Risk Informed Decommissioning Emergency Planning

Evaluation of Spent Fuel Pool Seismic Failure Frequency

Tom O'Hara Environmental Sciences Group Duke Engineering & Services

Overview

- Review of LLNL/EPRI Seismic Hazard Studies
- Summarize NUREG/CR-4982 (BNL)
- Summarize NUREG/CR-5176 (LLNL)
- Summarize seismic section of NRC Draft Report (6/99)
- Compare Results from alternative methods

B162

Chronology of LLNL/EPRI Seismic Hazard Analyses

• NUREG/CR-1582	(1981)
• NUREG/CR-3756	(1984)
EPRI PROGRAM INITIATED	(1984)
• UCID-20421	(1985)
• NUREG/CR-5250	(1989)
• EPRI NP-6395-D	(1989)
• NUREG-1488	(1993)

Duke Engineering

SECY-91-102 IPEEE for Severe Accident Vulnerabilities

NRC response to question concerning use of both the LLNL and EPRI seismic hazard curves in the IPEEE.

<u>'Based on the available information to date, the</u> <u>staff is unable to dispute the merit of either curve</u> <u>and considers both of them to be valid.'</u>

NUREG/CR-4982 (BNL) - Severe Accidents in Spent Fuel Pools ... July 1987

			Median Fragility $= 1.1g$
			Walls Used as Surrogate
	Ginna	-	Zion Auxiliary Building Shear
			Median Fragility $= 0.75g$
			Used as Surrogate
	Millstone	-	Oyster Creek Reactor Building
٠	Fragility		
	Ginna (PWR)	-	Synthesized
	Millstone (BWR)	-	UCID-20421 (1985)
•	Seismic Hazard		

NUREG/CR-5176 (LLNL) - Seismic Failure and Cask Drop Analyses of the Spent Fuel Pools ... January 1989

• Seismic Hazard

- Preliminary Results Came From LLNL
- Hazard Assumed to be Lognormally Distributed
- Truncation of the Hazard Distribution (99%)
- Family of 11 Hazard Curves

A Duke Enerry Company

NUREG/CR-5176 (LLNL) - Seismic Failure and Cask Drop Analyses of the Spent Fuel Pools ... January 1989 (continued)

 Based on Explicit Evaluation of Spent Fuel Pool Fragility

- Median Fragility =
Median Fragility = $2.0g$

• Note - This methodology used in the draft EPRI SFP exploration the Engineering

NRC Draft Report (6/99) - Seismic Events

- Spent fuel structures at operating nuclear power plants are inherently rugged in terms of being able to withstand loads substantially beyond those for which they were designed.
- •
- SFP are considered robust for seismic events less than three times the SSE.
- ٠
- It is assumed that the HCLPF capacity is on the order of 0.45g.

Duke Engineering & Services.

NRC Draft Report (6/99) - Seismic Events

- Using mean LLNL (1993) seismic hazard curves, it was determined that the mean annual frequency of exceeding 0.45g is on the order of 2.0 x 10⁻⁵.
- Using the definition of HCLPF, the working group applied a mathematical shortcut to get the frequency of a seismic event that will challenge the SFP integrity:

SFP Failure Probability Results -NUREG/CR-5176 Methodology

de Ency Comp

A Duite Enersy Company

Average SFP Failure Probability Results -NUREG/CR-5176 Methodology

.

 \mathbf{T}

a 1

NRC HCLPF Approach -**Draft Report** .

. •

Average SFP Failure Frequencies Based on Mean Hazard Curves & NUREG/CR-5176 Fragilities

Conclusions

- Based on the NUREG/CR-5176 methodology and alternative seismic hazard inputs the mean SFP failure probability estimates for EUS NPPs are:
- LLNL89 6.5E-6
- LLNL93 9.0E-7
- EPRI 1.4E-7
- Average (LLNL93&EPRI) = 5.0E-7

Conclusions

Based on the NUREG/CR-5176 fragilities and alternative mean seismic hazard inputs the mean SFP failure probability estimates for EUS NPPs are:
LLNL89 - 1.1E-5
LLNL93 - 9.6E-7
EPRI - 1.3E-7
Average (LLNL&EPRI) - 5.5E-7

Conclusions

- Based on the draft NRC HCLPF approach and alternative mean seismic hazard inputs the mean SFP failure probability estimates for EUS NPPs are:
- LLNL89 1.2E-5
- LLNL93 9.0E-7
- EPRI 3.5E-7
- Average (LLNL&EPRI) 6.3E-7

Duke Engineering & Services.

Conclusions

• Based on three alternative methods to estimate SFP failure frequency, it is concluded that the SFP failure frequency for the population of EUS NPPs is $< 10^{-6}$.

