

Nuclear Management Company, LLC Prairie Island Nuclear Generating Plant 1717 Wakonade Dr. East • Welch MN 55089

> Prairie Island Technical Specifications 6.6.B

US Nuclear Regulatory Commission Attn: Document Control Desk

Washington, DC 20555

May 15, 2001

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

 Docket Nos. 50-282
 License Nos.
 DPR-42

 50-306
 DPR-60

 72-10
 SNM-2506

2000 Annual Radiological Environmental Monitoring Report

In accordance with the Prairie Island Nuclear Generating Plant Technical Specifications, Appendix A to Operating License DPR-42 and DPR-60, and in accordance with the Prairie Island Independent Spent Fuel Storage Installation Technical Specifications, Appendix A to Materials License DNM-2506, we are submitting one copy of the Annual Radiological Environmental Monitoring Report covering the period January 1, 2000 through December 31, 2000.

Please contact us if you have any questions related to the information we have provided.

Joel P. Sorensen Site Vice President Prairie Island Nuclear Generating Plant

c: Regional Administrator, III, NRC Region III Attn: Dr. John House NRC Project Manager Director of NMSS Sr. Resident Inspector, NRC State of Minnesota Attn: Tim Donakowski J. Silberg

Attachment: Annual report to the United States Nuclear Regulatory Commission, Radiation Environmental Monitoring Program, January 1, 2000 through December 31, 2000.

1/025

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

XCEL ENERGY CORPORATION

PRAIRIE ISLAND NUCLEAR GENERATING PLANT Docket No. 50-282 License No. DPR-42 50-306 **DPR-60**

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiation Environmental Monitoring Program

January 1 to December 31, 2000

Prepared under Contract by

ENVIRONMENTAL, Inc. MIDWEST LABORATORY

Project No. 8010

Brohia Grob, M.S. aboratory Manager

Approved:

Doc. Type 7.24C

PREFACE

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by members of the staff of the Prairie Island Nuclear Generating Plant, operated by Nuclear Management Company, LLC for Xcel Energy Corporation. The report was prepared by Environmental, Inc., Midwest Laboratory.

-

TABL	E OF	CONTENTS

~

.

Section	Page
	Prefaceii
	List of Tablesiv
	List of Figuresv
1.0	INTRODUCTION
2.0	SUMMARY
3.0	RADIATION ENVIRONMENTAL MONITORING PROGRAM (REMP)
	3.1Program Design and Data Interpretation33.2Program Description43.3Program Execution53.4Laboratory Procedures63.5Program Modifications63.6Land Use Census6
4.0	RESULTS AND DISCUSSION
	4.1 Atmospheric Nuclear Detonations and Nuclear Accidents7
	4.2 Summary of Preoperational Data7
	4.3 Program Findings
5.0	FIGURES AND TABLES
6.0	REFERENCES CITED
APPEN	IDICES
A	Interlaboratory Comparison Program Results
в	Data Reporting Conventions
С	Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted AreasC-1
D	Sampling Location MapsD-1

LIST OF TABLES

-

<u>No</u> .	Title	<u>Page</u>
5.1	Sample Collection and Analysis Program	13
5.2	Sampling Locations	14
5.3	Missed Collections and Analyses	17
5.4	Radiation Environmental Monitoring Program Summary	20
In ad	dition, the following tables are in the Appendices:	

Appendix A

_

.

.

A-1	U.S. Environmental Protection Agency's Crosscheck Program results	.A1-1
A-2	Crosscheck Program Results; (TLDs)	.A2-1
A-3	In-house "Spiked" Samples	.A3-1
A-4	In-house "Blank" Samples	.A4-1
A-5	In-house "Duplicate" Samples	A5-1
A-6	Department of Energy MAPEP comparison results	A6-1
A-7	Environmental Measurements Laboratory Quality (EML) Assessment Program comparison results	A7-1

Appendix C

.

C-1	Maximum Permissible Concentrations of Radioactivity in Air and Water	
	Above Natural Background in Unrestricted AreasC	2-2

....

LIST OF FIGURES

-

Ļ

.

<u>No</u> .	Title	Page
5.1	Offsite Ambient Radiation (TLDs), average of inner and outer ring indicator locations versus control, 1985-2000	18
5.2	Airborne Particulates; analysis for gross beta, average mean of all indicator locations (P-2,3,4,6) versus control location (P-1), 1985-2000	19

1.0 INTRODUCTION

This report summarizes and interprets results of the Radiation Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory at the Prairie Island Nuclear Generating Plant, Red Wing, Minnesota, during the period January -December, 2000. This program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the plant on its surroundings.

Tabulations of the individual analyses made during the year are not included in this report. These data are included in a reference document (Environmental, Inc., Midwest Laboratory, 2001b) available at Prairie Island Nuclear Generating Plant.

Prairie Island Nuclear Generating Plant is located on the Mississippi River in Goodhue County, Minnesota, owned by Xcel Energy Corporation and operated by Nuclear Management Company, LLC. The plant has two 575 MWe pressurized water reactors. Unit 1 achieved initial criticality on 1 December 1973. Commercial operation at full power began on 16 December 1973. Unit 2 achieved initial criticality on 17 December 1974. Commercial operation at full power began on 21 December 1974.

2.0 SUMMARY

The Radiation Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Technical Specifications for the Prairie Island Nuclear Generating Plant and the Independent Spent Fuel Storage Installation (ISFSI) is described. Results for 2000 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Prairie Island Nuclear Generating Plant.

3.0 RADIATION ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiation Environmental Monitoring Program (REMP) at the Prairie Island Nuclear Generating Plant is to assess the impact of the plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLDs).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- (3) Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Prairie Island Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in the environmental samples collected from the plant site. The plant's monitoring program includes analyses for tritium and iodine-131. Most samples are also analyzed for gammaemitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered radiological impact indicators.

The other group quantified consists of niobium-95, ruthenium-103 and -106, cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation

3.1 Program Design and Data Interpretation (continued)

of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the Plant became operational. Results of the plant's monitoring program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 Program Description

The sampling and analysis schedule for the radiation environmental monitoring program at Prairie Island is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the reactor site or ISFSI facility, as appropriate. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Prairie Island Nuclear Generating Plant, 2000). Maps of fixed sampling locations are included in Appendix E.

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at five locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at all of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. A quarterly composite of the particulate filters from each location is gamma-scanned on an HPGe detector. One of the five locations is a control (P-1), and four are indicators (P-2, P-3, P-4, and P-6).

Offsite ambient gamma radiation is monitored at thirty-four locations, using CaSO4:Dy dosimeters with four sensitive areas at each location: ten in an inner ring in the general area of the site boundary, fifteen in the outer ring within a 4-5 mile radius, eight at special interest locations, and one control location, 11.1 miles distant from the plant. They are replaced and measured quarterly. Also, a complete emergency set of TLDs for the inner ring, outer ring and special interest locations are placed in the field at the same time as regular sets. The emergency set is returned to EIML quarterly for annealing and repackaging.

Ambient gamma radiation is monitored at the Independent Spent Fuel Storage Installation (ISFSI) Facility by twenty CaSO4:Dy dosimeters. Twelve dosimeters are located inside of the earthen berm in direct line of sight from the storage casks and eight dosimeters are located outside of the earthen berm. They are replaced and measured quarterly.

Milk samples are collected monthly from five farms (four indicator and one control) and analyzed for iodine-131 and gamma-emitting isotopes. The milk is collected biweekly during the growing season (May - October), because the milk animals may be on pasture.

For additional monitoring of the terrestrial environment, green leafy vegetables (cabbage) are collected annually from the highest D/Q garden and a control location (P-38), and analyzed for gamma-emitting isotopes, including iodine-131. Corn is collected annually only if fields are irrigated with river water and analyzed for gamma-emitting isotopes. Well water and ground water are collected quarterly from four locations near the plant and analyzed for tritium and gamma-emitting isotopes. River water is collected weekly at two locations, one

3.2 Program Description (continued)

upstream of the plant (P-5) and one downstream (P-6, Lock and Dam No.3). Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Drinking water is collected weekly from the City of Red Wing well. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, periphyton or invertebrates, and bottom sediments. Shoreline sediment is collected semi-annually from one location. All samples are analyzed for gamma-emitting isotopes.

3.3 Program Execution

The Program was executed as described in the preceding section with the following exceptions:

- (1) No air particulate/air iodine samples were available from location P-3 for the week ending 06-14-00, due to sampler pump failure.
- (2) TLD data was not available from location P-10B for the fourth quarter, 2000. Both the regular and emergency TLDs were lost in the field, due to unusually deep snow.

Deviations from the program are summarized in Table 5.3.

3.4 Laboratory Procedures

All iodine-131 analyses in milk and drinking water were made by using a sensitive radiochemical procedure which involves separation of the element by use of an ion-exchange resin and subsequent beta counting. All gamma-spectroscopic analyses were performed with an HPGe detector. Levels of airborne iodine-131 in charcoal samples were measured by gamma spectrometry.

Levels of iodine-131 in cabbage and were determined by gamma spectrometry.

Tritium levels were determined by liquid scintillation technique.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984.

Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the Quality Assurance Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2000). The program includes participation in Interlaboratory Comparison (Crosscheck) programs and results are presented in Appendix A.

3.5 Program Modifications

Special tritium sampling of ground and well water was monitored from 1989 through 1999 at several locations. Tritium concentrations in that time have dropped to below detection levels. The program has been discontinued for the year 2000. The Suter residence, (P-24) was retained from the program, and added to the REMP in 2000, as a monitored well water location.

3.6 Land Use Census

In accordance with the Prairie Island Nuclear Generating Plant Offsite Dose Calculation Manual, H4, (ODCM) a land use census is conducted in order to identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables in each of the 16 meteorological sectors within a distance of 5 miles. This census is conducted at least once per 12 months between the dates of May 1 and October 31. If new locations yield a calculated dose or dose equivalent (via the same exposure pathway) twenty percent greater than the required locations per the ODCM, then the new locations are added to the radiation environmental monitoring program within 30 days, and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after October 31 of the year in which the land use census was conducted.

This land use census insures the updating of the radiation environmental monitoring program should sampling locations change within the 5 mile radius from the plant.

The 2000 Land Use Census was completed in October, 2000. There were no changes in any of the highest D/Q locations for dairy, nearest residence, or garden sites in 2000. The critical receptor location did not change in 2000, based on the results of the land use census.

No downstream irrigation of corn was discovered within 5 miles of the Prairie Island Plant. Therefore, no corn samples were collected for analysis.

4.0 RESULTS AND DISCUSSION

All scheduled collections and analyses were made except those listed in Table 5.3.

The results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 Atmospheric Nuclear Detonations and Nuclear Accidents

There were no reported atmospheric nuclear tests in 2000. The last reported test was conducted on October 16, 1980 by the People's Republic of China. There were no reported accidents at nuclear reactor facilities in 2000.

4.2 <u>Summary of Preoperational Data</u>

The following constitutes a summary of preoperational studies conducted at the Prairie Island Nuclear Power Plant during the years 1970 to 1973, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout declined yearly from a level of 12,167 pCi/m² to 1,020 pCi/m², and these declining values are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.4 mR/4 weeks during preoperational studies. Gross beta in air particulates declined from levels of 0.38 to 0.037 pCi/m³. Average present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels.

In the terrestrial environment of 1970 to 1973, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137, I-131, and Sr-90 were detected. Cs-137 levels declined from 16.5 to 8.6 pCi/L. Present day measurements for both Cs-137 and I-131 are below detection levels. Agricultural crop measurements averaged 57.7 pCi/g for gross beta and 0.47 pCi/g for Cs-137. Gross beta measured in soil averaged 52 pCi/g.

The aqueous environment was monitored by testing of river, well and lake waters, bottom fish, aquatic vegetation and periphyton. Specific location comparison of sediments. drinking, river and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at eight separate locations, declined steadily from an average concentration of 1020 pCi/L to 490 pCi/L. Present day environmental levels of tritium are below detection limits. Values for gross beta, measured from 1970 to 1973, averaged 9.9 pCi/L in downstream Mississippi River water, 8.2 pCi/L for well waters, and 11.0 pCi/L for lake waters. Gamma emitters were below the lower limit of detection (LLD). In bottom sediments, gross beta background levels were determined at 51.0 pCi/g. Cs-137 activity during preoperational studies in 1973 measured 0.25 pCi/g upstream and 0.21 pCi/g downstream. The lower levels occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta in fish, measured in both flesh and skeletal samples, averaged 7.3 and 11.7 pCi/g, respectively. Gross beta background levels in aquatic vegetation, algae and periphyton samples measured 76.0 pCi/g, 46.0 pCi/g, and 13.6 pCi/g, respectively.

4.3 Program Findings

Results obtained show background levels of radioactivity in the environmental samples collected in the vicinity of the Prairie Island Nuclear Generating Plant in 2000.

Offsite Ambient Radiation (TLDs)

Ambient radiation was measured in the general area of the site boundary, at the outer ring 4 - 5 mi distant from the Plant, at special interest areas and at one control location. The means ranged from 16.0 mR/91 days at inner ring locations to 17.6 mR/91 days at outer ring locations. The mean at special locations was 15.8 mR/91 days and 17.1 mR/91 days at the control location. The dose rates measured at the inner and outer ring and the control locations were similar to those observed from 1985 through 1999. The results are tabulated below. No plant effect on ambient gamma radiation was indicated (Figure 5-1).

Year	Average (Inner and Outer Rings)	<u>Control</u>
1985	14.0	15.3
1986	17.1	17.3
1987	16.9	17.0
1988	15.4	16.0
1989	16.5	16.7
1990	15.9	16.3
1991	14.9	14.5
1992	16.3	14.8
1993	15.9	15.4
1994	15.2	16.0
1995	15.6	16.6
1996	14.8	16.4
1997	15.1	16.0
1998	16.7	17.3
1999	16.6	17.5
2000	17.0	17.1

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates (mR/91 days).

ISFSI Facility Operations Monitoring

Ambient radiation was measured inside the ISFSI earth berm, outside the ISFSI earth berm and at two special locations between the plant ISFSI and the Prairie Island Indian Community. The mean dose rates measured 70.0 mR/91 days inside the ISFSI earth berm and 19.0 mR/91 days outside the ISFSI earth berm. Three additional casks were placed on the ISFSI pad in 2000. There were twelve loaded casks on the ISFSI pad during 2000. The higher levels inside the earth berm are expected due to the loaded spent fuel casks being in direct line-of-sight from the TLDs. The ambient radiation levels measured outside the earth berm show a slight increase as compared to other offsite dose rates around the plant. If the dose rates outside the earth berm are an indication of gamma skyshine from the casks, they are consistent with predictions given in the ISFSI Safety Analysis Report, Table 7A-7, "Total Skyshine Dose Rate". The cumulative average of the two special Prairie Island Indian Community TLDs measured 15.8 and 15.4 mR/91 days. No spent fuel storage effect on offsite ambient gamma radiation was indicated (Fig. 5-1).

Airborne Particulates

The annual gross beta concentration in airborne particulates for both indicator and control locations averaged 0.025 pCi/m³. These averages were similar to average means reported from 1985 through 1999. The results are tabulated below. The data for 1986 does not include the results from May 19 to June 9, 1986, which were influenced by the accident at Chernobyl. (Figure 5-2).

Year	Average of <u>Indicators</u>	Control
	Concentratio	<u>on (pCi/m³)</u>
1985	0.025	0.025
1986	0.025	0.029
1987	0.024	0.023
1988	0.030	0.030
1989	0.028	0.027
1990	0.024	0.023
1991	0.025	0.025
1992	0.023	0.021
1993	0.022	0.019
1994	0.022	0.022
1995	0.022	0.022
1996	0.023	0.020
1997	0.021	0.021
1998	0.022	0.018
1999	0.024	0.022
2000	0.025	0.025

Average annual gross beta concentrations in airborne particulates.

A spring peak in beta activity had been observed almost annually for many years (Wilson *et al.*, 1969). It had been attributed to fallout of nuclides from the stratosphere (Gold *et al.*, 1964). It was pronounced in 1981, occurred to a lesser degree in 1982, and has not occurred since 1983. The highest averages for gross beta occur during the months of January and December, and the first and fourth quarters, as in 1985 through 2000.

Two pieces of evidence indicate conclusively that the elevated activity observed during the winter months was not attributable to the Plant operation. In the first place, elevated activity of similar size occurred simultaneously at both indicator and control locations. Secondly, an identical pattern was observed at the Monticello Nuclear Generating Plant, about 100 miles distant from the Prairie Island Nuclear Generating Plant (Xcel Energy Corp., 2001a).

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955), was detected in all samples. All other gamma-emitting isotopes were below their respective LLD limits.

Airborne Iodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.07 pCi/m^3 in all samples. There was no indication of a plant effect.

<u>Milk</u>

Iodine-131 results were below the detection limit of 1.0 pCi/L in all samples. Cs-137 results were below the LLD level of 15 pCi/L in all samples. No other gamma-emitting isotopes, except naturally-occurring potassium-40, were detected in any milk samples. This is consistent with the findings of the National Center for Radiological Health that most radiocontaminants in feed do not find their way into milk due to the selective metabolism of the cow. The common exceptions are radioisotopes of potassium, cesium, strontium, barium, and iodine (National Center for Radiological Health, 1968).

In summary, the milk data for 2000 show no radiological effects of the plant operation.

Drinking Water

In drinking water from the City of Red Wing well, tritium activity measured below the LLD level of 179 pCi/L in all samples.

Gross beta measurements remained fairly constant throughout the year and averaged 10.1 pCi/L. These concentrations were slightly higher than levels observed from 1985 through 1999 and are most likely contributed by relatively high levels of naturally-occurring radium. Gamma spectroscopy indicates the presence of lead and bismuth isotopes, which are daughters of the radium decay chain. There is no indication from the 2000 data of any effect of plant operation.

1			
Year	Gross Beta (pCi/L)		
1985	7.1		
1986	6.8		
1987	7.9		
1988	8.0		
1989	7.0		
1990	7.0		
1991	8.0		
1992	7.6		
1993	7.5		
1994	5.8		
1995	3.9		
1996	6.3		
1997	5.1		
1998	5.4		
1999	5.3		
2000	10.1		

Average annual concentrations; Gross beta in drinking water.

River Water

In one quarterly composite of downstream river water, tritium was measured at a concentration of 297 pCi/L. In all other upstream and downstream collections, quarterly composite tritium levels were below the LLD level of 190 pCi/L. Gamma-emitting isotopes were below detection limits in all samples.

Well Water

At the control well P-41, Huppert Farm and four indicator wells (P-8, Community Center, P-6, Lock and Dam No. 3, P-9, Plant Well No. 2 and P-24, Suter Farm) no tritium was detected above the LLD level of 180 pCi/L. Gamma-emitting isotopes were below detection limits in all samples.

In summary, well water data for 2000 show no radiological effects of the plant operation.

<u>Crops</u>

Two samples of broadleaf vegetation, cabbage and rutabaga leaves, were collected in August and analyzed for gamma-emitting isotopes, including iodine-131. The I-131 level was below 0.009 pCi/g wet weight in both samples. With the exception of naturally-occurring potassium-40, all other gamma-emitting isotopes were below their respective detection limits. There was no indication of a plant effect.

The field sampling personnel conducted an annual land use survey and found that there was no river water taken for irrigation into fields within 5 miles downstream from the Prairie Island Plant. No collection and analysis of corn samples was not required.

<u>Fish</u>

Fish samples were collected in April, May and September, 2000 and analyzed for gamma emitting isotopes. Only naturally-occurring potassium-40 was detected, and there was no significant difference between upstream and downstream results. There was no indication of a plant effect.

Aquatic Insects or Periphyton

Aquatic insects (invertebrates) or periphyton were collected in May and September, 2000. All gamma-emitting isotopes were below their respective detection limits. There was no indication of any plant effect.

Bottom and Shoreline Sediments

Sediment collections were made in May and September, 2000 and analyzed for gammaemitting isotopes. All other gamma-emitting isotopes, excepting naturally-occurring potassium-40, were below their respective LLDs. No plant effect was indicated.

5.0 FIGURES AND TABLES

	No.	Location Codes (and Type) ^a	Collection Type and Frequency ^b	Analysis Type and Frequency ^e
Ambient radiation (TLD's)		P-01A - P-10A P-01B - P-15B P-01S - P-08S P-01IA - P-08IA P-01IB - P-08IB P-01IX- P-04IX, P-01C	C/Q	Ambient gamma
Airborne Particulates	5	P-1(C), P-2, P-3, P-4, P-6	C/W	GB, GS (QC of each location)
Airborne Iodine	5	P-1(C), P-2, P-3, P-4, P-6	C/W	I-131
Milk	4	P-14, P-18, P-37, P-41 (C)	G/M ^d	I-131, GS
Milk	1	P-39	G/M	I-131, GS
River water	2	P-5(C), P-6	G/W	GS(MC), H-3(QC)
Drinking water	1	P-11	G/W	GB(MC), I-131(MC) GS (MC), H-3 (QC)
Well water	5	P-6, P-8, P-9, P-24, P-41 (C)	G/Q	H-3, GS
Edible cultivated crops - leafy green vegetables	2	P-38(C), P-24	G/A	GS (I-131)
Fish (one species, edible portion)	2	P-19(C), P-13	G/SA	GS
Periphyton or invertebrates	2	P-40(C), P-6	G/SA	GS
Bottom sediment	2	P-20(C), P-6	G/SA	GS
Shoreline sediment	1	P-12	G/SA	GS

Table 5.1. Sample collection and analysis program, Prairie Island Nuclear Generating Plant.

^a Location codes are defined in Table D-2. Control stations are indicated by (C). All other stations are indicators.

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows: W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type codes: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 = iodine 131.

Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Milk is collected biweekly during the grazing season (May - October).

Code	Туреª	Collection Site	Sample Type ^b	Distance and Direction from Reactor
P-1	С	Air Station P-1	AP, AI	11.8 mi @ 316°/NNW
P-2		Air Station P-2	AP, AI	0.5 mi @ 294°/WNW
P-3		Air Station P-3	AP, AI	0.8 mi @ 313°/NW
P-4		Air Station P-4	AP, AI	0.4 mi @ 359°/N
P-5	С	Upstream of Plant	RW	1.8 mi @ 11°/N
P-6		Lock and Dam # 3 & Air	AP, AI, RW	
		Station P-6	WW, BS, BO ^c	1.6 mi @ 129°/SE
P-8		Community Center	WW	1.0 mi @ 321°/WNW
P-9		Plant Well #2	WW	0.3 mi @ 306°/NW
P-11		Red Wing Service Center	DW	3.3 mi @ 158°/SSE
P-12		Downstream of Plant	SS	3.0 mi @ 116°/ESE
P-13		Downstream of Plant	\mathbf{F}^{c}	3.5 mi @ 113°/ESE
P-14		Gustafson Farm	Μ	2.3 mi @ 173°/S
P-18		Christiansen Farm	Μ	3.8 mi @ 88°/E
P-19	С	Upstream of Plant	F ^c	1.3 mi @ 0°/N
P-20	С	Upstream of Plant	BS	0.9 mi @ 45°/NE
P-24		Suter Residence	VE, WW	0.6 mi @ 158°/SSE
P-37		Welsch Farm	Μ	4.1 mi @ 87°/E
P-38	С	Cain Residence	VE	14.2 mi @ 359°/N
P-39		Born Farm	М	2.8 mi @ 239°/WSW
P-40	С	Upstream of Plant	BO^{c}	0.4 mi @ 0°/N
P-41	С	Huppert Farm	M, WW	13.8 mi @ 354°/N
<u>General</u>	Area of the	Site Boundary		
P-01A		Property Line	TLD	0.4 mi @ 359°/N
P-02A		Property Line	TLD	0.3 mi @ 10°/N
P-03A		Property Line	TLD	0.5 mi @ 183°/S
P-04A		Property Line	TLD	0.4 mi @ 204°/SWW
P-05A		Property Line	TLD	0.4 mi @ 225°/SW
P-06A		Property Line	TLD	0.4 mi @ 249°/WSW
P-07A		Property Line	TLD	0.4 mi @ 268°/W
P-08A		Property Line	TLD	0.4 mi @ 291°/WNW
P-09A		Property Line	TLD	0.7 mi @ 317°/NW
P-10A		Property Line	TLD	0.5 mi @ 333°/NNW

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant.

.

Code	Typeª	Collection Site	Sample Type ^b	Distance and Direction from Reactor
Approxim	ately 4 to	5 miles Distant from the Plant		
P-01B		Thomas Killian Residence	TLD	4.7 mi @ 355°/N
P-02B		Roy Kinneman Residence	TLD	4.8 mi @ 17°/NNE
P-03B		Wayne Anderson Farm	. TLD	4.9 mi @ 46°/NE
P-04B		Nelson Drive (Road)	TLD	4.2 mi @ 61°/ENE
P-05B		County Road E and Coulee	TLD	4.2 mi @ 102°/ESE
P-06B		William Hauschiblt Residence	TLD	4.4 mi @ 112°/ESE
P-07B		Red Wing Public Works	TLD	4.7 mi @ 140°/SE
P-08B		David Wnuk Residence	TLD	4.1 mi @ 165°/SSE
P-09B		Highway 19 South	TLD	4.2 mi @ 187°/S
P-10B		Cannondale Farm	TLD	4.9 mi @ 200°/SSW
P-11B		Wallace Weberg Farm	TLD	4.5 mi @ 221°/SW
P-12B		Ray Gergen Farm	TLD	4.6 mi @ 251°/WSW
P-13B		Thomas O'Rourke Farm	TLD	4.4 mi @ 270°/W
P-14B		David J. Anderson Farm	TLD	4.9 mi @ 306°/NW
P-15B		Holst Farms	TLD	3.8 mi @ 345°/NNW
Special In	terest Loc	ations		
P-01S		Federal Lock & Dam #3	TLD	1.6 mi @ 129°/SE
P-02S		Charles Suter Residence	TLD	0.5 mi @ 155°/SSE
P-03S		Carl Gustafson Farm	TLD	2.2 mi @ 173°/S
P-04S		Richard Burt Residence	TLD	2.0 mi @ 202°/SSW
P-05S		Kinney Store	TLD	2.0 mi @ 270°/W
P-06S		Earl Flynn Farm	TLD	2.5 mi @ 299°/WNW
P-07S		Indian Community	TLD	0.7 mi @ 271°/W
P-08S		Indian Community	TLD	0.7 mi @ 287°/NWW
P-01C	С	Robert Kinneman Farm	TLD	11.1 mi @ 331°/NNW

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant, (continued).

~

.

ISFSI Area Inside Earth Berm		
P-01IA ISFSI Nuisance Fence	TLD	190' @ 45°/NE
P-02IA ISFSI Nuisance Fence	TLD	360' @ 82°/E
P-03IA ISFSI Nuisance Fence	TLD	370' @ 100°/E
P-04IA ISFSI Nuisance Fence	TLD	200' @ 134°/SE
P-05IA ISFSI Nuisance Fence	TLD	180' @ 219°/SW
P-06IA ISFSI Nuisance Fence	TLD	320' @ 258°/WSW
P-07IA ISFSI Nuisance Fence	TLD	320' @ 281°/WNW
P-08IA ISFSI Nuisance Fence	TLD	190' @ 318°/NW
P-01IX ISFSI Nuisance Fence	TLD	140' @ 180°/S
P-02IX ISFSI Nuisance Fence	TLD	310' @ 270°/W
P-03IX ISFSI Nuisance Fence	TLD	140' @ 0°/N
P-04IX ISFSI Nuisance Fence	TLD	360' @ 90°/E
ISFSI Area Outside Earth Berm		
P-01IB ISFSI Berm Area	TLD	340' @ 3°/N
P-02IB ISFSI Berm Area	TLD	380' @ 28°/NNE
P-03IB ISFSI Berm Area	TLD	560' @ 85°/E
P-04IB ISFSI Berm Area	TLD	590' @ 165°/SSE
P-05IB ISFSI Berm Area	TLD	690' @ 186°/S
P-06IB ISFSI Berm Area	TLD	720' @ 201°/SSW
P-07IB ISFSI Berm Area	TLD	610' @ 271°/W
P-08IB ISFSI Berm Area	TLD	360' @ 332°/NNW
^a "C" denotes control location. All other locations	are indicators.	*
^b Sample Codes:		
AP Airborne particulates	F	Fish
AI Airborne Iodine	М	Milk
BS Bottom (river) sediments	SS	Shoreline Sediments
BO Bottom organisms	SW	Surface Water
(periphyton or macroinvertel	brates) VE	Vegetation/vegetables
DW Drinking water	WW	Well water

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant, (continued).

^c Distance and direction data for fish and bottom organisms are approximate since availability of sample specimen may vary at any one location.

Table 5.3. Missed collections and analyses at the Prairie Island Nuclear Generating Plant.

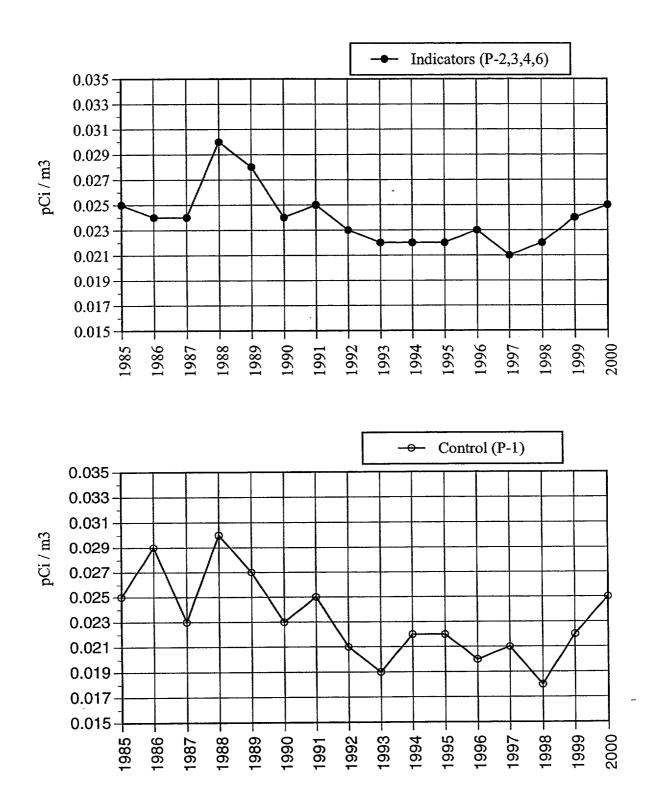
.

.

Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence
				<u> </u>	F
AP/AI	Beta, I-131	P-03	6/14/00	No power due to open fuse.	Replaced fuse and conducted testing. All operational testing was satisfactory.
TLD	Ambient Gamma	P-10B	4th Qtr.	TLD lost in the field due to unusually deep snow.	Isolated incident; no action required.

All required samples were collected and analyzed as scheduled with the following exceptions:

mR / 91 days


Figure 5-1. Offsite Ambient Radiation (TLDs); average of inner and outer ring indicator locations versus control location. ۱

18

ï

1

Figure 5-2. Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location.

2

.

			Prairie Isl	sland Nuclear Power Station Docket		Docket No.	50-282, 50-306	
			Goodhue	, Minnesota		Reporting Period	January-December, 2000	
				State)				
		<u> </u>		Indicator	Location	with Highest	Control	Number

	- 1		T	Annual Mean		Locations	Non-
Sample	Type and		Locations				
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses*		Range	Location ^d	Range	Range	Results
TLD (Inner Ring, Area at Site Boundary)	Gamma 40	3.0	16.0 (40/40) (12.3-18.4)	P-06A 0.4 mi @ 249° /WSW	16.9 (4/4) (15.1-18.4)	(See Control below.)	0
mR/91 days) TLD (Outer Ring, 4-5 mi. distant) mR/91 days)	Gamma 59	3.0	17.6 (59/59) (13.1-21.8)	P-02B, Roy Kinneman, 4.8 mi @ 17° /NNE	20.5 (4/4) (18.2-21.8)	(See Control below.)	0
TLD (Special Interest Areas) mR/91 days)	Gamma 32	3.0	15.8 (32/32) (12.3-19.7)	P-03S, Gustafson Farm, 2.2 mi @ 173° /S	18.4 (4/4) (16.5-19.7)	(See Control below.)	0
TLD (Control) mR/91 days)	Gamma 4	3.0	None	P-01C, R. Kinneman, 11.1 mi @ 331° /NNW	17.1 (4/4) (15.1-18.2)	17.1 (4/4) (15.1-18.2)	0
Airborne Particulates (pCi/m³)	GB 264	0.005	0.025 (211/211) (0.009-0.078)	P-04, Air Station 0.4 mi @ 359° /N	0.026 (53/53) (0.009-0.073)	0.025 (53/53) (0.011-0.083)	0
	GS 20 Be-7	0.015	0.061 (16/16) (0.040-0.075)	P-06, Air Station 1.6 mi @ 129°/SE	0.064 (4/4) (0.040-0.070)	0.055 (4/4) (0.040-0.066)	0
	Mn-54	0.0008	< LLD	_	-	< LLD	0
	Co-58	0.0011	< LLD	_	-	< LLD	0
	Co-60	0.0011	<lld< td=""><td>_</td><td>-</td><td>< LLD</td><td>0</td></lld<>	_	-	< LLD	0
	Zn-65	0.0010	<lld< td=""><td>_</td><td>-</td><td>< LLD</td><td>0</td></lld<>	_	-	< LLD	0
	Zr-Nb-95	0.0013	<lld< td=""><td>_</td><td>-</td><td>< LLD</td><td>0</td></lld<>	_	-	< LLD	0
	1	0.0011	< LLD < LLD	_	-	< LLD	0
	Ru-103	1	< LLD < LLD			< LLD	0
	Ru-106	0.0069		-		< LLD	0
<i>V</i>	Cs-134	0.0006	<lld< td=""><td></td><td></td><td>< LLD</td><td>0</td></lld<>			< LLD	0
V	Cs-137	0.0007	<lld< td=""><td></td><td>_</td><td>< LLD</td><td>0</td></lld<>		_	< LLD	0
1	Ba-La-140	0.0024	<lld< td=""><td>· ·</td><td>-</td><td>< LLD</td><td>- 0</td></lld<>	· ·	-	< LLD	- 0
	Ce-141 Ce-144	0.0013 0.0036	<lld <lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<></lld 	-	-	< LLD	0
Airborne Iodine (pCi/m³)	I-131 264	0.07	<lld< td=""><td>-</td><td>-</td><td>< LLD</td><td>0</td></lld<>	-	-	< LLD	0

Name of 1	Name of Facility		Prairie Island Nuclear Power Station			50-282, 50-306	
Location	of Facility	Goodhue, Minnesota			Reporting Period	January-December	r, 2000
			(County,	State)			
			Indicator	Location with	Highest	Control	Number
Sample	Type and		Locations	Annual M		Locations	Non-
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses*		Range	Location ^d	Range	Range	Results
Milk							
(pCi/L)	I-131 76	1.0	< LLD	-	-	< LLD	0
	GS 76			-			
	K-40	200	1481 (57/57)	P-14, Gustafson Farm	1524 (19/19)	1481 (19/19)	0
	IC 10	200	(1276-1756)	2.3 mi @ 173°/S	(1367-1632)	(1347-1588)	
	Cs-134	15	< LLD	-	-	< LLD	0
	Cs-137	15	< LLD	-	-	< LLD	0
	Ba-La-140	15	< LLD	-	-	< LLD	0
River Water	H-3 8	179	297 (1/4)	P-6, Lock and Dam #3	297 (1/4)	< LLD	0
(pCi/L)				1.6 mi @ 129º/SE			
(F ==, =,	GS 24						
	Mn-54	15	< LLD	-	-	< LLD	0
	Fe-59	30	< LLD	-	-	< LLD	0
	Co-58	15	< LLD	-	-	< LLD	0
	Co-60	15	< LLD	-	-	< LLD	0
	Zn-65	30	< LLD	-	-	< LLD	0
	Zr-Nb-95	15	< LLD	-	-	< LLD	0
	Cs-134	15	< LLD	-	-	< LLD	0
	Cs-137	18	< LLD	-	-	< LLD	0
	Ba-La-140	15	< LLD	-	-	< LLD	0
	Ce-144	58	< LLD	-	-	< LLD	0

Name of	Facility	Prairie Isl	Prairie Island Nuclear Power Station			50-282, 50-306	
Location	of Facility	Goodhue, Minnesota			Reporting Period	January-Decembe	r, 2000
			(County,	State)			
[Indicator	Location with	-	Control	Number
Sample	Type and		Locations	Annual M	lean	Locations	Non-
Туре	Number of	LLD⁵	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses*		Range	Location ^d	Range ^e	Range	Results
Drinking Water	GB 12	2 1.0	<lld< td=""><td>P-11, Red Wing S.C.</td><td>10.1 (12/12)</td><td>None</td><td>0</td></lld<>	P-11, Red Wing S.C.	10.1 (12/12)	None	0
(pCi/L)				3.3 mi @ 158° /SSE	(5.2-12.9)		
	I-131 12	2 1.0	< LLD		-	None	0
	H-3 4	179	< LLD	-	-	None	0
		12					
	Mn-54	15	< LLD	-	-	None	0
	Fe-59	30	< LLD	-	-	None	0
	Co-58	15	<lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<>	-	-	None	0
	Co-60	15	<lld< td=""><td>-</td><td>-</td><td>None None</td><td>0</td></lld<>	-	-	None None	0
	Zn-65 Zr-Nb-95	30 15	< LLD < LLD	-	-	None	0
	Cs-134	10	< LLD < LLD			None	0
	Cs-134 Cs-137	10	< LLD	-	_	None	0
	Ba-La-140	15	< LLD	-	-	None	0
	Ce-144	59	<lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<>	-	-	None	0
Well Water (pCi/L)	Н-3 2	0 180	< LLD	-	-	< LLD	0
(1-0.1, 2)	GS 2	0					
	Mn-54	15	< LLD	-	-	< LLD	0
	Fe-59	30	< LLD	-	-	< LLD	0
	Co-58	15	< LLD	-	-	< LLD	0
	Co-60	15	< LLD	-	-	< LLD	0
	Zn-65	30	< LLD	-	-	< LLD	0
	Zr-Nb-95	15	< LLD	-	-	< LLD	0
	Cs-134	10	< LLD	-	-	< LLD	0
	Cs-137	18	< LLD	-	-	< LLD	0
	Ba-La-140	15	< LLD		-	< LLD	0
	Ce-144	56	< LLD	-	-	< LLD	0
Crops - Cabbage (pCi/gwet)	I-131 :	2 0.009	< LLD	-	-	< LLD	0

.

Name of Facility Location of Facility		Prairie Island Nuclear Power Station Goodhue, Minnesota			Docket No.	50-282, 50-306	
					Reporting Period	January-Decembe	r, 2000
			(County,	State)			
			Indicator	Location wit	•	Control	Number
Sample	Type and		Locations	Annual	Mean	Locations	Non-
Type	Number of	LLD ^b	Mean (F) ^c		Mean (F) ^c	Mean (F)'	Routine
(Units)	Analyses		Range	Location ^d	Range	Range	Results
Fish	GS 4						
(pCi/g wet)	K-40	0.10	2.85 (2/2)	P-19, Upstream	3.58 (2/2)	3.28 (2/2)	0
(Per) 8)			(2.63-3.06)	1.3 mi. @ 0° /N	(3.42-3.73)	(3.07-3.48)	
	Mn-54	0.018	< LLD	-	-	< LLD	0
	Fe-59	0.081	< LLD	-	-	< LLD	0
	Co-58	0.015	< LLD	-	-	< LLD	0
	Co-60	0.017	< LLD	-	-	< LLD	0
	Zn-65	0.029	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.031	< LLD	-	-	< LLD	0
	Cs-134	0.013	< LLD	-	-	< LLD	0
	Cs-137	0.013	< LLD	-	-	< LLD	0
	Ba-La-140	0.77	< LLD	-	-	< LLD	0
Invertebrates	GS 4						
(pCi/g wet)	Be-7	0.55	< LLD	-	-	< LLD	0
(per) g net)	K-40	1.48	< LLD	-	-	< LLD	0
	Mn-54	0.063	< LLD	-	-	< LLD	0
	Co-58	0.10	< LLD	-	-	< LLD	0
	Co-60	0.069	< LLD	-	-	< LLD	0
	Zn-65	0.12	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.13	< LLD	-	-	< LLD	0
	Ru-103	0.078	< LLD	-	-	< LLD	0
	Ru-106	0.40	< LLD	-	-	< LLD	0
	Cs-134	0.071	< LLD	-	-	< LLD	0
	Cs-137	0.057	< LLD	-	-	< LLD	0
	Ba-La-140	0.61	< LLD	-	-	< LLD	0
	Ce-141	0.11	< LLD	-	-	< LLD	0

.....

23

....

Name of Facility		Prairie Island Nuclear Power Station			Docket No.	50-282, 50-306	
Location	Location of Facility		Minnesota		Reporting Period	January-December, 2000	
			(County,	State)			
			Indicator	Location with	n Highest	Control	Number
Sample	Type and		Locations	Annual N	/lean	Locations	Non-
Туре	Number of	LLD	Mean (F)'		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses		Range	Location ^d	Range ^c	Range ^c	Results
Bottom and	GS 6						
Shoreline	Be-7	0.30	< LLD	-	-	< LLD	0
Sediments	K-40	0.10	6.94 (4/4)	P-20, Upstream	8.79 (4/4)	8.79 (4/4)	0
(pCi/g dry)			(6.51-7.46)	0.9 mi. @ 45° /NE	(8.64-8.94)	(8.64-8.94)	
	Mn-54	0.021	< LLD	-	-	< LLD	0
	Co-58	0.030	< LLD	-	-	< LLD	0
	Co-60	0.016	< LLD	-	ļ -	< LLD	0
	Zn-65	0.066	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.030	< LLD	-	-	< LLD	0
	Ru-103	0.023	< LLD	-	-	< LLD	0
	Ru-106	0.18	< LLD	-	-	< LLD	0
	Cs-134	0.030	< LLD	-	-	< LLD	0
	Cs-137	0.024	< LLD	-	-	< LLD	0
	Ba-La-140	0.062	< LLD	-	-	< LLD	0
	Ce-141	0.044	< LLD	-	-	< LLD	0
	Ce-144	0.10	< LLD	-	-	< LLD	0
						<u> </u>	<u> </u>

° GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code (Table 2) and (2) by distance (miles) and direction relative to reactor site.

* Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

6.0 REFERENCES CITED

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275 and 276.

- Environmental, Inc., Midwest Laboratory. 2001a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000.
 - _____ 2001b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January December, 2000.
- 2000. Quality Assurance Program Manual, Rev. 0, 11 October 2000.
- _____ 2000. Quality Control Procedures Manual, Rev. 0, 21 September 2000.
- 2000. Quality Control Program, Rev. 0, 12 October 2000.
- Gold, S., H. W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Chicago, Illinois, 369-382.
- Hazleton Environmental Sciences Corporation. 1979a to 1983a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December 1978 through 1982.
- Hazleton Environmental Sciences Corporation. 1979b to 1983b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December 1978 through 1982.
- Hohenemser, C. M. Deicher, A. Ernst, H. Hofsass, G. Lindner, E. Racknagel. 1986. "Chernobyl," <u>Chemtech</u>, October 1986, pp. 596-605.
- National Center for Radiological Health, 1968. Radiological Health and Data Reports, Vol. 9, No. 12, 730-746.
- Northern States Power Company. 1972. Prairie Island Nuclear Generating Plant, Environmental Monitoring and Ecological Studies Program, January 1, 1971 to December 31, 1971. Minneapolis, Minnesota.
 - ____ 1973. Prairie Island Nuclear Generating Plant, Environmental Monitoring and Ecological Studies Program, January 1, 1972 to December 31, 1972. Minneapolis, Minnesota.
 - ____ 1974. Prairie Island Nuclear Generating Plant, Environmental Monitoring and Ecological Studies Program, Volume 1, January 1, 1973 to December 31, 1973. Minneapolis, Minnesota.
 - _____1979 to 1983. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 1978 through 1982 (prepared by Hazleton Environmental Sciences). Minneapolis, Minnesota.
 - 1984 to 2000. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 1983 through 1999 (prepared by Teledyne Brown Engineering Environmental Services, Midwest Laboratory). Minneapolis, Minnesota.

6.0 <u>REFERENCES CITED (continued)</u>

Teledyne Brown Engineering Environmental Services, Midwest Laboratory. 1984a to 2000a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

_____ 1984b to 2000b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

- U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.
- U.S. Environmental Protection Agency. 1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

_____1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

- Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.
- Xcel Energy Corporation. 2001. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2000 (prepared by Environmental, Inc., Midwest Laboratory). Northbrook, Illinois

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 (847) 564-0700 fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE: Environmental, Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2000 through December, 2000

<u>Appendix A</u>

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory, formerly Teledyne Brown Engineering Environmental Services Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples (e.g., milk or water) containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

The results in Table A-1 were obtained through participation in the environmental sample crosscheck program for milk, water and air filters during the past twelve months. Data for previous years is available upon request.

This program was conducted by the U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Characterization Research Division-Las Vegas, Nevada.

The results in Table A-2 were obtained for Thermoluminescent Dosimeters (TLDs), via various International Intercomparisons of Environmental Dosimeters under the sponsorships listed in Table A-2. Results of crosscheck testing with Teledyne Brown Engineering are also listed.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

The results in Table A-7 were obtained through participation in the Environmental Measurement Laboratory Quality Assessment Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

12-31-00

ATTACHMENT A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES*

Analysis	Level	One Standard Deviation for single determinations
Gamma Emitters	5 to 100 pCi/liter or kg >100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg >50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg >30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	>0.1 g/liter or kg	5% of known value
Gross alpha	≤20 pCi/liter >20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	≤100 pCi/liter >100 pCi/liter	5.0 pCi/liter 5% of known value
Tritium	≤4,000 pCi/liter	1s = (pCi/liter) = 169.85 x (known) ^{0.0933}
	>4,000 pCi/liter	10% of known value
Radium-226,-228	<0.1 pCi/liter	15% of known value
Plutonium	0.1 pCi/liter, gram, or sample	10% of known value
Iodine-131, Iodine-129 ^b	≤55 pCi/liter >55 pCi/liter	6.0 pCi/liter 10% of known value
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤35 pCi/liter >35 pCi/liter	6.0 pCi/liter 15% of known value
Iron-55 ^b	50 to 100 pCi/liter >100 pCi/liter	10 pCi/liter 10% of known value
Others ^b		20% of known value

From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

			,	Co	oncentration in pCi/L ^b	
Lab	Sample	Date	-	Laboratory results	ERA Result ^d	Control Limits
Code	Type	Collected_	Analysis	±2 Sigma'	1s, N=1	······································
STW-863	WATER	Jan, 2000	Gr. Alpha	39.3 ± 5.2	25.4 ± 6.4	14.5 - 36.3
The analy	ysis was repeat	ed and recal	culated with	Am-241 efficiency; re	sult of reanalysis 29.3	52 ± 5.79 pcr/ L.
Internal s	pike program r	esults do not	indicate a p	roblem. 40.7 ± 1.2	42.1 ± 4.2	33.4 - 50.8
STW-863	WATER	J =-,	Gr. Beta		42.1 ± 4.2 22.5 ± 5.0	13.8 - 31.2
STW-866	WATER	J	Sr-89	17.1 ± 2.2	9.6 ± 5.0	0.9 - 18.3
STW-866	WATER	Jan, 2000	Sr-90	8.1 ± 0.6	9.0 ± 0.0 8.3 ± 1.2	6.1 - 10.4
STW-868	WATER		Ra-226	7.6 ± 0.5	3.3 ± 1.2 2.3 ± 0.6	1.3 - 3.2
STW-868	WATER	Feb, 2000	Ra-228	5.6 ± 1.0		
Result of	reanalysis: 6.34	± 0.94 . Acti	vity confirm	ed by gamma spectroso	6.1 ± 3.0	0.9 - 11.3
STW-868	WATER	Feb, 2000	Uranium	5.4 ± 0.2	$23,800.0 \pm 2,380.0$ 1	
STW-869	WATER	Mar, 2000	H-3	$23,500.0 \pm 306.0$	$23,800.0 \pm 2,380.0$ 1 58.4 ± 5.8	33.3 - 83.5
STW-867	WATER	Mar, 2000	Gr. Alpha	83.6±5.8		JJ.J * 00.0
Results v	were recalculate	ed with Am-	241 efficiency	y; $57.80 \pm 5.73 \text{ pCi/L}$.	$\frac{1}{2} \left(\frac{9}{1} + \frac{1}{7} \right)$	8.1 - 25.5
STW-867	WATER	Mar, 2000	Gr. Beta	15.4 ± 0.9	10.0 ± 1.7	14.7 - 25.1
STW-876	WATER	Mar, 2000	I-131	18.7 ± 0.6	19.9 ± 2.0	30.8 - 77.2
STW-877	WATER	Apr, 2000	Gr. Alpha	52.3 ± 2.3	54.0 ± 13.5	13.8 - 23.4
STW-877	WATER	Apr, 2000	Ra-226	17.5 ± 1.1	18.6 ± 2.8	2.0 - 5.1
STW-877	WATER	Apr, 2000	Ra-228	3.7 ± 0.4	3.6 ± 0.9	2.0 - 5.1 8.2 - 25.6
STW-878	WATER	Apr, 2000	Co-60	19.2 ± 0.6	16.9 ± 5.0	8.2 - 25.8 77.7 - 95.1
STW-878	WATER	Apr, 2000	Cs-134	81.0 ± 1.3	86.4 ± 5.0	
STW-878	WATER	Apr, 2000	Cs-137	119.0 ± 2.6	123.0 ± 6.2	112.0 - 134.0
STW-878	WATER	Apr, 2000	Gr. Beta	276.0 ± 9.6	289.0 ± 43.4	214.0 - 364.0
STW-878	WATER	Apr, 2000	Sr-89	32.3 ± 3.3	50.7 ± 5.0	42.0 - 59.4
		A 0000	C= 00	11.3 ± 1.0	32.8 ± 5.0	24.1 - 41.5
STW-878	· · · · · · · · · · · · · · · · · · ·		1	Iculation: $Sr-89, 55.5\pm 2$	7.2 pCi/L / Sr-90, 30.	$7 \pm 3.0 \text{pCi/L}.$
An eno	of reanalysis: 5	Sr-89, 47.4 \pm	14.5 pCi/L	$7 \text{ Sr-90, 33.0 } \pm 1.33 \text{ pc}$	L. Dourrebaile and .	
STW-879	WATER	Jun, 2000	Ba-133	22.4 ± 2.1	20.0 20.0	
STW-879	WATER	•	Co-60	69.9 ± 3.7	65.6 ± 5.0	56.9 - 74.3
	WATER	Jun, 2000	Cs-134	13.5 ± 0.8	13.8 ± 5.0	5.1 - 22.5
STW-879	WATER	Jun, 2000	Cs-137	232.0 ± 7.8	238.0 ± 11.9	217.0 - 259.0
STW-879		Jun, 2000	Zn-65	50.9 ± 3.8	54.6 ± 5.5	45.3 - 63.9
STW-879	WATER	Jun, 2000	Ra-226	2.8 ± 0.2	3.0 ± 0.5	2.2 - 3.8
STW-880	WATER	•	Ra-228	10.0 ± 0.9	13.0 ± 3.3	7.4 - 18.6
STW-880	WATER	Jun, 2000	Uranium	57.0 ± 4.4	63.4 ± 6.3	52.6 - 74.2
STW-880	WATER	Jun, 2000			7.2 ± 5.0	0.0 - 15.9
STW-883	WATER	Jul, 2000	Gr. Alpha	88.8 ± 9.8	87.5 ± 10.0	70.2 - 105.0
STW-883	WATER	Jul, 2000	Gr. Beta	8,740.0 ± 174.0	8,320.0 ± 832.0	6,910.0 - 9,730.0
STW-884	WATER	Aug, 2000		17.9 ± 1.3	18.9 ± 2.8	14.0 - 23.8
STW-891	WATER	Sep, 2000			6.2 ± 1.6	3.5 - 8.8
STW-891	WATER	Sep, 2000	Ra-228	5.7±0.5		

	-	
Table A-1.	Interlaboratory Comparison Crosscheck program	, Environmental Resource Associates (ERA)ª.

			Concentration in pCi/L ^b				
Sample Type	Date Collected	Analysis	Laboratory results ±2 Sigma ^c	ERA Result ^d 1s, N=1	Control Limits		
WATER	Sep, 2000	Uranium	10.3 ± 0.1	11.9 ± 3.0	6.7 - 17.1		
WATER	Oct, 2000	I-131	16.9 ± 0.3	15.9 ± 1.6	10.7 - 21.1		
WATER	Oct, 2000	I-131(g)	17.1 ± 5.4	15.9 ± 1.6	10.7 - 21.1		
WATER	Oct, 2000	Gr. Alpha	66.3 ± 5.3	74.4 ± 18.6	42.2 - 107.0		
WATER	Oct, 2000	Ra-226	10.1 ± 1.0	10.5 ± 1.6	7.8 - 13.2		
WATER	Oct, 2000	Ra-228	21.2 ± 0.5	19.4 ± 4.9	11.0 - 27.8		
WATER	Oct, 2000	Uranium	41.4 ± 1.9	44.5 ± 4.5	36.8 - 52.2		
WATER	Oct, 2000	Co-60	93.4 ± 1.6	91.1 ± 5.0	82.4 - 99.8		
WATER	Oct, 2000	Cs-134	54.8 ± 0.3	59.8 ± 5.0	51.1 - 68.5		
WATER	Oct, 2000	Cs-137	45.5 ± 2.3	45.0 ± 5.0	36.3 - 53.7		
WATER	Oct, 2000	Gr. Beta	209.0 ± 7.9	256.0 ± 38.4	189.0 - 323.0		
WATER	Oct, 2000	Sr-89	32.8 ± 3.0	41.3 ± 5.0	32.6 - 50.0		
WATER	Oct, 2000	Sr-90	16.0 ± 2.4	18.0 ± 5.0	9.3 - 26.7		
WATER	Nov, 2000	Gr. Alpha	50.3 ± 2.6	60.3 ± 15.1	34.4 - 86.2		
WATER	Nov, 2000	Gr. Beta	28.6 ± 1.3	25.5 ± 5.0	16.8 - 34.2		
WATER	Nov, 2000	Ba-133	78.0 ± 2.0	82.2 ± 8.2	68.0 - 96.4		
WATER	Nov, 2000	Co-60	30.8 ± 1.7	27.8 ± 5.0	19.1 - 36.5		
	Nov, 2000	Cs-134	67.2 ± 3.3	76.0 ± 5.0	67.3 - 84.7		
	Type WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Type Collected WATER Sep, 2000 WATER Oct, 2000 WATER Nov, 2000	Type Collected Analysis WATER Sep, 2000 Uranium WATER Oct, 2000 I-131 WATER Oct, 2000 I-131(g) WATER Oct, 2000 Gr. Alpha WATER Oct, 2000 Gr. Alpha WATER Oct, 2000 Ra-226 WATER Oct, 2000 Ra-228 WATER Oct, 2000 Ra-228 WATER Oct, 2000 Uranium WATER Oct, 2000 Co-60 WATER Oct, 2000 Cs-134 WATER Oct, 2000 Gr. Beta WATER Oct, 2000 Sr-89 WATER Oct, 2000 Sr-90 WATER Nov, 2000 Gr. Alpha WATER Nov, 2000 Gr. Beta WATER Nov, 2000 Gr. Beta WATER Nov, 2000 Gr. Beta	TypeCollectedAnalysis $\pm 2 \text{ Sigma}^c$ WATERSep, 2000Uranium 10.3 ± 0.1 WATEROct, 2000I-131 16.9 ± 0.3 WATEROct, 2000I-131(g) 17.1 ± 5.4 WATEROct, 2000Gr. Alpha 66.3 ± 5.3 WATEROct, 2000Ra-226 10.1 ± 1.0 WATEROct, 2000Ra-228 21.2 ± 0.5 WATEROct, 2000Uranium 41.4 ± 1.9 WATEROct, 2000Co-60 93.4 ± 1.6 WATEROct, 2000Cs-134 54.8 ± 0.3 WATEROct, 2000Cs-137 45.5 ± 2.3 WATEROct, 2000Gr. Beta 209.0 ± 7.9 WATEROct, 2000Sr-89 32.8 ± 3.0 WATEROct, 2000Gr. Beta 209.0 ± 7.9 WATEROct, 2000Gr. Alpha 50.3 ± 2.6 WATERNov, 2000Gr. Alpha 50.3 ± 2.6 WATERNov, 2000Gr. Beta 28.6 ± 1.3	Sample TypeDate CollectedLaboratory results ± 2 Sigma ^c ERA Result ^d 1s, N=1WATER WATERSep, 2000Uranium 10.3 ± 0.1 11.9 ± 3.0 WATER WATEROct, 2000I-131 16.9 ± 0.3 15.9 ± 1.6 WATER WATEROct, 2000I-131(g) 17.1 ± 5.4 15.9 ± 1.6 WATER WATEROct, 2000Gr. Alpha 66.3 ± 5.3 74.4 ± 18.6 WATER WATEROct, 2000Ra-226 10.1 ± 1.0 10.5 ± 1.6 WATER WATEROct, 2000Ra-228 21.2 ± 0.5 19.4 ± 4.9 WATER WATEROct, 2000Iranium 41.4 ± 1.9 44.5 ± 4.5 WATER WATEROct, 2000Co-60 93.4 ± 1.6 91.1 ± 5.0 WATER WATEROct, 2000Cs-137 45.5 ± 2.3 45.0 ± 5.0 WATER WATEROct, 2000Gr. Beta 209.0 ± 7.9 256.0 ± 38.4 WATER WATEROct, 2000Sr-90 16.0 ± 2.4 18.0 ± 5.0 WATER WATER Nov, 2000Gr. Alpha 50.3 ± 2.6 60.3 ± 15.1 WATER WATER Nov, 2000Gr. Alpha 50.3 ± 2.6 60.3 ± 15.1 WATER WATER Nov, 2000Gr. Beta 28.6 ± 1.3 25.5 ± 5.0 WATER WATER Nov, 2000Gr. Beta 28.6 ± 1.3 25.5 ± 5.0 WATER WATER Nov, 2000Gr. Alpha 50.3 ± 2.0 82.2 ± 8.2 WATER Nov, 2000Co-60 30.8 ± 1.7 27.8 ± 5.0		

Table A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

The mean value for Cs-134 of all participating laboratories was 70.7 pCi/L. Other gamma emitters are within limits, the counting efficiency is not suspect. Library values were reviewed and found to be correct.

STW-896	WATER	Nov, 2000	Cs-137	109.0 ± 1.0	106.0 ± 5.3	96.8 - 115.0
STW-896	WATER	Nov, 2000	Zn-65	81.5 ± 7.4	79.0 ± 7.9	65.3 - 92.7

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the environmental samples crosscheck program operated by Environmental Resources Associates (ERA).

^b All results are in pCi/L, except for elemental potassium (K) data in milk, which are in mg/L; air filter samples, which are in pCi/Filter.

^c Unless otherwise indicated, the laboratory results are given as the mean ± 2 standard deviations for three determinations.

^dResults are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

. <u></u>					mR	
Lab Code	TLD Type	Date	Measurement	Laboratory results ± 2 Sigma	Known Value	Average ±2Sigma (All Participants)
Environr	nental, Inc.					
1999-1	LiF-100 Chips	Mar, 1999	Reader 1, #1	14.5 ± 0.5	15.4	-
1999-1	LiF-100 Chips	Mar, 1999	Reader 1, #2	29.3 ± 1.0	31.8	-
1999-1	LiF-100 Chips	Mar, 1999	Reader 1, #3	60.0 ± 0.2	59.1	-
Environi	mental, Inc.					
1999-2	CaSO ₄ : Dy Cards	Mar, 1999	Reader 1, #1	18.3 ± 0.5	15.4	-
1999-2	CaSO ₄ : Dy Cards	Mar, 1999	Reader 1, #2	35.9 ± 1.3	31.8	-
1999-2	CaSO ₄ : Dy Cards	Mar, 1999	Reader 1, #3	66.5 ± 4.4	59.1	-
Chips	and Cards were irra	diated by Te	ledyne Brown	Engineering, Westwo	od, New Jerse	ey, in March, 1999.
Environ	<u>mental, Inc.</u>					
2000-1	LiF-100 Chips	Mar, 2000	Reader 1, #1	14.4 ± 0.2	17.8	-
2000-1	LiF-100 Chips	Mar, 2000	Reader 1, #2	32.4 ± 0.1	35.5	-
2000-1	LiF-100 Chips	Mar, 2000	Reader 1, #3	61.8 ± 0.9	62.2	-
Environ	mental, Inc.					
2000-2	CaSO ₄ : Dy Cards	Mar, 2000	Reader 1, #1	21.3 ± 0.3	17.8	-
2000-2	CaSO₄: Dy Cards	Mar, 2000	Reader 1, #2	40.1 ± 1.9	35.5	-
2000-2	CaSO₄: Dy Cards	Mar, 2000	Reader 1, #3	69.9 ± 3.5	62.2	-

Table A-2. Crosscheck program results; Thermoluminescent Dosimeters. (TLDs).

Chips and Cards were irradiated by Teledyne Brown Engineering, Westwood, New Jersey, in March, 2000.

Table A-3. In-house "spike" samples.

· · · · · · · · · · · · · · · · · · ·	<u> </u>			Cor	ncentration i	on in pCi/Lª		
Lab Code	Sample Type	Date Collected	Analysis	Laboratory results 2s, n=1 ^b	Known Activity	Control ^c Limits		
SPW-271	WATER	Jan, 2000	Ra-226	14.81 ± 0.44	13.76	9.63 - 17.89		
SPW-271	WATER	Jan, 2000	Ra-228	16.97 ± 2.12	14.68	10.28 - 19.08		
SPW-272	WATER	Jan, 2000	Gr. Alpha	44.35 ± 1.95	41.14	20.57 - 61.71		
SPW-272	WATER	Jan, 2000	Gr. Beta	31.19 ± 5.02	29.50	19.50 - 39.50		
SPW-756	WATER	Jan, 2000	H-3	56339.00 ± 666.00	57667.00	46133.60 - 69200.40		
SPW-480	WATER	Jan, 2000	Co-60	32.33 ± 2.87	28.36	18.36 - 38.36		
SPW-480	WATER	Jan, 2000	Cs-137	35.58 ± 4.20	36.83	26.83 - 46.83		
SPMI-482	MILK	Jan, 2000	Sr-90	16.93 ± 1.07	14.10	4.10 - 24.10		
SPAP-484	AIR FILTER	Jan, 2000	Cs-137	1.84 ± 0.01	1.72	1.03 - 2.41		
SPW-917	WATER	Feb, 2000	Gr. Alpha	16.59 ± 1.90	41.10	20.55 - 61.65		
	ficient amount o	•	•	ble for an accurate tes	st.			
SPW-917	WATER	Feb, 2000	Gr. Beta	32.61 ± 2.06	29.43	19.43 - 39.43		
SPW-918	WATER	Feb, 2000	Ra-226	21.15 ± 0.49	20.68	14.48 - 26.88		
SPW-918	WATER	Feb, 2000	Ra-228	14.24 ± 1.64	14.51	10.16 - 18.86		
SPVE-1262	VEGETATION	Mar, 2000	I-131(g)	1.17 ± 0.07	1.12	0.67 - 1.57		
SPCH-1264	CHARCOAL CANISTER	Mar, 2000	I-131(g)	0.56 ± 0.02	0.53	0.32 - 0.74		
SPMI-1274	MILK	Mar, 2000	I-131	47.02 ± 3.36	48.00	36.00 - 60.00		
SPW-1301	WATER	Mar, 2000	I-131	66.03 ± 1.06	76.84	61.47 - 92.21		
SPW-1301	WATER	Mar, 2000	I-131(g)	80.31 ± 6.28	76.84	66.84 - 86.84		
SPW-1477	WATER	Mar, 2000	Gr. Alpha	32.09 ± 1.82	41.13	20.57 - 61.70		
SPW-1477	WATER	Mar, 2000	Gr. Beta	29.20 ± 1.56	29.38	19.38 - 39.38		
SPW-1478	WATER	Mar, 2000	Ra-226	21.78 ± 0.47	20.69	14.48 - 26.90		
SPW-1478	WATER	Mar, 2000	Ra-228	14.41 ± 1.70	14.39	10.07 - 18.71		
SPMI-2275	MILK	Apr, 2000	Cs-134	33.53 ± 2.82	32.12	22.12 - 42.12		
SPMI-2275	MILK	Apr, 2000	Cs-137	36.38 ± 4.94	36.66	26.66 - 46.66		
SPMI-2275	MILK	Apr, 2000	I-131	46.06 ± 0.82	55.50	44.40 - 66.60		
SPW-2277	WATER	Apr, 2000	Ra-226	20.51 ± 0.44	20.68	14.48 - 26.88		
SPW-2278	WATER	-	Gr. Alpha	40.22 ± 2.50	38.44	19.22 - 57.66		
SPW-2278	WATER	Apr, 2000	Gr. Beta	32.63 ± 1.81	29.30	19.30 - 39.30		
SPW-2278	WATER	Apr, 2000	Ra-228	14.91 ± 1.70	14.25	9.98 - 18.53		
SPW-2279	WATER	Apr, 2000		37.12 ± 3.86	34.54	24.54 - 44.54		
SPW-2279	WATER	Apr, 2000		34.70 ± 3.32	32.12	22.12 - 42.12		
SPW-2279	WATER	Apr, 2000		39.60 ± 5.12	36.66	26.66 - 46.66		
SPW-2279	WATER	Apr, 2000		49.92 ± 0.67	55.50	44.40 - 66.60		
SPW-2279	WATER	Apr, 2000		60.63 ± 6.58	55.50	45.50 - 65.50		
SPW-2281	WATER	Apr, 2000		58829.00 ± 682.00	56996.00	45596.80 - 68395.20		
SPAP-3097	AIR FILTER	Apr, 2000		1.81 ± 0.02	1.71	1.03 - 2.39		
SPW-3093	WATER	May, 2000		83.39 ± 1.06	85.38	68.30 - 102.46		
SPW-3094	WATER	May, 2000		20.86 ± 0.42	20.68	14.48 - 26.88		
SPW-3094	WATER	May, 2000		14.17 ± 1.59	14.12	9.88 - 18.36		
SPW-3095	WATER		Gr. Alpha	38.99 ± 2.09	38.44	19.22 - 57.66		
55.06-0032	******Dix	1viay, 2000						

Table A-3. In-house "spike" samples.

				Concentration in pCi/L ^a				
Lab Code	Sample Type	Date Collected	Analysis	Laboratory results 2s, n=1 ^b	Known Activity	Control ^c Limits		
	WATER	May, 2000	Gr. Beta	30.65 ± 1.53	29.30	19.30 - 39.30		
SPW-3095 SPAP-274	AIR FILTER	May, 2000 May, 2000	Gr. Beta	5.08 ± 0.03	5.97	-4.03 - 15.97		
SPAP-274 SPMI-3138	MILK	May, 2000 May, 2000	I-131	85.08 ± 1.05	85.38	68.30 - 102.46		
SPF-3180	FISH	May, 2000		0.52 ± 0.02	0.50	0.30 - 0.70		
SPF-3180 SPF-3180	FISH	May, 2000	Cs-137	0.65 ± 0.04	0.59	0.35 - 0.82		
SPAP-3902	AIR FILTER		Gr. Beta	5.81 ± 0.03	5.35	-4.65 - 15.35		
SPAF-5902 SPF-5182	FISH	Jun, 2000 Jun, 2000	Cs-134	0.60 ± 0.04	0.59	0.35 - 0.83		
SPF-5182 SPF-5182	FISH	Jun, 2000 Jun, 2000	Cs-137	0.60 ± 0.05	0.58	0.35 - 0.81		
SPW-3911	WATER	Jun, 2000	Ra-226	23.73 ± 0.85	20.68	14.48 - 26.88		
SPW-3911	WATER	Jun, 2000	Ra-228	20.43 ± 1.77	20.75	14.53 - 26.98		
SPW-3910	WATER	Jun, 2000	Gr. Alpha	38.28 ± 2.12	38.44	19.22 - 57.66		
SPW-3910	WATER	Jun, 2000	Gr. Beta	35.14 ± 1.74	29.22	19.22 - 39.22		
SPW-4342	WATER	Jun, 2000	Sr-89	73.70 ± 4.77	81.00	64.80 - 97.20		
SPW-4342	WATER	Jun, 2000	Sr-90	58.13 ± 2.17	55.90	44.72 - 67.08		
SPW-4687	WATER	Jul, 2000	Ra-226	21.07 ± 0.56	20.68	14.48 - 26.88		
SPW-4687	WATER	Jul, 2000	Ra-228	16.35 ± 1.70	20.75	14.53 - 26.98		
SPW-4688	WATER	Jul, 2000	H-3	56205.00 ± 663.00	56228.00	44982.40 - 67473.60		
SPAP-4807	AIR FILTER	Jul, 2000	Gr. Beta	6.07 ± 0.02	5.96	-4.04 - 15.96		
SPAP-4809	AIR FILTER	Jul, 2000	Cs-137	1.82 ± 0.02	1.71	1.03 - 2.39		
SPMI-4856	MILK	Jul, 2000	Cs-134	33.24 ± 3.74	29.56	19.56 - 39.56		
SPMI-4856	MILK	Jul, 2000	Cs-137	39.80 ± 6.77	36.45	26.45 - 46.45		
SPMI-4856	MILK	Jul, 2000	Sr-89	46.35 ± 5.10	56.34	45.07 - 67.61		
SPMI-4856	MILK	Jul, 2000	Sr-90	70.47 ± 2.06	69.73	55.78 - 83.68		
SPW-5372	WATER	Jul, 2000	Co-60	33.31 ± 4.61	33.24	23.24 - 43.24		
SPW-5372	WATER	Jul, 2000	Cs-134	59.70 ± 4.57	58.26	48.26 - 68.26		
SPW-5372	WATER	Jul, 2000	Cs-137	40.00 ± 5.58	36.42	26.42 - 46.42		
SPW-4686	WATER	Aug, 2000	Gr. Alpha	34.12 ± 1.71	38.43	19.22 - 57.65		
SPW-4686	WATER	Aug, 2000	-	35.42 ± 1.51	29.21	19.21 - 39.21		
SPW-5564	WATER	Aug, 2000		62.97 ± 4.73	67.61	54.09 - 81.13		
SPW-5564	WATER	Aug, 2000		65.40 ± 2.47	55.70	44.56 - 66.84		
SPW-5792	WATER	Aug, 2000		12.82 ± 0.30	13.79	9.65 - 17.93		
SPW-5792	WATER	Aug, 2000		15.00 ± 1.21	13.69	9.58 - 17.80		
SPW-6631	WATER	Sep, 2000	Ra-228	22.20 ± 2.20	20.32	14.22 - 26:42		
SPW-6632	WATER	Sep, 2000	Ra-226	13.58 ± 0.29	13.79	9.65 - 17.93		
SPW-6632	WATER	Sep, 2000		18.84 ± 2.59	20.32	14.22 - 26.42		
SPW-6633	WATER	Sep, 2000		1757.00 ± 674.00	1852.00	1481.60 - 2222.40		
SPW-5791	WATER	Sep, 2000		52.28 ± 9.41	69.00	34.50 - 103.50		
SPW-5791	WATER	Sep, 2000	-	34.60 ± 4.71	29.10	19.10 - 39.10		
SPW-6630	WATER	Sep, 2000		71.54 ± 7.15	69.14	34.57 - 103.71		
SPW-6630	WATER	Sep, 2000	_	37.78 ± 1.62	29.04	19.04 - 39.04		
SPW-7744	WATER	Oct, 2000		12.36 ± 0.25	13.79	9.65 - 17.93		
		, _, _,						

-

Table A-3. In-house "spike" samples.

				Сол	ncentration	in pCi/Lª
Lab Code	Sample Type	Date Collected	Analysis	Laboratory results 2s, n=1 ^b	Known Activity	Control ^c Limits
SPW-7744	WATER	Oct, 2000	Ra-228	10.37 ± 1.15	13.40	9.38 - 17.42
SPW-7745	WATER	Oct, 2000	H-3	54650.00 ± 643.00	55391.00	44312.80 - 66469.20
SPAP-7764	AIR FILTER	Oct, 2000	Gr. Beta	6.14 ± 0.03	5.91	-4.09 - 15.91
SPAP-7766	AIR FILTER	Oct, 2000	Cs-137	1.84 ± 0.01	1.69	1.01 - 2.37
SPMI-8347	MILK	Oct, 2000	Cs-134	29.18 ± 6.51	26.83	16.83 - 36.83
SPMI-8347	MILK	Oct, 2000	Cs-134	29.37 ± 3.63	26.83	16.83 - 36.83
SPMI-8347	MILK	Oct, 2000	Cs-137	39.04 ± 8.76	36.20	26.20 - 46.20
SPMI-8347	MILK	Oct, 2000	Cs-137	34.89 ± 5.71	36.20	26.20 - 46.20
SPF-8349	FISH	Oct, 2000	Cs-134	0.56 ± 0.02	0.54	0.32 - 0.75
SPF-8349	FISH	Oct, 2000	Cs-137	0.92 ± 0.04	0.87	0.52 - 1.22
SPW-8369	WATER	Oct, 2000	Co-60	32.49 ± 1.86	32.19	22.19 - 42.19
SPW-8369	WATER	Oct, 2000	Cs-134	55.87 ± 1.71	53.66	43.66 - 63.66
SPW-8369	WATER	Oct, 2000	Cs-137	36.46 ± 2.73	36.21	26.21 - 46.21
SPW-7743	WATER	Oct, 2000	Gr. Alpha	51.28 ± 2.28	69.10	34.55 - 103.65
SPW-7743	WATER	Oct, 2000	Gr. Beta	36.86 ± 1.66	29.00	19.00 - 39.00
SPW-9101	WATER	Nov, 2000	Ra-226	14.35 ± 0.24	13.79	9.65 - 17.93
SPW-9101	WATER	Nov, 2000	Ra-228	22.14 ± 1.56	20.09	14.06 - 26.12
SPW-9102	WATER	Dec, 2000	Gr. Alpha	77.76 ± 3.02	69.14	34.57 - 103.71
SPW-9102	WATER	Dec, 2000	Gr. Beta	36.71 ± 1.65	28.99	18.99 - 38.99
SPW-9726	WATER	Dec, 2000	Gr. Alpha	43.03 ± 2.18	69.14	34.57 - 103.71
SPW-9726	WATER	Dec, 2000	Gr. Beta	32.17 ± 1.55	28.89	18.89 - 38.89
SPW-9727	WATER	Dec, 2000	Ra-226	13.35 ± 0.29	13.79	9.65 - 17.93
SPW-9727	WATER	Dec, 2000	Ra-228	15.44 ± 1.23	19.75	13.83 - 25.68
SPCH-10228	CHARCOAL CANISTER	Dec, 2000	Ba-133	1.80 ± 0.05	2.11	1.26 - 2.95

^a All results are in pCi/L, except for elemental potassium (K) in milk, which are in mg/L.; air filter samples, which are in pCi/Filter; and food products, which are in mg/kg.

^b All samples are the results of single determinations.

^c Control limits are based on Attachment A, page A2 of this report.

NOTE: For fish, Jello is used for the spike matrix. For vegetation, Sawdust is used for the spike matrix.

				Concentration pCi/L ^a .			
					ratory results	Acceptance	
Lab Code	Sample Type	Sample Date	Analysis	(4.	66 Sigma) Activity ^b	Criteria (4.66 Sigma)	
SPW-270	WATER	Jan 2000	Gr. Alpha	< 0.50	0.52 ± 0.41	<1.0	
SPW-270	WATER	Jan 2000	Gr. Beta	< 1.50	-0.34 ± 1.11	<3.2	
SPW-270	WATER	Jan 2000	Ra-226		0.06 ± 0.01	<1.0	
SPW-270	WATER	Jan 2000	Ra-228	< 0.94	0.14 ± 0.45	<2.0	
SPW-447	WATER	Jan 2000	H-3	< 184.00	-54.70 ± 88.60	<200.0	
SPW-481	WATER	Jan 2000	Co-60	< 2.42		<10.0	
SPW-481	WATER	Jan 2000	Cs-134	< 3.99		< 10.0	
SPW-481	WATER	Jan 2000	Cs-137	< 2.90		< 10.0	
SPMI-483	MILK	Jan 2000	Cs-137	< 2.73		< 10.0	
SPMI-483	MILK	Jan 2000	Sr-90		1.03 ± 0.40	< 1.0	
Low level of	Sr-90 concentratio	n in milk (1-	5 pCi/L) is not				
SPAP-485	AIR FILTER	Jan 2000	Cs-137	< 1.64		<100.0	
SPW-919	WATER	Feb 2000	Gr. Alpha	< 0.80	0.56 ± 0.61	<1.0	
SPW-919	WATER	Feb 2000	Gr. Beta	< 1.65	0.11 ± 1.16	<3.2	
SPW-919	WATER	Feb 2000	Ra-226	< 0.02	0.02 ± 0.01	<1.0	
SPW-919	WATER	Feb 2000	Ra-228	< 0.60	0.02 ± 0.01	<2.0	
SPVE-1263	VEGETATION	Mar 2000	Cs-134	< 11.48		<100.0	
SPVE-1263	VEGETATION	Mar 2000	Cs-137	< 24.82		<100.0	
SPCH-1265	CHARCOAL CANISTER	Mar 2000	I-131(g)	< 7.00		<9.6	
SPMI-1292	MILK	Mar 2000	I-131	< 0.32	0.05 ± 0.18	< 0.5	
SPMI-1292	MILK	Mar 2000	I-131(g)	< 4.60		< 20.0	
SPW-1302	WATER	Mar 2000	I-131	< 0.30	0.01 ± 0.14	< 0.5	
SPW-1479	WATER	Mar 2000	Gr. Alpha	< 0.84	-0.32 ± 0.53	<1.0	
SPW-1479	WATER	Mar 2000	Gr. Beta	< 1.86	-1.39 ±1.19	< 3.2	
SPW-1479	WATER	Mar 2000	Ra-226	< 0.01	0.06 ± 0.01	< 1.0	
SPW-1479	WATER	Mar 2000	Ra-228	< 1.00	1.17 ± 0.60	< 2.0	
SPMI-2276	MILK	Apr 2000	Cs-134	< 4.20		< 10.0	
SPMI-2276	MILK	Apr 2000	Cs-137	< 3.33		< 10.0	
SPMI-2276	MILK	Apr 2000	I-131	< 0.50	0.32 ± 0.30	< 0.5	
SPW-2280	WATER	Apr 2000	Co-60	< 2.78		<10.0	
SPW-2280	WATER	Apr 2000	Cs-134	< 3.56		< 10.0	

				Concentration pCi/L ^a .			
					atory results	Acceptance	
Lab Code	Sample Type	Sample Date	Analysis	(4.0	66 Sigma) Activity ^b	Criteria (4.66 Sigma)	
SPW-2280	WATER	Apr 2000	Cs-137	< 2.81		< 10.0	
SPW-2280	WATER	Apr 2000	Gr. Alpha	< 0.60	0.55 ± 0.45	< 1.0	
SPW-2280	WATER	Apr 2000	Gr. Beta	< 1.66	0.62 ± 1.11	< 3.2	
SPW-2280	WATER	Apr 2000	I-131	< 0.29	-0.16 ± 0.19	< 0.5	
SPW-2280	WATER	Apr 2000	I-131(g)	< 3.42		< 20.0	
SPW-2280	WATER	Apr 2000	Ra-226		0.03 ± 0.01	< 1.0	
SPW-2280	WATER	Apr 2000	Ra-228	< 0.87	0.65 ± 0.47	< 2.0	
SPW-2282	WATER	Apr 2000	H-3	< 151.60	-5.40 ± 74.90	< 200.0	
SPAP-3098	AIR FILTER	Apr 2000	Cs-137	< 1.37		< 100.0	
SPW-3096	WATER	May 2000	Gr. Alpha	< 0.68		< 1.0	
SPW-3096	WATER	May 2000	Gr. Beta	< 1.62		< 3.2	
SPW-3096	WATER	May 2000	Ra-226		0.05 ± 0.01	< 1.0	
SPW-3096	WATER	May 2000	Ra-228	< 0.90	0.05 ± 0.01	<2.0	
SPAP-273	AIR FILTER	May 2000	Gr. Beta	< 0.54	0.90 ± 0.32	<3.2	
SPMI-3139	MILK	May 2000	I-131	< 0.33		< 0.5	
SPF-3181	FISH	May 2000	Cs-134	< 3.02		< 100.0	
SPF-3181	FISH	May 2000	Cs-137	< 4.99		< 100.0	
SPAP-3903	AIR FILTER	Jun 2000	Gr. Beta	< 0.48		< 3.2	
SPW-3912	WATER	Jun 2000	Gr. Alpha	< 0.35	0.28 ± 0.28	< 1.0	
SPW-3912	WATER	Jun 2000	Gr. Beta	< 1.22	0.54 ± 0.86	< 3.2	
SPW-3912	WATER	Jun 2000	Ra-226		0.04 ± 0.02	< 1.0	
SPW-3912	WATER	Jun 2000	Ra-228	< 0.65		< 2.0	
SPMI-4343	MILK	Jun 2000	Sr-89	< 0.73		< 5.0	
SPMI-4343	MILK	Jun 2000	Sr-90	< 0.56		< 1.0	
SPW-4689	WATER	Jul 2000	Ra-226		0.03 ± 0.01	< 1.0	
SPW-4689	WATER	Jul 2000	Ra-228	< 0.93	1.11 ± 0.55	<2.0 -	
SPW-4690	WATER	Jul 2000	H-3	< 178.00	18.57 ± 89.13	< 200.0	
SPW-4808	WATER	Jul 2000	Gr. Alpha	< 0.45		<1.0	
SPAP-4810	AIR FILTER	Jul 2000	Cs-137	< 2.18		< 100.0	
SPMI-4857	MILK	Jul 2000	Cs-137	< 6.13		< 10.0	
SPMI-4857	MILK	Jul 2000	I-131(g)	< 7.19		< 20.0	

					Concentration pC	oncentration pCi/L ^a .	
Lab	Sample	Sample			ratory results .66 Sigma)	Acceptance Criteria	
Code	Туре	Date	Analysis	LLD	Activity ^b	(4.66 Sigma)	
SPMI-4857	MILK	Jul 2000	Sr-89	< 0.66		< 5.0	
SPMI-4857	MILK	Jul 2000	Sr-90		1.15 ± 0.32	<1.0	
Low level of Sr	r-90 concentratio	on in milk (1-	5 pCi/L) is not u	inusual.			
SPF-5183	FISH	Jul 2000	Cs-134	< 17.71		< 100.0	
SPF-5183	FISH	Jul 2000	Cs-137	< 12.81		< 100.0	
SPW-4689	WATER	Jul 2000	Gr. Alpha	< 0.50		<1.0	
SPW-4689	WATER	Jul 2000	Gr. Beta	< 1.20		<3.2	
SPW-5373	WATER	Jul 2000	Co-60	< 5.20		< 10.0	
SPW-5373	WATER	Jul 2000	Cs-134	< 4.80		< 10.0	
SPW-5373	WATER	Jul 2000	Cs-137	< 4.00		< 10.0	
SPW-5565	WATER	Aug 2000	Sr-89	< 1.56	-0.64 ± 1.11	< 5.0	
SPW-5565	WATER	Aug 2000	Sr-90	< 0.59	0.17 ± 0.30	<1.0	
SPW-5793	WATER	Aug 2000	Gr. Alpha	< 0.51	0.02 ± 0.36	<1.0	
SPW-5793	WATER	Aug 2000	Ra-226		0.05 ± 0.02	<1.0	
SPW-5793	WATER	Aug 2000	Ra-228	< 0.95	0.26 ± 0.47	<2.0	
SPW-5793	WATER	Aug 2000	Gr. Beta	< 1.40	-0.13 ± 1.01	<3.2	
SPW-6634	WATER	Sep 2000	Fe-55	< 617.00	-105.90 ± 453.40	< 1000.0	
SPW-6634	WATER	Sep 2000	Ra-226	< 0.01	$0.03\ \pm 0.01$	<1.0	
SPW-6634	WATER	Sep 2000	Ra-228	< 0.99	0.36 ± 0.51	<2.0	
SPW-6634	WATER	Sep 2000	Gr. Alpha	< 0.67	-0.22 ± 0.45	<1.0	
SPW-6634	WATER	Sep 2000	Gr. Beta	< 1.60	-0.20 ± 1.12	<3.2	
SPSO-10595	SOIL	Oct 2000	Cs-134	< 16.87		< 100.0	
SPSO-10595	SOIL	Oct 2000	Cs-137	< 9.40		< 100.0	
SPW-7746	WATER	Oct 2000	Ra-226	< 0.03	0.04 ± 0.02	<1.0	
SPW-7746	WATER	Oct 2000	Ra-228	< 1.08	0.00 ± 0.87	< 2.0	
SPW-7747	WATER	Oct 2000	H-3	< 158.00	-38.00 ±77.00	< 200.0 -	
SPAP-7765	AIR FILTER	Oct 2000	Gr. Beta	< 0.64	0.00 ± 0.00	<3.2	
SPAP-7767	AIR FILTER	Oct 2000	Co-60	< 0.19		<100.0	
SPAP-7767	AIR FILTER	Oct 2000	Cs-134	< 0.32		< 100.0	
SPAP-7767	AIR FILTER	Oct 2000	Cs-137	< 2.32		<100.0	
SPMI-8348	MILK	Oct 2000	Cs-134	< 3.35		< 10.0	
SPMI-8348	MILK	Oct 2000	Cs-137	< 3.07		<10.0	

					Concentration p	Ci/Lª.
Lab	Sample	Sample			atory results 56 Sigma)	Acceptance Criteria
Code	Туре	Date	Analysis	LLD	Activity ^b	(4.66 Sigma)
SPF-8350	FISH	Oct 2000	Cs-134	< 10.26		<100.0
SPF-8350	FISH	Oct 2000	Cs-137	< 10.51		<100.0
SPW-8370	WATER	Oct 2000	Co-60	< 4.67		< 10.0
SPW-8370	WATER	Oct 2000	Cs-134	< 5.28		<10.0
SPW-8370	WATER	Oct 2000	Cs-137	< 4́.93		<10.0
SPW-7746	WATER	Oct 2000	Gr. Alpha	< 0.46	0.06 ± 0.33	<1.0
SPW-7746	WATER	Oct 2000	Gr. Beta	< 1.24	0.00 ± 0.87	< 3.2
SPW-9103	WATER	Nov 2000	Ra-226	< 0.01	0.02 ± 0.01	<1.0
SPW-9103	WATER	Nov 2000	Ra-228	< 1.00	0.14 ± 0.48	<2.0
SPW-9729	WATER	Dec 2000	Gr. Alpha	< 0.46	0.23 ± 0.36	<1.0
SPW-9729	WATER	Dec 2000	Gr. Beta	< 1.33	-0.46 ± 0.98	<3.2
SPW-9729	WATER	Dec 2000	Ra-226	< 0.02	0.05 ± 0.01	<1.0
SPW-9729	WATER	Dec 2000	Ra-228	< 0.70	0.22 ± 0.35	<2.0
SPW-9103	WATER	Dec 2000	Gr. Alpha	< 0.51	-0.11 ± 0.37	<1.0
SPW-9103	WATER	Dec 2000	Gr. Beta	< 1.21	0.55 ± 0.91	<3.2
SPCH-10583	CHARCOAL CANISTER	Dec 2000	I-131(g)	< 1.49		<9.6

^a Liquid sample results are reported in pCi/Liter, air filter sample results are in pCi/filter, charcoal sample results are in pCi/charcoal, and solid sample results are in pCi/kilogram.

^b The activity reported is the net activity result.

Table A-5.	In-house	"duplicate"	samples.
------------	----------	-------------	----------

-				Concentration i	n pCi/L [*]
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result
CF-23, 24	Jan, 2000	Gr. Beta	13.05 ± 0.39	12.46 ± 0.36	12.75 ± 0.26
CF-23, 24	Jan, 2000	K-40	13.00 ± 0.90	11.73 ± 0.79	12.36 ± 0.60
CF-23, 24	Jan, 2000	Sr-90	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00
WW-65, 66	Jan, 2000	Co-60	-0.53 ± 1.62	0.44 ± 2.11	-0.04 ± 1.33
WW-65, 66	Jan, 2000	Cs-137	-2.13 ± 1.70	0.41 ± 2.35	-0.86 ± 1.45
WW-65, 66	Jan, 2000	H-3	131.62 ± 84.13	182.81 ± 86.33	157.22 ± 60.27
WW-686, 687	Jan, 2000	Gr. Beta	4.76 ± 1.22	4.59 ± 1.27	4.67 ± 0.88
AP-1204, 1205	Jan, 2000	Be-7	0.19 ± 0.09	0.10 ± 0.07	0.14 ± 0.06
SW-68, 69	Jan, 2000	K-40 (FP)	1.30 ± 0.13	1.30 ± 0.13	1.30 ± 0.09
MI-277, 278	Jan, 2000	I-131	-0.08 ± 0.27	-0.00 ± 0.26	-0.04 ± 0.19
MI-277, 278	Jan, 2000	K-40	$1,664.70 \pm 113.20$	$1,431.30 \pm 90.30$	$1,548.00 \pm 72.40$
MI-277, 278	Jan, 2000	Sr-90	0.63 ± 0.42	0.51 ± 0.40	0.57 ± 0.29
SW-728, 729	Jan, 2000	Co-60	0.39 ± 1.79	1.04 ± 1.53	0.72 ± 1.18
SW-728, 729	Jan, 2000	Cs-137	-0.67 ± 1.86	1.22 ± 1.38	0.27 ± 1.16
SW-403, 404	Jan, 2000	H-3	795.21 ± 109.04	857.22 ± 111.09	826.22 ± 77.83
SWT-437, 438	Jan, 2000	Gr. Beta	1.73 ± 0.57	2.60 ± 0.58	2.16 ± 0.41
PW-637, 638	Jan, 2000	Co-60	4.90 ± 2.92	-2.56 ± 2.80	1.17 ± 2.02
PW-637, 638	Jan, 2000	Cs-137	2.73 ± 2.51	-1.68 ± 2.71	0.53 ± 1.85
PW-637, 638	Jan, 2000	Gr. Beta	1.67 ± 1.31	4.00 ± 1.59	2.83 ± 1.03
SW-587, 588	Jan, 2000	Co-60	-1.24 ± 1.86	-0.27 ± 1.79	-0.76 ± 1.29
SW-587, 588	Jan, 2000	Cs-137	1.35 ± 1.94	0.23 ± 1.80	0.79 ± 1.32
SW-587, 588	Jan, 2000	Gr. Beta	3.80 ± 1.56	6.76 ± 1.75	5.28 ± 1.17
SW-611, 612	Jan, 2000	H-3	2,229.26 ± 158.61	$2,115.19 \pm 155.80$	2,172.23 ± 111.16
SW-459, 460	Feb, 2000 ·	Gr. Beta	2.15 ± 0.94	2.79 ± 0.94	2.47 ± 0.66
WW-774, 775	Feb, 2000	Co-60	4.26 ± 3.48	1.61 ± 4.46	2.93 ± 2.83
WW-774, 775	Feb, 2000	Cs-137	-1.19 ± 3.78	2.37 ± 4.65	0.59 ± 2.99
WW-774, 775	Feb, 2000	H-3	$2,841.35 \pm 174.48$	2,566.76 ± 168.19	$2,704.05 \pm 121.17$
SW-707, 708	Feb, 2000	Gr. Alpha	2.20 ± 1.73	0.16 ± 1.29	1.18 ± 1.08
SW-707, 708	Feb, 2000	Gr. Beta	7.90 ± 1.70	7.70 ± 1.70	7.80 ± 1.20
SW-707, 708	Feb, 2000	H-3	117.00 ± 92.00	69.00 ± 90.00	93.00 ± 64.35
CW-854, 855	Feb, 2000	Gr. Beta	2.13 ± 1.36	1.34 ± 1.25	1.74 ± 0.93
SW-881, 882	Feb, 2000	H-3	$1,794.91 \pm 145.81$	$1,762.31 \pm 144.95$	$1,778.61 \pm 102.80$
SW-959, 960	Feb, 2000	Gr. Alpha	1.04 ± 1.00	0.92 ± 0.67	0.98 ± 0.60
SW-959, 960	Feb, 2000	Gr. Beta	1.24 ± 0.89	1.79 ± 0.90	1.51 ± 0.63
PW-1055, 1056	Feb, 2000	Co-60	-0.72 ± 3.18	1.73 ± 1.89	0.51 ± 1.85
PW-1055, 1056	Feb, 2000	Cs-137	0.55 ± 2.81	0.90 ± 1.86	0.72 ± 1.69
PW-1055, 1056	Feb, 2000	Gr. Beta	2.40 ± 1.52	2.20 ± 1.50	2.30 ± 1.07

Table A-5.	In-house	"duplicate"	samples.
------------	----------	-------------	----------

			Concentration in pCi/L ^a		
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result
MI-1079, 1080	Mar, 2000	Calcium	0.79 ± 0.08	0.78 ± 0.08	0.79 ± 0.06
MI-1079, 1080	Mar, 2000	K-40	1,229.00 ± 138.00	$1,387.00 \pm 162.00$	$1,308.00 \pm 106.40$
MI-1079, 1080	Mar, 2000	Sr-90	0.90 ± 0.40	1.70 ± 0.50	1.30 ± 0.32
CW-1156, 1157	Mar, 2000	H-3	1,994.51 ± 143.09	$2,012.54 \pm 143.55$	$2,003.53 \pm 101.34$
SW-1967, 1968	Mar, 2000	Gr. Beta	11.96 ± 1.31	12.57 ± 1.31	12.27 ± 0.93
SW-2468, 2469	Mar, 2000	Sr-90	0.93 ± 0.45	0.50 ± 0.29	0.72 ± 0.27
WW-1402, 1403	Mar, 2000	H-3	93.34 ± 97.05	60.63 ± 95.75	76.98 ± 68.17
LW-1269, 1270	Mar, 2000	Gr. Beta	1.97 ± 0.57	3.22 ± 0.69	2.60 ± 0.45
MI-1541, 1542	Mar, 2000	K-40	$1,380.00 \pm 122.00$	$1,476.00 \pm 158.00$	$1,428.00 \pm 99.81$
AP-2113, 2114	Mar, 2000	Be-7	0.06 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
CW-1571, 1572	Mar, 2000	Gr. Beta	2.29 ± 1.48	1.35 ± 1.27	1.82 ± 0.98
CW-1693, 1694	Mar, 2000	Gr. Beta	0.56 ± 1.18	1.91 ± 1.49	1.24 ± 0.95
SWT-1821, 1822	Mar, 2000	Gr. Beta	2.36 ± 0.65	2.01 ± 0.57	2.19 ± 0.43
WW-1916, 1917	Mar, 2000	H-3	25.37 ± 90.21	3.90 ± 89.27	14.63 ± 63.46
AP-2155, 2156	Mar, 2000	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01
SWU-2547, 2548	Mar, 2000	Sr-90	0.57 ± 0.24	0.55 ± 0.24	0.56 ± 0.17
CW-1798, 1799	Mar, 2000	Gr. Beta	2.73 ± 1.85	0.76 ± 1.71	1.75 ± 1.26
AP-2176, 2177	Mar, 2000	Be-7	0.06 ± 0.01	0.08 ± 0.02	0.07 ± 0.01
WW-2046, 2047	Mar, 2000	H-3	221.85 ± 101.64	185.19 ± 100.24	203.52 ± 71.38
SW-1967, 1968	Apr, 2000	K-40	9.20 ± 0.90	9.10 ± 0.90	9.15 ± 0.64
SW-2241, 2242	Apr, 2000	Gr. Alpha	2.49 ± 1.44	3.15 ± 1.53	2.82 ± 1.05
SW-2241, 2242	Apr, 2000	Gr. Beta	8.37 ± 1.36	7.20 ± 1.29	7.79 ± 0.94
WW-2342, 2343	Apr, 2000	Gr. Beta	4.20 ± 0.64	4.68 ± 0.73	4.44 ± 0.49
WW-2711, 2712	Apr, 2000	Cs-137	-0.76 ± 2.19	1.43 ± 3.63	0.34 ± 2.12
WW-2711, 2712	Apr, 2000	H-3	3,877.05 ± 192.54	$3,951.88 \pm 193.99$	$3,914.46 \pm 136.66$
WW-2511, 2512	Apr, 2000	H-3	108.10 ± 79.80	127.80 ± 80.70	117.95 ± 56.75
SO-2435, 2436	Apr, 2000	K-40	4.73 ± 0.38	4.83 ± 0.53	4.78 ± 0.33
SS-2669, 2670	Apr, 2000	K-40	8.60 ± 0.55	9.18 ± 0.45	8.89 ± 0.36
SWU-2732, 2733	Apr, 2000	Gr. Beta	3.33 ± 0.68	3.19 ± 0.69	3.26 ± 0.48
PW-2605, 2606	Apr, 2000	Co-60	0.36 ± 1.10	1.05 ± 2.03	0.71 ± 1.16^{-1}
PW-2605, 2606	Apr, 2000	Cs-137	-0.07 ± 0.93	-0.98 ± 2.37	-0.53 ± 1.27
PW-2605, 2606	Apr, 2000	Gr. Beta	1.51 ± 1.31	2.91 ± 1.39	2.21 ± 0.96
WW-2711, 2712	Apr, 2000	H-3	3,877.00 ± 192.50	3,951.90 ± 194.00	$3,914.45 \pm 136.65$
WW-2711, 2712	Apr, 2000	Co-60	0.97 ± 1.93	0.82 ± 3.64	0.90 ± 2.06
BS-3212, 3213	Apr, 2000	Gr. Beta	7.90 ± 1.97	7.57 ± 1.88	7.74 ± 1.36
MI-2810, 2811	May, 2000	K-40	$1,285.00 \pm 111.00$	$1,338.00 \pm 127.00$	$1,311.50 \pm 84.34$
SW-3003, 3004	May, 2000	Gr. Beta	5.06 ± 0.73	5.27 ± 0.73	5.17 ± 0.52

Table A-5.	In-house	"duplicate"	samples.
------------	----------	-------------	----------

·	Concentration in pC			n pCi/Lª	
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result
SW-3003, 3004	May, 2000	K-40	1.30 ± 0.13	1.20 ± 0.12	1.25 ± 0.09
F-2831, 2832	May, 2000	Co-60	0.01 ± 0.01	0.00 ± 0.01	0.01 ± 0.01
F-2831, 2832	May, 2000	Cs-137	-0.00 ± 0.01	0.00 ± 0.01	0.00 ± 0.01
WW-3128, 3129	May, 2000	Gr. Beta	5.41 ± 1.35	4.43 ± 1.22	4.92 ± 0.91
BS-3411, 3412	May, 2000	Co-60	-0.00 ± 0.01	0.01 ± 0.01	0.00 ± 0.01
BS-3411, 3412	May, 2000	Cs-137	0.01 ± 0.01	0.00 ± 0.01	0.00 ± 0.00
F-3436, 3437	May, 2000	Co-60	0.01 ± 0.01	0.00 ± 0.01	0.01 ± 0.00
F-3436, 3437	May, 2000	Cs-137	0.00 ± 0.01	-0.00 ± 0.00	-0.00 ± 0.00
F-2978, 2979	May, 2000	K-40	2.72 ± 0.26	2.14 ± 0.30	2.43 ± 0.20
SS-3482, 3483	May, 2000	Cs-137	0.11 ± 0.03	0.12 ± 0.03	0.12 ± 0.02
SS-3482, 3483	May, 2000	K-40	11.26 ± 0.57	11.37 ± 0.54	11.32 ± 0.39
BS-3458, 3459	May, 2000	Co-60	0.01 ± 0.01	0.02 ± 0.01	0.01 ± 0.01
BS-3458, 3459	May, 2000	Cs-137	0.04 ± 0.01	0.03 ± 0.02	0.03 ± 0.01
MI-3510, 3511	May, 2000	Co-60	0.48 ± 3.05	-0.80 ± 2.74	-0.16 ± 2.05
MI-3510, 3511	May, 2000	Cs-137	1.17 ± 2.96	0.38 ± 2.60	0.77 ± 1.97
MI-3510, 3511	May, 2000	I-131	-0.06 ± 0.25	-0.04 ± 0.24	-0.05 ± 0.17
SO-3629, 3630	May, 2000	Cs-137	0.23 ± 0.03	0.20 ± 0.03	0.22 ± 0.02
SO-3629, 3630	May, 2000	Gr. Beta	20.49 ± 2.82	19.14 ± 2.73	19.82 ± 1.96
SO-3629, 3630	May, 2000	K-40	13.03 ± 0.61	12.25 ± 0.57	12.64 ± 0.42
SW-3904, 3905	May, 2000	Gr. Beta	6.27 ± 1.83	7.02 ± 1.90	6.65 ± 1.32
SW-3904, 3905	May, 2000	Co-60	-0.65 ± 1.54	1.32 ± 1.77	0.33 ± 1.17
SW-3904, 3905	May, 2000	Cs-137	0.19 ± 1.22	-0.16 ± 1.15	0.01 ± 0.84
SW-3904, 3905	May, 2000	Gr. Beta	6.27 ± 1.83	7.02 ± 1.90	6.64 ± 1.32
SP-3833, 3834	May, 2000	Gr. Alpha	4.19 ± 1.34	3.22 ± 1.20	3.71 ± 0.90
MI-3105, 3106	May, 2000	K-40	$1,460.00 \pm 173.00$	$1,452.00 \pm 110.00$	$1,456.00 \pm 102.50$
VE-3191, 3192	May, 2000	Be-7	0.42 ± 0.23	0.39 ± 0.16	0.40 ± 0.14
VE-3191, 3192	May, 2000	Gr. Alpha	0.15 ± 0.06	0.28 ± 0.07	0.22 ± 0.05
VE-3191, 3192	May, 2000	Gr. Beta	3.76 ± 0.13	3.88 ± 0.14	3.82 ± 0.10
VE-3191, 3192	May, 2000	K-40	3.58 ± 0.43	3.47 ± 0.72	3.53 ± 0.42
MI-3718, 3719	May, 2000	K-40	$1,447.00 \pm 165.00$	$1,444.00 \pm 177.00$	1,445.50 ± 120 .9 9
DW-3770, 3771	May, 2000	Gr. Beta	5.92 ± 1.32	4.54 ± 1.10	5.23 ± 0.86
MI-3653, 3654	Jun, 2000	K-40	$1,407.00 \pm 170.00$	$1,388.00 \pm 102.00$	1,397.50 ± 99.13
SW-4614, 4615	Jun, 2000	Sr-90	0.50 ± 0.27	0.55 ± 0.27	0.53 ± 0.19
WW-3883, 3884	Jun, 2000	H-3	$4,401.80 \pm 204.60$	4,298.00 ± 202.70	$4,349.90 \pm 144.00$
WW-3883, 3884	Jun, 2000	Co-60	0.91 ± 3.01	-0.28 ± 1.52	0.32 ± 1.69
WW-3883, 3884	Jun, 2000	Cs-137	0.49 ± 2.16	0.66 ± 1.82	0.57 ± 1.41
WW-3883, 3884	Jun, 2000	H-3	$4,401.78 \pm 204.63$	$4,297.96 \pm 202.67$	$4,349.87 \pm 144.00$

-

Table A-5.	In-house	"duplicate"	samples.
------------	----------	-------------	----------

				Concentration in pCi/L ^a			
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result		
BS-3980, 3981	Jun, 2000	Cs-137	0.07 ± 0.02	0.08 ± 0.02	0.08 ± 0.01		
BS-3980, 3981	Jun, 2000	Cs-137	0.06 ± 0.02	0.07 ± 0.02	0.07 ± 0.01		
BS-3980, 3981	Jun, 2000	K-40	$1,458.60 \pm 69.40$	$1,421.90 \pm 52.20$	$1,440.25 \pm 43.42$		
VE-4065, 4066	Jun, 2000	K-40	6.37 ± 0.54	6.34 ± 0.51	6.36 ± 0.37		
WW-4252, 4253	Jun, 2000	H-3	705.40 ± 114.10	718.90 ± 114.60	712.15 ± 80.86		
TSWU-4283, 4284	Jun, 2000	Gr. Beta	3.24 ± 0.63	3.11 ± 0.62	3.18 ± 0.44		
F-4438, 4439	Jun, 2000	Gr. Beta	2.25 ± 0.06	2.13 ± 0.06	2.19 ± 0.04		
SW-4459, 4460	Jun, 2000	H-3	532.20 ± 108.10	670.50 ± 112.90	601.35 ± 78.15		
WW-4480, 4481	Jun, 2000	H-3	601.50 ± 99.50	573.10 ± 108.50	587.30 ± 73.61		
SW-4375, 4376	Jun, 2000	Gr. Beta	4.53 ± 1.59	4.43 ± 1.54	4.48 ± 1.11		
SW-4375, 4376	Jun, 2000	Cs-137	-0.09 ± 1.61	-0.43 ± 1.39	-0.26 ± 1.06		
AP-4712, 4713	Jun, 2000	Be-7	0.07 ± 0.02	0.09 ± 0.02	0.08 ± 0.01		
AP-4754, 4755	Jun, 2000	Be-7	0.06 ± 0.02	0.07 ± 0.01	0.07 ± 0.01		
SW-4537, 4538	Jun, 2000	H-3	584.10 ± 108.80	599.20 ± 109.30	591.65 ± 77.11		
SL-4636, 4637	Jul, 2000	Be-7	0.93 ± 0.18	0.56 ± 0.12	0.75 ± 0.11		
SL-4636, 4637	Jul, 2000	Gr. Beta	2.41 ± 0.32	2.69 ± 0.32	2.55 ± 0.23		
SL-4636, 4637	Jul, 2000	K-40	1.25 ± 0.24	1.13 ± 0.30	1.19 ± 0.19		
SL-4636, 4637	Jul, 2000	Sr-90	0.04 ± 0.02	0.05 ± 0.03	0.05 ± 0.02		
G-4667, 4668	Jul, 2000	Be-7	0.93 ± 0.20	0.98 ± 0.31	0.96 ± 0.18		
G-4667, 4668	Jul, 2000	Gr. Beta	6.16 ± 0.13	6.68 ± 0.14	6.42 ± 0.10		
G-4667, 4668	Jul, 2000	K-40	7.72 ± 0.51	8.43 ± 0.83	8.08 ± 0.49		
WW-4818, 4819	Jul, 2000	H-3	13.30 ± 77.10	29.70 ± 77.90	21.50 ± 54.80		
MI-4839, 4840	Jul, 2000	K-40	$1,313.00 \pm 173.00$	$1,398.00 \pm 161.00$	$1,355.50 \pm 118.16$		
MI-4949, 4950	Jul, 2000	K-40	$1,307.00 \pm 56.00$	$1,346.00 \pm 58.00$	$1,326.50 \pm 40.31$		
LW-4991, 4992	Jul, 2000	Gr. Beta	2.78 ± 0.66	2.22 ± 0.55	2.50 ± 0.43		
MI-4903, 4904	Jul, 2000	K-40	1,383.10 ± 193.20	$1,328.00 \pm 153.10$	1,355.55 ± 123.25		
MI-4881, 4882	Jul, 2000	K-40	$1,538.40 \pm 103.00$	$1,438.00 \pm 125.30$	$1,\!488.20\pm81.10$		
MI-4881, 4882	Jul, 2000	Sr-90	1.01 ± 0.37	1.38 ± 0.42	1.19 ± 0.28		
G-5388, 5389	Jul, 2000	Be-7	1.64 ± 0.16	1.52 ± 0.21	1.58 ± 0.13		
G-5388, 5389	Jul, 2000	K-40	5.51 ± 0.33	5.86 ± 0.49	5.69 ± 0.30		
G-5388, 5389	Jul, 2000	Gr. Beta	5.64 ± 0.15	5.81 ± 0.15	5.73 ± 0.11		
SWU-5473, 5474	Jul, 2000	Gr. Beta	3.50 ± 0.67	3.17 ± 0.61	3.34 ± 0.45		
SW-5410, 5411	Jul, 2000	Gr. Beta	1.95 ± 0.81	1.89 ± 1.04	1.92 ± 0.66		
PW-5550, 5551	Jul, 2000	Gr. Beta	0.71 ± 1.15	2.50 ± 1.49	1.61 ± 0.94		
WW-5623, 5624	Jul, 2000	H-3	$22,713.90 \pm 429.00$	$22,265.50 \pm 424.90$	22,489.70 ± 301.9		
MI-5529, 5530	Aug, 2000	K-40	$1,396.80 \pm 103.80$	1,278.20 ± 117.50	1,337.50 ± 78.39		
VE-5745, 5746	Aug, 2000	K-40	1.66 ± 0.32	1.93 ± 0.33	1.80 ± 0.23		
,	0,						

_

Table A-5. In	-house "du	plicate" samp	oles.
---------------	------------	---------------	-------

				Concentration in pCi/L ^a			
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result		
MI-5808, 5809	Aug, 2000	K-40	1,261.90 ± 124.40	$1,234.40 \pm 152.80$	$1,248.15 \pm 98.52$		
CW-6514, 6515	Aug, 2000	Gr. Beta	1.42 ± 0.37	1.44 ± 0.41	1.43 ± 0.28		
MI-5933, 5934	Aug, 2000	Calcium	0.88 ± 0.09	0.89 ± 0.09	0.89 ± 0.06		
MI-5933, 5934	Aug, 2000	Sr-90	3.29 ± 0.51	1.72 ± 0.47	2.51 ± 0.35		
VE-6002, 6003	Aug, 2000	Sr-90	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
VE-6002, 6003	Aug, 2000	K-40	1.44 ± 0.23	1.78 ± 0.18	1.61 ± 0.14		
PW-6209, 6210	Aug, 2000	H-3	528.20 ± 112.70	578.50 ± 114.50	553.35 ± 80.33		
SW-6291, 6292	Aug, 2000	Gr. Beta	4.14 ± 1.58	1.95 ± 1.32	3.05 ± 1.03		
WW-6312, 6313	Aug, 2000	H-3	7,804.20 ± 262.70	7,221.70 ± 253.80	$7,512.95 \pm 182.64$		
WW-5981, 5982	Aug, 2000	Gr. Beta	4.85 ± 0.78	5.87 ± 0.79	5.36 ± 0.56		
PW-6341, 6342	Aug, 2000	Gr. Beta	2.45 ± 1.42	2.63 ± 1.37	2.54 ± 0.99		
CW-6514, 6515	Aug, 2000	H-3	5,600.10 ± 226.80	5,434.30 ± 223.90	5,517.20 ± 159.35		
MI-6409, 6410	Sep, 2000	I-131	-0.04 ± 0.23	0.19 ± 0.24	0.08 ± 0.17		
MI-6409, 6410	Sep, 2000	K-40	$1,367.80 \pm 111.40$	$1,368.60 \pm 107.50$	$1,368.20 \pm 77.41$		
MI-6409, 6410	Sep, 2000	Sr-90	1.19 ± 0.35	0.80 ± 0.30	1.00 ± 0.23		
MI-6542, 6543	Sep, 2000	K-40	1,298.00 ± 140.10	$1,470.60 \pm 139.70$	1,384.30 ± 98.92		
MI-6450, 6451	Sep, 2000	K-40	1,237.20±102.10	$1,328.10 \pm 108.30$	1,282.65 ± 74.42		
MI-7102, 7103	Sep, 2000	I-131	-0.11 ± 0.23	-0.02 ± 0.25	-0.07 ± 0.17		
MI-7102, 7103	Sep, 2000	K-40	$1,473.10 \pm 101.40$	$1,400.70 \pm 168.60$	$1,436.90 \pm 98.37$		
SWT-7262, 7263	Sep, 2000	Gr. Beta	3.45 ± 0.66	2.32 ± 0.57	2.89 ± 0.44		
SWU-7283, 7284	Sep, 2000	Gr. Beta	2.75 ± 0.55	2.87 ± 0.56	2.81 ± 0.39		
SWU-7283, 7284	Sep, 2000	H-3	197.76 ± 94.07	172.31 ± 93.00	185.04 ± 66.14		
SW-7081, 7082	Sep, 2000	H-3	89.32 ± 92.99	42.38 ± 90.37	65.85 ± 64.83		
AP-7685, 7686	Sep, 2000	Be-7	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.01		
AP-7706, 7707	Sep, 2000	Be-7	0.06 ± 0.01	0.05 ± 0.01	0.05 ± 0.01		
SW-7482, 7483	Sep, 2000	Gr. Beta	5.31 ± 1.75	6.70 ± 1.85	6.01 ± 1.27		
SP-7347, 7348	Sep, 2000	Gr. Alpha	6.12 ± 1.54	5.68 ± 1.49	5.90 ± 1.07		
SW-7436, 7437	Sep, 2000	H-3	40.60 ± 79.90	72.00 ± 81.40	56.30 ± 57.03		
CW-7748, 7749	Sep, 2000	Gr. Alpha	0.47 ± 0.28	0.65 ± 0.36	0.56 ± 0.23		
CW-7748, 7749	Sep, 2000	Gr. Beta	2.35 ± 0.39	2.02 ± 0.38	2.19 ± 0.27		
BS-7512, 7513	Oct, 2000	Cs-137	0.84 ± 0.06	0.79 ± 0.06	0.81 ± 0.04		
BS-7512, 7513	Oct, 2000	Gr. Beta	13.52 ± 1.61	14.88 ± 1.80	14.20 ± 1.21		
SL-7304, 7305	Oct, 2000	Gr. Beta	2.94 ± 0.23	2.90 ± 0.23	2.92 ± 0.17		
SL-7304, 7305	Oct, 2000	K-40	1.14 ± 0.36	1.73 ± 0.58	1.44 ± 0.34		
BS-7369, 7370	Oct, 2000	Cs-137	10.79 ± 4.96	20.04 ± 9.40	15.41 ± 5.31		
SO-7950, 7951	Oct, 2000	Ac-228	0.66 ± 0.10	0.77 ± 0.10	0.72 ± 0.07		
	•						

Table A-5.	In-house	"duplicate"	samples.
------------	----------	-------------	----------

			Concentration in pCi/L ^a		
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result
SO-7950, 7951	Oct, 2000	Cs-137	0.20 ± 0.31	0.21 ± 0.04	0.20 ± 0.16
SO-7950, 7951	Oct, 2000	Gr. Beta	29.22 ± 1.98	28.02 ± 1.98	28.62 ± 1.40
SO-7950, 7951	Oct, 2000	K-40	21.36 ± 0.93	21.77 ± 0.89	21.56 ± 0.64
SO-7950, 7951	Oct, 2000	Pb-212	0.72 ± 0.12	0.92 ± 0.12	0.82 ± 0.09
SO-7950, 7951	Oct, 2000	Ra-226	1.21 ± 0.33	1.30 ± 0.31	1.26 ± 0.22
SO-7950, 7951	Oct, 2000	Tl-208	0.21 ± 0.04	0.25 ± 0.03	0.23 ± 0.02
VE-7554, 7555	Oct, 2000	Gr. Beta	0.73 ± 0.02	0.74 ± 0.02	0.74 ± 0.01
MI-7622, 7623	Oct, 2000	K-40	$1,505.90 \pm 142.70$	$1,453.60 \pm 172.00$	1,479.75 ± 111.74
F-8219, 8220	Oct, 2000	K-40	2.94 ± 0.22	3.39 ± 0.38	3.16 ± 0.22
WW-7844, 7845	Oct, 2000	H-3	-68.13 ± 74.09	84.23 ± 81.38	8.05 ± 55.03
WW-8240, 8241	Oct, 2000	Gr. Beta	0.35 ± 1.89	1.61 ± 2.28	0.98 ± 1.48
WW-8240, 8241	Oct, 2000	H-3	72.46 ± 92.95	38.87 ± 91.51	55.66 ± 65.22
BS-8170, 8171	Oct, 2000	Gr. Beta	11.96 ± 2.55	11.30 ± 2.39	11.63 ± 1.75
BS-8170, 8171	Oct, 2000	K-40	8.36 ± 0.46	8.76 ± 0.47	8.56 ± 0.33
MI-8085, 8086	Oct, 2000	Calcium	0.94	0.94	0.94
MI-8085, 8086	Oct, 2000	Sr-90	1.04 ± 0.35	0.75 ± 0.31	0.90 ± 0.24
MI-8149, 8150	Oct, 2000	K-40	1,358.10 ± 95.81	$1,341.80 \pm 178.00$	$1,349.95 \pm 101.07$
SO-8967, 8968	Oct, 2000	Be-7	1.25 ± 0.37	1.27 ± 0.35	1.26 ± 0.26
SO-8967, 8968	Oct, 2000	Cs-137	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
SO-8967, 8968	Oct, 2000	K-40	4.53 ± 0.66	4.46 ± 0.58	4.50 ± 0.44
MI-8522, 8523	Oct, 2000	I-131	-0.05 ± 0.23	0.18 ± 0.25	0.07 ± 0.17
RW-8623, 8624	Oct, 2000	Ag-110M	99.79 ± 18.18	118.64 ± 21.79	109.21 ± 14.19
RW-8623, 8624	Oct, 2000	Co-60	2.47 ± 0.10	2.56 ± 0.10	2.51 ± 0.07
RW-8623, 8624	Oct, 2000	Cs-134	228.46 ± 17.29	229.75 ± 13.39	229.11 ± 10.93
RW-8623, 8624	Oct, 2000	Cs-137	3.59 ± 0.20	3.79 ± 0.20	3.69 ± 0.14
RW-8623, 8624	Oct, 2000	Gr. Alpha	14.57 ± 5.86	8.07 ± 4.74	11.32 ± 3.77
RW-8623, 8624	Oct, 2000	H-3	785.70 ± 5.98	786.80 ± 5.97	786.25 ± 4.22
RW-8623, 8624	Oct, 2000	Mn-54	1.06 ± 0.20	1.31 ± 0.20	1.19 ± 0.14
RW-8623, 8624	Oct, 2000	Pu-238	1.24 ± 0.54	1.11 ± 0.47	1.17 ± 0.36
RW-8623, 8624	Oct, 2000	Pu-239/40	3.45 ± 0.88	3.42 ± 0.81	3.44 ± 0.60^{-1}
RW-8623, 8624	Oct, 2000	Sr-90	0.92 ± 0.08	0.95 ± 0.10	0.94 ± 0.06
RW-8623, 8624	Oct, 2000	Zn-65	86.33 ± 46.77	137.07 ± 46.07	111.70 ± 32.82
SWU-8894, 8895	Oct, 2000	Gr. Beta	3.63 ± 0.62	2.45 ± 0.61	3.04 ± 0.43
MI-8802, 8803	Nov, 2000	I-131	-0.22 ± 0.24	-0.25 ± 0.26	-0.24 ± 0.18
MI-8802, 8803	Nov, 2000	K-40	$1,340.50 \pm 113.80$	$1,453.50 \pm 100.50$	1,397.00 ± 75.91
MI-8802, 8803	Nov, 2000	Sr-89	0.19 ± 1.31	0.61 ± 1.34	0.40 ± 0.94
MI-8802, 8803	Nov, 2000	Sr-9 0	1.10 ± 0.39	0.90 ± 0.38	1.00 ± 0.27

Table A-5. In-h	ouse "dupli	icate" samples.
-----------------	-------------	-----------------

· · ·				Concentration in pCi/L ^a		
Lab Codes	Sample Date	Analysis	First Result	Second Result	Averaged Result	
LW-8823, 8824	Nov, 2000	Gr. Beta	2.13 ± 0.55	1.59 ± 0.52	1.86 ± 0.38	
VE-9014, 9015	Nov, 2000	Gr. Alpha	0.10 ± 0.06	0.15 ± 0.07	0.12 ± 0.05	
VE-9014, 9015	Nov, 2000	Gr. Beta	5.59 ± 0.17	5.90 ± 0.19	5.74 ± 0.13	
F-9469, 9470	Nov, 2000	Gr. Beta	5.51 ± 1.34	5.16 ± 1.12	5.34 ± 0.87	
PW-9991, 9992	Nov, 2000	Gr. Beta	2.50 ± 0.01	3.49 ± 1.18	3.00 ± 0.59	
SW-9991, 9992	Nov, 2000	Co-60	$1.16 \pm 1.70^{\circ}$	-2.94 ± 3.39	-0.89 ± 1.89	
SW-9991, 9992	Nov, 2000	Cs-134	-0.07 ± 1.85	2.27 ± 3.73	1.10 ± 2.08	
SW-9991, 9992	Nov, 2000	Cs-137	-0.88 ± 1.67	3.84 ± 3.45	1.48 ± 1.92	
DW-9682, 9683	Dec, 2000	Gr. Beta	1.61 ± 1.02	2.10 ± 0.94	1.86 ± 0.69	
MI-9749, 9750	Dec, 2000	K-40	$1,562.40 \pm 118.70$	$1,495.90 \pm 168.30$	$1,529.15 \pm 102.97$	
MI-9776, 9777	Dec, 2000	K-40	1,185.90 ± 88.05	$1,409.60 \pm 175.80$	1,297.75 ± 98.31	
PW-10234, 10235	Dec, 2000	H-3	104.66 ± 93.36	110.62 ± 93.61	107.64 ± 66.11	
DW-10302, 10303	Dec, 2000	Gr. Beta	2.23 ± 1.62	2.08 ± 1.62	2.16 ± 1.15	
AP-10845, 10846	Dec, 2000	Co-60	-0.00 ± 0.00	0.00 ± 0.00	-0.00 ± 0.00	
AP-10845, 10846	Dec, 2000	Cs-134	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
AP-10845, 10846	Dec, 2000	Cs-137	0.00 ± 0.00	-0.00 ± 0.00	0.00 ± 0.00	
AP-10782, 10783	Dec, 2000	Be-7	0.21 ± 0.10	0.31 ± 0.14	0.26 ± 0.09	
AP-10824, 10825	Dec, 2000	Be-7	0.06 ± 0.02	0.07 ± 0.01	0.06 ± 0.01	
AP-10866, 10867	Dec, 2000	Co-60	0.00 ± 0.00	-0.00 ± 0.00	0.00 ± 0.00	
AP-10866, 10867	Dec, 2000	Cs-134	-0.00 ± 0.00	0.00 ± 0.00	-0.00 ± 0.00	
AP-10866, 10867	Dec, 2000	Cs-137	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
WW-10424, 10425	Dec, 2000	H-3	$1,690.87 \pm 137.81$	$1,\!551.48 \pm 1,\!339.42$	$1,621.18 \pm 673.25$	
SW-10596, 10597	Dec, 2000	H-3	445.47 ± 106.70	423.46 ± 105.87	434.47 ± 75.16	
LW-10529, 10530	Dec, 2000	Gr. Beta	2.21 ± 0.45	2.06 ± 0.40	2.14 ± 0.30	

^a All results are in pCi/L, except for elemental potassium (K) in milk, which are in mg/L; air filter samples, which are in pCi/Filter; and food products, which are in mg/kg.

				Concentration ^b		
Lab Code	Sample Type	Date Collected	Analysis	Laboratory result ^c	MAPEP Result ^d 1s, N=1	Control Limits
STSO-882	SOIL	Jan, 2000	Am-241	64.90 ± 6.49	61.10	42.77 - 79.43
STSO-882	SOIL	Jan, 2000	Co-57	721.10 ± 83.80	949.00	664.30 - 1,233.70
The MA results f	PEP soil sample (S or gamma-emittir	STSO-882), as ng isotopes are	received, did e reanalyses, w	not closely match a s ith a reduced sample	tandard gamma g size.	eometry. The
STSO-882	SOIL	Jan, 2000	Co-60	$1,264.40 \pm 78.60$	1,180.00	826.00 - 1,534.00
STSO-882	SOIL	Jan, 2000	Cs-134	969.30 ± 76.90	1,047.00	732.90 - 1,361.10
STSO-882	SOIL	Jan, 2000	Cs-137	944.00 ± 92.00	930.00	651.00 - 1,209.00
STSO-882	SOIL	Jan, 2000	K-40	811.70 ± 79.90	652.00	456.40 - 847.60
STSO-882	SOIL	Jan, 2000	Mn-54	$1,103.30 \pm 64.20$	1,023.00	716.10 - 1,329.90
STSO-882	SOIL	Jan, 2000	Ni-63	711.00 ± 71.10	960.00	672.00 - 1,248.00
STSO-882	SOIL	Jan, 2000	Pu-239/40	67.90 ± 6.79	74.40	52.08 - 96.72
STSO-882	SOIL	Jan, 2000	Sr-90	345.00 ± 34.50	304.00	212.80 - 395.20
STSO-882	SOIL	Jan, 2000	U-233/4	62.90 ± 6.29	90.00	63.00 - 117.00
Incomp Results	lete dissolution of of reanalysis: U-23	the sample is : 3/234 67.3 ± 3	suspected. 3.3 pCi/g, U-23	38 68.1 ± 8.9 pCi/g.		
STSO-882	SOIL	Jan, 2000	U-238	63.20 ± 6.32	93.00	65.10 - 120.90
STSO-882	SOIL	Jan, 2000	Zn-65	$1,544.30 \pm 61.50$	1,540.00	1,078.00 - 2,002.00

Table A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

^a Results obtained by Environmental Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho.

^b All results are in Bq/kg or Bq/L as requested by the Department of Energy.

^c Unless otherwise indicated, laboratory results are given as the mean ± 1 standard deviations for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination), and control limits as defined by the MAPEP.

Tah						
Lab Code	Sample Type	Date Collected	Analysis	Laboratory result ^c	EML Result ^d	Control Limits ^e
TSO-870	SOIL	Mar, 2000	Ac-228	98.300 ± 7.100	97.600	0.79 - 1.75
TSO-870	SOIL	Mar, 2000	Bi-212	98.500 ± 15.100	106.000	0.42 - 1.22
TSO-870	SOIL	Mar, 2000	Bi-214	88.000 ± 3.800	86.700	0.75 - 1.42
TSO-870	SOIL	Mar, 2000	Cs-137	324.000 ± 5.000	339.000	0.83 - 1.32
TSO-870	SOIL	Mar, 2000	K-40	872.000 ± 34.000	811.000	0.78 - 1.53
TSO-870	SOIL	Mar, 2000	Pb-212	93.700 ± 2.700	97.300	0.74 - 1.33
TSO-870	SOIL	Mar, 2000	Pb-214	100.100 ± 3.700	86.500	0.65 - 1.45
TSO-870	SOIL	Mar, 2000	Pu-238	19.800 ± 3.000	18.600	0.52 - 2.84
TSO-870	SOIL	Mar, 2000	Pu-239/40	8.100 ± 1.700	7.000	0.69 - 1.74
TSO-870	SOIL	Mar, 2000	Sr-90	13.600 ± 3.100	20.200	0.60 - 3.66
TVE-871	VEGETATION	Mar, 2000	Am-241	9.800 ± 0.900	10.400	0.68 - 2.70
TVE-871	VEGETATION	Mar, 2000	Co-60	46.500 ± 2.100	52.800	0.69 - 1.46
TVE-871	VEGETATION	Mar, 2000	Cs-137	$1,872.000 \pm 46.000$	1,380.000	0.80 - 1.40
STVE-871	VEGETATION	Mar, 2000	K-40	506.400 ± 28.000	521.000	0.79 - 1.42
STVE-871	VEGETATION	Mar, 2000	Pu-239/40	14.300 ± 1.500	15.500	0.68 - 1.59
STVE-871	VEGETATION	Mar, 2000	Sr-90	$1,198.000 \pm 85.000$	1,780.000	0.50 - 1.33
STAP-872	AIR FILTER	Mar, 2000	Co-57	5.900 ± 0.100	5.310	0.65 - 1.39
STAP-872	AIR FILTER	Mar, 2000	Co-60	5.900 ± 0.100	5.320	0.75 - 1.32
STAP-872	AIR FILTER	Mar, 2000	Cs-137	7.500 ± 0.100	6.100	0.73 - 1.37
STAP-872	AIR FILTER	Mar, 2000	Gr. Alpha	3.300 ± 0.100	3.020	0.50 - 1.55
STAP-872	AIR FILTER	Mar, 2000	Gr. Beta	2.700 ± 0.100	2.420	0.72 - 1.67
STAP-872	AIR FILTER	Mar, 2000	Mn-54	31.800 ± 0.300	27.200	0.76 - 1.33
STAP-872	AIR FILTER	Mar, 2000	Pu-238	0.060 ± 0.030	0.080	0.74 - 1.40
STAP-872	AIR FILTER	Mar, 2000	Pu-239/40	0.090 ± 0.010	0.089	0.76 - 1.44
STAP-872	AIR FILTER	Mar, 2000	Ru-106	3.500 ± 1.000	2.010	0.59 - 1.30
Result	within activity \pm	error margin	٠			
STAP-872	AIR FILTER	Mar, 2000	Sr-90	0.310 ± 0.160	0.242	0.61 - 1.93
STAP-872	AIR FILTER	Mar, 2000	Uranium	0.120 ± 0.010	0.126	0.80 - 3.35
STW-874	WATER	Mar, 2000	Am-241	1.700 ± 0.220	1.950	0.75 - 1.49
STW-874	WATER	Mar, 2000	Co-60	51.000 ± 1.200	48.900	0.80 - 1.20

Table A-7. Environmental Measurements Laboratory Quality Assessment Program (EML)^a.

2

.

				Concentration ^b			
Lab Code	Sample Type	Date Collected	Analysis	Laboratory result ^c	EML Result ^d	Control Limits ^e	
STW-874	WATER	Mar, 2000	Cs-137	108.600 ± 1.800	103.000	0.80 - 1.26	
STW-874	WATER	Mar, 2000	Fe-55	33.000 ± 1.200	33.100	0.44 - 1.53	
STW-874	WATER	Mar, 2000	Gr. Alpha	$1,217.000 \pm 35.000$	1,700.000	0.61 - 1.32	
STW-874	WATER	Mar, 2000	Gr. Beta	792.000 ± 25.000	690.000	0.55 - 1.54	
STW-874	WATER	Mar, 2000	H-3	147.000 ± 26.000	79.400	0.71 - 1.79	
Analys	sis was repeated; r	esult of reanal	ysis; 97.5 ± 11	.6 Bq/l.		•	
STW-874	WATER	Mar, 2000	Ni-63	101.000 ± 6.000	112.000	0.25 - 1.75	
STW-874	WATER	Mar, 2000	Pu-238	0.750 ± 0.170	0.944	0.78 - 1.25	
STW-874	WATER	Mar, 2000	Pu-239/40	0.990 ± 0.090	0.918	0.80 - 1.39	
STW-874	WATER	Mar, 2000	Sr-90	4.460 ± 0.990	3.390	0.75 - 1.50	
STW-874	WATER	Mar, 2000	Uranium	0.270 ± 0.020	0.995	0.67 - 1.42	
Result	reported was for N	U-234. Result	for U (total); 0.	.58 ± 0.02 pCi/L.			
STSO-885	SOIL	Sep, 2000	Ac-228	78.000 ± 1.500	80.200	0.80 - 1.50	
STSO-885	SOIL	Sep, 2000	Bi-212	73.000 ± 3.300	80.500	0.45 - 1.23	
STSO-885	SOIL	Sep, 2000	Bi-214	91.000 ± 4.000	83.300	0.78 - 1.50	
STSO-885	SOIL	Sep, 2000	Cs-137	925.700 ± 14.200	1,020.000	0.80 - 1.29	
STSO-885	SOIL	Sep, 2000	K-40	713.600 ± 7.100	713.000	0.80 - 1.37	
STSO-885	SOIL	Sep, 2000	Pb-212	66.100 ± 4.300	79.300	0.74 - 1.36	
STSO-885	SOIL	Sep, 2000	Pb-214	100.100 ± 3.700	86.300	0.76 - 1.53	
STSO-885	SOIL	Sep, 2000	Pu-239/40	18.400 ± 0.400	16.800	0.71 - 1.33	
STSO-885	SOIL	Sep, 2000	Sr-90	39.900 ± 5.300	50.400	0.61 - 3.91	
STSO-885	SOIL	Sep, 2000	Th-234	154.700 ± 9.300	148.000	0.68 - 2.36	
STSO-885	SOIL	- Sep, 2000	Uranium	254.300 ± 13.000	327.000	0.62 - 1.35	
STW-886	WATER	Sep, 2000	Am-241	1.300 ± 0.200	1.190	0.76 - 1.48	
STW-886	WATER	Sep, 2000	Co-60	71.900 ± 7.200	73.700	0.80 - 1.20	
STW-886	WATER	Sep, 2000	Cs-137	62.700 ± 6.300	67.000	0.80 - 1.24	
STW-886	WATER	Sep, 2000	H-3	92.300 ± 8.900	91.300	0.74 - 2.29	
STW-886	WATER	Sep, 2000	Pu-238	0.700 ± 0.100	0.786	0.74 - 1.22	
STW-886	WATER	Sep, 2000	Pu-239/40	0.600 ± 0.100	0.591	0.75 - 1.26	
STW-886	WATER	Sep, 2000	Sr-90	4.600 ± 0.400	4.530	0.64 - 1.50	

Table A-7. Environmental Measurements Laboratory Quality Assessment Program (EML)^a.

ç

				Concentration ^b		
Lab Code	Sample Type	Date Collected	Analysis	Laboratory result ^c	EML Result ^d	Control Limits ^e
STW-886	WATER	Sep, 2000	Uranium	0.800 ± 0.100	0.916	0.73 - 1.37
STW-887	WATER	Sep, 2000	Gr. Alpha	$1,113.700 \pm 17.900$	1,070.000	0.58 - 1.26
STW-887	WATER	Sep, 2000	Gr. Beta	$1,129.400 \pm 16.700$	950.000	0.56 - 1.50
5TAP-888	AIR FILTER	Sep, 2000	Am-241	0.060 ± 0.010	0.032	0.69 - 2.40
STAP-888	AIR FILTER	Sep, 2000	Co-57	16.500 ± 0.600	14.500	0.69 - 1.37
TAP-888	AIR FILTER	Sep, 2000	Co-60	9.200 ± 0.400	8.430	0.79 - 1.30
STAP-888	AIR FILTER	Sep, 2000	Cs-137	8.800 ± 0.500	7.410	0.78 - 1.35
5TAP-888	AIR FILTER	Sep, 2000	Mn-54	50.200 ± 2.300	43.200	0.80 - 1.36
5TAP-888	AIR FILTER	Sep, 2000	Pu-238	0.033 ± 0.010	0.045	0.66 - 1.35
5TAP-888	AIR FILTER	Sep, 2000	Pu-239/40	0.080 ± 0.010	0.074	0.69 - 1.29
TAP-888	AIR FILTER	Sep, 2000	Sr-90	3.300 ± 0.100	1.640	0.55 - 2.05
TAP-888	AIR FILTER	Sep, 2000	U-233/4	0.034 ± 0.001	0.040	0.80 - 1.92
STAP-888	AIR FILTER	Sep, 2000	U-238	0.032 ± 0.010	0.041	0.80 - 1.59
Result	within activity \pm	error margin.				
5TAP-888	AIR FILTER	Sep, 2000	Uranium	0.070 ± 0.010	0.083	0.80 - 2.54
STAP-889	AIR FILTER	Sep, 2000	Gr. Alpha	2.840 ± 0.010	2.350	0.57 - 1.47
STAP-889	AIR FILTER	Sep, 2000	Gr. Beta	2.080 ± 0.020	1.520	0.76 - 1.52
STVE-890	VEGETATION	Sep, 2000	Am-241	5.900 ± 1.200	5.600	0.72 - 2.34
STVE-890	VEGETATION	Sep, 2000	Cm-244	3.200 ± 0.100	3.600	0.61 - 1.61
STVE-890	VEGETATION	Sep, 2000	Co-60	29.400 ± 0.400	32.800	0.75 - 1.51
STVE-890	VEGETATION	Sep, 2000	Cs-137	739.300 ± 23.000	867.000	0.80 - 1.37
STVE-890	VEGETATION	Sep, 2000	K-40	597.500 ± 49.300	639.000	0.78 - 1.43
STVE-890	VEGETATION	Sep, 2000	Pu-239/40	4.500 ± 0.200	9.600	0.67 - 1.49
No rea	son for deviation v	vas found wit	th original rest	ult. The result of reanaly		
STVE-890	VEGETATION	Sep, 2000	Sr-90	$1,201.500 \pm 117.300$	1,150.000	0.52 - 1.23

 Table A-7.
 Environmental Measurements Laboratory Quality Assessment Program (EML)^a.

Lab Code				Concentration ^b		
	Sample Type	Date Collected Analy	Analysis	Laboratory result ^c	EML Result ^d	Control Limits ^e

 Table A-7.
 Environmental Measurements Laboratory Quality Assessment Program (EML)^a.

^a The Environmental Measurements Laboratory provides the following nuclear species : Air Filters, Soil, Vegetation and Water.

^b Results are reported in Bq/L with the following exceptions: Air Filter results are reported in Bq/Filter, Soil results are reported in Bq/Kg, Vegetation results are reported in Bq/Kg.

^c Laboratory results are reported as the mean of three determinations ± standard deviation.

^d The EML result listed is the mean of replicate determinations for each nuclide±the standard error of the mean.

^e The control limits are reported by EML as the ratio of Reported Value / EML value.

APPENDIX B

DATA REPORTING CONVENTIONS

Data Reporting Conventions

- 1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.
- 2.0. Single Measurements

Each single measurement is reported as follows: $x \pm s$

where: x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. <u>Duplicate analyses</u>

3.1	Individual results:	For two analysis re	esults; $x_1 \pm s_1$ and $x_2 \pm s_2$
	Reported result:	$x \pm s$; where $x =$	(1/2) (x ₁ + x ₂) and s = (1/2) $\sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	<l1, <l2<="" td=""><td><u>Reported result:</u> $<$L, where L = lower of L₁ and L₂</td></l1,>	<u>Reported result:</u> $<$ L, where L = lower of L ₁ and L ₂
3.3.	Individual results:	x ± s, <l< td=""><td><u>Reported result:</u> $x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l></td></l<>	<u>Reported result:</u> $x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l>

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas

Air (pCi/m ³)		Water (pCi/L)		
Gross alpha	1 x 10 ⁻³	Strontium-89	8,000	
Gross beta	1	Strontium-90	500	
Iodine-131 ^b	2.8 x 10 ⁻¹	Cesium-137	1,000	
		Barium-140	8,000	
		Iodine-131	1,000	
		Potassium-40 ^c	4,000	
		Gross alpha	2	
		Gross beta	10	
		Tritium	1 x 10 ⁶	

Table C-1. Maximum permissible concentrations of radioactivity in air and water above natural background in unrestricted areas^a.

Taken from Table II of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes.
 Concentrations may be averaged over a period not greater than one year.

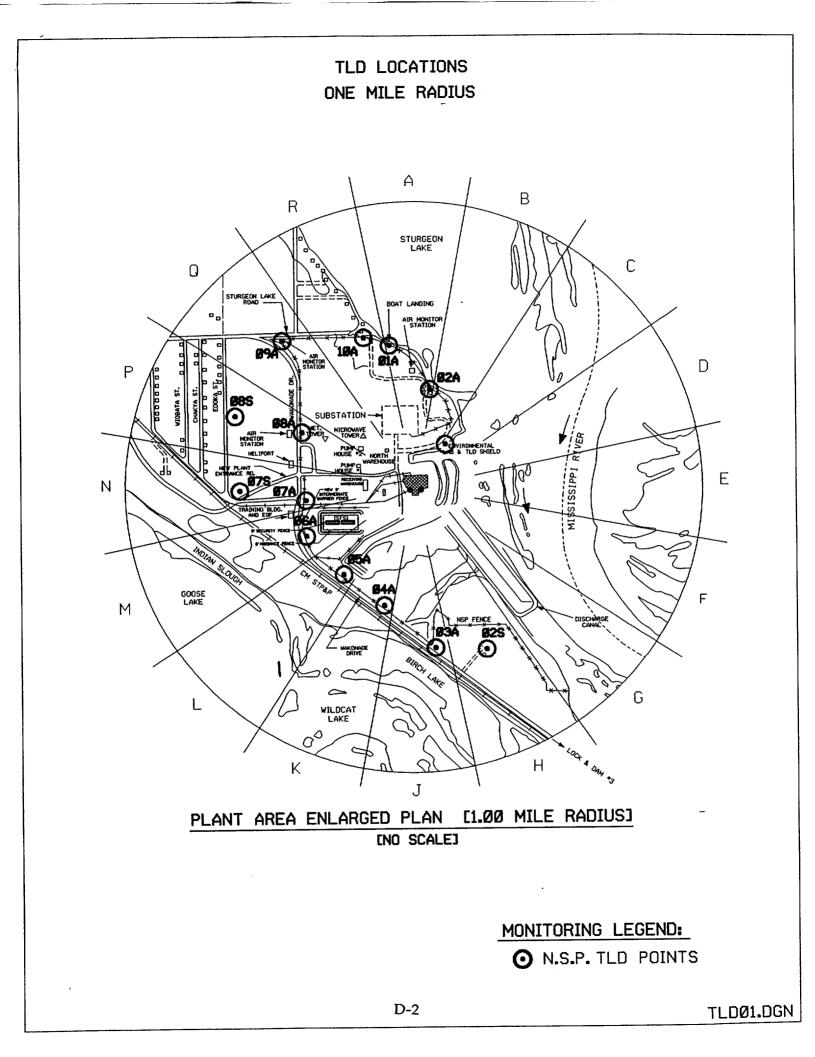
^b Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

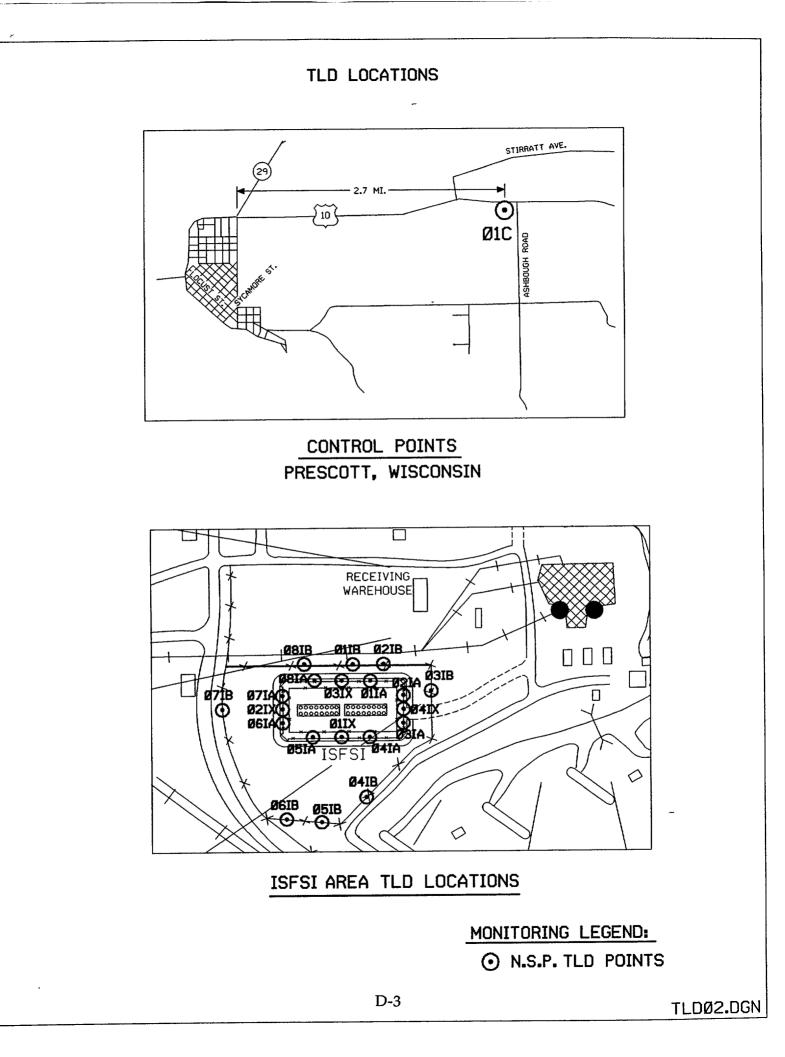
^c A natural radionuclide.

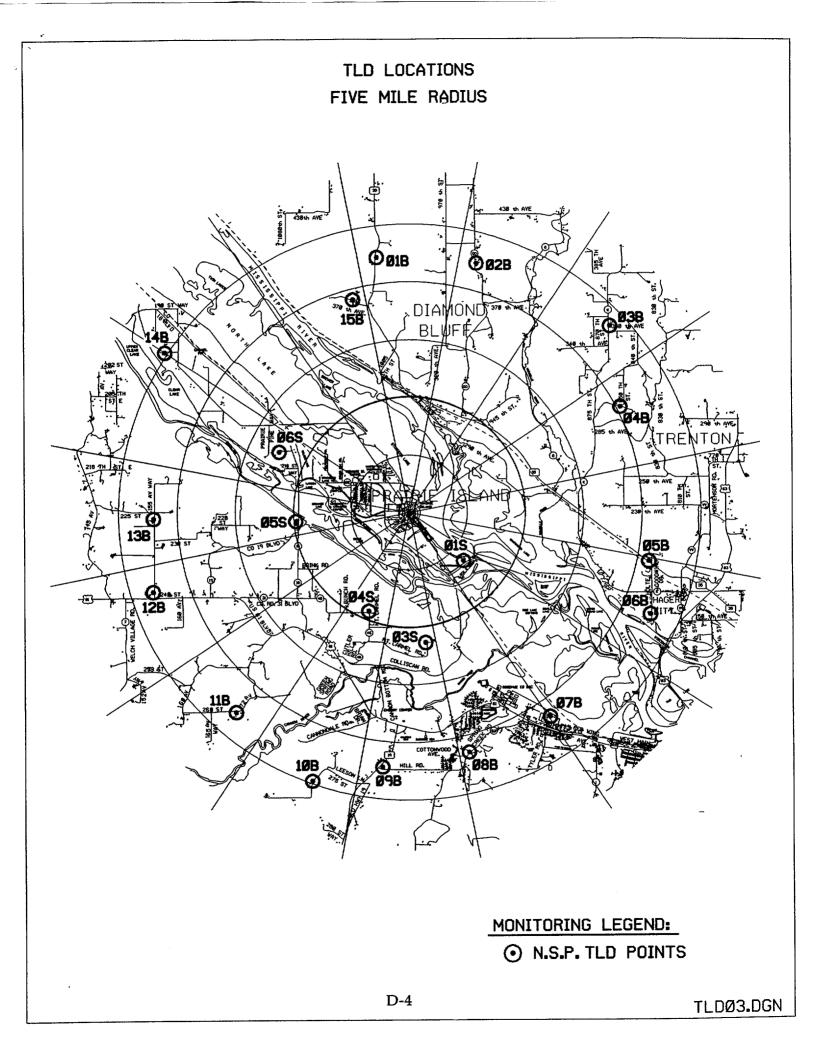
APPENDIX D

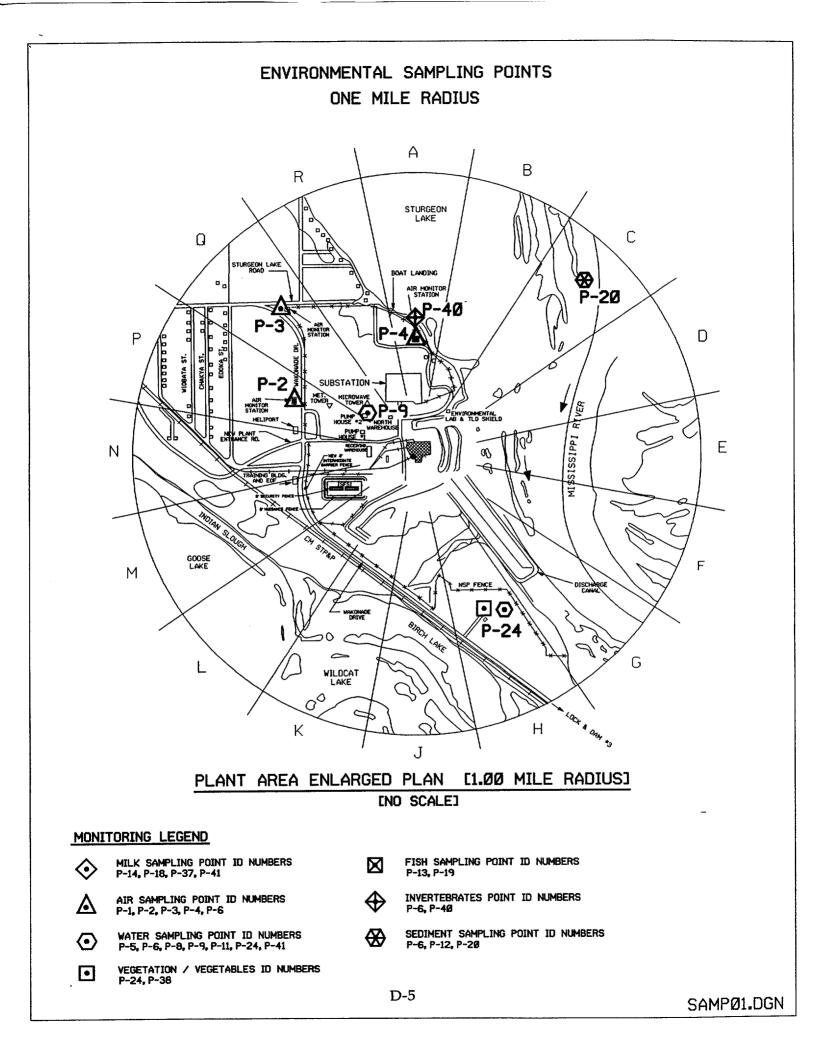
-

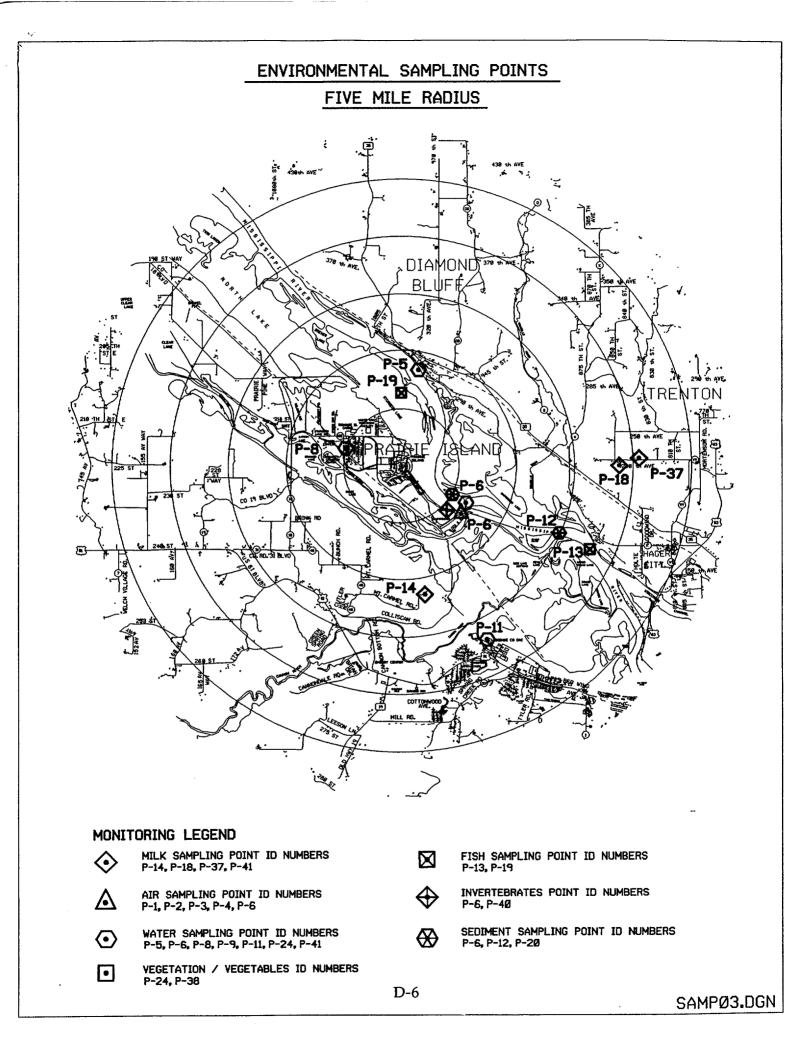
.

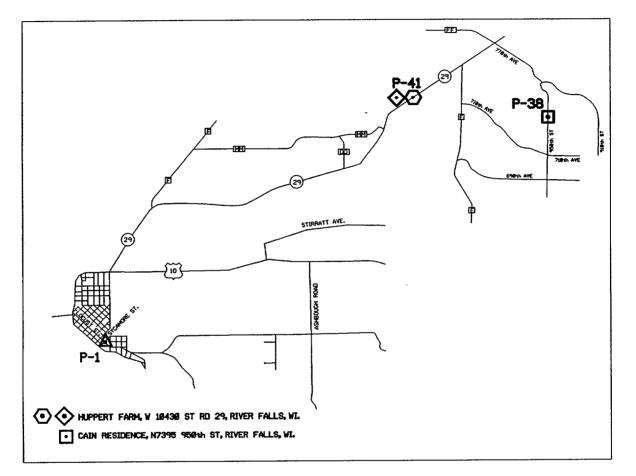

_


÷


.


Sampling Location Maps





ENVIRONMENTAL SAMPLING POINTS

-

CONTROL POINTS PRESCOTT, WISCONSIN

MONITORING LEGEND

- MILK SAMPLING POINT ID NUMBERS P-14, P-18, P-37, P-41
- AIR SAMPLING POINT ID NUMBERS P-1, P-2, P-3, P-4, P-6
- WATER SAMPLING POINT ID NUMBERS P-5, P-6, P-8, P-9, P-11, P-41
- VEGETATION / VEGETABLES ID NUMBERS P-24, P-38