

Entergy Operations, Inc. 1448 S.R. 333 Russellville, AR 72802 Tel 501 858 5000

May 9, 2001

0CAN050101

U. S. Nuclear Regulatory Commission Document Control Desk Mail Station OP1-17 Washington, DC 20555

Subject: Arkansas Nuclear One - Units 1 and 2 Docket Nos. 50-313 and 50-368 License Nos. DPR-51 and NPF-6 2000 Annual Radiological Environmental Operating Report

Gentlemen:

Arkansas Nuclear One (ANO), Units 1 and 2, Technical Specifications 6.12.2.5 and 6.9.4, respectively, require the submittal of an annual radiological environmental operating report for the previous calendar year by May 15 of each year. Attached is the annual radiological environmental operating report for ANO for the year 2000. The radionuclides detected by the radiological environmental monitoring program during 2000 were significantly below regulatory limits; therefore, ANO plant operations during 2000 had no harmful effects nor resulted in any irreversible damage to the environment. This report fulfills the reporting requirements referenced above. This submittal contains no commitments. Should you have any questions regarding this submittal, please contact me.

Very truly yours,

Jimmy D. Vandergriff Director, Nuclear Safety Assurance

JDV/nbm Attachment

U. S. NRC May 9, 2001 0CAN050101 Page 2

 cc: Mr. Ellis W. Merschoff Regional Administrator
 U. S. Nuclear Regulatory Commission Region IV
 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011-8064

> NRC Senior Resident Inspector Arkansas Nuclear One P.O. Box 310 London, AR 72847

Mr. William Reckley NRR Project Manager Region IV/ANO-1 U. S. Nuclear Regulatory Commission NRR Mail Stop O-7 D1 One White Flint North 11555 Rockville Pike Rockville, MD 20852

Mr. Thomas W. Alexion NRR Project Manager Region IV/ANO-2 U. S. Nuclear Regulatory Commission NRR Mail Stop 04-D-03 One White Flint North 11555 Rockville Pike Rockville, MD 20852 Attachment to 0CAN050101 Page 1 of 52

ARKANSAS NUCLEAR ONE - UNITS 1 AND 2

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR 2000

TABLE OF CONTENTS

SUMI	MARY	6
1.0 I	NTRODUCTION	11
1.1	Radiological Environmental Monitoring Program	11
1.2	Pathways Monitored	11
1.3	Land Use Census	11
2.0 I	NTERPRETATION AND TRENDS OF RESULTS	22
2. 1	Air Particulate and Radioiodine Sample Results	22
2.2	Thermoluminescent Dosimetry Sample Results	22
2.3	Water Sample Results	22
2.4	Sediment Sample Results	23
2.5	Milk Sample Results	24
2.6	Fish Sample Results	24
2. 7	Food Product Sample Results	24
2.8	Land Use Census Results	24
2.9	Interlaboratory Comparison Results	24
3.0 F	ADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY	28
3.1	2000 Program Results Summary	28

Attachment to 0CAN050101 Page 3 of 52

LIST OF TABLES

TABLE 1.1	RADIOLOGICAL ENVIRONMENTAL SAMPLING PROGRAM	13
TABLE 3.1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY	29

Attachment to 0CAN050101 Page 4 of 52

LIST OF FIGURES

FIGURE 1-1	EXPOSURE PATHWAYS	19
FIGURE 1-2	SAMPLE COLLECTION SITES – NEAR FIELD	20
FIGURE 1-3	SAMPLE COLLECTION SITES – FAR FIELD	21
FIGURE 2-1	TLD RADIATION DOSE	26
FIGURE 2-2	DISCHARGE SEDIMENT	27

Attachment to 0CAN050101 Page 5 of 52

LIST OF ATTACHMENTS

ATTACHMENT 1	2000 RADIOLOGICAL MONITORING REPORT SUMMARY OF MONITORING RESULTS	33
ATTACHMENT 2	SEDIMENT DOSE CALCULATIONS	51

Attachment to 0CAN050101 Page 6 of 52

Summary

The Annual Radiological Environmental Operating Report presents data obtained through analyses of environmental samples collected for Arkansas Nuclear One's (ANO's) Radiological Environmental Monitoring Program (REMP) for the period January 1, 2000 through December 31, 2000. This report fulfills the requirements of ANO Unit 1 Technical Specification 6.12.2.5 and Unit 2 Technical Specification 6.9.4. During 2000, as in previous years, ANO detected radionuclides attributable to plant operations at the discharge location (Station 8). ANO personnel routinely monitor results from this area in order to note any trends. Their review of results from this area indicates the following:

- Tritium levels in the surface water media continue to be well below regulatory limits.
- Cobalt-60 and Cesium-137 levels in the sediment media are not demonstrating any increase in comparison to previous years. Review indicates that 2000 levels are less than that of the historical average and also well below regulatory limits.

Gross beta concentrations at the Station 14 (City of Russellville) indicator drinking water location continues to remain at previous operational background measurements and similar to the levels detected at the Station 57 (City of Danville) control drinking water location.

Tritium was detected once at the Station 10 (intake) surface water control location during 2000. However, the levels detected were well below lower limits of detection values and are considered background.

Radiological Environmental Monitoring Program

ANO established the REMP prior to the station becoming operational (1974) to provide data on background radiation and radioactivity normally present in the area. ANO has continued to monitor the environment by sampling air, water, sediment, fish and food products, as well as measuring radiation directly. ANO also samples milk if milk-producing animals are present within five miles of the plant.

The REMP includes sampling indicator and control locations within an approximately 20-mile radius of the plant. The REMP utilizes indicator locations near the site to show any increases or buildup of radioactivity that might occur due to station operation, and control locations farther away from the site to indicate the presence of only naturally occurring radioactivity. ANO personnel compare indicator results with control and preoperational results to assess any impact ANO operation might have had on the surrounding environment.

In 2000, ANO personnel collected environmental samples for radiological analysis. They compared results of indicator locations with control locations and previous studies, and concluded that overall no significant relationship exists between ANO operation and effect on the plant environs. Their review of 2000 data, in many cases, showed undetectable

Attachment to 0CAN050101 Page 7 of 52

radiation levels in the environment and near background level in significant pathways associated with ANO.

Harmful Effects or Irreversible Damage

The REMP monitoring did not detect any harmful effects or evidence of irreversible damage in 2000. Therefore, no analysis or planned course of action to alleviate problems was necessary.

Reporting Levels

ANO's review indicates that no samples equaled or exceeded reporting levels for radioactivity concentration in environmental samples, as outlined in the Offsite Dose Calculation Manual (ODCM) Table 2.6-3, when averaged over any calendar quarter, due to ANO effluents. Therefore, 2000 results did not trigger any Radiological Monitoring Program Special Reports.

Radioactivity Not Attributable to ANO

The ANO REMP detected radioactivity attributable to other sources twice. These include the 25th Chinese nuclear test explosion in 1980, and the radioactivity plume release due to reactor core degradation at the Chernobyl Nuclear Power Plant in 1986. Prior to 1981, the ANO REMP detected radioactivity resulting from nuclear weapons testing, with Cesium-137 continuing to be periodically detected in certain pathways.

Comparison to Federal and State Programs

ANO personnel compared REMP data to federal and state monitoring programs as results became available. Historically, the programs used for comparison have included the U.S. Nuclear Regulatory Commission (NRC) TLD Direct Radiation Monitoring Network and the Arkansas Department of Health (ADH).

The NRC TLD Network Program was discontinued in 1998. Historically these results have compared to those from the ANO REMP. ANO TLD results continue to remain similar to the historical average and continue to verify that plant operation is not affecting the ambient radiation levels in the environment.

The ADH and the ANO REMP entail similar radiological environmental monitoring program requirements. These programs include collocated air samples and splitting or sharing sample media such as water, sediment and fish. Both programs have obtained similar results over previous years.

Attachment to 0CAN050101 Page 8 of 52

Sample Deviations

• Milk

The REMP did not include milk sampling within five miles (8 km) of ANO in 2000 due to unavailability. ANO Units 1 and 2 ODCM require collection of milk samples if available commercially within 8 km (5 miles) of the plant. ANO personnel collected vegetation samples to monitor the ingestion pathway, as specified in the ODCM, because of milk unavailability.

• Required Lower Limit of Detection (LLD) Values

The Iodine-131 lower limit of detection (LLD) value of 0.07 pCi/m3 was not met at air sample station AS-6 during the sampling period of July 18 – August 1, 2001 due to mechanical failure with the sample pump. ANO personnel replaced the sample pump once the failure was discovered.

All other LLDs during this reporting period were within the acceptable limits required by the technical specifications.

• Air Samples

Listed below are air sampler deviations that occurred during 2000 due to mechanical or electrical failures. These deviations did not result in a missed sample and no LLD values were exceeded. As described in footnote (a) to ANO Units 1 and 2 ODCM Table 2.6-2, deviations are permitted from the required sampling schedule due to malfunction of sampling equipment and other legitimate reasons.

Station	Sampling Period	Run Time (Hours)
1	04/25/2000 - 05/09/2000	318.2
	05/23/2000 - 06/06/2000	283.2
2	12/28/1999 - 01/10/2000	285.1
	01/10/2000 - 01/18/2000	102.6
	03/14/2000 - 03/28/2000	124.3
	05/23/2000 - 06/06/2000	281.6
	09/12/2000 - 09/26/2000	257.1
6	02/29/2000 - 03/14/2000	173.5
	03/14/2000 - 03/28/2000	232.7
	05/23/2000 - 06/06/2000	36.0
	06/06/2000 - 06/20/2000	221.1
	07/11/2000 - 07/18/2000	52.6
	07/18/2000 - 08/01/2000	3.3

Attachment to 0CAN050101 Page 9 of 52

Station	Sampling Period	Run Time (Hours)
6	08/01/2000 - 08/15/2000	196.6
	08/29/2000 - 09/12/2000	72.8
	09/26/2000 - 10/10/2000	290.1
	10/10/2000 - 10/24/2000	22.6
7	03/14/2000 - 03/28/2000	293.9
	03/28/2000 - 04/11/2000	194.8
	06/06/2000 - 06/20/2000	193.3
	06/20/2000 - 06/27/2000	89.5
	08/15/2000 - 08/29/2000	54.7
56	01/10/2000 - 01/18/2000	99.7
	05/23/2000 - 06/06/2000	281.6
	09/12/2000 - 09/26/2000	257.2

• Air Samples (cont'd)

ANO has re-wired the electrical power supply at the air sampler locations to meet current electrical codes, and have installed a circuit breaker box and ground fault interrupter system in an effort to correct these deviations. Based on review of air sampling data since October 2000, there have been no deviations associated with the air sampler locations.

• Surface Water

Tritium was initially detected in the fourth quarter composite for Station 8 (Discharge) at a concentration of 38,043 pCi/l. Confirmatory analysis of the original sample and analysis of a backup sample confirmed the results. ANO's review of the Units 1 and 2 liquid radwaste releases did not identify any elevated tritium releases during the months of October, November and December of 2000. In addition, interviews with chemists did not identify any conditions that would account for the elevated tritium value.

Since monthly composite samples are collected for gamma analysis at this location, ANO requested the River Bend Station (RBS) Environmental Laboratory (central location for Entergy Operations' radiological environmental analysis) to perform a tritium analysis on the October, November and December samples. Typical tritium concentrations at Station 8 range from 700 to 900 pCi/l. The only month showing an increase over the typical range was in the October sample with a concentration of 1,300 pCi/l.

Based on these results, ANO requested the RBS Environmental Laboratory to composite the October, November and December sample for gamma analysis, and perform a tritium analysis. The results of this composite showed a concentration of 839 pCi/l. Since it is apparent that the original tritium composite sample was contaminated, ANO personnel have elected to report the value of 839 pCi/l for the fourth quarter Station 8 tritium composite. This value is further validated by the Arkansas Department of Health who also obtained similar results when their split samples collected for gamma analysis was composited and analyzed for tritium.

• Missed Samples

One first quarter TLD (Station 151) and three second quarter TLDs (Stations 2, 151 and 152) were missed during 2000 due to vandalism. These losses were isolated instances that did not recur during the year and were replaced with new TLDs by ANO personnel once discovered. The recovery rate for TLDs during 2000 was 96% (92 of 96).

• Unavailable Results

ANO received analytical results in adequate time for inclusion in this report. In addition, ANO's review identified no missing results.

Program Modifications

ANO made no modifications to the REMP during 2000.

Attachments

Attachment 1 contains results of air, TLD, water, sediment, fish, and food products samples collected in 2000. TLDs were analyzed by Waterford-3 Dosimetry. All remaining samples were analyzed by the RBS Environmental Laboratory. Attachment 1 also contains RBS' participation in the interlaboratory comparison program during 2000. Attachment 2 contains dose calculations performed for sediment using a generalized equation from Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I."

Attachment to 0CAN050101 Page 11 of 52

1.0 Introduction

1.1 Radiological Environmental Monitoring Program

ANO established the REMP to ensure that plant operating controls properly function to minimize any associated radiation endangerment to human health or the environment. The REMP is designed for:

- Analyzing important pathways for anticipated types and quantities of radionuclides released into the environment.
- Considering the possibility of a buildup of long-lived radionuclides in the environment and identifying physical and biological accumulations that may contribute to human exposures.
- Considering the potential radiation exposure to plant and animal life in the environment surrounding ANO.
- Correlating levels of radiation and radioactivity in the environment with radioactive releases from station operation.

1.2 Pathways Monitored

The airborne, direct radiation, waterborne and ingestion pathways, as seen in Figure 1-1, are monitored as required by the ANO ODCM. A description of the ANO REMP utilized to monitor the exposure pathways is described in Table 1.1 and shown in Figures 1-2 and 1-3.

Section 2.0 of this report provides a discussion of 2000 sampling results with Section 3.0 providing a summary of results for the monitored exposure pathways.

1.3 Land Use Census

ANO personnel conduct a land use census biannually, as required by ANO Units 1 and Unit 2 ODCM Section 2.6.2. The purpose of this census is to identify changes in uses of land within five miles of ANO that would require modifications to the REMP or ODCM. The most important criteria during this census is to determine location in each sector of the nearest:

- 1) Residence
- 2) Animal milked for human consumption
- 3) Garden of greater than 50 m² (500 ft²) producing broadleaf vegetation *

The method used by ANO personnel for conducting this land use census is as follows:

- ANO personnel conduct door-to-door field surveys and/or aerial surveys in each meteorological sector out to five miles in order to locate the nearest resident and milk animal.
- Consultation with local agricultural authorities is used in instances when personal contact cannot be made.
- As a result of these surveys, the following information is obtained in each meteorological sector:
 - 1) Nearest permanent residence
 - 2) Nearest milking animal
- ANO personnel identify locations on the map, measures distances to ANO and records results.
- Locations, if any, are identified which yield a calculated dose or dose commitments greater than those currently calculated in the ODCM.
- ANO personnel compare results to previous census.

* ANO personnel do not perform a garden census since ODCM Section 2.6.2 allows the routine sampling of broadleaf vegetation in the highest D/Q sector near the site boundary in lieu of the garden census.

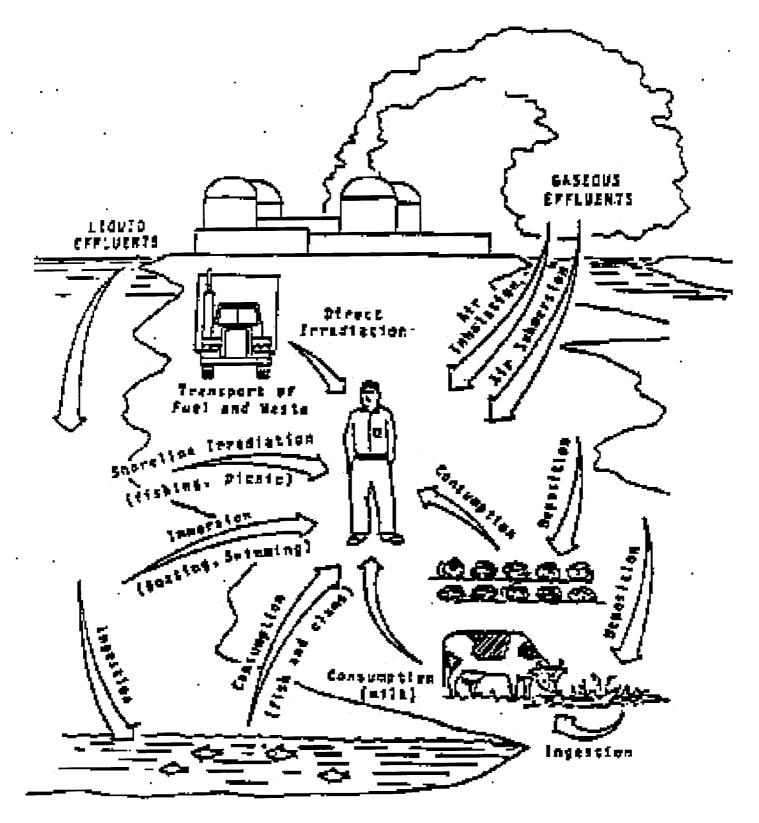
Table 1.1
Radiological Environmental Sampling Program

Exposure Pathway	Requirement	Sample Point Description, Distance and Direction	Sampling and Collection Frequency	Type and Frequency Of Analyses
Airborne	Radioiodine and Particulates 2 samples close to the Site Boundary, in (or near) different sectors with the highest calculated annual average groundlevel D/Q.	Station 2 (240° - 0.5 miles) - East of the sewage treatment plant. Station 56 (273° - 0.4 miles) – West end of the sewage treatment plant.	Continuous operation of sampler with sample collection as required by dust loading but at least once per 14 days.	Radioiodine Canister – Analyze at least once per 14 days for I-131. Particulate Sampler – Analyze for gross beta radioactivity following filter change.
	Radioiodine and Particulates 1 sample from the vicinity of a community having the highest calculated annual average groundlevel D/Q.	Station 6 (111° - 7.0 miles) - Entergy local office in Russellville (305 South Knoxville Avenue).		
	Radioiodine and Particulates 1 sample from a control location 15-30 km (10 – 20 miles) distance.	Station 7 (209° - 19.3 miles) – Entergy Supply Yard on Highway 10 in Danville.		
	Radioiodine and Particulates One location sampled voluntarily by ANO.	Station 1 (90° - 0.6 miles) - On a pole near the meteorology tower.	- -	
Direct Radiation	TLDs 16 inner ring stations with two or more dosimeters in each meteorological sector in the general area of the Site Boundary	Station 1 (90° - 0.6 miles) - On a pole near the meteorology tower. Station 2 (240° - 0.5 miles) - East of the sewage treatment plant.	Once per 92 days.	Gamma Dose – Once per 92 days.
		Station 3 (6° - 0.7 miles) – Junction of Highway 333 and Flatwood Road.		

Exposure Pathway	Requirement	Sample Point Description, Distance and Direction	Sampling and Collection Frequency	Type and Frequency Of Analyses	
Direct	TLDs		· · · · · · · · · · · · · · · · · · ·		
Radiation	16 inner ring stations with two or more dosimeters in each meteorological sector in the general area of the Site	Station 4 (176° - 0.5 miles) – West of May Cemetery entrance approximately 50 feet south of the road.	Once per 92 days.	Gamma Dose – Once per 92 days.	
	Boundary	Station 56 (273° - 0.4 miles) - West end of the sewage treatment plant.			
	Station 108 (313° - 0.9 miles) - South on Flatwood Road on a utility pole.				
		Station 109 (290° - 0.6 miles) - Utility pole across from the junction of Flatwood Road and Round Mountain Road.			
		Station 110 (140° - 0.7 miles) - Bunker Hill Lane on the first utility pole on the left.			
		Station 145 (30° - 0.6 miles) - Near west entrance to the RERTC on a utility pole.			
		Station 146 (50° - 0.6 miles) - South end of east parking lot at RERTC on a utility pole.			
		Station 147 (63° - 0.6 miles) - West side of Bunker Hill Road, approximately 100 yards from intersection with State Highway 333.			
		Station 148 (122° - 0.5 miles) - Intersection with Scott Lane on county road sign post.			

Exposure Pathway	Requirement	Sample Point Description, Distance and Direction	Sampling and Collection Frequency	Type and Frequency Of Analyses
Direct Radiation	<u>TLDs</u> 16 inner ring stations with two or more dosimeters in each meteorological sector in the general area of the Site Boundary	 Station 149 (150° - 0.6 miles) – On a utility pole on the south side of May Road. Station 150 (201° - 0.6 miles) – North side of May Road on a utility pole. Station 151 (220° - 0.4 miles) – West side of sewage treatment plant near the lake on a metal post. Station 152 (338° - 0.8 miles) – North side of State Highway 333 on a London City limit sign post. 	Once per 92 days.	Gamma Dose Once per 92 days.
	TLDs 8 stations with two or more dosimeters in special interest areas such as population centers, nearby residences, schools, and in $1 - 2$ areas to serve as control locations.	 Station 6 (111° - 7.0 miles) - Entergy local office in Russellville (305 South Knoxville Avenue). Station 7 (209° - 19.3 miles) – Entergy Supply Yard on Highway 10 in Danville. Station 111 (117° - 2.0 miles) – Marina Road on a utility pole on the left just prior to curve. Station 116 (320° - 1.9 miles) - Highway 333 and Highway 64 in London on a utility pole north of the railroad tracks. 		

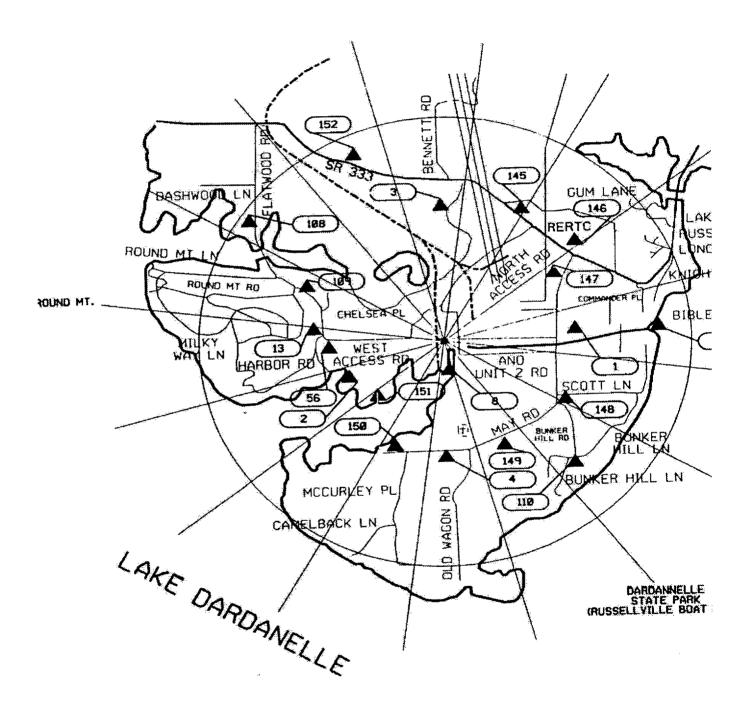
Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Direct Radiation	TLDs 8 stations with two or more dosimeters in special interest areas such as population centers, nearby residences, schools, and in 1 – 2 areas to serve as control locations.	 Station 125 (46° - 9.0 miles) - College Street on a utility pole at the southeast corner of the red brick school building. Station 127 (102° - 5.6 miles) - Arkansas Tech Campus on a security light pole in front of Bryan Hall. Station 137 (150° - 8.1 miles) - On a speed limit sign on the right in front of the Morris R. Moore Arkansas National Guard Armory. Station 153 (305° - 9.2 miles) - Knoxville Elementary School near the school entrance gate on a utility pole. 	Once per 92 days.	Gamma Dose – Once per 92 days.
Waterborne	Surface Water 1 indicator location (influenced by plant discharge) 1 control location (uninfluenced by plant discharge)	Station 8 (180° - 0.1 miles) - Plant discharge canal. Station 10 (90° - 0.5 miles) – Plant intake canal.	Once per 92 days.	Gamma isotopic and tritium analyses once per 92 days.
	Drinking Water 1 indicator location (influenced by plant discharge) 1 control location (uninfluenced by plant discharge)	Station 14 (70° - 5.3 miles) - Russellville city water system from the Illinois Bayou. Station 57 (208° - 19.5 miles) - Danville public water supply treatment on Fifth Street.	Once per 92 days.	I-131, gross beta, gamma isotopic and tritium analyses once per 92 days.


Exposure Pathway	Requirement	Sample Point Description, Distance and Direction	Sampling and Collection Frequency	Type and Frequency Of Analyses
Waterborne	Sediment 1 indicator location (influenced by plant discharge)	Station 8 (245° - 0.7 miles) - Plant discharge canal.	Once per 365 days.	Gamma isotopic analysis once per 365 days.
	1 control location (uninfluenced by plant discharge)	Station 16 (290° - 5.9 miles) - Panther Bay on south side of Arkansas River across from mouth of Piney Creek.		
Ingestion	Milk 1 indicator sample location within 8 km distant if commercially available. 1 control sample location at a distant of >8 km, when an indicator exists.	Currently, no available milking animals within 8 km of ANO.	Once per 92 days.	Gamma isotopic and I-131 analyses once per 92 days.
	Fish 1 sample of commercially and/or recreationally important species in vicinity of plant discharge.	Station 8 (230° - 0.6 miles) – Plant discharge canal.	Once per 365 days.	Gamma isotopic on edible portions once per 365 days.
	1 sample of same species in area not influenced by plant discharge.	Station 16 (290° - 5.9 miles) - Panther Bay on south side of Arkansas River across from mouth of Piney Creek.		

Exposure Pathway	Requirement	Sample Point Description, Distance and Direction	Sampling and Collection Frequency	Type and Frequency Of Analyses
Ingestion	Food Products 1 sample of broadleaf (edible or non- edible) near the Site Boundary from one of the highest anticipated annual average groundlevel D/Q sectors, if milk sampling is not performed.	Station 13 (278° - 0.5 miles) - West from ANO toward Gate 4 onto Flatwood Road.	Three per 365 days.	Gamma isotopic and I-131 analyses three times per 365 days.
	1 sample location of broadleaf vegetation (edible or non-edible) from a control location 15 – 30 km distant, if milk sampling is not performed.	Station 55 (209° - 16.6 miles) – Intersection of Highway 27 and 154.		

Attachment to 0CAN050101 Page 19 of 52

FIGURE 1-1


EXPOSURE PATHWAYS

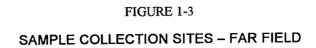

Attachment to 0CAN050101 Page 20 of 52

FIGURE 1-2

SAMPLE COLLECTION SITES - NEAR FIELD

Attachment to 0CAN050101 Page 21 of 52

Attachment to 0CAN050101 Page 22 of 52

2.0 Interpretation and Trends of Results

2.1 Air Particulate and Radioiodine Sample Results

Iodine-131 was not detected in the radioiodine cartridges during 2000, as has been the case in previous years. Indicator gross beta air particulate results for 2000 were similar to those background levels obtained in previous years of the operational REMP and well below preoperational levels as seen below. Results are reported as annual average pCi/m^3 .

Monitoring Period	<u>Result</u>
Preoperational	0.047
1995 – 1999	0.019
2000	0.026

Table 3.1, which includes gross beta concentrations, provides a comparison of the indicator and control means, further emphasizes that the airborne pathway continues to remain at background levels.

2.2 Thermoluminescent Dosimetry Sample Results

Gamma radiation dose in the reporting period compares to previous years as shown in Figure 2-1. This figure, which indicates that ambient radiation levels have remained at or near background levels, shows 1996 - 2000 annual average results for indicator locations compared to the control.

ANO reported measured doses in 2000 as net exposure (field reading - transit reading) normalized to 92 days and relies on comparison of indicator locations to the controls as a measure of plant impact. ANO's comparison of the inner ring and special interest area TLD results to the control, as seen in Table 3.1, indicates that the ambient radiation levels are unaffected by plant operations. Therefore, levels continue to remain at or near background.

2.3 Water Sample Results

Analytical results for 2000 surface water and drinking water samples were similar to those reported in previous years.

<u>Surface water</u> samples were collected and analyzed for gamma radionuclides and tritium. Gamma radionuclides were below detectable limits with tritium continuing to be detected at the indicator location. Listed below is a comparison of 2000 results from the indicator location as compared to the preoperational and operational years. Results are reported as annual average pCi/l.

<u>Radionuclide</u>	<u>2000</u>	<u> 1995 – 1999</u>	<u>Preoperational</u>
Cobalt-58	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cesium-137	<lld< td=""><td><lld< td=""><td>17.8</td></lld<></td></lld<>	<lld< td=""><td>17.8</td></lld<>	17.8
Other Gammas	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tritium	870.3	1231.7	200.0

Based on this comparison, the operation of ANO had no impact on this pathway during 2000 and levels of radionuclides remain similar to those obtained in operational and preoperational years.

Drinking water samples were collected from two locations (indicator and control). Although ANO personnel utilize Station 14 (City of Russellville) as an indicator location due to the potential for the pathway to exist, the City of Russellville has not withdrawn water from Lake Dardanelle in the past several years.

Drinking water samples were analyzed for gross beta radionuclides, Iodine-131, gamma radionuclides and tritium. Gamma radionuclides, Iodine-131 and tritium concentrations were below detectable limits at the indicator and control locations, which is consistent with preoperational and operational years. In addition, gross beta concentrations at the indicator and control locations are similar. Listed below is a comparison of 2000 indicator results to preoperational and operational years. Results are reported as annual average pCi/l.

<u>Radionuclide</u>	<u>2000</u>	<u> 1995 – 1999</u>	<u>Preoperational</u>
Gross Beta	3.59	3.32	2.0
Iodine-131	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Gammas	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tritium	<lld< td=""><td>335.0</td><td>200.0</td></lld<>	335.0	200.0

Based on this comparison, the operation of ANO had no impact on this pathway during 2000 and radionuclides monitored for this pathway continue to remain at background levels.

2.4 Sediment Sample Results

Sediment samples were collected from two locations in 2000 and analyzed for gamma radionuclides. As in previous years, radionuclides attributable to ANO were detected in the discharge sediment. However, Figure 2-3 shows that 2000 levels are below those of previous operational years. Since reporting levels for radionuclides in

sediment have not been established, an evaluation of potential dose to the public from this media was performed as shown in Attachment 2. The annual maximum dose from all radionuclides to the skin and total body was <0.01 millirem.

Design objectives given in 10CFR50, Appendix I for liquid effluents are annual doses of \leq 3 millirem total body and \leq 10 millirem any organ. The values of <0.01 millirem for the skin and total body are well within the design objective criteria. Therefore, the level of radionuclides detected in 2000 had no significant impact on the environment or public.

2.5 Milk Sample Results

Milk samples were not collected during 2000 due to the unavailability of indicator locations within 8-km of ANO. Since there are no dairies within five miles of the ANO site, it is concluded ANO's operation had no impact on this pathway in 2000.

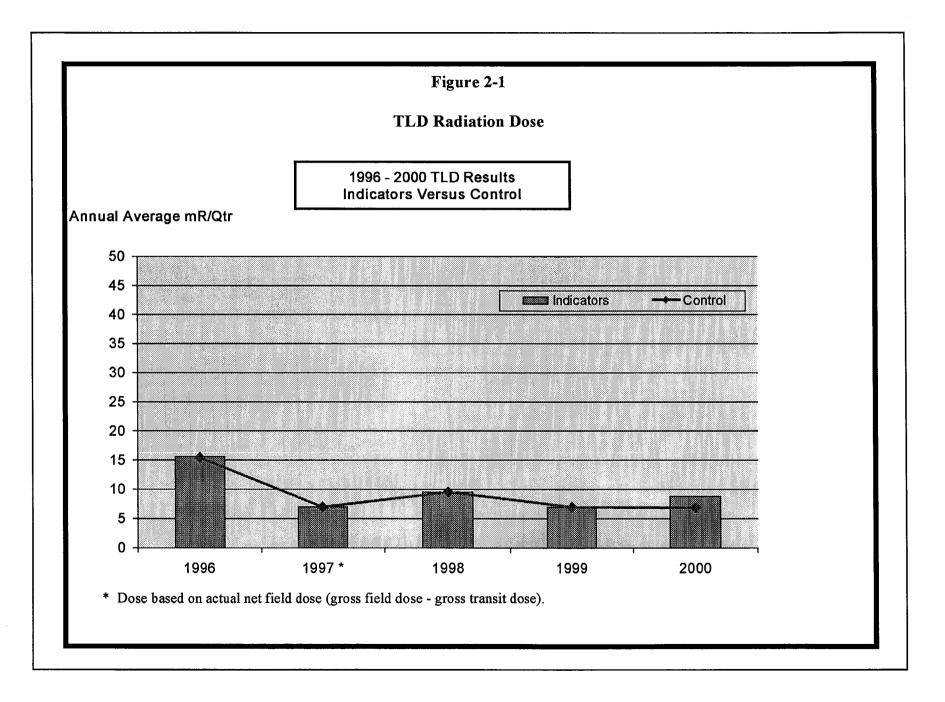
2.6 Fish Sample Results

Fish samples were collected from two locations and analyzed for gamma radionuclides. In 2000, gamma radionuclides were below detectable limits, which is consistent with the preoperational monitoring period and operational results since 1997. Therefore, based on these measurements, ANO operations had no significant radiological impact upon the environment or public by this pathway.

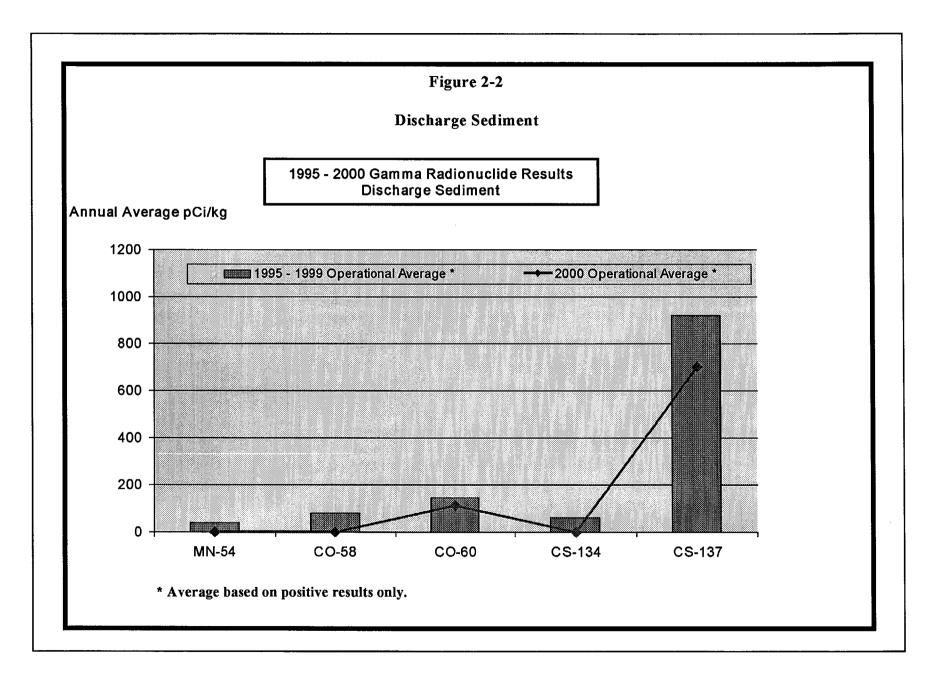
2.7 Food Product Sample Results

Food product samples were collected when available from two locations in 2000 and analyzed for Iodine-131 and gamma radionuclides. The 2000 levels remained undetectable, as has been the case since 1989. Therefore, since levels continue to remain at background, it can be concluded that plant operations is not impacting this pathway.

2.8 Land Use Census Results


ANO personnel conduct a land use census biannually. The most recent land use census was conducted in 1999. Therefore, a census was not required for this reporting year.

2.9 Interlaboratory Comparison Results


RBS' Environmental Laboratory analyzed interlaboratory comparison samples for ANO to fulfill the requirements of ANO Units 1 and 2 ODCM Section 2.6.3. Attachment 1, 2000 Radiological Environmental Monitoring Report, contains these

Attachment to 0CAN050101 Page 25 of 52

results. ANO's review of RBS' interlaboratory comparison indicated that 96% of the sample results for accuracy and precision were within the acceptable control limits of the three normalized deviations. For those sample results outside the acceptable control limits, ANO's and RBS's review indicated no impact on previously reported data. Attachment 1 also provides additional discussion regarding sample results outside the acceptable control limits.

Attachment to 0CAN050101 Page 27 of 52

Attachment to 0CAN050101 Page 28 of 52

3.0 Radiological Environmental Monitoring Program Summary

3.1 2000 Program Results Summary

Table 3.1 summarizes the 2000 REMP results. ANO personnel did not use values reported as less than the lower limit of detection (<LLD) when determining ranges and means for indicator and control locations.

Radiological Environmental Monitoring Program Summary

Name of Facility: ANO - Units 1 and 2Docket No: 50-313 and 50-368Location of Facility: Pope County, ArkansasReporting Period: January - December 2000

Sample Type (Units)	Type & Number of Analyses ^a	LLD b	Indicator Locations Mean (F) ^C [Range]	Location with Highest Annual Mean		Control Locations Mean (F) ^C [Range]	Number of Nonroutine Results ^e
				Location d	Mean (F) ^C [Range]		
Air Particulates (pCi/m ³)	GB 135	0.01	0.03 (81/81) [0.01-0.05]	Station 1 (90°, 0.6 mi)	0.03 (27 / 27) [0.01 - 0.05]	0.03 (54 / 54) [0.02 - 0.09]	0
Airborne Iodine (pCi/m ³)	I-131 135	0.07	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
Inner Ring TLDs (mR/Qtr)	Gamma 60	(f)	8.8 (60 / 60) [5.0 – 14.0]	Station 151 (220°, 0.4 mi)	11.0 (2 / 2) [10.0 – 12.0]	N/A	0
Special Interest TLDs (mR/Qtr)	Gamma 28	(f)	7.5 (28 / 28) [4.0 – 12.0]	Station 137 (150°, 8.1 mi)	8.5 (4/4) [7.0 – 11.0]	N/A 6.8 (4/4)	0 0
Control TLD (mR/Qtr)	Gamma 4	(f)	N/A	N/A	N/A	[5.0 – 10.0]	

Radiological Environmental Monitoring Program Summary

Name of Facility:ANO - Units 1 and 2Docket No: 50-313 and 50-368Location of Facility:Pope County, ArkansasReporting Period: January - December 2000

Sample Type (Units)	Type & Number of Analyses ^a				LLD b	Indicator Location Mean (F) ^C [Range]	Location with Hi	ghest Annual Mean	Control Locations Mean (F) ^C [Range]	Number of Nonroutine Results ^e
					Location d	Mean (F) ^C [Range]				
Surface Water (pCi/l)	H-3 GS	8 24	2000	870.3 (4 / 4) [763.0 – 961.0]	Station 8 (180°, 0.1 mi)	870.3 (4 / 4) [763.0 – 961.0]	330.0 (1 / 4) [N/A]	0		
]	Mn-54	15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0		
		Fe-59 Co-58	30 15	<lld <lld< td=""><td>N/A N/A</td><td>N/A N/A</td><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	N/A N/A	N/A N/A	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0		
		Co-60 Zn-65	15 30	<lld <lld< td=""><td>N/A N/A</td><td>N/A N/A</td><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	N/A N/A	N/A N/A	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0		
		Zr-95 Nb-95	30 15	<lld <lld< td=""><td>N/A N/A</td><td>N/A N/A</td><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	N/A N/A	N/A N/A	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0		
		I-131 Cs-134	15 15	<lld <lld< td=""><td>N/A N/A</td><td>N/A N/A</td><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	N/A N/A	N/A N/A	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0		
		Cs-137 Ba-140	18 60	<lld <lld< td=""><td>N/A N/A</td><td>N/A N/A</td><td><lld <lld< td=""><td>0 0</td></lld<></lld </td></lld<></lld 	N/A N/A	N/A N/A	<lld <lld< td=""><td>0 0</td></lld<></lld 	0 0		
	[]	La-140	15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0		

Radiological Environmental Monitoring Program Summary

Name of Facility: ANO - Units 1 and 2Docket No: 50-313 and 50-368Location of Facility: Pope County, ArkansasReporting Period: January - December 2000

Sample Type (Units)		Type & Number of Analyses aLLD bIndicator LocationsLocation with Highest Annual MeanMean (F) C [Range]		hest Annual Mean	Control Locations Mean (F) ^C [Range]	Number of Nonroutine Results ^e		
					Location d	Mean (F) ^c [Range]		
Drinking Water (pCi/1)	GB	10	4	3.59 (5 / 5) [2.76 – 4.16]	Station 14 (70°, 5.3 mi)	3.59 (5 / 5) [2.76 – 4.16]	4.21 (5/5) [3.38 - 5.73]	0
	I-131	10	1.0	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	H-3	10	2000	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	GS	10						
	Mn-	54	15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Fe-	59	30	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Co-	58	15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Co-	60	15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Zn-	65	30	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Zr-9		30	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Nb-		15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Cs-1		15	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Cs-1		18	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Ba-1		60	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	La-1	40	15	<lld< td=""><td>N/A</td><td>N/A</td><td>⊲LLD</td><td>0</td></lld<>	N/A	N/A	⊲LLD	0

Radiological Environmental Monitoring Program Summary

Sample Type (Units)	Type & Number of Analyses ^a		Indicator Location Mean (F) ^C [Range]	Location with Highest Annual Mean		Control Locations Mean (F) ^C [Range]	Number of Nonroutine Results ^e
				Location d	Mean (F) ^C [Range]		
Bottom Sediment	GS 2	·					
(pCi/kg)	Co-60	(f)	114.0 (1/1) [N/A]	Station 8 (245°, 0.7 mi)	114.0 (1 / 1) [N/A]	<lld< td=""><td>0</td></lld<>	0
	Cs-134	150	<pre></pre>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Cs-137	180	703.0 (1/1) [N/A]	Station 8 (245°, 0.7 mi)	703.0(1/1) [N/A]	<lld< td=""><td>0</td></lld<>	0
Fish	GS 2	*********					
(pCi/kg)	Mn-54	130	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Fe-59	260	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Co-58	130	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Co-60	130	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Zn-65	260	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Cs-134	130	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
	Cs-137	150	<lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<>	N/A	N/A	<lld< td=""><td>0</td></lld<>	0
Food Products (pCi/kg)	I-131 6	60	<lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>0</td></lld<>	N/A	N/A	N/A	0
	GS 6						
	Cs-134	60	<lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>0</td></lld<>	N/A	N/A	N/A	0
	Cs-137	80	<lld< td=""><td>N/A</td><td>N/A</td><td>N/A</td><td>0</td></lld<>	N/A	N/A	N/A	0

Name of Facility:ANO - Units 1 and 2Docket No: 50-313 and 50-368Location of Facility:Pope County, ArkansasReporting Period: January - December 2000

^a GB = Gross beta; I-131 = Iodine-131; H-3 = Tritium; GS = Gamma scan.

b LLD = Required lower limit of detection based on ANO Units 1 and 2 ODCM Tables 2.6-2.

^c Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parenthesis (F).

d Locations are specified (1) by name and (2) degrees relative to reactor site.

e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten times the preoperational value for the location.

f LLD is not defined in ANO Units 1 and 2 ODCM Tables 2.6-2.

Attachment to 0CAN050101 Page 33 of 52

Attachment 1

2000 Radiological Monitoring Report

Summary of Monitoring Results

Attachment to 0CAN050101 Page 34 of 52

TABLE OF CONTENTS

TABLE 1.1	AIR PARTICULATE	35
TABLE 1.2	RADIOIODINE CARTRIDGE	36
TABLE 2.1	THERMOLUMINESCENT DOSIMETERS	37
TABLE 2.2	THERMOLUMINESCENT DOSIMETERS	38
TABLE 3.1	SURFACE WATER	39
TABLE 3.2	SURFACE WATER	41
TABLE 4.1	DRINKING WATER	42
TABLE 4.2	DRINKING WATER	43
TABLE 5.1	SEDIMENT	44
TABLE 6.1	FISH	45
TABLE 7.1	FOOD PRODUCTS	46
TABLE 8.1	INTERLABORATORY COMPARISON	47

Attachment to 0CAN050101 Page 35 of 52

Table 1.1 Sample Type: <u>Air Particulate</u> Analysis: Gross Beta Units: pCi/m³

Start Date	End Date	Station 1 (Indicator)	Station 2 (Indicator)	Station 56 (Indicator)	Station 6 (Control)	Station 7 (Control)
<u>Requi</u>	red LLD 🔸	<u>0.01</u>	<u>0.01</u>	<u>0.01</u>	<u>0.01</u>	<u>0.01</u>
12/28/1999	01/10/2000	0.04	0.03	0.03	0.03	0.03
01/10/2000	01/18/2000	0.03	0.02	0.03	0.03	0.03
01/18/2000	02/01/2000	0.03	0.03	0.03	0.03	0.03
02/01/2000	02/15/2000	0.05	0.04	0.05	0.02	0.04
02/15/2000	02/29/2000	0.02	0.02	0.02	0.03	0.03
02/29/2000	03/14/2000	0.02	0.02	0.02	0.02	0.02
03/14/2000	03/28/2000	0.02	0.02	0.02	0.03	0.02
03/28/2000	04/11/2000	0.02	0.02	0.02	0.02	0.03
04/11/2000	04/25/2000	0.02	0.02	0.02	0.02	0.02
04/25/2000	05/09/2000	0.02	0.02	0.02	0.02	0.02
05/09/2000	05/23/2000	0.02	0.02	0.02	0.02	0.02
05/23/2000	06/06/2000	0.02	0.02	0.02	0.02	0.02
06/06/2000	06/20/2000	0.01	0.01	0.01	0.02	0.02
06/20/2000	06/27/2000	0.02	0.02	0.02	0.02	0.02
06/27/2000	07/11/2000	0.03	0.03	0.02	0.02	0.02
07/11/2000	07/18/2000	0.04	0.03	0.03	0.03	0.03
07/18/2000	08/01/2000	0.03	0.03	0.03	0.09	0.03
08/01/2000	08/15/2000	0.03	0.03	0.02	0.02	0.03
08/15/2000	08/29/2000	0.03	0.03	0.03	0.03	0.03
08/29/2000	09/12/2000	0.03	0.03	0.02	0.04	0.03
09/12/2000	09/26/2000	0.02	0.02	0.03	0.02	0.02
09/26/2000	10/10/2000	0.02	0.02	0.02	0.03	0.02
10/10/2000	10/24/2000	0.04	0.04	0.04	0.03	0.04
10/24/2000	11/07/2000	0.03	0.03	0.03	0.03	0.03
11/07/2000	11/21/2000	0.03	0.03	0.02	0.03	0.02
11/21/2000	12/05/2000	0.03	0.03	0.03	0.03	0.03
12/05/2000	12/19/2000	0.03	0.04	0.04	0.03	0.03

Attachment to 0CAN050101 Page 36 of 52

Table 1.2 Sample Type: <u>Radioiodine Cartridge</u> Analysis: Iodine-131 Units: pCi/m³

Start Date	End Date	Station 1 (Indicator)	Station 2 (Indicator)	Station 56 (Indicator)	Station 6 (Control)	Station 7 (Control)
<u>Requi</u>	red LLD →	<u>0.07</u>	<u>0.07</u>	<u>0.07</u>	<u>0.07</u>	<u>0.07</u>
12/28/1999	01/10/2000	<0.02	<0.01	< 0.02	<0.02	< 0.01
01/10/2000	01/18/2000	< 0.02	<0.04	<0.05	<0.02	< 0.01
01/18/2000	02/01/2000	< 0.01	<0.01	< 0.01	<0.02	<0.01
02/01/2000	02/15/2000	< 0.01	<0.01	< 0.01	<0.01	<0.01
02/15/2000	02/29/2000	< 0.02	<0.01	< 0.02	<0.02	< 0.02
02/29/2000	03/14/2000	<0.02	<0.01	< 0.01	<0.02	<0.01
03/14/2000	03/28/2000	< 0.01	<0.03	< 0.01	< 0.02	<0.02
03/28/2000	04/11/2000	< 0.01	<0.01	< 0.01	< 0.01	<0.03
04/11/2000	04/25/2000	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
04/25/2000	05/09/2000	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
05/09/2000	05/23/2000	< 0.01	<0.01	< 0.01	< 0.01	<0.01
05/23/2000	06/06/2000	< 0.02	< 0.01	< 0.02	< 0.06	<0.01
06/06/2000	06/20/2000	< 0.01	< 0.01	< 0.01	< 0.02	<0.02
06/20/2000	06/27/2000	< 0.02	< 0.02	< 0.02	< 0.02	<0.04
06/27/2000	07/11/2000	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
07/11/2000	07/18/2000	< 0.02	<0.02	< 0.02	<0.05	<0.01
07/18/2000	08/01/2000	< 0.01	< 0.01	< 0.01	<0.29 *	<0.01
08/01/2000	08/15/2000	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
08/15/2000	08/29/2000	< 0.02	<0.02	< 0.01	< 0.01	<0.06
08/29/2000	09/12/2000	< 0.01	< 0.01	< 0.01	< 0.04	<0.01
09/12/2000	09/26/2000	< 0.01	<0.02	<0.02	< 0.01	< 0.01
09/26/2000	10/10/2000	< 0.01	<0.01	<0.01	< 0.01	< 0.01
10/10/2000	10/24/2000	< 0.01	<0.01	<0.01	<0.07	< 0.01
10/24/2000	11/07/2000	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
11/07/2000	11/21/2000	< 0.01	<0.02	<0.02	< 0.02	<0.02
11/21/2000	12/05/2000	< 0.01	<0.01	<0.01	<0.01	< 0.01
12/05/2000	12/19/2000	< 0.01	<0.01	< 0.01	< 0.01	<0.01

* LLD not achieved due to low volume (sample pump tripped).

Attachment to 0CAN050101 Page 37 of 52

Table 2.1 Sample Type: <u>Thermoluminescent Dosimeters</u> Analysis: Gamma Dose Units: mrem/Qtr

		Inner Ri	ng (Indicators)		
Station	1st Qtr '00 (mrem)	2nd Qtr '00 (mrem)	3rd Qtr '00 (mrem)	4th Qtr '00 (mrem)	Annual Mean '00 (mrem)
3	5.0	6.0	7.0	11.0	7.3
145	7.0	6.0	8.0	12.0	8.3
146	8.0	7.0	9.0	12.0	9.0
147	6.0	6.0	8.0	11.0	7.8
1	7.0	7.0	9.0	11.0	8.5
148	7.0	7.0	9.0	12.0	8.8
110	7.0	6.0	9.0	13.0	8.8
149	5.0	6.0	9.0	11.0	7.8
4	6.0	6.0	9.0	11.0	8.0
150	7.0	7.0	11.0	13.0	9.5
151 *	Missing	Missing	10.0	12.0	11.0
2	8.0	Missing	9.0	13.0	10.0
56	8.0	8.0	11.0	14.0	10.3
109	7.0	7.0	10.0	13.0	9.3
108	7.0	7.0	10.0	12.0	9.0
152	7.0	Missing	9.0	11.0	9.0

* Location with highest annual mean.

Attachment to 0CAN050101 Page 38 of 52

Table 2.2 Sample Type: <u>Thermoluminescent Dosimeters</u> Analysis: Gamma Dose Units: mrem/Qtr

	Special In	iterest Areas - (1	Population Cent	ers & Schools)	
Station	1st Qtr '00 (mrem)	2nd Qtr '00 (mrem)	3rd Qtr '00 (mrem)	4th Qtr '00 (mrem)	Annual Mean '00 (mrem)
6	5.0	6.0	8.0	12.0	7.8
111	4.0	4.0	7.0	9.0	6.0
116	7.0	6.0	8.0	11.0	8.0
125	4.0	4.0	5.0	9.0	5.5
127	7.0	6.0	8.0	12.0	8.3
137 *	7.0	7.0	9.0	11.0	8.5
153	7.0	6.0	9.0	11.0	8.3

* Location with highest annual mean.

Special Interest Areas – (Control)									
Station	1st Qtr '00 (mrem)	2nd Qtr '00 (mrem)	3rd Qtr '00 (mrem)	4th Qtr '00 (mrem)	Annual Mean '00 (mrem)				
7	5.0	5.0	7.0	10.0	6.8				

Attachment to 0CAN050101 Page 39 of 52

Table 3.1 Sample Type: <u>Surface Water</u> Analysis: Gamma Isotopic Units: pCi/l

Location	Start Date	End Date	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Zr-95	Nb-95	I-131	Cs-134	Cs-137	Ba-140	La-140
	<u>Required</u>	<u>LLD</u> →	<u>15</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>30</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>15</u>	<u>18</u>	<u>60</u>	<u>15</u>
Station 8 (Indicator)	12/31/99	01/31/00	<3.87	<6.51	<4.36	<3.93	<7.12	<6.78	<3.80	<5.05	<4.10	<4.46	<15.70	<6.85
Station 10 (Control)	01/31/00	01/31/00	<3.26	<5.44	<3.28	<2.92	<7.08	<6.00	<3.60	<5.00	<3.63	<3.88	<14.50	<4.26
Station 8 (Indicator)	01/31/00	02/29/00	<7.51	<17.10	<5.88	<10.40	<17.40	<10.60	<4.99	<11.60	<5.97	<8.37	<18.20	<13.60
Station 10 (Control)	02/29/00	02/29/00	<5.64	<13.6	<5.57	<2.86	<14.7	<6.52	<6.55	<7.65	<5.96	<7.03	<18.50	<8.15
Station 8 (Indicator)	02/29/00	03/31/00	<3.75	<5.76	<4.13	<3.04	<7.22	<5.72	<4.24	<4.88	<3.37	<3.00	<12.45	<5.82
Station 10 (Control)	03/31/00	03/31/00	<2.82	<5.78	<2.82	<2.82	<5.34	<4.53	<3.70	<4.67	<2.92	<2.89	<13.30	<2.97
Station 8 (Indicator)	03/31/00	04/30/00	<3.92	<6.13	<2.58	<3.73	<6.78	<5.99	<3.04	<4.56	<3.79	<3.11	<14.40	<3.40
Station 10 (Control)	04/30/00	04/30/00	<2.04	<6.12	<2.12	<2.61	<4.30	<3.91	<3.10	<3.11	<3.46	<3.34	<10.50	<3.00
Station 8 (Indicator)	04/30/00	05/31/00	<4.74	<4.49	<2.43	<5.08	<6.89	<5.29	<3.32	<4.00	<3.85	<3.78	<11.20	<3.20
Station 10 (Control)	05/31/00	05/31/00	<2.74	<5.64	<2.55	<2.76	<6.98	<5.37	<2.82	<2.85	<3.19	<2.93	<08.89	<3.08
Station 8 (Indicator)	05/32/00	06/30/00	<3.60	<7.00	<3.16	<3.19	<7.15	<6.82	<3.92	<7.02	<3.26	<3.65	<17.40	<6.30
Station 10 (Control)	06/30/00	06/30/00	<2.70	<7.15	<2.69	<2.81	<5.88	<4.59	<3.11	<5.25	<2.92	<2.71	<14.30	<5.06

Attachment to 0CAN050101 Page 40 of 52

Table 3.1 Sample Type: <u>Surface Water</u> Analysis: Gamma Isotopic Units: pCi/l

Location	Start Date	End Date	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Zr-95	Nb-95	I-131	Cs-134	Cs-137	Ba-140	La-140
	<u>Required</u>	LLD →	<u>15</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>30</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>15</u>	<u>18</u>	<u>60</u>	<u>15</u>
Station 8 (Indicator)	06/30/00	07/31/00	<4.10	<6.99	<3.73	<4.74	<10.90	<7.93	<5.87	<6.47	<5.04	<5.66	<19.20	<5.98
Station 10 (Control)	07/31/00	07/31/00	<5.70	<8.72	<4.27	<4.40	<10.20	<7.43	<6.33	<5.87	<5.65	<5.69	<16.60	<6.81
Station 8 (Indicator)	07/31/00	08/31/00	<3.50	<7.43	<3.78	<3.09	<8.06	<6.73	<3.08	<6.26	<4.10	<3.49	<16.90	<5.67
Station 10 (Control)	08/31/00	08/31/00	<2.87	<6.26	<4.37	<3.80	<7.13	<6.67	<3.80	<6.64	<3.72	<3.27	<18.60	<4.86
Station 8 (Indicator)	08/31/00	09/30/00	<3.82	<7.71	<3.28	<3.35	<4.76	<6.94	<3.71	<5.24	<3.90	<3.28	<16.20	<6.46
Station 10 (Control)	09/30/00	09/30/00	<2.53	<5.93	<3.10	<2.76	<8.80	<6.49	<4.33	<5.46	<3.43	<3.66	<17.20	<6.66
Station 8 (Indicator)	09/30/00	10/31/00	<3.45	<6.68	<3.37	<2.94	<6.63	<6.01	<3.50	<4.44	<3.07	<3.94	<14.30	<5.86
Station 10 (Control)	10/31/00	10/31/00	<2.83	<4.21	<2.21	<2.74	<4.30	<5.17	<2.59	<3.50	<3.11	<3.01	<10.30	<3.18
Station 8 (Indicator)	10/31/00	11/30/00	<3.45	<6.98	<3.32	<2.85	<5.58	<5.88	<3.19	<5.68	<2.95	<3.94	<14.80	<5.86
Station 10 (Control)	11/30/00	11/30/00	<2.01	<5.79	<2.73	<3.17	<4.28	<4.52	<3.06	<4.81	<2.92	<2.62	<11.10	<4.36
Station 8 (Indicator)	11/30/00	12/31/00	<2.62	<7.81	<3.88	<2.95	<5.46	<4.60	<2.94	<4.20	<2.52	<2.67	<14.50	<5.43
Station 10 (Control)	12/31/00	12/31/00	<3.31	<6.69	<2.74	<2.76	<5.20	<5.74	<3.49	<4.69	<3.76	<2.64	<14.30	<4.47

.

Attachment to 0CAN050101 Page 41 of 52

Table 3.2 Sample Type: <u>Surface Water</u> Analysis: Tritium Units: pCi/l

Location	Begin Date	End Date	Н-3
		<u>Required LLD</u> →	<u>2000</u>
Station 8 (Indicator)	12/31/99	03/31/00	763
Station 10 (Control)	01/31/00	03/31/00	<542
Station 8 (Indicator)	03/31/00	06/30/00	961
Station 10 (Control)	04/30/00	06/30/00	330
Station 8 (Indicator)	06/30/00	09/30/00	918
Station 10 (Control)	07/31/00	09/30/00	<542
Station 8 (Indicator)	09/30/00	12/31/00	839
Station 10 (Control)	10/31/00	12/31/00	<549

Attachment to 0CAN050101 Page 42 of 52

Table 4.1 Sample Type: <u>Drinking Water</u> Analysis: Gross Beta, Iodine-131 and Gamma Isotopic Units: pCi/l

Location: 14, City of Russellville (Indicator)

Location	Collection Date	Gross Beta	I-131	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
Require	ed LLD →	<u>4.0</u>	<u>1.0</u>	<u>15</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>30</u>	<u>30</u>	<u>15</u>	<u>15</u>	<u>18</u>	<u>60</u>	<u>15</u>
Station 14 (Indicator)	01/18/00	4.09	<0.80	<3.75	<7.16	<3.30	<2.66	<7.79	<6.87	<3.32	<4.21	<3.58	<14.30	<2.81
Station 57 (Control)	01/18/00	3.77	<0.90	<3.63	<7.21	<3.15	<3.57	<7.68	<5.24	<2.90	<3.15	<4.21	<14.80	<4.21
Station 14 (Indicator)	03/03/00	3.96	<0.82	<2.06	<5.18	<1.96	<2.55	<5.17	<4.85	<2.57	<2.50	<2.59	<11.90	<4.41
Station 57 (Control)	03/03/00	4.13	<0.89	<2.28	<4.17	<2.16	<2.08	<5.23	<4.46	<2.58	<2.56	<2.36	<10.40	<3.32
Station 14 (Indicator)	06/06/00	2.76	<0.89	<1.95	<4.52	<2.19	<1.75	<4.37	<3.73	<2.39	<2.41	<2.36	<8.70	<2.46
Station 57 (Control)	06/06/00	4.03	<0.67	<2.95	<5.85	<2.24	<2.61	<4.75	<4.61	<2.42	<2.64	<2.92	<9.51	<2.78
Station 14 (Indicator)	09/12/00	2.98	<0.86	<2.19	<4.38	<2.08	<2.67	<5.21	<4.17	<3.04	<2.85	<2.62	<11.51	<3.86
Station 57 (Control)	09/12/00	3.38	<0.90	<2.29	<4.90	<2.39	<2.06	<5.95	<4.66	<2.42	<2.42	<2.65	<10.13	<3.89
Station 14 (Indicator)	12/05/00	4.16	<0.79	<0.85	<1.89	<0.85	<0.96	<1.91	<1.52	<0.98	<0.97	<0.91	<3.64	<1.24
Station 57 (Control)	12/05/00	5.73	<0.81	<1.09	<2.25	<1.04	<1.19	<2.35	<1.96	<1.18	<1.18	<1.18	<4.45	<1.64

Attachment to 0CAN050101 Page 43 of 52

Table 4.2 Sample Type: <u>Drinking Water</u> Analysis: Tritium Units: pCi/l

Location	Collection Date	Н-3
	<u>Required LLD</u> →	<u>2000</u>
Station 14 (Indicator)	01/18/00	<544.00
Station 57 (Control)	01/18/00	<539.00
Station 14 (Indicator)	03/03/00	<533.51
Station 57 (Control)	03/03/00	<526.84
Station 14 (Indicator)	06/06/00	<531.82
Station 57 (Control)	06/06/00	<530.45
Station 14 (Indicator)	09/12/00	<538.42
Station 57 (Control)	09/12/00	<530.14
Station 14 (Indicator)	12/05/00	<551.28
Station 57 (Control)	12/05/00	<548.95

Attachment to 0CAN050101 Page 44 of 52

Table 5.1 Sample Type: <u>Sediment</u> Analysis: Gamma Isotopic Units: pCi/kg

Location	Collection Date	Co-60	Cs-134	Cs-137
	<u>Required LLD</u> →	<u>NA</u>	<u>150</u>	<u>180</u>
Station 8 (Indicator)	09/27/00	114	<145.40	703
Station 16 (Control)	09/27/00	NA	<118.00	<82.22

Attachment to 0CAN050101 Page 45 of 52

Table 6.1 Sample Type: <u>Fish</u> Analysis: Gamma Isotopic Units: pCi/kg

Location	Collection Date	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Cs-134	Cs-137
Req	uired LLD →	<u>130</u>	<u>260</u>	<u>130</u>	<u>130</u>	<u>260</u>	<u>130</u>	<u>150</u>
Station 8 (Indicator)	09/19/00	<12.90	<53.94	<19.13	<12.50	<49.64	<13.44	<16.24
Station 16 (Control)	09/21/00	<14.90	<60.20	<21.92	<22.90	<47.63	<19.34	<18.55

Attachment to 0CAN050101 Page 46 of 52

Table 7.1 Sample Type: <u>Food Products</u> Analysis: Iodine-131 and Gamma Isotopic Units: pCi/kg

Location	Collection Date	I-131	Cs-134	Cs-137
	<u>Required LLD</u> →	<u>60</u>	<u>60</u>	<u>80</u>
Station 13 (Indicator)	06/06/00	<57.20	<39.00	<58.10
Station 55 (Control)	06/06/00	<40.40	<50.30	<39.40
Station 13 (Indicator)	07/10/00	<34.30	<33.40	<44.80
Station 55 (Control)	07/10/00	<41.30	<30.40	<33.10
Station 13 (Indicator)	08/08/00	<34.80	<35.60	<30.70
Station 55 (Control)	08/08/00	<23.80	<23.80	<19.00

Attachment to 0CAN050101 Page 47 of 52

Table 8.1Sample Type: Interlaboratory ComparisonAnalysis: Gross Beta, Iodine-131 and Gamma Isotopic

Sample Type (units)	Study	Date	Analysis	Known Value *	RBS Value	RBS N-Dev ^b	RBS N-Range ^c
Air Filter (pCi/filter)	E2375-125	09/21/00	BETA	72.0 ± 17.3	78.7	1.15	0.118
Charcoal Cartridge	E2219-125	06/22/00	I-131	72.0 ± 12.5	75.4	0.82	0.139
(pCi/cartridge)	E2483-125	12/07/00	I-131	63.0 ± 10.9	67.6	1.26	0.272
Water	E2081-125	03/23/00	BETA	112 ± 29.1	80.2	-3.27 ^d	0.042
(pCi/liter)	E2079-125	03/10/00	CR-51	238 ± 20.6	246	1.16	1.390
			MN-54	159 ± 13.8	152	-1.45	0.223
			CO-58	44.0 ± 8.66	43.1	-0.31	0.307
			FE-59	92 ± 8.7	91.1	-0.31	0.284
			CO-60	116 ± 10.0	11 2	-1.29	0.407
			ZN-65	196 ± 33.9	185	-0.97	0.211
			I-131	74.0 ± 12.8	68.0	-1.40	0.231
			CS-134	139 ± 12.0	132	-1.66	0.340
			CS-137	128 ± 11.1	126	-0.45	0.185
			CE-141	427 ± 37.0	425	0.19	0.194
	E2080-125	03/10/00	CR-51	238 ± 20.6	250	1.75	2.085
	(Duplicate)		MN-54	159 ± 13.8	156	-0.58	0.371
			CO-58	44.0 ± 8.66	43.0	-0.36	0.272
			FE-59	92.0 ± 8.66	92.3	0.10	0.815
			CO-60	116 ± 10.0	111	-1.49	0.509
			ZN-65	196 ± 33.9	182	-1.21	0.271
			I-131	74.0 ± 12.8	67.0	-1.63	0.327
			CS-134	139 ± 12.0	134	-1.25	0.680
			CS- 137	128 ± 11.1	128	0.09	0.369
			CE-141	427 ± 37.0	423	-0.35	1.079

Attachment to 0CAN050101 Page 48 of 52

Table 8.1

Sample Type: <u>Interlaboratory Comparison</u> Analysis: Tritium and Gamma Isotopic

Sample Type (units)	Study	Date	Analysis	Known Value *	RBS Value	RBS N-Dev ^b	RBS N-Range [°]
Water	E2220-125	06/22/00	H-3	11400 ± 1975	10683	-1.09	0.070
(pCi/liter)	E2373-125	09/21/00	CR-51	230 ± 23.9	209	-2.68	0.514
			MN-54	89.0 ± 8.66	90.0	0.23	1.122
	-		CO-58	60.0 ± 8.66	67.0	2.41	0.378
			FE-59	54.0 ± 8.66	57.0	0.88	1.134
			CO-60	246 ± 21.3	229	-2.35	0.480
			ZN-65	134 ± 23.2	128	-0.82	0.573
			I-131	75 ± 13.0	72	-0.59	0.197
			CS-134	128 ± 22.2	109	-2.57	0.508
			CS-137	218 ± 18.9	219	0.21	0.054
			CE-141	191 ± 16.54	175	-2.96	0.495
	E2374-125	9/21/00	CR-51	230 ± 23.9	211	-2.34	1.284
	(Duplicate)		MN-54	89 .0 ± 8.66	94	1.59	1.689
			CO-58	60.0 ± 8.66	62	0.54	1.040
			FE-59	54.0 ± 8.66	63	3.04 ^d	0.484
			CO-60	246 ± 21.3	228	-2.49	0.240
			ZN-65	134 ± 23.2	131	-0.39	0.529
			I-131	75 ± 13.0	74	-0.15	0.480
			CS-134	128 ± 22.2	114	-1.94	0.461
			CS-137	218 ± 18.9	215	-0.53	0.271
			CE-141	191 ± 16.54	179	-2.12	0.557

Attachment to 0CAN050101 Page 49 of 52

Table 8.1 Sample Type: Interlaboratory Comparison Analysis: Gamma Isotopic

Sample Type (units)	Study	Date	Analysis	Known Value *	RBS Value	RBS N-Dev ^b	RBS N-Range [°]
Sediment	E2484-125	12/07/00	CR-51	0.917 ± 0.079	0.959	1.58	1.278
(pCi/gram)			MN-54	0.278 ± 0.034	0.307	2.59	0.613
			CO-58	0.139 ± 0.012	0.137	-0.49	1.071
			FE-59	0.149 ± 0.018	0.132	-2.82	1.353
			CO-60	0.336 ± 0.029	0.335	-0.06	0.475
			ZN-65	0.269 ± 0.047	0.293	1.57	0.077
			CS-134	0.155 ± 0.013	0.161	1.29	0.122
			CS-137	0.490 ± 0.042	0.508	1.30	0.338
			CE-141	0.649 ± 0.056	0.670	1.14	0.120

NOTES:

- (a) The "known" values are listed with a range reflecting control (3 sigma) limits.
- (b) The normalized deviation from the "known" value is computed from the deviation and the standard error of the mean; ±2.000 is the warning limit and ±3.000 is the control limit. This is a measure of accuracy of the analytical methods.
- (c) The normalized range is computed from the mean range, the control limit, and the standard error of the range; +2.000 is the warning limit and +3.000 is the control limit. This is a measure of precision of the analytical methods.
- (d) The results reported were out of the control limits.

Interlaboratory Comparison Program Exceptions

There were two results outside the control limits (3 sigma) for accuracy in the 2000 cross check program. One result was related to a gamma isotopic analysis of a water sample and the other related to a gross beta analysis of a water sample.

The nuclide, Fe-59, was bias high in a gamma isotopic analysis, with a normalized deviation of 3.04, with control limits of \pm 3.00. This result is considered conservative. Other Fe-59 analyses during the year were all within acceptable limits.

The gross beta result was bias low with a normalized deviation of -3.27, with control limits of ± 3.00 . Gross beta results have shown a downward trend in past analyses. A system efficiency calibration was performed with the water standard on the alpha-beta counter as corrective action.

There is no impact accessed on previously reported data due to these results. Environmental samples are analyzed and reported with a ninety-five percent confidence level that the analytical result with its associated error encompasses the "true" value. Ninety-six percent of RBS environmental crosscheck results were within control limits for accuracy and precision during 2000. Attachment to 0CAN050101 Page 51 of 52

ATTACHMENT 2

Sediment Dose Calculations

Attachment to 0CAN050101 Page 52 of 52

Sediment Dose Calculations

Dose calculation for the discharge sediment was performed using generalized equation found in Regulatory Guide 1.109, Appendix A as follows:

 $\mathbf{R} = (40) \times (\mathbf{C}) \times (\mathbf{U}) \times (\mathbf{D}) \times (\mathbf{W})$

- **R** = Annual dose to skin or total body in mrem/year;
- 40 = Area-mass conversion factor given in Appendix A of Regulatory Guide 1.109 in Kg/m²;
- C = 2000 maximum radionuclide concentration in pCi/kg;
- U = Maximum exposure time given in Table E-5 of Regulatory Guide 1.109 (67 hours for teenager);
- \mathbf{D} = External dose conversion factor for standing on contaminated ground given in Table E-6 of Regulatory Guide 1.109 in mrem/hr per pCi/m², and
- W = Shore-width factor (0.1) given in Table A-2 of Regulatory Guide 1.109.

Radionuclide	2000 Maximum Concentration	Conversion Factor For Skin	Total Skin Dose	Conversion Factor For Total Body	Total Body Dose
Co-60	114.0	2.00 E-08	6.11 E-04	1.70 E-08	5.19 E-04
Cs-137	703.0	4.90 E-09	9.23 E-04	4.20 E-09	7.91 E-04
	TOTAL		1.53 E-03		1.31 E-03

(Dose from Sediment in Millirem/Year)