

Entergy Operations, Inc. 1340 Echelon Parkway Jackson, MS 39213-8298 Tel 601 368 5758

Michael A. Krupa Director Nuclear Safety & Licensing

Corrected Copy (editorial)

May 11, 2001

U. S. Nuclear Regulatory Commission Attn.: Document Control Desk Mail Stop OP1-17 Washington, DC 20555-0001

Subject: Grand Gulf Nuclear Station Docket No. 50-416 License No. NPF-29 Request for Use of ASME Code Case N-561-1

CNRO 2001-00026

On May 9, 2001, a pinhole leak was discovered in an elbow located in the minimum flow line of the Residual Heat Removal (RHR) System's "A" train at the Grand Gulf Nuclear Station. Entergy Operations, Inc. (Entergy) performed an evaluation of the piping in the area of the pinhole leak and determined that it meets the minimum pipe wall thickness requirements of ASME Section III Subsubarticle NC-3650 Equations 9 and 10. Examinations of the piping revealed no evidence of cracks. In addition, Entergy has examination history on eight other points in the "A" minimum flow line, one point in the "A" test return line, and seven points in the RHR "B" train. No other problem areas requiring immediate repairs have been identified.

The apparent cause of the pinhole leak appears to be flow accelerated corrosion, which results from high fluid velocities (>10 ft/sec) during a pump start. Entergy will continue its evaluation to determine the cause of the leak and will take appropriate action to prevent recurrence. Any actions will be completed no later than startup from the next scheduled refueling outage.

Because of the location of the leak, a code repair in accordance with ASME Section XI cannot be made while the unit is on-line. Therefore, pursuant to 10CFR50.55a(a)(3)(ii), Entergy requests authorization to use ASME Code Case N-561-1, which provides an acceptable repair method of the leak. Relief Request GG-R&R-001, Rev. 0 is contained in Attachment 1. This request is specific to the identified pinhole leak only.

Although Code Case N-561-1 could be used for permanent repairs, Entergy will use it only as a temporary repair method for the identified leak and will replace the elbow containing the leak prior to startup from the next scheduled refueling outage.

A047

Request for Use of ASME Code Case N-561-1 CNRO-2001-00026 May 11, 2001 Page 2 of 2

The NRC previously approved the use of ASME Code Case N-561-1 for Southern Nuclear Company's E. I. Hatch Nuclear Plant (RR-26).¹

New commitments made in this letter are identified in Attachment 2.

Because of the degraded RHR minimum flow line, Entergy conservatively declared RHR "A" INOPERABLE at 5:00 a.m. on May 9, 2001. This action placed Grand Gulf in a 7-day shutdown Action Statement as required by Technical Specifications. In order to prevent unit shutdown, Entergy requests the NRC to approve use of Code Case N-561-1 for this specific application.

Should you have any questions regarding this submittal, please contact Guy Davant at (601) 368-5756.

Very truly yours,

Mr. A KRupa

MAK/GHD/baa attachments cc: Mr. W. A. Eaton (GGNS) Mr. G. R. Taylor (ECH)

Mr. T. L. Hoeg, NRC Senior Resident Inspector (GGNS) Mr. E. W. Merschoff, NRC Region IV Regional Administrator Mr. S. P. Sekerak, NRC Project Manager (GGNS)

¹ NRC letter from Mr. Richard L. Emch, Jr., to Mr. H. L. Sumner, Jr., "Edwin I. Hatch Nuclear Plant, Units 1 and 2 – Third Ten-Year Interval Inservice Inspection Program, Relief Request Nos. RR-25 and RR-26 (TAC Nos. MA6123 and MA6124)," dated May 31, 2000

μ,

د او

ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION 2nd TEN YEAR INTERVAL REQUEST NO. GG-R&R-001, Revision 0

I. COMPONENT/EXAMINATION

Component/Number:	4"-HBB-120		
Description:	Residual Heat Removal (RHR) System "A" minimum flow recirculation Line		
Code Class:	2		
References:	 ASME Section XI, 1992 Edition with portions of the 1993 Addenda as listed in Reference 5 		
	2. ASME Section III, Subsection NC, 1974 Edition, Summer 1974 Addenda		
	3. ASME Section III, Subsection NC, 1989 Edition		
	 ASME Section XI Code Case N-561-1, Alternative Requirements for Wall Thickness Restoration of Class 2 and High Energy Class 3 Carbon Steel Piping 		
	5. GGNS-M-489.1 Program Section for ASME Section XI, Division 1 Inservice Inspection Program		
Unit / Inspection Interval	GGNS second (2 nd) 10-Year Interval		

II. REQUIREMENTS

Applicability:

ASME Section XI, Subarticle IWA-4170 states that repairs and the installation of replacement items are performed in accordance with the Owner's Design Specification and the original Construction Code of the component or system. Later editions and addenda of the Construction Code or ASME Section III, either in their entirety or portions thereof, and Code Cases may be used. The original Construction Code for the RHR system is ASME Section III, Subsection NC 1974 Edition, Summer 1974 Addenda.

ASME Section III, Subsection NC establishes detailed requirements for performing base material repairs of items with defects and installation of replacement items. For base material repairs Subarticle NC-2500 requires that base material defects be removed or reduced to an acceptable size. If the section thickness is reduced below the minimum

design thickness, then the material is repair welded. The completed repair weld is then examined in accordance with the applicable requirements of NC-2500. When replacements are performed instead of repairs, replacement items are installed in accordance with Article NC-4000. Installation welds are examined in accordance with the applicable requirements of Article NC-5000.

III. PROPOSED ALTERNATIVE

Background

On May 9, 2001 an operator noted leakage coming from a 90° elbow in line 4"-HBB-120. It was determined that the leakage was coming from a pinhole located in an eroded area of the elbow. The eroded 90° elbow is a 4", schedule 40, carbon steel (SA234, Grade WPB) fitting.

The 4-inch elbow containing the pinhole flaw is located on the RHR "A" minimum flow line returning to the Suppression Pool. The elbow is located between valve E12F018A and an 18 inch tee in the test return line going to the Suppression Pool and within the outboard Containment isolation valve boundary.

The nominal wall thickness of the 90° elbow is 0.237", and the minimum design thickness is 0.043". To determine the amount of wall thinning in the 90° elbow, the wall thickness of the elbow was ultrasonically (UT) measured at 1" increments across an 8" x 12" grid centered on the pin hole leak. Additional measurements were also obtained on $\frac{1}{4}$ " increments across a 3" x 3" grid centered on the pinhole. Except for the pinhole, the minimum design thickness is maintained UT thickness measurements ranged from 0.070" to 0.265".

Repairs are performed in accordance with the original construction code, which in this case is ASME Section III, Subsection NC. However, an ASME Section III base material repair of the inside diameter of the 90° elbow is not practical. Due to system configuration and the small diameter of the piping, the inside diameter of the elbow is inaccessible.

The installation of replacement items is also performed in accordance with the original construction code. However, a plant shutdown would be required to perform a replacement of the elbow. The elbow in question forms a part of the minimum flow line for the RHR "A" pump. It serves to protect the pump during pump starts by providing a flow path from the pump discharge to the suppression pool. The minimum flow line auto isolates once sufficient flow is established to the main header. The total duration of flow through the min flow line on pump start is generally less than 30 seconds. Additionally this elbow is an ASME Class 2 pressure boundary component, which interfaces directly with the Suppression Pool without any isolation valves in between. Therefore this elbow must function to ensure Containment integrity is maintained within design allowable water leakage limits from Containment under normal and post LOCA conditions. The elbow must also function to ensure Suppression Pool inventory requirements are met. While GGNS's preference is to replace the elbow, its removal would create an unisolatable 4"

opening in the Containment boundary. A 4" size opening cannot be supported by allowable Containment leakage limits and the calculated post accident LOCA dose analysis. Therefore, a plant shutdown is required to replace the elbow.

Proposed Alternative

Pursuant to 10CFR50.55a(a)(3)(ii), Entergy proposes an alternative to performing an internal repair or a replacement of the 90° elbow in accordance with IWA-4170. Specifically, Entergy Operations requests approval to restore the wall thickness of the elbow by means of an outside diameter weld deposited carbon steel overlay in accordance with ASME Section XI Code Case N-561-1. The request for alternative is limited to the remainder of the current operating cycle and specific to the 90° elbow with the pin hole leak in line 4"-HBB-120. At the next refueling outage, the 90° elbow with the weld overlay will be replaced in accordance with all the applicable requirements of ASME Sections III and XI.

Entergy believes that compliance with the repair rules as stated in Reference 1 and as described in Section II of this request will result in hardship and unusual difficulty without a compensating increase in the level of quality and safety. Additionally, the proposed alternative provides an acceptable level of safety and quality as demonstrated by the following paragraphs.

IV. BASIS FOR PROPOSED ALTERNATIVE

ASME Section XI Code Case N-561-1 provides an alternative to performing an internal weld repair or replacement of carbon steel piping components experiencing internal wall thinning or pitting in ASME Class 2 or high energy ASME Class 3 piping system. According to the code case, the weld metal overlay (reinforcement) is applied to the outside diameter of the piping component.

Code Case N-561-1

The code case contains strict requirements regarding materials, design, installation, examination, and follow-up inspections of the overlay as summarized below.

- **Materials:** This code case provides sufficient requirements to ensure that material condition of the piping components and weld overlays are appropriately evaluated and monitored. The material to which the weld overlay will be applied must be evaluated to establish the existing average thickness and the extent and configuration of degradation to be reinforced by the weld overlay. In addition, degradation of the overlaid piping and weld overlay must also be predicted, considered in the design, and monitored.
- **Design:** The code case provides sufficient requirements and detail to ensure development of a sound design. Design requirements in the code case address overlay thickness, overlay thickness after predicted degradation, minimum distance

CNRO-2001-00026 Attachment 1 Page 4 of 5

> between overlays, minimum distance between weld overlays and any branch connection reinforcement, orientation of overlays, overlay configuration and dimensions, tensile strength of weld overlay filler metal, and flexibility analysis.

- Installation: The code case establishes detailed instructions for fabrication of the weld overlay. According to the code case, welding procedures must be qualified in accordance with ASME Section IX and the original construction code. Welding procedures must also be qualified as groove welding procedures to ensure that the appropriate mechanical properties of the weld overlay meet design requirements. The code case also addresses temper bead welding applications, welding where through wall repairs are required, and welding with water or steam backing.
- Examination: The code case establishes detailed inspection criteria to ensure the soundness of the weld overlay. The code case requires the following inspection requirements: (1) surface examination of the surface area to which the overlay will be applied, (2) surface examination of any required through wall repairs, (3) surface examination of the first weld overlay layer, (4) surface and volumetric examination of the completed weld overlay, (5) UT examination to verify acceptable wall thickness, and (5) follow-up inspections to monitor degradation of weld overlay.

Suitability of Weld Overlay Repair

The repair to be performed to seal the leak and to restore the wall thickness will be achieved by a welding process. The welding process would deposit sufficient metal to ensure that the thinned region is re-built to the nominal wall dimension. The material used for welding is similar in composition to the low carbon steel elbow. Hence, the flow accelerated corrosion (FAC) characteristics are expected to be similar. Welding in low carbon steel is not expected to produce microstructures susceptible to enhanced corrosion since there would be no deleterious transformation products. The welding of low carbon steel is also not expected to produce welding induced flaws owing to the soft microstructure of the base metal. The extensive nondestructive examination, required for the repair effort, would ensure that no significant welding related defects exist and that the bond between the existing base metal and the deposited weld metal is sound. Given this scenario, the behavior of the base metal/weld metal composite should exhibit similar FAC behavior as the original base metal. Since the inside surface of the elbow has been significantly roughened by FAC, it is likely that the rate of wear will remain at the rate that existed just prior to the development of the leak. While this implies that there is a possibility of a slightly higher FAC wear rate during the current operating cycle, the wall thickness of the elbow will be monitored for degradation as addressed in the Follow-up Inspections section below.

The repair will be limited to the remainder of the current operating cycle with the additional requirement of periodic inspection (to monitor wall thickness) of the repair. The combination of the required inspections, limited life, restoration to nominal wall thickness and metallurgical similarity of the repair to the base metal significantly reduces the likelihood that there would be an unanticipated leak developing during the lifetime of this

CNRO-2001-00026 Attachment 1 Page 5 of 5

repair. Therefore, it is concluded that the proposed repair does restore the elbow to a condition similar to the original elbow.

Follow-up Inspections

Degradation of the 4", 90° elbow in RHR "A" minimum flow recirculation line 4"-HBB-120 is a function of the operating cycle of the RHR Pump "A". When the pump is running, the flow velocity through line 4"-HBB-120 is high, approximately 25 ft/sec. Therefore, the schedule to monitor degradation of the elbow must be based upon the pump operating cycle. Initially, UT measurements of the weld overlay will be obtained after each of the first two pump starts. These measurements will be evaluated to predict the maximum degradation of the weld overlay for its design life, which is the balance of the present operating cycle. Future inspections will be scheduled based upon the results of this evaluation as follows:

- UT measurements will be taken after every three pump starts provided the maximum predicted degradation results in an overlay thickness that meets minimum design thickness requirements through the present operating cycle.
- UT measurements will continue to be performed after each pump start if the maximum predicted degradation results in an overlay thickness that does <u>not</u> meet minimum design thickness requirements through the present operating cycle.

V. CONCLUSION

10CFR50.55a(a)(3) states:

"Proposed alternatives to the requirements of (c), (d), (e), (f), (g), and (h) of this section or portions thereof may be used when authorized by the Director of the Office of Nuclear Reactor Regulation. The applicant shall demonstrate that:

- (i) The proposed alternatives would provide an acceptable level of quality and safety, or
- (ii) Compliance with the specified requirements of this section would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety."

Entergy believes that compliance with the repair rules as stated in Reference 1 and as described in Section II of this request will result in hardship and unusual difficulty without a compensating increase in the level of quality and safety. Therefore, we request the proposed alternative be authorized pursuant to 10CFR50.55a(a)(3)(ii).

IDENTIFIED COMMITMENTS

.

•

COMMITMENT		TYPE eck one)	SCHEDULED COMPLETION DATE (If Required)
		CONTINUING COMPLIANCE	
Entergy will continue its evaluation to determine the cause of the leak and will take appropriate action to prevent recurrence. Any actions will be completed no later than startup from the next scheduled refueling outage.	~		Prior to startup from the next scheduled refueling outage
Entergy will replace the elbow containing the leak prior to startup from the next scheduled refueling outage.	~		Prior to startup from the next scheduled refueling outage
 Initially, UT measurements of the weld overlay will be obtained after each of the first two pump starts. These measurements will be evaluated to predict the maximum degradation of the weld overlay for its design life, which is the balance of the present operating cycle. Future inspections will be scheduled based upon the results of this evaluation as follows: UT measurements will be taken after every three pump starts provided the 		✓	Continuing compliance until replacement of the degraded component.
maximum predicted degradation results in an overlay thickness that meets minimum design thickness requirements through the present operating cycle.			
 UT measurements will continue to be performed after each pump start if the maximum predicted degradation results in an overlay thickness that does <u>not</u> meet minimum design thickness requirements through the present operating cycle 			