XI.E1 ELECTRICAL CABLES AND CONNECTIONS NOT SUBJECT TO 10 CFR 50.49 ENVIRONMENTAL QUALIFICATION REQUIREMENTS

Program Description

In most areas within a nuclear power plant, the actual ambient environments (e.g., temperature, radiation, or moisture) are less severe than the plant design environment. However, in a limited number of localized areas, the actual environments may be more severe than the plant design environment for those areas. Conductor insulation materials used in cables and connections may degrade more rapidly than expected in these adverse localized environments. An adverse localized environment is a condition in a limited plant area that is significantly more severe than the specified service environment for the cable. An adverse variation in environment is significant if it could appreciably increase the rate of aging of a component or have an immediate adverse effect on operability.

The purpose of the aging management program described herein is to provide reasonable assurance that the intended functions of electrical cables and connections that are not subject to the environmental qualification requirements of 10 CFR 50.49 and are exposed to adverse localized environments caused by heat, radiation, or moisture will be maintained consistent with the current licensing basis through the period of extended operation. This program considers the technical information and guidance provided in NUREG/CR-5643, IEEE Std. P1205, SAND96-0344, and EPRI TR-109619.

The program described herein is written specifically to address cables and connections at plants whose configuration is such that most (if not all) cables and connections installed in adverse localized environments are accessible. This program, as described, can be thought of as a sampling program. Selected cables and connections from accessible areas (the inspection sample) are inspected and represent, with reasonable assurance, all cables and connections in the adverse localized environments. If an unacceptable condition or situation is identified for a cable or connection in the inspection sample, a determination is made as to whether the same condition or situation is applicable to other accessible or inaccessible cables or connections. As such, this program does not apply to plants in which most cables are inaccessible.

As stated in NUREG/CR-5643, "The major concern with cables is the performance of aged cable when it is exposed to accident conditions." The statement of considerations for the final license renewal rule (60 Fed. Reg. 22477) states, "The major concern is that failures of deteriorated cable systems (cables, connections, and penetrations) might be induced during accident conditions." Since they are not subject to the environmental qualification requirements of 10 CFR 50.49, the electrical cables and connections covered by this aging management program are either not exposed to harsh accident conditions or are not required to remain functional during or following an accident to which they are exposed.

Evaluation and Technical Basis

- 1. **Scope of Program:** This inspection program applies to accessible electrical cables and connections within the scope of license renewal that are installed in adverse localized environments caused by heat or radiation in the presence of oxygen.
- 2. *Preventive Actions:* This is an inspection program and no actions are taken as part of this program to prevent or mitigate aging degradation.

- 3. **Parameters Monitored/Inspected:** A representative sample of accessible electrical cables and connections installed in adverse localized environments are visually inspected for cable and connection jacket surface anomalies, such as embrittlement, discoloration, cracking, or surface contamination. The technical basis for the sample selected is to be provided.
- 4. Detection of Aging Effects: Conductor insulation aging degradation from heat, radiation, or moisture in the presence of oxygen causes cable and connection jacket surface anomalies. Accessible electrical cables and connections installed in adverse localized environments are visually inspected at least once every 10 years. This is an adequate period to preclude failures of the conductor insulation since experience has shown that aging degradation is a slow process. A 10-year inspection frequency will provide two data points during a 20-year period, which can be used to characterize the degradation rate. The first inspection for license renewal is to be completed before the period of extended operation.
- **5.** *Monitoring and Trending:* Trending actions are not included as part of this program because the ability to trend inspection results is limited. Although not a requirement, trending would provide additional information on the rate of degradation.
- 6. Acceptance Criteria: The accessible cables and connections are to be free from unacceptable, visual indications of surface anomalies, which suggest that conductor insulation or connection degradation exists. An unacceptable indication is defined as a noted condition or situation that, if left unmanaged, could lead to a loss of the intended function.
- 7. Corrective Actions: All unacceptable visual indications of cable and connection jacket surface anomalies are subject to an engineering evaluation. Such an evaluation is to consider the age and operating environment of the component, as well as the severity of the anomaly and whether such an anomaly has previously been correlated to degradation of conductor insulation or connections. Corrective actions may include, but are not limited to, testing, shielding or otherwise changing the environment, or relocation or replacement of the affected cable or connection. When an unacceptable condition or situation is identified, a determination is made as to whether the same condition or situation is applicable to other accessible or inaccessible cables or connections. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address corrective actions.
- 8. Confirmation Process: As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the confirmation process.
- **9.** *Administrative Controls:* As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address administrative controls.
- **10.** *Operating Experience:* Operating experience has shown that adverse localized environments caused by heat or radiation for electrical cables and connections may exist next to or above (within three feet of) steam generators, pressurizers or hot process pipes, such as feedwater lines. These adverse localized environments have been found to cause degradation of the insulating materials on electrical cables and connections that is visually observable, such as color changes or surface cracking. These visual indications can be used as indicators of degradation.

References

- EPRI TR-109619, *Guideline for the Management of Adverse Localized Equipment Environments,* Electric Power Research Institute, Palo Alto, CA, June 1999.
- IEEE Std. P1205-2000, IEEE Guide for Assessing, Monitoring and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations.
- NUREG/CR-5643, Insights Gained From Aging Research, U. S. Nuclear Regulatory Commission, March 1992.
- SAND96-0344, Aging Management Guideline for Commercial Nuclear Power Plants Electrical Cable and Terminations, prepared by Sandia National Laboratories for the U.S. Department of Energy, September 1996.

XI.E2 ELECTRICAL CABLES NOT SUBJECT TO 10 CFR 50.49 ENVIRONMENTAL QUALIFICATION REQUIREMENTS USED IN INSTRUMENTATION CIRCUITS

Program Description

In most areas within a nuclear power plant, the actual ambient environments (e.g., temperature, radiation, or moisture) are less severe than the plant design environment. However, in a limited number of localized areas, the actual environments may be more severe than the plant design environment for those areas. Conductor insulation materials used in electrical cables may degrade more rapidly than expected in these adverse localized environments. An adverse localized environment is a condition in a limited plant area that is significantly more severe than the specified service environment for the cable. An adverse variation in environment is significant if it could appreciably increase the rate of aging of a component or have an immediate adverse effect on operability.

Exposure of electrical cables to adverse localized environments caused by heat or radiation can result in reduced insulation resistance (IR). Reduced IR causes an increase in leakage currents between conductors and from individual conductors to ground. A reduction in IR is a concern for circuits with sensitive, low-level signals such as radiation monitoring and nuclear instrumentation since it may contribute to inaccuracies in the instrument loop.

The purpose of the aging management program described herein is to provide reasonable assurance that the intended functions of electrical cables that are not subject to the environmental qualification requirements of 10 CFR 50.49 and are used in circuits with sensitive, low-level signals exposed to adverse localized environments caused by heat, radiation or moisture will be maintained consistent with the current licensing basis through the period of extended operation. This program considers the technical information and guidance provided in NUREG/CR-5643, IEEE Std. P1205, SAND96-0344, and EPRI TR-109619.

In this aging management program, routine calibration tests performed as part of the plant surveillance test program are used to identify the potential existence of aging degradation. When an instrumentation loop is found to be out of calibration during routine surveillance testing, trouble shooting is performed on the loop, including the instrumentation cable.

As stated in NUREG/CR-5643, "The major concern with cables is the performance of aged cable when it is exposed to accident conditions." The statement of considerations for the final license renewal rule (60 Fed. Reg. 22477) states, "The major concern is that failures of deteriorated cable systems (cables, connections, and penetrations) might be induced during accident conditions." Since they are not subject to the environmental qualification requirements of 10 CFR 50.49, the electrical cables covered by this aging management program are either not exposed to harsh accident conditions or are not required to remain functional during or following an accident to which they are exposed.

Evaluation and Technical Basis

- 1. **Scope of Program:** This program applies to electrical cables used in circuits with sensitive, low-level signals such as radiation monitoring and nuclear instrumentation that are within the scope of license renewal.
- 2. *Preventive Actions:* This is a surveillance testing program and no actions are taken as part of this program to prevent or mitigate aging degradation.

- **3.** *Parameters Monitored/Inspected:* The parameters monitored are determined from the plant technical specifications and are specific to the instrumentation loop being calibrated, as documented in the surveillance test procedure.
- 4. Detection of Aging Effects: Calibration provides sufficient indication of the need for corrective actions by monitoring key parameters and providing trending data based on acceptance criteria related to instrumentation loop performance. The normal calibration frequency specified in the plant technical specifications provides reasonable assurance that severe aging degradation will be detected prior to loss of the cable intended function. The first tests for license renewal are to be completed before the period of extended operation.
- 5. *Monitoring and Trending:* Trending actions are not included as part of this program because the ability to trend test results is dependent on the specific type of test chosen. Although not a requirement, test results that are trendable provide additional information on the rate of degradation.
- 6. Acceptance Criteria: Calibration readings are to be within the loop-specific acceptance criteria, as set out in the plant technical specifications surveillance test procedures.
- **7.** *Corrective Actions:* Corrective actions such as recalibration and circuit trouble-shooting are implemented when an instrument loop is found to be out of calibration. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address corrective actions.
- 8. Confirmation Process: As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the confirmation process.
- **9.** Administrative Controls: As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address administrative controls.
- **10.** *Operating Experience:* Operating experience has shown that a significant number of cable failures are identified through routine calibration testing. Changes in instrument calibration can be caused by degradation of the circuit cable and are one indication of potential electrical cable degradation.

References

- EPRI TR-109619, *Guideline for the Management of Adverse Localized Equipment Environments,* Electric Power Research Institute, Palo Alto, CA, June 1999.
- IEEE Std. P1205-2000, IEEE Guide for Assessing, Monitoring and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations.
- NUREG/CR-5643, *Insights Gained From Aging Research*, U. S. Nuclear Regulatory Commission, March 1992.
- SAND96-0344, Aging Management Guideline for Commercial Nuclear Power Plants Electrical Cable and Terminations, prepared by Sandia National Laboratories for the U.S. Department of Energy, September 1996.

XI.E3 INACCESSIBLE MEDIUM-VOLTAGE CABLES NOT SUBJECT TO 10 CFR 50.49 ENVIRONMENTAL QUALIFICATION REQUIREMENTS

Program Description

Most electrical cables in nuclear power plants are located in dry environments. However, some cables may be exposed to condensation and wetting in inaccessible locations, such as conduits, cable trenches, cable troughs, duct banks, underground vaults or direct buried installations. When an energized medium-voltage cable is exposed to wet conditions for which it is not designed, water treeing or a decrease in the dielectric strength of the conductor insulation can occur. This can potentially lead to electrical failure.

The purpose of the aging management program described herein is to provide reasonable assurance that the intended functions of inaccessible medium-voltage cables that are not subject to the environmental qualification requirements of 10 CFR 50.49 and are exposed to adverse localized environments caused by moisture while energized will be maintained consistent with the current licensing basis through the period of extended operation. An adverse localized environment is a condition in a limited plant area that is significantly more severe than the specified service environment for the cable. An adverse variation in environment is significant if it could appreciably increase the rate of aging of a component or have an immediate adverse effect on operability. This program considers the technical information and guidance provided in NUREG/CR-5643, IEEE Std. P1205, SAND96-0344, and EPRI TR-109619.

In this aging management program periodic actions are taken to prevent cables from being exposed to significant moisture, such as inspecting for water collection in cable manholes and conduit, and draining water, as needed. In-scope, medium-voltage cables exposed to significant moisture and significant voltage are tested to provide an indication of the condition of the conductor insulation. The specific type of test performed will be determined prior to the initial test, and is to be a proven test for detecting deterioration of the insulation system due to wetting, such as power factor, partial discharge, or polarization index, as described in EPRI TR-103834-P1-2, or other testing that is state-of-the-art at the time the test is performed.

As stated in NUREG/CR-5643, "The major concern with cables is the performance of aged cable when it is exposed to accident conditions." The statement of considerations for the final license renewal rule (60 Fed. Reg. 22477) states, "The major concern is that failures of deteriorated cable systems (cables, connections, and penetrations) might be induced during accident conditions." Since they are not subject to the environmental qualification requirements of 10 CFR 50.49, the electrical cables covered by this aging management program are either not exposed to harsh accident conditions or are not required to remain functional during or following an accident to which they are exposed.

Evaluation and Technical Basis

Scope of Program: This program applies to inaccessible (e.g., in conduit or direct buried) medium-voltage cables within the scope of license renewal that are exposed to significant moisture simultaneously with significant voltage. Significant moisture is defined as periodic exposures to moisture that last more than a few days (e.g., cable in standing water). Periodic exposures to moisture that last less than a few days (i.e., normal rain and drain) are not significant. Significant voltage exposure is defined as being subjected to system voltage for more than twenty-five percent of the time. The moisture and voltage exposures

described as significant in these definitions, which are based on operating experience and engineering judgement, are not significant for medium-voltage cables that are designed for these conditions (e.g., continuous wetting and continuous energization is not significant for submarine cables).

- 2. *Preventive Actions:* Periodic actions are taken to prevent cables from being exposed to significant moisture, such as inspecting for water collection in cable manholes and conduit, and draining water, as needed. Medium-voltage cables for which such actions are taken are not required to be tested since operating experience indicates that prolonged exposure to moisture and voltage are required to induce this aging mechanism.
- 3. Parameters Monitored/Inspected: In-scope, medium-voltage cables exposed to significant moisture and significant voltage are tested to provide an indication of the conductor insulation. The specific type of test performed will be determined prior to the initial test, and is to be a proven test for detecting deterioration of the insulation system due to wetting, such as power factor, partial discharge, or polarization index, as described in EPRI TR-103834-P1-2, or other testing that is state-of-the-art at the time the test is performed.
- 4. Detection of Aging Effects: In-scope, medium-voltage cables exposed to significant moisture and significant voltage are tested at least once every 10 years. This is an adequate period to preclude failures of the conductor insulation since experience has shown that aging degradation is a slow process. A 10-year inspection frequency will provide two data points during a 20-year period, which can be used to characterize the degradation rate. The first tests for license renewal are to be completed before the period of extended operation.
- **5.** *Monitoring and Trending:* Trending actions are not included as part of this program because the ability to trend test results is dependent on the specific type of test chosen. Although not a requirement, test results that are trendable provide additional information on the rate of degradation.
- 6. Acceptance Criteria: The acceptance criteria for each test is defined by the specific type of test performed and the specific cable tested.
- 7. Corrective Actions: An engineering evaluation is performed when the test acceptance criteria are not met in order to ensure that the intended functions of the electrical cables can be maintained consistent with the current licensing basis. Such an evaluation is to consider the significance of the test results, the operability of the component, the reportability of the event, the extent of the concern, the potential root causes for not meeting the test acceptance criteria, the corrective actions required, and the likelihood of recurrence. When an unacceptable condition or situation is identified, a determination is made as to whether the same condition or situation is applicable to other inaccessible, in-scope, medium-voltage cables. As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address corrective actions.
- 8. Confirmation Process: As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address the confirmation process.
- **9.** *Administrative Controls:* As discussed in the appendix to this report, the staff finds the requirements of 10 CFR Part 50, Appendix B, acceptable to address administrative controls.

10. *Operating Experience:* Operating experience has shown that XLPE or high molecular weight polyethylene (HMWPE) insulation materials are most susceptible to water tree formation. The formation and growth of water trees varies directly with operating voltage. Treeing is much less prevalent in 4kV cables than those operated at 13 or 33kV. Also, minimizing exposure to moisture minimizes the potential for the development of water treeing. As additional operating experience is obtained, lessons learned can be used to adjust the program, as needed.

References

- EPRI TR-103834-P1-2, *Effects of Moisture on the Life of Power Plant Cables,* Electric Power Research Institute, Palo Alto, CA, August 1994.
- EPRI TR-109619, *Guideline for the Management of Adverse Localized Equipment Environments,* Electric Power Research Institute, Palo Alto, CA, June 1999.
- IEEE Std. P1205-2000, IEEE Guide for Assessing, Monitoring and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations.
- NUREG/CR-5643, *Insights Gained From Aging Research,* U. S. Nuclear Regulatory Commission, March 1992.
- SAND96-0344, Aging Management Guideline for Commercial Nuclear Power Plants Electrical Cable and Terminations, prepared by Sandia National Laboratories for the U.S. Department of Energy, September 1996.