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REVIEW OF HYDRODYNAMIC LOADS ON EMERGENCY CORE 
COOLING SUCTION STRAINERS 

By 

T. Sarpkaya 

Purpose 

The purpose of this report is specified by NRC as: "To review the 

appropriate Topical reports and any other relevant data on hydrodynamic 

loads on submerged structures provided by NRC." "This detailed review 

may involve the assessment of the validity of the correction factors used 

for the Keulegan-Carpenter numbers developed by others, and 

participation at meetings and/or conference calls in support of the 

Division of Systems Safety and Analysis of NRC." NRC has further stated 

that "The ultimate purpose of these reviews, analyses, and meetings is to 

provide sound technical advice to NRC on unsteady now about specific 

types of strainers and, in particular, on the prevailing Keulegan-Carpenter 

numbers and acceleration drag so that NRC can perform its regulatory 

duties in the light of the expert opinion and complete its review of the 

strainers under their consideration." 

NRC has condensed the foregoing into two tasks: (1) To "provide an expert 

opinion of typical values of the Keulegan-Carpenter number, K, and the 

acceleration drag coefficient, Cm, for structures similar to the GE stacked 

disk strainers under the conditions expected following a loss-of-coolant 

accident (LOCA) and safety/relief valve (SRV) discharge," and (2) To 

"provide an expert opinion of the validity of the correction factor for the 

Keulegan-Carpenter number developed by Bliss and Franzoni 

(Attachment 4 of GE's August 8, 1999 letter to the NRC)."
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Preliminary Remarks

This report contains references to NRC, GE and the consultants of GE and 

NRC. It must be clearly understood that in these citations the undersigned does 

not refer to the entire NRC, GE or many consultants they may have had on other 

issues. Obviously, we refer here only to those departments or sections of GE and 

NRC and their consultants who were directly involved with the subject matter 

specified by NRC. Henceforth, the undersigned will be referred to as TS.  

Several important facts must be emphasized: (a) TS is neither an employee 

of nor a consultant to NRC; (b) TS did not solicit the review performed herein, (c) 

This work is performed as part of an inter-agency agreement between two 

Government institutions in one of which TS serves as a Government employee; 

(d) It is not the purpose of TS to prove that the GE's stacked strainers are safe or 

unsafe; (e) The purpose of TS is to serve as a referee (as, e.g., reviewing a 

technical paper or report critically and scientifically), and nothing else (TS has 

some experience in reviews of this type. He reviewed over 3,000 papers for 

hundredths of journals during the past 40 years); (f) This report is based on the 

review of the material provided by NRC (about 3000 pages of voluminous 

material which contains very little factual information). Some of it is proprietary 

and TS is sworn, as a Government employee, to uphold and respect the integrity 

and the proprietary nature of the papers, figures, tables, reports, and any other 

information so identified by NRC, GE, and their consultants. Otherwise, TS has 

not introduced into this report any classified or proprietary information; and, 

finally, (g) the statements made herein by TS are strictly of his own and do not 

under any conceivable circumstances reflect the opinions of the Government or 

the Government Institution with which he is associated.
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BACKGROUND INFORMATION

1. Governing parameters for a porous body subjected to sinusoidally
oscillating flow in a liquid 

Consider a porous body of mass Ma (in air) and displaced volume (of its solid 

parts) V. (= Ma/pw) in a fluid of density pw and viscosity vw. Assume that it is 

subjected to a sinusoidal motion with an amplitude A and single frequency f 

(dictated by LOCA&SRVD events). It should be noted that the frequency of the 

imposed fluid motion has nothing to do with the "in-water natural frequency fn", 

(the first mode) of the body. If f and fn are equal or close enough in direction and 

magnitude, the body may undergo self-excited oscillations, depending on its 

damping.  

The parameters governing the motion, (i.e., defining the force experienced by 

the body or the force-transfer coefficients), in general, are 

A Amplitude of flow oscillation 

Ca Added mass coefficient in general 

Cao Added mass coefficient referred to V,, (see Eqs. 9 & 11) 

CD Drag coefficient 

Cm Inertia coefficient, (see Eq. 10) 

D Characteristics diameter of the body 

dh Diameter of the hole (assumed to be uniform) 

F Force acting on the body 

f Frequency of flow oscillation 

fn Natural frequency of the body in water

3



KD = 2tAID, Keulegan-Carpenter number

LOCA Loss of Coolant Accident 

Lh Length of the hole (uniform) 

Orientation of the body: Assumed to be fixed 

Po, Porosity (assumed to be uniform) 

ReD = UmD/v, Reynolds number 

SRVD Safety-Relief-Valve Discharge 

Shape of the body: Assumed to be a rigid perforated shell (no large 

deformations, as e.g., in the case of a bubble during its motion) 

U, Normal component of velocity at a hole 

Um Ambient velocity 

V, Volume bounded by the external surface (as if there were no holes), 
i.e., Vo = Vs + Vw 

V, Displaced volume of the Solid Material (e.g., steel of the Body) 

V, Volume of liquid inside the body and the holes 

OD = ReDI KD = fD2/vw (frequency parameter, based on D) 

vw Viscosity of water 

Pw Density of water 

(0 2nf 

Then the normalized force is given by 

F / [o.5pwD 2 ((04f)] F { Par, dh1D , dhlLh, fifn , Vso V, K (- 2,cAD) , 

ReD (= oADlv,,) , or, PD (= ReD KD)} (1)
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For a given type of body (e.g., the Duane Arnold strainer), Por, dhID, dhlLh, 

VJVo are fixed, and f/f, is such that the strainer is not likely to be subjected to 

hydroelastic oscillations at synchronization. Expressing the normalized force F 

in terms of the remaining parameters governing the motion and the so-called 

Morison equation, one has 

C (drag or added-mass coeff.) = F (KD, PDo) (2) 

Other suitable combinations of the foregoing parameters are possible. The 

shape and orientation of the body are assumed to be invariant for a given type of 

strainer. Otherwise, different sets of force coefficients must be obtained for each 

orientation and wall proximity conditions.  

Equation (2) emphasizes the well-known fact that pluck or hammer tests 

must be conducted at the appropriate Keulegan-Carpenter number KD, 

dictated by the amplitude of flow oscillations created by LOCAISRVD, 

(from the top to the bottom of the strainer) and at the proper flow 

oscillation frequencies f of LOCA/SRVD, not at the natural frequency f& of the 

strainer and not at irrelevant Keulegan-Carpenter numbers (often varying from 

the top to the bottom of the strainer). These facts are particularly important for 

perforated bodies because their behavior at relatively small Keulegan-Carpenter 

numbers and large frequency parameters (OD) is almost opposite to that of non

perforated bodies. The reasons for this will become increasingly clear as this 

report proceeds.  

The velocity seen by a typical hole on a strainer subjected to LOCA and/or 

SRVD is proportional to fA and not to frA. The dynamics of the flow through the 

holes plays a major role on the values of the drag and inertia coefficients (to be 

discussed more later). Pluck tests conducted at frequencies fn are 

inconsequential and immaterial to the correct determination of the drag 

and inertia forces acting on a strainer. It has to be emphasized once and
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for all that to understand the phenomena under consideration one has to 

model correctly both the structure and the fluid motion. Thus, the answer 

to the question: "how much displacement is sufficient in a pluck test to determine 

hydrodynamic mass" is: Large enough to simulate the flow conditions about the 

actual strainer at proper frequency f and amplitude A in a suppression pool in 

accordance with the similarity laws (including the wall-proximity effects) 

described herein.  

Equation (1) may also be used for model tests, should that be desirable. The 

condition of the surfaces between the holes on a strainer is assumed to be 

relatively smooth (i.e., not covered by sand or any other metallic deterioration).  

Otherwise, a model must simulate all the physical characteristics of the actual 

strainer, i.e., the model should have geometric, kinematic, and dynamic similarity 

to the actual strainer in the suppression pool. Obviously, incorrectly performed 

experiments cannot be corrected with approximate calculations based on steady 

flow assumptions.  

It is clear from the foregoing that the porosity Por, the Keulegan-Carpenter KD, 

and the 'frequency parameter' PD play very important roles in the values of the 

drag and inertia coefficients. The information gleaned from the non-porous 

bodies cannot be generalized to porous bodies, particularly the dependence of 

the force-transfer coefficients on KD (for a given PD). Normally, the inertia 

coefficient of a body (say, a non-perforated cylinder) in cross flow reaches a 

value of 2 (inviscid case) or 2.1 (for the viscous case) for KD less than about 3 

and begins to decrease as KD (= Um1fD) increases beyond about 3. For a 

perforated body, however, the inverse is nearly true. A porous body at smaller 

Keulegan-Carpenter numbers is no longer in the "inertia dominated" regime, as in 

the case of solid bodies, because the fluid easily negotiates the holes. Thus, the 

added-mass (or the inertia coefficient) is in general smaller and its value for a 

given Ko depends on the value of PD (= ReDIKD.). There is sufficient published 

(Sinha and Moorthy, 1999; Schlichting, 1979) as well as unpublished information
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to show that the rate of diffusion of vorticity, the thickness of the boundary layer, 

and the time-dependent wall shear are strongly affected by both KD and P3D. In 

other words, data obtained at grossly different KD and P3D values cannot be used 

for strainer analysis or comparison purposes. These facts have not been fully 

recognized in the indiscriminate use of the small-perforated sphere data.  

2. Added mass and inertia coefficients for a porous body subjected to 

sinusoidally-oscillating body- or fluid-motion in a liquid 

Let there be a perforated body comprised of a mass Ma (in air) and 
displaced volume V. in a fluid of density pw otherwise at rest.  

Liquid (external) 

Soli d, V 

SLiquid (Intornal), Vw 

Hoies1€" 

Fig. 1 A representative 3-D perforated body.  

Let us define: 

V, = Volume of liquid inside the body and the holes, 

V, = Volume bounded by the external surface of the body (as if there were no 

holes), i.e., V0 = V, + V4.  

Let this body accelerate in a given direction with a uniform acceleration ax. The 

total mass accelerated is then given by

(3)_M= Ma+aopwV. + 1p.V
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in which the second term on the right-hand side represents the contribution to the 

added mass of the motion of the fluid inside the body (holes may be considered 

as part of the inside or the outside domain). Since the entire internal fluid does 

not contribute to the added mass (due to the perforations of the body), an 

unknown fraction ax of it is taken where ox is smaller than 1. The third term 

represents the contribution to the added mass of the motion of fluid outside the 

body. It is assumed, without any approximations (see later), that the contribution 

to the added mass of fluid motion through the holes (porous wall) is included 

either in the second term or in the third term or shared between the second and 

third terms. It will be clear shortly that the experiments can determine only the 

sum of the last two terms. It is impossible to determine a and P independently 

(analytically, numerically, or experimentally). However, this is not an impediment 

to the determination of the total added-mass and inertia coefficients for design 

purposes.  

For a properly conducted pluck test in air (at frequencies near f and 

amplitudes A of the sinusoidal fluid motion to be eventually imposed on a strainer 

by LOCA/SRVD), one has (in a vacuum) 

rk (4) 

and for a properly conducted pluck test in water, one has 

1 +k (5) 23t =" Ma +AMJ 

where 

AM =M =a p,•V, + P R Vo (6) 

Using Eqs. (4) and (5), one has
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i 2 ] AM=ap~,V.+Pp.V, k (7) aM :xpwK +13p., o -(2Xf )2 

This equation may be normalized by a reference mass. There is no special 

reason as to why any mass cannot be a reference mass, as long as it is used 

consistently in all calculations. The use of a conventional reference mass such 

as the mass of fluid within V0 (e.g. density of water times the volume of a sphere 

or cylinder) or the imaginary fluid mass in a cylinder enclosing a flat plate is more 

appropriate. The magnitude of the added mass can then be thought of as a 

fraction of the mass of water displaced by the enclosed volume. This gives one 

some idea as to how much does the in-vacuum mass of the body increase due to 

the character of the body and its motion (e.g., perforations, direction of motion, 

the type of motion, or the combinations thereof). Such information often serves 

as a first and rough means of judging the accuracy of the experiments. In the 

case of perforated bodies, common sense suggests that "density of water times 

the total volume Vo enclosed by the "skin" of the body, i.e., pV 0 be used as the 

reference mass.  

Let us now assume that the reference mass is given by pwVr where Vr is the 

reference volume. Then Eq. (7) may be written as, 

Car Vw k 2• + (8) lwVr Vr Vr (2 nP fa V 

where Car is the added mass coefficient in terms of the reference mass pwVr. If 

the added mass coefficient is expressed in terms of the volume V, of the body 

(volume of the external skin or shell of a strainer) times the density of water, then 

one has
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Cao = =k a [-V _ 1i (9) 
PWV0O V0, (27tfa) 2 PwV0 [MW) 

Clearly, the added mass coefficient can be calculated due to all fluid motions 

within and exterior to the body (including the holes) but the individual 

components of the added mass (due to the internal flow, flow through the 

perforations, and the flow external to the body) cannot be separated. If the body 

is not perforated, then Vo = Vs and V, = 0. In this case, only the external fluid 

motion gives rise to added mass and the Eq. (9) reduces to Cao = J3. For a non

porous circular cylinder 0 = 1. For a porous cylinder, the added mass coefficient 

reduces to that given by Eq. (9) where a and 0 cannot be determined 

independently, as noted above.  

If the body is at rest (as in the case of a strainer) and the fluid is in motion (as 

in the case of SRVD and LOCA), then the acceleration, as in the case of all 

accelerations, gives rise to a buoyant force to the SOLID parts of the body in the 

direction of the fluid acceleration. For example, in the case of gravitational 

acceleration the buoyant force acting on a body totally immersed in water is B = 

p,,V g, (recall that V, is the actual volume of the solid material (minus all the 

holes, of course)). For an acceleration a, in lieu of 'g', the buoyant force is B = 

pV, a,. Then and only then one can speak of an inertia coefficient Cmo which 

combines the added mass and the contribution of the buoyant force, i.e., 

Cm0 = Cao + pwVsax = Cao +Vs (10) 

pwVoax Vo 

or, 

Cm0 = Cao + (11)
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In the case of a non-perforated (fully-enclosed) cylinder (regardless of its 

contents), V, = V0 and Cao = 1, as noted above, and Cm0 = 2.  

The definitions of "added mass" and "inertia coefficient" have been used for 

50 years or more. However, the Power industry has chosen to use other (often 

more confusing) definitions, starting in early 70's. The researchers working for 

GE on LOCA and SRVD scenarios introduced expressions such as "standard 

drag coefficient," "acceleration drag," "acceleration drag load," "acceleration drag 

volume," etc. Clearly, there is nothing "standard" about the drag coefficient.  

"Drag" is used mostly to define the velocity-square-dependent force acting on a 

body (in Morison's force decomposition) whether the velocity is constant or time

dependent. Acceleration gives rise to an inertial force, not to a "drag." 

"Acceleration drag load" is another superfluous definition. "Acceleration drag 

volume, ADV" is a dimensional quantity (volume) and does not allow one to 

compare the ADVs of various bodies, even if they are geometrically similar. It is 

because of this reason that a few words will be said about the acceleration drag 

volume (ADV). It is defined as, 

ADV(Vcir) = M + Vs (12) 
Pw 

where Vcir is the "circumscribed volume of the strainer," MH is our added mass 

AM [see, Eq. (6)] and Vs is the volume of the "steel in the strainer." In terms of 

our more universal notation, ADV(Vcir) reduces to 

ADV(Vcir) = A + V, = V C,,a, + Vs =Y C,, (13) 
Pw 

or 

Ca MH Cmo ADV(Vcir) (14) 
S-M o , , Vo
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The simplicity and the physical meaning of the universal definitions are clearly 

evident from the foregoing expressions. In any case, the inertial force acting on 

the body in the direction of the uniform acceleration is given by 

dU (5 
F -= p w[ADV(Vcir)]- (15) 

or 

F=pwCmoVO dU (16) 

dt 

Some additional approximations, limitations, and difficulties encountered in 

the analysis and experiments will now be pointed out.  

In a suppression pool, the bubble fluctuation gives rise to time-dependent 

loads on the walls of the pool and on the structures in the pool. These loads are 

primarily inertial and the velocity-square dependent drag forces are relatively 

small. Furthermore, the largest forces occur during the initial stages of the 

accident, not during the continuous discharge of the flow through the strainer.  

The uniqueness of the flow discussed herein comes from the fact that the 

bubble-induced displacements are quite small relative to the size of the 

submerged body (small Keulegan-Carpenter numbers) but the inertial forces 

(measured in terms of axDIU2 or in terms of PD) could indeed be very large.  

The determination of the loading would have been much easier had the body 

been non-perforated and the flow been uniform. Unfortunately, the bubble

generated flow is not uniform and has radially expanding local and convective 

acceleration components. Thus, the distribution of the acceleration and velocity 

on a given strainer may be very complex due to the shape, orientation, and torus

proximity or strainer-strainer-torus proximity effects on the flow. In other words, 

the magnitude of fluid displacement at each hole on a perforated disk and central 

cone is different and thus the Keulegan-Carpenter is different, i.e., The direction 

and magnitude of the velocity, acceleration, and displacement at each and every 

hole is unique. This is in addition to the well-known limitations of the Morison

12



equation. Clearly, it does not make any difference whether the Keulegan

Carpenter number is defined in terms of the hole size (assumed to be uniform) or 

the strainer diameter. The Keulegan-Carpenter number is nowhere the same 

in a radially-expanding time-dependent flow about a perforated, 

geometrically complex, and arbitrarily-oriented bluff body in the proximity 

of a torus. Thus, to reduce the radially expanding and oscillating flow about a 

strainer to that of a uniformly accelerating flow along the strainer (possibly 

quantified at a single point at the centroid of the strainer) requires some courage, 

some faith in the so-called expert opinions, and reasonable safety factors. As far 

as the force calculations are concerned, there is, and perhaps there will always 

be, some gray area between the reality and the achievables with the current 

technology. It is clear that the presence of perforations increases the complexity 

of the problem by an order of magnitude: As Sir Geoffrey Ingram Taylor (a great 

fluid dynamist of our times) put it "Though the fundamental laws of the 

mechanics of the simplest fluids, which possess Newtonian viscosity, are 

known and understood, to apply them to give a complete description of 

any industrially significant process is often far beyond our power." In other 

words: Caveat emptor! 

3. General comments on unsteady flow about perforated bodies 

The forces acting on perforated or porous plates and screens in steady 

flow are adequately theorized, experimented, and verified [Baines and Peterson, 

1951), Carrothers and Baines (1975), Graham (1976), Laws and Livesey (1978)].  

The commonly accepted definition for the pressure drop across a hole, 

based on the equations of energy and momentum, is given by (see, e.g., Baines 

and Peterson, 1951) 

Ap= 2CPorr pUn I . (17) 
2CP 

where U, is the normal velocity component at the plate (or at the hole) and Cq is 

the discharge coefficient of the hole (its value depends on the opening
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geometry, inclination of the velocity vector, and the Reynolds number). It is clear 

from Eq. (17) that this is a quadratic discharge law and holds true when the hole 

Reynolds number is sufficiently large (larger than about 200, as in the case of 

strainers, as will be seen later). In cases where the velocity is nearly zero (but 

not necessarily the acceleration), the pressure drop Ap is proportional to velocity 

(linear discharge law) and is given by the so-called Darcy's law (see,e.g., any 

elementary fluid mechanics book). For oscillating flows at low Reynolds 

numbers (Rep), the recommended resistance law is a sum of the quadratic and 

linear terms. It will be shown later that ReD for a strainer is over 300,000 and 

Red is over 1,000. These Reynolds numbers require the use of a quadratic 

discharge law.  

A perforated body is a rigid hollow shell whose bounding surface is pierced 

by a distribution of small apertures which allow the near-free passage of fluid. In 

general, the essential characteristics of flow through a perforation depends on 

the parameters given by Eq. (1), i.e., 

F /[0.5pJJ2 (ioAf ] = F{ Por, dhlD, dhlLh, flfn, Vsl Vo, KD (= 27tAID), 

ReD (= eoADIvw), or, fo (= ReDl Ko)} (1-R) 

The porosity, hole size, and D determine the relative spacing of the perforations.  

There are very few experiments and analyses that deal with flow about shells or 

bodies with perforated walls. This is in part due to the highly specialized use of 

such bodies and partly due to the difficulty of analysis and measurements. It is a 

well-known fact that the determination of the steady drag force or the dynamic 

response of a solid (non-perforated) body is a fairly complex problem even 

though the flow goes only about the body. In the case of a perforated body 

(e.g., a sphere or cylinder) the flow goes partly through the body and partly 

around the body. Thus, the pressure distribution and, ultimately, the force acting 

on the body depend on the enormously complex nature of the phenomenon.
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For perforated bodies, the effect of flow unsteadiness in general and the 

added mass in particular have not been subjected to extensive theoretical, 

numerical, and experimental work. The existing works deal only with highly 

specialized cases and include the effect of perforations rather indirectly (Howe, 

1979). The unsteady flow results show that the added mass depends on both 

the frequency and the amplitude of oscillation of the flow or the body. There can 

be no doubt that perforations have a profound effect on the added mass and 

damping of the body. In general, perforations reduce the added mass since the 

body becomes partly transparent to the fluid motion.  

The most striking differences between a non-perforated and perforated body 

manifest themselves in time-dependent flows. For a solid body (say, a non

perforated circular cylinder), the added mass (or the inertia coefficient) does not 

depend on P3D for KD smaller than about 3 (i.e., in the region where the flow does 

not yet separate). In this region the inertial force is large, drag force is relatively 

small, and one refers to it as the "inertia dominated regime" for obvious reasons 

(see, e.g., Sarpkaya & Isaacson, 1981). Thus, one can carry pluck or hammer 

tests at very small amplitudes and at any reasonable frequency (not 

necessarily at the frequency of the flow oscillation) simply because 

the inertia coefficient does not depend on PD. For larger KD, both the drag and 

inertia forces become significant and dependent on KD and 13D and one can no 

longer carry out pluck tests at arbitrary amplitudes and frequencies. Then the 

amplitudes must be equal to those dictated by the prevailing KA 

values and the frequency of oscillations must be equal to that of 

the imposed flow if one wants to extract the correct drag and 

inertia coefficients even for a non-perforated body.  

For a perforated body, the region of very small KD values is not the inertia

dominated region (it is the drag-dominated region!). The reason the inertial 

force happens to be large even at very small Ko values (in spite of 

relatively small inertia coefficients) relative to the drag force (in spite of
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relatively large drag coefficients) is a phenomenon peculiar only to the 

suppression pool dynamics: Very large initial accelerations and 

relatively small velocities 

To complicate the matters further, the 

wake of the perforated body (on both sides of the body) is affected by the flow 

through the body as well as about the body. The flow through the holes causes 

large amounts of energy dissipation. For example, for a Reynolds number 

(based on the hole diameter), varying sinusoidally, from zero to 300, the 

discharge coefficient of the orifice varies from zero to 0.72 (see, e.g., Tuve and 

Sprenkle, 1933; and Coder, 1974) during any half cycle. In other words, the flow 

at small K values strongly depends on both KD and PD. That is why one cannot 

perform pluck or hammer tests at arbitrary amplitudes and frequencies. As 

noted previously, the proper values of the added mass and drag coefficients for 

a perforated body at relatively small KD values can be determined accurately 

only if the body is subjected to the oscillations dictated by KD and the frequency 

parameter PD, i.e., with an amplitude A and the frequency f of the oscillation of 

the external flow imposed by LOCA/SRVD. Obviously, it is of no special 

importance whether KD is based on D or any other diameter. For all that 

matters, the Keulegan-Carpenter number may be based on the hole diameter, 

the strainer diameter, or even the pipe diameter, as long as the experiments are 

carried out at the amplitude A and frequency f and plotted with respect to a 

consistently used Keulegan-Carpenter number.  

None of the pluck or hammer tests performed by GE or by its contractors 

were carried out at the correct amplitudes and frequencies of flow oscillation 

LOCA/SRVD). Neither the subsequent corrections for perforations through the 

use of steady flow equations (e.g., momentum), nor the application of the free

streamline theory based on the Schwarz-Christoffel transformations, nor the
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correction for the free-surface-proximity effects, nor the use of concentric 

cylinders (for the correction of the lateral confinement effects of an 

independently vibrating outer container) change the facts deduced from a 

scientific understanding of the prevailing flow about a very complex body. The 

pluck and hammer tests described in the reports and documents would have 

been appropriate if the strainer were a non-perforated body and if the 

oscillations were carried out at the amplitude of oscillation of the SRVD/LOCA 

flow, not at the infinitesimal amplitudes of oscillation of the body at its natural 

frequency. Thus, the hammer or pluck tests so far performed by GE and/or their 

contractors are irrelevant and immaterial to the assessment of the safety issues 

raised by NRC in connection with the GE strainers and will not be discussed 

here further.  

4. Howe's (1979) inviscid flow analysis of oscillatory flow about a 

perforated spherical shell 

Howe's analysis is discussed here primarily because it has been linked, 

rather unfortunately, to the small-scale viscous-flow experiments carried out by 

TS with a perforated spherical shell and to the analysis of Drs. Bliss & Franzoni.  

These will be described in more detail later. Suffice it to note that there are other 

inviscid-flow analyses of oscillatory flow about perforated plates, disks, and 

cylinders. These will not be discussed in any detail here primarily because they 

are no more relevant to the strainer issue than the spherical shell.  

Howe (1979) carried out an inviscid-flow analysis of oscillatory flow about and 

through the perforated surface of a rigid spherical shell and found that the added 

mass is given by 

3M 

AM= (18) 

I iT Atot Rhole
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in which AM is the added mass, Mw = pw Vw,, is the mass of water inside the 

sphere [(4I3)7TR ph], Ahole, the total area of the perforations (Ahole = NnRioe), 

N, the total number of holes, Atot, the total area of a solid sphere (4nrR.ph), 

Ahole/Atot = Por = porosity, Rsph, the radius of the sphere, and Rhole (= d12), the 

radius of a single circular hole. Note that (3/2)M, represents the added mass in 

the absence of perforations (including the interior fluid), because the analysis 

accounts for the so-called Froude-Krylov force (buoyant force) due to the 

pressure gradient to accelerate the flow about the sphere.  

Equation (18) may be re-written as, 

3 
AM 2 (18-R) 

M° 1+'n Rsph).  

where N is the number of holes, as noted above. It is clear from Eqs. (18) and 

(18R) that when the dissipative effects (turbulence) are discounted, the presence 

of surface apertures always reduces the magnitude of the added mass, and 

therefore the inertial force experienced by the shell in accelerating motion. It is 

also apparent that for a given porosity (Po, = Ahoje/Atod, the inertial mass is 

diminished further as the aperture radius Rhole is decreased, i.e., as the total 

number of perforations, N increases. Ultimately, the sphere becomes effectively 

transparent to the incident fluctuating flow. It must be emphasized that Howe's 

inviscid flow analysis is valid only for KD = 0÷ and PD = infinity, i.e., it does not 

apply to any other KD. In real flows, the viscous effects become important at all 

KD and Po values. This points out to one of the most difficult issues in the 

determination of the effect of porosity on perforated shells. For extremely small 

amplitudes, the inertial force (due to added mass) becomes extremely sensitive
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to the amplitude of the oscillation and to the magnitude of the rather elusive 

viscous effects (time-dependent shear, flow separation at the circumferences of 

the holes, vortex shedding, and turbulent energy dissipation). This is why the 

"strainer" problem has not so far been sufficiently understood, let alone resolved.  

5. Wills' (1975) report on perforated Ball Fluid Velocity Sensor 

This report, written four years prior to Howe's analysis, is one of the first 

descriptions of the use of a perforated sphere as a device to measure ocean 

wave velocities from fixed platforms in the range of Keulegan-Carpenter numbers 

from about 4 to 30. The hope was that if the inertia coefficient remained 

independent of the Keulegan-Carpenter number in the range stated, the measure 

of the instantaneous force acting on the perforated ball, the use of a constant 

inertia coefficient, and the use of Morison's equation would enable one to 

determine the magnitude (and the direction with strain gages in two 

perpendicular planes) of the velocity of waves over a long time period. It was 

never the intention of either Wills or TS to deal with KD values smaller than about 

4 or to expect high accuracy from a small ball at relatively low velocities, as noted 

in Wills' letter appended to the report. The data for KD < 4 exhibited large scatter 

and only the averaged values were shown knowing that ocean structures and 

waves lead to Keulegan-Carpenter numbers much larger than 4 (the region of KD 

< 4 for a perforated sphere was of no practical or scientific interest either to Wills 

or to TS). It is for these reasons that the data for KD < 4 were never published in 

any report or paper. Wills' report (and the attached figure and letter) were cited 

only once in a proprietary report submitted to another industry as part of a small 

contract to conduct a literature search and to provide a list (with hard copies) of 

as many papers and reports directly or indirectly related to flow about perforated 

bodies. It was never anticipated that any body would ever want to use it 25 years 

later for the assessment of large cylindrical strainers. The prophecy of the use of 

such invalidated, unverified, and unpublished data for totally unanticipated and 

unintended purposes (in the parameter domain far below those appropriate to a 

non-spherical strainer) would have sounded preposterous.
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The data attached to Wills' report have never been used by TS for the 

assessment of any strainer (or any other object) in any paper, report, or contract.  

NRC has become aware of its existence through the proprietary report provided 

to them by the organization for which the report was prepared. Apparently, and 

most unfortunately, the copies of the report were provided to Prof. A. A. Sonin 

and GE for their use in the assessment of the GE strainers.  

The following facts are provided (posthumously) for clarification. The 

prototype sphere is made of polypropylene with a diameter of 70 mm and a wall 

thickness of 1 mm. It is perforated by N = 92 holes of d = 7 mm diameter, almost 

equally spaced. A sphere of identical diameter but with 91 holes of d = 6 mm 

was subjected oscillating flow experiments in May 1975 by TS at the request of 

Wills (as shown in Wills' report) to determine the drag and inertia coefficients.  

As noted above, the accuracy of the data for KD smaller than 4 cannot be 

ascertained. In other words, the data for KD < 4 are not dependable enough to 

make a case for the rapid rise of the inertia coefficient in a narrow range of KD 

values. It is for the same reason that it would be equally meaningless to attempt 

to define an "appropriate" KD value which will support or refute the idea that the 

inertia coefficient for a GE strainer is larger or smaller than some disputed value 

on the basis of a perforated ball (about 15 times smaller than a GE strainer in the 

range of entirely different KD and OD values).  

Unfortunately, Wills' report and the figure attached to it received wide 

distribution and inappropriate attention for all the wrong reasons. It is now 

apparent that neither NRC, nor GE, nor their consultants made any effort to ask 

for the details of the experiments (e.g., an uncertainty analysis) and to question 

the parameter range (ReD, Po) of the experiments or to undertake/suggest 

additional experiments with much larger perforated spherical shells 

in the lower range of Ko values and higher range of O3D
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The sphere experiments were carried out in an oscillating flow tunnel which 

had a period of T= 5. 325 s (i.e., f= 0.188 Hz). Using its actual dimensions (D = 

70 mm., d(hole) = 6 mm, it is easy to show that the maximum velocity is Urn = 

0.01315 KD, (m/s, where Ko = UmTID, as usual), and ReD (Reynolds number = 

UrnDlv) =0.01315 KD xO.07xl0 6 = 920 KD. The Reynolds number for a hole is 

Red = Urndlv = 0.01315 Ko x(0.006)xl0 6 = 80 Ko. Note that kinematic viscosity v 

of water is taken to be 10-6 m 2/s. Then, for Ko. = 0.1, i.e., with a velocity of 1.3 

mm/s through the hole, one has Red = 8. Obviously, this is an extremely small 

Reynolds number (nearly, in the Stokes regime) for a slow laminar flow. Even at 

K = 2, the velocity through the hole is only 2.6 cm/s.  

According to a technical note of Dr. A. J. Bilanin (C.D.I. Technical Note 99

12), 

SIt must be emphatically stated that it is not the purpose of this 

report to accept or refute the validity of the magnitudes of f, K(strainer), 

and K(hole) values reported by Dr. Bilanin. The sole purpose of the use of the 

velocities and accelerations derived from them is to show the inappropriateness 

of the use of the spherical shell data for the strainer case discussed by Dr.  

Bilanin.  

The data tabulated below shows the gross dynamic (as well as kinematic and 

geometric) dissimilarities between the spherical shell and the Duane Arnold 

strainer. For larger velocities and accelerations, the dissimilarities become even 

larger. I.
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For the perforated spherical shell:

P(hole) = fDh21v = 6.76 

Re (hole) = 6.76K(hole) = 57.5 

P(sph) = fD2/v = 920 

Re (sph) = 920K(Sph) = 22 

For the Duane Arnold strainer (DAS): 

Obviously, the Reynolds numbers and J3 values of the two cases are 

incomparable and strongly discourage the use of the small sphere results (at 

meager Reynolds numbers and P3 values) in assessing the hydrodynamic loads 

on a strainer. Dr. A. A. Sonin's assessment of the inertia coefficients (Report to 

NRC by A. A. Sonin, dated January 19, 2000) on the basis of such unwarranted 

comparisons is not in keeping with the fundamental laws of modeling. The use of 

the small sphere results (in any region of K) is equally invalid in the approximate 

inviscid/viscous flow analysis of strainers. A perforated circular cylinder of proper 

size and porosity would have been far more preferable. These will be discussed 

in more detail later.  

Returning once again to the issue of large Reynolds numbers and 13 values, 

the answer to the question raised by Dr. John Lynch (in his E-mail to TS on 

09/01/98) "The issue at hand is how much displacement is sufficient in a pluck 

test to determine hydrodynamic mass" is, as previously noted above, "Large 

enough to simulate the flow conditions about the actual strainer at proper
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frequency f and amplitude A in a suppression pool in accordance with the 

similarity laws (including the wall-proximity effects) described herein." This 

requires a thorough analysis and accurate knowledge of the prevailing velocities 

and accelerations (their magnitudes and directions) along the length of the most 

representative strainers. It follows that the use of correct velocities, 

accelerations, inertia coefficients, and the structural details and material 

properties of the strainer will enable one to calculate the largest (flow-induced) 

stresses (at the suction piping at torus penetration). There are a number of other 

loads (e.g., dead weight, seismic loads, pressure and temperature under 

operating conditions, static torus displacements, pool swell, condensation 

oscillations, chugging, SRV torus motion loads, pre-chug torus motion loads, 

etc.) which must be taken into account in calculating the maximum stress. It 

appears that the application of known loads and measurement of strains on a 

strainer currently mounted in a suppression pool may be impractical for a number 

of reasons. However, this would have been the surest way to assess the margin 

of safety of a strainer: The determination of its load carrying capacity through 

(load versus strain) measurements and the calculation of the maximum stress 

due to all conceivable loads that might possibly act on the strainer.
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COMMENTS ON VARIOUS REPORTS

(a) Literature search 

No effort has been made by GE to seek and peruse the appropriate literature 

on flow about perforated bodies. Often recourse was made to well-known texts 

on fluid dynamics which contain nothing about the behavior of porous bodies in 

time-dependent flows. This hampered the development of proper methodology 

for the assessment of the strainers. Efforts were channeled towards finding 

approximate corrections or reduction factors for the effect of porosity and 

viscosity on the drag and inertia coefficients without the appreciation of the 

underlying phenomena. The early recognition of the impossibility of reliable 

theoretical or numerical analysis and the enlightened performance of a series of 

correct experiments at the right frequency and flow-oscillation amplitude would 

have achieved all that is desired by all concerned. These facts have been amply 

stressed in the foregoing sections.  

(b) Inviscid-flow approximations (measurements) 

Most of the theoretical efforts employed a series of inviscid flow 

approximations. It has not been fully appreciated that a GE strainer is a very 

complex body, immersed in a very complex 3-D time-dependent flow. The 

quantities such as "acceleration volume" and "hydrodynamic mass" were 

estimated and compared with experiments which were equally approximate 

(often irrelevant) to the strainer issue. For example, report by Dr. F. J. Moody 

(NEDC-32721P-Revision 1, February 1997) used an approximate inviscid flow 

analysis to state that

24



There is no method to assess the impact of the approximations made on 

the suggested design values. In fact, it is stated in the same report that 

_Most interestingly, Dr. Moody used in his 

Example Force Pressure Calculations_ 

NOW I has been noted 

previously that Dr. Bilanin used a maximum acceleration of in 

connection with his calculations of the Duane Arnold strainer. Clearly, the 

acceleration used by Dr. Moody is almost exactly 2.5 times larger than that used 

by Dr. Bilanin. It appears to TS on the basis of his nearly 30 years of 

involvement with loads on structures in pressure suppression pools (Mark I, 

Mark-Il, and Mark-Ill) that the acceleration value used by Dr. Moody is in better 

agreement with that which would result from the initial bubble accelerations as 

large asN As noted above, accurate knowledge of the prevailing 

velocities and accelerations (their magnitudes and directions) along the length of 

the most representative strainers (i.e., plant unique velocity and acceleration 

data) and the determination of the appropriate inertia coefficient (for the 

frequencies and flow amplitudes to be encountered) hold the key to the 

resolution of the strainer problem.  

Only a few brief comments will be made here on pluck and hammer tests 

carried out by GE and its consultants for the reasons amply described and 

repeated in the foregoing. The existing tests described in the reports (provided 

to TS by NRC) are far from satisfactory and cannot provide correct inertia 

coefficients for the strainers under consideration.  

Oscillating the top of the strainer with imperceptibly small 

amplitudes (or accelerations) while the base is held rigid is not a 

correct description of the fow about the strainer. Furthermore,
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carrying out experiments with the said accelerations (with a triangular distribution 

of minute magnitude) in a tank covered on top with a few inches of water has 

nothing to do with the acceleration magnitudes and distributions on the actual 

strainers. Clearly, if one plucks something or hits it on the head, one does get a 

damping response and an average frequency. But the answer provided by 

nature is not the answer to the intended question. The hammering of perforated 

cylinders or strainers in containers that are themselves vibrating in very shallow 

water in a shaky container and carrying out yet another "correction" analysis 

(e.g., -GENE E22-00110-10, Rev. 0, Class III, August 1997), (assuming that the 

strainer is in a non-vibrating rigid container), are not in the best interests of 

quality assurance.  

No amount of correction for the water elevation or container confinement or 

for the vibrations of the container can help to determine the correct inertia 

coefficient, particularly when such coefficients are highly dependent on fluid

oscillation frequency and fluid-oscillation amplitude i.e., LOCA and SRVD.  

Suffice it to note that correct experiments with correct parameters in proper 

environments must and can be conducted. The means and the ideas have 

been amply described herein. There is convincing evidence from the recent 

experiments and experiences of other organizations that such tests can be 

carried out to resolve all the outstanding issues. The proprietary nature of these 

works does not allow their further discussion here.  

(c) Inviscid-flow approximations (Analyses) 

Teske - Boschitsch Analysis 

The analysis by Drs. Teske and Boschitsch (NEDC-32721P Revision 1, C.D.I.  

Technical Memorandum No. 97-03, Feb., 1997) has nothing to do with the issue 

on hand and the realities of the GE strainer. It is for a rigid body in an inviscid 

fluid, with no holes on the walls and no armature in the conical pipe. No further 

comments are necessary.
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Bliss - Franzoni Analysis

The report by Drs. D. B. Bliss and Linda P. Franzoni (C.D.I. Report No. 99

09), (referred to hereafter as B&F) will now be discussed in some detail after a 

reminder from Paul Adrian Maurice Dirac that "A theory with mathematical 

beauty is more likely to be correct than an ugly one that fits some experimental 

data." 

As noted earlier, Howe's inviscid flow analysis (1979) is an exact solution 

(with mathematical beauty) of the spherical-shell problem. It does not and 

cannot predict a dependence of the inertia coefficient on the Keulegan-Carpenter 

number. It is valid only for (KD = 0', OD = o). It is rather unfortunate that Howe's 

contribution of 1979 has escaped the attention of B&F.  

A correct inviscid flow analysis of the spherical shell problem does 

necessarily and invariably reduce to that given by Howe [see the Eqs. (18) and 

(18-R) herein]. There, is at present, no analytical or numerical solution for a 

time-dependent VISCOUS flow about a perforated shell and one is not likely to 

come into existence in the foreseeable future.  

It is rather surprising that B&F did not ask for the details of the experiments 

under which the spherical shell was tested. More will be said later about the new 

and more precise spherical shell data.  

The B&F analysis begins to falter after Eq. (8). There is no need (in an 

inviscid flow analysis) to assume that the pressure differential across the porous 

surface is "proportional to the velocity through the surface," as in their Eq. (9).  

In fact, their subsequent approximations lead to a xc value (the "complex flow 

resistance coefficient") which renders the differential pressure highly nonlinear.  

In their Eq. (10), they have thrown out the nonlinear part of the Bernoulli 

equation [i.e., -(1/2)(V(D) 2] for no rhyme or reason, by simply stating that "The 

pressure is given by the linearized Bernoulli equation." That simply is not true.
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It does not make any mathematical sense to use a linearized Bernoulli equation 

and then introduce highly questionable nonlinearities into -K, their "complex flow 

resistance coefficient," to render the differential pressure in Eq. (9) a function of 
"velocity-square-dependent" nonlinear term and a function of "acceleration

dependent" linear term. The nature of the approximation needs the introduction 

of the so-called Morison equation (here for a cylindrical object), given by, 

F(t) = 2 PCdLD I U I U +pCmL 702 dU (19) 
2 4 dt 

in which F(t) is the force acting on the body due to the unsteady flow U(t) and 

L is the length of the cylinder. Cd and C.. are the "Fourier" averaged drag and 

inertia coefficients (for further details see, Sarpkaya & Isaacson, 1981).  

Dividing Eq. (19) by LD, one has a pressure expression given by, 

PWt= P f1Cd I UI+C. 7C d--'U U (20) 

The terms inside the bracket represent the velocity and acceleration

dependent components of the coefficient Kc. However, the conceptual similarity 

stops there. They engage in a series of steady-flow Bernoulli and momentum 

equations (22-27) to obtain "the equivalent flow resistance coefficient for 

nonlinear orifice flow." Since they do not know how to deal with the correct 

solution of the problem, they resort to averaging. First, the time-dependent flow 

about the sphere is averaged over a cycle, and if, this were not enough, it is then 

averaged over the surface of the sphere. By this time, there is no truth left in the 

approximate analysis. Then they conclude that their Eq. (37) gives the inertia 

coefficient.
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Just to give an idea, to any fluid-mechanically as well as mathematically 

educated reader, we have cut and pasted their numerous expressions to give an 

idea as to how their Eqs. (17) and (36) will look like 

(21a)

and

(21b)

Clearly, they are still coupled and terribly convoluted.

The use of the non-linearized or full Bernoulli equation (for inviscid flow) 

would have obviated the need for such unacceptable assumptions. The only 

correct "pressure differential across the porous surface" for an inviscid fluid is 

that used by Howe: The full Bernoulli equation [see Eq. (2.21) in Howe]. It must 

be emphasized once again that the inviscid flow analysis for this flow yields a 

solution only at (KD = 0÷, 13 = -). Even though the assessment of the B&F 

analysis should stop here, comments will be made on the remainder of their 

analysis for those interested in other assumptions introduced by B&F.
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Clearly, Eq. (16) of B&F should have been our Eq. (18) or (18-R), after Howe.  

The statement leading to Eq. (16) needs to be carefully scrutinized. B&F stated 

that "The net force on the sphere is found from integrating the pressure 

differential between the inside and the outside over the spherical surface." This 

is true exactly only for an inviscid fluid or approximately for separated flows at 

high Reynolds numbers. It is a well-known fact that (see, e.g., Schlichting's 

"Boundary-Layer Theory," 6 1h .edition, p. 106) in slow oscillatory flows (as in the 

case of the perforated spherical shell), "one third of the drag is due to the 

pressure distribution and that the remaining two thirds are due to the 

existence of shear." Obviously, the issue is more complex for double digit 

Reynolds numbers (not too large, not too small for the perforated sphere).  

Nevertheless, the fact remains that an important part of the force at relatively 

small Reynolds numbers cannot be ignored. The analysis of Bliss and Franzoni 

does not even mention the time-dependent shear force on the skin of the 

spherical shell (on both the inside and outside surfaces). How could such an 

analysis which to'tally ignores the most important part of the force can possibly 

agree with any properly conducted experiment "without the introduction of any 

empirical parameters or corrections, (from B&F, p.1)." 

What emerges from the foregoing is that an attempt has been made to 

simplify a very complex problem, assuming the fluid to be inviscid at times and 

viscous at other times. This may have been a consequence of their being 

provided the original spherical-shell data and their attempt to reproduce it.  

Unfortunately, the combination of the two does not leave any confidence in the 

analysis of B&F. One must hasten to add that there are acceptable ways to 

introduce the effects of viscosity (shear, flow separation, modification of the 

entire pressure distribution) and other nonlinear effects into an exact inviscid flow 

analysis, as done over centuries (during the golden days of hydraulics). That is 

not what is recommended here.  

B&F's Eq. (17) attributes a new meaning to K. It is now stated that "K is the 

sum of a linear inertance and a nonlinear flow resistance" in spite of the fact that
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their Eq. (9) depicts a linear pressure drop. In other words, the linearity or the 

non-linearity of the pressure drop is dictated by whether the differential velocity is 

to the first power [as in Darcy's law, as in Eq. (9)] or by the square of the 

differential velocity as in Howe's analysis {his Eq. (2.21)}. It makes no sense to 

attribute "nonlinearity" to a resistance coefficient halfway through the analysis.  

B&F has already decided through the use of their Eq. (9) that the total pressure 

drop will be linear and that K is only a resistance coefficient, not another velocity

dependent quantity [as in their Eq. (27)]. This is a rather strange twist in flow 

analysis where a coefficient is made a function of the local velocity. It can 

depend only on KD and P3 [for a given body shape, and NR(hole)IR(spr), see 

Howe's analysis]. It must also be noted that what was defined as "where -K is a 

complex resistance coefficient" (following Eq. (9)), became "... 1C is the sum of a 

linear inertance and a nonlinear flow resistance" {(following Eq. (17)}. This is a 

misuse of the linear equation given by Eq.(17) where the velocity u is multiplied 

with a variable coefficient x, comprised of an acceleration dependent added 

mass and a velocity-square dependent "nonlinear flow resistance." It is hard to 

find another example of this type in the annals of fluid mechanics.  

Even though not worthy of serious comment, Eq. (19) is an unnecessary 

approximation. The last term, (4/h2) times the sphere volume of radius a, is just 

a guess and yet it is introduced as ".. and the second term is the hydrodynamic 

mass of fluid on both sides of the hole." Why is all that hand-waving necessary 

if the inviscid flow analysis through the proper use of the Bernoulli equation is 

supposed to account for the truth, as in Howe's analysis.  

The assumption of a "fully developed separated orifice flow", shown in their 

Fig. 3 is unacceptable. It must be noted again and again that this is a time

dependent flow with a frequency of about 1I4mand that the oscillating flow 

about a hole is not like a steady jet but like a series of O-rings, shedding on both 

sides of the hole, at various angles of inclination. Their steady jet assumption in
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laminar conditions is not compatible with the unsteady pressure drop across the 

holes. A flow oscillating through a hole (at relatively high frequencies, as in the 

case of strainers) does not ever behave like "fully developed separated orifice 

flows." 

Additional assumptions lead to Eqs. (26) and (27). However, the transition 

from Eq. (26) to Eq. (27) is not mathematically sound either. If the pressure 

drops due to inertance and non-linear flow resistance was properly introduced 

into the Eq. (17), one cannot obtain Eq. (27). B&F wrote it down just to get a 

linear dependence on velocity in Eq. (27).  

The foregoing should be more than enough to convince any fluid dynamist 

that the solution produced by B&F is not, to say the least, fluid mechanically and 

mathematically sound. It is rather unfortunate that they have repeatedly 

misstated the facts with the words "Without the introduction of any empirical 

parameters or corrections ..... " The fact of the matter is that everything they have 

introduced beyond Eq. (8) is empirical parameters and corrections. Their neglect 

of the very important shear force is unpardonable even in a very approximate 

analysis. B&F did not fully realize that the oscillating viscous flow about a 

perforated body cannot be solved either analytically or numerically. It is also 

doubtful that one can reproduce the spherical-shell data (described above) 

without retrofitting them to an approximate 'hydraulics" analysis.  

Finally, to make the matters even more approximate B&F have delved into 

the world of velocity averaging in all equations beginning with Eq. (28). As noted 

earlier, such averaging has no meaning here for a number of reasons: (1) the 

flow "sees" a hole at an inclined angle depending on the position of the hole on 

the sphere, on the disks, and on the conical surface, as one moves around the 

bodies or disks, i.e., the velocity is not normal to the said surfaces and varies 

with the radial position of the holes. Thus, aveiaging of the velocity over the 

entire surface of the body does not make any sense.
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As far as the strainer is concerned, B&F did not deal with the effects of 
armature (pressure and shear). They can be very effective in setting greater 

masses of fluid into acceleration within the body of the conical section and 

dramatically increase the inertia coefficient. Their prediction that '• 

is nothing more than hand waving in view of all the 
numerous assumptions throughout their analysis. They wanted to tackle a very 

difficult problem (presently, unsolvable), failed even to obtain an exact inviscid

flow solution, and ended up with totally unacceptable confused thoughts, 

confused analysis of convoluted expressions.  

4. Recent Experiments versus Bliss & Franzoni Predictions 

During the past year, the original spherical ball provided by Wills has been 

subjected to extremely careful experiments with better instrumentation, 

particularly at very low KD values, using oscillations in air and in water at 
frequencies as large as 6 Hz. As noted above, the earlier experiments (1975) 

were conducted at very low frequencies and the measurement of forces was 

rather difficult and subject to large scatter at relatively small KD. values. The new 

data, together with those at higher KD values, are shown in Fig. 2.  

First, it must be emphasized that in this and in all other figures to follow, Cao 

is the 'inertia coefficient', 'corrected for the buoyant force' (see Eqs. 9 and 11).  

Figure 2 does not resemble the old data reported in Wills, particularly at KD 

values smaller than about 4. The coefficient Cao does not fall below about 1.26 

even for KD values as small as 0.04. This is because of the profound effect of 

the unsteady shear on the added mass coefficient at high frequencies. Likewise, 

the drag coefficient continues to rise without any tendency to decrease.  

To those interested in mathematics, the importance of viscosity and 

frequency enters into the added mass (of a rigid sphere) through a term like
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9(pnrVdU (22) 2 6 p0D dt 

which can be very large at high frequencies (Sarpkaya & Isaacson, 1981), The 

issue is, of course much more complex for a perforated body where the holes 

help to create and diffuse vorticity and dissipate large amounts of energy. As 

emphatically noted by Howe (1979), "The essential nature of flow through a 

perforated surface depends on Reynolds number and Strouhal number based on 

the characteristic aperture diameter, on the spacing of the perforations, and on 

whether or not the incident flow is turbulent. Choking of the aperture flow may 

well occur at the extreme of low Reynolds number or in the presence of intense 

turbulent fluctuations." In short, the inviscid flow analysis yields only a singular 

point at Cao = 0.5 for KD = 0÷ (for details see Hall's solution and our Eq. 18-R).  

Such a result has no physical meaning for a perforated sphere in oscillatory 

viscous flows.
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Figure 2 Drag coefficient and the buoyancy-corrected Inertia coefficient 

for a perforated sphere, originally used by Wills.  

(a) Oscillating flow about perforated cylinders 

It is because of TS's great interest in unsteady flow in general and in 

perforated bodies in particular that a series of experiments were undertaken by 

CDR Osgood (2000) during the period of 9/99 through 9/00, under the direction 

of TS. These experiments have not been sponsored by NRC and, as noted in 

the reference to Osgood, the results have been approved for public release and 

unlimited distribution. Circular cylinders of various sizes and perforations 

(30%, 28%, 23%, and 51%) were subjected to sinusoidally oscillating flow in a 

large U-shaped water tunnel (fD2/v = 6,400). The perforated skins were rolled
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from commercially available stainless steel, copper, or aluminum sheets.  

Particular attention was paid to the joints to make sure that the perforations were 
continuous and uninterrupted. The force transfer coefficients [drag and inertia 

(corrected for buoyant force)] were determined in the range of Keulegan

Carpenter numbers from about 0.1 to 40. The results have shown that the effect 

of the perforations is to decrease the inertia coefficient and to increase the drag 

coefficient. The limiting value of the inertia coefficient (as KD approaches zero) 
strongly depends on the porosity of the cylinder. The displaced relative volume 

of each cylinder was VJV0 = 0.035.  

A photograph of the cylinders tested is shown in Fig. 3. Note that all cylinders 

are equal length (L = 914 mm). There was a clearance of 0.2 mm between the 
tunnel walls and the ends of the cylinder. Tests with different hole size and 
spacing (for a given porosity) have shown that the drag and inertia coefficients 

did not strongly depend on the combinations of the hole size/hole spacing.  

Representative data from Osgood's work are shown here in Figs. 4 and 5 for 

the porosities of 30% and 51% only. It is clear that the drag coefficients can 
reach very high values. It is also clear that Cao strongly depends on the 

porosity. For a cylinder of 30% porosity, it is about 1.2 at K = 0.18. For a 
cylinder of 51% porosity, however, Cao decreases to about 0.2 at K = 0.2. In 
order to fill the gap between the porosities of 30% and 51%, the on-going 

investigation was extended to several cylinders of 40% porosity. The results of 
these measurements are shown in Fig. 6. Clearly, Cao has increased to about 

0.3 at K = 0.03.
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Figure 3. Various perforated cylinders subjected to oscillatory flow in 

a large U-shaped water tunnel.  
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Figure 4. Drag and buoyancy-corrected inertia coefficients for a 

porous cylinder with a porosity of 30%.
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Figure 5. Drag and buoyancy-corrected inertia coefficients for a 

porous cylinder with a porosity of 51 %.
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Figure 6. Drag and buoyancy-corrected inertia coefficients for a 

porous cylinder with a porosity of 40%.
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In order to simplify the comparison of the said coefficients for three porosities, the 
data shown in Figs. 4, 5, and 6 are re-plotted in Fig. 7. It is evident that the 
inertia coefficient for the cylinder with 40% porosity is somewhat larger than that
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Figure 7. Drag and buoyancy-corrected inertia coefficients for porous 

cylinder of 30%, 40%, and 51%.
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for the 51% porosity. This is not surprising. It is, in fact, a convincing 

demonstration of the facts surrounding the variation of the inertia coefficient and 

its dependence on porosity. We have every reason to believe that the inertia 

coefficient of a perforated cylinder with a. porosity i 

for all values of the frequency parameter 

1 The data shown in Fig. 7 present enormous mathematical and 

numerical challenges. It is our conjecture that GE strainers 

i lilij cannot have C,,, values smaller than about 

at proper Keulegan-Carpenter numbers and frequency parameters.  

A "correct" model experiment of the strainer will go long ways to prove the validity 

of one and all assertions.  

(b) Need for additional experiments 

There is urgent need to carry out additional experiments with perforated 

cylinders and strainer models (with armature) subjected to forced oscillations at 

specified amplitudes and frequencies. Such experiments can be performed at a 

reasonable cost for the benefit of all concerned and for publication in the open 

literature. The results will not only help to resolve some of the outstanding issues 

but will also provide sound data for those interested in correct analyses that meet 

the criteria enunciated by Paul Adrian Maurice Dirac.  

7. Conclusions 

(a) It appears that the issues discussed in many Topical Reports and papers on 

GE strainers (provided to TS) have arisen partly because of the attempts to carry 

the information gleaned from non-perforated bodies and steady flows to 

perforated bodies (in unsteady flows), and partly because of the use of old or 
"well-known" mechanical techniques to new and very complex problems without 

the benefit of the understanding of the underlying fluid dynamical phenomena.
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There is no doubt that the perforations change the dynamics of the flow. Such a 

realization could have been easily achieved three or four years ago through a 

thorough literature search. Unfortunately, this has not been done by any of the 

participants (NRC, GE, and their consultants) of the issues discussed herein.  

Running to the library, walking to the computing center, and proceeding with 

caun to the laboratory could have saved a great deal of time, dollars, and 

agony.  

(b) The B&F analysis offers nothing new, predicts nothing new, and leads to 

erroneous conclusions: It cannot be used in defense of the approximate 

"9nalyse's" and equally approximate "experiments" of GE.  

(b) One can find acceleration values as large as 1(clDaccording to Mr.  

Lynch) and then K values as large as# (again according to Mr. Lynch). One is 

desperately looking for a correctly calculated acceleration and velocity 

distribution that everybody can agree upon as a starting point for the analyses 

and experiments. Yet, there are endless exchanges of (mostly trivial) questions 

and garbled responses, rather than simple facts. This may not be the first time 

that the need for an "honest experiment" has been replaced by 3000 pages of 

irrelevant material. The correct acceleration and velocity field about the strainer 

for various accident scenarios, complete drawings of the strainer, and the 

material properties must be made available to all parties for an intelligent 

assessment of the load carrying capacity of the GE strainers.  

(d) Pluck or hammer tests must be conducted at the appropriate Keulegan

Carpenter number KD, dictated by the amplitude of flow oscillations created by 

LOCAISRVD, (from the top to the bottom of the strainer) and at the proper flow 

oscillation frequencies f of LOCAISRVD, not at the natural frequency fn of the 

strainer and not at irrelevant Keulegan-Carpenter numbers (often varying from 

the top to the bottom of the strainer). In model tests, the matching of the 

Keulegan-Carpenter numbers as well the frequency parameters is of prime 

importance.
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(e) The proper values of the added mass and drag coefficients for a perforated 

body at relatively small KD values can be determined accurately only if the body 

is subjected to the oscillations dictated by Ko and the frequency parameter P3D, 

i.e., with an amplitude A and the frequency f of the oscillation of the external flow 

imposed by LOCAISRVD.  

(f) It is our conjecture that GE strainers 

Scannot have C,,,,, values smaller than abou t 'at proper 

Keulegan-Carpenter numbers and frequency parameters. A "correct" model 

experiment of the strainer will go long ways to prove the validity of one and all 

assertions.  

It is sincerely hoped that this report has enlightened some dark corners in the 

world of unsteady flows in? general and perforated bodies in particular. Every 

attempt has been made to remain impartial and to fully respect the ideas and 

opinions of others without sacrificing the truth as we know it and/or as we have 

acquired it. Much remains to be done in the years to come and it is sincerely 

hoped that correct decisions will prevail in the light of the collective knowledge, 

wisdom, and cooperation of all concerned.  
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