JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

K/A REFERENCE:	E11 EK1.2 (3.6/4.1)
(NUREG-1122)	E11 EK3.3 (3.8/3.8)
	E11 EA2.2 (3.4/4.2)

ALTERNATE PATH JPM YES X NO

PERFORMANCE CHECKLIST:

<u>SAT</u>ISFACTORY - Properly performed critical step(s) and/or in sequence (if applicable)</u>

<u>UNSAT</u>ISFACTORY - Improperly performed critical step(s) and/or out of sequence (if applicable)

X Procedure adequately addresses task elements. Enter identifier here: ECA-1.1, Rev. 22

Other document adequately describes necessary task elements. Enter identifier here:

X Task elements described as attached.

DESIRED MODE OF EVALUATION:

APPLICABLE EVALUATION SETTING:

SIMULATE/WALKTHROUGH X DISCUSSION PERFORM X IN-PLANT CONTROL ROOM X

VALIDATED TIME FOR COMPLETION: 15 MINUTES

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

EXAMINEE		EVALUATOR	
START TIME		FINISH TIME	
PERFORMANCE SAT	UNSAT		
JOB TITLE: 🗌 AOT	⊠ COT □ SRO	🗌 STA	

TOOLS/EQUIPMENT/REFERENCES:

ECA-1.1, Rev. 22, "Loss of Containment Sump Recirculation"

TASK STANDARDS:

1. Delay depletion of the RWST, during loss of Containment Sump Recirculation Capability using ECA 1.1, "Loss of Containment Recirculation".

TIME	FAIL	COMPONENT	OPTION	VALUE	RAMP	DELAY	ACT	COND
::	IC-1	100%	Steady State					
	VLV	RHR14(850A)	6	0			D	
OVR	SCS	RHR1	1		850A Green On			
	VLV	RHR15(850B)	6	0			D	
OVR	SCS	RHR7	1		850B Green ON			
	MAL	RCS1		·			D	
NOTE: Instructor must perform immediate actions of EOP-0, transition to EOP-1, transition to ECA-1.1 when RWST < 60%, complete Steps 1-15 of ECA-1.1, then freeze simulation.							n	

NOTE: If this JPM is performed on the simulator, the JPM administrator should only give cues that are not indicated on the simulator. If simulator indication is sufficient to indicate the completion of a step, the JPM administrator should not have to give a cue to the trainee to continue the evolution.

NOTE: Only this page needs to be retained in examinee's record if completed satisfactorily. If unsatisfactory performance is demonstrated, the entire JPM should be retained.

SIMULATOR INFORMATION:

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

READ AND PROVIDE TO THE EXAMINEE

THIS SECTION IS READ ONCE FOR THE ENTIRE PACKAGE OF JPMS. IT IS NOT REQUIRED TO REVIEW THIS SECTION FOR EVERY JPM BEING PERFORMED IN THE PACKAGE. THE INITIAL CONDITIONS AND INITIATING CUE(S)/TASKS TO BE PERFORMED SHOULD BE READ AND THEN PROVIDED TO THE EXAMINEE.

After I read you the initial conditions and initiating cue(s)/task to be performed for this JPM and provide you a copy of the same, you may review and begin. Once you have completed the task, indicate completion by handing back this form to the evaluator unless otherwise told.

You may use any approved reference materials normally available including logs. Make all written reports, oral reports, and log entries as if the evolution is actually being performed.

EOP Immediate Actions are required to be performed from memory. After completing immediate action steps without using the procedure, you may then use any approved reference materials.

For all two and three-way communications, make your report to me, the JPM evaluator. I will reply to your reports with the statement, "acknowledge." All actions in the plant are to be simulated and all actions in the simulator will be performed. Ensure you make it clear to me, the evaluator, of all actions you are taking so that credit may be given for completing each step of the task.

DURING THE JPM, ENSURE PROPER SAFETY PRECAUTIONS, FME, AND/OR RADIOLOGICAL CONCERNS AS APPLICABLE ARE FOLLOWED.

INITIAL CONDITIONS:

You are the Unit 1 Control Operator. Unit 1 has tripped due to a large break LOCA. The crew had transitioned to EOP-1.3, "Transfer to Containment Sump Recirculation". The crew then transitioned to ECA-1.1, "Loss of Containment Sump Recirculation," when it was discovered that SI-850A and SI-850B would not open. Steps 1-15 of ECA-1.1 have been completed. Both SI and RHR pumps are running.

INITIATING CUE(S) / TASK TO BE PERFORMED (SIMULATED):

The DOS directs you to delay depletion of the RWST and depressurize the RCS to minimize break flow by continuing with ECA-1.1, "Loss of Containment Sump Recirculation," starting at Step 16 of the procedure.

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

ļ

JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

PERFORMANCE INFORMATION

		STEPS ARE DENO STITUTES FAILUI		IA "Y". FAILU	RE TO MEET THE STANDARDS FOR THIS
START TIME		STEP/SI	EQUENCE	/CRITICAL	SAT
		1	1	Y	UNSAT
ELEMENT:	Establi	sh one train of SI flo	w:		
	1)	Only one SI pump	running (1)	P-15A or 1P-15B))
	2)	RCS pressure < [4	25 psig] 20	0 psig.	
	3)	Only one RHR pu	mp running	(1P-10A or 1P-10	DB).
STANDARD:	One tra	in of SI flow establi	shed. P-15A	or P-15B and P-	10A or 10B taken to stop.
CUE:	1)			-	s indicated on simulator).
			-	-	indicated on simulator).
	2)	PT-420 reads 10 p	•		•
	3)		-		as indicated on simulator).
		One RHR pump g	reen light or	n, red light off (or	as shown on simulator).
COMMENTS:					
		STEP/SE	QUENCE	CRITICAL	SAT
		2	2	Y	UNSAT
ELEMENT:	Verify	No Backflow From I	RWST To S	Sump.	
	1)	Check Train A RH	IR pump suc	ction from contair	ument sump "B" MOVs at least one SHUT
		1SI-850A or 1SI-8			
	2)	Check Train B RH 1SI-850B or 1SI-8		ction from contain	ment sump "B" MOVs at least one SHUT
STANDARD:	1SI-850	A&B are shut.			
CUE:	1SI-850	A&B green lights a	re on, red li	ghts are off (or as	indicated on simulator).
COMMENTS:					

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

PERFORMANCE INFORMATION

NOTE: CRITICAL STEPS ARE DENOTED WITH A "Y". FAILURE TO MEET THE STANDARDS FOR THIS ITEM CONSTITUTES FAILURE.

		STEP/S 3	EQUENCE/ 3	/CRITICAL N	SAT	
ELEMENT:	Check 1) 2)	if an RCP should be Check RCPs both RCS subcooling :	n Stopped.	°F based on core exi	t thermocouples, if not go to Step 21.	
STANDARD:	RCS S	Subcooling < 35 F, p	roceed to Ste	ep 21.		
CUE:	1)	TI-970 reads 5.5	°F, TI-971 re	eads 5.7 °F on ASIP	(or as indicated on simulator).	
COMMENTS:						
		STEP/S 4	EQUENCE/ 4	CRITICAL N	SAT UNSAT	
ELEMENT:	1)	4 if SI should be term Check Reactor Vess	4 inated.		UNSAT	
ELEMENT:	1)	4 if SI should be term	4 sel Level from REQUIR	N n table below satisfi ED REACTOR VES	UNSAT	
ELEMENT:	1)	4 if SI should be term Check Reactor Vess	4 inated. sel Level from REQUIR Wide Rang	N n table below satisfi	UNSAT	
ELEMENT:	1)	4 if SI should be term Check Reactor Vess <u>RCPS RUNNING</u> 1 0	4 sel Level from REQUIR Wide Rang Narrow Ran	N n table below satisfi ED REACTOR VES e > [100] 95 feet.	UNSAT	

CUE: TI-970 reads 5.5 °F and TI-971 reads 5.7 °F on ASIP (or as indicated on simulator).

NOTE: This is a Continuous Action Step.

COMMENTS:

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

PERFORMANCE INFORMATION

NOTE: CRITICAL STEPS ARE DENOTED WITH A "Y". FAILURE TO MEET THE STANDARDS FOR THIS ITEM CONSTITUTES FAILURE.

		STEP/S	EQUENCE	/CRITICAL	SAT
		5	5	Y	UNSAT
ELEMENT:	Establ	lish minimum injectio	on flow to re	emove decay heat.	
	1)	Determine minim	um injectior	flow required for a	decay heat removal from Figure 1.
	2)	Establish minimu	n injection	flow using charging	g flow 1HC-142
	3)	Reduce SI flow or	n running SI	Train as much as p	oossible while maintaining minimum injection
		flow using 1SI-86	6A or 1SI-8	866B.	
	4)	Go to Step 25.			
STANDARD:		mine based on plant o an 100 gpm is critica		nat 100 gpm is requ	ired per Figure 1 and reduce total flow to not
CUE:	Two ł	nours has elapsed sin	ce reactor tr	rip.	
NOTE:					sing Figure 1, the trainee should determine moval for this step to be considered SAT.
COMMENTS:					

		STEP/S	EQUENCE	/CRITICAL	SA	Т
		6	6	N	UNSA	Τ
ELEMENT:	Verify	v adequate injection f	ไดพ•			
	1)	Check reactor vesse		ation:		
	ſ	RCPS RUNNING	REOUIF	RED REACTOR VE	SSEL LEVEL]
	F	1		ange > [100] 95 feet.		
		0	Wide Ran	ge > [30] 27 feet.		
STANDARD:	2) Adequ	Core exit thermocount the content of	-	-	ise injection flow	as necessary to lower CETs.
CUE:	1) 2)			imately 33 ft (or as in table or may be trend		lator). er.(or as indicated on
NOTE:	This i.	s a Continuous Actio	on Step.			
COMMENTS:						

RESPOND TO LOSS OF CONTAINMENT SUMP RECIRCULATION CAPABILITY

JPM P000.023COT Revision 0 DRAFT July 11, 2000 TOTAL REWRITE

PERFORMANCE INFORMATION

NOTE: CRITICAL STEPS ARE DENOTED WITH A "Y". FAILURE TO MEET THE STANDARDS FOR THIS ITEM CONSTITUTES FAILURE.

		STEP/S	EQUENCE	CRITICAL	SAT	
		7	7	Y	UNSAT	
ELEMENT:	Depre	ssurize RCS to mini	mize RCS Sı	ibcooling:		
	1)	Checks RCS subo	cooling based	l on core exit thermo	becouples > [80 °F] 35 °F	
STANDARD:		subcooling checked of sourization is NOT n			ed to be >(80 F) 35 F. Examinee reco	ognizes a
CUE:	1)	1TI-970 reads 6.8 This completes th		l reads 6.2 °F on AS	IP (or as indicated on simulator).	
		This completes the	nis JPM.			

COMMENTS:

TERMINATION CUE: This completes this JPM.

COMPLETION TIME: