

### UNITED STATES NUCLEAR REGULATORY COMMISSION REGION IV 611 RYAN PLAZA DRIVE, SUITE 400 ARLINGTON, TEXAS 76011-8064

APR - 5 2001

J. H. Swailes, Vice President of Nuclear Energy Nebraska Public Power District P.O. Box 98 Brownville, Nebraska 68321

### SUBJECT: REGULATORY CONFERENCE TO DISCUSS THE RISK SIGNIFICANCE OF A POTENTIAL YELLOW FINDING AT COOPER NUCLEAR STATION

Dear Mr. Swailes:

This refers to the regulatory conference conducted in the Region IV office with video link to NRC's One White Flint on March 29, 2001, between you, your staff, and the NRC. The participants discussed the risk significance of a potential yellow finding and associated apparent violations, identified at the licensee's Cooper Nuclear Station, involving programmatic environmental qualification design, implementation, and documentation deficiencies.

The presentation included the following topics: a circuit analysis of the 125 Vdc electrical system to evaluate the impact of degraded environmental qualification treatments on the functionality of the safety-relief valves, a similar evaluation of the Cooper battery systems, the licensee's risk perspective using their probabilistic safety assessment, and the licensee's regulatory perspective on the apparent violations.

The attendance list and presentation are enclosed with this summary (Enclosures 1 and 2).

In accordance with 10 CFR 2.790 of the NRC's "Rules of Practice," Part 2, Title 10, Code of Federal Regulations, a copy of this letter and its enclosures will be available electronically for public inspection in the NRC Public Document Room or from the Publicly Available Records (PARS) component of NRC's document system (ADAMS). ADAMS is accessible from the NRC Web site at <u>http://www.nrc/gov/NRC/ADAMS/index.html</u> (the Public Reading Room).

Should you have any questions concerning this matter, we will be pleased to discuss them with you.

Sincerely,

T Mar Rall

Charles S. Marschall Project Branch C Division of Reactor Projects

Nebraska Public Power District

Docket No.: 50-298 License No.: DPR-46

Enclosures:

1. Attendance List

2. Licensee Presentation

cc w/enclosures: G. R. Horn, Senior Vice President of Energy Supply Nebraska Public Power District 1414 15th Street Columbus, Nebraska 68601

John R. McPhail, General Counsel Nebraska Public Power District P.O. Box 499 Columbus, Nebraska 68602-0499

S. R. Mahler, Assistant Nuclear Licensing and Safety Manager Nebraska Public Power District P.O. Box 98 Brownville, Nebraska 68321

Dr. William D. Leech Manager - Nuclear MidAmerican Energy 907 Walnut Street P.O. Box 657 Des Moines, Iowa 50303-0657

Ron Stoddard Lincoln Electric System 1040 O Street P.O. Box 80869 Lincoln, Nebraska 68501-0869

Michael J. Linder, Director Nebraska Department of Environmental Quality P.O. Box 98922 Lincoln, Nebraska 68509-8922

#### Nebraska Public Power District

Chairman Nemaha County Board of Commissioners Nemaha County Courthouse 1824 N Street Auburn, Nebraska 68305

Sue Semerena, Section Administrator Nebraska Health and Human Services System Division of Public Health Assurance Consumer Services Section 301 Centennial Mall, South P.O. Box 95007 Lincoln, Nebraska 68509-5007

Ronald A. Kucera, Director of Intergovernmental Cooperation Department of Natural Resources P.O. Box 176 Jefferson City, Missouri 65102

Jerry Uhlmann, Director State Emergency Management Agency P.O. Box 116 Jefferson City, Missouri 65101

Vick L. Cooper, Chief Radiation Control Program, RCP Kansas Department of Health and Environment Bureau of Air and Radiation Forbes Field Building 283 Topeka, Kansas 66620

### **ATTACHMENT 1**

### **REGULATORY CONFERENCE ATTENDANCE**

| LICENSEE/FACILITY   | Nebraska Public Powe               | Nebraska Public Power District, Cooper Nuclear Station |  |  |
|---------------------|------------------------------------|--------------------------------------------------------|--|--|
| DATE/TIME           | March 29, 2001; 1 to 5 p.m.        |                                                        |  |  |
| LOCATION            | Region IV Training Conference Room |                                                        |  |  |
| EA NUMBER           | 00-248                             |                                                        |  |  |
| NAME (PLEASE PRINT) | ORGANIZATION                       | TITLE                                                  |  |  |
| E. Merschoff        | NRC/Region IV                      | Regional Administrator                                 |  |  |
| K. Brockman         | NRC/Region IV                      | Director, Division of Reactor<br>Projects              |  |  |
| A. Howell           | NRC/Region IV                      | Director, Division of Reactor<br>Safety                |  |  |
| W. Dean             | NRC/NRR                            | Chief, Inspection Programs<br>Branch                   |  |  |
| C. Marschall        | NRC/Region IV                      | Chief, Project Branch C                                |  |  |
| S. Morris           | NRC/OEDO                           | Regional Coordinator                                   |  |  |
| W. Jones            | NRC/Region IV                      | Chief, Project Branch E                                |  |  |
| D. Loveless         | NRC/Region IV                      | Senior Project Engineer                                |  |  |
| J. Clark            | NRC/Region IV                      | Senior Resident Inspector                              |  |  |
| J. Shackleford      | NRC/Region IV                      | Chief, Engineering and<br>Maintenance Branch           |  |  |
| C. Paulk            | NRC/Region IV                      | Senior Reactor Inspector                               |  |  |
|                     |                                    |                                                        |  |  |
|                     |                                    | I II I                |  |  |

| REGULATORY CONFERENCE ATTENDANCE |                                                        |                                            |  |  |
|----------------------------------|--------------------------------------------------------|--------------------------------------------|--|--|
| LICENSEE/FACILITY                | Nebraska Public Power District, Cooper Nuclear Station |                                            |  |  |
| DATE/TIME                        | March 29, 2001; 1 to 5 p.                              | March 29, 2001; 1 to 5 p.m.                |  |  |
| LOCATION                         | <b>Region IV Training Confe</b>                        | Region IV Training Conference Room         |  |  |
| EA NUMBER                        | 00-248                                                 |                                            |  |  |
| NAME (PLEASE PRINT)              | ORGANIZATION                                           | TITLE                                      |  |  |
| J. MacKinnon                     | JHM Associates                                         | President                                  |  |  |
| B. Horin                         | Nuclear Utility Group on Equipment Qualification       | Counsel                                    |  |  |
| P. Holzman                       | Star, Inc.                                             | Consultant                                 |  |  |
| R. Wachowiak                     | NPPD                                                   | Supervisor, Risk Management                |  |  |
| D. Buman                         | NPPD                                                   | Asst. Manager, Design<br>Engineering       |  |  |
| D. Blanchard                     | Tenera                                                 | Program Manager                            |  |  |
| M. Boyce                         | NPPD                                                   | Regulatory Affairs Manager                 |  |  |
| A. Roby                          | Altran                                                 | Consultant                                 |  |  |
| P. DiBenedetto                   | Constellation Nuclear<br>Services                      | Consultant                                 |  |  |
| N. Wetherell                     | NPPD                                                   | Senior Engineering Manager<br>(Acting)     |  |  |
| R. Wise                          | Contech                                                | Project Manager, EQ<br>Improvement Project |  |  |
| J. Peters                        | NPPD                                                   | Nuclear Support - Licensing                |  |  |
| R. Stoddard                      | LES                                                    | Consultant                                 |  |  |

Page 2 of 4

| REGULATORY CONFERENCE ATTENDANCE |                                                        |                                       |  |
|----------------------------------|--------------------------------------------------------|---------------------------------------|--|
| LICENSEE/FACILITY                | Nebraska Public Power District, Cooper Nuclear Station |                                       |  |
| DATE/TIME                        | March 29, 2001; 1 to 5 p.m.                            |                                       |  |
| LOCATION                         | Region IV Training Conference Room                     |                                       |  |
| EA NUMBER                        | 00-248                                                 |                                       |  |
| NAME (PLEASE PRINT)              | ORGANIZATION                                           | TITLE                                 |  |
| D. Curry                         | LES                                                    | General Counsel                       |  |
| C. Markert                       | NPPD                                                   | ESD Manager                           |  |
| J. McDonald                      | NPPD                                                   | Plant Manager                         |  |
| J. Swailes                       | NPPD                                                   | Vice President, Nuclear               |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        | · · · · · · · · · · · · · · · · · · · |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |
|                                  |                                                        |                                       |  |

Page 3 of 4

| REGULATORY CONFERENCE ATTENDANCE<br>VIDEO CONFERENCE ATTENDEES |                                                        |                             |  |  |
|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------|--|--|
| LICENSEE/FACILITY                                              | Nebraska Public Power District, Cooper Nuclear Station |                             |  |  |
| DATE/TIME                                                      | March 29, 2001; 1 to 5 p.m.                            | March 29, 2001; 1 to 5 p.m. |  |  |
| LOCATION                                                       | One White Flint, Rockville, I                          | MD                          |  |  |
| EA NUMBER                                                      | 00-248                                                 |                             |  |  |
| NAME (PLEASE PRINT)                                            | ORGANIZATION                                           | PHONE                       |  |  |
| C. Nolan                                                       | NRC/OE                                                 | 301-415-2249                |  |  |
| D. Coe                                                         | NRC/NRR                                                | 301-415-2040                |  |  |
| J. Knox                                                        | NRC/NRR/DE                                             | 301-415-2763                |  |  |
| P. Shemanski                                                   | NRC/NRR/DE/EEIB                                        | 301-415-1377                |  |  |
| M. Thadani                                                     | NRC/NRR/DLPM                                           | 301-415-1476                |  |  |
| K. Naidu                                                       | NRC/NRR/DLPM/IQPB                                      | 301-415-2980                |  |  |
| S. Alexander                                                   | NRC/NRR/DLPM/IQPB                                      | 301-415-2995                |  |  |
| S. Wong                                                        | NRC/NRR/DSSA/SPSB                                      | 301-415-1125                |  |  |
| P. Wilson                                                      | NRC/NRR/DSSA/SPSB                                      | 301-415-1114                |  |  |
| K. Kennedy                                                     | NRC/Region IV                                          | 301-415-1003                |  |  |
| P. Koltay                                                      | NRC/NRR/IIPB                                           | 301-415-2957                |  |  |
| D. Marksberry                                                  | NRC/RES/DRAA                                           | 301-415-6378                |  |  |
| S. Saba                                                        | NRC/NRR/DE/EEIB                                        | 301-415-2781                |  |  |
| J. Jacobson                                                    | NRC/NRR/IIPB                                           | 301-415-2977                |  |  |

Nebraska Public Power District

### APR - 5 2001

Electronic distribution from ADAMS by RIV: Regional Administrator (EWM) DRP Director (KEB) DRS Director (ATH) Senior Resident Inspector (JAC) Branch Chief, DRP/C (CSM) Senior Project Engineer, DRP/C (DPL) Section Chief, DRP/TSS (PHH) RITS Coordinator (NBH) Jim Isom, Pilot Plant Program (JAI) Sampath Malur, Pilot Plant Program (SKM)

#### R:\\_CNS\2001\CN3-29MS-DRP.wpd

| RIV:SPE:DRP(C   | C:DRP/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------|
| DPLoveless;df   | CSMarschall,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |          |       |
| <b>4</b> 0 -    | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |          |       |
| 4/4/01          | 4/1/101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |       |
| OFFICIAL RECORD | COPY MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T=Telephone | E=E-mail | F=Fax |
|                 | CSIII,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |          |       |
|                 | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |          |       |
|                 | N States State |             | 0        |       |

-4-

# **Cooper Nuclear Station**

Nebraska Public Power District

**Regulatory Conference Inspection Report 50-298/00-07** Environmental Qualification (EQ) Potential Yellow Finding March 29, 2001

# Agenda

• Overview

# J. McDonald

- Risk Perspective
  - Circuit Evaluation
  - Probabilistic Safety
     Assessment

D. Buman

- R. Wachowiak
- Regulatory Perspective J. McDonald
- Conclusions J. Swailes

Cooper Nuclear Station

# Overview Results

- Phase 3 PSA Below GREEN/WHITE Threshold
- Only One SRV Required
- All SRVs Fully Operable on Either Power Supply With Conservative Analysis
- Both 125 VDC Power Supplies Operable With Conservative Analysis
- All Eight SRV Circuits Operable With Conservative Analysis
- Test Data Verifies Functionality of All SRVs

# Overview **Circuit** Analysis

- Environmental Qualification Concerns
  - SRV Operability Based on Conservative **Circuits Analysis** 
    - Realistic Currents Much Lower
    - Comprehensive Evaluation of Potential Adverse **Current Paths**
    - Zero Resistance Faults Assumed Unless Other Faults Were Worst Case
    - Bounding Current Values Used
    - Reviewed Potential Interactions Between AC/125VDC/250VDC Systems
- Analyses Reviewed by Multiple Independent **Industry Experts** April 3, 2001

**Cooper Nuclear Station** 

# Overview Circuit Analysis

- Environmental Qualification Concerns
  - Robust Design is a Significant Factor in Results
    - Batteries Remain Operable
      - 125 VDC / 250 VDC / AC Systems Design Independence
    - SRVs and SRV Circuits Remain Operable
      - SRV Redundant Power Seeking Power Supplies
      - SRV Redundant Control Circuits
      - 16 Individually Fused SRV Circuits
      - Operability of Single SRV Required

# Overview PSA Methodology

- ~50 LOCA/HELB Scenarios
- Evaluated Scenarios Separately
  - Drywell
  - Steam Tunnel
  - 10 Reactor Building HELB Zones
- Drywell EQ Treatments
  - ~ 100 EQ Treatments/ 10 Potential Risk Components
- Reactor Building HELB Zones
  - ~ 50 EQ Treatments/ ~ 10-20% Potential Risk Impacting
- Failed Questionable Treatments Absent Test Data

# Overview PSA

- Environmental Qualification Concerns
  - CNS PRA Based on Operable SRVs
  - Phase 3 PRA Based on Plant Configuration
     Prior to 2000 RFO
    - Accounted For All Non-Conforming EQ Treatments
    - Accounted For All Sequences That Contribute to Risk

# RISK PERSPECTIVE CIRCUIT EVALUATION

D. Buman

April 3, 2001

**Cooper Nuclear Station** 

8

# Circuit Evaluation SRV Performance Requirements

- SRV Performance Requirement For PSA Phase 3 Analysis
  - Single SRV Functional
  - Eight Hour Mission Time Has Been Evaluated, Shorter Times Could be Justified

Circuit Evaluation Cooper Battery Systems Summary of Conclusions

- Both SRV DC Power Supplies Remain Operable Based on Conservative Analysis
  - Only One of Two Supplies Needed For Required SRV Performance

### Circuit Evaluation Cooper Battery Systems Significant Design Elements

- Electrical and Physical Separation Exists Between:
  - 125VDC "A" and 125VDC "B"
  - 250VDC "A" and 250VDC "B"
  - 125VDC and 250VDC Systems
  - AC System
- The 125 and 250 VDC Are Ungrounded Systems
- Ground Detection Circuitry Provided For Each Division of 125 and 250 VDC Systems
- Limited Number of Hard Faults of the Negative Bus Inside the Drywell (125 VDC)

April 3, 2001

**Cooper Nuclear Station** 

### Circuit Evaluation Cooper Battery Systems Significant Design Elements

Simplified Design Diagram



**Cooper Nuclear Station** 

- Conservative Analysis
  - Simultaneous Faults For Bounding Case
  - Used Worst Case (e.g., Zero Resistance) Faults
     For EQ Non-Conforming Treatments
  - Assumed Continuous Currents
  - Hypothetical Fault Paths

Hypothetical Fault Path



- Critical Characteristics of Battery System to Assure Operability
  - Sufficient Capacity
  - Sufficient Voltage
  - Intact Distribution System

- Sufficient Battery Capacity Maintained
  - Utilized Design Basis Load Calculation Results to Establish Base Loads
  - Reviewed Impact of Additional Loads Not Present Under Design Basis Assumptions
    - MSIVs, Accumulator Alarm Pressure Switches, Drywell Airlock Lights, Reactor Recirculation Motor Generator Breaker Logic

- Sufficient Battery Voltage Maintained
  - Utilized Design Basis Voltage Calculation to Establish Base Load Current
  - Reviewed Impact of Additional Loads
     Resulting From EQ Non-Conformances
  - Applied Results to Circuit and Battery Capacity Evaluation

- Distribution System Remains Intact
  - Utilized Existing Short Circuit Study
  - Assured by Fuse Coordination and Protective Function
  - Physical and Electrical Independence of AC and DC Systems Precludes System Interactions

- Additional Considerations
  - Assessed Multiple Positive-Side Faults
    - Single Zero Resistance Fault is Bounding
    - Multiple Faults Do Not Create Additional Current
  - Fault Induced Fire Hypothesis Not Credible in Water, Nitrogen (Drywell LOCA) Environment
    - Low Energy Circuit I<sup>2</sup>R
    - IEEE 383 Type Materials

- Conclusions
  - Battery Systems Remain Operable
    - No Fault(s) Will Fail 125 or 250 VDC Batteries
      - Additional Loads Do Not
        - » (1) Degrade Voltage or (2) Exceed Capacity
      - Adequate Fusing and Coordination Exist
    - No Credible Fault(s) of AC or 250 VDC Systems Can Fail 125 VDC System
      - Electrical and Physical Independence
      - All DC Systems Are Ungrounded
      - Adequate Fusing and Coordination Exist

Circuit Evaluation Cooper AC Systems

- AC Systems Remain Operable
  - No Fault(s) of AC Systems Can Fail AC Systems
    - Adequate Fusing and Coordination Exist
  - No Fault(s) of DC Systems Can Fail AC Systems
    - Electrical and Physical Independence

### Circuit Evaluation Cooper SRV Circuits Summary of Conclusions

- Only One of Eight SRVs Actually Needed to Demonstrate Low Risk Significance
- All SRV Circuits Operable With Conservative Analysis
- All SRV's Fully Operable on Either Power Supply

### Circuit Evaluation Cooper SRV Circuits Significant Design Elements

- Eight Sets of Fuses Normally Power the SRVs
  - One Set (2) For Each SRV
  - Normally Powered From 125 VDC "A"
- Eight Redundant Sets of Fuses Provide Backup
  - One Set (2) For Each SRV
  - <u>Each</u> SRV Circuit Will Auto Transfer to 125
     VDC "B" Upon Loss of Power in 125 VDC
     "A" SRV Circuit

### Circuit Evaluation Cooper SRV Circuits Significant Design Elements

# Simplified SRV Circuit Diagram



- Conservative Analysis
  - Multiple Faults Assumed to Occur at Once
  - Faults Assumed to be Sustained
  - Faults Assumed to Impact Only One SRV
    - Additional Margin if Distributed to All Eight SRVs
    - Worst Case (e.g., Zero Resistance) Faults Used For Non-Conforming EQ Treatments
  - Transfer to Backup Power Supply Not Expected
    - Resulting Fault Current For Division B Significantly Less if Transfer Occurs
  - Hypothetical Fault Paths

- Critical Characteristics of SRV Circuits to Assure SRV Operability
  - Provide and Maintain Minimum Pickup Voltage
  - Maintain Intact Circuit Path
    - Intact Fuses
    - Intact Logic and Control Components
    - Intact Wiring

- Minimum Pickup Voltage is Assured
  - Incorporated Existing Design Basis Voltage
     Drop Calculation
  - Reviewed Available Margin Between
     Minimum Calculated Voltage and Operating
     Voltage
  - Compared Additional Current Against Margin

- Intact Circuit Path is Maintained
  - Performed Fuse Analysis
  - Assured Logic and Control Current Component Ratings Protected by 10 Amp Fuses
- Intact Wiring is Maintained
  - Performed Short Circuit Study to Assure Wiring Protected by Fuses
  - Fully Qualified Path to SRV Solenoids

- Additional Considerations
  - Fault Induced Fire Hypothesis
    - Low Energy Circuit I<sup>2</sup>R
    - IEEE 383 Type Materials
    - Fire Potential Not Credible in Water, Nitrogen (Drywell LOCA) Environment
    - Even With Hypothetical Fire at the Tailpipe Pressure Switch
      - Will Not Disable SRV Circuit
      - Does Not Impact Transfer

• Results

| SRV Pressure<br>Switch | Insulation<br>Resistance<br>(ohms) | Total Fault<br>Current<br>(amps) |
|------------------------|------------------------------------|----------------------------------|
| Bounding Analysis      | 0                                  | 6.85                             |
| Performance            |                                    |                                  |
| Linner                 | > 10.000                           | 0.002*                           |
| opper                  | > 40,000                           | 0.003*                           |
| Lower                  | >15,000                            | 0.008**                          |

\* Performance Maintained for Test Duration (24 hours)
\*\* Performance Maintained for 9 hours

- Conclusions
  - SRVs Remain Operable
    - No Fault(s) of AC or 250 VDC Systems Can Cause Opening of SRV Fuses
      - Electrical and Physical Independence
      - All DC Systems Are Ungrounded
      - Adequate Fusing and Coordination Exist
      - SRV Circuits Individually Routed in Separate Conduits/Terminal Boxes

- Conclusions
  - SRVs Remain Operable
    - Cumulative Effect of EQ Non-Conformances Will Not Cause Opening of SRV Fuses
      - 125 VDC Circuit Analysis Demonstrates Maximum Current is Below Continuous Rating
    - Testing Substantiates Conservative Nature of Previous Conclusions as Well as Tailpipe Pressure Switch Functionality

# RISK PERSPECTIVE PROBABILISTIC SAFETY ASSESSMENT

R. Wachowiak

April 3, 2001

**Cooper Nuclear Station** 

Probabilistic Safety Assessment General Assumptions

- Methodology
  - Identify Affected Equipment
  - Identify Scenarios That Could Cause Failure
  - Determine Frequency of Scenarios
  - Determine Reliability of Remaining Mitigation Capability
  - Calculate Increase in CDF and LERF

Probabilistic Safety Assessment General Assumptions

- Performance of Equipment
  - Non-EQ Equipment in the Area Fails
  - Non-Conforming Treatments in the Area Are Affected
    - Performance is Based on Test Data
    - Where No Data Available, Treatment Fails
  - Adjacent Areas Can be Affected, But Not Sufficient to Impact Functionality of Adjacent Area Equipment
  - Operator Actions in the Building Not Credited

# Probabilistic Safety Assessment Results

- Core Damage Frequency (CDF) Increase is
   2.6x10<sup>-7</sup> per Year
  - 80% Steam Tunnel
  - 8% Drywell
  - 3% Unisolated HELB
  - 9% Other Isolated HELBs
- Large Early Release Frequency (LERF) Increase is 9x10<sup>-9</sup> per Year
  - >90% Unisolated HELB

- Balance Due to ATWS

April 3, 2001

**Cooper Nuclear Station** 

# Probabilistic Safety Assessment Summary of Analysis

| HELB Area    | Number of<br>Treatments | Affected Trains     | Remaining Trains |
|--------------|-------------------------|---------------------|------------------|
| Steam Tunnel | 16 Splices              | HPCI Inj            | 8 SRVs           |
|              | 1 Non-EQ Valve          | RCIC Inj            | 4 RHR            |
|              |                         | RCIC Outboard Isol  | 2 LPCS           |
|              | 4 Components            | MSL Drain           | 3 Condensate     |
|              |                         |                     | CRD              |
|              |                         | · .                 | SW Injection     |
|              |                         |                     | Hard Pipe Vent   |
| Drywell      | 100 Splices &           | Inboard MSIV        | HPCI             |
|              | Terminal Blocks         | MSL Drain           | RCIC             |
|              | 44 on TEs               | Inbd RWCU Isol      | 8 SRVs           |
|              |                         | Some Temp Ind       | 4 RHR            |
|              | 25 Components           | RR Isolation Valves | 2 LPCS           |
|              | 13 were TEs             | HPCI/RCIC Inbd Isol | 3 Condensate     |
|              |                         | 4 Fan Coil Units    | CRD              |
|              |                         |                     | SW Injection     |
|              |                         | · ·                 | Hard Pipe Vent   |

# Probabilistic Safety Assessment Summary of Analysis

| HELB Area    | Number of<br>Treatments | Affected Trains  | Remaining Trai | ns |
|--------------|-------------------------|------------------|----------------|----|
| Torus Area   | 169 Splices             | HPCI Inj         | Condenser      |    |
|              | 90 on TEs               | RCIC Inj         | 2 Feedwater    |    |
|              | 2 Non-EQ                | SW to REC HX     | 8 SRVs         |    |
|              |                         | SW Backup to REC | 2 RHR          |    |
|              | 39 Components           | 2 LPCS           | 3 Condensate   |    |
|              | 16 are TEs              | Hard Pipe Vent   | SW Injection   |    |
|              | 8 are in PRA            | 2 RHR Pumps      |                |    |
| NE Quad      | 15 Splices              | RCIC             | Condenser      |    |
|              | 11 Non-EQ Comp          | 1 LPCS           | 2 Feedwater    |    |
|              |                         |                  | HPCI           |    |
|              | 14 Components           | 1<br>            | 8 SRVs         |    |
|              |                         |                  | 4 RHR          |    |
|              |                         |                  | 1 LPCS         |    |
|              |                         |                  | 3 Condensate   |    |
|              |                         |                  | CRD            |    |
|              |                         |                  | SW Injection   |    |
|              |                         |                  | Hard Pipe Vent |    |
| April 3 2001 | Cooper                  | Nuclear Station  |                | 20 |

Probabilistic Safety Analysis Sensitivity Studies

- HELB Areas Outside Containment Combined For Larger, Unisolated Breaks
  - Change in CDF Remained Below the GREEN/WHITE Threshold
- Investigated Operator Potential Misinformation Resulting From Instrumentation Affected by HELB Conditions
  - Always Had Redundant and Diverse Information Available
- Investigated Importance of the SRV Transfer to the Other Power Supply
  - Does Not Affect Reliability of Depressurization

April 3, 2001

**Cooper Nuclear Station** 

# Probabilistic Safety Assessment Conclusion

- Changes in CDF and LERF Are Below GREEN/WHITE Threshold
- Risk is Low Because Multiple and Diverse Trains of Equipment Remain Functional For All HELB/LOCA Locations

# **REGULATORY PERSPECTIVE**

### J. McDonald

April 3, 2001

**Cooper Nuclear Station** 

41

- Significant Programmatic Concern
  - CNS Aggressively Addressing
    - EQ Improvement Project
- Large Number of Components Affected
  - Many Replaced Components May Have Been Qualifiable, But Conservatively Replaced to Expedite Resolution
  - Some Replaced Components Exhibited No Non-Conformances
- Detailed Risk Analysis Required
  - As Intended in Revised Reactor Oversight Process

- Apparent Violation
  - 10 CFR 50.49,
    - "Environmental Qualification ... "
    - Failure to Properly Qualify Components
    - Failure to Maintain Qualification
    - Failure to Document Qualifications in Auditable Form
  - CNS Generally Agrees With Basis For
     Proposed Violation, But Not Third Example

- Apparent Violation
  - 10 CFR 50, Appendix B, Criterion XVI,
    "Corrective Action"
    - Failure to Identify EQ Issue Until Specifically Identified by NRC
    - Failure to Include Issues in Corrective Action Program
  - CNS Generally Agrees With Basis For Proposed Violation

- Apparent Violation
  - 10 CFR 50, Appendix B, Criterion III,
    "Design Control"
    - T-Drains For Equipment Enclosures
    - Containment Spray Valves Not in MOV Program and Undersized
    - 125 VDC Non-Essential and Non-EQ Loads in Drywell Powered From Essential Buses
  - CNS Generally Agrees With Basis For Proposed Violation

# CONCLUSIONS

J. Swailes

April 3, 2001

Cooper Nuclear Station

# Conclusions

- Program Improvements Needed
- Low Impact on CDF, LERF
  - Detailed Analysis and Testing of Specific
     Deficiencies Does Not Support "Substantial Safety Significance"
- Aggressively Pursuing Resolution





.....



.

