4.6 CONTAINMENT LINER PLATE, METAL CONTAINMENTS, AND PENETRATIONS FATIGUE ANALYSIS

Review Responsibilities

Primary - Branch responsible for structural engineering **Secondary** - Branch responsible for mechanical engineering

4.6.1 Areas of Review

The interior surface of a concrete containment structure is lined with thin metallic plates to provide a leak-tight barrier against the uncontrolled release of radioactivity to the environment, as required by 10 CFR Part 50. The thickness of the liner plates is generally between 1/4 in. (6.2 mm) and 3/8 in. (9.5 mm). The liner plates are attached to the concrete containment wall by stud anchors or structural rolled shapes or both. The design process assumes that the liner plates do not carry loads. However, normal loads, such as from concrete shrinkage, creep, and thermal changes, imposed on the concrete containment structure, are transferred to the liner plates through the anchorage system. Internal pressure and temperature loads are directly applied to the liner plates. Thus, under design-base conditions, the liner plates could experience significant strains. Some plants may have metal containments instead of concrete containments with liner plates.

Fatigue of the liner plates or metal containments may be considered in the design based on an assumed number of loading cycles for the current operating term. The cyclic loads include reactor building interior temperature variation during the heatup and cooldown of the reactor coolant system, a LOCA, annual outdoor temperature variations, thermal loads due to the high energy containment penetration piping lines (such as steam and feedwater lines), seismic loads, and pressurization due to periodic Type A integrated leak rate tests.

High energy piping penetrations and the fuel transfer canal in some plants are equipped with bellow assemblies. These are designed to accommodate relative movements between the containment wall (including the liner) and the adjoining structures. The penetrations have sleeves (up to 10 feet in length, with a 2 to 3-inch annulus around the piping) to penetrate the concrete containment wall and allow movement of the piping system. Dissimilar metal welds connect the piping penetrations to the bellows to provide leak-tight penetrations.

The containment liner plates, metal containments, penetration sleeves (including dissimilar metal welds), and penetration bellows may be designed in accordance with requirements of Section III of the ASME Boiler and Pressure Vessel Code. If a plant's code of record requires a fatigue analysis, then this analysis may be a TLAA and must be evaluated in accordance with 10 CFR 54.21(c)(1) to ensure that the effects of aging on the intended functions will be adequately managed for the period of extended operation.

The adequacy of the fatigue analyses of the containment liner plates (including welded joints), metal containments, penetration sleeves, dissimilar metal welds, and penetration bellows is reviewed in this review plan section for the period of extended operation. The fatigue analyses of the pressure boundary of process piping are reviewed separately following the guidance in Section 4.3, "Metal Fatigue," of this review plan.

April 2001 4.6-1 NUREG-1800

4.6.1.1 Time-Limited Aging Analysis

The containment liner plates (including welded joints), metal containments, penetration sleeves, dissimilar metal welds, and penetration bellows may be designed and/or analyzed in accordance with ASME code requirements. The ASME code contains explicit metal fatigue or cyclic considerations based on TLAAs. Specific requirements are contained in the design code of reference for each plant.

4.6.1.1.1 ASME Section III, MC or Class 1

ASME Section III Division 2, "Code for Concrete Reactor Vessel and Containments," Subsection CC, "Concrete Containment," and Division 1, Subsection NE, "Class MC Components," (Ref. 1) require a fatigue analysis for liner plates, metal containments, and penetrations that considers all cyclic loads based on the anticipated number of cycles. Containment components may also be designed to ASME Section III Class 1 requirements. A Section III, MC or Class 1 fatigue analysis requires the calculation of the CUF based on the fatigue properties of the materials and the expected fatigue service of the component. The ASME code limits the CUF to a value less than one for acceptable fatigue design. The fatigue resistance of the liner plates or metal containments, and penetrations during the period of extended operation is an area of review.

4.6.1.1.2 Other Evaluations Based on CUF

Other evaluations also contain metal fatigue analysis requirements based on a CUF calculation, such as metal bellows designed to ASME NC-3649.4(e)(3) or NE-3366.2(e)(3). For these cases, the discussion relating to ASME Section III, MC or Class 1, in Subsection 4.6.1.1.1 of this review plan section, applies.

4.6.1.2 FSAR Supplement

Detailed information on the evaluation of TLAAs is contained in the renewal application. A summary description of the evaluation of TLAAs for the period of extended operation is contained in the applicant's FSAR supplement. The FSAR supplement is an area of review.

4.6.2 Acceptance Criteria

The acceptance criteria for the areas of review described in Subsection 4.6.1 of this review plan section delineate acceptable methods for meeting the requirements of the NRC's regulations in 10 CFR 54.21(c)(1).

4.6.2.1 Time-Limited Aging Analysis

Pursuant to 10 CFR 54.21(c)(1), an applicant must demonstrate one of the following:

- (i) The analyses remain valid for the period of extended operation;
- (ii) The analyses have been projected to the end of the extended period of operation; or
- (iii) The effects of aging on the intended function(s) will be adequately managed for the period of extended operation.

Specific acceptance criteria for fatigue of containment liner plates, metal containments, liner plate weld joints, dissimilar metal welds, penetration sleeves, and penetration bellows are:

4.6.2.1.1 ASME Section III, MC or Class 1

For containment liner plates, metal containments, and penetrations designed or analyzed to ASME MC or Class 1 requirements, the acceptance criteria, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.6.2.1.1.1 10 CFR 54.21(c)(1)(i)

The existing CUF calculations remain valid because the number of assumed cyclic loads will not be exceeded during the period of extended operation.

4.6.2.1.1.2 10 CFR 54.21(c)(1)(ii)

CLB fatigue analysis, per ASME Code Section III, was conducted for a 40-year life. The CUF calculations should be reevaluated based on an increased number of assumed cyclic loads to cover the period of extended operation. All cyclic loads considered in the original fatigue analyses (including Type A and Type B leak rate tests) should be reevaluated and revised as necessary. The revised analysis should show that the CUF will not exceed one, as required by the ASME code, during the period of extended operation.

4.6.2.1.1.3 10 CFR 54.21(c)(1)(iii)

The effects of aging on the intended function(s) will be adequately managed for the period of extended operation. The component could be replaced; the CUF for the replacement must be less than one during the period of extended operation.

An alternative aging management program provided by the applicant will be evaluated on a case-by-case basis to ensure that the aging effects will be managed such that the intended functions(s) will be maintained during the period of extended operation. In cases where a mitigation or inspection program is proposed, the aging management program may be evaluated against the 10 elements described in Branch Technical Position RLSB-1 (Appendix A.1 of this standard review plan).

4.6.2.1.2 Other Evaluations Based on CUF

The acceptance criteria in Subsection 4.6.2.1.2 of this review plan section apply.

4.6.2.2 FSAR Supplement

The specific criterion for meeting 10 CFR 54.21(d) is:

The summary description of the evaluation of TLAAs for the period of extended operation in the FSAR supplement is appropriate such that later changes can be controlled by 10 CFR 50.59. The description should contain information associated with the TLAAs regarding the basis for determining that the applicant has made the demonstration required by 10 CFR 54.21(c)(1).

4.6.3 Review Procedures

For each area of review described in Subsection 4.6.1 of this review plan section, the following review procedures should be followed:

4.6.3.1 Time-Limited Aging Analysis

4.6.3.1.1 ASME Section III, MC or Class 1

For containment liner plates, metal containments, and penetrations designed or analyzed to ASME MC or Class 1 requirements, the review procedures, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), are:

4.6.3.1.1.1 10 CFR 54.2I(c)(1)(i)

The number of assumed transients used in the existing CUF calculations for the current operating term is compared to the extrapolation to 60 years of operation of the number of operating transients experienced to date. The comparison confirms that the number of transients in the existing analyses will not be exceeded during the period of extended operation.

4.6.3.1.1.2 10 CFR 54.21(c)(1)(ii)

Operating transient experience and a list of the increased number of assumed cyclic loads projected to the end of the period of extended operation are reviewed to ensure that the cyclic load projection is adequate. The revised CUF calculations based on the projected number of assumed cyclic loads are reviewed to ensure that the CUF remains less than one at the end of the period of extended operation.

The code of record should be used for the reevaluation, or the applicant may update to a later code edition pursuant to 10 CFR 50.55a. In the latter case, the reviewer verifies that the requirements in 10 CFR 50.55a are met.

4.6.3.1.1.3 10 CFR 54.21(c)(1)(iii)

The applicant's proposed aging management program to ensure that the effects of aging on the intended function(s) will be adequately managed for the period of extended operation is reviewed. If the applicant proposed a component replacement before its CUF exceeds one, the reviewer verifies that the CUF for the replacement will remain less than one during the period of extended operation.

Other applicant proposed programs will be reviewed on a case-by-case basis.

4.6.3.1.2 Other Evaluations Based on CUF

The review procedures in Subsection 4.6.3.1 of this review plan section apply.

4.6.3.2 FSAR Supplement

The reviewer verifies that the applicant has provided information, to be included in the FSAR supplement, that includes a summary description of the evaluation of containment liner plate, metal containments, and penetrations fatigue TLAA. Table 4.6-1 of this review plan section

contains examples of acceptable FSAR supplement information for this TLAA. The reviewer verifies that the applicant has provided a FSAR supplement with information equivalent to that in Table 4.6-1.

The staff expects to impose a license condition on any renewed license to require the applicant to update its FSAR to include this FSAR supplement at the next update required pursuant to 10 CFR 50.71(e)(4). As part of the license condition, until the FSAR update is complete, the applicant may make changes to the programs described in its FSAR supplement without prior NRC approval, provided that the applicant evaluates each such change pursuant to the criteria set forth in 10 CFR 50.59.

As noted in Table 4.6-1, the applicant need not incorporate the implementation schedule into its FSAR. However, the review should verify that the applicant has identified and committed in the license renewal application to any future aging management activities to be completed before the period of extended operation. The staff expects to impose a license condition on any renewed license to ensure that the applicant will complete these activities no later than the committed date.

4.6.4 Evaluation Findings

The reviewer verifies that the applicant has provided sufficient information to satisfy the provisions of this review plan section and that the staff's evaluation supports conclusions of the following type, depending on the applicant's choice of 10 CFR 54.21(c)(1)(i), (ii), or (iii), to be included in the staff's safety evaluation report:

The staff evaluation concludes that the applicant has provided an acceptable demonstration, pursuant to 10 CFR 54.21(c)(1), that, for the containment liner plate or metal containment, and penetrations fatigue TLAA, [choose which is appropriate] (i) the analyses remain valid for the period of extended operation, (ii) the analyses have been projected to the end of the period of extended operation, or (iii) the effects of aging on the intended function(s) will be adequately managed for the period of extended operation. The staff also concludes that the FSAR supplement contains an appropriate summary description of the containment liner plate or metal containment, and penetrations fatigue TLAA evaluation for the period of extended operation as reflected in the license condition.

4.6.5 Implementation

Except in those cases in which the applicant proposes an acceptable alternative method, the method described herein will be used by the staff in its evaluation of conformance with NRC regulations.

4.6.6 References

 ASME Boiler and Pressure Vessel Code, Section III, Division 2, "Code for Concrete Reactor Vessels and Containments," Subsection CC, "Concrete Containment," and Division 1, Subsection NE, "MC Components," American Society of Mechanical Engineers, New York, New York, 1989 or other editions as approved in 10 CFR 50.55a.

Table 4.6-1. Examples of FSAR Supplement for Containment Liner Plates,
Metal Containments, and Penetrations Fatigue TLAA Evaluation

10 CFR 54.21(c)(1)(i) Example

TLAA	Description of Evaluation	Implementation Schedule*
Containment liner plates (or metal containment) and penetrations fatigue	The containment liner plates (or metal containment), liner weld joints, penetration sleeves, dissimilar metal welds, and penetration bellows provide a leak-tight barrier. A Section III, MC or Class 1 fatigue analysis limits the CUF to a value less than one for acceptable fatigue design. The existing CUF evaluation has been determined to remain valid because the number of assumed cyclic loads would not be exceeded during the period of extended operation.	Completed

10 CFR 54.21(c)(1)(ii) Example

TLAA	Description of Evaluation	Implementation Schedule*
Containment liner plates (or metal containment) and penetrations fatigue	The containment liner plates (or metal containment), liner weld joints, penetration sleeves, dissimilar metal welds, and penetration bellows provide a leak-tight barrier. A Section III, MC or Class 1 fatigue analysis limits the CUF to a value less than one for acceptable fatigue design. The CUF calculations have been reevaluated based on an increased number of assumed cyclic loads to cover the period of extended operation. The revised CUF will not exceed one during the period of extended operation.	Completed

10 CFR 54.21(c)(1)(iii) Example

TLAA	Description of Evaluation	Implementation Schedule*
Containment liner plates (or metal containment) and penetrations fatigue	The containment liner plates (or metal containment), liner weld joints, penetration sleeves, dissimilar metal welds, and penetration bellows provide a leak-tight barrier. A Section III, MC or Class 1 fatigue analysis limits the CUF to a value less than one for acceptable fatigue design. If the component is replaced, the CUF for the replacement will be shown to be less than one during the period of extended operation.	Program should be implemented before the period of extended operation.

Note: All containment components need not meet the same requirement. It is likely that the liner plate and the bellows may be evaluated per 10CFR54.21(c)(1)(i), while high energy penetrations may be evaluated per 10CFR54.21(c)(1)(ii).

* An applicant need not incorporate the implementation schedule into its FSAR. However, the reviewer should verify that the applicant has identified and committed in the license renewal application to any future aging management activities to be completed before the period of extended operation. The staff expects to impose a license condition on any renewed license to ensure that the applicant will complete these activities no later than the committed date.