MOL.20000908.0038

QA: QA

Civilian Radioactive Waste Management System
Management & Operating Contractor
GVP SOFTWARE ROUTINE REPORT
STN: 10341-1.02-00
SDN: 10341-SRR-1.02-00

August 2000

Prepared for:

U.S. Department of Energy
Yucca Mountain Site Characterization Office
P.O. Box 30307
North Las Vegas, Nevada 89036-0307

Prepared by-

TRW Environmental Safety Systems, Inc.
1261 Town Center Drive
Las Vegas, Nevada 89144-6352

Under Contract Number
DE-AC08-91RW(0134

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product. process, or service by trade namc.
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement.
recommendation, or favoring by the United States Government or any agency thereof or its contractors or
subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

10341-SRR-1.02-00 August 2000

Civilian Radioactive Waste Management System
Management & Operating Contractor

GVP SOFTWARE ROUTINE REPORT

STN: 10341-1.02-00
SDN: 10341-SRR-1.02-00

August 2000

Prepared by:

oot byt 24,10
E Bullard e '

Pcrtormance Assessment Department

d by:

. ~
o S, Ay 2 70
Darren M. Jolley | < Date ‘7

Performance Assessment Department

Approved by:

ql‘«ﬁ/w\ MWon_ W 2000
Kevin G. Mon Da
Performance Assessment Department

CONTENTS

Page
1. SOFTWARE ROUTINE IDENTIFICATION ... 1
2. DESCRIPTION AND TESTINGcoviiiiiiiiiiiici et 1
2.1 DESCRIPTION OF SOFTWARE ROUTINE AND THE EXECUTION
ENVIRONMENT Lottt s 1
2.2 DFSCRIPTION OF THE ALGORITHM........oiiiiii e 3
2.1 Theoretical Background.........ccoooeciviiiiiiiiii e 3
2.2.2 IMIPLEMENIAtION ...t 4
23 DESCRIPTION OF TEST CASE....ooiioi it 5
24 DESCRIPTION OF TEST RESULTS ..o 6
2.5 RANGE OF INPUT PARAMETER VALUES OVER WHICH RESULTS WERE
VERIFIED ..ottt e 7
2.6 IDENTIFICATION OF LIMITATIONS ON SOFTWARE ROUTINE OR
VALIDITY oottt et 7
3. SUPPORTING INFORMATION ...cootiitiiitiiictiiie e 7
5.1 DIRECTORY LISTING OF EXECUTABLES AND DATA FILES ..., 7
3.2 COMPUTER LISTING OF SOURCE CODE ... 7
33 MATHCAD CALCULATIONoori e 11
3.4 COMPUTER LISTING OF TEST DATA INPUT AND OUTPUT ... 12
4. REFERENCES .. . e s 13

10341-SRR-1.02-00 v August 2000

FIGURES

Page

Figure 1. Method calling structure for DLL ... 2

Figure 2. Flowchart of GVP ALZODIUM ..o e 4
TABLES

Page

Table 1. Test Casel (lincar interpolation) COMPariSOncc.cociviiiiiiiiiiie e 6

Table 2. Test Case 2 (semi-log interpolation) COmMPariSOncoceeionioiiiiiiiniiinenen 6

10341-SRR-1.02-00 v August 2000

1. SOFTWARE ROUTINE IDENTIFICATION

Name and Version Number: GVP (Gaussian Variance Partitioning), version 1.02

This routine was developed using Microsoft Developer Studio 97 with Visual Fortran 5.0,
Standard Edition.

SRR Document Identification Number: 10341-SRR-1.02-00

SRR Media Number (it applicable): 10341-PC-1.02-00
2. DESCRIPTION AND TESTING

GVP is a routine that decomposes a cumulative distribution function (CDF) containing both
uncertainty and variability and produces a distribution that characterizes variability. This
provides for a better conceptual understanding of model sensitivity to the elements of uncertainty
and variability. The outputs of GVP are:

e Atext file containing a CDF table for the variability distribution, and
e An output argument which contains the median of the variability distribution.

2.1 DESCRIPTION OF SOFTWARE ROUTINE AND THE EXECUTION
ENVIRONMENT

The GVP source code is a Fortran program 265 lines in length. It conforms to the Fortran 90
standard and is thus highly portable. The subroutine GVP was developed and tested in the
Windows NT 4.0 operating system, and has been compiled with Visual Fortran 5.0. Standard
Edition for Microsoft Windows 32 bit operating system environments. GVP compiled as a
dynamic link library (GVP.DLL) may be coupled with GoldSim (Golder Associates 2000)
though it’s external element mechanism. Inserting data elements in the GoldSim cnvironment
allows input parameters to be specified. GVP directly links to and runs within GoldSim for
modeling waste package failures. The outputs are used by GoldSim to generate distributions for
waste package failures and conscquent dose.

The CDF table file formats consists of a first line containing the number of rows in the CDF
lookup table with the following lines containing two columns of numbers. The first column of
numbers is the distribution values in increasing order. The second column contains the
cumulative probability valucs.

Compilation of GVP requires two Fortran modules to be present from the WAPDLG library
(CRWMS M&O 1999). These are modDefaultSize and modStandardNormal.

GVP computes the variability distribution by calculation of normal scores. The inputs are read as
part of the argument list ot GVP, as the elements of array in(*):

in(1) = The fraction of the variance belonging to uncertainty.

10341-SRR-1.02-00 I August 2000

in(2) = The fractile value of the uncertainty distribution to place the median value of the
variability distribution.

in(3) = Take logarithmic transform (positive value, yes: zero or negative value, no).

in(4) = file index for the input file (combined uncertainty and variability) CDF.

in(5) = filc index for the output file (variability) CDF.

The last two inputs are indices (line numbers) within a reference list file (WD4DLL.WAP) for
filenames used by several External Functions used by GoldSim for waste package simulation.

The output consists of the variability CDF written to the files indexed in(5), and the median of
the variability distribution (written to out(1)).

The GVP DLL follows a project-coding standard that requires ‘all DLL's to accept as input a
method variable that controls the operation of the program (see Figure 1). If a DLL is called with
the following values of method, the following will occur:

method =0 Initialize (GVP requires no initialization, thus nothing happens).

method = 1 Calculate (for GVP. compute the variability CDF).

method =2 Report the version number as out(1).

method =3 Report the number of input and output arguments as out(l) and out(2).
respectively (for GVP, this should yield the values S and 1. respectively).

method =99 Clean up, close any open files.

Intialize

ae

Figure 1. Method calling structure for DLL

[0341-SRR-1.02-00 2 August 2(XX)

2.2 DESCRIPTION OF THE ALGORITHM
2.2.1 Theoretical Background

Gaussian variance partitioning starts with a distribution that involves both uncertainty and
variability and then works backward to obtain two separate distributions, one that characterizes
variability and another that characterizes uncertainty. This is accomplished by assuming that
uncertainty and variability are independent. If the mixed distribution is normally distributed. i.e.

N (. crfl +0) . then it can be represented as a random variable y having the form
y=m+v

. . . . b .
where m is a normal random variable with mean u and variance o, and vis a normal random

variable with mean zero and variance o . Thus, yis a random variable distributed around the

mean 4« with a total variance given by the sum of the variances due to uncertainty and
variability. If uncertainty is defined as the uncertainty in the mean value and variability as the
variance about that mean, then y can be alternatively parameterized as

¥~ N(m.g]). where m~ N(u.o,)

The uncertain mean is represented by the random variable, m . which is normally distributed
with mean. z and variance. ;. The random variable, y. is then the convolution of the

distributions of the random variable given by m and a random variable. v. which can be
represented by the addition of two normal random variables as given above where

m~ N(p,afl)and v~ N(0.07)

Thus, given the distributions tor m and v, a variability distribution is realized by sampling a
value from the parameter uncertainty distribution and adding it to the mean zero variability
distribution.

This partitioning method can be extended to non-normal distributions by means of a score
transform (Deutsch and Journel 1992, p.138) mapping the percentiles of the non-normal CDF to
those of the standard normal by a lookup table. The normal score transforms works best if the
non-normal CDF is as symmetric as possible. This may sometimes be accomplished by using the
natural logarithms of CDF values. The natural logarithms of the CDF values are used to perform
the normal score transformation and the transformed distribution is used to partition the total
variance of the transformed distribution between uncertainty and variability. Finally the normal
score transformation is applied in reverse to the resultant distributions to obtain a final
distribution for variability.

The GVP subroutine was developed to effectively create variability distributions from randomlyv
distributed input data consistent with the above approach.

10541-SRR-1.02-00 August 2000

("8

2.2.2 Implementation

The procedure steps in the GVP code are graphically presented in Figure 2.

e

Yes

Figure 2. Flowchart of GVP Algoritm

The steps in the algorithm are outlined below:

1.

9

(V5]

W

The input CDF is read in. Probabilities are stored in a vector called pvals and values arc
stored in a vector called vals.

If in(3) > 0 then natural logarithms are taken of the CDF values (i.e., In(vals)).

If any of the input CDF probabilities, pvals, are less than 1.0E-15 or greater than (1 - 1.0E-
15) then they are copied to the output CDF unmodified.

The standard normal score value that corresponds with gu is given by

U= JU-G"(qu) ’ (Eq. D

where G(x) is the standard normal CDF and & '(x) is the inverse normal CDF.
The vector zv is assigned the standard normal values with mean zv and variance (/-U) that
correspond with the variability distribution i.e.,

av=zu+J1-U -G (pvals) (Eq. 2)

10341-SRR-1.02-00 4 August 2000

6. The variability distribution CDF values are evaluated by linear interpolation of the
probability values given by pvals and distribution values given by vals (or In(vals). see
step 2). The forward normal is taken of each zv value. and the corresponding variability CDF
value is determined through linear interpolation

xv=L{G(zv)). (Eq. 3)

where.

p— pvals,
pvals,,, - pvuls,

L(p) = vals, + (vals,,, —vals,)[1 SJor pvals, < p < pvals,, (LEq. 4)

7. 1fin(3) > 0 then exponentials are taken of the CDF values (i.e.. exp(xv)).

8. Output CDF table of distribution values (xv or exp(xv)) and probabilities (pvals) for the
variability distribution.

2.3 DESCRIPTION OF TEST CASE

The GVP routine performance was verified by running it in GoldSim and comparing its results to
that of the Mathcad calculations. Two test cases were run to validate the routine. The first case
tests the linear interpolation option; the second case tests the semi-log interpolation option.

Running the GVP routine as a DLL.. the following values arc inserted in the input stream:
Test Case 1

in(1)=0.65 (the fraction of the variance belonging to unccrtainty)

in(2) =0.75 (the fractile value for uncertainty representing the median value for variability)
in(3)=-1.0 (do not take logarithmic transforms)

in(4)=1 (file index for the input file CDF)

in(3)=2 (file index for the output file (variability) CDF)

Test Case 2

in(1) =0.65 (the fraction of the variance belonging to uncertainty)

in(2) =0.75 (the fractile value for uncertainty representing the median value for variability)
in(3)=1.0 (take logarithmic transforms)

in(4) =1 (file index for the input file CDF)

in(5)=13 (file index for the output file (variability) CDF)

Commercially available software used to verify the GVP routinc are:

e Mathcad 2000 Professional. This commercially available software was used to perform hand
calculation verification of GVP

e Excel 97 SR-2. This commercially available software was used to compare the outputs from
MathCad and GVP.

The above software programs were executed on a workstation equipped with a Pentium 1l
processor in the Windows NT operating system

10331-SRR-1.02-00 5 August 2000

The Mathcad calculation uses the built-in MathCad functions exp() (exponential). In() (natural
logarithm), the square root function, cnorm() (the standard normal CDF), gnorm() (the inverse
normal CDF), and linterp() (a linear interpolator). The Mathcad calculation listing is included in
Section 3.3.

The test case requires an input text file, WD4DLL.WAP. which is a list of filenames to be read
by GVP. A listing of WD4DLL.WAP is provided in Section 3.4. Lines in the file contain the
names of files used by GVP for the input and output CDFs.

2.4 DESCRIPTION OF TEST RESULTS

The outputs were imported to an Excel worksheet to compare and quantify the differences. The
Excel results for each test case are presented in Tables 1 and 2. These tables present comparisons
between the GVP outputs and MathCad calculation results using the same CDF. Results agree to
the eleven digits produced by GVP. From the tables. it is concluded that the GVP routine is

verified by hand calculation.

Table 1. Test Case1 (linear interpolation) Comparison

GVP version1.02 Mathcad Difference
20.0000000000 20.0000000000 0.0000000000
24.1512337640 24.1512337640 0.0000000000
25.1829752470 25.1829752470 ___0.0000000000
25.9233340590 25.9233340590 0.0000000000
26.5317583340 26.5317583340 0.0000000000
27.0670735600 27.0670735600 0.0000000000
27.5605640820 27.5605640820 0.0000000000
28.0345596840 28.0345596840 0.0000000000
28.5122480440 28.5122480440 0.0000000000
29.0353619260 29.0353619260 0.0000000000
30.0000000000 30.0000000000 0.0000000000

Table 2. Test Case 2 (semi-log interpolation) Comparison

GVP version1.02 Mathcad Difference
20.0000000000 20.0000000000 0.0000000000
24.1486262450 241486262450 | 0.0000000000
25.1800557970 25.1800557970 0.0000000000
75.9219382060 25.9219382060 0.0000000000
26.5270580870 26.5270580870 0.0000000000
27.0659416920 27.0656416920 0.0000000000
27 5560816580 27.5560816580 0.0000000000
28.0339774560 28.0339774560 0.0000000000
28.5078637460 28.5078637460 0.0000000000
29.0347867480 29.0347867480 | 0.0000000000
30.0000000000 30.0000000000 | 0.0000000000

10341-SRR-1.02-00 6 August 2000

2.5 RANGE OF INPUT PARAMETER VALUES OVER WHICH RESULTS WERE
VERIFIED

As the method applied is invariant to transformation o: the distribution values, these results

verify the procedure over all possible ranges (within the limits of numerical precision of the

interpolation step).

2.6 IDENTIFICATION OF LIMITATIONS ON SOFTWARE ROUTINE OR
VALIDITY

GVP will execute properly if the following ranges and types of parameter values are met:

e The fraction of the variance belonging to uncertainty must be a fraction between zcro and

one inclusive.

e The fractile value of the uncertainty distribution to place the median value of the variability

distribution must be a fraction between zero and one inclusive.

o If semi-log interpolation is used, the distribution values of the input CDF must all be

positive.

¢ The input CDF must be properly formatted with distribution and probability values

monotonically increasing.

3. SUPPORTING INFORMATION

3.1 DIRECTORY LISTING OF EXECUTABLES AND DATA FILES

C:rectory of DLLs-SRAS\GVP

Program files:

C4/2€/00 2:0Cp 271,672 gvp.dll
08/22/00 1C:15a 42,099 gvp.gsm

Input files:

08/22/00 10:05a 50 WD4DLL.wap
08/22/00 10:13a 180 WDgvp-in.cdf
Output files:

08/22/00 10:14a 759 WDgvp-outxv.cdf
08/22/60 10:15a 759 WDgvp-outyv.cdf

3.2 COMPUTER LISTING O SOURCE CODE

subroutine gvptmethod, state, in, out)
Subroutine to perfcrm Gaussian Variance Partitioning.

]
! 1. Read combined cdf from an input file, the uncerta:nty
! variance share, and the uncertainty quantile levei.
! 2. Find/print the wvariat:lity cdf.

! ©Note if log transform option is used the user is responsible
! for values being in the proper range for the log funct:on.

)

!'DECS ATTRIBUTES dllexport,c :: gvp

!DECS ATTRIBUTES ALIAS : "GVP" :: GVP

!DECS ATTRIBUTES value :: method
*DECS ATTRIBUTES referernce 11 state
*DECS ATTRIBUTES referer-e trin
'DECS ATTRIBUTES refererce 1 out
USE ModDefaul<sice
USE ModStandardNorra.
IMPLICIT HNONE
integer {IKind. :: meth:~d ! tells gvp what to dc
integer{Ikirs, :: s aue ! returns, O = OK, -1 - ¥YaTAL

10341-SRR-1.02-00 7 August 2000

real {(RKind:
real (RKind:
real {RKirdi,
integer{IKind:?
integer (IKird!
integer (IKird)
integer (IKird)
integer (IKirdi
integer{IKinrdi
integer{IKind:
integer{Ikind:
real {RKind}
character (LEX

inite ! input arguments
1rooutTit) ' output arguments
PARAMETER :: VERSION = 1.02
PARAMETER :: NUMIN = 5, NUMOUT = i
PASAMETER :: INITIALIZE = O
PARAMETER :: CALCULATE = 1
PARAMETER :: VERSN = 2
PARAMETER :: ARGMNTS = 3
PARAMETER :: CLEANUP = 99
~dfunit, filunit, errunit
i, n, nl, n2, idxinp, idxout
:: 2, qu, lntrns, V, zu, medv, epsilon
. :: f1lefile, inputcdf, outputcd:, linel

real (RKind), ALLOCATABLE, DIMENSION(:) :: vals

real {RKind), ALL.IATABLE, DIMENSION(:)
real {RKind), AL
real {RKindy, ALLS

logical {LKird)
static errmsg
characrer(LEY
integer (IKird:
reai (RKind)

equ:valerce
()

:: pvals
TABLE, DIMENSION(:) :: 2v
CATABLE, DIMENSION({:) ::

v

1N
s'rloc
5

|w0.'0’v.00'vq'toc-~-nvonov.~o.0.00"'D"".""O'C"!otiQOQQ""Qt.'.'

istrloc = locieromsa:

state = 0

select case .me*hod:
case (INITIALIZE t Initialize

continue
case (VYZIRSN;

out({i) = VER:

case (ARGINT
out (1)
out (2) =

case (CLEANCFE:

clese(uniz =
close{uni: =

! Report code versior
! Report numker of arguments
! Cleanup

frianit:
cdtan

close(uniz = er:run:it:

case defaul:
errmsg =

' Error trap for unknown method
-;asned, unkrown method’'C

out(l) = rszzlo:

state = -

errunit = rextiresanit(]
open{uniz = er:run:t, file = ‘gvperror.log’l

write(errun.t

close(un.t

case [(CALCULATEZ

U = inil)
qu = in{

'
eryurie:

+v 'yvp crashed method = ‘,method

' Perform calculations

intrns = in: 3.

wdxiap = in:

1dxout = i1 5

' Read 1/0 CDF-File rares frcm master list file

filunit = nex:

reeunit ()

filefile = "WCSILL.WAP®

inquire(file
if {.not. OF

= f.iefile, exist = OK)
s hen

errmsg = ‘'gvp: f:le list not found'C

r

esTtroaunit ()

out{l}) = rsir.cw
state = -]
errunit =
open(uniz

erzunit, file = 'gvperror.log'}

writelerzuniz,* °‘Cannot find file list, ',filefile

closeiuni:

return
end if
open{uniz =

10341-SRR-1.02-00

crranit}

Larit, file = filefile, exx = 173G

August 2000

n = max.idxirp, idxout!
doi=21,n
read{filuniz,*, err = 1750) linel
if (i .eg. idzxinp) 1nputcdf = linel
if (i .eq. idxout) outputcdf = linel
end do
closei{unit = filun:it, err = 1750)

! Open Input CDF-File and read contents

inquireifile = inputcdf, exist = OK)
if {.not. OK) then
errmsg = 'gvp: input odf file not found'C
out(l) = rstrloc
staze = -1
errunit = nextfreeunit{}
open{unit = errunit, file = ‘'gvperror.log')
wrzte(errunit,”) ‘'input cdf file not found'
closetunit = errunit:
return
end if
cdfunit = nextfreeunici)
openi{unit = cdfunit, file = inputcdf, err = 1750}
readicéfunit, *, err = 17501 n
ALLOCATZ (vals(n))
ARLLOCATE (pvals(n})
ALLOCATE tzv{n}:
ALLOCATZ txv(nl)
doi=1,n
read(cdfuniz,*, err = 1750: vals(i), pvals(1i)
end dc
closeiunit = cdfumit, err = 1750)

't Perform Calculations
! If log transformed (lntrns! ther take logs

if {lrtzrs .gt. 0.0} then
doe » =1, n
valst(ii = logivalsii)?}
end do
endif

Check for limi:s of norma! functions, remove p-values
beycrd eight standard dewviations

nl =1

n2 = n

epsilon = 1.0D-15

do while (pvals(rl) .le. epsilon)

xvinl) = valsinl)
nl = ni + 1
end do

do while (pvalsinl} .ge. (1.0 - epsilon})
®xv(n2) = valsin2:
nZ = n2-1

end do

! calculate normal values for variability and map back
' to distribution

v =1-0
zu = sqrt(U) ~InvNoriqu)
medv = linterplin,pvals,vals, FwdNorm(zu))
do i = ni, ng
zv(i) = zu + sgrtiV)-InvNor(pvals{i})
xv{i) = linzerplin,pvals,vals, FwdNorm(zv{1+::
end do

t If log transfornme3d thern tare antilogs

if (lrrrns .qt. 2.)° then

10341-SRR-1.02-00 . 9

August 2000

I AP TR IO T AP rasvttotrsntsetotsatinttosrtodisacotrrrostvrovsrrdearnresdvoriry

medv = expimedv!
doa1=1,n
xv{(i) = expixvil})
erd do
end1f

Cutput results and clean up

out(l) = medv

cdfunit = rextfreeunit()

open(unit = cdfunit, file = outputcdf, err =
writeicdfurit,*, erzr = 1750) n

doi=1,n

writeicdfun.t, 3332, err = 1750) xvi:i}, pvals(i)

3332 formaz{ly, loel7.10,2x,e22.15)
end do
writeicdfuniz,”, err = 1750)
wri-e(cdfuniz, 3330, err = 1750} VERSION
write{cdfunit, 3331, err = 1750} U, qu
write(cdfunit, 3338, err = 1750) (i, ir'i:, i
write(cdfunit,*, err = 1750)
3330 formazi''! Output from gvp version ', fd.2)
3331 format{''! Sampled random variables U =°,f%.5,
3338 format('! argument in(',I2,'} = ', £.2.5}
cicseiunit = cdfunit, err = 1750)
DEALLOCATE (vals, pvals, zv, xv)
end select
resurn
175C continue ! I/0 errcr exit
errmsg = ‘'gvp crashed, unknown I/0 erzor'c
cuzi!l) = rstrloc
state = -1
errurit = nextfreeunit()
open(unit = errunit, file = °‘gvperror.icg’!

writelerrurit,*) 'gvp crashed, unkrown 1/ error'

clocselunit * errunit)
returr:
CCOKTAINS ¢ linterpl, nextfreeunit

real (RKind) FUNCTICN linterplin, x, y, xval:

linear interpola:ion routine from a lookup tabkie.

Inguz : n, ¥, ¥y, xval
Output: {function wvalue}
Local : i, ii

Arguments
integer (iKind: :: n
real (RXind) proxUY), y(*), xval

Local variable
integer !IKind) :: :, ii

if {xval .le. x:1'} then
linterpl = y:ij

else if (xval .ge. x(n)) then
lintergl = yir)

else
ii = 2
do while ixval .qt. x(ii})

ii = i1}

end do
1= 3i-1

KUMIN)

‘equ =',£9.5)

linterpgl = .1 o (yiiil)-y(i))*(xval - =21 Toi1i)-xi1))

end if
RETURM
END FUXCTITN |:ure:pl

10341-SRR-1.02-00 10

August 2000

1
-.--.'-.q--.o-'~~.o.....q.-o-'co~a~-~a'.¢-"'oqu-o ------- carersertoety
[}

integer :IKind) FUNCTION nextfreeunit()

Fird the sma.lest unit rumber not currently attached and in use.
Avoid units S and 6.

Input : (none)

ouzput: (function value)

Local : i, IrlUse

Lccal variables

integer (IXind: :: i
logical InUse

InUse = .true.
i=2C
do while {InUse)
i=1i-1
ifii .ne. 3> .and. i .ne. 6) then
inquire!{i, opened = InUse)
end if
erd do
nextfreeuni: = i
RETYRR
IND FUNCTICLE nextfreeunit
)
!Q..'..Q'QQ'..".VQ."."".'""""Q."."."" ------- seontveptratreti
H
END subroutine gvp
3.3 MATHCAD CALCULATION
GVP Mathcad Calculation N:=10 i:=0.N
. i .
Input: Y2065 qu:=075 Fimgy N 204

qnorm is modified to except the probability zero and
one end points Note that these end points are

— if xs 11077 treated differently for the Mathcad calculation than in
the program (See algorithm description, step 3).

gnorml(x) := J= if x2 1~ 107"

qnorm{x,0, 1) otherwise

Variablity Median Values (outia and out2a are linear and semi-log interpolation respectively)

27.0670735599
27.065941692

outla = linterp(F.x.cnonn(\/ﬁqnorml(qu))) outla
outlb := exp(limerp(F. In(x) .cnonn(\fl_J-qnorml(qu)))) outlb

Variability Distributions (xv and yv are linear and semi-log interpolation respectively)

XV = lintcrp(F.x.cnonn(\/ﬁ-qnorml(qu) +y1- U-qnorml(l-',)))

yv; = exp(limerp(F.In(x).cnom\(\fl-l-qnonnl(qu) + \II - L’-qnurml(F,))))

10341-SRR-1.02-00 11

August 2000

(20) (0 20) 20)
21 0.1 24.151233764 24148626245
2 0.2 25.182975247 25.180055797
23 0.3 25.923334059 25.921938206
24 0.4 26.531758334 26.527058087
x=|25 F=|05 xv=| 27.06707356 =| 27.065941692
26 0.6 27.560564082 27556081658
27 0.7 28.034559684 28.033977456
28 0.8 28.512248044 28.507863746
29 0.9 29.035361926 29.034786748
\ 30 \ 1) 30) . 30

3.4 COMPUTER LISTING OF TEST DATAAINPUT AND OUTPUT
Input master file (WD4DLL.wap).

“hgvp-in.cdf
sp=outxv,.cdf
vo-outyw.cds

Input CDF for test cases (file: WDgvp-in.cdf).

Zo.0 0.3
PORV] 0.1
2.0 G.2
23 c.3
24.C c.4
23.2 3.5
RPN J.&
P Q0.7
28.0 0.8
260 0.9
RN 1.0

GVP output CDF for the first (linear interpolation) test case (file: WDgvp-outxv.cdf).

11
2.9G23000000E401 0.0000000000GJ0CI=+00
2.4151233764E+01 1.€006000300C30CIE-01
2.CL3Z975247E401 2.000000C000320C9E-012
2.59323334059E+C1 3.0006000000CJ00J0E-01
2.F53.758334E+01 4.000000000000C90CE-01
Z.7027073360E4901 5.00200000C00C30CE-OL
2.7%€0564082E+01 6.00000000000C9200£-01
S.31734559634E+01 7.0000000630030CJ=-01
2.8%.2248044E+01 B.0000000000C00CIE-01
2.2035361926E+01 9.000000000000039E-01
3.£3J0C0J00000E+01 1.000000000CGI0CI0E+00D

'olutput from gvp version 1.02

! Sarp.ed random variables U = 0.650CJ,qu = 0.75000
' argurent an{ 1) = 0.65000
' argument in(2} = 0.75000
! eryument in{ 3) = -1.00000
Y arzarent in{ 4) = 1.0000¢C
Doargumernt ind 9) = 2.200C2

GVP output CDF for the second (semi-log interpolation) test case (file: WDgvp-outyv.cdf).

10341-SRR-1.02-00 12 August 2000

LSC21CIELDSEHCL
L2S2TT3E037E40L
; 11€32E+0L
L7936231538E401
1% T7459E401
LESOTACITASEHCL
L2233 RLTIREHCGL
SO IMITQACE+CY

-
“
~
-
-
-
-
N
~
-
-~
-

ind I
ini 23
in: 3
int 4
ir, $)

wonowowo

DO NS WO

.C0000000000000GE+00
.C00C00300000000E-02
.0000002000000005-01
.000000300J00090CE-01
.00090030030000CE-02
.000000300300J00E-0-
.00000030000CJ00E~OL
.00020030C000000E-0
.00000020CJ00000E-02
.00030030CJ0CO0CE-01
.00030020C00CO0CE+CD

cLom gup version L.C2
w:i random variables U = 0.650C0,qu

o

>. 65000
.750C0
.0C0C2
.000C2
.0C000

W= =0

4. REFERENCES

= 0.75000

CRWMS M&O 1999. Testing of Software Routine to Determine Deviate and Cumulative
Probabilitv: ModStandardNormal Version 1.0. CAL-EBS-MD-000004 REV 00. Las Vegas.

Nevada: CRWMS M&O. ACC: MOL.19991018.0213.

Deutsch. C.V. and Journel. A.G. 1992. GSLIB Geostatistical Software Library and User’s Guide.

New York. New York: Oxford University Press. TIC: 224174,

Golder Associates 2000. User's Guide, GoldSim, Graphical Simulation Environment. Version
6.02. Manual Draft #4 (March 17, 2000). Redmond, Washington: Systems Simulation Group
Golder Associates Inc. TIC: 247347.

10341-SRR-1.02-00

13

August 2000

