

Report No. 5074 Project 87Z-548

QUALIFICATION TEST REPORT

FOR

THE ENVIRONMENTAL QUALIFICATION OF THE TARGET ROCK CORPORATION

THREE WAY VALVE, SOLENOID OPERATED

P/N 1/2 SMS-S-02-1

IN ACCORDANCE WITH IEEE 382-1985

Farget	Rock
~~~	

.

PART NAME - 3WAY SulaNOID VAlue

TEST DELSIGN BASIS EVENT

____

C 1736 PAR 5.5.10	89 DATE	CHBR TEM?	TRANSIENT	CHBR Pizass	Time	FULL STROKE	VAIVE CYCLE		Velts DC	PRASS	
5 1736 TAC 3.12.10				<b> </b>							_:
1ST TRANSIENT											
NIGS - DAYS					=	·					
WRS - NAYS			<u> </u>		2 HRS		-				
2	<u>'l:«</u>	150	1 ST	0	20 Sec		- 1		-		
	1/18	355	151	68.2	3 HR	YES	.57		92	250	
	1115	355	157	68.2	3HR	Yes	XL		154	260	
3	1/19	1-597-					ļ				
ZNOTRANSIENT	+										
L TRANSIUM	1						-			-	
5	179	355	Swb	68.2	205	Yes	5×		92	20	
·	119	355	ZNO	68.2	3 AR	123					
				49.5	6 HR	105	JUMIN		140	135	
	1/15	335	+	41.3			APART				
	+			40.0	24 Ha	Yrzs	BUMIN		140	135	
	1/20	265		1			APART				
	1/21	215	-	27.5	2 DANK	-125	Cachir	VG STOP	Par Ar	tea yet	RU
22							CUTBOR	RO SALI	NOID C	Colorin	Fey-
							ENZEG	12270	INBOARD A WRIEK	La/ eng	
					ļ				NTINUSUL	S.G.G	260
	-				<u></u>		Solieno Qui 140		ND AT	135951G	
1					HOURS		100 140	<u>y, 10 (4</u>			
/					96.	Yres			140	135	
4	1/26	215		11.0	10.	1-1					<u> </u>
						1				<u> </u>	
VEEK		215		11.0	227.5	YAS	1×		105	125	+
1	2/2	215		11.0	395.5	Yas	1×		10 5	175	+
2	2/1	215		11.0	563.5	Yas	1×		105	125	
<u>ר</u> ע	2/23	215		11.0	731.5	YAS	17	┥	103	125	+
5	3/2	215		11.0	897.5	YAS YAS	1×	+	105	125	
6	3/20	215		11.0	1079 1247	YAS	1×		105	125	
1	3/27	215		(1.0	1415	Yas	13		115	125	
ş	4/3	- ZIS		11-0	1583	Yas	18		105	115	
9	4/10	215		11.0	1751	VAS	14		105	125	
10	4/17 4/24	215		i1-0	1916	YAL	١x		10,	INT	
<u>il</u>	51,	215		11.0	2084	Vas	14		105		
17	5/8	215		11.0	iner	Yes	1×		105	INT	
13	57,5	215		j1. 0	2470	YAS	<u> </u>		10:	- IN	
	5/17	215		j1.a	2468	Y25	17		10,		
	<u> </u>										
								+			
									-		
					_ <u></u>						
						+					
<u>.</u>									_	1	

BILLA



my gradent solar a s 11:01 FAA 1 123574 **TERI 033** TECHNICAL EVALUATION OF REPLACEMENT ITEM CONFORMAL COATING P/N 830-0005 <u>2/29/96</u> Date PREPARED BY: N. Campahelli Project Engineer 2/29/96 Date S. Karidas APPROVED BY: S. Karidas Manager, Applications Engineering <u>3/01/96</u> Date APPROVED BY: R. Glazier Manager, Quality Engineering Target Rock Target Rock Corporation, 1966E Broadhollow Road, East Farmingdale, New York 11735

	GET ROCK CORPORATION UBSIDIARY, CURTISS-WRIGHT CORPORATION	1966E BROADHOLLOW ROAD FARMINCDALE, NY 11735	PAGE 1 OF 2
			REPORT: TERI-033 PROJECT; GENERAL
1.0	ORIGINAL ITEM		
1.1	Conformal Coating havin <u>Functional Classificati</u>	<u>.</u>	0-0005.
1.2	Safety Related Valve Ap Functional Mode	pilcation	
	Passive		
1.3	Item Safety Function		
	Silicone conformal conformal conformal contection for electrication for electricatitication for electr	oating provides en al components.	nvironmental
2.0	NEED FOR TECHNICAL EVALU	JATION	
	The original conformal co has become unacceptable presented by this materi	e que to human ha	system which alth danger
3.0	FAILURE MODES AND EFFECT	28	
	Credible Failure Mode	Effects	
	Loss of protective ability	Decreased elect resistance to g	rical round.
4.0	DESIGN BASED CRITICAL CHARAC		<i>i</i>
	Environmental Acceptability		
	Material		i
	Configuration		

-1

1

# TARGET ROCK CORPORATION SUBSIDIARY, CURTISS-WRIGHT CORPORATION

1966E BROADHOLLOW ROAD FARMINGDALE, NY 11735 PAGE 2 OF 2

### 4.1 Replacement Item

Chemtronics "KORNFORM SR 2000", Type CTSR-12, Silicone Conformal coating is the replacement for "KONFORM", Type C416 silicone conformal coating.

Both items use the same silicone resin system. However the solvent system for "KONFORM SR 2000" has been modified for environmental considerations.

### 5.0 LIKE-FOR-LIKE EVALUATION

The change in solvent systems does not affect the protection provided by silicone resin system and makes this item a like for like replacement item. Based on the proceeding comparison this like for like replacement conformal coating is entirely suitable and preferred replacement for safety related applications.

Use of this replacement item does not affect environmental qualification nor does any TRC equipment qualification or design report require reconciliation as a result.

# 6.0 TECHNICAL AND QUALITY REQUIREMENTS

### 6.1 <u>Technical Requirements</u>

Configuration

Materials

# 6.2 <u>Quality Requirements</u>

• TRC acceptance of these items is based on verification of certain critical characteristics upon receipt in accordance with Critical Characteristics/Attribute Verification (CCAV) Sheet.

### 6.3 <u>Supplier Documentation</u>

TRC Part Number Supplier Part Number Certificate of Conformance

### 6.4 Acceptance Requirements

Review Certificate of Conformance Dedicate incoming items per CCAV Sheet requirements.

# Patel/EGS **Conformal Coating** (PECC)

, ré



In response to the issues highlighted Product Description in NRC IE Information Notice 84-47 and NUREG/CR-3418, Patel Engineers developed and qualified a conformal coating to reduce leakage current.

The transparent resin has been shown to greatly reduce leakage current when applied to instrumentation terminal blocks and other instrumentation terminations.

Successfully qualified by test in accordance with:

> **IEEE 323-1983 IEEE 344-1975** 10 CFR 50.49

- Qualified life of 40 years @ 90°C
- Radiation tested to 2×10⁷ rads gamma
- Accident tested to 355°F, 30 psig and 100% R.H.
- Leakage current reduced by more than 99% during accident test
- Seismic tested in excess of 6.0 a's ZPA
- Supplied under a quality assurance program in accordance with ANSI N45.2 and 10 CFR 50, Appendix B

Patel Engineers Conformal Coating (PECC) is a transparent resin solution that offers excellent dielectric properties, moisture resistance and thermal shock properties. PECC's primary usage is as a coating applied to terminal blocks and other electrical terminations. PECC eliminates excessive leakage current during postulated accident conditions and minimizes loss of insulation resistance.

# Application

Surface preparation is made by simp removing dust and contamination by brushing. PECC is applied with a nor conductive, soft-bristled brush, by spraving or dipping. Complete applic tion procedures are supplied with ea order.

# **Design Features**

- One part compound—no mixing or measuring
- Easy application
- · May be applied to energized circuits
- · Suitable for most qualified nonpolystyrene terminal block materials
- Curable at room temperature
- Tack-free in one hour
- Easily removed for later access to circuits

# How To Order

PECC is available in 4 oz. and 1 gal. containers and ordered as PECC.





KNOXVILLE OFFICE • KNOXVILLE, TENNESSEE • (615) 690-6200 • FAX: (615) 690-0429 CORPORATE HEADQUARTERS • HUNTSVILLE, ALABAMA • (205) 722-8500 • FAX: (205) 722-8533

.

:

Page 1 of 6

# EGS

# MATERIAL SAFETY DATA SHEET

# MATERIAL NAME: PATEL ENGINEERS CONFORMAL COATING (PECC)

	ID COMPANY IDENTIFICATION	
SECTION 1. CHEMICAL PRODUCT AN	D COMPANY IDENTIFICATION 24-Hour Emergency Telephone: (619) 546-6965	
EOS	Td-Tiool Dires 9	
125 West Park Loop, Suite 200		
Huntsville, AL 35806	Print Date: 9/7/95 Last Revised: 9/7/95	
MSDS No.: PECC-1		
Generic Description:	Silicone in solvent	
Physical Form:	Liquid	
Color:	Greenish yellow	
Odor:	Strong Odor	
NFPA Profile:	Health NA Flammability 3 Reactivity 0	
Note: NFPA = National Fire Protection Association		

	THE ONE CONTROLENTS	
SECTION 2.	HAZARDOUS COMPONENTS	Exposure Limits
	Wi% Compoi	
<u>CAS Number</u> 000108883	24 Toluene	OSHA PEL: TWA 200 ppm, Ceiling 300 ppm, max. 500 ppm. ACG1H TLV-skin:
01185553		trimethoxysilane TWA 50 ppm Dow Coming guide: TWA 50 ppm. Also see methyl ulcohol comments.
088952932	narolia	ylmethylphenylmethoxy None established
Comments:	Methyl alcohol forms on contact with w exposures within guidelines of OSHA	rater or humid air. Provide adequate ventilation to control PEL: TWA 200 ppm and ACGIH TLV-skin: TWA 200

ppm, STEL 250 ppm

SECTION 3. EFFECTS OF OVEREXPOSURE

Acute Effects	to the course reduces swelling and some
Eye:	Direct contact may irritate seriously with moderate to severe redness, swelling and some corneal injury lasting several days to a week.
Skin:	A single short exposure (less than 24 hours) may irritate. Repeated prolonged contact (24 us 48 hours) may irritate moderately.
Inhalation:	Short vapor exposure may cause drowsiness, irritate nose and throat and cause injury to the following organ(s); Liver. Kidneys. Nervous system.
Ofh1:	Inhaling liquid while vomiting can injure lungs seriously. Small amounts transferred to the mouth by fingers during use, etc., should not injure. Swallowing large amounts nuy
	injure slightly.
Repeated Exposu	
Skin:	None Known.

.

.....

,

Page 2 of 6

# EGS

z

# MATERIAL SAFETY DATA SHEET

# PATEL ENGINEERS CONFORMAL COATING (PECC) MATERIAL NAME:

Repeated Exposure Effe	xts (Continued)	initiate core and throat and cause injury to
Inhalation:	Short vapor exposure may c	ause drowsiness, irritate nose and threat and cause injury to er. Kidneys. Nervous system.
Oral:	Small amounts transforred t Swallowing large amounts it	o the mouth by fingers during use, etc., should not injered
Special Hazards		the second balow
This material contains	the following components with	th the special hazards listed below.
Carcinogens	•	
None Known		
Teratogens		
None Known		
Mutagens		
None Known		
Reproductive Toxins 000108883	24 Toluene	Possible Reproduction Hazard
Scnsitizers		
None Known		the sector of the humans
Comments:	have found limited evided offspring resulting from re- temperature above 150°C Formaldehyde is a potent an irritant to the eyes, no may be maintained by	laboratory animals and occupational evaluations with humans nee of birth defects, low birth weights and delayed growth in epeated exposures to toluene during pregnancy. When heated to in the presence of air, product can form formaldehyde vapors. ial cancer hazard, a known skin and respiratory sensitizer; and se, throat, skin, and digestive system. Safe handling conditions keeping vapor concentrations within the OSHA Permissible ildehyde.
		react based on actual data, results of studies performed upon

The above listed potential effects of overexposure are based on similar compositions component data and/or expert review of the product.

SECTION 4.	FIRST AID MEASURES
Eye: Skin:	Immediately flush with water for 15 minutes. Get medical attention. Remove from skin and wash thoroughly with soap and water or waterless cleanser. Get medical attention if irritation or other ill effects develop or persist.
Inhalation:	Remove to fresh air. Get medical attention if ill effects persist.
()ral:	Get medical attention. Do not induce vomiting.
Comments:	Treat according to person's condition and specifics of exposure.

ì

Page 3 of 6

# EGS

# MATERIAL SAFETY DATA SHEET

# MATERIAL NAME: PATEL ENGINEERS CONFORMAL COATING (PECC)

SECTION 5. FIRE FIGHTING N	1EASURES
Plash Point (Mothod):	55.40 Dogree F / 13.00 Dogree C
Autoignition Temperature:	Not Determined
Flamnability Limits in Air:	Not Determined
Extinguishing Media:	Carbon dioxide (CQ2). Dry chomical. Foam.
Unsuitable Extinguishing Media:	Water.
Fire Fighting Procedures:	Self-contained breathing apparatus and protective clothing should be worn in fighting fires involving chemicals. Heat exposure pressurizes closed containers. Cool with water spray. Evacuate area in case of overheating or fire.
Unusial Fire Hazards:	Vapors are heavier than air and can travel along ground to remote ignition sources. Static electricity may accumulate and ignite vapors. Prevent a possible fire hazard by suitable means, such as, bonding and grounding, inert gas purge, vapor dilution, and the like.
Hazardous Decomposition Products:	Metal oxides. Carbon oxides and traces of incompletely burned carbon compounds. Silicon dioxide. Formaldehyde.

### ACCIDENTAL RELEASE MEASURES Disposal of collected product, residues, and clean-up matorials may be SECTION 6. Containment/Clean-Up: governmentally regulated. Observe all applicable local, state, and federal waste management regulations. Remove possible ignition sources and, if needed, use nonsparking tools and equipment. To prevent possible spontaneous combustion, store rags, mops, absorbent, etc., used during clean-up only in appropriate containers or covered with water. Determine whether to evacuate or isolate the area depending on such specified factors as site location, population density, traffic flow, size of the release or spill, weather conditions, the material's hazards and risks to people, and whether a fire is underway or possible. Mop up, or wipe up, or soak up with absorbent and contain for salvage or disposal. For large spills, provide diking or other appropriate containment to keep material from spreading. Clean any remaining slippery surfaces by appropriate techniques, such as: several moppings or swabbings with appropriate solvents; washing with mild, caustic detergents or solutions; or high pressure steam for large areas. For nonsilicones, uso typical industrial cleaning materials. Observe any safety precautions applicable to the cleaning material being used. Observe all personal protection equipment recommendations described in Sections 5 and 8. Local, state, and federal reporting requirements may apply to spills or releases of this material into the environment. See applicable regulatory compliance information in Section 15.

NOTE: See Section 8 for Personal Protective Equipment for Spills

÷

Page 4 of 6

# EGS

# MATERIAL SAFETY DATA SHEET

# MATERIAL NAME: PATEL ENGINEERS CONFORMAL COATING (PECC)

#### HANDLING AND STORAGE SECTION 7.

No special precautions. Handling

Storage:	Keep container closed and away from heat, sparks, and open flame. Keep container closed and
, i i i i i i i i i i i i i i i i i i i	store away from water or moisture.

SECTION 8. EXPOS	URE CONTROLS/PERSONAL PROTECTION		
Engineering Controls			
Local Exhaust:	Recommended		
General Ventilation: .	Recommended .		
Personal Protectivo Bquir	ment for Routine Handling		
Eyes:	Use chemical worker's goggles.		
Skin:	Wash at mealtime and end of shift. Contaminated clothing and shoes should be removed as soon as practical and thoroughly cleaned before reuse. Chemical protective gloves are recommended.		
Suitable Gloves:	Eval/Unknown (Silver Shield(R), Barricade(R), Responder(R), Chemrel(R)) PE/Eval/PE (Safety4-4H(R)).		
Inhelation:	Use respiratory protection unless adequate local exhaust ventilation is provided or air sampling data show exposures are within recommended exposure guidelines. Industrial Hygiene Personnel can assist in judging the adequacy of existing engineering controls.		
Suitable Respirator:	Self-contained breathing apparatus (SCBA) or other supplied-air respirator.		
Personal Protective Equi	oment for Spills		
Eyes:	Uso full face respirator.		
Skin:	Wash at mealtime and end of shift. Contaminated clothing and shoes should be removed and thoroughly cleaned before reuse. Chemical protective gloves are recommended.		
Inhalation/Suitable Respirator:	Use self-contained breathing apparatus (SCBA) or other supplied-air respirator.		
Precautionary Measures:	Avoid eye contact. Avoid skin contact. Avoid breathing vapor. Kep container closed. Do not take internally.		
use to construct apparatu	Comments: Products evolves methyl alcohol when exposed to water or humid air. Provide ventilation during use to control exposure within Section 2 guidelines or use air-supplied or self-contained breathing apparatus.		
Note: These precautions are for room temperature handling. Use at elevated temperature, or aerosol/spray applications, may require added precautions.			

÷	ROWN	ELL-EL SE -	EGTERO ING		atel Job No.: 8504		Program Mgr./Proje	ect Eng
•	1950		/ A		ustomer P.O. No.: - M	1 -	R. Minadeo	*
	Item No.	Qty.	[:] Part No.	Serial Number	Description	Patel I.D. No.	Acceptance Criteria Document	Acce Yes
	1	40 LB	DC 1-2577	-~4-	DOW CORNING 1-2577 CONFORMAL CONTING	_		
	•				LOT NR. AO 24 027			
CTED					BATCH 520			
INSPECTED								
I TEMS			,					
II								
I							· · · · · · · · · · · · · · · · · · ·	
	РАСКЛО	SING:	Crate 'X	Metal Containe 5-6AL CAN	r Cardboard	Double Packed	Single Packed	X
	DOCUMI	ENTATION	Mate	erial tification [	- Certificate of	Certificate of Calibration	Other (Specify)	X
Τ	* 1. 4	Notice EP 15.1	of Anomaly is : Yes	required per	Description of Discrepanc:	les (continue on	reverse):	
RKS	2. D. s.	epera	ntation to k	e provided				
REMARKS			HE SHELF ITEN				Signature: Mun ROOO	1/- / - 0
							Inspector	De

		Harris and the second second	CUSTOMERTPIONNUMB	ER ANSYDERVAN	TELE	YOS A	MISC. 9	ONET :	HARGE		ELEPHON	CA MISC	CHAR	a e	TTERATI	renn-2	PET TYP	YX. AMT.	1.4×.	<u></u>
		Three streets					s	;	;			s				,3	55 38	39	64	
SHIP TO	•				11	1	2	6	201	$\frac{13}{2}$	MEN	ADEO	<u>,</u>		CANTONS		Λ	NSPORTAT	юн	
PAT	ELE	ENG			1		•	•						,	1 1			COD€		
•			RING RD		1:0	کچیہ ا	-7. -		7**		17 1 1	k au 5-859		2	WEIGHT	40*	48 U.P.S			
					[xf	¢ /-	くビ	$\mathcal{P}$	7	AL	SAL	-	•		CHARGES		P.P.		+	P
HUN	175 11	LLE			F	0	1	00	21	Ar	un	k an	you	T			P.P. 1		3	+
			35810				(T)/		F	ΔΙ				_	EDIT		TRUC		5	<b>}</b>
								120	ت 	- <i>ר</i> י	202	5-854	-500	20	OTHER	(50)	AIR		6	0
		and the second	UARANTEED	TXTYR				SO	LDT	<u> </u>		EXT	175		-		F/C		7	1
RR.1 TERR-2	PCT IND	STATE C	OUNTY CITY			ARGE					TERMS				4		BUS	HARGE	8	┝
63	63 66 7	0 72	75	70 80	<u> </u>						FOB	BALANCE	UNIT	602	UNIT PRICE	DISCT	<u></u>	ENSION		c
ORDERED	PUT UP		ATALOGUE NO.			<b>N 0 0 1</b>	, c T	× 0 .			7	002		X			+	1		
		DC	12527 4	LOLRI	12	3			_					$\square$		<u> </u>				
																+++		 		
															1 L		-			
																		   	_	
							++											i I		
												+								
															1	+-+				
						<b></b> _				ļ						+				
						·			_											
· · · · ·								-										1		
		\				┼─┼	-	┝╾┼				1		1	1			1		
						+	_	┝╌┼						+	i				-	
								$\left  - \right $	-   '	+	-				ь 1				-+	
				ORDER PACK	70 43										UB TOTAL		<u></u>	1		
ER TAKEN BY	ONDER	PULLED BY	ORDER CHECKED BY				то	TAL						<u> </u>	TOTAL					
	YOUR C	RDER NO./	SPECIAL INSTRUCTIO	N\$		]			STAT	E TAX			- %	54	LES TAXE	s	<u></u>			
										TY TA	×		- *	6	PPD TRANS				_	
									CITY NO. 0 INV0	F			%	T	TOTAL					

NO RETURNS WITHOUT AUTHORIZATION, ALL CLAIMS MUST BE ACCOMPANIED BY THIS BILL We guarantee that all merchandise covered by this invoice was produced in compliance with fair labor standards act of 1988, as amen

**ci**.

# Konform[®] SR

# **PRODUCT DESCRIPTION**

Konform[®] SR provides maximum flexibility for extreme temperatures. This transparent coating provides ideal protection for both rigid and flexible printed circuit boards. Cured coatings are hydrolyticly stable and retain their physical electrical properties after high temperature and humidity exposure. Konform[®] SR will not stress delicate circuit components.

- Extends component life by protecting against adverse environments
- Good insulation properties, excellent flexibility
- Resists moisture, salt, fungus, corrosive vapors, and severe environments
- Engineered to withstand heat generated by electronic circuitry as well as climatic temperatures
- Contains a UV indicator for thorough Quality Control inspection
- UL Recognized

# TYPICAL APPLICATIONS

Konform[®] SR is ideal for applications in:

- Aerospace
- Data Communications
- Instrumentation
- Automotive Manufacturing
- Marine Manufacturing
- Process Control

# TYPICAL PRODUCT DATA AND PHYSICAL PROPERTIES

Usable Temp. Range	(-85°F to 390°F)
of Cured Coatings	(-65°C to 200°C)
Tack Free Time	30 Min. to 1 Hour
Curing Conditions	24 Hours @ 77°F (25°C)
(@ 80% R.H.)	8 Hours @ 170° (77°C)
Specific Gravity	0.74 (Liquid only)
(Water=1) @ 68°F	
Viscosity (cps @ 77°F)	40 ± 5 cps
Flash Point (TCC)	-20°F
Volume Resistivity	$1.5 \times 10^{16}$
(ohm/cm)	
Dielectric Strength (vol	ts/mil) 1100
<b>Coefficient of Thermal</b>	$2.1 \times 10^{-4}$
Expansion (in/in/°C)	
Coverage	CTSR-1 250.9
$(1 \text{ mil/ft}^2)$	CTSR-12 21.0

# COMPATIBILITY

Konform[®] SR is generally compatible with most materials found on printed circuit boards. As with any chemical product, product/component compatibility must be determined on a non-critical area prior to use.



i		
Perfor	rmance	
Moisture Resistance	Excellent	
Removability	Excellent	
Ease of Repair	Excellent	
Flexibility	Excellent	
Adhesion	Excellent	
Abrasion Resistance	Fair	
Solvent Resistance	Good	

CHEMTRONICS

# **USAGE INSTRUCTIONS**

For industrial use only.

Read MSDS carefully prior to use.

Before applying Konform[®] SR conformal coatings. clean circuit boards to remove contamination and allow to dry. Cleaning may be performed with Chemtronics[®] Electro-Wash[®] NX or High Purity Acetone.

SPRAY APPLICATION: Apply top to bottom, allowing coating to flow evenly around components. Rotate PCB 90° and repeat application. Rotate and apply coating two additional times, then allow board to cure. If additional thickness is desired, apply additional coatings. When using liquid spray with automatic dispensing equipment, adjustments may be required in application rate and viscosity.

DIP APPLICATION: Using automatic equipment or hand immersion technique, slowly immerse PCB into the coating and remove slowly. Use an average rate of approximately 1 foot per minute. After allowing the board to cure, process may be repeated to achieve desired thickness.

BRUSH APPLICATIONS: Evenly apply coating to areas desired at thickness required. Allow time for curing before reapplying to achieve a thick coating. Use Chemask[®] to protect components during conformal coating process. After application, cured Konform[®] SR may be removed by soaking in Chemtronics[®] Electro-Wash[®] Two Step, or an aromatic solvent (such as xylene), or a short chain ketone (such as acetone).

# AVAILABILITY

CTSR-12 11 oz. Aerosol CTSR1 1 Gal. Liquid CTSR5

5 Gal. Liquid

ALHOT LINE 1-800-TEC

# ENVIRONMENTAL IMPACT DATA (For Acrosol Product)

ENVIRONMENTAL IMPACT DATA						
CFC	0.0%	VOC.	88.0%			
HCFC	0.0%	HFC	0.0%			
Cl. Solv.	0.0%	ODP	0.00			

CFC, HCFC, CL. SOLV., VOC, and HFC numbers shown are the content by weight. Ozone depletion potential (ODP) is determined in accordance with the Montreal Protocol and U.S. Clean Air Act of 1990. The ODP of this product is 0.0. It is the sum of the ODP of the substances that may contribute to the depletion of stratospheric ozone, based upon the weight of each substance in the product's formulation.

# **TECHNICAL & APPLICATION** ASSISTANCE

Chemtronics® provides a technical hotline to answer your technical and application related questions. The toll free number is: 1-800-TECH-401.

NOTE: This information is believed to be accurate. It is intended for professional end users having the skills to evaluate and use the data properly. CHEMTRONICS^{$\mathfrak{P}$} does not guarantee the accuracy of the data and assumes no liability in connection with damages incurred while using it.

# **MANUFACTURED BY:**

**ITW CHEMTRONICS** 8125 COBB CENTER DRIVE KENNESAW, GA 30152 1-770-424-4888 REV. D (03/01)

**DISTRIBUTED BY:** 

Ø1003

### CHEMTRONICS INC.

ß

÷

Kennesaw, GA 30152

Product Information: 800-TECH-401 Customer Service: 800-645-5244 Emergency: Revision Date: (Chemtrec) 800-424-9300 October 6, 1997

#### Product Identification

KONFORM [®] SR (Formerly Konform SR 2000)						
Product Code: CTSR-12						
SECTION 2: COMPOSITION/INFORMATION ON INGREI	DIENTS					
Chemical Name	CAS#	Wt. % Range				
Isohexane, a mixture of:						
3-methylpentane	96-14-0	5.0 -10.0				
2,3-dimethylbutane	79-29-8	5.0- 10.0				
2,2-dimethylbutane	75-83-2	5.0 -10.0				
2-methylpentane	107-83-5	15.0-20.0				
n-Hexane	110-54-3	0.1 -1.0				
Acetone	67-64-1	13.0-18.0				
Silicone polymer	68952-93-2	10.0-15.0				
Propane	74-98-6	10.0-15.0				
Isobutane	75-28-5	10.0-15.0				
Propylene glycol methyl ether acetate	108-65-6	2.0 - 5.0				
Toluene	108-88-3	1.0-4.0				

#### SECTION 3: HAZARD IDENTIFICATION

Emergency Overview: Translucent, slightly green liquid with hydrocarbon odor. This product is extremely flammable. Liquid will irritate eyes and skin under repeated or prolonged exposure. Breathing high concentrations of product vapor may produce drowsiness and a headache.

#### Potential Health Effects:

Eyes: Liquid, aerosols and vapors of this product are irritating and can cause pain, tearing, reddening and swelling accompanied by a stinging sensation.

Skin: Contact causes skin irritation.

Ingestion: Harmful if swallowed. Irritating to mouth, throat and stomach. May cause optic nerve damage.

Inhalation: Harmful if inhaled. High concentrations of vapors in immediate area can displace oxygen and can cause dizziness, unconsciousness, and even death with longer exposure. Keep people away from such vapors without self-contained breathing apparatus.

Pre-Existing Medical Conditions Aggravated by Exposure: Heart, lung, skin, eye.

#### SECTION 4: FIRST AID MEASURES

Eyes: Immediately flush with plenty of water. After initial flushing, remove any contact lenses and continue flushing for at least 15 minutes. Have eyes examined and tested by medical personnel if irritation develops or persists.

Skin: Wash skin with soap and water. Remove contaminated clothing. Get medical attention if irritation develops or persist. Wash clothing separately before reuse.

Ingestion: Do not induce vomiting. Get immediate medical attention.

Inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

#### SECTION 5: FIRE FIGHTING MEASURES

Flash Point:-20 F (liquid only TCC) -156 F (propellant only) LEL/UEL: Not established (% by volume in air)

Extinguishing Media: Use alcohol foam, carbon dioxide, or water spray when fighting fires involving this material.

Fire Fighting Instructions: As in any fire, wear self-contained breathing apparatus (pressure-demand, MSHA/NIOSH approved or equivalent) and full protective gear.

#### SECTION 6: ACCIDENTAL RELEASE MEASURES

Large Spills: Shut off leak if possible and safe to do so. Wear self-contained breathing apparatus and appropriate personal protective equipment. Absorb spill with inert material (e.g. dry sand or earth), then place in a chemical waste container for proper disposal. Do not flush to sewer. Avoid runoff into storm sewers and ditches which lead to waterways. Small Spills: Absorb spill with inert material (e.g. dry sand or earth), then place in a chemical (e.g. dry sand or earth), then place in a chemical waste container for proper disposal.

#### SECTION 7: HANDLING AND STORAGE

Avoid prolonged or repeated contact with eyes, skin, and clothing. Wash hands before eating. Use with adequate ventilation. Avoid breathing product vapor or mist. Do not reuse this container. Store in a cool dry place away from heat, sparks and flame. Keep container closed when not in use. Do not store in direct sunlight.

### KEEP OUT OF REACH OF CHILDREN.

SECTION 8: EXPOSURE CONTROLS/PE	RSONAL PROTECTION		
Exposure Guidelines:			
CHEMICAL NAME	ACGIH TWA	OSHA PEL	OSHA STEL
Toluene	50 ppm	200 ppm	C300 ppm
Acetone	750 ppm	1000 ppm	None Established
Propylene glycol methyl ether acetate	None Established	None Established	None Established
Work/Hygienic Practices: Good general vent	ilation should be sufficient to control	ol airborne levels. Local exhau	ist ventilation may be necessary to control any air
contaminants to within their TLVs during the u	se of this product. Wear safety glass	es with side shields (or goggles)	and rubber or other chemically resistant gloves when
handling this material.			
NFPA and HMIS Codes:	NFP	A	HMIS
Health	2		2
Flammability	3		3
Reactivity	ł		1
Personal Protection	-		В
SECTION 0. PUVSICAL AND CHEMICA	DDODEDTIES		

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES <u>Physical State:</u> Translucent, slightly green liquid <u>Odor:</u> hydrocarbon

<u>Solubility in Water:</u> slightly soluble <u>Specific Gravity:</u> 0.74 (liquid only) (Water =1)

	ATRONICS INC.							MSD	S #0710
pH: N	A				Evaporation R	ate: >1			
	Pressure: not determined				(Butyl acetate				
(Air =					Viscosity: NA				
	Density: >1				Percent Volati				
(Air =						130F (liquid by inc	lirect data onl	Y)	
•	ressure: 70 psig 77 F					43.7F (propellant or			
	ION 10: STABILITY AND REA								
	ty - This product is stable. Conditi					r other sources of ig	nition.		
	patibility: Do not mix with powdere								
	ts of Decomposition: Thermal dec			oxide, carl	on dioxide and in	completely burned h	ydrocarbons.		
_	lous Polymerization: Will not occur		<u>nd:</u> NA						
	ION 11: TOXICOLOGICAL IN	FORMATION			1				
Inhalat					Ingestion:	0 6900			
	e rat LC50 50100 mg/m3/8H				Acetone rat LD5 Toluene LD50				
	ne Rats LC50 49 gm/m3/4H lene glycol methyl ether acetate Ll	D50 8532 malka			Toluelle LD50	rat 050mg/kg			
Skin:	tene grycor metnyr culer acetate Er	D 0 0 0 0 2 11 0 Kg			Eye:				
	e Rabbit 500 mg/24H Mild irritati	on			Acetone rabbit 2	0 mg/24H MOD			
	e Rats LD50 14100 uL/kg					20 mg/24H MOD			
	ene glycol methyl ether acetate rab	0	•						
Cance	r Information: No ingredients liste	ed as human carcinoger	ns by NTP or	IARC					
SECT	ION 12: ECOLOGICAL INFOR	RMATION							
	onmental Impact Information					Environment			
Avoid runoff into storm sewers and ditches which lead to				(perce	nt by weight)				
waterw	vays. Water runoff can cause enviror	imental damage.				OFO.	0.09/ 34	00 00	(0)
DEDO	RTING								.6% .0%
-	gulations require reporting spills of t	his material that						DP 0.	
	each any surface waters. The toll fr					01. 0011.			•
	Coast Guard National Response Ce					For more info	rmation call	:	
1-800-	424-8802					1-800-645	-5244		
SECTI	ION 13: DISPOSAL CONSIDER	ATIONS							
	e of in accordance with all federal, s		ons. Water ru	noff can c	ause environmenta	I damage.			
Dispose		NFORMATION		····					
			Hazard	Sub.	Pkg.	Hazard	Pkg.	Max.	
	ION 14: TRANSPORTATION II Proper					Label	Instr.	Quant	tity
	ION 14: TRANSPORTATION I	UN Number	Class	Risk	Group				
	ION 14: TRANSPORTATION IN Proper			Risk NA	Group NA	Flammable Gas	203	5L	
SECTI Air:	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s	UN Number UN 1950	Class 2.1	NA	NA		Y203	3 60L	
SECTI Air:	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s !: Consumer Commodity	UN Number	Class	NA	-	Flammable Gas ORM-D	Y 203 Pkg.	60L 173.3	06
SECTI Air: Ground	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D	UN Number UN 1950 NA	Class 2.1	NA	NA		Y203	60L 173.3	06
SECTI Air: Ground	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR	UN Number UN 1950 NA RMATION	Class 2.1	NA	NA		Y 203 Pkg.	60L 173.3	06
Air: Ground SECTI	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION	UN Number UN 1950 NA RMATION <u>ON</u>	Class 2.1 ORM-D	NA NA	NA NA	ORM-D	Y203 Pkg. Auth	3 60L 173.3	
Air: Ground SECTI SECTIO	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c	UN Number UN 1950 NA RMATION <u>ON</u>	Class 2.1 ORM-D	NA NA	NA NA	ORM-D	Y203 Pkg. Auth	3 60L 173.3	
Air: Air: Ground SECTI SECTIO Chis pro 1986 (4	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c 10 CFR 372).	UN Number UN 1950 NA RMATION <u>ON</u> hemicals subject to the	Class 2.1 ORM-D	NA NA	NA NA	ORM-D the Emergency Plan	Y203 Pkg. Auth ming and Cor	3 60L 173.3	
Air: Ground SECTI SECTIO This pro 1986 (4 Chemio	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). cal Name	UN Number UN 1950 NA RMATION <u>ON</u>	Class 2.1 ORM-D	NA NA	NA NA	ORM-D	Y203 Pkg. Auth uning and Cor	3 60L 173.3	
Air: Air: Ground SECTI SECTI SECTI This pro 1986 (4	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). cal Name	UN Number UN 1950 NA RMATION <u>ON</u> hemicals subject to the CAS#	Class 2.1 ORM-D	NA NA	NA NA	ORM-D the Emergency Plan Wt. % Ra	Y203 Pkg. Auth uning and Cor unge 0	3 60L 173.3	
Air: Ground SECTI SECTI SECTI (his pro- 986 (4 Chemic Acetone Foluence (his inf	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 15: REGULATORY INFOR ON 13 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). cal Name e formation should be included on all	UN Number UN 1950 NA RMATION <u>DN</u> hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis	Class 2.1 ORM-D reporting rec	NA NA quirements	NA NA	ORM-D The Emergency Plan Wt. % Ra 10.0-15.	Y203 Pkg. Auth uning and Cor unge 0	3 60L 173.3	
Air: Air: Ground SECTI SECTI SECTI (1986 (4 Chemia Acetono Foluena Chis inf (OXIC	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION oduct contains the following toxic c 10 CFR 372). cal Name e formation should be included on all SUBSTANCES CONTROL ACT	UN Number UN 1950 NA RMATION <u>DN</u> hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA).	Class 2.1 ORM-D reporting rec	NA NA quirements	NA NA of Section 313 of	ORM-D The Emergency Plan Wt. % Ra 10.0-15.	Y203 Pkg. Auth uning and Cor unge 0	3 60L 173.3	
Air: Ground SECTI SECTI SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SE	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ON 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION oduct contains the following toxic c 10 CFR 372). cal Name e e formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on	UN Number UN 1950 NA RMATION <u>DN</u> hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory.	Class 2.1 ORM-D reporting rec 1 3 tributed for th	NA NA puirements	NA NA of Section 313 of	ORM-D the Emergency Plan <b>Wt. % R</b> 2 10.0-15. 1.0-5.6	Y203 Pkg. Auth uning and Cor <b>inge</b> 0	3 60L 173.3	
SECTI Ground SECTI SECTI SECTI SECTI (his pro- (986 (4 Chemic Acetone Foluene (his inf FOLUENE CALIFO CALIFO	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION oduct contains the following toxic c to CFR 372). Cal Name e formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This	UN Number UN 1950 NA MATION <u>DN</u> hemicals subject to the CAS# 67-64- 108-88. MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Toluc	Class 2.1 ORM-D reporting rec 1 3 tributed for th	NA NA puirements	NA NA of Section 313 of I.	ORM-D the Emergency Plan Wt. % Ra 10.0-15. 1.0-5.6	Y203 Pkg. Auth uning and Cor <b>inge</b> 0	3 60L 173.3	
Air: Ground SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SECTI SE	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). cal Name e e formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This al Name	UN Number UN 1950 NA RMATION ON hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Toluc CAS Nu	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic: amber	NA NA puirements	NA NA of Section 313 of I. o the state of Calif Per	ORM-D the Emergency Plan Wt. % Ra 10.0-15. 1.0-5.0 cornia to cause cance cent Wt. Range	Y203 Pkg. Auth uning and Cor <b>inge</b> 0	3 60L 173.3	
Air: Ground SECTI SECTI SECTI (1986 (4 Chemic Acetone Foluene Chis inf FOLC Chemic CALIF Chemic Coluene	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ON 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION oduct contains the following toxic c 10 CFR 372). cal Name e e formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This al Name e	UN Number UN 1950 NA RMATION 2N hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Tolue CAS Nu 108-88-	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic: amber	NA NA puirements	NA NA of Section 313 of I. o the state of Calif Per	ORM-D the Emergency Plan Wt. % Ra 10.0-15. 1.0-5.6	Y203 Pkg. Auth uning and Cor <b>inge</b> 0	3 60L 173.3	
Air: Ground SECTI SECTI SECTI SECTI Pass (4 Chemic Foluene Chemic CALIFE Chemic Coluene SECTI	ION 14: TRANSPORTATION I Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). Cal Name e formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This al Name e CON 16: OTHER INFORMATIC	UN Number UN 1950 NA RMATION ON hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Tolue CAS Nu 108-88- DN	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic: umber 3	NA NA quirements ais materia al known t	NA NA of Section 313 of I. o the state of Calif Per 1.	ORM-D the Emergency Plan <b>Wt. % Ra</b> 10.0-15. 1.0-5.6 formia to cause cance cent Wt. Range 0-5.0	Y203 Pkg. Auth uning and Cor <b>inge</b> 0 ) r.	3 60L 173.3 mmunity Right-	To-Know A
Air: Ground SECTI SECTI Inis pro- 1986 (4 Chemic Foluena Foluena Foluena Chisinf CALIF Chemic Coluena SECTI Foluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Coluena Co	ION 14: TRANSPORTATION II Proper Shipping Name Aerosols, Flammable n.o.s Consumer Commodity ORM-D ION 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATIO oduct contains the following toxic c to CFR 372). Cal Name formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This al Name CON 16: OTHER INFORMATIC is a Level 3 aerosol. Do not punct	UN Number UN 1950 NA RMATION ON hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Tolue CAS Nu 108-88- DN	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic: umber 3	NA NA quirements ais materia al known t	NA NA of Section 313 of I. o the state of Calif Per 1.	ORM-D the Emergency Plan <b>Wt. % Ra</b> 10.0-15. 1.0-5.6 formia to cause cance cent Wt. Range 0-5.0	Y203 Pkg. Auth uning and Cor <b>inge</b> 0 ) r.	3 60L 173.3 mmunity Right-	To-Know A
Air: Ground SECTI SECTION SECTION Inis pro 1986 (4 Chemic Acetona Foluena Foluena Chemic Coluena SECTION Producto e used	ION 14: TRANSPORTATION II Proper Shipping Name Aerosols, Flammable n.o.s CONSUME Commodity ORM-D ON 15: REGULATORY INFOR ON 313 SUPPLIER NOTIFICATION oduct contains the following toxic of 10 CFR 372). cal Name cal N	UN Number UN 1950 NA RMATION ON hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA). the TSCA Inventory. product contains Tolue CAS Nu 108-88- DN	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic: umber 3	NA NA quirements ais materia al known t	NA NA of Section 313 of I. o the state of Calif Per 1. on for standard ma	ORM-D the Emergency Plan <b>Wt. % Ra</b> 10.0-15. 1.0-5.6 formia to cause cance cent Wt. Range 0-5.0	Y203 Pkg. Auth uning and Cor <b>inge</b> 0 ) r.	3 60L 173.3 mmunity Right-	To-Know A
Air: Ground SECTI SECTION SECTION Inis pro 1986 (4 Chemic Acetona Foluena Foluena Chemic Coluena SECTION Producto e used	ION 14: TRANSPORTATION II Proper Shipping Name Aerosols, Flammable n.o.s CON 15: REGULATORY INFOR ON 15: REGULATORY INFOR CON 15: REGULATORY INFORMATIC oduct contains the following toxic c to CFR 372). cal Name c formation should be included on all SUBSTANCES CONTROL ACT redients of this product are listed on ORNIA PROPOSITION 65: This al Name c ON 16: OTHER INFORMATIC is a Level 3 aerosol. Do not punct when large amounts are released. ENCES 29 CFR 1910.1200	UN Number UN 1950 NA RMATION ON hemicals subject to the CAS# 67-64- 108-88- MSDSs copied and dis (TSCA), the TSCA Inventory. product contains Tolue CAS Ni 108-88- DN ure or incinerate contains	Class 2.1 ORM-D reporting rec 1 3 tributed for th ene a chemic umber 3 iners. Norma ANSI Z4	NA NA quirements als materia al known t I ventilatic 00. I-1993	NA NA of Section 313 of I. o the state of Calif Per 1. on for standard ma	ORM-D the Emergency Plan <b>Wt. % Ra</b> 10.0-15. 1.0-5.6 formia to cause cance cent Wt. Range 0-5.0	Y203 Pkg. Auth uning and Cor <b>inge</b> 0 ) r.	3 60L 173.3 mmunity Right-	To-Know A

**

To the best of our knowledge, the information contained herein is accurate. However, all materials may present unknown hazards and should be used with caution. In particular, improper use of our products and their inappropriate combination with other products and substances may produce harmful results which cannot be anticipated. Final determination of the suitability of any material is the sole responsibility of the user. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that may exist.



Display without Links | Return to Results



# **Display from REGISTRY**

ANSWER 1 © 2001 ACS

## **CAS Registry Number**

68952-93-2 REGISTRY

### **Chemical Name**

Siloxanes and Silicones, di-Me, Me methoxy, methoxy Ph, polymers with Me Ph silsesquioxanes (CA INDEX NAME)

Silsesquioxanes, Me Ph, polymers with di-Me, Me methoxy, methoxy Ph siloxanes

### Molecular Formula

Unspecified

# CAS REGISTRY

Search for information related to CAS RN 68952-93-2 in these categories:

- Material Safety (MSDS) [\$2.00]
- Regulated Chemical Lists [\$2.00]

with escience
~

***



# **Overview for Press and Media**

CAS: The World's Most Comprehensive Resource -For Chemical and Related Scientific Information

CAS, a division of the American Chemical Society, is the world's leader in providing scientists online and web access to chemistry-related research data. CAS produces the world's largest and most comprehensive databases of chemical information and makes them available through sophisticated search and analysis software for the use of scientists engaged in new product and patent research, as well as academic research in the world's leading universities. CAS databases include more than 19 million abstracts of chemistry-related literature and patents and more than 30 million substance records.

CAS was founded in 1907 with the aim of monitoring, abstracting, and indexing the world's chemistry-related literature. This aim was first accomplished through the well known printed reference work CHEMICAL ABSTRACTS (CA), which CAS continues to publish after more than 90 years. CAS began to develop computer-based publication technologies in the 1960s in order to automate the publication of CA. Today, CAS editorial processes apply the best advantages of document analysis by highly trained scientists and the benefits of advanced information technology.

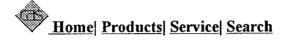
CAS indexes and abstracts patents, articles from approximately 8,000 scientific journals, conference proceedings, and other documents pertinent to chemistry, life sciences and many other fields. In 2000 alone, CAS scientists provided

- abstracts and indexing for 725,000 journal articles, patents, and other research materials
- CAS Registry Numbers and substance records for more than 5.1 million biosequences and 900,000 other organic and inorganic substances.

Through the printed CA, CA on CD, the STN International online network, the CAS files distributed through licensed vendors, the SciFinder and SciFinder Scholar desktop research tools, and the STN Easy or STN on the Web services, data produced by CAS is accessible to virtually any scientific researcher worldwide in industry, governmental research institutions, and academia.

Substance identification is a special strength of CAS, which is widely known for the CAS Chemical Registry, the largest substance identification system in existence. When a chemical substance is newly encountered in the literature processed by CAS, its molecular structure diagram, systematic chemical name, molecular formula, and other identifying information are added to the Registry and assigned a unique CAS Registry Number[®]. Registry now contains records for 18 million organic and inorganic substances and 12 million sequences.

CAS Registry Numbers are used in reference works, databases, and regulatory compliance documents by many organizations around the world to identify substances without the ambiguity of chemical nomenclature.


# For More Information, Contact

CAS Customer Service 1-800-753-4227 or 614-447-3700 http://www.cas.org

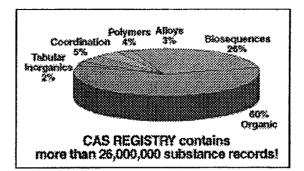
3/01

.

•



# CAS REGISTRY


CAS Registry, the world's preeminent substance database, now contains more than 30,000,000 substance records, including more than 16,000,000 organic and inorganic substances and 9,000,000 biosequences. The Registry is the world's largest collection of organic substance records.

The CAS Registry System is an international resource for chemical substance identification for scientists, industry, and regulatory bodies.

CAS REGISTRY is the largest file of substance information in the world containing structures and chemical names. It has become the worldwide authority for chemical substance identification.

# CAS Registry Numbers®

CAS REGISTRY is your complete and reliable source of CAS Registry Numbers. These unique identifiers bridge the many differences in systematic, generic, proprietary, and trivial names, linking them with the correct molecular structure. A Registry Number itself has no inherent chemical significance. CAS Registry Numbers are included in all CAS databases and the full set of Registry database information--structures, names, formulas, ring data--is available for searching on STN. CAS **REGISTRY** information is also

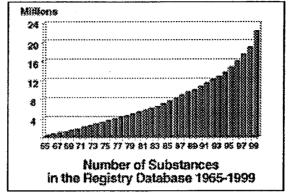


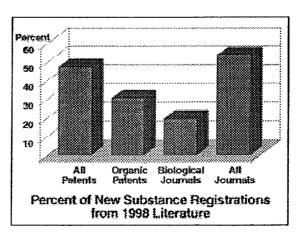
# **Types of substances**

- Organic
- Inorganic
- Metals
- Alloys
- Minerals
- Coordination
- compounds Organometallics
- Elements
- Isotopes
- Nuclear
   Particles
- Nucleic Acids
- Proteins
  - Polymers
- Nonstructurable materials

available in CAS databases offered by other online system vendors. CAS Registry Numbers are used in many public and private databases, chemical inventories, and many reference works.

# CAS REGISTRY File: Comprehensive and Current!


New substances in the CAS Registry System grew from an average of 262,000 in the first 5 years to an average of more than 1.3 million in the most recent 5 years. In 1998 alone, more than 1.7 million substances were added. Including information added retrospectively, CAS REGISTRY can be searched from 1957 to the present.


More Than 30 Million Substances Now Have CAS Registry Numbers!

Currency is a special strength of CAS. In an average working day, we add approximately 2,500 document records and 11,000 substance registrations. That amounts to a new substance registration every few seconds!

# Organic Patents are a Significant Source of New Substance Registrations from the Literature

In 1998, 47% of new substance registrations from the literature came from patents, with nearly 30% from organic patents. Of the new registrations, 19% came from biological journals.





CAS also produces the <u>CASREACT database</u>, which provides access to millions of single-step and multi-step reactions from the journal literature and patents.

Home | Products | Service | Search



# ENCLOSURE B

# Risk Sensitivity to the Reliability of the SRVs and Risk Sensitivity to the HELB Area Environment Propagation Assumptions

(Related discussion is provided in Attachment 1)

Includes:

# PSA-ES056, Revision 1 "Sensitivity Studies for PSA-ES-051" B1 - (11 pages)

and

Components Considered to be in "Medium" Harsh Environment in PSA-ES051

B2 - (42 pages)



# COOPER NUCLEAR STATION

## ENGINEERING STUDY

Sensitivity Studies for PSA-ES051

PSA-ES056

Prepared: Richard M Wachowiak, Risk Management

Date: May 3, 2001

5/3/2001

Reviewed: Glen A Seeman, Risk Management Engineer/

Approved: Richard M Wachowiak, Risk Management Supervisor

Date: May 3, 2001

Date: May 3, 2001

**Revisions**:

Number	Description	Reviewed By	Date	Approved By	Date
0	Original Issue	Glen A. Seeman	May 2, 2001	Richard M Wachowiak	May 2, 2001
1	Added clarifying statements	See Above		See Above	

t:esd\psa\psa_engstdy\es056_r1.doc

### **Problem Statement**

During the regulatory conference concerning the non-conforming EQ treatments at CNS, the NRC asked for two additional sensitivity analyses to be performed on the risk significance of the condition. The first sensitivity was to determine how much the reliability of the SRVs needed to degrade in order for the increase in CDF to cross the GREEN/WHITE threshold. The second sensitivity was to determine the importance of the assumption in PSA-ES051 that non-conforming splices would not fail until their temperature increased above 212 °F.

### Assumptions

- 1) Configuration of the plant was as described in PSA-ES051 revision 3.
- 2) The assumptions and data in PSA-ES051 apply with the exception of those described in the problem statement.
- 3) PSA 96b model results apply.
- 4) For all cases, non-conforming treatments located in the HELB area are assumed to fail. This is the same assumption that was used is PSA-ES051.
- 5) For the second sensitivity, second method, non-conforming treatments will be assumed to fail if the temperature of the area in which they are located goes above a temperature for which it is known that the splices do not fail. The maximum normal temperatures in the reactor building and steam tunnel range from 104 °F to 150 °F, depending on the specific area. Non-conforming splices and non-EQ components evaluated in PSA-ES051 are located in areas that have been subject to actual temperatures of 145 °F for several days, with peaks reaching nearly 150 °F. This equipment has not failed in the past due to temperature effects. It is therefore assumed, with high confidence, that splices and non-EQ components will not degrade unless the temperature in the area in which they are located rises above 150 °F. For additional conservatism, it will be assumed that splices and non-EQ components in the 903' and 931' general areas and in the RHR heat exchanger rooms will begin to degrade at 120 °F. For other areas that normally experience higher temperatures during operation (such as the Quads, HPCI room, Torus Area, Injection Valve room, and the Steam Tunnel), a temperature of 140 °F will be used to establish the onset of degradation.
- 6) MAAP 4.0 and Gothic 6.1a models are able to accurately predict the bulk temperature effects in RX Bldg. rooms following a HELB.
- 7) There is initially 73,000 gallons of water in the Hotwell that is initially available for injection by Feedwater or Condensate. After this is depleted, it is assumed that the operators will have to take manual action to refill the Hotwell from the CSTs using the large makeup lines. The failure probability of the manual action is based on the time available to take the action prior to core damage, and it varies depending on the size of the break and whether it is a steam or liquid line break.

### Limitations of this Evaluation

This study will be used to answer the NRC's questions from the regulatory conference. They do not alter the results of PSA-ES051 or PSA-ES-054.

### Conclusion

### Sensitivity 1

The common cause failure rate of all of the SRVs would need to be increased by a factor of 165 (16500%) in order for the results of PSA-ES051 to cross the GREEN/WHITE threshold for CDF. The drywell results in PSA-ES051 are not particularly sensitive to the failure rate of the SRVs.

### Sensitivity 2

This sensitivity was addressed in two different ways.

First, the cases in PSA-ES051 were re-evaluated using an additional assumption. If a splice was in an area that was not physically protected from the effects of the break, the supported equipment was assumed to fail with a given probability. Four different cases were run, with the probability of equipment failure set to 0.01, 0.1, 0.5, and 1.0. The failure probability was applied at the system/train level rather than the component level. The results are as follows:

	PSA-ES051	P=0.01	P=0.1	P=0.5	P=1
Delta CDF	2.57E-07	2.87E-07	6.24E-07	3.75E-06	7.10E-05

The conclusion of this sensitivity is that all of the splices away from the HELB area would simultaneously need to degrade such that the associated SSCs have a 20% probability of failure in order to change the results of PSA-ES051. Because of the condition of the non-conformances (all splices are covered by splice material, and the material properties of the splices is not challenged by the environment experienced during the HELBs), it is judged that this type of impact is not realistic for the types of non-conformances found at CNS.

Second, the assumption that splices would not degrade until they were raised to a temperature of 212 °F was changed. In this sensitivity, this threshold was lowered to a temperature where splices were known to perform reliably. Splices located in the 903' and 931' general area and in the RHR HX rooms that went above 120 °F were assumed to fail. In the lower rooms, the Injection Valve room, and the Steam Tunnel, splices were assumed to fail if they were raised above 140 °F. If the temperature in an area did not cross the new threshold, operational data has shown that the splices in the area retain their nominal reliability (i.e. failure probability of these splices should not be increased). Changing the threshold temperature caused the increase in CDF to go from  $2.57 \times 10^{-7}$  per year to  $7.15 \times 10^{-7}$  per year. Most of this change can be attributed to breaks in the Torus area and the Injection Valve room. Virtually all of the increase is due to scenarios in which isolation is successful.

The conclusion, demonstrated by each these two methods of analysis, is that the results of PSA-ES051 are not sensitive to the HELB environment propagation assumptions used in that study and PSA-ES051 provides a realistic estimate of the significance of the as found configuration.

### Evaluation

In all of the sensitivity evaluations, the CUTSETS generated for PSA-ES051 were used. The method used to quantify the CUTSETS were the same as in that study.

### Sensitivity 1

During the regulatory conference on the CNS non-conforming EQ treatments, the NRC asked the District how sensitive the results of the drywell analysis were to the reliability assumed for the SRVs. To answer this question, the drywell case from PSA-ES051 was re-calculated using different failure rates for the SRVs. The objective was to find the failure rate that caused the CDF increase calculated in PSA-ES051 to exceed 10⁻⁶ per year.

The basic event that was used to perform this sensitivity was ADS-SRV-CF-ADSRV. This is the common cause failure of sufficient SRVs to prevent depressurization. Its base failure probability is  $2.4 \times 10^{-4}$  per demand. This value is based on the common cause failure of 6 SRVs. (Subsequent anaylses have shown that it would take 8 SRVs to fail to prevent depressurization during a LOCA at CNS.)

In each run, the value for the above basic event was increased by a given factor. All of the rest of the assumed nonconformances for the drywell cases were the same as in PSA-ES051. The cutsets for the LOCA in the drywell sequences were then re-quantified to determine the resulting CDF. The CDF for the non-drywell sequences (from PSA-ES051) was then added. This represents the total CDF for the non-conforming treatments and the sensitivity. The base CDF for these sequences was subtracted to obtain the increase in CDF for the sensitivity.

Factor	P(ADS-SRV-CF-ADSRV)	Drywell CDF	Non-Drywell CDF	Base CDF	Results
1	2.4x10 ⁻⁴	1.59x10 ⁻⁷	2.60x10 ⁻⁷	1.62x10 ⁻⁷	2.57x10 ⁻⁷
10	2.4x10 ⁻³	1.99x10 ⁻⁷	2.60x10 ⁻⁷	1.62x10 ⁻⁷	2.97x10 ⁻⁷
100	2.4x10 ⁻²	6.05x10 ⁻⁷	2.60x10 ⁻⁷	1.62x10 ⁻⁷	7.03x10 ⁻⁷
200	4.8x10 ⁻²	1.06x10 ⁻⁶	2.60x10 ⁻⁷	1.62x10 ⁻⁷	1.16x10 ⁻⁶

Table 1 - Results for SRV Failure Rate Sensitivity

Since only one basic event failure rate was manipulated, the results can be approximated as a linear function between the last two data points. Interpolation yields a factor of 165, or a basic event failure rate of  $3.96 \times 10^{-2}$  per demand. This shows that the drywell results are not particularly sensitive to the failure rate of the SRVs.

### Sensitivity 2

In PSA-ES051, one of the assumptions concerning splice failure in the reactor building was that a splice needed to be heated above 212 °F before any degradation would occur. This was based on two facts. First, all of the non-conforming EQ splices had splice material covering the conductors. This was termed "no exposed metallics". In order for the splice to fail, the material properties of the splice material would need to be challenged. The second fact was derived from various test reports of EQ splices. In these reports, the activation temperature for the splice material was listed in the 235 °F to 310 °F range. PSA-ES051 assumed that 212 °F was low enough that the splice material properties would not be challenged, and consequently performance of those splices would not be degraded.

During the regulatory conference, the NRC asked the District to perform a sensitivity analysis on this assumption.

This sensitivity addresses the question in two different ways. The first way involved assuming a failure probability for splices located in rooms away from the break. This gives insights into the importance of the splice reliability itself. The second way was to adjust the threshold temperature for splice failure from 212 °F to a temperature for which there is high confidence that the performance of the splice will not be degraded. This gives insights into the overall affect of assuming a threshold temperature.

In order to address this sensitivity, other equipment that was not explicitly covered in PSA-ES051 needs to be discussed. This equipment had non-conforming splices located in areas that did not contain a HELB for any of the scenarios. The following tables describes this equipment and its impact on the PRA.

Component	Effects on PRA
SW-MO-887MV	Fails SW Crosstie to REC
SW-MO-886MV	
SW-MO-650MV	Fails SW to REC Heat Exchangers
SW-MO-651MV	
REC-MOT-RECPA	Fails REC System
REC-MOT-RECPB	

Table 2 - RX Bldg. 931' General Area Equipment with Non-Conforming Splices

REC-MOT-RECPC	
REC-MOT-RECPD	
REC-MO-695MV	No Effect - Critical loops may not be able to be separated
REC-PS-452A	No Additional Effect - Could trip non-Critical header
REC-MO-714MV	No Additional Effect - These fail AS IS, and REC is already
REC-MO-713MV	failed
REC-MO-712MV	
REC-MO-711MV	
REC-MO-721MV	
REC-MO-722MV	
REC-MO-700MV	No Effect - Maybe non-critical header could not be isolated
REC-MO-1329MV	No Effect - Maybe rad waste could not be isolated
PC-PT-512A	No Effect - One of many DW Pressure instruments

Table 3 – RX Bldg. 958' General Area Equipment with Non-Conforming Splices

Component	Effects on PRA	
PC-MO-1310MV PC-MO-231MV	No Effect - Fails DW vent path	
PC-MO-306MV PC-SOV-SPV246		

Table 4 – RX Bldg. 903' General Area Equipment with Non-Conforming Splices

Component	Effects on PRA				
SW-MO-888MV	Fails SW Crosstie to REC				
SW-MO-889MV					
RHR-MO-MO15A	No Significant Effect - Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC				
RHR-MO-MO25B	Fails RHR B Loop injection path				
RHR-MO-MO34A	Fails A Loop of torus cooling				
CS-MO-MO26A	Splices in test return line are assumed to fail A Loop of Core Spray				
RR-MO-MO53A	No Effect - May lose isolation of A Recirc Loop				
PC-MO-1311MV	No Effect - May lose DW dilution function				
PC-MO-1312MV					
CRD-SOV-SO140A	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.				
CRD-SOV-SO140B					

Each of the components in these areas that had an effect on the PRA already had a corresponding basic event in PSA-ES051 that could be used to simulate the failure of the splice. Therefore, the sequence CUTSETS from PSA-ES051 were applicable for this sensitivity.

The first sensitivity addressed here is the failure probability of non-conformances in areas away from the break. The basic events failure rates associated with these non-conformances were increased by 0.01, 0.1, 0.5, and 1.0 (limited to a value of 1.0). The CUTSETS for each HELB were then re-quantified to determine the resultant CDF. One

thing to note is that the individual non-conformances were not set to the above value, but the representative basic event. This simulates a train or system reliability rather than a splice reliability.

In the scenarios where the failure probability was set to 1.0, it is recognized that all equipment located in the RX Bldg. that has been credited in the PRA is assumed to be failed. This leaves only BOP systems and Service Water injection available to mitigate the consequences of the break. Since the event trees used in PSA-ES051 are based on LOCA sequences and nominal reliability of systems located in the RX Bldg., BOP systems are not appropriately credited in HELB scenarios. This was not an issue in PSA-ES051 (in fact it added a small amount of conservatism to the results) because some RX Bldg. equipment remained available in all scenarios. In this sensitivity analysis, this credit needs to be explicitly accounted for.

There is an initial inventory of at least 73,000 gallons in the Hotwell at the beginning of the scenario. This is based on the minimum operating level in the Hotwell. This water is available for initial injection without any operator action. The normal (automatic) makeup is at a rate of ~200 gpm, which in not sufficient to balance decay heat until several hours into the scenario. It is assumed in this study that manual action needs to be taken to re-fill the Hotwell to continue the use of Feedwater and/or Condensate, even in the cases where isolation of the break is successful.

In the scenarios in which the operators have a limited time to establish Hotwell makeup, a system failure probability of 0.25 is assumed. This is based on the operators having approximately 20 minutes to establish makeup to the condenser. The time to make the decision to perform the action was set to 8 minutes to account for the transit time to the turbine building to take the action. (PAG-006, HRA, has a mean value of 0.13 and an upper bound of 0.23 for an 8 minute operator action, with procedures, and more than one abnormal event.) These scenarios include medium and large unisolated "liquid" breaks.

In the scenarios in which the operators have more time to establish Hotwell makeup, a system failure probability of 0.1 is assumed. This is based on the operators having approximately 1 hour to establish makeup to the condenser. The time to make the decision to perform the action was set to 20 minutes because the initial Hotwell depletion may not be apparent to the operators. (PAG-006, HRA, has a mean value of  $2.7 \times 10^{-2}$  and an upper bound of  $6.4 \times 10^{-2}$  for a 20 minute operator action, with procedures, and more than one abnormal event.) These scenarios include small unisolated "liquid" breaks and large unisolated "steam" breaks. (Analysis shows that the large steam breaks would have an operator action time frame of several hours, however this study assumes the shorter time frames for this class of HELB.)

In the scenarios in which the operators have ample time to establish Hotwell makeup, a system failure probability of 0.01 is assumed. This is based on the operators having more than an hour to establish makeup to the condenser. (PAG-006, HRA, has a mean value of  $0.2 \times 10^{-3}$  and an upper bound of  $7 \times 10^{-3}$  for a 60 minute operator action, with procedures, and more than one abnormal event.) These scenarios include isolated breaks and unisolated "small-steam" breaks.

Finally, for large breaks in the steam tunnel, regardless of isolation, the value was set to 1.0. This is because the turbine building temperature is also affected for these breaks, and Condensate is assumed unavailable.

In the scenarios where the failure probability was set to 0.1 or greater, some of the sequences give a result that is higher than the 1.0 cases (above). This is attributed to one of two reasons. First, if the sequence came from a LOCA based event tree, the BOP systems may not have been fully credited. Second, the method that the District uses to quantify the scenarios uses the "rare event approximation" when quantifying the success branches in the event trees. This approximation can cause some sequences to be artificially high in some cases. This phenomena is not a concern unless a system failure probability is high (greater than 0.1). This can occur in these scenarios. To balance this, the CCDP for these scenarios will be limited to the failure probability 1.0 cases described above.

This sensitivity does not affect breaks in the drywell because there is no propagation path for the steam from the LOCA to the areas in the RX Bldg. It was determined that breaks in the steam tunnel that are 4" equivalent diameter will not cause the door between the steam tunnel and the RX Bldg. to open. (The blowout panels to the Turbine Building relieve the pressure prior to opening the door to the RX Bldg.) This prevents the effects of the HELB from propagating into the RX Bldg. and affecting splices. The analysis also shows that 10" equivalent diameter breaks will cause the door to open. For the purposes of this sensitivity, it is assumed that a large HELB in the steam tunnel

will have a 50% probability of opening the door. Medium and small breaks will not cause the door to open. If the door does open, splices in the reactor building will be included in the sensitivity. If it does not, the PSA-ES051 CCDP values will be used.

The result for each of these scenarios is summarized below. The total breakdown for each room and each break size can be found in the spreadsheet file "Components-Splices in Areas.XLS". These are listed as cases 3 through 6 for each area.

	Base	ES051	P=0.01	P=0.1	P=0.5	P=1
Drywell	1.39E-07	1.59E-07	1.59E-07	1.59E-07	1.59E-07	1.59E-07
Steam Tunnel	2.16E-08	2.37E-07	2.38E-07	2.62E-07	1.49E-06	6.52E-05
HPCI Room	2.22E-10	4.59E-10	5.22E-10	1.34E-09	1.98E-07	1.77E-06
NE Quad	5.21E-11	5.44E-11	8.21E-11	4.22E-10	4.71E-08	4.20E-07
SW Quad	8.45E-12	1.89E-11	2.14E-11	5.52E-11	6.69E-09	5.83E-08
Torus Room	2.48E-10	1.35E-08	3.98E-08	3.17E-07	6.14E-07	6.93E-07
RHR HX A Room	2.52E-11	3.54E-11	4.50E-11	3.09E-10	3.66E-08	1.84E-07
RHR HX B Room	8.29E-12	1.21E-11	1.43E-11	9.07E-11	1.36E-08	6.73E-08
Inj Valve Room	6.06E-11	8.58E-09	1.01E-08	4.39E-08	2.21E-07	4.61E-07
RWCU P A Room	1.48E-11	1.48E-11	6.32E-11	4.05E-10	2.57E-07	4.56E-07
RWCU P B Room	1.48E-11	1.48E-11	6.32E-11	4.05E-10	2.57E-07	4.56E-07
RWCU HX Room	4.19E-11	4.19E-11	1.56E-10	9.62E-10	6.06E-07	1.15E-06
Total	1.61E-07	4.19E-07	4.48E-07	7.85E-07	3.91E-06	7.11E-05
Increase		2.57E-07	2.87E-07	6.24E-07	3.75E-06	7.10E-05

Table 5 – Results for Non-Conforming Splices in Areas Away from the Break

The results above are expected because virtually all of the sequences would require more than one failure of equipment affected by splices to occur to cause core damage. In many cases, 3 to 5 failures are necessary. This makes the CDF vary proportionally to the increase in splice failure probability raised to the power of the number of components required to fail. Specifically:

- When the failure probability is increased by 0.01, this is effectively doubling the failure rate of the affected components. A minimal increase in the CDF is expected because each component would only contribute an additional few percent. Sequences are still dominated by common cause failures of support systems, and not the combination of multiple splice failures.
- When the failure probability is increased by 0.1, the effect of double and triple splice failure should begin to be apparent. In those cases, these failures would be comparable to increasing the common cause terms in the model.
- When the failure probability is increased by 0.5 to 1.0, the model results should be driven by scenarios that have multiple splice failures. The overall probability is maintained at the level reported due to the relatively low initiating event frequency, and the availability of equipment outside the reactor building to mitigate most sequences.

The results from Table 5 were graphed to determine the failure probability that would cause the results of the sensitivity to go above  $10^{-6}$  per year. This value is approximately 20%.

The conclusion of this sensitivity is that all of the splices away from the HELB area would simultaneously need to degrade such that the associated SSCs have a 20% probability of failure in order to change the results of PSA-ES051. Because of the condition of the non-conformances (all splices are covered by splice material, and the material properties of the splices is not challenged by the environment experienced during the HELBs), it is judged that this type of impact is not realistic for the types of non-conformances found at CNS.

The next sensitivity addressed here lowers the threshold for splice failure from 212 °F at the splice to a temperature of the room containing the splice for which there is high confidence that the non-conforming splices will not fail. The maximum normal temperatures in the reactor building and steam tunnel range from 104 °F to 150 °F, depending on the specific area. Non-conforming splices and non-EQ components evaluated in PSA-ES051 are located in areas that have been subject to actual temperatures of 145 °F for several days, with peaks reaching nearly 150 °F. This equipment has not failed in the past due to temperature effects. It is therefore assumed, with high confidence, that splices and non-EQ components will not degrade (i.e. failure probability remains at their nominal values) unless the temperature in the area in which they are located rises above 150 °F. For additional conservatism, it will be assumed that splices and non-EQ components in the 903' and 931' general areas and in the RHR heat exchanger rooms will begin to degrade at 120 °F. For other areas that normally experience higher temperatures during operation (such as the Quads, HPCI room, Torus Area, Injection Valve room, and the Steam Tunnel), a temperature of 140 °F will be used to establish the onset of degradation. The steam tunnel design temperature is irrelevant, since only steam tunnel breaks affect that area.

All areas and break sizes were analyzed to determine if an isolation signal would be generated. It was verified that all HELBs (with the exception of the RCIC critical crack in the Steam Tunnel and Feedwater injection line breaks) would generate at least one isolation signal. Most would generate at least two.

Also, the steam tunnel will be protected from the effects of HELBs in the RX Bldg. by a door. This door is effectively sealed (only a ¹/₂" gap at the bottom) and will not allow environmental effects from the RX Bldg. into the steam tunnel.

Finally, this method also has the same limitation for the LOCA event trees as the splice failure probability sensitivity. Because of this, in sequences where the LOCA event trees showed no mitigating capability and it was determined that BOP systems or Service Water injection were actually viable mitigating systems, the CCDPs from the sensitivity above were used. To assess the impact of this, an additional column was added to the table that left those CCDPs at 1.0.

Just as in PSA-ES051, this study will look at each break area individually.

### Drywell

Breaks in the drywell do not propagate a harsh steam environment into the reactor building or steam tunnel, so the values in PSA-ES051 remain valid.

### Steam Tunnel

All breaks in the steam tunnel will affect all non-conforming equipment in the steam tunnel. Gothic analysis indicates that 4" steam line breaks will not cause the door between the steam tunnel and the reactor building to open, while 10" steam line breaks will. Also, Gothic shows that 18" feedwater injection line breaks will cause the door to open, but temperatures will not be sufficient to affect the equipment in the reactor building.

For the purposes of this sensitivity analysis, 50% of the large breaks in the steam tunnel will affect equipment in the reactor building. If the break isolates, only the equipment in the 903' general area will be affected. If it does not isolate, the 931' level will also be affected. Equipment in the RHR Heat Exchanger rooms and the Injection Valve room will be protected by their doors. Neither the Torus area nor the Quads are affected by these breaks.

All other breaks will have no effect on equipment in the reactor building. For these, the results from PSA-ES051 remain valid.

### HPCI Room

All breaks in the HPCI room will affect both the HPCI room and the SW Quad, since the flow path out of the HPCI room is through that Quad. 4" breaks that isolate will only affect the HPCI room and SW Quad, while 10" isolated breaks can also affect the Torus area and the 903' general area. For unisolated breaks 2" and larger, 903' and 931'

levels will eventually be affected. The Torus area will also be affected. If the unisolated break is smaller than 2", only the HPCI room and the SW Quad will be affected.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors. The NE and SE Quads will also be protected because there is no significant flow path through those rooms.

### NE Quad

If the break isolates, only the NE Quad will be affected. If the break does not isolate and it is larger than 2", the Torus Area, NW and SW Quads, 903' general area, and eventually the 931' general area would be affected. Smaller breaks will only affect the NE Quad.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors. The SE Quad will also be protected because there is no significant flow path through that room.

### SW Quad

All breaks in the SW Quad will affect both the HPCI room and the SW Quad. 4" breaks that isolate will only affect the HPCI room and SW Quad, while 10" isolated breaks can also affect the Torus area and the 903' general area. For unisolated breaks 2" and larger, 903' and 931' levels will eventually be affected. The Torus area will also be affected. If the unisolated break is smaller than 2", only the HPCI room and the SW Quad will be affected.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors. The NE and SE Quads will also be protected because there is no significant flow path through those rooms.

### Torus Area

Isolated breaks larger than 4" will affect the NW and SW Quads and the 903' general area. Smaller isolated breaks will only affect the Torus area. (All HPCI steam line breaks in the Torus area are assumed to also affect the SW Quad.) Unisolated breaks larger than 2" will affect the NW and SW Quads, the 903' general area, and eventually the 931' general area. Smaller unisolated breaks will only affect the Torus area. Both HPCI and RCIC will isolate on high area temperature for any break in the Torus Area.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors. The NE and SE Quads will also be protected because there is no significant flow path through those rooms.

### RHR A Heat Exchanger Room

MAAP analysis shows that 4" isolated breaks will affect the 903' general area, while 10" breaks will eventually affect the 931' general area. This sensitivity assumes that the large isolated breaks will affect 931' and all isolated breaks will affect 903'. Without isolation, breaks smaller than 4" will affect 903' and 931'. If it is larger than 4", the entire reactor building will be affected.

In all cases, the opposite RHR HX room and the Injection Valve room will be protected by their doors.

### RHR B Heat Exchanger Room

MAAP analysis shows that 4" isolated breaks will affect the 903' general area, while 10" breaks will eventually affect the 931' general area. This sensitivity assumes that the large isolated breaks will affect 931' and all isolated breaks will affect 903'. Without isolation, breaks smaller than 4" will affect 903' and 931'. If it is larger than 4", the entire reactor building will be affected.

In all cases, the opposite RHR HX room and the Injection Valve room will be protected by their doors.

### Injection Valve Room

MAAP analysis shows that 4" isolated breaks will affect the 903' general area, while 10" breaks will eventually affect the 931' general area. This sensitivity assumes that the large isolated breaks will affect 931' and all isolated breaks will affect 903'. Without isolation, breaks smaller than 4" will affect 903' and 931'. If it is larger than 4", the entire reactor building will be affected (however reactor depressurization should prevent this).

In all cases, the RHR HX rooms will be protected by their doors.

### RWCU Pump A Room

If the break isolates, only 931' level is affected. If it does not, 903' is also affected.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors.

### RWCU Pump B Room

If the break isolates, only 931' level is affected. If it does not, 903' is also affected.

In all cases, the RHR HX rooms and the Injection Valve room will be protected by their doors.

### RWCU Heat Exchanger Room

All breaks 4" and larger affect both the 931' and 903' levels, regardless of isolation. Smaller breaks do not affect 903' if isolation is successful.

In all cases, the A RHR HX room and the Injection Valve room will be protected by their doors. The B RHR HX room is not protected for the larger breaks because it is in part of the main flow path for the steam.

The following table summarizes the results for each of the rooms.

### Table 6 – Results for Design Temperature Sensitivity

	Base	ES051	Plant Experience	Plant Experience
			Temperature with	Temperature
			BOP	without BOP
Drywell	1.39E-07	1.59E-07	1.59E-07	1.59E-07
Steam Tunnel	2.16E-08	2.37E-07	2.38E-07	2.38E-07
HPCI Room	2.22E-10	4.59E-10	1.98E-08	1.98E-08
NE Quad	5.21E-11	5.44E-11	3.61E-10	3.61E-10
SW Quad	8.45E-12	1.89E-11	1.74E-09	1.74E-09
Torus Room	2.48E-10	1.35E-08	1.83E-07	2.03E-07
RHR HX A Room	2.52E-11	3.54E-11	8.89E-10	8.25E-09
RHR HX B Room	8.29E-12	1.21E-11	1.16E-10	9.52E-10
Inj Valve Room	6.06E-11	8.58E-09	2.70E-07	4.23E-07
RWCU P A Room	1.48E-11	1.48E-11	1.46E-10	1.46E-10
RWCU P B Room	1.48E-11	1.48E-11	1.46E-10	1.46E-10
RWCU HX Room	4.19E-11	4.19E-11	2.35E-09	2.35E-09
Total	1.61E-07	4.19E-07	8.76E-07	1.06E-06
Increase		2.57E-07	7.15E-07	8.96E-07

These results are expected, since nearly every scenario retains multiple means of mitigating the initiating event. Specifically:

- Only one break location leads to a loss of all injection from systems located in the Reactor Building, the unisolated breaks in the injection valve room. In this scenario, condensate is capable of providing long term means of core cooling.
- Only one break location results in a single (inside reactor building) core cooling train remaining available for all breaks, regardless of break size or isolation. This is the torus room. The rest of the locations have multiple core cooling trains available for smaller unisolated and all isolated breaks.
- The steam tunnel and torus room are the only locations where the break results in a loss both HPCI and RCIC, regardless of break size or isolation.
- All other isolated breaks have more than one train of core cooling equipment available, requiring multiple failures to occur before a core damage event would occur. All other unisolated breaks have at least one train of core cooling equipment available, requiring multiple failures to occur before a core damage event would result (i.e. loss of at least one isolation valve plus failure of at least one core cooling train).

Table 6 shows that most of the risk is a result in breaks where limited capability is retained, the torus room, injection valve room, and steam tunnel. Credit for the re-fill of the hotwell is most important for the injection valve room HELBs, however it does not provide sufficient impact to change the results of the sensitivity analysis.

The conclusion of this sensitivity analysis is that the results of PSA-ES051 are not sensitive to the temperature picked as the threshold for splice material degradation.

## References

- 1) CNS PSA 96b
- 2) PSA-ES051 revision 3

.

- 3) PAG-006, Project Analysis Guideline for the Cooper Nuclear Station Probabilistic Risk Assessment Human Reliability Analysis Task
- 4) PRA00006, Plant Response to Spurious Operation of all SRV's due to Fire in Panel 9-3
- 4) PRA01013, Calculation of Condensate Flow Rates to the Condenser

## Files

All of the results from the various runs conducted for this study can be found in:

Components-Splices in Areas rev 1.XLS HELB Analysis – NRC Sensitivities.XLS

These files are being retained as part of the tier 2 documentation for the non-conforming EQ treatment issue.



CIC	Description	PRA Impact	Location	Break Size	9					
				Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
						(<2")				(>6")
SW-MO-888MV	Emergency Return from	Fails SW Crosstie to REC	903'					1		X
	North Critical Loop		General		X					^
SW-MO-889MV	Emergency Return from	Fails SW Crosstie to REC	903'		X					X
	South Critical Loop		General					1		,
RHR-MO-MO15A	RHR Pump A SDC Suction		903'							
		Along with MO25B, this will only	General		X					X
		leave the C pump available for SDC								
RHR-MO-MO25B	RHR Loop B Inject Inboard	Fails RHR B Loop injection path	903'		X					X
	Isolation		General					-		
RHR-MO-MO34A	Torus Cooling Loop A	Fails A Loop of torus cooling	903'		X					X
CS-MO-MO26A	Inboard Throttle CS A Test Line Recirc	Faile Allege of Care Spray	General 903'							
CS-1010-101020A	CS A Test Line Recirc	Fails A Loop of Core Spray	General		X					X
RR-MO-MO53A	Reactor Recirculation Pump	No Effect - May lose isolation of A	903'				1			-
RR-IND-IND55A	Discharge Isolation	Recirc Loop	General		X					X
PC-MO-1311MV	Drywell Dilution Supply	No Effect - May lose DW dilution	903'		+	-				
	Isolation	function	General		X					X
PC-MO-1312MV	Drywell Dilution Supply	No Effect - May lose DW dilution	903'							
	Isolation	function	General		X				1	X
CRD-SOV-SO140A/B	Trip System Backup Scram	No Effect - Backup Scram valves are			1	-				-
	Valves	done with their function within a few	General							
		seconds of the event. Also, they do			X					X
		not contribute significantly to the								
		reliability of RPS.		1						
SW-MO-887MV	Emergency Supply to REC	Fails SW Crosstie to REC	931'							x
	South Critical Loop		General		·					
SW-MO-886MV	Emergency Supply to REC	Fails SW Crosstie to REC	931'							X
	North Critical Loop		General							
SW-MO-650MV	REC Heat Exchanger A	Fails SW to REC Heat Exchangers	931'							X X
	Outlet		General						<u> </u>	
SW-MO-651MV	REC Heat Exchanger B	Fails SW to REC Heat Exchangers	931'							X
	Outlet		General							
REC-MOT-RECPA	REC Pump A	Fails REC System	931'					1		×
DEO NOT DEODD			General							
REC-MOT-RECPB	REC Pump B	Fails REC System	931' Conorol							X
DEC MOT DECDO	BEC Bump C	Foils PEC System	General	+	-					
REC-MOT-RECPC	REC Pump C	Fails REC System	931 ⁺ General			1				X
REC-MOT-RECPD		Fails REC System	931'							
REC-MUT-RECPU	REC Pump D								1	X
	I	<u></u>	General				L	<u>l</u>	1	

CIC	Description	PRA Impact	Location	Break Size	Э					
			1	Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General							×
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General							×
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General							×
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General							x
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General		1			1		×
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General							x
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General							×
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General							×
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General							x
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General							x
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General							×

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Smail	Medium	Large	Very Large ( >6")
SW-SOV-SPV451A/B	(SW flow control from REC HX )	Fails both REC heat exchangers and the SW backup to REC.	Torus Room		×		х	x	х	×
PC-MO-230MV	Torus Purge vent inboard isolation	Normally closed valve fails closed which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room		×		×	x	x	x
PC-MO-232MV	Drywell purge supply Inboard Isolation	Normally closed valve fails in the closed position that blocks drywell purge flow. No impact on PRA	Torus Room		×		x	X	x	x
PC-MO-305MV	PC-MOV-230MV Bypass	Normally closed valve fails closed which, along with the failure of PC- MO-230MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room		×		x	x	x	x
PC-MO-1305MV	Drywell Dilution – Train A	Normally closed valve fails closed preventing N2 injection to the drywell through train A. No impact on PRA.	Torus Room		×		x	×	x	×
PC-MO-1308MV	Suppression Chamber Vent Isolation	Normally closed valve fails closed preventing venting of the wetwell during standby N2 injection. No impact on PRA.	Torus Room		x		X	×	x	×
PC-SOV-SPV238	Pilot valve for 238 AV (outboard drywell purge supply isolation)	Valve fails AO238 in the closed position which blocks nitrogen purge to the drywell. No impact on PRA.	Torus Room		×		х	×	×	x
PC-SOV-SPV245		Normally closed valve fails closed. This blocks wetwell vent flow. If the valve fails open, the inboard MO provides isolation and venting is possible. No impact on PRA	Torus Room		×		x	x	×	x
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32 (Hard Pipe Vent)	Valve fails open which is the desired position. No impact on PRA.	Torus Room		x		х	×	×	×
PC-MO-233MV	Wetwell Purge Supply Inboard Isolation	Normally closed valve fails in the closed position which blocks flow through the supply duct and fails the hard pipe vent.	Torus Room		x		x	x	x	×

CIC	Description	PRA Impact	Location	Break Size	<u>)</u>	Unisolated		· · · · · · · · · · · · · · · · · · ·		
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
PC-MO-1301MV		Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room		x		х	x	x	x
PC-MO-1302MV	Suppression Chamber Standby N2 Supply – Train B	Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room		×		x	×	x	x
PC-MO-1303MV	Suppression Chamber Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impac on PRA.	Torus Room		×		x	×	x	×
PC-MO-1304MV	Suppression Chamber Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impac on PRA.	Torus Room		x		х	×	x	×
PC-TE-1/2A-H	Torus water temperature	EOP containment parameter for HCTL, per ESP 5.8.9, several alternate temperature indications and recorders available (e.g. RHR HX inlet). No impact on PRA	Torus Room		×		х	x	x	x
PC-SOV-SPV237	Pilot valve for 237 AV (outboard wetwell purge supply isolation)	Valve fails AO237 in the closed position which blocks flow through the supply duct and fails the hard pipe vent. Inadvertent opening is not a problem since the inboard valve is closed.	Torus Room		x		x	×	x	x
RHR-MO-920MV	Steam supply valve to AOG	Designed to close to prevent diversion of steam from HPCI. No impact on PRA.	Torus Room		x		х	×	x	×
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General		x		х	x	x	x
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General		×		Х	X	x	X
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General		x		x	×	×	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General		x		x	x	x	х
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General		X		х	X	x	X

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
CS-MO-MO26A	CS A Test Line Recirc		903' General		x		х	x	х	X
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	Recirc Loop	903' General		X		х	x	x	x
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		X		х	x	x	x
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		×		х	x	x	×
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	General		×		x	×	×	×
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General				х	x	x	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General				х	×	X	x
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General				х	X	х	x
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General		-		х	X	x	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General				х	X	x	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General				x	X	x	×
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General		-		X	X	X	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General				x	X	×	X
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General				х	X	x	×
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General				х	X	x	X
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General				х	X	x	×
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General				х	X	х	×
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General				х	×	×	×
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General				Х	X	×	×

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS IS	931' General				х	х	х	x
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General				х	x	х	×
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General				х	x	х	×
REC-MO-1329MV		No Effect - Maybe rad waste could not be isolated	931' General				х	х	х	×
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General				х	x	х	×

CIC	Description	PRA Impact	Location	Break Size	Э					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
SW-SOV-SPV451A/B	(SW flow control from REC HX )	Fails both REC heat exchangers and the SW backup to REC.	Torus Room				х	x	х	×
PC-MO-230MV	isolation .	Normally closed valve fails closed which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room				x	x	x	x
PC-MO-232MV	Drywell purge supply inboard Isolation	Normally closed valve fails in the closed position that blocks drywell purge flow. No impact on PRA	Torus Room				x	x	х	×
PC-MO-305MV	PC-MOV-230MV Bypass	Normally closed valve fails closed which, along with the failure of PC- MO-230MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room				×	x	x	x
PC-MO-1305MV		Normally closed valve fails closed preventing N2 injection to the drywell through train A. No impact on PRA.	Torus Room				x	×	x	×
PC-MO-1308MV	Isolation	Normally closed valve fails closed preventing venting of the wetwell during standby N2 injection. No impact on PRA.	Torus Room				х	×	x	x
PC-SOV-SPV238	Pilot valve for 238 AV (outboard drywell purge supply isolation)	Valve fails AO238 in the closed position which blocks nitrogen purge to the drywell. No impact on PRA.	Torus Room				х	×	x	x
PC-SOV-SPV245		Normally closed valve fails closed. This blocks wetwell vent flow. If the valve fails open, the inboard MO provides isolation and venting is possible. No impact on PRA	Torus Room				х	x	×	x
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32 (Hard Pipe Vent)		Torus Room				х	×	×	×
PC-MO-233MV	Wetwell Purge Supply Inboard Isolation	Normally closed valve fails in the closed position which blocks flow through the supply duct and fails the hard pipe vent.	Torus Room				x	x	x	x

•

CIC	Description	PRA Impact	Location	Break Size	Э					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
PC-MO-1301MV		Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room				х	x	х	×
PC-MO-1302MV		Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room				x	×	x	×
PC-MO-1303MV		Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room				х	x	х	×
PC-MO-1304MV	Standby N2 Supply - Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room				x	×	x	×
PC-TE-1/2A-H	Torus water temperature	EOP containment parameter for HCTL, per ESP 5.8.9, several alternate temperature indications and recorders available (e.g. RHR HX inlet). No impact on PRA	Torus Room				×	×	×	x
PC-SOV-SPV237	Pilot valve for 237 AV (outboard wetwell purge supply isolation)	Valve fails AO237 in the closed position which blocks flow through the supply duct and fails the hard pipe vent. Inadvertent opening is not a problem since the inboard valve is closed.	Torus Room				x	×	x	X
RHR-MO-920MV	Steam supply valve to AOG	Designed to close to prevent diversion of steam from HPCI. HPCI assumed failed due to high area temperature isolation. No impact on PRA.					×	x	×	x
HV-MOT-(FC-R-1H)	SW Quad Fan Coil Unit	FCU fails to run which fails RHR loop B and HPCI injection	SW Quad				x	X	X	x
RHR-MO-MO16B	RHR Pump B & D Min Flow	Normally open valve will fail closed but will only fail RHR Loop B pumps if vessel pressure is too high to inject	SW Quad				x	x	x	×
RHR-MO-MO38B	Suppression Chamber Spray Loop B Inboard Throttle	The normally closed valve will fail closed which fails Loop B of Torus Spray	SW Quad				×	x	x	x

CIC	Description	PRA Impact	Location	Break Size	3	· · · · · · · · · · · · · · · · · · ·				
				Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
						(<2")				(`>6")
RHR-MO-MO39B	Suppression Chamber	The normally closed valve will fail	SW Quad							
	Cooling Loop B Outboard	closed which fails Loop B of								
	Isolation	Suppression Pool Cooling and Torus				ļ	Х	X	Х	X
		Spray			1					
RHR-DPIS-125B	B RHR HX Discharge Min	Signal fails which prevents auto	SW Quad							
	Flow Control	reclosing of minimum flow valve after		1			х	x	x	x
		pump start. No impact on PRA.					^	^	~	^
HV-MOT-(FC-R-1J)	NW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	NW Quad							
· · · · ·							х	X	Х	X
RHR-MO-MO16A	RHR Pump A & C Min Flow	Normally open valve will fail closed	NW Quad			1				
		but will only fail RHR Loop A pumps					х	x	x	X
		if vessel pressure is too high to inject					^			
RHR-MO-MO38A	Suppression Chamber Spray	The normally closed valve will fail	NW Quad			1				
	Loop A Inboard Throttle	closed which fails Loop A of Torus					х	Х	x	X
		Spray								
RHR-MO-MO39A	Suppression Chamber	The normally closed valve will fail	NW Quad					1		
	Cooling Loop A Outboard	closed which fails Loop A of			1		v	X X	x	X
	Isolation	Suppression Pool Cooling and Torus					Х	^	^	^
		Spray								
RHR-DPIS-125A	A RHR HX Discharge Min	Signal fails which prevents auto	NW Quad			]				
	Flow Control	reclosing of minimum flow valve after	1				х	X	x	x
		pump start. No impact on PRA.					~			
SW-MO-888MV	Emergency Return from	Fails SW Crosstie to REC	903'				X	×	X	x
	North Critical Loop		General				~	×	×	^
SW-MO-889MV	Emergency Return from	Fails SW Crosstie to REC	903'				х	X	X	X
	South Critical Loop		General				<u>^</u>	<u>^</u>	<u>^</u>	^
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC.	903'	1						
	·	Along with MO25B, this will only	General				X	X	X	X
		leave the C pump available for SDC								
RHR-MO-MO25B	RHR Loop B Inject Inboard	Fails RHR B Loop injection path	903'	-			x	X	x	X
RHR-MO-MO34A	Isolation Torus Cooling Loop A	Fails A Loop of torus cooling	General 903'							
1 XI 11 X-1010-1010034A	Inboard Throttle	Fails A Loop of torus cooling	General				X	X	X	X
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903'	+						
			General		1		X	X	X	X
RR-MO-MO53A	Reactor Recirculation Pump	No Effect - May lose isolation of A	903'		1	1	v			
	Discharge Isolation	Recirc Loop	General		1		X	X	X	X

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Smail	Large	Very Small	Small	Medium	Large	Very Large
						( <2" )			Ŭ	(`>6")
PC-MO-1311MV	Drywell Dilution Supply	No Effect - May lose DW dilution	903'		<u> </u>		x	X	x	×
	Isolation	function	General				^	^	<u>^</u>	^
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution	903' General				Х	x	х	x
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General				x	x	×	x
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General				х	×	X	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General				х	X	x	×
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General				х	×	x	×
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General				x	×	X	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General			1	x	×	×	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General	-			x	×	x	X
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General				x	×	x	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General				х	×	x	×
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated					х	×	x	×
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General				х	X	x	×
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General				х	X	×	×
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General	1			х	X	x	x
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General	+		···	х	×	x	x
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General				х	x	x	x
REC-MO-721MV	Non-Critical Return to REC-F A and REC-P-B	No Additional Effect - These fail AS	931' General	1			х	X	x	X
REC-MO-722MV		No Additional Effect - These fail AS	931' General				х	x	x	×

CIC	Description	PRA Impact	Location	Break Size						
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General				х	x	х	X
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General				Х	x	х	×
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General				х	x	x	X

CIC	Description	PRA Impact	Location	Break Size	3		· · · ·			
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
SW-SOV-SPV451A/B	(SW flow control from REC HX)	Fails both REC heat exchangers and the SW backup to REC.	Torus Room		x		х	x	x	×
PC-MO-230MV	Torus Purge vent inboard isolation	Normally closed valve fails closed which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room		×		x	x	x	x
PC-MO-232MV	Drywell purge supply Inboard Isolation	Normally closed valve fails in the closed position that blocks drywell purge flow. No impact on PRA	Torus Room	-	x		х	x	x	×
PC-MO-305MV	PC-MOV-230MV Bypass	Normally closed valve fails closed which, along with the failure of PC- MO-230MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room		x		х	x	x	x
PC-MO-1305MV	Drywell Dilution Train A	Normally closed valve fails closed preventing N2 injection to the drywell through train A. No impact on PRA.	Torus Room	1. <b>1</b>	×		x	x	x	×
PC-MO-1308MV	Suppression Chamber Vent Isolation	Normally closed valve fails closed preventing venting of the wetwell during standby N2 injection. No impact on PRA.	Torus Room		x		x	x	x	x
PC-SOV-SPV238	Pilot valve for 238 AV (outboard drywell purge supply isolation)	Valve fails AO238 in the closed position which blocks nitrogen purge to the drywell. No impact on PRA.	Torus Room		×		x	×	x	x
PC-SOV-SPV245		Normally closed valve fails closed. This blocks wetwell vent flow. If the valve fails open, the inboard MO provides isolation and venting is possible. No impact on PRA	Torus Room		x		x	x	×	x
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32 (Hard Pipe Vent)	Valve fails open which is the desired position. No impact on PRA.	Torus Room		×		x	×	×	×
PC-MO-233MV	Wetwell Purge Supply Inboard Isolation	Normally closed valve fails in the closed position which blocks flow through the supply duct and fails the hard pipe vent.	Torus Room		×		×	×	×	x

CIC	Description	PRA Impact	Location	Break Size	9					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
PC-MO-1301MV	Suppression Chamber Standby N2 Supply – Train B	Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room		x		х	x	х	x
PC-MO-1302MV	Suppression Chamber Standby N2 Supply – Train B	Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room		x		х	x	х	×
PC-MO-1303MV	Suppression Chamber Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room		x		х	x	х	x
PC-MO-1304MV	Suppression Chamber Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room		x		х	×	х	×
PC-TE-1/2A-H	Torus water temperature	EOP containment parameter for HCTL, per ESP 5.8.9, several alternate temperature indications and recorders available (e.g. RHR HX inlet). No impact on PRA	Torus Room		×		x	x	×	x
PC-SOV-SPV237	Pilot valve for 237 AV (outboard wetwell purge supply isolation)	Valve fails AO237 in the closed position which blocks flow through the supply duct and fails the hard pipe vent. Inadvertent opening is not a problem since the inboard valve is closed.	Torus Room		x		x	×	x	×
RHR-MO-920MV	Steam supply valve to AOG	Designed to close to prevent diversion of steam from HPCI. HPCI assumed failed due to high area temperature isolation. No impact on PRA.	Torus Room		×		x	x	x	x
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General		x		х	х	X	X
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General		Х		х	х	x	X
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General		x		х	x	x	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General		X		х	x	x	×

CIC	Description	PRA Impact	Location	Break Size	3					
		1		Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
						( <2" )				(>6")
RHR-MO-MO34A	Torus Cooling Loop A	Fails A Loop of torus cooling	903'			1		N N	v	
	Inboard Throttle	Ů	General		X		Х	X	Х	X
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903'		X		X	x	х	X
			General		×		~		~	^
RR-MO-MO53A	Reactor Recirculation Pump	No Effect - May lose isolation of A	903'		X		×	x	х	x
	Discharge Isolation	Recirc Loop	General		^		^	^	^	1 ^
PC-MO-1311MV	Drywell Dilution Supply	No Effect - May lose DW dilution	903'		X		х	X	х	X
	Isolation	function	General		^		^	^	^	^
PC-MO-1312MV	Drywell Dilution Supply	No Effect - May lose DW dilution	903'		X		x	x	x	X
	Isolation	function	General					<u> </u>	^	^
CRD-SOV-SO140A/B	Trip System Backup Scram	No Effect - Backup Scram valves are								
	Valves	done with their function within a few	General							
		seconds of the event. Also, they do			X	1	Х	X	X	X
		not contribute significantly to the								
		reliability of RPS.								
SW-MO-887MV	Emergency Supply to REC	Fails SW Crosstie to REC	931'				х	x	x I	x
	South Critical Loop		General							
SW-MO-886MV	Emergency Supply to REC	Fails SW Crosstie to REC	931'				х	X	x	x
	North Critical Loop		General							
SW-MO-650MV	REC Heat Exchanger A	Fails SW to REC Heat Exchangers	931'			1	х	X	x	X X
014/140.05414/	Outlet REC Heat Exchanger B		General							
SW-MO-651MV	5	Fails SW to REC Heat Exchangers	931'				Х	X	х	X X
REC-MOT-RECPA	Outlet REC Pump A	Fails REC System	General 931'							
REC-MOT-RECFA	REC Pullip A	Fails REC System					Х	X X	Х	X X
REC-MOT-RECPB	REC Pump B	Fails REC System	General 931'					+		
INCO-WOI-NCOPD		Fails REC System	General				Х	X	Х	X
REC-MOT-RECPC	REC Pump C	Fails REC System	931'							
		and iteo bystem	General				Х	X	X	
REC-MOT-RECPD	REC Pump D	Fails REC System	931'							
			General				Х	X	Х	X
REC-MO-695MV	REC Critical Loop Supply	No Effect - Critical loops may not be		+				<u> </u>		
	Crosstie	able to be separated	General				Х	X	X	X
REC-PS-452A	REC HX Outlet Header Low	Could trip non-Critical header	931'	1	1	1				· · · ·
	Pressure Switch		General				Х	X	X	X
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931'	1	1					1
		IS	General				X	X	X	X
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931'	1	1		······	×	<u> </u>	
		IS	General				X	X	X	X
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931'	-	1	1			<u> </u>	1
		lis	General				Х	X	X	X

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General				х	×	Х	X
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General				х	X	×	×
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General				х	x	х	×
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General				Х	х	х	×
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General				х	x	×	×
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General				х	x	х	×

CIC	Description	PRA Impact	Location	Break Size	9					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
HV-MOT-(FC-R-1H)		FCU fails to run which fails RHR loop B and HPCI injection	SW Quad		X		Х	X	х	X
RHR-MO-MO16B		Normally open valve will fail closed but will only fail RHR Loop B pumps if vessel pressure is too high to inject	SW Quad		×		х	x	x	x
RHR-MO-MO38B	Suppression Chamber Spray Loop B Inboard Throttle	The normally closed valve will fail closed which fails Loop B of Torus Spray	SW Quad		×		х	x	х	×
RHR-MO-MO39B	Suppression Chamber Cooling Loop B Outboard Isolation	The normally closed valve will fail closed which fails Loop B of Suppression Pool Cooling and Torus Spray	SW Quad		×		х	x	x	x
RHR-DPIS-125B	B RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	SW Quad		x		х	×	x	×
HV-MOT-(FC-R-1J)	NW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	NW Quad		×		х	×	×	X
RHR-MO-MO16A	RHR Pump A & C Min Flow	Normally open valve will fail closed but will only fail RHR Loop A pumps if vessel pressure is too high to inject	NW Quad		×		х	×	х	x
RHR-MO-MO38A	Suppression Chamber Spray Loop A Inboard Throttle	The normally closed valve will fail closed which fails Loop A of Torus Sprav	NW Quad		×		х	×	x	×
RHR-MO-MO39A	Suppression Chamber Cooling Loop A Outboard Isolation	The normally closed valve will fail closed which fails Loop A of Suppression Pool Cooling and Torus Spray	NW Quad		×		х	×	x	x
RHR-DPIS-125A	A RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	NW Quad		×		х	x	х	x
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General		×		x	×	X	X
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General		×		х	x	×	×
RHR-MO-MQ15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General		×		х	x	x	×

CIC	Description	PRA Impact	Location	Break Size	Э					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General		X		Х	x	Х	X
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General		×		х	X	х	X
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General		X		x	Х	Х	×
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General		x		х	х	×	×
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		X		х	Х	х	×
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		X		х	X	X	х
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General		×		x	×	×	x
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General				х	x	x	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General				х	x	x	x
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General				х	x	X	x
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General				Х	X	×	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General				х	X	×	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General				х	X	×	×
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General				х	X	×	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General				х	×	x	x
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General				х	×	x	x
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General				х	x	x	x
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General				х	X	X	Х
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General				х	X	x	×

CIC	Description	PRA Impact	Location	Break Size	3					
				Isolated		Unisolated		-		
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS IS	931' General				х	X	х	X
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General				Х	X	х	×
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General				х	X	х	×
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General				х	х	х	×
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General				Х	x	х	×
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General				х	x	х	×
PC-PT-512A		No Effect - One of many DW Pressure instruments	931' General				Х	x	х	×

CIC	Description	PRA Impact	Location	Break Size	3					
			1	Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Smail	Medium	Large	Very Large ( >6")
SW-SOV-SPV451A/B	(SW flow control from REC HX )	Fails both REC heat exchangers and the SW backup to REC.	Torus Room						×	x
PC-MO-230MV	Torus Purge vent inboard isolation	Normally closed valve fails closed which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room						x	x
PC-MO-232MV	Drywell purge supply Inboard Isolation	Normally closed valve fails in the closed position that blocks drywell purge flow. No impact on PRA	Torus Room						х	×
PC-MO-305MV	PC-MOV-230MV Bypass	Normally closed valve fails closed which, along with the failure of PC- MO-230MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room					-	×	x
PC-MO-1305M∨	Drywell Dilution – Train A	Normally closed valve fails closed preventing N2 injection to the dryweil through train A. No impact on PRA.	Torus Room		:				x	x
PC-MO-1308MV	Suppression Chamber Vent Isolation	Normally closed valve fails closed preventing venting of the wetwell during standby N2 injection. No impact on PRA.	Torus Room						×	x
PC-SOV-SPV238	Pilot valve for 238 AV (outboard drywell purge supply isolation)	Valve fails AO238 in the closed position which blocks nitrogen purge to the drywell. No impact on PRA.	Torus Room						x	×
PC-SOV-SPV245	Pilot valve for PC-AO-245AV (wetwell purge vent outboard isolation)	Normally closed valve fails closed. This blocks wetwell vent flow. If the valve fails open, the inboard MO provides isolation and venting is possible. No impact on PRA	Torus Room						×	x
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32 (Hard Pipe Vent)	Valve fails open which is the desired position. No impact on PRA.	Torus Room						x	×
PC-MO-233MV	Wetwell Purge Supply Inboard Isolation	Normally closed valve fails in the closed position which blocks flow through the supply duct and fails the hard pipe vent.	Torus Room						x	×

CIC	Description	PRA Impact	Location	Break Size	e e e e e e e e e e e e e e e e e e e					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
PC-MO-1301MV	Suppression Chamber Standby N2 Supply – Train B	Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room						x	x
PC-MO-1302MV	Suppression Chamber Standby N2 Supply – Train B	Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA,	Torus Room				<u>, , , , , , , , , , , , , , , , , , , </u>		x	×
PC-MO-1303MV	Suppression Chamber Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impac on PRA.	Torus Room						x	×
PC-MO-1304MV		Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impac on PRA.	Torus Room						x	x
PC-TE-1/2A-H		EOP containment parameter for HCTL, per ESP 5.8.9, several alternate temperature indications and recorders available (e.g. RHR HX inlet). No impact on PRA	Torus Room						×	x
PC-SOV-SPV237	Pilot valve for 237 AV (outboard wetwell purge supply isolation)	Valve fails AO237 in the closed position which blocks flow through the supply duct and fails the hard pipe vent. Inadvertent opening is not a problem since the inboard valve is closed.	Torus Room						x	×
RHR-MO-920MV		Designed to close to prevent diversion of steam from HPCI. HPCI assumed failed due to high area temperature isolation. No impact on PRA.							×	×
HV-MOT-(FC-R-1H)		FCU fails to run which fails RHR loop B and HPCI injection	SW Quad					1	X	×
RHR-MO-MO16B		Normally open valve will fail closed but will only fail RHR Loop B pumps if vessel pressure is too high to injec	SW Quad						x	×
RHR-MO-MO38B	Suppression Chamber Spray Loop B Inboard Throttle	The normally closed valve will fail closed which fails Loop B of Torus Spray	SW Quad				<u> </u>		×	x

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated	· · · · · · · · · · ·	Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
RHR-MO-MO39B	Suppression Chamber Cooling Loop B Outboard Isolation	The normally closed valve will fail closed which fails Loop B of Suppression Pool Cooling and Torus Spray	SW Quad						x	x
RHR-DPIS-125B	B RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	SW Quad						x	x
HV-MOT-(FC-R-1J)	NW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	NW Quad			-		-	×	x
RHR-MO-MO16A	RHR Pump A & C Min Flow	Normally open valve will fail closed but will only fail RHR Loop A pumps if vessel pressure is too high to inject	NW Quad						x	x
RHR-MO-MO38A	Suppression Chamber Spray Loop A Inboard Throttle	The normally closed valve will fail closed which fails Loop A of Torus Spray	NW Quad						×	x
RHR-MO-MO39A	Suppression Chamber Cooling Loop A Outboard Isolation	The normally closed valve will fail closed which fails Loop A of Suppression Pool Cooling and Torus Spray	NW Quad		**************************************				x	x
RHR-DPIS-125A	A RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	NW Quad						×	×
RCIC-P-CP	RCIC Condensate Pump	No impact on PRA.	NE Quad		1				X	X
RCIC-P-VP	RCIC Vacuum Pump	No impact on PRA.	NE Quad						Х	X
RCIC-MO-MO14	RCIC Turbine Trip & Throttle Valve	Valve failure would fail RCIC injection; however, RCIC was failed due to the HELB.	NE Quad						×	×
RCIC-MO-MO131	Steam Supply to RCIC Turbine	Valve would close on RCIC isolation due to high area temperatures and would fail closed which would fail RCIC injection; however, RCIC was failed due to the HELB	NE Quad						×	×
RCIC-MO-MO132	Turbine Oil Cooling Water Supply	Normally open valve would fail open. No impact on PRA.							×	X
RCIC-MO-MO41	Torus Suction	Valve could inadvertently close which fails RCIC injection; however, RCIC was failed due to the HELB	NE Quad						×	×

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
RCIC-MO-MO27	RCIC Pump Min Flow Recirc to Torus	No impact on PRA	NE Quad						Х	X
RCIC-MO-MO18	RCIC Supply from Cond Storage	Normally open valve would fail open. No impact on PRA.							X	×
RCIC-MO-MO20	RCIC Pump Discharge	Normally open valve would fail open. No impact on PRA							X	×
RCIC-AO-PCV23	Aux Cool Supply PCV	Valve fails open. No impact on PRA	NE Quad						×	×
CM-PS-269	Cond to RCIC Low Alarm	No impact on PRA	NE Quad						X	X
REC-AO-TCV864	FC-R-F Inlet	Valve fails open. No impact on PRA	NE Quad						X	×
REC-FI-475A	REC to 1-FC-R-1F	No impact on PRA	NE Quad						X	X
HV-MOT-(FC-R-1F)	NE Quad FCU	FCU fails which, with the steam environment, fails CS loop A and fails RCIC	NE Quad						х	×
CS-MO-5B	CS B Min Flow Valve	No impact	SE Quad						Х	X
HV-MOT-(FC-R-1E)	SE Quad FCU	FCU fails which, with the steam environment, fails CS loop B	SE Quad						X	×
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General	x	x	×	х	x	x	×
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General	x	x	×	х	x	x	×
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General	×	x	×	х	×	×	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General	x	x	×	х	X	x	x
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General	X	X	×	х	X	×	×
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General	X	x	×	х	X	x	×
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General	X	x	×	Х	X	×	X
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	X	X	x	х	X	×	x
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	X	X	X	х	X	x	×

CIC	Description	PRA Impact	Location	Break Size	Э					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
CRD-SOV-SO140A/B	Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General	×	×	x	×	x	x	×
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General		X	x	х	x	х	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General		X	x	х	х	х	×
SW-MO-650MV		Fails SW to REC Heat Exchangers	931' General		x	x	х	х	X	×
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General		X	×	X	X	X	×
REC-MOT-RECPA		Fails REC System	931' General		x	x	х	x	X	X
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General		x	X	x	X	x	X
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General	······································	X	x	x	x	x	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General		x	x	х	x	x	×
REC-MO-695MV		No Effect - Critical loops may not be able to be separated			X	x	х	x	x	×
REC-PS-452A		Could trip non-Critical header	931' General		X	X	X	X	X	×
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General		x	×	х	x	X	×
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General		×	x	x	X	x	×
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General		X	x	х	X	x	x
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General		x	×	х	X	x	×
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General		x	×	х	x	x	x
REC-MO-722MV		No Additional Effect - These fail AS	931' General		x	×	х	X	x	x
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General		х	×	Х	X	x	Х
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General		X	×	х	x	X	×

CIC	Description	PRA Impact	Location	Break Size						
				Isolated Unisolated						
				Small	Large	Very Small	Small	Medium	Large	Very Large
						(<2")				( >6")
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW	931'		v	×	~		~	
		Pressure instruments	General					^		<u> </u>

CIC	Description	PRA Impact	Location	Break Size	Э					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
SW-SOV-SPV451A/B	(SW flow control from REC HX )	Fails both REC heat exchangers and the SW backup to REC.	Torus Room						×	x
PC-MO-230MV	Torus Purge vent inboard isolation	Normally closed valve fails closed which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room						x	x
PC-MO-232MV	Drywell purge supply Inboard Isolation	Normally closed valve fails in the closed position that blocks drywell purge flow. No impact on PRA	Torus Room						x	x
PC-MO-305MV		Normally closed valve fails closed which, along with the failure of PC- MO-230MV, eliminates the alternate vent flow path. No impact on PRA	Torus Room						x	x
PC-MO-1305MV		Normally closed valve fails closed preventing N2 injection to the drywell through train A. No impact on PRA.	Torus Room						x	×
PC-MO-1308MV	Isolation	Normally closed valve fails closed preventing venting of the wetwell during standby N2 injection. No impact on PRA.	Torus Room						x	×
PC-SOV-SPV238	Pilot valve for 238 AV (outboard drywell purge supply isolation)	Valve fails AO238 in the closed position which blocks nitrogen purge to the drywell. No impact on PRA.	Torus Room		-				×	x
PC-SOV-SPV245		Normally closed valve fails closed. This blocks wetwell vent flow. If the valve fails open, the inboard MO provides isolation and venting is possible. No impact on PRA	Torus Room		-			- <b>L</b> + L+U, V.	×	x
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32 (Hard Pipe Vent)	Valve fails open which is the desired position. No impact on PRA.	Torus Room						x	×
PC-MO-233MV	Wetwell Purge Supply Inboard Isolation	Normally closed valve fails in the closed position which blocks flow through the supply duct and fails the hard pipe vent.	Torus Room						×	×

CIC	Description	PRA Impact	Location	Break Size	9					
				Isolated		Unisolated	<u>,,,,,</u>			
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
PC-MO-1301MV		Valve closes on a group 2 isolation and fails closed preventing N2 injection to the wetwell if train A also fails. No impact on PRA.	Torus Room						x	x
PC-MO-1302MV		injection to the wetwell if train A also fails. No impact on PRA.	Torus Room				-		×	×
PC-MO-1303MV	Standby N2 Supply – Train A	Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room						x	×
PC-MO-1304MV		Normally closed valve fails closed preventing N2 injection to the wetwell if train B also fails. No impact on PRA.	Torus Room						×	×
PC-TE-1/2A-H	Torus water temperature	EOP containment parameter for HCTL, per ESP 5.8.9, several alternate temperature indications and recorders available (e.g. RHR HX inlet), No impact on PRA	Torus Room						×	x
PC-SOV-SPV237	Pilot valve for 237 AV (outboard wetwell purge supply isolation)	Valve fails AO237 in the closed position which blocks flow through the supply duct and fails the hard pipe vent. Inadvertent opening is not a problem since the inboard valve is closed.	Torus Room						x	x
RHR-MO-920MV	Steam supply valve to AOG	Designed to close to prevent diversion of steam from HPCI. HPCI assumed failed due to high area temperature isolation. No impact on PRA.	Torus Room						×	x
HV-MOT-(FC-R-1H)	SW Quad Fan Coil Unit	FCU fails to run which fails RHR loop B and HPCI injection	SW Quad						x	x
RHR-MO-MO16B			SW Quad						×	×
RHR-MO-MO38B	Suppression Chamber Spray Loop B Inboard Throttle	The normally closed valve will fail closed which fails Loop B of Torus Spray	SW Quad						x	×

CIC	Description	PRA Impact	Location	Break Size	3					
				Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
						(<2")				( >6")
RHR-MO-MO39B	Suppression Chamber	The normally closed valve will fail	SW Quad		1					
	Cooling Loop B Outboard	closed which fails Loop B of							x	x
	Isolation	Suppression Pool Cooling and Torus			1					
		Spray								
RHR-DPIS-125B		Signal fails which prevents auto	SW Quad							
	Flow Control	reclosing of minimum flow valve after							x	X X
		pump start. No impact on PRA.								
HV-MOT-(FC-R-1J)	NW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	NW Quad	<u> </u>	<u> </u>					
		Α							X	X
RHR-MO-MO16A	RHR Pump A & C Min Flow	Normally open valve will fail closed	NW Quad				· · · · · ·			
		but will only fail RHR Loop A pumps						1	V	x
		if vessel pressure is too high to inject							X	~
						1				
RHR-MO-MO38A		The normally closed valve will fail	NW Quad							
	Loop A Inboard Throttle	closed which fails Loop A of Torus							X	X
		Spray					·			
RHR-MO-MO39A	Suppression Chamber	The normally closed valve will fail	NW Quad							
	Cooling Loop A Outboard	closed which fails Loop A of							x I	X
1	Isolation	Suppression Pool Cooling and Torus								
RHR-DPIS-125A		Spray Signal fails which prevents auto	NBA/ Owned							-
RHR-DP15-125A	A RHR HX Discharge Min Flow Control		NW Quad							
		reclosing of minimum flow valve after						1	X	X
		pump start. No impact on PRA.								
RCIC-P-CP	RCIC Condensate Pump	No impact on PRA.	NE Quad		+	1			×	X
RCIC-P-VP	RCIC Vacuum Pump	No impact on PRA.	NE Quad	· · · · · · · · · · · · · · · · · · ·					X	X
RCIC-MO-MO14	RCIC Turbine Trip & Throttle	Valve failure would fail RCIC	NE Quad						X	X
	Valve	injection; however, RCIC was failed								
		due to the HELB.								
RCIC-MO-MO131	Steam Supply to RCIC	Valve would close on RCIC isolation	NE Quad						X	X
	Turbine	due to high area temperatures and								
		would fail closed which would fail								
		RCIC injection; however, RCIC was		1						
		failed due to the HELB								
RCIC-MO-MO132		Normally open valve would fail open.	NE Quad	1	<u> </u>				X	X
		No impact on PRA.								
RCIC-MO-MO41	Torus Suction	Valve could inadvertently close	NE Quad						X	X
		which fails RCIC injection; however,								[
L		RCIC was failed due to the HELB	L	<u> </u>				1		

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
RCIC-MO-MO27	RCIC Pump Min Flow Recirc to Torus		NE Quad	-					Х	X
RCIC-MO-MO18	RCIC Supply from Cond Storage	Normally open valve would fail open. No impact on PRA.	NE Quad				, <u>, , , , , , , , , , , , , , , , , , </u>		X	×
RCIC-MO-MO20	RCIC Pump Discharge	Normally open valve would fail open. No impact on PRA	NE Quad						X	×
RCIC-AO-PCV23	Aux Cool Supply PCV	Valve fails open. No impact on PRA	NE Quad						X	X
CM-PS-269	Cond to RCIC Low Alarm	No impact on PRA	NE Quad						X	X
REC-AO-TCV864	FC-R-F Inlet		NE Quad						X	×
REC-FI-475A	REC to 1-FC-R-1F	No impact on PRA	NE Quad					-	X	X
HV-MOT-(FC-R-1F)	NE Quad FCU	FCU fails which, with the steam environment, fails CS loop A and fails RCIC	NE Quad				**		X	X
CS-MO-5B	CS B Min Flow Valve	No impact	SE Quad						X	X
HV-MOT-(FC-R-1E)	SE Quad FCU	FCU fails which, with the steam environment, fails CS loop B	SE Quad						X	×
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General	X	х	×	х	x	×	X
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General	x	x	×	х	x	x	X
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General	×	×	x	х	×	x	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General	х	x	×	х	X	×	×
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General	х	x	×	х	X	×	×
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General	X	×	X	x	×	×	X
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General	x	X	x	х	x	×	X
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	x	x	x	х	x	×	X
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	x	×	×	х	×	×	X

CIC	Description	PRA Impact	Location	Break Size	Э					
		·		Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	General	×	×	×	×	x	×	×
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General		x	X	х	x	х	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General		Х	X	х	x	х	×
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General		х	X	х	x	х	x
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General		х	X	х	х	х	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General		х	×	х	X	х	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General		X	×	x	X	x	×
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General	1	X	×	Х	x	х	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General		x	x	х	X	х	×
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General		x	x	X	X	х	×
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General		X	x	X	X	х	×
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General		X	×	Х	X	х	×
REC-MO-713MV	REC HX B Outlet		931' General		X	X	Х	x	x	×
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General	1	X	x	х	x	X	×
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General		X	×	X	x	x	x
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B		931' General	1	X	x	X	x	x	x
REC-MO-722MV			931' General		×	X	×	x	x	x
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General		×	x	x	x	×	x
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General		X	×	X	x	x	×

CIC	Description	PRA Impact	Location	Break Size	;					
				Isolated Unisolated						
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General		X	X	х	×	х	X

CIC	Description	PRA Impact	Location	Break Size	e					
		,		Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
						(<2")				( >6")
SW-SOV-SPV451A/B	Pilot valve for SW-AO-AO451	Fails both REC heat exchangers and	Torus	1	1					
	(SW flow control from REC HX )	the SW backup to REC.	Room						X	×
PC-MO-230MV	Torus Purge vent inboard	Normally closed valve fails closed	Torus		1					
	isolation	which, along with the failure of PC- MO-305MV, eliminates the alternate vent flow path. No impact on PRA	Room						x	x
PC-MO-232MV	Dryweil purge supply Inboard	Normally closed valve fails in the	Torus							-
	Isolation		Room						×	X
PC-MO-305MV	PC-MOV-230MV Bypass	Normally closed valve fails closed	Torus							
			Room							
		MO-230MV, eliminates the alternate							Х	X
		vent flow path. No impact on PRA								
PC-MO-1305MV	Drywell Dilution – Train A	Normally closed valve fails closed	Torus					1		1
		preventing N2 injection to the drywell	Room						x	x
		through train A. No impact on PRA.								
PC-MO-1308MV	Suppression Chamber Vent	Normally closed valve fails closed	Torus		-			1		1
·	Isolation		Room						x	X X
		during standby N2 injection. No limpact on PRA.								
PC-SOV-SPV238	Pilot valve for 238 AV	Valve fails AO238 in the closed	Torus							
	(outboard drywell purge	position which blocks nitrogen purge	Room				1		x	×
	supply isolation)	to the drywell. No impact on PRA.								
PC-SOV-SPV245		Normally closed valve fails closed.	Torus							
		This blocks wetwell vent flow. If the	Room							
	isolation)	valve fails open, the inboard MO							X	X
		provides isolation and venting is possible. No impact on PRA								
PC-SOV-SPV32	Pilot Valve on PC-AO-AO32		Torus		+	1				
	(Hard Pipe Vent)	position. No impact on PRA.	Room						X	×
PC-MO-233MV	Wetwell Purge Supply	Normally closed valve fails in the	Torus					1		1
	Inboard Isolation	closed position which blocks flow	Room		1				x I	x
		through the supply duct and fails the								
		hard pipe vent.	L	1	1				L	

CIC	Description	PRA Impact	Location	Break Size	3		· · · ·			
				Isolated		Unisolated				
				Small	Large	Very Small	Small	Medium	Large	Very Large
					Largo	(<2")	••••••			(>6")
PC-MO-1301MV	Suppression Chamber	Valve closes on a group 2 isolation	Torus					1		
		and fails closed preventing N2	Room						~	
		injection to the wetwell if train A also							X	X
		fails. No impact on PRA.								
PC-MO-1302MV	Suppression Chamber	Valve closes on a group 2 isolation	Torus		1					
		and fails closed preventing N2	Room						x	x
		injection to the wetwell if train A also								
		fails. No impact on PRA.								
PC-MO-1303MV		Normally closed valve fails closed	Torus							
		preventing N2 injection to the	Room						x	×
		wetwell if train B also fails. No impact			1					~
		on PRA.								
PC-MO-1304MV	Suppression Chamber	Normally closed valve fails closed	Torus							
		preventing N2 injection to the	Room						X	X
		wetwell if train B also fails. No impact								
		on PRA.	_		ļ					
PC-TE-1/2A-H	Torus water temperature	EOP containment parameter for	Torus							
		HCTL, per ESP 5.8.9, several	Room	1						
		alternate temperature indications							X	X
		and recorders available (e.g. RHR								
PC-SOV-SPV237	Dilativativa fan 007 AV	HX inlet). No impact on PRA								
PC-SUV-SPV23/	Pilot valve for 237 AV	Valve fails AO237 in the closed	Torus Room						1	1
	(outboard wetwell purge	position which blocks flow through	Room	1						
	supply isolation)	the supply duct and fails the hard pipe vent. Inadvertent opening is not						ł	X	X
	r	a problem since the inboard valve is				1				
		closed.								
RHR-MO-920MV	Steam supply valve to AOG	Designed to close to prevent	Torus							
		diversion of steam from HPCI. HPCI						1		
		assumed failed due to high area							X	x
		temperature isolation. No impact on								
		PRA.								
HV-MOT-(FC-R-1H)	SW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	SW Quad				·····		X	X
		B and HPCI injection							^	^
RHR-MO-MO16B	RHR Pump B & D Min Flow	Normally open valve will fail closed	SW Quad						1	
		but will only fail RHR Loop B pumps							x	x
		if vessel pressure is too high to inject	t		1					
RHR-MO-MO38B	Suppression Chamber Sprav	The normally closed valve will fail	SW Quad	+	+				<u> </u>	
	Loop B Inboard Throttle	closed which fails Loop B of Torus							X	X
		Spray								

CIC	Description	PRA Impact	Location	Break Size	9				****	
				Isolated		Unisolated				·····
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
RHR-MO-MO39B	Suppression Chamber Cooling Loop B Outboard Isolation	The normally closed valve will fail closed which fails Loop B of Suppression Pool Cooling and Torus Spray	SW Quad						x	×
RHR-DPIS-125B	B RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	SW Quad						x	x
HV-MOT-(FC-R-1J)	NW Quad Fan Coil Unit	FCU fails to run which fails RHR loop	NW Quad					-	x	X
RHR-MO-MO16A		Normally open valve will fail closed but will only fail RHR Loop A pumps if vessel pressure is too high to inject	NW Quad						x	x
RHR-MO-MO38A	Suppression Chamber Spray Loop A Inboard Throttle	The normally closed valve will fail closed which fails Loop A of Torus Spray	NW Quad						×	×
RHR-MO-MO39A	Suppression Chamber Cooling Loop A Outboard Isolation	The normally closed valve will fail closed which fails Loop A of Suppression Pool Cooling and Torus Spray	NW Quad						x	x
RHR-DPIS-125A	A RHR HX Discharge Min Flow Control	Signal fails which prevents auto reclosing of minimum flow valve after pump start. No impact on PRA.	NW Quad						×	×
RCIC-P-CP	RCIC Condensate Pump	No impact on PRA.	NE Quad	<u> </u>					X	X
RCIC-P-VP	RCIC Vacuum Pump	No impact on PRA.	NE Quad						X	X
RCIC-MO-MO14		Valve failure would fail RCIC injection; however, RCIC was failed due to the HELB.	NE Quad						X	×
RCIC-MO-MO131		Valve would close on RCIC isolation due to high area temperatures and would fail closed which would fail RCIC injection; however, RCIC was failed due to the HELB	NE Quad						X	X
RCIC-MO-MO132	Turbine Oil Cooling Water Supply	Normally open valve would fail open. No impact on PRA.	NE Quad						×	X
RCIC-MO-MO41	Torus Suction	Valve could inadvertently close which fails RCIC injection; however, RCIC was failed due to the HELB	NE Quad						×	×

CIC	Description	PRA Impact	Location	Break Size	:					
				Isolated		Unisolated				
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")
RCIC-MO-MO27	RCIC Pump Min Flow Recirc to Torus	No impact on PRA	NE Quad						Х	X
RCIC-MO-MO18	RCIC Supply from Cond Storage	Normally open valve would fail open. No impact on PRA.							х	X
RCIC-MO-MO20	RCIC Pump Discharge	Normally open valve would fail open. No impact on PRA	NE Quad						х	X
RCIC-AO-PCV23	Aux Cool Supply PCV	Valve fails open. No impact on PRA	NE Quad						Х	×
CM-PS-269	Cond to RCIC Low Alarm	No impact on PRA	NE Quad	1					Х	X
REC-AO-TCV864	FC-R-F Inlet	Valve fails open. No impact on PRA	NE Quad						Х	×
REC-FI-475A	REC to 1-FC-R-1F	No impact on PRA	NE Quad		· · · · · · ·				X	×
HV-MOT-(FC-R-1F)	NE Quad FCU	FCU fails which, with the steam environment, fails CS loop A and fails RCIC	NE Quad						Х	×
CS-MO-5B	CS B Min Flow Valve	No impact	SE Quad						Х	X
HV-MOT-(FC-R-1E)	SE Quad FCU	FCU fails which, with the steam environment, fails CS loop B	SE Quad						X	×
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General	x	X	×	х	x	x	×
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General	x	x	x	х	Х	X	×
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General	x	x	×	х	x	x	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General	X	×	×	х	x	x	×
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General	X	X	×	х	X	X	×
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General	X	x	×	х	Х	х	×
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General	x	X	X	х	X	х	X
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	×	x	×	х	X	×	X
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General	X	X	×	х	×	x	×

CIC	Description	PRA Impact	Location	Break Size	9					
				Isolated		Unisolated				
				Smail	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
CRD-SOV-SO140A/B	Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	General	x	×	x	x	x	×	×
SW-MO-887MV	South Critical Loop	Fails SW Crosstie to REC	931' General		X	X	х	×	х	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General		x	x	х	×	x	×
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General		X	X	х	X	х	×
SW-MO-651MV		Fails SW to REC Heat Exchangers	931' General		X	X	×	X	×	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General		X	×	x	X	X	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General		×	×	×	x	×	×
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General		x	X	х	x	X	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General		x	X	х	x	x	×
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General		X	×	x	X	×	×
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General		X	×	х	x	x	×
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General		X	X	x	X	x	×
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General		X	X	x	X	×	×
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General		X	×	x	X	×	×
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General		×	×	х	x	×	×
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS IS	931' General		x	x	х	X	×	x
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General		X	x	х	X	×	x
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General		×	×	х	X	X	X
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General		X	×	х	x	x	×

CIC	Description	PRA Impact	Location	Break Size						
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General		х	X	х	х	х	X

CIC	Description	PRA Impact	Location	Break Size							
	,			Isolated		Unisolated					
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")	
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General			X	х	X	Х	х	
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General			×	х	X	х	Х	
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General			x	х	×	х	×	
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General			×	х	x	×	×	
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General			x	х	X	х	x	
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General			×	х	X	×	×	
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General			×	х	X	×	×	
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General			×	х	X	x	×	
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General			×	х	×	×	×	
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General			x	×	x	×,	x	
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General	X	×	×	×	X	x	x	
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General	X	x	×	×	x	x	×	
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General	х	x	X	X	X	x	x	
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General	Х	x	X	×	X	x	×	
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General	X	x	×	х	x	X	х	
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General	X	X	×	X	x	×	X	
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General	X	×	×	×	X	X	x	
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General	X	x	×	×	x	x	×	

CIC	Description	PRA Impact	Location	Break Size							
	·		1	Isolated		Unisolated					
				Small	Large	Very Small (<2")	Small	Medium	Large   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   X	Very Large ( >6")	
REC-MO-695MV	Crosstie	No Effect - Critical loops may not be able to be separated	931' General	x	×	X	х	X	×	×	
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General	×	х	×	х	×	Х	×	
REC-MO-714MV	a a a a a a a a a a a a a a a a a a a	No Additional Effect - These fail AS	931' General	x	X	X	х	Х	X	×	
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General	х	×	×	Х	х	x	x	
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' Generai	X	x	×	х	X	×	×	
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General	x	х	X	х	x	×	×	
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General	X	х	x	х	x	x	X	
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General	х	X	x	х	X	x	X	
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General	x	X	x	х	X	×	Х	
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General	X	X	×	х	x	x	X	
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General	х	×	×	х	X	x	X	
PC-MO-1310MV	Drywell Vent Isolation	Fails DW vent path	958' General	x	x	x	х	X	×	X	
PC-MO-231MV	Drywell Inboard Isolation	Fails DW vent path	958' General	x	X	×	х	×	x	X	
PC-MO-306MV	Drywell Inboard Isolation Bypass	Fails DW vent path	958' General	X	×	×	х	X	x	X	
PC-SOV-SPV246	Drywell Exharst Outboard Isolation	Fails DW vent path	958' General	x	×	×	×	x	x	x	

CIC	Description	PRA Impact	Location	Break Size							
				Isolated		Unisolated					
				Small	Large	Very Small ( <2" )	Small	Medium	Large	Very Large ( >6")	
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General			X	х	×	х	X	
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General			X	х	X	X	×	
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General			x	х	×	×	×	
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General			x	х	x	×	×	
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General			x	х	X	х	×	
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General			×	х	X	x	×	
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General			×	х	Х	X	×	
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution	903' General			X	х	X	X	×	
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General			х	Х	X	X	×	
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General			x	×	×	×	X	
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General	X	x	×	х	x	x	×	
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General	x	x	×	х	X	x	x	
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General	X	×	×	×	X	X	x	
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General	x	x	×	×	X	x	×	
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General	x	×	×	x	x	x	x	
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General	X	×	×	х	x	x	x	
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General	x	×	×	×	x	X	x	
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General	x	×	×	x	x	x	×	

CIC	Description	PRA Impact	Location	Break Size							
				Isolated		Unisolated					
				Small	Large	Very Small (<2")	Small	Medium	x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x      x	Very Large ( >6")	
REC-MO-695MV	REC Critical Loop Supply Crosstie	No Effect - Critical loops may not be able to be separated	931' General	х	х	Х	х	×	х	X	
REC-PS-452A	REC HX Outlet Header Low Pressure Switch	Could trip non-Critical header	931' General	х	х	X	Х	x	X	×	
REC-MO-714MV	South Critical Loop Supply	No Additional Effect - These fail AS	931' General	Х	X	X	×	x	x	×	
REC-MO-713MV	REC HX B Outlet	No Additional Effect - These fail AS	931' General	х	X	×	х	x	х	×	
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General	x	X	x	х	x	x	×	
REC-MO-711MV	North Critical Loop Supply	No Additional Effect - These fail AS	931' General	x	X	x	Х	x	x	×	
REC-MO-721MV	Non-Critical Return to REC-P A and REC-P-B	No Additional Effect - These fail AS	931' General	x	X	x	х	x	×	×	
REC-MO-722MV	Non-Critical Return to REC-P C and REC-P-D	No Additional Effect - These fail AS	931' General	x	X	×	х	X	x	×	
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General	x	x	×	х	x	×	×	
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General	×	x	x	х	x	x	×	
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General	X	x	x	х	x	×	×	
PC-MO-1310MV	Drywell Vent Isolation	Fails DW vent path	958' General	X	X	X	х	X	x	X	
PC-MO-231MV	Drywell Inboard Isolation	Fails DW vent path	958' General	X	X	×	х	X	х	Х	
PC-MO-306MV	Drywell Inboard Isolation Bypass	Fails DW vent path	958' General	X	x	×	х	x	x	X	
PC-SOV-SPV246	Drywell Exharst Outboard Isolation	Fails DW vent path	958' General	X	x	×	х	x	x	×	

CIC	Description	PRA Impact	Location	Break Size	?					
				Isolated		Unisolated				
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")
SW-MO-888MV	Emergency Return from North Critical Loop	Fails SW Crosstie to REC	903' General		X	x	X	x	×	X
SW-MO-889MV	Emergency Return from South Critical Loop	Fails SW Crosstie to REC	903' General		X	×	X	X	х	×
RHR-MO-MO15A	RHR Pump A SDC Suction	Reduces reliability of RHR for SDC. Along with MO25B, this will only leave the C pump available for SDC	903' General		×	x	х	x	х	×
RHR-MO-MO25B	RHR Loop B Inject Inboard Isolation	Fails RHR B Loop injection path	903' General		X	×	x	X	×	×
RHR-MO-MO34A	Torus Cooling Loop A Inboard Throttle	Fails A Loop of torus cooling	903' General		x	x	х	X	×	x
CS-MO-MO26A	CS A Test Line Recirc	Fails A Loop of Core Spray	903' General		x	×	х	X	X	×
RR-MO-MO53A	Reactor Recirculation Pump Discharge Isolation	No Effect - May lose isolation of A Recirc Loop	903' General		x	×	х	X	×	×
PC-MO-1311MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		x	×	х	х	x	×
PC-MO-1312MV	Drywell Dilution Supply Isolation	No Effect - May lose DW dilution function	903' General		×	×	×	×	×	×
CRD-SOV-SO140A/B	Trip System Backup Scram Valves	No Effect - Backup Scram valves are done with their function within a few seconds of the event. Also, they do not contribute significantly to the reliability of RPS.	903' General		×	x	x	×	×	x
SW-MO-887MV	Emergency Supply to REC South Critical Loop	Fails SW Crosstie to REC	931' General	X	x	×	х	X	x	×
SW-MO-886MV	Emergency Supply to REC North Critical Loop	Fails SW Crosstie to REC	931' General	X	x	×	×	x	x	×
SW-MO-650MV	REC Heat Exchanger A Outlet	Fails SW to REC Heat Exchangers	931' General	x	x	×	х	X	X	×
SW-MO-651MV	REC Heat Exchanger B Outlet	Fails SW to REC Heat Exchangers	931' General	x	×	×	х	x	X	×
REC-MOT-RECPA	REC Pump A	Fails REC System	931' General	x	x	×	х	X	X	×
REC-MOT-RECPB	REC Pump B	Fails REC System	931' General	х	×	×	х	x	x	×
REC-MOT-RECPC	REC Pump C	Fails REC System	931' General	x	×	×	x	X	×	×
REC-MOT-RECPD	REC Pump D	Fails REC System	931' General	Х	X	×	х	X	X	×

CIC	Description	PRA Impact	Location	Break Size							
				Isolated		Unisolated					
				Small	Large	Very Small (<2")	Small	Medium	Large	Very Large ( >6")	
REC-MO-695MV	Crosstie	No Effect - Critical loops may not be able to be separated	General	x	X	X	х	x	х	х	
REC-PS-452A	Pressure Switch	Could trip non-Critical header	931' General	x	X	×	×	x	X	×	
REC-MO-714MV		No Additional Effect - These fail AS IS	931' General	X	X	×	х	х	х	×	
REC-MO-713MV		No Additional Effect - These fail AS	931' General	X	X	x	х	X	X	×	
REC-MO-712MV	REC HX A Outlet	No Additional Effect - These fail AS	931' General	x	x	×	х	X	x	×	
REC-MO-711MV		No Additional Effect - These fail AS	931' General	x	x	X	×	x	×	×	
REC-MO-721MV	Non-Critical Return to REC-P- A and REC-P-B	No Additional Effect - These fail AS	931' General	x	x	X	х	X	x	×	
REC-MO-722MV	Non-Critical Return to REC-P- C and REC-P-D	No Additional Effect - These fail AS	931' General	X	x	X	х	X	x	×	
REC-MO-700MV	Non-Critical Supply Header Shutoff	No Effect - Maybe non-critical header could not be isolated	931' General	X	×	×	х	x	×	×	
REC-MO-1329MV	ARW Building Supply	No Effect - Maybe rad waste could not be isolated	931' General	X	x	x	х	X	x	×	
PC-PT-512A	Drywell Pressure Indication	No Effect - One of many DW Pressure instruments	931' General	X	X	x	х	X	X	×	
PC-MO-1310MV	Drywell Vent Isolation	Fails DW vent path	958' General	X	X	x	х	X	×	×	
PC-MO-231MV	Drywell Inboard Isolation	Fails DW vent path	958' General	X	X	×	х	X	×	×	
PC-MO-306MV	Drywell Inboard Isolation Bypass	Fails DW vent path	958' General	X	X	×	х	x	×	×	
PC-SOV-SPV246	Drywell Exharst Outboard Isolation	Fails DW vent path	958' General	x	x	x	Х	X	×	×	
RHR-MO-MO12B	RHR HX B Outlet	Normally open valve fails open. No impact on PRA	RHR HX E Room	3	X	×	х	X	X	×	
RHR-MO-MO65B	RHR HX B Inlet	Normally open valve fails open. No impact on PRA	RHR HX I Room	3	X	×	х	x	×	×	
RHR-MO-MO66B	RHR HX B Bypass Throttle	Valve starts event in open position and fails open which fails the RHR HX B.	RHR HX I Room		x	×	×	×	×	x	
RHR-MO-MO166B	RHR HX B Vent	No impact on PRA	RHR HX I Room		×	×	х	х	X	×	
RHR-SO-SSV61	RHR Effluent Sample Valve	No impact on PRA	RHR HX I Room	3	x	×	х	x	×	×	