · · · · · · · · · · · · · · · · ·		
					Part	B - NWS	S Worksho	eet				
Ι	DAY	TIME CA	ALCULA	TIO		•						
	4.					of sun a	bove hori	zon) usin	g Figure A	A-1 of th	is Attac	hment
		e Solar A			<15		o <35	35 to <		≥60		
H	З.	Determi radiatior	ne Solar 1 column	Radi:)	ation Cha	aracteris	tics: (Pla	ce check	mark nex	t to app	ropriate	box i
Š	<u>Sky (</u>	Condition	L		<u>Ceiling</u>	S	<u>Solar</u> A	Altitude		<u>Radiati</u>	on	
ŗ	OVE	RCAST			<7,00	0'	YE	S		- NIL	. 1	
-			•		<16,0	NO 00'N	0 	35°	-YES	WE	AK	
						ES		L NO				
					<u> </u>	<u>10</u>	X L	60°	YES	- SLI	GHT	_
					<7,00	<u>o'</u> (`			NÕ	MOE	DERATE]
					Y	'ES	YES	60°	YES	→ WE	EAK	
Ι	BRO	DKEN			► <16,0	00'			NO	SLI	GHT	
Γ		AR OR				NO		15°	YES	-> WE	AK	
	SCA	TTERED						▼NO 35°	YES	<u> </u>	IGHT	
								NO	YES			-
							<	60°		MOE	DERATE]
									NÔ	ST	RONG]
(C.	Circle S	tability C	latego	ory (A th	rough D)					
		Solar <u>Radiatio</u>	<u>n</u>	0,1	2,4	5,6	7	Wind 8	Speed (mj 9,10	<u>oh)</u> 11	12	>12
		Strong Moderat Slight Weak Nil	e	A A B C D	A B C D	A B C D D	B C D D	B C D D	B C D D	C C D D D	C C D D D	C D D D D
I	D.	IF stabi	lity class <u>THEN</u> :	is A, seabro	B, or C eeze imp	\underline{AND} wate and \underline{AND} wate \underline{Y} ,	ind direct otherwise	ion is fro impact =	m 20 degr = N.	ees thro	ugh eas	t to 22

Procedure 1	No.:
-------------	------

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

6/1/00

ATTACHMENT 1 (Page 5 of 7)

METEOROLOGICAL DATA WORKSHEET

Part B - NWS Worksheet

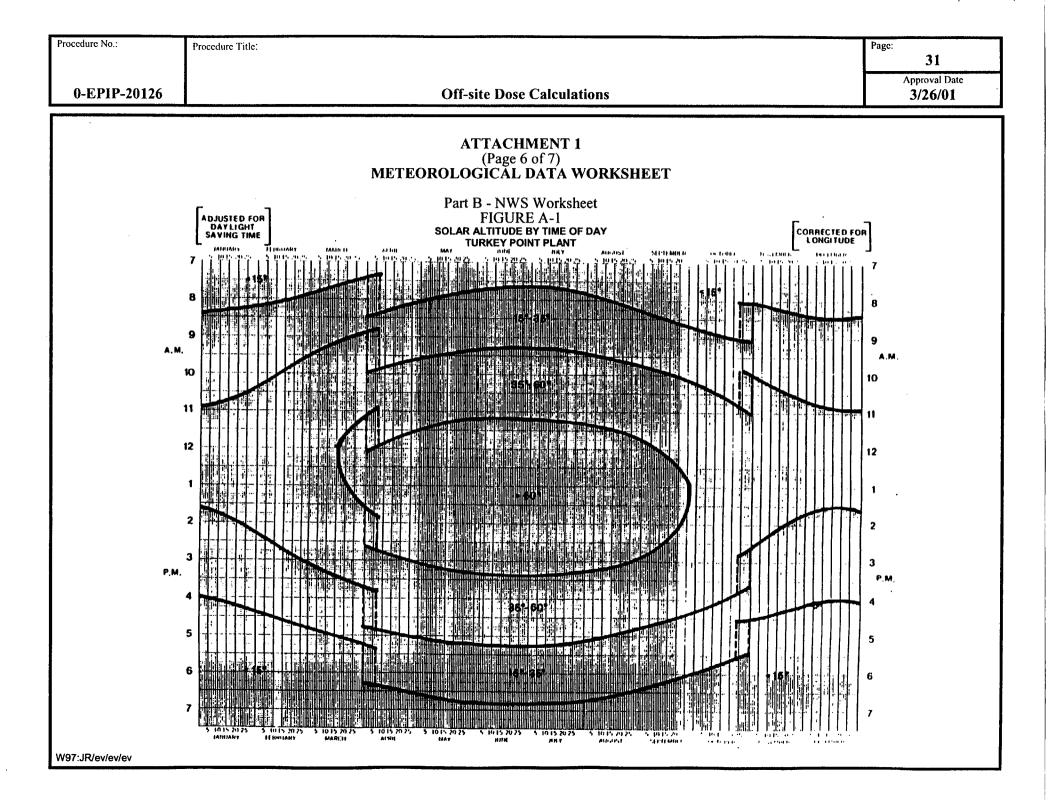
5. Using the Wind (from) Direction, circle the AFFECTED SECTORS in the table:

<u>NOTE</u>: If the wind direction is directly on the edge of two sectors (e.g., 11°, 33°, 56°, etc.), an additional sector should be added to the protective action recommendations. For example, if the wind direction is from 78°, then the affected sectors for PARs should be L, M. N, and P.

Wind From	Affected Sectors	Wind From	Affected Sectors	Wind From	Affected Sectors
348 - 11	НЈК	123 - 146	PQR	< 258 - 281	DEF
11 - 33	JKL	146 - 168	QRA	281 - 303	EFG
33 - 56	KLM	168 - 191	RAB	303 - 326	FGH
56 - 78	LMN	191 - 213	ABC	326 - 348	GHJ
78 - 101	MNP	213 - 236	BCD	No	te:
101 - 123	NPQ	236 - 258	CDE	there is no s	sector I or O

6. Select the Dose Calculation Worksheet (Attachment 2).

lf Stability Class Is	And Seabreeze Impact Is	Then Use Worksheet #	lf Stability Is	And Seabreeze Is	Then Use #
A	YES	1	С	NO	6
A	NO	2	D	N/A	7
В	YES	3	E	N/A	8
В	NO	4	F	N/A	9
С	YES	5	G	N/A	10


7. Copy information to Attachment 2.

a. WIND DIRECTION, AFFECTED SECTORS and METHOD to Line A.

b. WIND SPEED to Lines 2 and 9.

c. Place a check in the blank to the left of NWS on Line A.

8. This worksheet is completed, proceed to release rate determination, Attachment 3.

Pr	ocedure No.:	Procedure Title:				Page: 32				
	0-EPIP-20126	6	Off-site Dose Calculations							
			ATTACH (Page	IMENT 1 7 of 7)						
		METEC	ROLOGICAL	DATA WORKSH	EET					
			Part C - Default	Met Worksheet						
<u>N</u>	<u>OTE</u> : This me	thod is to be used on	ly if Site Tower an	d National Weather S	ervice Data is	not available.				
1.	WIND DIR Direction is	RECTION may be bas s available, determine	sed on local obser e Affected Sectors	rvations or other suita s, using the table belo	ble methods o w.	of estimation. If Wi				
	Direction is available, determine Affected Sectors, using the table below. IF WIND DIRECTION DATA IS NOT AVAILABLE, THEN AFFECTED SECTORS IS <u>ALL</u> (SECTORS)									
				ted Sectors						
	<u>NOTE</u> :	If the wind directio additional sector she	n is directly on t ould be added to	he edge of two sect the protective action e affected sectors for	tors (e.g., 11° recommendati	°, 33°, 56°, etc.), ions. For example				
	Wind From	Affected Sectors	Wind From	Affected Sectors	Wind Fron	n Affected Sectors				
	ŧ									
	348 - 11	НЈК	123 - 146	PQR	258 - 281	DEF				
	348 - 11 11 - 33	H J K J K L	123 - 146 146 - 168	P Q R Q R A	258 - 281 281 - 303					
	11 - 33 33 - 56	J K L K L M		Q R A R A B		EFG				
	11 - 33 33 - 56 56 - 78	J K L K L M L M N	146 - 168 168 - 191 191 - 213	Q R A R A B A B C	281 - 303	EFG FGH GHJ				
	11 - 33 33 - 56 56 - 78 78 - 101	J K L K L M L M N M N P	146 - 168 168 - 191 191 - 213 213 - 236	Q R A R A B A B C B C D	281 - 303 303 - 326 326 - 348	E F G F G H G H J <u>Note</u> :				
5	11 - 33 33 - 56 56 - 78 78 - 101 101 - 123	JKL KLM LMN MNP NPQ	146 - 168 168 - 191 191 - 213 213 - 236 236 - 258	Q R A R A B A B C B C D C D E	281 - 303 303 - 326 326 - 348 there is	EFG FGH GHJ				
2.	11 - 33 33 - 56 56 - 78 78 - 101 101 - 123 <u>IF</u> Daytime Sele Che Win Cop Use <u>IF</u> Not Day Sele	J K L K L M L M N M N P N P Q Hours (1 hour after ect DOSE CALCULA eck DEFAULT method d Speed = 5 mph in I by Affected Sectors, fil e of this method is cor	146 - 168 168 - 191 191 - 213 213 - 236 236 - 258 sunrise and 1 hou TION WORKSHEI d in Line A ine 2 and 9 rom Step 1, to Line mplete, proceed to TION WORKSHEI	Q R A R A B A B C B C D C D E r before sunset) <u>THE</u> ET 8, (Stability Class	281 - 303 303 - 326 326 - 348 there is <u>N</u> : E, Seabreeze	E F G F G H G H J <u>Note</u> : no sector I or O				
	11 - 33 33 - 56 56 - 78 78 - 101 101 - 123 <u>IF</u> Daytime Sele Che Win Cop Use <u>IF</u> Not Day Sele Che	J K L K L M L M N M N P N P Q Hours (1 hour after ect DOSE CALCULA eck DEFAULT method d Speed = 5 mph in I by Affected Sectors, fil e of this method is cor	146 - 168 168 - 191 191 - 213 213 - 236 236 - 258 sunrise and 1 hou TION WORKSHEI d in Line A ine 2 and 9 rom Step 1, to Line mplete, proceed to TION WORKSHEI d in Line A	Q R A R A B A B C B C D C D E T before sunset) <u>THE</u> T 8, (Stability Class e A o release rate determin	281 - 303 303 - 326 326 - 348 there is <u>N</u> : E, Seabreeze	E F G F G H G H J <u>Note</u> : no sector I or O				
2.	11 - 33 33 - 56 56 - 78 78 - 101 101 - 123 <u>IF</u> Daytime Sele Che Win Cop Use <u>IF</u> Not Day Sele Che Win	J K L K L M L M N M N P N P Q Hours (1 hour after ect DOSE CALCULA eck DEFAULT method d Speed = 5 mph in I by Affected Sectors, fil e of this method is cor the Hours <u>THEN</u> : ect DOSE CALCULA	146 - 168 168 - 191 191 - 213 213 - 236 236 - 258 sunrise and 1 hou TION WORKSHEI d in Line A ine 2 and 9 rom Step 1, to Line mplete, proceed to TION WORKSHEI d in Line A ine 2 and 9 rom Step 1, to Line mplete, proceed to TION WORKSHEI d in Line A ine 2 and 9	Q R A R A B A B C B C D C D E T before sunset) <u>THE</u> T 8, (Stability Class o release rate determine ET 9, (Stability Class	281 - 303 303 - 326 326 - 348 there is <u>N</u> : E, Seabreeze	E F G F G H G H J <u>Note</u> : no sector I or O				

-

Procedure No.:		Procedure Title:				Page:	33
0-EPI	P-20126	Off-site Do	se Calculat	Approval D 3	Date: 3/26/01		
			HMENT 2 1 of 10) ION WOF		ſS		
. М	HEET 1 et Summary:	Wind Direction (from)		Affected Sect	ors		
. Cł . Re	eck method u lease Rate de	sed: Met Tower termined by:	N Grab	ws	Defaul Effluent M	t for	Defa
			CHRRM	· · · · · · · · · · · · · · · · · · ·	_ Attachmer	nt	
ate and the	me of release						Γ
	1	Follow the instructions t	1	1	<u> </u>	1	Use Code
Line		tions for THYROID DOSES	1 mile	2 miles	5 miles	10 miles	*
1		odine Release Rate, Ci/sec				<u></u>	SNF
2	+	Vind Speed, mph					SNF
3	+	1 by Line 2		r			
4	lodine Dos	e Factors	2.2 E+ 4	8.1 E+3	2.2 E+3	7.8 E+2	
5		ne 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	tion of release, hours					SNF
7		ie 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SN	F (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	1
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nob	e Gas Release Rate, Ci/sec			I		SNF
9	Enter the V	Vind Speed, from Line 2 above					
10	Divide Line	8 by Line 9					1
11	Enter the F	Particulate Factor (PF)					1
12	Multiply Lir	e 10 by Line 11				· · · · · ·	1
13	Noble Gas	Dose Factors	6.1	2.3	0.64	0.22	ĺ
14	Multiply Lir	ie 12 by Line 13					
15	Enter (Line	5 multiplied by 0.04)	1				
16		4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	tion of release, hours		·		· · · · · · · · · · · · · · · · · · ·	
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem					PAR
19	Forward th	is worksheet (or a copy) to the E	nergency C	oordinator {	RM if done	in EOF}	
20		ulations completed; continue mor				· · · · · · · · · · · · · · · · · · ·	

W97:JR/ev/ev/ev

-

.

Procedure No.:		Procedure Title:				Page:	34
0-EPI	P-20126	Off-site Dos	e Calculat	Date: 3/26/01			
		(Page DOSE CALCULAT		RKSHEET			·····
	HEET 2 et Summary:	STABILITY CLASS = A Wind Direction (from)					Τ
Cł	neck method u	sed: Met Tower	N	ws	Defaul	t	D.G
		ermined by:	CHRRM		_ Attachmer	nt	Defat
Date and the	me of release						r
	<u> </u>	Follow the instructions to	T	te doses	@	r	Use Code
Line	Instruc	tions for THYROID DOSES	1 mile	2 miles	5 miles	10 miles	*
1	Enter the l	odine Release Rate, Ci/sec			<u></u>		SNF
2		Vind Speed, mph					SNF
3		1 by Line 2			*		
4	Iodine Dos	e Factors	3.6 E+3	1.8 E+3	7.7 E+2	3.9 E+2	
5		e 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	tion of release, hours					SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem				:	PAR
* SN	F (State Noti	fication Form); PAR (Protective A	Action Reco	mmendatio	n Workshee	et)	1
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nobl	e Gas Release Rate, Ci/sec		·	· · ·	· · · · · · · · · · · · · · · · · · ·	SNF
9	Enter the V	Vind Speed, from Line 2 above					1
10	Divide Line	8 by Line 9					1
11	Enter the F	articulate Factor (PF)					1
12	Multiply Lir	e 10 by Line 11					
13	Noble Gas	Dose Factors	1.0	0.5	0.22	0.11	
14	Multiply Lir	e 12 by Line 13					
15	Enter (Line	5 multiplied by 0.04)					
16		4 and Line 15 to obtain SE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	tion of release, hours					
18		e 16 by Line 17 to obtain SE (TEDE) mrem					PAR
19	Forward th	is worksheet (or a copy) to the En	nergency C	oordinator {	RM if done	in EOF}	
20	Dose Calc	lations completed; continue mon	itoring relea	ses and as	sessing dos		

								35
0-EPI	P-20126		Off-site Dos	e Calculat	tions		Approval D 3	ate: 26/01
			(Page CALCULAT		RKSHEET			
	HEET 3	STABILITY (Wind Direction (CLASS = B from)	SEABREI	EZE IMPAC	CT = YES	UNI	Т
Cł	heck method u	sed:	_ Met Tower	N	WS	Defaul	t	
		termined by:		Grab CHRRM		_ Effluent M Attachmer	fon nt	Defa
e and the	me of release of	lata:	/			_		
	1	Follow the in	nstructions to	o calculat	te doses	@		Use Code
Line	Instruc	Instructions for THYROID DOSES		1 mile	2 miles	5 miles	10 miles	*
1	Enter the le	odine Release R	ate, Ci/sec					SNF
2	Enter the V	Vind Speed, mpl	ו				<u> </u>	SNF
3	Divide Line	e 1 by Line 2						
4	lodine Dos	e Factors		3.0 E+4	1.1 E+4	3.0 E+3	1.1 E+3	
5		Multiply Line 3 by Line 4 to obtain THYROID DOSE (CDE) RATE, mrem/hr						SNF
6	Enter Dura	tion of release, h	nours			······································	<u> </u>	SNF
7		Multiply Line 5 by Line 6 to obtain THYROID DOSE (CDE), mrem						PAR
* SN	F (State Noti	fication Form); P	AR (Protective A	Action Reco	mmendatio	n Workshee	et)	
Line	Instructions	for TOTAL WHOLE	E BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nobl	e Gas Release I	Rate, Ci/sec		1	I	L,	SNF
9	Enter the V	Vind Speed, fron	n Line 2 above					
10	Divide Line	8 by Line 9						
11	Enter the F	Particulate Factor	(PF)					
12	Multiply Lir	e 10 by Line 11					· · · ·	
13	Noble Gas	Dose Factors		8.3	2.9	0.84	0.30	
14	Multiply Lin	e 12 by Line 13						
15	Enter (Line	5 multiplied by 0	.04)					
16		4 and Line 15 to DSE (TEDE) RAT						SNF
17	Enter Dura	tion of release, h	nours				· · · · · · · · · · · · · · · · · · ·	
18	Multiply Lir	ne 16 by Line 17 t DSE (TEDE), mre	to obtain m					PAR
19	Forward th	is worksheet (or a	a copy) to the Er	nergency C	oordinator {	RM if done	in EOF}	
20	Dose Calci	Dose Calculations completed; continue monitoring releases and assessing doses.						

ocedure No.:		Procedure Title:				Page: Approval D	36
0-EPIH	P-20126	Off-site Dos	e Calculat	tions			26/01
			HMENT 2 4 of 10) ION WOF		ſS		
. Me Ch Re	et Summary: leck method u		A N Grab	Affected Sect WS	ors Defaul _ Effluent M	t Ion	
	ne of release	Follow the instructions to	calculat	te doses	0		Use
Line	Instruc	tions for THYROID DOSES	1 mile	2 miles	5 miles	10 miles	Code *
1	Enter the I	odine Release Rate, Ci/sec		I		<u> </u>	SNF
2		Vind Speed, mph				<u> </u>	SNF
3		1 by Line 2					••••
4	lodine Dos	e Factors	2.3 E+4	5.9 E+3	1.1 E+3	5.7 E+2	
5		ne 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	ition of release, hours		<u>.</u>		·	SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SN	F (State Noti	fication Form); PAR (Protective A	ction Reco	mmendatio	n Workshee	et)	
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nob	e Gas Release Rate, Ci/sec		·····		·	SNF
9	Enter the V	Vind Speed, from Line 2 above					
10	Divide Line	8 by Line 9					
11	Enter the F	Particulate Factor (PF)					
12	Multiply Lir	ne 10 by Line 11					
13	Noble Gas	Dose Factors	6.4	1.6	0.31	0.15	
14	Multiply Lin	ne 12 by Line 13					
15	Enter (Line	5 multiplied by 0.04)					
16		4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr				•	SNF
17	Enter Dura	tion of release, hours					
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem					PAR
19	Forward th	is worksheet (or a copy) to the En	nergency C	oordinator {	RM if done	in EOF}	
20	Dose Calc	ulations completed; continue mon	itoring relea	ases and as	sessing do	ses.	

ocedure No.:		Procedure Title:				Page:	37
0-EPIP	-20126	Off-site Do	se Calculat	ions		Approval Da 3/	ate: 26/01
. Me	HEET 5 t Summary: eck method u	(Page DOSE CALCULAT	SEABREI	CKSHEET	CT = YES		
. Rel	lease Rate de	termined by:	Grab CHRRM		_ Effluent M _ Attachmer	lon nt	Defaul
ate and tin	ne of release	data:	/				·
	r	Follow the instructions t	o calculat	te doses	@	1	Use Code
Line	Instruc	Instructions for THYROID DOSES		2 miles	5 miles	10 miles	*
1	Enter the I	odine Release Rate, Ci/sec					SNF
2	Enter the V	Wind Speed, mph			••••••••••••••••••••••••••••••••••••••		SNF
3	Divide Line	e 1 by Line 2		I	·····		
4	lodine Dos	e Factors	5.9 E+4	1.7 E+4	3.7 E+3	1.5 E+3	
5		ne 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	ation of release, hours				<u></u>	SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SNF	- (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	-
8	Enter Nob	le Gas Release Rate, Ci/sec			,		SNF
9	Enter the N	Wind Speed, from Line 2 above					
10	Divide Line	e 8 by Line 9					
11	Enter the F	Particulate Factor (PF)					
12	Multiply Li	ne 10 by Line 11					
13	Noble Gas	Dose Factors	16.0	4.6	1.1	0.42	
14	Multiply Li	ne 12 by Line 13					
15	Enter (Line	e 5 multiplied by 0.04)					
16		4 and Line 15 to obtain OSE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	ation of release, hours					
18		ne 16 by Line 17 to obtain OSE (TEDE), mrem					PAR
19	Forward th	nis worksheet (or a copy) to the E	mergency C	oordinator	RM if done	in EOF}	
20	Dose Calculations completed; continue monitoring releases and assessing doses.						

•

						Approval D	38						
0-EPII	P-20126	Off-site D	ose Calculat	tions			/26/01						
			CHMENT 2 e 6 of 10) TION WOI		ſS								
ORKS	HEET 6	STABILITY CLASS = C	SEABREI	EZE IMPAC	CT = NO	UNI	т						
Me Ch	eck method u	Wind Direction (from) sed: Met Tower termined by:	N	WS	Defaul	t							
Re	lease Rate det	termined by:	Grab CHRRM		_ Effluent N Attachmer	lon	Defa						
ate and tir	ne of release o		/										
		Follow the instructions	to calculat	te doses	@		Use Code						
Line	Instructions for THYROID DOSES		1 mile	2 miles	5 miles	10 miles	*						
1	Enter the le	odine Release Rate, Ci/sec				·····	SNF						
2	Enter the V	Vind Speed, mph					SNF						
3	Divide Line	e 1 by Line 2											
4	lodine Dos	e Factors	5.9 E+ 4	1.7 E+4	3.1 E+3	9.1 E+2							
5		ne 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF						
6	Enter Dura	tion of release, hours			· · · · · · · · · · · · · · · · · · ·	<u> </u>	SNF						
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR						
* SNI	F (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	1						
Line	Instructions	for TOTAL WHOLE BODY DOSES	3 1 mile	2 miles	5 miles	10 miles							
8	Enter Nobl	e Gas Release Rate, Ci/sec				·····	SNF						
9	Enter the V	Vind Speed, from Line 2 above	· · · · · · · · · · · · · · · · · · ·										
10	Divide Line	8 by Line 9											
11	Enter the F	Particulate Factor (PF)											
12	Multiply Lir	ne 10 by Line 11		-									
13	Noble Gas	Dose Factors	16.0	4.6	0.88	0.26							
14	Multiply Lir	ne 12 by Line 13											
15	Enter (Line	5 multiplied by 0.04)]						
16		4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr				•	SNF						
17	Enter Dura	tion of release, hours											
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem					PAR						
19	Forward th	is worksheet (or a copy) to the	Emergency C	oordinator {	RM if done	in EOF}							
20	Dose Calc	ulations completed; continue m	onitoring relea	ases and as	sessing do	ses.	Dose Calculations completed; continue monitoring releases and assessing doses.						

.

edure No.:		Procedure Title:					Page:	39
0-EPIF	-20126		Off-site Do	se Calculat	tions		Approval D 3/	ate: 26/01
		DOSE		HMENT 2 7 of 10) ION WOI		ſS		
		STABILITY						Т
Ch	eck method u	Wind Direction (sed:	Met Tower	/	WS	ors Defaul	 t	
Re	lease Rate det	ermined by:		Grab	,	_ Effluent M	lon	Defa
e and tin	ne of release of	lata:		CHRRM /	· <u> </u>	_ Attachmen	10	
		Follow the in	nstructions	o calculat	te doses	@		Use
Line	Instruc	Instructions for THYROID DOSES		1 mile	2 miles	5 miles	10 miles	Code *
1	Enter the lo	odine Release R	ate, Ci/sec			· · · · ·		SNF
2	Enter the V	Vind Speed, mpl	ì					SNF
3	Divide Line	1 by Line 2						
4	lodine Dos	e Factors		1.6 E+5	5.9 E+4	1.6 E+4	5.7 E+3	
5	Multiply Line 3 by Line 4 to obtain THYROID DOSE (CDE) RATE, mrem/hr				-			SNF
6	Enter Dura	tion of release, I	nours				· · · · · · · · · · · · · · · · · · ·	SNF
7		ne 5 by Line 6 to DOSE (CDE), mi						PAR
* SNF	(State Noti	fication Form); P	AR (Protective	Action Reco	mmendatio	n Workshee	et)	
Line	Instructions	for TOTAL WHOL	E BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nobl	e Gas Release I	Rate, Ci/sec		L	L		SNF
9	Enter the V	Vind Speed, from	n Line 2 above					
10	Divide Line	8 by Line 9						
11	Enter the P	articulate Factor	(PF)			· · · · · · · · · · · · · · · · · · ·		
12	Multiply Lin	e 10 by Line 11					· · ·	
13	Noble Gas	Dose Factors		44.0	17.0	4.4	1.6	
14	Multiply Lin	e 12 by Line 13						
15	Enter (Line	5 multiplied by ().04)					
16		4 and Line 15 to SE (TEDE) RAT						SNF
17	Enter Dura	tion of release, l	nours		· · · · · · · · · · · · · · · · · · ·		•	
18		ne 16 by Line 17 DSE (TEDE), mre						PAR
19	Forward th	is worksheet (or	a copy) to the E	mergency C	oordinator {	RM if done	in EOF}	
20	Dose Calci	ulations complete	ed; continue mo	nitoring relea	ases and as	sessina dos	ses	

ocedure No.	:	Procedure Title:				Page:	40
0-EPII	P-20126	Off-site Dos	se Calculat	ions		Approval D 3/	ate: 26/01
VORKS	HEET 8			RKSHEET		INI	
M	et Summary:	Wind Direction (from)	A	Affected Sect	ors		·
. Ch . Re	ieck method u lease Rate det	Wind Direction (from) sed: memined by:	N Grab	ws	Default Effluent M	lon	Defau
		lata:	CHRRM		_ Attachmen	nt	
	ne of felease (Follow the instructions t	o calculat	e doses	@		Use
Line	Instruc			2 miles	5 miles	10 miles	Code
1		Instructions for THYROID DOSES Enter the lodine Release Rate, Ci/sec		2 111165	Jimes	To miles	
2		Vind Speed, mph					SNF
$\frac{2}{3}$		1 by Line 2		·····			SNF
4	Iodine Dos		2.9 E+5	1.2 E+5	3.6 E+4	1.5 E+4	
		ne 3 by Line 4 to obtain	2.9 243	1.2 E+3	5.0 ET4	1.5 274	0.15
5		DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	tion of release, hours					SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SN	F (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	
8	Enter Nob	e Gas Release Rate, Ci/sec			·····		SNF
9	Enter the V	Vind Speed, from Line 2 above					
10	Divide Line	8 by Line 9				·····	
11	Enter the F	Particulate Factor (PF)					
12	Multiply Lir	ne 10 by Line 11					
13	Noble Gas	Dose Factors	81.0	33.0	10.0	4.0	
14	Multiply Lir	ne 12 by Line 13					
15	Enter (Line	5 multiplied by 0.04)					
16	1	4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	tion of release, hours					
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem					PAR
19	Forward th	is worksheet (or a copy) to the E	mergency C	oordinator {	[RM if done	in EOF}	
20	Dose Calc	ulations completed; continue mor	nitoring relea	ases and as	sessing do	ses.	

		Procedure Title:				Page:	41
0-EPIF	-20126	Off-site D	ose Calculat	tions		Approval D 3/	ate: /26/01
		ATTA (Pag DOSE CALCULA	CHMENT 2 e 9 of 10) TION WOI		٢S	·	
Me Ch Re	eck method u	Wind Direction (from) sed: Met Tower termined by:	A N Grab	Affected Sect WS	tors Defaul Effluent N	t Ion	
	ne of release (Follow the instructions	<u></u> to calculat	te doses			Use
Line	Instruc	tions for THYROID DOSES	1 mile	2 miles	5 miles	10 miles	Code
1		odine Release Rate, Ci/sec		2 111165	Jimes	To filles	
2		Vind Speed, mph					SNF
3		1 by Line 2			······································		SNF
4			5.2 E+5	2.3 E+5	7.7 E+4	3.6 E+4	
5	Iodine Dose Factors Multiply Line 3 by Line 4 to obtain THYROID DOSE (CDE) RATE, mrem/hr		0.2 2.0	2.0 2.0		3.0 L 14	SNF
6		tion of release, hours				<u> </u>	SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SNF	- (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	1
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	1
8	Enter Nobl	e Gas Release Rate, Ci/sec		·····		·····	SNF
9	Enter the V	Vind Speed, from Line 2 above					1
10	Divide Line	8 by Line 9			·····		
11	Enter the F	Particulate Factor (PF)				·	
12	Multiply Lin	ne 10 by Line 11					
13	Noble Gas	Dose Factors	1.5 E+2	6.6 E+1	2.2 E+1	9.5 E 0	
14	Multiply Lin	ne 12 by Line 13					
15	Enter (Line	5 multiplied by 0.04)					
16		4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	tion of release, hours]
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem					PAR
19	Forward th	is worksheet (or a copy) to the	Emergency C	oordinator {	RM if done	in EOF}	-
20		ulations completed; continue mo					

rocedure No.		Procedure Title:				Page:	42
0-EPII	P-20126	Off-site Dos	se Calculat	tions		Approval D 3/	ate: 26/01
			HMENT 2 10 of 10) ION WOH		ſS		
. Me	et Summary:	STABILITY CLASS = G Wind Direction (from) sed: Met Tower termined by:	<i>F</i>	Affected Sect	ors		
. Re	lease Rate de	termined by:	Grab CHRRM	·	_ Effluent M _ Attachmer	lon 1t	Defai
ate and tir	me of release						
	·····	Follow the instructions t	o calculat	te doses	@		Use Code
Line	Instruc	ctions for THYROID DOSES	1 mile	2 miles	5 miles	10 miles	*
1	Enter the I	odine Release Rate, Ci/sec					SNF
2	Enter the V	Vind Speed, mph					SNF
3	Divide Line	e 1 by Line 2		······	~	······································	
4	Iodine Dos	e Factors	9.1 E+5	4.6 E+5	1.7 E+5	7.7 E+4	
5		ne 3 by Line 4 to obtain DOSE (CDE) RATE, mrem/hr					SNF
6	Enter Dura	tion of release, hours					SNF
7		ne 5 by Line 6 to obtain DOSE (CDE), mrem					PAR
* SN	F (State Noti	fication Form); PAR (Protective	Action Reco	mmendatio	n Workshee	et)	1
Line	Instructions	for TOTAL WHOLE BODY DOSES	1 mile	2 miles	5 miles	10 miles	1
8	Enter Nob	le Gas Release Rate, Ci/sec		·····	· · · · · · · · · · · · · · · · · · ·	·······	SNF
9	Enter the V	Vind Speed, from Line 2 above			· · · · · · · · · · · ·		
10	Divide Line	8 by Line 9					
11	Enter the F	Particulate Factor (PF)					1
12	Multiply Lir	ne 10 by Line 11					1
13	Noble Gas	Dose Factors	2.4 E+2	1.2 E+2	4.8 E+1	2.2 E+1	
14	Multiply Li	ne 12 by Line 13					
15	Enter (Line	e 5 multiplied by 0.04)]
16	1	4 and Line 15 to obtain DSE (TEDE) RATE, mrem/hr					SNF
17	Enter Dura	ation of release, hours			·····]
18		ne 16 by Line 17 to obtain DSE (TEDE), mrem	l				PAR
19	Forward th	is worksheet (or a copy) to the E	mergency C	oordinator {	RM if done	in EOF}	
20		ulations completed; continue mor					····

Proc	edure No.:	Procedure Title:				Page:	43
						Арргоча	l Date:
-)-EPIP-20126		Uff-site	Dose Calculatio	ns		3/26/01
				FACHMENT 3 Page 1 of 7)			
		RADIO	ACTIVE	RELEASE WO	RKSHEET		
		Part	: A - Grab	Sample Data Wor	ksheet		
	Date:	and Time			of Data, U	nit	
	Ask the Emerge	ncy Coordinator for	the followi	ng:			
	a. Accident	Туре:					
		Duration of Releas re overheating/melti		wn, use default): : YES	h	ours	
	IF the core is ov	erheating or meltin	g, <u>THEN</u> P	articulate Factor (PF)	= 4.4, else PF	= 1.0; enter PF	
	Enter the Gross	Noble Gas and Iodi	ne-131 DE0	Q, in μ Ci/cc for the af	fected/sampled	l pathways, into th	ne table below:
	found on	Page 2 of 6. as Conc X IRRF = I	odine Conc	EN calculate as show IRRF =		-	ase Rate Factor,
	Determine pathy			t and steam lines (if a			
	IF Plant 2 of 6.	PV Chl 10 3 Vent Sping Ch. 10 Steam Lines, refer	(472 = data is not a	 172 = plant vent flowr Ivailable, <u>THEN</u> use f 6. 	PV	V (cc/sec) Fan Configuratio	n Table on Page
Г			T			Release R	ate. Ci/sec
L	Pathway	Туре	µCi/cc	x Flow cc/sec x	μCi to Ci =		Iodine
	Plant Vent	Noble Gas	<u> </u>		1 E -6		1111111111111
-		Iodines Noble Gas					
ľ	Main Steam Lines	Iodines			1 E -6	1111111111111	Innininin
F		Noble Gas			1		///////////////////////////////////////
	Cond Air Ejector	Iodines		1.42E 4	1 E -6	///////////////////////////////////////	
ſ	U-3 Fuel Pool Vent	Noble Gas Iodines		9.43E 6	1 E -6		///////////////////////////////////////
	Calculate Site R	elease Rate:					
а	Total the Release Ra	ates using this Worksh	eet	· · · · · · ·			
b c	. Enter other Release	Rates (e.g., CHRRM/					
	Enter the Site R	elease Rates in Atta	chment 2.				
	b. Enter the c. Enter the d. Enter the	Noble Gas Release Iodine Release Rate Duration (if 2 affe	e Rate into I te into Line cted units, u		6 and Line 17.		
) .	This worksheet	is done, follow the	instructions	on Attachment 2.			

÷.

Procedure No .:

Procedure Title:

Page:

0-EPIP-20126

Off-site Dose Calculations

Approval Date: 3/26/01

44

ATTACHMENT 3 (Page 2 of 7)

RADIOACTIVE RELEASE WORKSHEET

Part A - Grab Sample Data Worksheet

Iodine Release Rate Factors (IRRF)

Plant Condition	IRRF
LOCA and Emergency Containment Filter(s) in use	0.011
LOCA and Emergency Containment Filter(s) not in use	0.063
Fuel Handling	0.001
Steam Generator Tube Rupture	6.8E-4
Waste Gas Decay Tank or VCT release	1E - 06

Plant Vent Exhaust Fan Configuration Table

CONTAINMENT PURGE	AUXILIARY BUILDING	SPENT FUEL PIT	RADWASTE BUILDING	LAUNDRY SYSTEM	PLANT VENT FLOW cc/sec
0	0	1	2	1	1.45 E+7
0	1	1	2	1	3.82 E+7
0	2	1	2	1	4.31 E+7
1	1	1	2	1	4.74 E+7
1	2	1	2	1	5.07 E+7
2	1	1	2	1	5.66 E+7
2	2	1	2	1	5.99 E+7

Main Steam Line Flow

- I)
- ÍÍ)
- III)
- Atmospheric Dump Valves (1 per line): Each 1.33 E+4 cc/sec Each S/G safety relief valve (four per steam line): 1.1 E+5 cc/sec each Exhaust from Each Aux Feed Pump: 3.4 E+3 cc/sec each IF time and data permits, THEN average the flow as shown below, ELSE assume a IV) constant flow rate.

Main Steam Line Flow Averaging Method							
Pathway cc/sec	X	Amount of OPEN time, sec or min Averaging Period: 1800 sec or 30 min	=	Average cc/sec			
		×	=	cc/sec			
cc/sec							
JR/ev/ev/ev							

	ure No.:	Procedure	Title:				,	Page:	45
0-	EPIP-20126		(Off-site I	Dose Calcı	lations		Approval Da	
					CHMEN age 3 of 7)	Г 3			
		F	RADIOAC	CTIVE R	ELEASE	WORKSI	HEET		
			Part B -	Effluent]	Monitor D	ata Worksł	neet		
l .	Date:	an	d Time			of	Data, Unit		
2.	Ask the Emerg								
	a. Accider	nt Type:		-					
	b. Potentia	al Duration	of Release (i		, use default	:	hours		
			ting/melting?			YES	NO		
•	IF the core is c	overheating	or melting, <u>]</u>	<u>FHEN</u> Part	iculate Facto	or $(PF) = 4.4$,	else $PF = 1.0;$	enter PF	
•	Enter the moni	tor readings	for the affect	cted pathwa	ays in the tab	le of Step 7:			
	a. SPING-	-4 reading (a	already avera	aged) prefe	rred over R-	14, R-15.			
							or 15 minutes.		
							the number of	f S/Gs feeding	monitor:
	DAM-1	μCi/cc	x		S/Gs	being monito			
							(DAM-	1 value for Step	p7)
	Determine path	hway flow ii	n cc/sec for p	plant vent a	nd steam lin	es (if affected	d).		
	a. For Pla	nt Vent; cald	culate as sho	wn below:					
	Diant to								
	Flant Ve	ent channel	10 flowrate ((cfm) x 472	= plant ven	flowrate (cc	/sec)		
		PV	Chl 10 X 47	72 =			PV (cc/se		
	<u>IF</u> Plan	PV It Vent Spir	Chl 10 X 47	72 =			/sec) PV (cc/se Plant Vent Fa		on Table o
	<u>IF</u> Plan Page 4 d	PV pt Vent Spir of 6.	Chi 10 X 47 ng Ch. 10 da	72 = ata is not a	ivailable, <u>TI</u>		PV (cc/se		on Table o
	<u>IF</u> Plan Page 4 b. For Ma	PV nt Vent Spir of 6. in Steam Lin	Chl 10 X 47 ng Ch. 10 da nes, refer to	72 = ata is not a Page 4 of 6	available, <u>TI</u>	IEN use the	PV (cc/se Plant Vent Fa	an Configuration	on Table o
•	<u>IF</u> Plan Page 4 d	PV nt Vent Spir of 6. in Steam Lin	Chl 10 X 47 ng Ch. 10 da nes, refer to	72 = ata is not a Page 4 of 6	available, <u>TI</u>	IEN use the	PV (cc/se Plant Vent Fa	an Configuration	on Table o
	<u>IF</u> Plan Page 4 b. For Ma	PV at Vent Spir of 6. in Steam Lin ae Release R	Chl 10 X 47 ng Ch. 10 da nes, refer to	72 = ata is not a Page 4 of 6	available, <u>TI</u>	IEN use the	PV (cc/se Plant Vent Fa	an Configuration	on Table of
	IF Plan Page 4 (b. For Ma Enter the Iodin	PV at Vent Spir of 6. in Steam Lin ae Release R	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I	72 = ata is not a Page 4 of 6	the table be	IEN use the	PV (cc/sc Plant Vent Fa	an Configuration	
	IF Plan Page 4 (b. For Ma Enter the Iodin Calculate Relea	PV at Vent Spir of 6. in Steam Lin ae Release R	Chl 10 X 47 ng Ch. 10 da nes, refer to	72 = ata is not a Page 4 of 6 RRF) in to	available, <u>TI</u>	<u>IEN</u> use the	PV (cc/se Plant Vent Fa	an Configuration	Iodine
	IF Plan Page 4 d b. For Ma Enter the Iodin Calculate Relea Pathway	PV nt Vent Spir of 6. in Steam Lin ne Release R ase Rates:	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	72 = ata is not a Page 4 of 6 RRF) in to <u>x Cal x</u>	the table be	<u>HEN</u> use the ow, Factors μCi to Ci =	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
	IF Plan Page 4 (b. For Ma Enter the Iodin Calculate Relea	PV nt Vent Spir of 6. in Steam Lin ne Release R ase Rates: R-14	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	72 = ata is not a Page 4 of 6 RRF) in to	the table be	<u>HEN</u> use the ow, Factors I μCi to Ci = 1 E -6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
•	IF Plan Page 4 d b. For Ma Enter the Iodin Calculate Relea Pathway	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: <u>R-14</u> SPING	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	72 = ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9	the table be	$\frac{\text{IEN}}{\text{IEN}} \text{ use the}$ ow, Factors 1 $\mu \text{Ci to Ci} = \frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
•	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam	PV nt Vent Spir of 6. in Steam Lin ne Release R ase Rates: R-14	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	72 = ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9 1.0 1.0	the table be Flow cc/sec x	$\frac{\text{IEN}}{\text{IEN}} \text{ use the}$ ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
•	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent	PV nt Vent Spir of 6. in Steam Lin he Release R ase Rates: R-14 SPING DAM-1	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	$72 = _$ ata is not a Page 4 of 6 RRF) in to $x Cal x$ 5 E-9 1.0	the table be	$\frac{\text{IEN}}{\text{IEN}} \text{ use the}$ ow, Factors 1 $\mu \text{Ci to Ci} = \frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam	PV nt Vent Spir of 6. in Steam Lin he Release R ase Rates: R-14 SPING DAM-1 R-15	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor	72 =	the table be Flow cc/sec x 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu\text{Ci to Ci} =}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector	PV nt Vent Spir of 6. in Steam Lin he Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading	72 = ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9 1.0 1.0 2.47E-8 1.0	the table be Flow cc/sec x 1.42E 4 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site T	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I <u>Monitor</u> <u>Reading</u> e:	$72 = \ata \text{ is not a} \\ Page 4 of 6 \\ RRF) in to \\ \hline x Cal x \\ 5 E-9 \\ 1.0 \\ 1.0 \\ 2.47E-8 \\ 1.0 \\ 1$	the table be Flow cc/sec x 1.42E 4 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration 4 of 6. x IRRF =	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site Total the Release	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Rates using the second	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e:	$72 = \ata \text{ is not a} \\ Page 4 of 6 \\ RRF) in to \\ \hline x Cal x \\ 5 E-9 \\ 1.0 \\ 1.0 \\ 2.47E-8 \\ 1.0 \\ 1$	the table be Flow cc/sec x 1.42E 4 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration 4 of 6. x IRRF =	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site T	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Rates using to se Rates (e.g	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee , CHRRM/Ott	$72 = \ata \text{ is not a} \\ Page 4 of 6 \\ RRF) in to \\ \hline x Cal x \\ 5 E-9 \\ 1.0 \\ 1.0 \\ 2.47E-8 \\ 1.0 \\ 1$	the table be Flow cc/sec x 1.42E 4 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration 4 of 6. x IRRF = 	Iodine
Co ; ; ; ; ; ; ; ; ;	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site 2 Total the Release Enter other Release Add to obtain Site	PV at Vent Spir of 6. in Steam Lin at Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Rates using the second	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee , CHRRM/Othe	$72 = \ata \text{ is not a}$ Page 4 of 6 RRF) in to $x \text{ Cal } x$ 5 E-9 1.0 1.0 2.47 E-8 1.0 1.0 t t t t t t t t t t t t t t t t t t t	the table be Flow cc/sec x 1.42E 4 1.42E 4	$\frac{\text{IEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu \text{Ci to Ci} =}{1 \text{ E} - 6}$ 1 E - 6 1 E - 6 1 E - 6 1 E - 6	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration 4 of 6. x IRRF =	Iodine
Co	IF Plan Page 4 b. For Ma Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site I Total the Release Enter other Release Enter other Release Enter the Site I	PV at Vent Spir of 6. in Steam Lin at Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate se Rates (e.g Release Rate Release Rate	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee ., CHRRM/Ott e es in Attachm	$72 = \ata \text{ is not a} ata \text{ is not a} ata is not a} ata is not a a ata is not at ata is not ata $	the table be Flow cc/sec x 1.42E 4 1.42E 4 9.43E 6	$\frac{\text{HEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu\text{Ci to Ci} = 1}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa isted on Page 4 Noble Gas Rel. Rate	an Configuration 4 of 6. x IRRF = ////////////////////////////////////	
Co ;	IF Plan Page 4 b. For Mar Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site 1 Total the Release Enter other Release Add to obtain Site Enter the Site 1 a. Place a	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate se Rates (e.g Release Rate check on the	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee ., CHRRM/Ott e es in Attachm e blank to th	$72 = _$ ata is not a Page 4 of 6 RRF) in to $x \text{ Cal } x$ 5 E-9 1.0 1.0 2.47 E-8 1.0 1.0 t t ner Unit) nent 2. e left of Ef	the table be Flow cc/sec x 1.42E 4 1.42E 4 9.43E 6 fluent Mon	$\frac{\text{HEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu\text{Ci to Ci} = 1}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa listed on Page 4	an Configuration 4 of 6. x IRRF = ////////////////////////////////////	Iodine
Co	IF Plan Page 4 b. For Mar Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site Enter other Release Enter other Release Enter other Release Enter the Site I a. Place a b. Enter the	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Release Rate check on the ne Noble Ga	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee e: this Workshee es in Attachn e blank to th s Release Ra	$72 = _$ ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9 1.0 1.0 2.47E-8 1.0 1.0 t ner Unit) ment 2. e left of Ef ate into Lin	the table be Flow cc/sec x 1.42E 4 1.42E 4 9.43E 6 fluent Mon	$\frac{\text{HEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu\text{Ci to Ci} = 1}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa isted on Page 4 Noble Gas Rel. Rate	an Configuration 4 of 6. x IRRF = ////////////////////////////////////	Iodine
Co	IF Plan Page 4 b. For Mar Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam ond Air Ejector #3 SFP Vent Calculate Site Enter other Release Enter other Release Enter other Release Enter the Site I a. Place a b. Enter th c. Enter th	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Release Rate check on the ne Noble Ga an Iodine Re	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading e: this Workshee e: this Workshee es in Attachn e blank to th s Release Rate ir	$72 = _$ ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9 1.0 1.0 2.47E-8 1.0 1.0 t ter Unit) ment 2. e left of Ef the into Line 1.	the table be Flow cc/sec x 1.42E 4 1.42E 4 9.43E 6 fluent Mon e 8.	HEN use the ow, Factors I $\mu Ci \text{ to } Ci =$ $1 E -6$	PV (cc/sc Plant Vent Fa isted on Page 4 Noble Gas Rel. Rate	an Configuration 4 of 6. x IRRF = ////////////////////////////////////	Iodine
Co	IF Plan Page 4 b. For Mar Enter the Iodin Calculate Relea Pathway Plant Vent Main Steam and Air Ejector #3 SFP Vent Calculate Site Total the Release Enter other Release Enter other Release Add to obtain Site Enter the Site I a. Place a b. Enter th c. Enter th d. Enter th	PV at Vent Spir of 6. in Steam Lin ae Release R ase Rates: R-14 SPING DAM-1 R-15 SPING SPING Release Rate Release Rate Release Rate check on the ne Noble Ga and I colore Re- and I colore Re-	Chi 10 X 47 ng Ch. 10 da nes, refer to ate Factor (I Monitor Reading eating e. this Workshee , CHRRM/Otr e es in Attachm e blank to th s Release Rate ir (if 2 affected	$72 = _$ ata is not a Page 4 of 6 RRF) in to x Cal x 5 E-9 1.0 1.0 2.47E-8 1.0 1.0 t ther Unit) ment 2. e left of Ef ate into Line 1. I units, use	the table be Flow cc/sec x 1.42E 4 1.42E 4 9.43E 6 fluent Mon e 8. longest) into	$\frac{\text{HEN}}{\text{use the}}$ use the ow, Factors 1 $\frac{\mu\text{Ci to Ci} = 1}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$ $\frac{1 \text{ E} - 6}{1 \text{ E} - 6}$	PV (cc/sc Plant Vent Fa isted on Page 4 Noble Gas Rel. Rate	an Configuration 4 of 6. x IRRF = ////////////////////////////////////	Iodine

Procedure No.:

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

Page:

Approval Date:

3/26/01

46

ATTACHMENT 3 (Page 4 of 7)

RADIOACTIVE RELEASE WORKSHEET

Part B - Effluent Monitor Data Worksheet

Iodine Release Rate Factors (IRRF)

Plant Condition	IRRF
LOCA and Emergency Containment Filter(s) in use	0.011
LOCA and Emergency Containment Filter(s) not in use	0.063
Fuel Handling	0.001
Steam Generator Tube Rupture	6.8E-4
Waste Gas Decay Tank or VCT release	1E - 06

Plant Vent Exhaust Fan Configuration Table

			· · · · · · · · · · · · · · · · · · ·		
CONTAINMENT PURGE	AUXILIARY BUILDING	SPENT FUEL PIT	RADWASTE BUILDING	LAUNDRY SYSTEM	PLANT VENT FLOW cc/sec
0	0	1	2	1	1.45 E+7
0	1	1	2	1	3.82 E+7
0	2	1	2	1	4.31 E+7
1	1	1	2	1	4.74 E+7
1	2	1	2	1	5.07 E+7
2	1	1	·2	1	5.66 E+7
2	2	1	2	1	5.99 E+7

Main Steam Line Flow

- I) II)
- IÍ)
- Atmospheric Dump Valves (1 per line): Each 1.33 E+4 cc/sec Each S/G safety relief valve (four per steam line): 1.1 E+5 cc/sec each Exhaust from Each Aux Feed Pump: 3.4 E+3 cc/sec each IF time and data permits, THEN average the flow as shown below, ELSE assume a IV) constant flow rate.

Pathway cc/sec	Х	Amount of OPEN time, sec or min Averaging Period: 1800 sec or 30 min	=	Average cc/sec
cc/sec		x	= _	cc/sec

Proced	ure No.:	Procedure Title:					Page: 47	
0-	EPIP-20126		Off-site Do	se Calculatio	ons		Approval Date: 3/26/0	1
				HMENT 3 e 5 of 7)				
		RAD	IOACTIVE RE	LEASE WO	RKSHEI	ET		
	Part C - C	Containment 1	High Range Radi	ation Monito	r (CHRR	M) Data W	orksheet	
	(If both	units are usin	g this method, th	en complete o	one works	sheet for ea	ch unit)	
1.	Date and time of	f data:	/	_ Reactor Trip	Date and T	ime		
2.	Ask the Emerge	ncy Coordinator	for the following:					
	a. Is the cor	e overheating/n	nelting? (circle):	YES		NO		
	b. Potential	Duration of Rei	lease (if unknown, u	se default):		hours		
3.	IF the core is ov	erheating or me	lting, THEN Particu	llate Factor (PF)	= 4.4, else	PF = 1.0; ent	er PF	
4.	Obtain: Highest	CHRRM readi	ng:R/hr, E	lapsed time (ET) since Rea	ctor Trip:	hours	
5.	IF using the pre	-planned CHRR	M alternate, estimat	e the CHRRM v	alue:			
			3E+4 =					
6.	Using the Elapse	ed Time, select i	he Conversion Facto	or (CF), from th	e table belo	w, for use in	Step 7.	1
		sed Time, Hr ET = 0	Conversion Facto 1.6 E-6	r Elapsed T 2.0 < E1		Conversion 9.0 E-		
	0.5	< ET ≤ 0.5 < ET ≤ 1.0 <et 2.0<="" th="" ≤=""><th>2.2 E-6 3.2 E-6 5.0 E-6</th><th>4.0 < ET 8.0 <</th><th></th><th>1.8 E- 4.8 E-</th><th></th><th></th></et>	2.2 E-6 3.2 E-6 5.0 E-6	4.0 < ET 8.0 <		1.8 E- 4.8 E-		
7.	CHRRM	R/hr X C	CF=	(CFA	(1) (1) for use	in Steps 9 ar	nd 11.	
8.	Determine Nobl	e Gas Reduction	n Factor (NGRF), fr	om Table; NGI	۲F=	. <u></u>	, for use in Step	9.
	1	NGRF E	1	ET	NGRF	1		ן ו
	0 >0 to ≤1	1.0 >4 to 0.90 >5 to	5 ≤6 0.39	>9 to ≤10 >10 to ≤11	0.26	>14 to >15 to	≤16 0.14	
	>1 to ≤2 >2 to ≤3	0.70 >6 to 0.6 >7 to	0.32	>11 to ≤12 >12 to ≤13	0.21 0.19	>16 to >17 to		
	>3 to ≤4	0.5 >8 to	· · · · · · · · · · · · · · · · · · ·	>13 to ≤14	0.18	>18		
9.	Calculate:	_(CFA) X	(NGRF) X <u>10</u>	2 Ci/sec=		Noble C	3as Release Rate	, Ci/sec.
W97:J	IR/ev/ev/ev							

-

÷

Procedure No.:	Procedure Title:	Page: 48
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 3/26/01
	ATTACHMENT 3 (Page 6 of 7)	
	RADIOACTIVE RELEASE WORKSHEET	
Part C - Conta	ainment High Range Radiation Monitor (CHRRM) Data Wor	rksheet (Cont'd)
10. <u>IF</u> the Emergend	cy Containment Filter(s) IS in use, <u>THEN</u> (ICV) $^{(2)} = 0.11$; if NOT in use	e, then (ICV) $^{(2)} = 0.63.$
11. Calculate:	_(CFA) X (ICV) = Iodine Release Rate, Ci/sec.	
12. Calculate Site R	elease Rate, Ci/sec:	
	<u></u>	
Determine	if Attachment 4 should be used to adjust results obtained from this	s worksheet.
L		
E (mile Dil		Noble Gas Iodine
b. IF the other u	ease Rates determined from this Worksheet nit is AFFECTED, <u>THEN</u> enter its release rates	
c. Add 12.a and	12.b to obtain Site Release Rates	
Attachment 3, P	ove noble gas and iodine release rate results to Attachment 3, Page 1, Line age 3, Line 8b and continue with the instructions on those worksheets. I continue with Step 14 below.	
14. Enter the Site R	elease Rates in Attachment 2.	
b. Enter the c. Enter the d. Enter the	heck in the blank to the left of CHRRM in Line B to indicate this metho Noble Gas Release Rate into Line 8. Iodine Release Rate into Line 1. Duration (if two affected units, use longest) into Line 6. PF (Particulate Factor) (if two affected units, use largest) into Line 11.	d.
15. This worksheet	is done, follow the instructions on Attachment 2.	
Footnotes:		
	Core Fraction Airborne; decimal fraction of total inventory assumed tmosphere.	to be in the containment
	odine Conversion Value: A factor that includes containment default leak elease rate.	rate to determine the iodine
W97:JR/ev/ev/ev		

•

Procedure No.:

0-EPIP-20126

Off-site Dose Calculations

ATTACHMENT 3 (Page 7 of 7)

RADIOACTIVE RELEASE WORKSHEET

Part D - Default Values for Radioactive Releases

1. Default data is listed by accident type.

a. For the accident type and plant conditions, select the default data.

b. Copy the default data to the selected worksheet in Attachment 2.

I. Iodine Release Rate to Line 1

II. Noble Gas Release Rate to Line 8

- III. Particulate Factor (PF) to Line 11
- c. Place a check in the blank to the left of default on Line B on the selected worksheet in Attachment 2.
- 2. This worksheet is done, follow the instructions on the selected worksheet in Attachment 2.

LOSS OF COOLANT ACCIDENT (LOCA)

Compare hours after reactor trip to table below; see Attachment 4 for methods to adjust these values based on known plant conditions.

Hours post-trip	Duration	Iodine <u>Ci/sec</u>	Noble <u>Ci/sec</u>	<u>PF</u>
0 to 2	2 hours	0.11	10.2	4.4
>2 to 8	2 hours	0.06	5.4	4.4
more than 8	2 hours	0.02	1.6	4.4

STEAM GENERATOR TUBE RUPTURE (SGTR)

Use the listed values until the affected generator is isolated; see Attachment 5 for methods to adjust the values based on known plant conditions.

Duration	Iodine <u>Ci/sec</u>	Noble Gas <u>Ci/sec</u>	<u>PF</u>
1/2 hour	0.0042	6.2	1.0

FUEL HANDLING

Multiply the below listed release rates by the number of known/estimated damaged fuel bundles:

Duration	Iodine <u>Ci/sec</u>	Noble Gas <u>Ci/sec</u>	<u>PF</u>
1/4 hour	0.0047	17.0	1.0

Procedure No.:	Procedure Title:	Page:
		50 Approval Date:
0-EPIP-20126	Off-site Dose Calculations	3/26/01
	ATTACHMENT 4 (Page 1 of 5)	
LO	OCA RELEASE RATE DETERMINATIONS WORKSHEI	ET
	adjust or replace the LOCA default release rates based on kno ed for coping with containment failure releases, either rapid a size failure.	
different tha	NOTE ng methods are provided for guidance. Conditions may warrant ar an shown; use the factors presented here and elsewhere in this pro to estimate releases. Document the calculations in the applicab	cedure, as
logbook.		
It must be underst assumptions, and is release rate.	tood that the methodology provided in Attachment 4 ir intended to provide a means to estimate an upper bound to the	ncludes conservative release, not an exact
This Attachment has conditions listed belo	three methods (LOCA-1 to LOCA-3), select the one that mos	t closely matches the
	perational <u>AND</u> containment integrity is not good <u>AND</u> an e inches) leak has been postulated, <u>THEN</u> a release rate can be d LOCA-1.	
	<u>NOTE</u>	
rapid decrea	vo methods are in response to a rapid decrease in containment p ase in the CHRRM reading that was determined, by Operations or E changes in equipment operation (e.g., additional containment spray	ngineering, 🛽
IF the CHRRM is a AND the CHRRM red be estimated using L	operational <u>AND</u> containment pressure appears to have rapid eading also fell during the same period as the pressure fall, <u>TH</u> OCA-2.	dly (~30 min.) fallen <u>EN</u> a release rate can
$\overline{\mathbf{AND}}$ the CHRRM r	operational <u>AND</u> containment pressure appears to have rapid reading was either constant or increased during the same perio (%) mass lost can be estimated, <u>THEN</u> a release rate can	d as the pressure fall
W97:JR/ev/ev/ev		

÷

.

·

Procedu	are No.:	Procedure Title:			Page: 51
					Approval Date:
0-	EPIP-20126	Off-	site Dose Calculati	ons	3/26/01
		А	TTACHMENT 4 (Page 2 of 5)		
	LC	OCA RELEASE RAT	E DETERMINAT	IONS WORKSHE	ET
			Method LOCA-1		
Use equiv	this method <u>IF</u> alent penetratio	the CHRRM is oper n diameter leak has bee	rational <u>AND</u> conten postulated.	ainment integrity is	s not good <u>AND</u> an
MET	HOD: DATE	:, and T	TIME of data:	, Unit:	
1.	Determine the rates to line 4	e release rates using the and 4b, respectively.	e CHRRM worksho	eet, copy the noble g	as and iodine release
2.	Enter the equi and the contai	valent penetration diar	neter:PSI	inches G	
3.		e below, find and enter			
	Pen. dia.	Containment Press	sure (if psig is betw	een values, use next	highest)
	(inches)	5 psig	10 psig	25 psig	50 psig
	0.25	5.5	8	14	23
	0.50	16	23	46	75
	0.75	36	50	83	140
	1.00	57	92	150	250
	1.25	100	150	250	400
	1.50	160	225	375	600
	1.75	225	300	500	825
	2.00	275	400	650	1000
4.	Calculate Esti	mated Release Rate:			
	(CHRRM method)	(multiplier)	(Estimated Release Rates)	
	a. Noble Gas	Ci/sec :	x	=N	loble Gas, Ci/sec
	b. Iodine	Ci/sec :	x	= I	lodine, Ci/sec
5.	(enter LOCA	timated Release Rates -1 next to Attachmen to estimate Off-site do	t as method), or enoses.	nter release rates as	Direct entry if using
Basis		re a ratio of the flow r basis flow (0.25%/day	ates from engineeri		
W97:J	R/ev/ev/ev				

;

Procedur	e No.:	Procedure Title:				Page: 52
0-E	CPIP-20126		Off-site Dose Calc	ulations		Approval Date: 3/26/
			ATTACHMEN (Page 3 of 5			
	L	OCA RELEASE	E RATE DETERMI	NATIONS W	ORKSH	EET
			Method LOCA	- 2		
			perational <u>AND</u> conting also fell during the			
	Г					·
	A CHRI	RM drop of about 3	3 percent per hour may	v be due to radio	ological de	cay.
	actuate	d, due to lodine wa	y as much as 10 perce ashout.			ment spray is
MET	HOD:				6	
1.	Date and time	e of data:	//	, Unit		-
2.	Calculate De	lta-CHRRM:				
	Start CHRRN	N	- End CHRRM	=		_ Delta-CHRRN
3.	Calculate Du	ration:				
	a. Clock	Time End	– Clock Time St	tart	=	Delta-((hours and/or n
	b. Conver	rt Delta-Clock to	Delta-Seconds:	Δ se	с	
4.	Estimate Cur	ries Lost:				
	Delta-CHRR	MR/hr	x 565 Ci N.G. per R	/hr =	Noble	Gas Curies Los
5.	Estimate Not	ble Gas Release I	Rate (loss rate):			
	Noble Gas C	uries lost	$$ ÷ Δ sec =	=	Noble	Gas Ci/sec
6.	Estimate the Attachment-3		Rate (IRRF = Iodine F	Release Rate Fa	actor, see	Page 2 of
	N.G. Ci/sec	X	(IRRF) =		Iodine	e Ci/sec
7.	(enter LOCA the computer	A-2 next to Atta t, to estimate Off		or enter releas	se rates a	s Direct entry
Basis:	Assumes CH Assumes rate 6.25 E+5 R/h 3.53 E+8 cur	RRM responding on of curies from core or = 100% core inver	<< curies lost through lentory noble gas (1+C _{T=0} , 0) entory noble gas (PTN U)	ak CF from 21026 C		

. .

•

Procedure No.:	Procedure Title:		· · · · · · · · · · · · · · · · · · ·	Page: 53	
			·	Approval Date:	
0-EPIP-20126		Off-site Dose C	alculations	3/26/01	
			· · · · · · · · · · · · · · · · · · ·		
		ATTACHM (Page 4 o			
	LOCA RELEA	SE RATE DETERI	MINATIONS WO	RKSHEET	
		Method LO	CA - 3		
min.) fallen AND	the CHRRM rea	s operational <u>AND</u> c ading was either cor s lost can be estimate	istant or increased	e appears to have rapidly (during the same period as	~30 the
· · · · · ·				·	
	The percent i	mass lost is estimated	on Page 5 of Attach	ment 4.	
METHOD:			· • • • • • • • • • • • • • • • • • • •		
1. Date and t	ime of data:	//			
2. Calculate	average CHRRM	I reading (if CHRRM	I was constant, ente	r reading as Avg.)	
(Start CHI	₹RM +	- End CHRRM) ÷ 2 =	Avg CHRRM, R/hr	
3. Estimate N	Voble Gas Curies	in the containment:			
Avg CHR	RM R/hr	_ x 565 Ci N.G. per	R/hr =	Noble Gas Curies in ctmt	:
4. Calculate	Duration:				
a. Cloo	k Time End	Clock Time S	tart=	Delta-Clock (hours and/or minutes))
b. Con	vert Delta-Clock	to Delta-Seconds: _		∆sec	
5. Estimate (Curies Lost:			Noble Gas	
N.G. Curi	es in ctmt	X % ma	ass lost ÷ 100 =	Curies Lost	
6. Estimate l	Noble Gas Releas	se Rate (loss rate):			
Noble Gas	Curies lost	÷Δs	ec = Nobl	e Gas Ci/sec	
7. Estimate t Attachme		e Rate (IRRF = Iodin	ne Release Rate Fac	ctor, see Page 2 of	
N.G. Ci/se	x X	(IRRF) =	Iodine Ci/sec		
(enter LO	Estimated Relea CA-3 next to Auter, to estimate C	ttachment as metho	previously selected d), or enter release	Dose Calculation Works rates as Direct entry if u	heet sing
of curies	rate of curies from from core >curies as in LOCA-2	m core ≈ curies lost ries lost through le	through leak (cons	tant CHRRM), or assumes IRRM), and same remai	rate
W97:JR/ev/ev/ev					

Procedu	ire No.:	Procedure Title:	Page: 54				
0-2	EPIP-20126	Off-site Dose Calculations	Approval Date: 3/26/01				
		ATTACHMENT 4 (Page 5 of 5)					
]	OCA RELEASE RATE DETERMINATIONS WORKS	SHEET				
		ESTIMATE OF CONTAINMENT % MASS LOST	, ,				
1.	Purpose						
	The purpose the enviror burp).	e of this calculation is to provide a method to estimate containment during a post-LOCA containment depressurization	ainment % mass release to on transient (containment				
2.	Discussion						
	radiat	lose assessment group can use the containment mass rel ion release to the environment, using this attachment, p ogical conditions are known.					
	a sho	ontainment depressurization event should be large (greater rt period of time, since the methodology does not accur inment heat removal systems.	than 5.0 psi change), over rately credit the effect of				
3.	Acquire the	following data:					
		<u>NOTES</u>					
		me span for data observation should be the same as used for th ment 4, Method LOCA-3.	ne calculation on				
	• Densi	ty is mass per unit volume and is symbolized by the unit rho (ρ)					
	A. Conta	inment Pressure just before blowdown transient:	psig {Pstart}				
	B. Conta	inment Temperature just before blowdown transient:	deg F {Tstart}				
	C. Conta	inment Pressure just after blowdown transient:	psig {Pend}				
	D. Conta	inment Temperature just after blowdown transient:	deg F {Tend}				
4.	Estimate In	itial Containment Atmosphere Density (pinit):					
	<u>144 x (14.7 +</u> 53.3 x (460 +	<u> </u>					
5.	Estimate Er	nd Containment Atmosphere Density (pend):					
	$\frac{144 \text{ x } (14.7 + \ Pend)}{53.3 \text{ x } (460 + \ Tend)} = \ pend$						
6.	Estimate %	Mass Lost:					
		$x = \frac{\rho \text{end}}{\rho \text{init}}$ $x = \frac{\% \text{ mass lost}}{\% \text{ mass lost}}$					
W97:J	R/ev/ev/ev						

•

Procedure No.:

Procedure Title:

0-EPIP-20126

Off-site Dose Calculations

55

ATTACHMENT 5 (Page 1 of 5)

STEAM GENERATOR TUBE RUPTURE WORKSHEET

SGTR Release Rate Determinations

Use this method to either estimate release rates or modify the Default release rates for a Steam Generator Tube Rupture Accident.

The default release rate is based on:

- Complete break of one tube at the tube sheet, which is under water; that is the S/G is 1. NOT considered uncovered (level > 6% NR)
- 2. 553 gpm primary to secondary leak rate (average over 30 minute accident period).
- 3. 1 percent failed fuel.

and

- 4. 100 percent of the noble gas in the RCS discharged to the steam generator is released to the atmosphere.
- 1 percent of the iodine in the RCS discharged to the steam generator is released to the 5. atmosphere.

NOTE

The following methods are provided for guidance. Conditions may warrant an approach different than shown; use the factors presented here and elsewhere in this procedure, as necessary, to estimate releases. Document the calculations.

IF any, or all, of the first three default basis are known to be different than stated above, THEN adjust the default release rate by using method SGTR-1.

IF RCS grab sample results, and 1° - 2° leak rate are known, THEN estimate the release rate using method SGTR-2.

IF secondary concentrations and steaming rates are known, THEN estimate the release rate using method SGTR-3.

IF gamma survey meter contact readings of the main steam line are known, THEN estimate the release rate using method SGTR-4.

Basis for Attachment 5:

553 gpm leak rate in SGTR-1 = ((1.03E+5 lbm (FSAR) / 46.3 lbm/ft3) * 7.48 gal/ft3) / 30 min p-mod = partition factor modifier, Westinghouse Study on effect of rupture site not covered by water indicates about a 4.6 times higher iodine release rate. $6.3E-5 = 1E-6 \operatorname{Ci}/\mu \operatorname{Ci} x 3785 \operatorname{cc/gal}/60 \operatorname{sec/min}$ 0.126 = (lbm/hr x 453.6 gram/lbm) / (1 gram/cc liquid * 3600 sec/hr)addn'l ref: UFSAR analysis and JPE-LR 87-033 (ref Substep 2.1.3.7)

W<u>97:JR/ev/ev/ev</u>

Procedure	re No.:		Procedure Title:				Page: 56	
0-E	CPIP-2	0126		Off-site Dose		Approval Date: 3/26/01		
	ATTACHMENT 5 (Page 2 of 5)							
			STEAM GEI	NERATOR TUBI	E RUPTURE WO	RKSHEET		
				Method S	SGTR-1			
INST	RUCTI	<u>ONS</u> :						
1.	VERI	FY AN	ND RECORD I	NFORMATION:				
	a.	Date:_		and Time:	of d	ata, for Unit:		
					ours (SGTR defaul			
			-	:[Defaul		- ,		
				t both if possible:]			
				•	Default is 11			
		Leak H	Rate	es [I [Defaul	t is 553 gpm]			
	e.	Affect	ed S/G narrow	range level	%		1	
2.	Deter	mine p	rimary leak rat	e flow modifier				
	a.	Estima	ated pri - sec le	akrate if available	(gpm) :	DIVIDED BY	7 553 =	
	b.	Flow	mod is the larg	er of Number of Fa	ailed Tubes or valu	e calculated i	n Step 2a	
3.	For Io	odine o	nly, IF S/G lev	el <6% NR, THE	<u>N</u> p-mod = 5, <u>ELS</u>	E p - mod = 1	(circle one)	
4			efault release ra			-		
			Default	· · · · · · · · · · · · · · · · · · ·	**************************************		Release rate	
		(Ci/sec	x flow mod x	% failed fuel x	p-mod	= Ci/sec	
No	ble Gas	5	6.2			1		
Iod	line		4.2 E-3					
5.	5. <u>IF</u> performing manual calculations following this procedure, <u>THEN</u> enter the release rate estimated from this method into the dose calculation process.							
	a.	On the SGTR	e applicable wo -1 on the line f	orksheet in Attacht or Attachment.	ment 2, Step B (Re	elease rate de	termined by:) enter	
6.	6. If performing calculations using the computer program, use the Direct Entry source term option.							
W97:JR/	/ev/ev/ev							

-

Procedu	ure No.:	Procedure Title:	<u> </u>			Page: 57
0-	EPIP-20126		Approval Date: 3/26/01			
			ACHMENT age 3 of 5)	5		
		STEAM GENERATOR T	UBE RUP	ΓURE V	ORKSHEET	7
		Meth	nod SGTR-2	2		
Use t	this method if R	CS grab sample results and	1° - 2° leak	rate are I	known	
<u>INS</u>	<u>FRUCTIONS</u> :					
1.	VERIFY AN	D RECORD INFORMATIC	DN:			
	a. Date:	and Time:		(of data, for Uni	it:
	b. Duratio	on of Release per EC		hours (S	GTR default =	= 0.5 hours; PF = 1.0)
	c. RCS G	ross Noble Gas Activity:		µCi/cc		
	d. RCS I-	131 DEQ activity: μC	i/cc			
	e. Affecte	ed S/G narrow range level		%		1
2.	PERFORM	CALCULATIONS				
	ONLY FOR	IODINE: \underline{IF} S/G level < 6%	6 NR, <u>THE</u>	<u>N</u> p-mod	= 5, <u>ELSE</u> p-	mod =1
		RCS activity 1° - 2° μCi/cc x flow gpm x	x partition	r p-mod	unit x conversior	Release rate = Ci/sec
	Noble Gas		1	1	6.3 E-5	
	Iodine		0.01		6.3 E-5	
3.	IF performinestimated from	ng manual calculations fol m this method into the dose	lowing this calculation	proced process.	ure, <u>THEN</u> e	enter the release rate
		applicable worksheet in At 2 on the line for Attachment		Step B	(Release rate	determined by:) enter
4.	If performing calculations using the computer program, use the Direct Entry source term option.					

.

Proce	dure No.:	Procedure 1	itle:				Page: 58
0-EPIP-20126		6	Off-site Dose Calculations				Approval Date: 3/26/01
			ł	ATTACHM (Page 4 c			
		STEAM	GENERAT	OR TUBE	RUPTURE W	ORKSHEE'	Г
				Method SC	TR-3		
Use	this method	if secondary of	concentration	s and steam	ing rates are k	nown	
1.	VERIFY	AND RECO	RD INFORM	IATION:			
	a. Da	ite:	and T	ſime:	0	of data, for Un	it:
	b. Du	ration of Rele	ase per EC _	,,,	hours (S	GTR default =	= 0.5 hours; PF = 1.0
	c. Se	condary Stean	ning Rate:		_ ,	(units;	e.g., lbm/hr)
	d. Se	condary Gross	Noble Gas A	Activity:	µCi/cc lie	quid sample, f	for use in Step 4
	e. Se	condary I-131	DEQ activity	y:	μCi/cc	liquid sample	e, for use in Step 4
	f. Af	fected S/G nar	row range le	vel	%		
2.	Convert	Steaming Rate	e to cc/sec liq	uid equivale	nt release rate	•	
	<u>IF</u>	in lbm/hr:	lb/hı	r x 0.126 =_	cc (liquid)/sec	
	IF	in lbm/sec:	lb/se	ec x 454 =_	cc (liquid)/sec	
	<u>IF</u>	in volumetric	units (e.g., F	t ³ /time, <u>TH</u>	EN get Engine	eering to calcu	late liquid rates)
3.	For Iodii	ne only, <u>IF</u> S/C	G level <6% l	NR, <u>THEN</u>	p-mod = 5, <u>El</u> (circle selec		1
4.	Estimate	the release ra	tes:				
		Sec activity p µCi/cc	c Steaming Rate, cc/sec	x p-mod	x partition	x μCi to= Ci	Estimated Release Rates, Ci/sec
⊢	Noble Gas			1	1	1 E-6	
	odine				0.01	1 E-6	
5.	estimate a. Or	d from this me	thod into the e worksheet	dose calcul in Attachm	ation process.		enter the release i determined by:) er
<i>,</i>		-				- Direct Easter	
6.	ii perior	ming calculati	ons using the	computer p	rogram, use ti	ie Direct Entr	y source term option

.

Procedure No.	:	Procedure Title:	· · · · · · · · · · · · · · · · · · ·	Page: 59			
0-EPII	P-20126	Off-site Dose Calcu	lations	Approval Date: 3/26/01			
	ATTACHMENT 5 (Page 5 of 5)						
		STEAM GENERATOR TUBE RUP	TURE WORKSHEET				
		Method SGTR-	4]			
Use this r	nethod if ga	mma survey meter contact readings of	the main steam line are l	known			
1. V	ERIFY AN	D RECORD INFORMATION:					
a.	Date:	and Time:	of data, for Unit	·			
A	sk Emergen	cy Coordinator					
b.	Duratio	n of Release hours (Default	= 0.5)				
c.	Is the c	ore over heating or melting: (Y	es or NO)				
	IF the c	core IS NOT overheating or melting, <u>T</u>	<u>HEN</u> MF = 2.4 E-2 ANI	PF = 1			
	IF the c	core IS overheating or melting, THEN	MF = 2.1 E-3 AND PF =	= 4.4			
2. Ei	nter the mai	n Steam Line Survey Meter Reading:	mr/hr				
3. Ei	nter the MF	determined in Step 1.c	Noble Gas μ	Ci/cc per mr/hr			
4. M	ultiply line	2 and 3, place result here \rightarrow	Noble Gas µ	.Ci/cc			
5. Ei	nter the Stea	am Line Flow Rate, see Values below	cc/sec				
6. M	lultiply line	s 4 and 5,	Noble Gas µ	.Ci/sec			
7. M	lultiply line	6 by 1E-6, to estimate the	Noble Gas C	Ci/sec			
8. M	lultiply line	7 by 6.8E-4 to estimate the	Iodine Ci/see	c			
9. <u>II</u> es	E performir stimated from	ng manual calculations following thi m this method into the dose calculation	is procedure, <u>THEN</u> en 1 process.	ter the release rate			
a.		applicable worksheet in Attachment 2 4 on the line for Attachment.	, Step B (Release Rate d	etermined by:) enter			
10. If	performing	calculations using the computer progr	am, use Direct Entry sou	rce term option			
	I. Atn II EA III Exh	Line Flow Rate Values hospheric Dump Valves (3): EACH 1.1 CH S/G safety relief valve (4 per steam aust from EACH Aux Feed Pump: 3.4 ime and data permits, <u>THEN</u> average t	n line): 1.1 E+5 cc/sec ead 4 E+3 cc/sec	ch			
W97:JR/ev/e	ev/ev						

Procedu	re No.:	Procedure Title:			F	² age: 60
0-1	EPIP-20126		Off-site Dose	Calculations	4	Approval Date: 3/26/01
			ATTACH (Page 1			
		FIELD TEA	AM MEASURE	MENTS ASSESS	SMENT	
This a and p	attachment prov rovides guidanc	vides methods to be on comparing	estimate a relea field measureme	se rate from field t ents to dose projec	team survey metions.	eter measurements
		<u>R</u>	ELEASE RATE	ESTIMATION		
1.	Date	and time _	c	of data:		
	,		<u> </u>	<u> </u>		— - —
		er Gamma (CLOS m value from a lat		sults must be from p the plume.	olume centerline	; that is,
2.	IF the survey	meter measurem	nent was at 1 mi	le value, THEN go	·	
3.	Estimate the 1					
5.			vev meter results	s x (downwind dist	ance, miles) ^Z	
		ponent Z =	2 for Stability 1.5 for Stabilit	Class A, B	, ,	
	(meter results) mr/hr x (dow	miles) ⁽⁻ mwind distance	Z) =	Estimated	1 mile mr/hr
4.	Select the Do	se Calculation W	Vorksheet (DCW	/) for the met cond	litions at time o	of sampling.
	a. Use Wi	ind Speed in Mil	es Per Hour, mp	h		
	b. Copy fr	rom Line 13, the	1 mile Noble G	as Dose Factor (N	GDF) for use in	n Step 5.
5.	Estimate Nob	ole Gas Release I		Calculation Worksh		
	(estimate 1 mi	mr/hr / ile divide	NGDF	x mj	ph =	NG Ci/sec
6.	Estimate Iodi	ine Release Rate	(IRRF = Iodine	Release Rate Fact	or, see Page 2	of Attachment 3):
	Iodine relea	ase rate. Substitut Factor (Dose Ca	te field estimated Ic Worksheet line	Dele gas Cilsec may Thyroid Dose Rate 4 value) for the NGI	in Step 3, subsi DF in Step 5.	
7. w97:J	Utilize the c (enter 6 next	current meteorol	logical conditio as method), or en	ns and appropriat nter release rates a	te Dose Calcu	lation Worksheets ng the computer, to

•

Procedure No.:	Procedure Title:	Page: 61
0-EPIP-20126	Off-site Dose Calculations	Approval Date: 3/26/01
	ATTACHMENT 6 (Page 2 of 2)	
	FIELD TEAM MEASUREMENTS ASSESSM	ENT
	Comparing Field Measurements to Dose Projecti	ions
	— - — - — - — <u>notes</u> — - — - —	
the two precisio • A surve The Fie	able comparison between Field Measurements and Do are within an order of magnitude. Too many assumpt n. y team measurements off centerline will yield a low est Id Monitoring Coordinator (EOF) has a method for estimati e situations.	ions preclude better timated release rate.
I		
Survey Meter DDE I		
the pre-design locations). T shine from ic	rized dose calculation program estimates the survey mated sampling locations (refer to Field Survey 1 his Survey Meter Estimate is sum of immersion in pl odine and particulates. The noble gasses are the maj adjusts for gap versus core mix of noble gasses in a stion.	Map for descriptions of the lume of noble Gas, and plume jority of the exposure source.
Calculation V the value cal	nethod does not calculate a DDE from immersion in n Vorksheet apropos to the met conditions, a value coul culated on line 10 by the Dose Factors listed on line ore mix of noble gasses, and include the X/Q for	d be estimated by multiplying 13. These Dose Factors are
Thyroid CDE		
Ci/sec. The	e projections, both procedure and computer, are base field teams measure I-131 in the plume; their procedure r the dose from the other iodines. The factor starts at a rs.	re has a time dependent factor
Dividing pro concentration	jected thyroid dose rate, mr/hr, by $1.3E + 9$ will e μ Ci/cc.	estimate the Iodine 131 DEQ
<u>Time of Sample v. T</u>	ime of Release	
	l measurement minus (downwind distance, miles / wielease rate estimated.	ind speed, mph) will yield the
The compute printout that	erized calculations use a time window 15 or 30 mints a Release Observation Time before the time estimation the time estimatis the time estimatis the time estimation the time estimation t	nutes long. Select the latest ated above.
Estimating Dose Rat	es or Concentrations at Other Distances (e.g., 1, 2, 5,	10 miles)
	There: $DWD = Measurement downwind distanceDist x = other distance, milesZ = exponent based on stability class$	ce, miles
(ref EPA-520), Rev. 6/79, Page 5.10)	

Procedure No.:	Procedure Title:	·····			Page: 62
0-EPIP-20126		Off-site Dos		Approval Date: 3/26/01	
REPORT . Brief description of t	-	(Page NTITY (RQ) RA			
Estimate of Quantity	of Substance	e Released to envi	ronment:		
Isotopes released; Qu	uantity and R	Q Limit:			
Nuclide	<u>Curies</u>	RQ Limit	<u>Nuclide</u>	Curies	RQ Limit
<u>Cs-134</u>	<u> </u>	1.0	<u>I-133</u>		0.1
<u>Cs-137</u>	<u> </u>		<u>Xe-133</u>		1000
<u>Co-58</u>		10.0	<u>Xe-135</u>	<u> </u>	100
<u>Co-60</u>		10.0		<u> </u>	
<u>I-131</u>		0.01			
Time and Duration o	of release:				
Start D	ate/Time:	/	Stop	Date/Time:	/
Medium released to:		<u> </u>	· · · · · · · · · · · · · · · · ·		
Liquid:		arge Canal (Lake V	Warren):		
Liquid.	b) Groun		/*/*		
Airborne Gas	,	u. Wind Speed:		МРН	
Anoone da		Wind Direction (fr			
		Downwind Sector			
Any known or antici	•				
	YES	NO	Unable	to provide in	formation
Any advice regardin	g medical att	ention necessary f	or exposed indiv	vidual:	
					<u></u>
<u></u>		······································			······································
W97:JR/ev/ev/ev					

•

Procedu	IFE NO.:	Procedure Title:	Page: 63
0-]	EPIP-20126	Off-site Dose Calculations	Approval Date: 3/26/01
	REPO	ATTACHMENT 7 (Page 2 of 2) RTABLE QUANTITY (RQ) RADIOACTIVE RELEA	SE DATA SHEET
Any]		o take as result of release:	
Nam	es and teleph	one number of personnel to be contacted for further infor	mation:
	Name:	Plant No	Beeper No
			<u></u>
		<u></u>	 _
	i	See ERD for associated phone numbers.	i
	L		
Notif	fications mad	le to:	
a.	Nuclear P	lant Supervisor	
	1) Date	e/Time:/	
	2) Nan	ne of person given information:	
b.	National I	Response Center	
	1) Date	e/Time:/	
	2) Nan	ne of person given information:	
C.	State Eme	rgency Response Commission	
	1) Date	e/Time:/	
		ne of person given information:	
d.		ergency Response Planning Committee (Community Eme	ergency Coordinator)
		e/Time:/	
		ne of person given information:	
	pleted by:		
		als):/	
Date	/Time:	/	
		FINAL PAGE	

•