В	2.0 2.1.1 2.1.2	SAFETY LIMITS (SLs) Reactor Core SLs	B B	2. 2.	1.1 1.2	- 1 - 1	
	3.0 3.0	LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY . SURVEILLANCE REQUIREMENT (SR) APPLICABILITY	B B	3. 3.	0 - 1 0 - 1	.0	
B B B B B B	3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	REACTIVITY CONTROL SYSTEMS SHUTDOWN MARGIN (SDM)	8 B B B	3. 3. 3. 3.	1.2 1.3 1.4 1.5 1.6	2 - 1 3 - 1 4 - 1 5 - 1 5 - 1 7 - 1	
B B B	3.2 3.2.1 3.2.2 3.2.3 3.2.4	POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)	В	3.	2.3	3 - 1	<u>.</u>
		Gain and Setpoint	В	3.	. 2 . 4	4 - 1	•
В В В	3.3 3.3.1.1 3.3.1.2 3.3.2.1	INSTRUMENTATION Reactor Protection System (RPS) Instrumentation Source Range Monitor (SRM) Instrumentation	B	3	.J.	1.4	∠ - T
	3.3.2.2	Feedwater System and Main Turbine High Water Level Trip Instrumentation	B	3 3	.3. .3.	2.2 3.1	2 - 1 1 - 1
В	3.3.4.1	Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation					
	3.3.5.1	Emergency Core Cooling System (ECCS) Instrumentation	В	3	.3.	5.3	1 - 1
	3.3.6.1	Instrumentation	. в . В	3	.3.	6.	1-1
E	3.3.6.2	Waretalatan (CDEVI)	. в . В	3	.s. .3.	6.3	3-1
	3 3.3.7.1 3 3.3.8.1	System Instrumentation	. В . В	3	.3. .3.	7. 8.	1 - 1 1 - 1
	3.3.8.2						

B 3.6.4.3 Standby Gas Treatment (SGT) System	_			
B 3.5.1 ECCS - Operating B 3.5.1-1 ECCS - Shutdown B 3.5.2-1 B 3.5.2 ECCS - Shutdown B 3.5.2-1 ECCS - Shutdown B 3.5.3-1 ECCS - Shutdown B 3.6.1.2-1 ECCS - Shutdown ECCS - Shut	B B B B B B B B B	3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9 3.4.10	Recirculation Loops Operating	3 3.4.3-1 3 3.4.4-1 3 3.4.5-1 3 3.4.6-1 3 3.4.7-1 8 3.4.8-1 8 3.4.9-1
B 3.6.1.1	В	3.5.2	ECCS - Operating	0 3.3.2 1
B 3.6.4.1 Secondary Containment	B B B B B B B B B B B B B B B B B B B	3.6.1.1 3.6.1.2 3.6.1.3 3.6.1.4 3.6.1.5 3.6.1.6 3.6.1.7 3.6.1.8 3.6.2.1 3.6.2.2 3.6.2.3	Primary Containment	B 3.6.1.2-1 B 3.6.1.3-1 B 3.6.1.4-1 B 3.6.1.5-1 B 3.6.1.6-1 B 3.6.1.7-1 B 3.6.2.1-1 B 3.6.2.2-1 B 3.6.2.2-1 B 3.6.2.3-1 B 3.6.2.3-1 B 3.6.2.3-1 B 3.6.2.3-1
B 3.7.1 B 3.7.2 B 3.7.3 B 3.7.4 Residual Heat Removal Service Water (RHRSW) System B 3.7.1-1 Diesel Generator Cooling Water (DGCW) System B 3.7.2-1 Ultimate Heat Sink (UHS)	E	3 3.6.4.1 3 3.6.4.2	Secondary Containment	B 3.6.4.1-1 B 3.6.4.2-1
	{ {	B 3.7.1 B 3.7.2 B 3.7.3	Residual Heat Removal Service Water (RHRSW) System Diesel Generator Cooling Water (DGCW) System	B 3.7.2-1 B 3.7.3-1

B 3.7 B 3.7.5 B 3.7.6 B 3.7.7 B 3.7.8 B 3.7.9	PLANT SYSTEMS (continued) Control Room Emergency Ventilation Air Conditioning (AC) System
B 3.8 B 3.8.1 B 3.8.2 B 3.8.3 B 3.8.4 B 3.8.5 B 3.8.6 B 3.8.7 B 3.8.8	ELECTRICAL POWER SYSTEMSAC Sources - Operating
B 3.9 B 3.9.1 B 3.9.2 B 3.9.3 B 3.9.4 B 3.9.5 B 3.9.6 B 3.9.7	REFUELING OPERATIONS Refueling Equipment Interlocks
B 3.10 B 3.10.1 B 3.10.2 B 3.10.3 B 3.10.4 B 3.10.5 B 3.10.6 B 3.10.7	SPECIAL OPERATIONS Reactor Mode Switch Interlock Testing

B 2.0 SAFETY LIMITS (SLs)

B 2.1.1 Reactor Core SLs

BASES

BACKGROUND

UFSAR Section 3.1.2.1 (Ref. 1) requires, and SLs ensure, that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs).

The fuel cladding integrity SL is set such that no significant fuel damage is calculated to occur if the limit is not violated. Because fuel damage is not directly observable, a stepback approach is used to establish an SL, such that the MCPR is not less than the limit specified in Specification 2.1.1.2. MCPR greater than the specified limit represents a conservative margin relative to the conditions required to maintain fuel cladding integrity.

The fuel cladding is one of the physical barriers that separate the radioactive materials from the environs. The integrity of this cladding barrier is related to its relative freedom from perforations or cracking. Although some corrosion or use related cracking may occur during the life of the cladding, fission product migration from this source is incrementally cumulative and continuously measurable. Fuel cladding perforations, however, can result from thermal stresses, which occur from reactor operation significantly above design conditions.

While fission product migration from cladding perforation is just as measurable as that from use related cracking, the thermally caused cladding perforations signal a threshold beyond which still greater thermal stresses may cause gross, rather than incremental, cladding deterioration. Therefore, the fuel cladding SL is defined with a margin to the conditions that would produce onset of transition boiling (i.e., MCPR = 1.00). These conditions represent a significant departure from the condition intended by design for planned operation. The MCPR fuel cladding integrity SL ensures that during normal operation and during AOOs, at least 99.9% of the fuel rods in the core do not experience transition boiling.

BACKGROUND (continued)

Operation above the boundary of the nucleate boiling regime could result in excessive cladding temperature because of the onset of transition boiling and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding water (zirconium water) reaction may take place. This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant.

The reactor vessel water level SL ensures that adequate core cooling capability is maintained during all MODES of reactor operation. Establishment of Emergency Core Cooling System initiation setpoints higher than this SL provides margin such that the SL will not be reached or exceeded.

APPLICABLE SAFETY ANALYSES

The fuel cladding must not sustain damage as a result of normal operation and AOOs. The reactor core SLs are established to preclude violation of the fuel design criterion that a MCPR limit is to be established, such that at least 99.9% of the fuel rods in the core would not be expected to experience the onset of transition boiling.

The Reactor Protection System setpoints (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"), in combination with the other LCOs, are designed to prevent any anticipated combination of transient conditions for Reactor Coolant System water level, pressure, and THERMAL POWER level that would result in reaching the MCPR Safety Limit.

Cores with fuel that is all from one vendor utilize that vendor's critical power correlation for determination of MCPR. For cores with fuel from more than one vendor, the MCPR is calculated for all fuel in the core using the licensed critical power correlations. This may be accomplished by using each vendor's correlation for the vendor's respective fuel. Alternatively, a single correlation can be used for all fuel in the core. For fuel that has not been manufactured by the vendor supplying the critical power correlation, the input parameters to the reload vendor's correlation are adjusted using benchmarking data to yield conservative results compared with the critical power results from the co-resident fuel.

APPLICABLE SAFETY ANALYSES (continued)

2.1.1.1 Fuel Cladding Integrity

The use of the Siemens Power Corporation correlation (ANFB) is valid for critical power calculations at pressures > 600 psia and bundle mass fluxes > 0.1 x 10^6 lb/hr-ft² (Refs. 2 and 3). For operation at low pressures or low flows, the fuel cladding integrity SL is established by a limiting condition on core THERMAL POWER, with the following basis:

Since the pressure drop in the bypass region is essentially all elevation head, the core pressure drop at low power and flows will always be > 4.5 psi. Analyses show that with a bundle flow of 28 x 10^3 lb/hr (approximately a mass velocity of 0.25×10^6 lb/hr-ft²), bundle pressure drop is nearly independent of bundle power and has a value of 3.5 psi. Thus, the bundle flow with a 4.5 psi driving head will be $> 28 \times 10^3$ lb/hr. Full scale critical power test data taken at pressures from 14.7 psia to 800 psia indicate that the fuel assembly critical power at this flow is approximately 3.35 MWt. With the design peaking factors, this corresponds to a THERMAL POWER > 50 % RTP. Thus, a THERMAL POWER limit of 25% RTP for reactor pressure < 785 psig is conservative. Although the ANFB correlation is valid at reactor steam dome pressures > 600 psia, application of the fuel cladding integrity SL at reactor steam dome pressure < 785 psig is conservative.

2.1.1.2 MCPR

The MCPR SL ensures sufficient conservatism in the operating MCPR limit that, in the event of an A00 from the limiting condition of operation, at least 99.9% of the fuel rods in the core would be expected to avoid boiling transition. The margin between calculated boiling transition (i.e., MCPR = 1.00) and the MCPR SL is based on a detailed statistical procedure that considers the uncertainties in monitoring the core operating state. One specific uncertainty included in the SL is the uncertainty inherent

APPLICABLE SAFETY ANALYSES

2.1.1.2 MCPR (continued)

in the ANFB critical power correlation. References 2, 3, 4, and 5 describe the methodology used in determining the MCPR SL.

The ANFB critical power correlation is based on a significant body of practical test data, providing a high degree of assurance that the critical power, as evaluated by the correlation, is within a small percentage of the actual critical power being estimated. As long as the core pressure and flow are within the range of validity of the ANFB correlation, the assumed reactor conditions used in defining the SL introduce conservatism into the limit because bounding high radial power factors and bounding flat local peaking distributions are used to estimate the number of rods in boiling transition. Still further conservatism is induced by the tendency of the ANFB correlation to overpredict the number of rods in boiling transition. These conservatisms and the inherent accuracy of the ANFB correlation provide a reasonable degree of assurance that there would be no transition boiling in the core during sustained operation at the MCPR SL. If boiling transition were to occur, there is reason to believe that the integrity of the fuel would not be compromised. Significant test data accumulated by the NRC and private organizations indicate that the use of a boiling transition limitation to protect against cladding failure is a very conservative approach. Much of the data indicate that BWR fuel can survive for an extended period of time in an environment of boiling transition.

2.1.1.3 Reactor Vessel Water Level

During MODES 1 and 2 the reactor vessel water level is required to be above the top of the active irradiated fuel to provide core cooling capability. With fuel in the reactor vessel during periods when the reactor is shut down, consideration must be given to water level requirements due to the effect of decay heat. If the water level should drop below the top of the active irradiated fuel during this period, the ability to remove decay heat is reduced. This reduction in cooling capability could lead to elevated cladding temperatures and clad perforation in the event that

BASES

APPLICABLE SAFETY ANALYSES

2.1.1.3 Reactor Vessel Water Level (continued)

the water level becomes < 2/3 of the core height. The reactor vessel water level SL has been established at the top of the active irradiated fuel to provide a point that can be monitored and to also provide adequate margin for effective action.

SAFETY LIMITS

The reactor core SLs are established to protect the integrity of the fuel clad barrier to prevent the release of radioactive materials to the environs. SL 2.1.1.1 and SL 2.1.1.2 ensure that the core operates within the fuel design criteria. SL 2.1.1.3 ensures that the reactor vessel water level is greater than the top of the active irradiated fuel in order to prevent elevated clad temperatures and resultant clad perforations.

APPLICABILITY

SLs 2.1.1.1, 2.1.1.2, and 2.1.1.3 are applicable in all MODES.

SAFETY LIMIT VIOLATIONS

2.2

Exceeding an SL may cause fuel damage and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 6). Therefore, it is required to insert all insertable control rods and restore compliance with the SLs within 2 hours. The 2 hour Completion Time ensures that the operators take prompt remedial action and also ensures that the probability of an accident occurring during this period is minimal.

BASES (continued)

REFERENCES

- 1. UFSAR, Section 3.1.2.1.
- 2. ANF-524(P)(A), Revision 2, Supplement 1, Revision 2, Supplement 2, Advanced Nuclear Fuels Corporation Critical Power Methodology for Boiling Water Reactors/Advanced Nuclear Fuels Corporation Critical Power Methodology for Boiling Water Reactors: Methodology for Analysis of Assembly Channel Bowing Effects/NRC Correspondence, (as specified in Technical Specification 5.6.5).
- 3. ANF-1125(P)(A) and Supplements 1 and 2, ANFB Critical Power Correlation, Advanced Nuclear Fuels Corporation, (as specified in Technical Specification 5.6.5).
- 4. ANF-1125(P)(A), Supplement 1, Appendix E, ANFB Critical Power Correlation Determination of ATRIUM-9B Additive Constant Uncertainties, Siemens Power Corporation, (as specified in Technical Specification 5.6.5).
- 5. EMF-1125(P)(A), Supplement 1, Appendix C, ANFB Critical Power Correlation Application for Coresident Fuel, Siemens Power Corporation, (as specified in Technical Specification 5.6.5).
- 6. 10 CFR 100.

B 2.0 SAFETY LIMITS (SLs)

B 2.1.2 Reactor Coolant System (RCS) Pressure SL

BASES

BACKGROUND

The SL on reactor steam dome pressure protects the RCS against overpressurization. In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves as the primary barrier in preventing the release of fission products into the atmosphere. Establishing an upper limit on reactor steam dome pressure ensures continued RCS integrity. According to UFSAR Sections 3.1.2.4, 3.1.5.6, 3.1.6.1, 3.1.6.2, and 3.1.6.4 (Ref. 1), the reactor coolant pressure boundary (RCPB) shall be designed with sufficient margin to ensure that the design conditions are not exceeded during normal operation and anticipated operational occurrences (AOOs).

During normal operation and AOOs, RCS pressure is limited from exceeding the design pressure by more than 10%, in accordance with Section III of the ASME Code (Ref. 2) for the pressure vessel, and by more than 20%, in accordance with USAS B31.1-1967 Code (Ref. 3) for the RCS piping. To ensure system integrity, all RCS components are hydrostatically tested at 125% of design pressure, in accordance with ASME Code requirements, prior to initial operation when there is no fuel in the core. Following inception of unit operation, RCS components shall be pressure tested in accordance with the requirements of ASME Code, Section XI (Ref. 4).

Overpressurization of the RCS could result in a breach of the RCPB, reducing the number of protective barriers designed to prevent radioactive releases from exceeding the limits specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 5). If this occurred in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere.

BASES (continued)

APPLICABLE SAFETY ANALYSES

The RCS safety/relief valves and the Reactor Protection System Reactor Vessel Steam Dome Pressure—High Function have settings established to ensure that the RCS pressure SL will not be exceeded.

The RCS pressure SL has been selected such that it is at a pressure below which it can be shown that the integrity of the system is not endangered. The reactor pressure vessel is designed to Section III of the ASME, Boiler and Pressure Vessel Code, 1965 Edition, including Addenda through the summer of 1967 (Ref. 6), which permits a maximum pressure transient of 110%, 1375 psig, of design pressure 1250 psig. The SL of 1345 psig, as measured in the reactor steam dome, is equivalent to $1\overline{3}75$ psig at the lowest elevation of the RCS. The RCS is designed to the USAS Power Piping Code, Section B31.1, 1967 Edition (Ref. 3), for the reactor recirculation piping, which permits a maximum pressure transient of 120% of design pressures of 1175 psig for suction piping and 1325 psig for discharge piping. The RCS pressure SL is selected to be the lowest transient overpressure allowed by the applicable codes.

SAFETY LIMITS

The maximum transient pressure allowable in the RCS pressure vessel under the ASME Code, Section III, is 110% of design pressure. The maximum transient pressure allowable in the RCS piping, valves, and fittings is 120% of design pressures of 1175 psig for suction piping and 1325 psig for discharge piping. The most limiting of these allowances is the 110% of the RCS pressure vessel design pressure; therefore, the SL on maximum allowable RCS pressure is established at 1345 psig as measured at the reactor steam dome.

APPLICABILITY

SL 2.1.2 applies in all MODES.

SAFETY LIMIT VIOLATIONS

2.2

Exceeding the RCS pressure SL may cause RCS failure and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 5). Therefore, it is required to insert all insertable control rods and restore compliance with the SL within 2 hours. The

BASES

SAFETY LIMIT VIOLATIONS

2.2 (continued)

2 hour Completion Time ensures that the operators take prompt remedial action and also assures that the probability of an accident occurring during this period is minimal.

REFERENCES

- 1. UFSAR Sections 3.1.2.4, 3.1.5.6, 3.1.6.1, 3.1.6.2, and 3.1.6.4.
- 2. ASME, Boiler and Pressure Vessel Code, Section III, Article NB-7000.
- 3. ASME, USAS, Power Piping Code, Section B31.1, 1967 Edition.
- 4. ASME, Boiler and Pressure Vessel Code, Section XI, Article IWB-5000.
- 5. 10 CFR 100.
- 6. ASME, Boiler and Pressure Vessel Code, Section III, 1965 Edition, Addenda summer of 1967.

B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY

BASES

LCO 3.0.1 through LCO 3.0.7 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated. LCO 3.0.1 LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).

- LCO 3.0.2 establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that:
 - a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a Specification; and
 - b. Completion of the Required Actions is not required when an LCO is met within the specified Completion Time, unless otherwise specified.

There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The second type of Required Action specifies the remedial measures that permit continued operation of the

LCO 3.0.2 (continued)

unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation.

Completing the Required Actions is not required when an LCO is met or is no longer applicable, unless otherwise stated in the individual Specifications.

The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Condition no longer exists. The individual LCO's ACTIONS specify the Required Actions where this is the case. An example of this is in LCO 3.4.9, "RCS Pressure and Temperature (P/T) Limits."

The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational problems. Entering ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience. Additionally, if intentional entry into ACTIONS would result in redundant equipment being inoperable, alternatives should be used instead. Doing so limits the time both subsystems/divisions of a safety function are inoperable and limits the time conditions exist which may result in LCO 3.0.3 being entered. Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed.

When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new Specification becomes applicable and the ACTIONS Condition(s) are entered.

- LCO 3.0.3 establishes the actions that must be implemented when an LCO is not met and:
 - a. An associated Required Action and Completion Time is not met and no other Condition applies; or
 - b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that LCO 3.0.3 be entered immediately.

This Specification delineates the time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. It is not intended to be used as an operational convenience that permits routine voluntary removal of redundant systems or components from service in lieu of other alternatives that would not result in redundant systems or components being inoperable.

Upon entering LCO 3.0.3, 1 hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to reach lower MODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment is OPERABLE. This reduces thermal stresses on components of the Reactor Coolant System and the potential for a plant upset that could challenge safety systems under conditions to which this Specification applies. The use and interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times.

LCO 3.0.3 (continued)

A unit shutdown required in accordance with LCO 3.0.3 may be terminated and LCO 3.0.3 exited if any of the following occurs:

- a. The LCO is now met.
- b. A Condition exists for which the Required Actions have now been performed.
- c. ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited.

The time limits of Specification 3.0.3 allow 37 hours for the unit to be in MODE 4 when a shutdown is required during MODE 1 operation. If the unit is in a lower MODE of operation when a shutdown is required, the time limit for reaching the next lower MODE applies. If a lower MODE is reached in less time than allowed, however, the total allowable time to reach MODE 4, or other applicable MODE, is not reduced. For example, if MODE 3 is reached in 10 hours, then the time allowed for reaching MODE 4 is the next 27 hours, because the total time for reaching MODE 4 is not reduced from the allowable limit of 37 hours. Therefore, if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to reach a lower MODE of operation in less than the total time allowed.

In MODES 1, 2, and 3, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 4 and 5 because the unit is already in the most restrictive Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.

Exceptions to LCO 3.0.3 are provided in instances where requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.8, "Spent Fuel Storage Pool Water Level." LCO 3.7.8 has an Applicability of "During movement of irradiated fuel

LCO 3.0.3 (continued)

assemblies in the spent fuel storage pool." Therefore, this LCO can be applicable in any or all MODES. If the LCO and the Required Actions of LCO 3.7.8 are not met while in MODE 1, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.8 of "Suspend movement of fuel assemblies in the spent fuel storage pool" is the appropriate Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications.

LCO 3.0.4

LCO 3.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an LCO is not met. It precludes placing the unit in a MODE or other specified condition stated in that Applicability (e.g., Applicability desired to be entered) when the following exist:

- a. Unit conditions are such that the requirements of the LCO would not be met in the Applicability desired to be entered; and
- b. Continued noncompliance with the LCO requirements, if the Applicability were entered, would result in the unit being required to exit the Applicability desired to be entered to comply with the Required Actions.

Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions. The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

The provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability

LCO 3.0.4 (continued)

that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown.

Exceptions to LCO 3.0.4 are stated in the individual Specifications. The exceptions allow entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered do not provide for continued operation for an unlimited period of time. Exceptions may apply to all the ACTIONS or to a specific Required Action of a Specification.

Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by SR 3.0.1. Therefore, changing MODES or other specified conditions while in an ACTIONS Condition, either in compliance with LCO 3.0.4 or where an exception to LCO 3.0.4 is stated, is not a violation of SR 3.0.1 or SR 3.0.4 for those Surveillances that do not have to be performed due to the associated inoperable equipment. However, SRs must be met to ensure OPERABLLITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected LCO.

LCO 3.0.4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4, or MODE 1 from MODE 2. Furthermore, LCO 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of LCO 3.0.4 do not apply in MODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual specifications sufficiently define the remedial measures to be taken.

LCO 3.0.5

LCO 3.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate:

LCO 3.0.5 (continued)

- a. The OPERABILITY of the equipment being returned to service; `or
- b. The OPERABILITY of other equipment.

The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Specification does not provide time to perform any other preventive or corrective maintenance.

An example of demonstrating the OPERABILITY of the equipment being returned to service is reopening a containment isolation valve that has been closed to comply with Required Actions and must be reopened to perform the required testing.

An example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the same trip system.

LCO 3.0.6

LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system's LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the plant is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions.

When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be

LCO 3.0.6 (continued)

inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCO's Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the plant is maintained in a safe condition in the support system's Required Actions.

However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2.

Specification 5.5.11, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6.

Cross division checks to identify a loss of safety function for those support systems that support safety systems are required. The cross division check verifies that the supported systems of the redundant OPERABLE support system are OPERABLE, thereby ensuring safety function is retained. If this evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.

LCO 3.0.6 (continued)

This loss of safety function does not require the assumption of additional single failures or loss of offsite power. Since operation is being restricted in accordance with the ACTIONS of the support system, any resulting temporary loss of redundancy or single failure protection is taken into account. Similarly, the ACTIONS for inoperable offsite circuit(s) and inoperable diesel generator(s) provide the necessary restriction for cross division inoperabilities. This explicit cross division verification for inoperable AC electrical power sources also acknowledges that supported system(s) are not declared inoperable solely as a result of inoperability of a normal or emergency electrical power source (refer to the definition of OPERABLE — OPERABILITY).

When a loss of safety function is determined to exist, and the SFDP requires entry into the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists, consideration must be given to the specific type of function affected. Where a loss of function is solely due to a single Technical Specification support system (e.g., loss of automatic start due to inoperable instrumentation, or loss of pump suction source due to low tank level) the appropriate LCO is the LCO for the support system. The ACTIONS for a support system LCO adequately addresses the inoperabilities of that system without reliance on entering its supported system LCO. When the loss of function is the result of multiple support systems, the appropriate LCO is the LCO for the supported system.

LCO 3.0.7

There are certain special tests and operations required to be performed at various times over the life of the unit. These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Special Operations LCOs in Section 3.10 allow specified TS requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed if required to comply with the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the MODE or other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in effect.

LCO 3.0.7 (continued)

The Applicability of a Special Operations LCO represents a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Special Operations LCOs is optional. A special operation may be performed either under the provisions of the appropriate Special Operations LCO or under the other applicable TS requirements. If it is desired to perform the special operation under the provisions of the Special Operations LCO, the requirements of the Special Operations LCO shall be followed. When a Special Operations LCO requires another LCO to be met, only the requirements of the LCO statement are required to be met regardless of that LCO's Applicability (i.e., should the requirements of this other LCO not be met, the ACTIONS of the Special Operations LCO apply, not the ACTIONS of the other LCO). However, there are instances where the Special Operations LCO's ACTIONS may direct the other LCOs' ACTIONS be met. The Surveillances of the other LCO are not required to be met, unless specified in the Special Operations LCO. If conditions exist such that the Applicability of any other LCO is met, all the other LCO's requirements (ACTIONS and SRs) are required to be met concurrent with the requirements of the Special Operations LCO.

LCO 3.0.8

LCO 3.0.8 establishes the applicability of each Specification to both Unit 1 and Unit 2 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified in the appropriate section of the Specification (e.g., Applicability, Surveillance, etc.) with parenthetical reference, Notes, or other appropriate presentation within the body of the requirement.

B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

BASES

SRs

SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications in Sections 3.1 through 3.10 and apply at all times, unless otherwise stated.

SR 3.0.1

SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO.

Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when:

- a. The systems or components are known to be inoperable, although still meeting the SRs; or
- b. The requirements of the Surveillance(s) are known to be not met between required Surveillance performances.

Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of a Specification.

Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR.

SR 3.0.1 (continued)

Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.

Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.

Some examples of this process are:

- a. Control Rod Drive maintenance during refueling that requires scram testing at \geq 800 psig. However, if other appropriate testing is satisfactorily completed and the scram time testing of SR 3.1.4.3 is satisfied, the control rod can be considered OPERABLE. This allows startup to proceed to reach 800 psig to perform other necessary testing.
- b. High pressure coolant injection (HPCI) maintenance during shutdown that requires system functional tests at a specified pressure. Provided other appropriate testing is satisfactorily completed, startup can proceed with HPCI considered OPERABLE. This allows operation to reach the specified pressure to complete the necessary post maintenance testing.

SR 3.0.2

SR 3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per..." interval.

SR 3.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g., transient conditions or other ongoing Surveillance or maintenance activities).

The 25% extension does not significantly degrade the reliability that results from performing the Surveillance at its specified Frequency. This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs. The exceptions to SR 3.0.2 are those Surveillances for which the 25% extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. The requirements of regulations take precedence over the TS. Therefore, when a test interval is specified in the regulations, the test interval cannot be extended by the TS, and the SR includes a Note in the Frequency stating "SR 3.0.2 is not applicable."

As stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action, whether it is a particular Surveillance or some other remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner.

The provisions of SR 3.0.2 are not intended to be used repeatedly merely as an operational convenience to extend Surveillance intervals (other than those consistent with

SR 3.0.2 (continued)

refueling intervals) or periodic Completion Time intervals beyond those specified.

SR 3.0.3

SR 3.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a Surveillance has not been completed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is less, applies from the point in time that it is discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified Frequency was not met. This delay period provides adequate time to complete Surveillances that have been missed. This delay period permits the completion of a Surveillance before complying with Required Actions or other remedial measures that might preclude completion of the Surveillance.

The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the requirements.

When a Surveillance with a Frequency based not on time intervals, but upon specified unit conditions or operational situations, is discovered not to have been performed when specified, SR 3.0.3 allows the full delay period of 24 hours to perform the Surveillance.

SR 3.0.3 also provides a time limit for completion of Surveillances that become applicable as a consequence of MODE changes imposed by Required Actions.

Failure to comply with specified Frequencies for SRs is expected to be an infrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used as an operational convenience to extend Surveillance intervals.

SR 3.0.3 (continued)

If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance.

Completion of the Surveillance within the delay period allowed by this Specification, or within the Completion Time of the ACTIONS, restores compliance with SR 3.0.1.

SR 3.0.4

SR 3.0.4 establishes the requirement that all applicable SRs must be met before entry into a MODE or other specified condition in the Applicability.

This Specification ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit.

The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.

However, in certain circumstances, failing to meet an SR will not result in SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed per SR 3.0.1, which states that Surveillances do not have to be performed on inoperable equipment. When equipment is inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency,

SR 3.0.4 (continued)

on equipment that is inoperable, does not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the LCO is not met in this instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes.

The provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown.

The precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveillances when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO Applicability would have its Frequency specified such that it is not "due" until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of SRs' annotation is found in Section 1.4, Frequency.

SR 3.0.4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4, or MODE 1 from MODE 2. Furthermore, SR 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of SR 3.0.4 do not apply in MODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.

BASES (continued)

SR 3.0.5

SR 3.0.5 establishes the applicability of each Surveillance to both Unit 1 and Unit 2 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified with parenthetical reference, Notes, or other appropriate presentation within the SR.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.1 SHUTDOWN MARGIN (SDM)

BASES

BACKGROUND

SDM requirements are specified to ensure:

- a. The reactor can be made subcritical from all operating conditions and transients and Design Basis Events;
- b. The reactivity transients associated with postulated accident conditions are controllable within acceptable limits; and
- c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition.

These requirements are satisfied by the control rods, as described in UFSAR, Sections 3.1.5 and 4.6.2.1 (Ref. 1), which can compensate for the reactivity effects of the fuel and water temperature changes experienced during all operating conditions.

APPLICABLE SAFETY ANALYSES

Having sufficient SDM assures that the reactor will become and remain subcritical after all design basis accidents and transients. For example, SDM is assumed as an initial condition for the control rod removal error during refueling (Ref. 2) accident. The analysis of this reactivity insertion event assumes the refueling interlocks are OPERABLE when the reactor is in the refueling mode of operation. These interlocks prevent the withdrawal of more than one control rod from the core during refueling. (Special consideration and requirements for multiple control rod withdrawal during refueling are covered in Special Operations LCO 3.10.5, "Multiple Control Rod Withdrawal-Refueling.") The analysis assumes this condition is acceptable since the core will be shut down with the highest worth control rod withdrawn, if adequate SDM has been demonstrated.

Prevention or mitigation of positive reactivity insertion events is necessary to limit the energy deposition in the fuel, thereby preventing significant fuel damage, which

BASES

APPLICABLE SAFETY ANALYSES (continued)

could result in undue release of radioactivity. Adequate SDM ensures inadvertent criticalities do not cause significant fuel damage.

SDM satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LC0

The specified SDM limit accounts for the uncertainty in the demonstration of SDM by testing. Separate SDM limits are provided for testing where the highest worth control rod is determined analytically or by measurement. This is due to the reduced uncertainty in the SDM test when the highest worth control rod is determined by measurement. When SDM is demonstrated by calculations not associated with a test (e.g., to confirm SDM during the fuel loading sequence), additional margin is included to account for uncertainties in the calculation. To ensure adequate SDM, a design margin is included to account for uncertainties in the design calculations (Ref. 3).

APPLICABILITY

In MODES 1 and 2, SDM must be provided to assure shutdown capability. In MODES 3 and 4, SDM is required to ensure the reactor will be held subcritical with margin for a single withdrawn control rod. SDM is required in MODE 5 to prevent an open vessel, inadvertent criticality during the withdrawal of a single control rod from a core cell containing one or more fuel assemblies (Ref. 2).

ACTIONS

A.1

With SDM not within the limits of the LCO in MODE 1 or 2, SDM must be restored within 6 hours. Failure to meet the specified SDM may be caused by a control rod that cannot be inserted. The allowed Completion Time of 6 hours is acceptable, considering that the reactor can still be shut down, assuming no failures of additional control rods to insert, and the low probability of an event occurring during this interval.

ACTIONS (continued)

<u>B.1</u>

If the SDM cannot be restored, the plant must be brought to MODE 3 in 12 hours, to prevent the potential for further reductions in available SDM (e.g., additional stuck control rods). The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

C.1

With SDM not within limits in MODE 3, the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are fully inserted. This action results in the least reactive condition for the core.

D.1, D.2, D.3, and D.4

With SDM not within limits in MODE 4, the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are fully inserted. This action results in the least reactive condition for the core. Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least one Standby Gas Treatment (SGT) subsystem is OPERABLE; and secondary containment isolation capability is available in each associated secondary containment penetration flow path not isolated that is assumed to be isolated to mitigate radioactivity releases (i.e., at least one secondary containment isolation valve and associated instrumentation are OPERABLE, or other acceptable administrative controls to assure isolation capability). These administrative controls consist of stationing a dedicated operator, who is in continuous communication with the control room, at the In this way, the controls of the isolation device. penetration can be rapidly isolated when a need for secondary containment isolation is indicated. This (ensuring components are OPERABLE) may be performed as an

ACTIONS

D.1, D.2, D.3, and D.4 (continued)

administrative check, by examining logs or other information, to determine if the components are out of service for maintenance or other reasons. It is not necessary to perform the surveillances needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, SRs may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are OPERABLE.

E.1, E.2, E.3, E.4, and E.5

With SDM not within limits in MODE 5, the operator must immediately suspend CORE ALTERATIONS that could reduce SDM (e.g., insertion of fuel in the core or the withdrawal of control rods). Suspension of these activities shall not preclude completion of movement of a component to a safe condition. Inserting control rods or removing fuel from the core will reduce the total reactivity and are therefore excluded from the suspended actions.

Action must also be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies have been fully inserted. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and therefore do not have to be inserted.

Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least one SGT subsystem is OPERABLE; and secondary containment isolation capability is available in each associated secondary containment penetration flow path not isolated that is assumed to be isolated to mitigate radioactivity releases (i.e., at least one secondary containment isolation valve and associated instrumentation are OPERABLE, or other acceptable administrative controls to

BASES

ACTIONS

E.1, E.2, E.3, E.4, and E.5 (continued)

assure isolation capability). These administrative controls consist of stationing a dedicated operator, who is in continuous communication with the control room. at the controls of the isolation device. In this way, the penetration can be rapidly isolated when a need for secondary containment isolation is indicated. This (ensuring components are OPERABLE) may be performed as an administrative check, by examining logs or other information, to determine if the components are out of service for maintenance or other reasons. It is not necessary to perform the Surveillances as needed to demonstrate the OPERABILITY of the components. If, however, any required component is inoperable, then it must be restored to OPERABLE status. In this case, SRs may need to be performed to restore the component to OPERABLE status. Action must continue until all required components are OPFRABLE.

SURVEILLANCE REQUIREMENTS

SR 3.1.1.1

Adequate SDM must be verified to ensure that the reactor can be made subcritical from any initial operating condition. This can be accomplished by a test, an evaluation, or a combination of the two. Adequate SDM is demonstrated by testing before or during the first startup after fuel movement, shuffling within the reactor pressure vessel, or control rod replacement. Control rod replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another core location. Since core reactivity will vary during the cycle as a function of fuel depletion and poison burnup, the beginning of cycle (BOC) test must also account for changes in core reactivity during the cycle. Therefore, to obtain the SDM, the initial measured value must be increased by an adder, "R", which is the difference between the calculated value of maximum core reactivity during the operating cycle and the calculated BOC core reactivity. If the value of R is negative (that is, BOC is the most reactive point in the cycle), no correction to the BOC measured value is required (Refs. 3 and 4). For

SURVEILLANCE REQUIREMENTS

SR 3.1.1.1 (continued)

the SDM demonstrations that rely solely on calculation of the highest worth control rod, additional margin (0.10% $\Delta k/k$) must be added to the SDM limit of 0.28% $\Delta k/k$ to account for uncertainties in the calculation.

The SDM may be demonstrated during an in-sequence control rod withdrawal, in which the highest worth control rod is analytically determined, or during local criticals, where the highest worth control rod is determined by testing.

Local critical tests require the withdrawal of out of sequence control rods. This testing would therefore require bypassing of the rod worth minimizer to allow the out of sequence withdrawal, and therefore additional requirements must be met (see LCO 3.10.6, "Control Rod Testing-Operating").

The Frequency of 4 hours after reaching criticality is allowed to provide a reasonable amount of time to perform the required calculations and have appropriate verification.

During MODES 3 and 4, analytical calculation of SDM may be used to assure the requirements of SR 3.1.1.1 are met. During MODE 5, adequate SDM is required to ensure that the reactor does not reach criticality during control rod withdrawals. An evaluation of each in-vessel fuel movement during fuel loading (including shuffling fuel within the core) is required to ensure adequate SDM is maintained during refueling. This evaluation ensures that the intermediate loading patterns are bounded by the safety analyses for the final core loading pattern. For example, bounding analyses that demonstrate adequate SDM for the most reactive configurations during the refueling may be performed to demonstrate acceptability of the entire fuel movement sequence. These bounding analyses include additional margins to the associated uncertainties. Spiral offload/reload sequences inherently satisfy the SR, provided the fuel assemblies are reloaded in the same configuration analyzed for the new cycle. Removing fuel from the core will always result in an increase in SDM.

BASES (continued)

REFERENCES

- 1. UFSAR, Sections 3.1.5 and 4.6.2.1.
- 2. UFSAR, Section 15.4.1.
- 3. UFSAR, Section 4.3.2.1.3.
- 4. NEDE-24011-P-A, "General Electric Standard Application for Reactor Fuel," (as specified in Technical Specification 5.6.5).

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.2 Reactivity Anomalies

BASES

BACKGROUND

In accordance with UFSAR, Sections 3.1.5.1, 3.1.5.5, and 3.1.5.6 (Ref. 1), reactivity shall be controllable such that subcriticality is maintained under cold conditions and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, Reactivity Anomalies is used as a measure of the predicted versus measured core reactivity during power operation. The continual confirmation of core reactivity is necessary to ensure that the Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity anomaly could be the result of unanticipated changes in fuel reactivity or control rod worth or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") in assuring the reactor can be brought safely to cold, subcritical conditions.

When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers, producing zero net reactivity.

In order to achieve the required fuel cycle energy output, the uranium enrichment in the new fuel loading and the fuel loaded in the previous cycles provide excess positive reactivity beyond that required to sustain steady state operation at the beginning of cycle (BOC). When the reactor is critical at RTP and operating moderator temperature, the excess positive reactivity is compensated by burnable

BACKGROUND (continued)

absorbers (e.g., gadolinia), control rods, and whatever neutron poisons (mainly xenon and samarium) are present in the fuel.

The predicted core reactivity, as represented by k effective (k_{eff}) is calculated by a 3D core simulator code as a function of cycle exposure. This calculation is performed for projected operating states and conditions throughout the cycle. The core reactivity is determined from k_{eff} for actual plant conditions and is then compared to the predicted value for the cycle exposure.

APPLICABLE SAFETY ANALYSES

Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations (Ref. 2). In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod drop accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity anomaly provides additional assurance that the nuclear methods provide an accurate representation of the core reactivity.

The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted core $K_{\rm eff}$ for identical core conditions at BOC do not reasonably agree, then the assumptions used in the reload cycle design analysis or the calculation models used to predict core $k_{\rm eff}$ may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC, then the prediction may be normalized to the measured value. Thereafter, any significant deviations in the measured core $k_{\rm eff}$ from the predicted core $k_{\rm eff}$ that develop during fuel depletion may be an indication that the assumptions of the DBA and transient analyses are no longer valid, or that an unexpected change in core conditions has occurred.

Reactivity Anomalies satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

BASES (continued)

LC0

The reactivity anomaly limit is established to ensure plant operation is maintained within the assumptions of the safety analyses. Large differences between monitored and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the "Nuclear Design Methodology" are larger than expected. A limit on the difference between the monitored and the predicted core $k_{\rm eff}$ of \pm 1% $\Delta k/k$ has been established based on engineering judgment. A > 1% deviation in reactivity from that predicted is larger than expected for normal operation and should therefore be evaluated.

APPLICABILITY

In MODE 1, most of the control rods are withdrawn and steady state operation is typically achieved. Under these conditions, the comparison between predicted and monitored core reactivity provides an effective measure of the reactivity anomaly. In MODE 2, control rods are typically being withdrawn during a startup. In MODES 3 and 4, all control rods are fully inserted and therefore the reactor is in the least reactive state, where monitoring core reactivity is not necessary. In MODE 5, fuel loading results in a continually changing core reactivity. SDM requirements (LCO 3.1.1) ensure that fuel movements are performed within the bounds of the safety analysis, and an SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, shuffling). The SDM test, required by LCO 3.1.1, provides a direct comparison of the predicted and monitored core reactivity at cold conditions; therefore, Reactivity Anomalies is not required during these conditions.

ACTIONS

<u>A.1</u>

Should an anomaly develop between measured and predicted core reactivity, the core reactivity difference must be restored to within the limit to ensure continued operation is within the core design assumptions. Restoration to within the limit could be performed by an evaluation of the core design and safety analysis to determine the reason for the anomaly. This evaluation normally reviews the core conditions to determine their consistency with input to design calculations. Measured core and process parameters

<u>(continued)</u>

ACTIONS

A.1 (continued)

are also normally evaluated to determine that they are within the bounds of the safety analysis, and safety analysis calculational models may be reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 72 hours is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis.

B.1

If the core reactivity cannot be restored to within the 1% Δ k/k limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.2.1

Verifying the reactivity difference between the monitored and predicted core k_{eff} is within the limits of the LCO provides added assurance that plant operation is maintained within the assumptions of the DBA and transient analyses. The Core Monitoring System calculates the core k_{eff} for the reactor conditions obtained from plant instrumentation. A comparison of the monitored core k_{eff} to the predicted core k_{eff} at the same cycle exposure is used to calculate the reactivity difference. The comparison is required when the core reactivity has potentially changed by a significant amount. This may occur following a refueling in which new fuel assemblies are loaded, fuel assemblies are shuffled within the core, or control rods are replaced or shuffled. Control rod replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another core location. Also, core reactivity changes during the cycle. The 24 hour interval after reaching equilibrium

SURVEILLANCE REQUIREMENTS

SR 3.1.2.1 (continued)

conditions following a startup is based on the need for equilibrium xenon concentrations in the core, such that an accurate comparison between the monitored and predicted core k_{eff} can be made. For the purposes of this SR, the reactor is assumed to be at equilibrium conditions when steady state operations (no control rod movement or core flow changes) at \geq 75% RTP have been obtained. The 1000 MWD/T Frequency was developed, considering the relatively slow change in core reactivity with exposure and operating experience related to variations in core reactivity. This comparison requires the core to be operating at power levels which minimize the uncertainties and measurement errors, in order to obtain meaningful results. Therefore, the comparison is only done when in MODE 1. The core weight, tons(T) in MWD/T, reflects metric tons.

REFERENCES

- 1. UFSAR, Sections 3.1.5.1, 3.1.5.5, and 3.1.5.6.
- 2. UFSAR, Chapter 15.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.3 Control Rod OPERABILITY

BASES

BACKGROUND

Control rods are components of the control rod drive (CRD) System, which is the primary reactivity control system for the reactor. In conjunction with the Reactor Protection System, the CRD System provides the means for the reliable control of reactivity changes to ensure under conditions of normal operation, including anticipated operational occurrences, that specified acceptable fuel design limits are not exceeded. In addition, the control rods provide the capability to hold the reactor core subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the CRD System. The CRD System is designed to satisfy the requirements of UFSAR, Sections 3.1.5.1, 3.1.5.2, 3.1.5.3, 3.1.5.4, 3.1.5.5, and 3.1.5.6 (Ref. 1).

The CRD System consists of 177 locking piston control rod drive mechanisms (CRDMs) and a hydraulic control unit for each drive mechanism. The locking piston type CRDM is a double acting hydraulic piston, which uses contaminated condensate storage tank, fuel pool reject, or condensate water as the operating fluid. Accumulators provide additional energy for scram. An index tube and piston, coupled to the control rod, are locked at fixed increments by a collet mechanism. The collet fingers engage notches in the index tube to prevent unintentional withdrawal of the control rod, but without restricting insertion.

This Specification, along with LCO 3.1.4, "Control Rod Scram Times," LCO 3.1.5, "Control Rod Scram Accumulators," and LCO 3.1.6, "Rod Pattern Control," ensure that the performance of the control rods in the event of a Design Basis Accident (DBA) or transient meets the assumptions used in the safety analyses of References 2, 3, and 4.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in the evaluations involving control rods are presented in Reference 5. The control rods provide the primary means for rapid reactivity control (reactor scram), for maintaining

APPLICABLE SAFETY ANALYSES (continued)

the reactor subcritical and for limiting the potential effects of reactivity insertion events caused by malfunctions in the CRD System.

The capability to insert the control rods provides assurance that the assumptions for scram reactivity in the DBA and transient analyses are not violated. Since the SDM ensures the reactor will be subcritical with the highest worth control rod withdrawn (assumed single failure), the additional failure of a second control rod to insert, if required, could invalidate the demonstrated SDM and potentially limit the ability of the CRD System to hold the reactor subcritical. If the control rod is stuck at an inserted position and becomes decoupled from the CRD, a control rod drop accident (CRDA) can possibly occur. Therefore, the requirement that all control rods be OPERABLE ensures the CRD System can perform its intended function.

The control rods also protect the fuel from damage which could result in release of radioactivity. The limits protected are the MCPR Safety Limit (SL) (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)"), the 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)," and LCO 3.2.4, "Average Power Range Monitor (APRM) Gain and Setpoint"), and the fuel design limit (see Bases for LCO 3.1.6, "Rod Pattern Control") during reactivity insertion events.

The negative reactivity insertion (scram) provided by the CRD System provides the analytical basis for determination of plant thermal limits and provides protection against fuel design limits during a CRDA. The Bases for LCO 3.1.4, LCO 3.1.5, and LCO 3.1.6 discuss in more detail how the SLs are protected by the CRD System.

Control rod OPERABILITY satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of an individual control rod is based on a combination of factors, primarily, the scram insertion times, the control rod coupling integrity, and the ability

LCO (continued)

to determine the control rod position. Accumulator OPERABILITY is addressed by LCO 3.1.5. The associated scram accumulator status for a control rod only affects the scram insertion times; therefore, an inoperable accumulator does not immediately require declaring a control rod inoperable. Although not all control rods are required to be OPERABLE to satisfy the intended reactivity control requirements, strict control over the number and distribution of inoperable control rods is required to satisfy the assumptions of the DBA and transient analyses.

OPERABILITY requirements for control rods also include correct assembly of the CRD housing supports.

APPLICABILITY

In MODES 1 and 2, the control rods are assumed to function during a DBA or transient and are therefore required to be OPERABLE in these MODES. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod OPERABILITY during these conditions. Control rod requirements in MODE 5 are located in LCO 3.9.5, "Control Rod OPERABILITY - Refueling."

ACTIONS

The ACTIONS Table is modified by a Note indicating that a separate Condition entry is allowed for each control rod. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable control rod. Complying with the Required Actions may allow for continued operation, and subsequent inoperable control rods are governed by subsequent Condition entry and application of associated Required Actions.

A.1, A.2, A.3, and A.4

A control rod is considered stuck if it will not insert by either CRD drive water or scram pressure. With a fully inserted control rod stuck, no actions are required as long as the control rod remains fully inserted. The Required Actions are modified by a Note, which allows the rod worth minimizer (RWM) to be bypassed if required to allow continued operation. LCO 3.3.2.1, "Control Rod Block Instrumentation," provides additional requirements when the

ACTIONS

A.1, A.2, A.3, and A.4 (continued)

RWM is bypassed to ensure compliance with the CRDA analysis. With one withdrawn control rod stuck, the local scram reactivity rate assumptions may not be met if the stuck control rod separation criteria are not met. Therefore, a verification that the separation criteria are met must be performed immediately. The stuck control rod separation criteria are not met if: a) the stuck control rod occupies a location adjacent to two "slow" control rods, b) the stuck control rod occupies a location adjacent to one "slow" control rod, and the one "slow" control rod is also adjacent to another "slow" control rod, or c) if the stuck control rod occupies a location adjacent to one "slow" control rod when there is another pair of "slow" control rods elsewhere in the core adjacent to one another. The description of "slow" control rods is provided in LCO 3.1.4 "Control Rod Scram Times." In addition, the associated control rod drive must be disarmed in 2 hours. The allowed Completion Time of 2 hours is acceptable, considering the reactor can still be shut down, assuming no additional control rods fail to insert, and provides a reasonable time to perform the Required Action in an orderly manner. The control rod must be isolated from both scram and normal insert and withdraw pressure. Isolating the control rod from scram and normal insert and withdraw pressure prevents damage to the CRDM or reactor internals. The control rod isolation method should also ensure cooling water to the CRD is maintained.

Monitoring of the insertion capability of each withdrawn control rod must also be performed within 24 hours from discovery of Condition A concurrent with THERMAL POWER greater than the low power setpoint (LPSP) of the RWM. SR 3.1.3.2 and SR 3.1.3.3 perform periodic tests of the control rod insertion capability of withdrawn control rods. Testing each withdrawn control rod ensures that a generic problem does not exist. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." The Required Action A.3 Completion Time only begins upon discovery of Condition A concurrent with THERMAL POWER greater than the actual LPSP of the RWM since the notch insertions may not be compatible with the requirements of rod pattern control (LCO 3.1.6) and

ACTIONS

A.1, A.2, A.3, and A.4 (continued)

the RWM (LCO 3.3.2.1). The allowed Completion Time provides a reasonable time to test the control rods, considering the potential for a need to reduce power to perform the tests.

To allow continued operation with a withdrawn control rod stuck, an evaluation of adequate SDM is also required within 72 hours. Should a DBA or transient require a shutdown, to preserve the single failure criterion, an additional control rod would have to be assumed to fail to insert when required. Therefore, the original SDM demonstration may not be valid. The SDM must therefore be evaluated (by measurement or analysis) with the stuck control rod at its stuck position and the highest worth OPERABLE control rod assumed to be fully withdrawn.

The allowed Completion Time of 72 hours to verify SDM is adequate, considering that with a single control rod stuck in a withdrawn position, the remaining OPERABLE control rods are capable of providing the required scram and shutdown reactivity. Failure to reach MODE 4 is only likely if an additional control rod adjacent to the stuck control rod also fails to insert during a required scram. Even with the postulated additional single failure of an adjacent control rod to insert, sufficient reactivity control remains to reach MODE 3 conditions.

B.1

With two or more withdrawn control rods stuck, the plant must be brought to MODE 3 within 12 hours. The occurrence of more than one control rod stuck at a withdrawn position increases the probability that the reactor cannot be shut down if required. Insertion of all insertable control rods eliminates the possibility of an additional failure of a control rod to insert. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

ACTIONS (continued)

C.1 and C.2

With one or more control rods inoperable for reasons other than being stuck in the withdrawn position, operation may continue, provided the control rods are fully inserted within 3 hours and disarmed (electrically or hydraulically) within 4 hours. Inserting a control rod ensures the shutdown and scram capabilities are not adversely affected. The control rod is disarmed to prevent inadvertent withdrawal during subsequent operations. The control rods can be hydraulically disarmed by closing the drive water and exhaust water isolation valves. The control rods can be electrically disarmed by disconnecting power from all four directional control valve solenoids. Required Action C.1 is modified by a Note, which allows the RWM to be bypassed if required to allow insertion of the inoperable control rods and continued operation. LCO 3.3.2.1 provides additional requirements when the RWM is bypassed to ensure compliance with the CRDA analysis.

The allowed Completion Times are reasonable, considering the small number of allowed inoperable control rods, and provide time to insert and disarm the control rods in an orderly manner and without challenging plant systems.

D.1 and D.2

Out of sequence control rods may increase the potential reactivity worth of a dropped control rod during a CRDA. At \leq 10% RTP, the analyzed rod position sequence analysis (Refs. 6 and 7) requires inserted control rods not in compliance with the analyzed rod position sequence to be separated by at least two OPERABLE control rods in all directions, including the diagonal (i.e., all other control rods in a five-by-five array centered on the inoperable control rod are OPERABLE). Therefore, if two or more inoperable control rods are not in compliance with the analyzed rod position sequence and not separated by at least two OPERABLE control rods in all directions, action must be taken to restore compliance with the analyzed rod position sequence or restore the control rods to OPERABLE status. Condition D is modified by a Note indicating that the Condition is not applicable when > 10% RTP, since the analyzed rod position sequence is not required to be

ACTIONS

D.1 and D.2 (continued)

followed under these conditions, as described in the Bases for LCO 3.1.6. The allowed Completion Time of 4 hours is acceptable, considering the low probability of a CRDA occurring.

E.1

If any Required Action and associated Completion Time of Condition A, C, or D are not met, or there are nine or more inoperable control rods, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. This ensures all insertable control rods are inserted and places the reactor in a condition that does not require the active function (i.e., scram) of the control rods. The number of control rods permitted to be inoperable when operating above 10% RTP (e.g., no CRDA considerations) could be more than the value specified, but the occurrence of a large number of inoperable control rods could be indicative of a generic problem, and investigation and resolution of the potential problem should be undertaken. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.3.1

The position of each control rod must be determined to ensure adequate information on control rod position is available to the operator for determining control rod OPERABILITY and controlling rod patterns. Control rod position may be determined by the use of OPERABLE position indicators, by moving control rods to a position with an OPERABLE indicator (full-in, full-out, or numeric indicators), by verifying the indicators one notch "out" and one notch "in" are OPERABLE, or by the use of other appropriate methods. The 24 hour Frequency of this SR is based on operating experience related to expected changes in control rod position and the availability of control rod position indications in the control room.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.3.2 and SR 3.1.3.3

Control rod insertion capability is demonstrated by inserting each partially or fully withdrawn control rod at least one notch and observing that the control rod moves. The control rod may then be returned to its original position. This ensures the control rod is not stuck and is free to insert on a scram signal. These Surveillances are not required when THERMAL POWER is less than or equal to the actual LPSP of the RWM, since the notch insertions may not be compatible with the requirements of the analyzed rod position sequence (LCO 3.1.6) and the RWM (LCO 3.3.2.1). The 7 day Frequency of SR 3.1.3.2 is based on operating experience related to the changes in CRD performance and the ease of performing notch testing for fully withdrawn control rods. Partially withdrawn control rods are tested at a 31 day Frequency, based on the potential power reduction required to allow the control rod movement and considering the large testing sample of SR 3.1.3.2. Furthermore, the 31 day Frequency takes into account operating experience related to changes in CRD performance. At any time, if a control rod is immovable, a determination of that control rod's trippability (OPERABILITY) must be made and appropriate action taken.

These SRs are modified by Notes that allow 7 days and 31 days respectively, after withdrawal of the control rod and increasing power to above the LPSP, to perform the Surveillance. This acknowledges that the control rod must be first withdrawn and THERMAL POWER must be increased to above the LPSP before performance of the Surveillance, and therefore, the Notes avoid potential conflicts with SR 3.0.3 and SR 3.0.4.

SR 3.1.3.4

Verifying that the scram time for each control rod to 90% insertion is ≤ 7 seconds provides reasonable assurance that the control rod will insert when required during a DBA or transient, thereby completing its shutdown function. This SR is performed in conjunction with the control rod scram time testing of SR 3.1.4.1, SR 3.1.4.2, SR 3.1.4.3, and SR 3.1.4.4. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.1.1, "Reactor Protection System (RPS)

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

<u>SR 3.1.3.4</u> (continued)

Instrumentation," and the functional testing of SDV vent and drain valves in LCO 3.1.8, "Scram Discharge Volume (SDV) Vent and Drain Valves," overlap this Surveillance to provide complete testing of the assumed safety function. The associated Frequencies are acceptable, considering the more frequent testing performed to demonstrate other aspects of control rod OPERABILITY and operating experience, which shows scram times do not significantly change over an operating cycle.

SR 3.1.3.5

Coupling verification is performed to ensure the control rod is connected to the CRDM and will perform its intended function when necessary. The Surveillance requires verifying that a control rod does not go to the withdrawn overtravel position when it is fully withdrawn. The overtravel position feature provides a positive check on the coupling integrity since only an uncoupled CRD can reach the overtravel position. The verification is required to be performed any time a control rod is withdrawn to the "full out" position (notch position 48) or prior to declaring the control rod OPERABLE after work on the control rod or CRD System that could affect coupling. This includes control rods inserted one notch and then returned to the "full out" position during the performance of SR 3.1.3.2. This Frequency is acceptable, considering the low probability that a control rod will become uncoupled when it is not being moved and operating experience related to uncoupling events.

REFERENCES

- 1. UFSAR, Sections 3.1.5.1, 3.1.5.2, 3.1.5.3, 3.1.5.4, 3.1.5.5, and 3.1.5.6.
- 2. UFSAR, Section 5.2.2.3.
- 3. UFSAR, Section 6.2.1.3.2.
- 4. UFSAR, Chapter 15.

REFERENCES (continued)

- 5. UFSAR, Section 4.6.3.4.2.1.
- 6. NEDO-21231, "Banked Position Withdrawal Sequence," Section 7.2, January 1977.
- 7. NFSR-0091, Commonwealth Edison Topical Report, Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, (as specified in Technical Specification 5.6.5).

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.4 Control Rod Scram Times

BASES

BACKGROUND

The scram function of the Control Rod Drive (CRD) System controls reactivity changes during anticipated operational occurrences to ensure that specified acceptable fuel design limits are not exceeded (Ref. 1). The control rods are scrammed by positive means using hydraulic pressure exerted on the CRD piston.

When a scram signal is initiated, control air is vented from the scram valves, allowing them to open by spring action. Opening the exhaust valve reduces the pressure above the main drive piston to atmospheric pressure, and opening the inlet valve applies the accumulator or reactor pressure to the bottom of the piston. Since the notches in the index tube are tapered on the lower edge, the collet fingers are forced open by cam action, allowing the index tube to move upward without restriction because of the high differential pressure across the piston. As the drive moves upward and the accumulator pressure reduces below the reactor pressure, a ball check valve opens, letting the reactor pressure complete the scram action. If the reactor pressure is low, such as during startup, the accumulator will fully insert the control rod in the required time without assistance from reactor pressure.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the control rod scram function are presented in Reference 2. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. The resulting negative scram reactivity forms the basis for the determination of plant thermal limits (e.g., the MCPR). Other distributions of scram times (e.g., several control rods scramming slower than the average time with several control rods scramming faster than the average time) can also provide sufficient scram reactivity. Surveillance of each individual control rod's scram time ensures the scram reactivity assumed in the DBA and transient analyses can be met.

APPLICABLE SAFETY ANALYSES (continued)

The scram function of the CRD System protects the MCPR Safety Limit (SL) (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)") and the 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR), and LCO 3.2.4, Average Power Range Monitor (APRM) Gain and Setpoint"), which ensure that no fuel damage will occur if these limits are not exceeded. At \geq 800 psig, the scram function is designed to insert negative reactivity at a rate fast enough to prevent the actual MCPR from becoming less than the MCPR SL, during the analyzed limiting power transient. Below 800 psig, the scram function is assumed to perform during the control rod drop accident (Ref. 3) and, therefore, also provides protection against violating fuel design limits during reactivity insertion accidents (see Bases for LCO 3.1.6, "Rod Pattern Control"). For the reactor vessel overpressure protection analysis, the scram function, along with the safety/relief valves, ensure that the peak vessel pressure is maintained within the applicable ASME Code limits.

Control rod scram times satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The scram times specified in Table 3.1.4-1 are required to ensure that the scram reactivity assumed in the DBA and transient analysis is met (Ref. 4). To account for single failures and "slow" scramming control rods, the scram times specified in Table 3.1.4-1 are faster than those assumed in the design basis analysis. The scram times have a margin that allows up to approximately 7% of the control rods (e.g., 177 x 7% \approx 12) to have scram times exceeding the specified limits (i.e., "slow" control rods) assuming a single stuck control rod (as allowed by LCO 3.1.3, "Control Rod OPERABILITY") and an additional control rod failing to scram per the single failure criterion. The scram times are specified as a function of reactor steam dome pressure to account for the pressure dependence of the scram times. The scram times are specified relative to measurements based on reed switch positions, which provide the control rod position indication. The reed switch closes ("pickup") when the index tube passes a specific location and then opens

LCO (continued)

("dropout") as the index tube travels upward. Verification of the specified scram times in Table 3.1.4-1 is accomplished through measurement and interpolation of the "pickup" or "dropout" times of reed switches associated with each of the required insertion positions. To ensure that local scram reactivity rates are maintained within acceptable limits, no more than two of the allowed "slow" control rods may occupy adjacent locations (face or diagonal).

Table 3.1.4-1 is modified by two Notes which state that control rods with scram times not within the limits of the table are considered "slow" and that control rods with scram times > 7 seconds are considered inoperable as required by SR 3.1.3.4.

This LCO applies only to OPERABLE control rods since inoperable control rods will be inserted and disarmed (LCO 3.1.3). Slow scramming control rods may be conservatively declared inoperable and not accounted for as "slow" control rods.

APPLICABILITY

In MODES 1 and 2, a scram is assumed to function during transients and accidents analyzed for these plant conditions. These events are assumed to occur during startup and power operation; therefore, the scram function of the control rods is required during these MODES. In MODES 3 and 4, the control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod scram capability during these conditions. Scram requirements in MODE 5 are contained in LCO 3.9.5, "Control Rod OPERABILITY—Refueling."

ACTIONS

<u>A.1</u>

When the requirements of this LCO are not met, the rate of negative reactivity insertion during a scram may not be within the assumptions of the safety analyses. Therefore, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating

<u>(continued)</u>

ACTIONS

A.1 (continued)

experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The four SRs of this LCO are modified by a Note stating that during a single control rod scram time surveillance, the CRD pumps shall be isolated from the associated scram accumulator. With the CRD pump isolated, (i.e., charging valve closed) the influence of the CRD pump head does not affect the single control rod scram times. During a full core scram, the CRD pump head would be seen by all control rods and would have a negligible effect on the scram insertion times.

SR 3.1.4.1

The scram reactivity used in DBA and transient analyses is based on an assumed control rod scram time. Measurement of the scram times with reactor steam dome pressure ≥ 800 psig demonstrates acceptable scram times for the transients analyzed in References 5, 6, and 7.

Maximum scram insertion times occur at a reactor steam dome pressure of approximately 800 psig because of the competing effects of reactor steam dome pressure and stored accumulator energy. Therefore, demonstration of adequate scram times at reactor steam dome pressure \geq 800 psig ensures that the measured scram times will be within the specified limits at higher pressures. Limits are specified as a function of reactor pressure to account for the sensitivity of the scram insertion times with pressure and to allow a range of pressures over which scram time testing can be performed. To ensure that scram time testing is performed within a reasonable time following a shutdown \geq 120 days or longer, control rods are required to be tested before exceeding 40% RTP following the shutdown. This Frequency is acceptable considering the additional Surveillances performed for control rod OPERABILITY, the frequent verification of adequate accumulator pressure, and the required testing of control rods affected by fuel movement within the associated core cell and by work on control rods or the CRD System.

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.4.2

Additional testing of a sample of control rods is required to verify the continued performance of the scram function during the cycle. A representative sample contains at least 10% of the control rods. The sample remains representative if no more than 20% of the control rods in the sample tested are determined to be "slow." With more than 20% of the sample declared to be "slow" per the criteria in Table 3.1.4-1, additional control rods are tested until this 20% criterion (i.e., 20% of the entire sample size) is satisfied, or until the total number of "slow" control rods (throughout the core, from all surveillances) exceeds the LCO limit. For planned testing, the control rods selected for the sample should be different for each test. Data from inadvertent scrams should be used whenever possible to avoid unnecessary testing at power, even if the control rods with data may have been previously tested in a sample. The 120 day Frequency is based on operating experience that has shown control rod scram times do not significantly change over an operating cycle. This Frequency is also reasonable based on the additional Surveillances done on the CRDs at more frequent intervals in accordance with LCO 3.1.3 and LCO 3.1.5, "Control Rod Scram Accumulators."

SR 3.1.4.3

When work that could affect the scram insertion time is performed on a control rod or the CRD System, testing must be done to demonstrate that each affected control rod retains adequate scram performance over the range of applicable reactor pressures from zero to the maximum permissible pressure. The scram testing must be performed once before declaring the control rod OPERABLE. required scram time testing must demonstrate the affected control rod is still within acceptable limits. The scram time limits for reactor pressures < 800 psig are found in the Technical Requirements Manual (Ref. 8) and are established based on a high probability of meeting the acceptance criteria at reactor pressures \geq 800 psig. Limits for \geq 800 psig are found in Table 3.1.4-1. If testing demonstrates the affected control rod does not meet these limits, but is within the 7-second limit of Table 3.1.4-1, Note 2, the control rod can be declared OPERABLE and "slow."

SURVEILLANCE REQUIREMENTS

<u>SR 3.1.4.3</u> (continued)

Specific examples of work that could affect the scram times are (but are not limited to) the following: removal of any CRD for maintenance or modification; replacement of a control rod; and maintenance or modification of a scram solenoid pilot valve, scram valve, accumulator, isolation valve or check valve in the piping required for scram.

The Frequency of once prior to declaring the affected control rod OPERABLE is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.

SR 3.1.4.4

When work that could affect the scram insertion time is performed on a control rod or CRD System, or when fuel movement within the reactor pressure vessel occurs, testing must be done to demonstrate each affected control rod is still within the limits of Table 3.1.4-1 with the reactor steam dome pressure ≥ 800 psig. Where work has been performed at high reactor pressure, the requirements of SR 3.1.4.3 and SR 3.1.4.4 can be satisfied with one test. For a control rod affected by work performed while shut down, however, a zero pressure and high pressure test may be required. This testing ensures that, prior to withdrawing the control rod for continued operation, the control rod scram performance is acceptable for operating reactor pressure conditions. Alternatively, a control rod scram test during hydrostatic pressure testing could also satisfy both criteria. When fuel movement within the reactor pressure vessel occurs, only those control rods associated with the core cells affected by the fuel movement are required to be scram time tested. During a routine refueling outage, it is expected that all control rods will be affected.

The Frequency of once prior to exceeding 40% RTP is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.

BASES (continued)

REFERENCES

- 1. UFSAR, Section 3.1.
- 2. UFSAR, Section 4.6.3.4.2.1.
- 3. UFSAR, Section 15.4.10.
- 4. Letter from R.F. Janecek (BWROG) to R.W. Starostecki (NRC), "BWR Owners Group Revised Reactivity Control System Technical Specifications," BWROG-8754, September 17, 1987.
- 5. UFSAR, Section 5.2.2.2.3.
- 6. UFSAR, Section 6.2.1.3.2.
- 7. UFSAR, Chapter 15.
- 8. Technical Requirements Manual.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.5 Control Rod Scram Accumulators

BASES

BACKGROUND

The control rod scram accumulators are part of the Control Rod Drive (CRD) System and are provided to ensure that the control rods scram under varying reactor conditions. The control rod scram accumulators store sufficient energy to fully insert a control rod at any reactor vessel pressure. The accumulator is a hydraulic cylinder with a free floating piston. The piston separates the water used to scram the control rods from the nitrogen, which provides the required energy. The scram accumulators are necessary to scram the control rods within the required insertion times of LCO 3.1.4, "Control Rod Scram Times."

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the control rod scram function are presented in Reference 1. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. OPERABILITY of each individual control rod scram accumulator, along with LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3.1.4, ensures that the scram reactivity assumed in the DBA and transient analyses can be met. The existence of an inoperable accumulator may invalidate prior scram time measurements for the associated control rod.

The scram function of the CRD System, and therefore the OPERABILITY of the accumulators, protects the MCPR Safety Limit (see Bases for SL 2.1.1, "Reactor Core SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)") and 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)," and LCO 3.2.4, "Average Power Range Monitor (APRM) Gain and Setpoint"), which ensure that no fuel damage will occur if these limits are not exceeded (see Bases for LCO 3.1.4). In addition, the scram function at low reactor vessel pressure (i.e., startup conditions) provides protection against violating fuel design limits during reactivity insertion accidents (see Bases for LCO 3.1.6, "Rod Pattern Control").

APPLICABLE SAFETY ANALYSES (continued)

Control rod scram accumulators satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of the control rod scram accumulators is required to ensure that adequate scram insertion capability exists when needed over the entire range of reactor pressures. The OPERABILITY of the scram accumulators is based on maintaining adequate accumulator pressure.

APPLICABILITY

In MODES 1 and 2, the scram function is required for mitigation of DBAs and transients, and therefore the scram accumulators must be OPERABLE to support the scram function. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod scram accumulator OPERABILITY during these conditions. Requirements for scram accumulators in MODE 5 are contained in LCO 3.9.5, "Control Rod OPERABILITY—Refueling."

ACTIONS

The ACTIONS Table is modified by a Note indicating that a separate Condition entry is allowed for each control rod scram accumulator. This is acceptable since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable accumulator. Complying with the Required Actions may allow for continued operation and subsequent inoperable accumulators governed by subsequent Condition entry and application of associated Required Actions.

A.1 and A.2

With one control rod scram accumulator inoperable and the reactor steam dome pressure ≥ 900 psig, the control rod may be declared "slow," since the control rod will still scram at the reactor operating pressure but may not satisfy the required scram times in Table 3.1.4-1. Required Action A.1 is modified by a Note indicating that declaring the control rod "slow" only applies if the associated control rod scram time was within the limits of Table 3.1.4-1 during the last

<u>(continued)</u>

ACTIONS

A.1 and A.2 (continued)

scram time Surveillance. Otherwise, the control rod may already be considered "slow" and the further degradation of scram performance with an inoperable accumulator could result in excessive scram times. In this event, the associated control rod is declared inoperable (Required Action A.2) and LCO 3.1.3 is entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function, in accordance with ACTIONS of LCO 3.1.3.

The allowed Completion Time of 8 hours is reasonable, based on the large number of control rods available to provide the scram function and the ability of the affected control rod to scram only with reactor pressure at high reactor pressures.

B.1, B.2.1, and B.2.2

With two or more control rod scram accumulators inoperable and reactor steam dome pressure ≥ 900 psig, adequate pressure must be supplied to the charging water header. With inadequate charging water pressure, all of the accumulators could become inoperable, resulting in a potentially severe degradation of the scram performance. Therefore, within 20 minutes from discovery of charging water header pressure < 940 psig concurrent with Condition B, adequate charging water header pressure must be restored. The allowed Completion Time of 20 minutes is reasonable, to place a CRD pump into service to restore the charging header pressure, if required. This Completion Time is based on the ability of the reactor pressure alone to fully insert all control rods.

The control rod may be declared "slow," since the control rod will still scram using only reactor pressure, but may not satisfy the times in Table 3.1.4-1. Required Action B.2.1 is modified by a Note indicating that declaring the control rod "slow" only applies if the associated control rod scram time is within the limits of Table 3.1.4-1 during the last scram time Surveillance. Otherwise, the control rod may already be considered "slow" and the further

ACTIONS

B.1, B.2.1, and B.2.2 (continued)

degradation of scram performance with an inoperable accumulator could result in excessive scram times. In this event, the associated control rod is declared inoperable (Required Action B.2.2) and LCO 3.1.3 entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function in accordance with ACTIONS of LCO 3.1.3.

The allowed Completion Time of 1 hour is reasonable, based on the ability of only the reactor pressure to scram the control rods and the low probability of a DBA or transient occurring while the affected accumulators are inoperable.

C.1 and C.2

With one or more control rod scram accumulators inoperable and the reactor steam dome pressure < 900 psig, the pressure supplied to the charging water header must be adequate to ensure that accumulators remain charged. With the reactor steam dome pressure < 900 psig, the function of the accumulators in providing the scram force becomes much more important since the scram function could become severely degraded during a depressurization event or at low reactor pressures. Therefore, immediately upon discovery of charging water header pressure < 940 psig, concurrent with Condition C, all control rods associated with inoperable accumulators must be verified to be fully inserted. Withdrawn control rods with inoperable accumulators may fail to scram under these low pressure conditions. The associated control rods must also be declared inoperable within 1 hour. The allowed Completion Time of 1 hour is reasonable for Required Action C.2, considering the low probability of a DBA or transient occurring during the time that the accumulator is inoperable.

D.1

The reactor mode switch must be immediately placed in the shutdown position if either Required Action and associated Completion Time associated with loss of the CRD pump (Required Actions B.1 and C.1) cannot be met. This ensures

<u>(continued)</u>

ACTIONS

D.1 (continued)

that all insertable control rods are inserted and that the reactor is in a condition that does not require the active function (i.e., scram) of the control rods. This Required Action is modified by a Note stating that the action is not applicable if all control rods associated with the inoperable scram accumulators are fully inserted, since the function of the control rods has been performed.

SURVEILLANCE REQUIREMENTS

SR 3.1.5.1

SR 3.1.5.1 requires that the accumulator pressure be checked every 7 days to ensure adequate accumulator pressure exists to provide sufficient scram force. The primary indicator of accumulator OPERABILITY is the accumulator pressure. A minimum accumulator pressure is specified, below which the capability of the accumulator to perform its intended function becomes degraded and the accumulator is considered inoperable. The minimum accumulator pressure of 940 psig is well below the expected pressure of 1100 psig (Ref. 2). Declaring the accumulator inoperable when the minimum pressure is not maintained ensures that significant degradation in scram times does not occur. The 7 day Frequency has been shown to be acceptable through operating experience and takes into account indications available in the control room.

REFERENCES

- 1. UFSAR, Section 4.6.3.4.2.1.
- 2. Letter, from E.Y. Gibo (GE) to P Chenell (ComEd), "Generic Basis for HCU Scram Accumulator Minimum Setpoint Pressure," April 10, 1998.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.6 Rod Pattern Control

BASES

BACKGROUND

Control rod patterns during startup conditions are controlled by the operator and the rod worth minimizer (RWM) (LCO 3.3.2.1, "Control Rod Block Instrumentation"), so that only specified control rod sequences and relative positions are allowed over the operating range of all control rods inserted to 10% RTP. The sequences limit the potential amount of reactivity addition that could occur in the event of a Control Rod Drop Accident (CRDA).

This Specification assures that the control rod patterns are consistent with the assumptions of the CRDA analyses of References 1. 2, and 3.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the CRDA are summarized in References 1, 2, 3, 4, and 5. CRDA analyses assume that the reactor operator follows prescribed withdrawal sequences. These sequences define the potential initial conditions for the CRDA analysis. The RWM (LCO 3.3.2.1) provides backup to operator control of the withdrawal sequences to ensure that the initial conditions of the CRDA analysis are not violated.

Prevention or mitigation of positive reactivity insertion events is necessary to limit the energy deposition in the fuel, thereby preventing significant fuel damage which could result in the undue release of radioactivity. Since the failure consequences for UO2 have been shown to be insignificant below fuel energy depositions of 300 cal/gm (Ref. 6), the fuel design limit of 280 cal/gm provides a margin of safety from significant core damage which would result in release of radioactivity (Ref. 7). Generic evaluations (Refs. 8 and 9) of a design basis CRDA (i.e., a CRDA resulting in a peak fuel energy deposition of 280 cal/gm) have shown that if the peak fuel enthalpy remains below 280 cal/gm, then the maximum reactor pressure will be less than the required ASME Code limits (Ref. 10) and the calculated offsite doses will be well within the

APPLICABLE SAFETY ANALYSES (continued)

required limits (Ref. 11). Cycle specific CRDA analyses are performed that assume eight inoperable control rods with at least two cell separation and confirm fuel energy deposition is less than 280 cal/gm.

Control rod patterns analyzed in the cycle specific analyses follow predetermined sequencing rules (analyzed rod position sequence). The analyzed rod position sequence is applicable from the condition of all control rods fully inserted to 10% RTP (Ref. 5). The control rods are required to be moved in groups, with all control rods assigned to a specific group required to be within specified banked positions (e.g., between notches 08 and 12). The banked positions are established to minimize the maximum incremental control rod worth without being overly restrictive during normal plant operation. Cycle specific analyses ensure that the 280 cal/gm fuel design limit will not be violated during a CRDA under worst case scenarios. The cycle specific analyses (Refs. 1, 2, 3, 4, and 5) also evaluate the effect of fully inserted, inoperable control rods not in compliance with the sequence, to allow a limited number (i.e., eight) and distribution of fully inserted, inoperable control rods. Specific analysis may also be performed for atypical operating conditions (e.g., fuel leaker suppression).

Rod pattern control satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

Compliance with the prescribed control rod sequences minimizes the potential consequences of a CRDA by limiting the initial conditions to those consistent with the analyzed rod position sequence. This LCO only applies to OPERABLE control rods. For inoperable control rods required to be inserted, separate requirements are specified in LCO 3.1.3, "Control Rod OPERABILITY," consistent with the allowances for inoperable control rods in the analyzed rod position sequence.

APPLICABILITY

In MODES 1 and 2, when THERMAL POWER is \leq 10% RTP, the CRDA is a Design Basis Accident and, therefore, compliance with the assumptions of the safety analysis is required. When THERMAL POWER is > 10% RTP, there is no credible control rod configuration that results in a control rod worth that could

<u>(continued)</u>

APPLICABILITY (continued)

exceed the 280 cal/gm fuel design limit during a CRDA (Refs. 4 and 5). In MODES 3 and 4, the reactor is shutdown and the control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied, therefore, a CRDA is not postulated to occur. In MODE 5, since the reactor is shut down and only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDM ensures that the consequences of a CRDA are acceptable, since the reactor will remain subcritical with a single control rod withdrawn.

ACTIONS

A.1 and A.2

With one or more OPERABLE control rods not in compliance with the prescribed control rod sequence, actions may be taken to either correct the control rod pattern or declare the associated control rods inoperable within 8 hours. Noncompliance with the prescribed sequence may be the result of "double notching," drifting from a control rod drive cooling water transient, leaking scram valves, or a power reduction to \leq 10% RTP before establishing the correct control rod pattern. The number of OPERABLE control rods not in compliance with the prescribed sequence is limited to eight, to prevent the operator from attempting to correct a control rod pattern that significantly deviates from the prescribed sequence.

Required Action A.1 is modified by a Note which allows the RWM to be bypassed to allow the affected control rods to be returned to their correct position. LCO 3.3.2.1 requires verification of control rod movement by a second licensed operator (Reactor Operator or Senior Reactor Operator) or by a task qualified member of the technical staff (e.g., a shift technical advisor or reactor engineer). This helps to ensure that the control rods will be moved to the correct position. A control rod not in compliance with the prescribed sequence is not considered inoperable except as required by Required Action A.2. The allowed Completion Time of 8 hours is reasonable, considering the restrictions on the number of allowed out of sequence control rods and the low probability of a CRDA occurring during the time the control rods are out of sequence.

ACTIONS (continued)

B.1 and B.2

If nine or more OPERABLE control rods are out of sequence, the control rod pattern significantly deviates from the prescribed sequence. Control rod withdrawal should be suspended immediately to prevent the potential for further deviation from the prescribed sequence. Control rod insertion to correct control rods withdrawn beyond their allowed position is allowed since, in general, insertion of control rods has less impact on control rod worth than withdrawals have. Required Action B.1 is modified by a Note which allows the RWM to be bypassed to allow the affected control rods to be returned to their correct position. LCO 3.3.2.1 requires verification of control rod movement by a second licensed operator (Reactor Operator or Senior Reactor Operator) or by a task qualified member of the technical staff (e.g., a shift technical advisor or reactor engineer).

When nine or more OPERABLE control rods are not in compliance with the analyzed rod position sequence, the reactor mode switch must be placed in the shutdown position within 1 hour. With the mode switch in shutdown, the reactor is shut down, and as such, does not meet the applicability requirements of this LCO. The allowed Completion Time of 1 hour is reasonable to allow insertion of control rods to restore compliance, and is appropriate relative to the low probability of a CRDA occurring with the control rods out of sequence.

SURVEILLANCE REQUIREMENTS

SR 3.1.6.1

The control rod pattern is verified to be in compliance with the analyzed rod position sequence at a 24 hour Frequency to ensure the assumptions of the CRDA analyses are met. The 24 hour Frequency was developed considering that the primary check on compliance with the analyzed rod position sequence is performed by the RWM (LCO 3.3.2.1), which provides control rod blocks to enforce the required sequence and is required to be OPERABLE when operating at \leq 10% RTP.

BASES (continued)

REFERENCES

- 1. UFSAR, Section 15.4.10.
- 2. XN-NF-80-19(P)(A), Volume 1, Supplement 2, Section 7.1 Exxon Nuclear Methodology for Boiling Water Reactor-Neutronics Methods for Design and Analysis, (as specified in Technical Specification 5.6.5).
- 3. NEDE-24011-P-A, "GE Standard Application for Reactor Fuel," (as specified in Technical Specification 5.6.5).
- 4. Letter from T.A. Pickens (BWROG) to G.C. Lainas (NRC), "Amendment 17 to General Electric Licensing Topical Report NEDE-24011-P-A," BWROG-8644, August 15, 1986.
- 5. NFSR-0091, Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, Commonwealth Edison Topical Report, (as specified in Technical Specification 5.6.5).
- 6. NUREG-0979, Section 4.2.1.3.2, April 1983.
- 7. NUREG-0800, Section 15.4.9, Revision 2, July 1981.
- 8. NEDO-21778-A, "Transient Pressure Rises Affected Fracture Toughness Requirements for Boiling Water Reactors," December 1978.
- 9. NEDO-10527, "Rod Drop Accident Analysis for Large BWRs," (including Supplements 1 and 2), March 1972.
- 10. ASME, Boiler and Pressure Vessel Code.
- 11. 10 CFR 100.11.
- 12. NEDO-21231, "Banked Position Withdrawal Sequence," January 1977.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.7 Standby Liquid Control (SLC) System

BASES

BACKGROUND

The SLC System is designed to provide the capability of bringing the reactor, at any time in a fuel cycle, from full power and minimum control rod inventory (which is at the peak of the xenon transient) to a subcritical condition with the reactor in the most reactive, xenon free state without taking credit for control rod movement. The SLC System satisfies the requirements of 10 CFR 50.62 (Ref. 1) on anticipated transient without scram.

The SLC System consists of a boron solution storage tank, two positive displacement pumps, two explosive valves that are provided in parallel for redundancy, and associated piping and valves used to transfer borated water from the storage tank to the reactor pressure vessel (RPV). The borated solution is discharged near the bottom of the core shroud, where it then mixes with the cooling water rising through the core. A smaller tank containing demineralized water is provided for testing purposes.

APPLICABLE SAFETY ANALYSES

The SLC System is manually initiated from the main control room, as directed by the emergency operating procedures, if the operator determines the reactor cannot be shut down, or kept shut down, with the control rods. The SLC System is used in the event that enough control rods cannot be inserted to accomplish shutdown and cooldown in the normal manner. The SLC System injects borated water into the reactor core to add negative reactivity to compensate for all of the various reactivity effects that could occur during plant operations. To meet this objective, it is necessary to inject a quantity of boron, which produces a concentration of 600 ppm of natural boron, in the reactor coolant at 68°F. To allow for potential leakage and imperfect mixing in the reactor system, an amount of boron equal to 25% of the amount cited above is added (Ref. 2). The volume versus concentration limits in Figure 3.1.7-1 and the temperature versus concentration limits in Figure 3.1.7-2 are calculated such that the required concentration is achieved accounting for dilution in the RPV with reactor water level at the high alarm point, including the water volume in the residual heat removal shutdown

APPLICABLE SAFETY ANALYSES (continued)

cooling piping, the recirculation loop piping, and portions of other piping systems which connect to the RPV below the high alarm point. This quantity of borated solution represented is the amount that is above the bottom of the boron solution storage tank. However, no credit is taken for the portion of the tank volume that cannot be injected.

The SLC System satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of the SLC System provides backup capability for reactivity control independent of normal reactivity control provisions provided by the control rods. The OPERABILITY of the SLC System is based on the conditions of the borated solution in the storage tank and the availability of a flow path to the RPV, including the OPERABILITY of the pumps and valves. Two SLC subsystems are required to be OPERABLE; each contains an OPERABLE pump, an explosive valve, and associated piping, valves, and instruments and controls to ensure an OPERABLE flow path. With one subsystem inoperable the requirements of 10 CFR 50.62 (Ref. 1) cannot be met, however, the remaining subsystem is still capable of shutting down the unit.

APPLICABILITY

In MODES 1 and 2, shutdown capability is required. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate controls to ensure that the reactor remains subcritical. In MODE 5, only a single control rod can be withdrawn from a core cell containing fuel assemblies. Demonstration of adequate SDM (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") ensures that the reactor will not become critical. Therefore, the SLC System is not required to be OPERABLE when only a single control rod can be withdrawn.

ACTIONS

A.1

If one SLC subsystem is inoperable, the inoperable subsystem must be restored to OPERABLE status within 7 days. In this condition, the remaining OPERABLE subsystem is adequate to

ACTIONS

A.1 (continued)

shutdown the unit. However, the overall capability is reduced since the remaining OPERABLE subsystem cannot meet the requirements of Reference 1. The 7 day Completion Time is based on the availability of an OPERABLE subsystem capable of shutting down the reactor and the low probability of a Design Basis Accident (DBA) or severe transient occurring concurrent with the failure of the Control Rod Drive (CRD) System to shut down the reactor.

<u>B.1</u>

If both SLC subsystems are inoperable, at least one subsystem must be restored to OPERABLE status within 8 hours. The allowed Completion Time of 8 hours is considered acceptable given the low probability of a DBA or transient occurring concurrent with the failure of the control rods to shut down the reactor.

C.1

If any Required Action and associated Completion Time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.7.1, SR 3.1.7.2, and SR 3.1.7.3

SR 3.1.7.1 through SR 3.1.7.3 are 24 hour Surveillances verifying certain characteristics of the SLC System (e.g., the volume and temperature of the borated solution in the storage tank), thereby ensuring SLC System OPERABILITY without disturbing normal plant operation. These Surveillances ensure that the proper borated solution volume and temperature, including the temperature of the pump suction piping, are maintained. Maintaining a minimum specified borated solution temperature is important in ensuring that the boron remains in solution and does not

SURVEILLANCE REQUIREMENTS

SR 3.1.7.1, SR 3.1.7.2, and SR 3.1.7.3 (continued)

precipitate out in the storage tank or in the pump suction piping. The temperature versus concentration curve of Figure 3.1.7-2 ensures that a 10°F margin will be maintained above the saturation temperature. The 24 hour Frequency is based on operating experience and has shown there are relatively slow variations in the measured parameters of volume and temperature.

SR 3.1.7.4 and SR 3.1.7.6

SR 3.1.7.4 verifies the continuity of the explosive charges in the injection valves to ensure that proper operation will occur if required. Other administrative controls, such as those that limit the shelf life of the explosive charges, must be followed. The 31 day Frequency is based on operating experience and has demonstrated the reliability of the explosive charge continuity.

SR 3.1.7.6 verifies that each valve in the system is in its correct position, but does not apply to the squib (i.e., explosive) valves. Verifying the correct alignment for manual valves in the SLC System flow path provides assurance that the proper flow paths will exist for system operation. A valve is also allowed to be in the nonaccident position provided it can be aligned to the accident position from the control room, or locally by a dedicated operator at the valve control. This is acceptable since the SLC System is a manually initiated system. This Surveillance also does not apply to valves that are locked, sealed, or otherwise secured in position since they are verified to be in the correct position prior to locking, sealing, or securing. This verification of valve alignment does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. The 31 day Frequency is based on engineering judgment and is consistent with the procedural controls governing valve operation that ensures correct valve positions.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.1.7.5

This Surveillance requires an examination of the sodium pentaborate solution by using chemical analysis to ensure that the proper concentration of sodium pentaborate exists in the storage tank. SR 3.1.7.5 must be performed anytime boron or water is added to the storage tank solution to determine that the sodium pentaborate solution concentration is within the specified limits. SR 3.1.7.5 must also be performed anytime the temperature is restored to within the limits of Figure 3.1.7-2, to ensure that no significant boron precipitation occurred. The 31 day Frequency of this Surveillance is appropriate because of the relatively slow variation of sodium pentaborate concentration between surveillances.

SR 3.1.7.7

Demonstrating that each SLC System pump develops a flow rate \geq 40 gpm at a discharge pressure \geq 1275 psig ensures that pump performance has not degraded during the fuel cycle. This minimum pump flow rate requirement ensures that, when combined with the sodium pentaborate solution concentration requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, and detect incipient failures by indicating abnormal performance. The Frequency of this Surveillance is in accordance with the Inservice Testing Program.

SR 3.1.7.8 and SR 3.1.7.9

These Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfully fired. The pump and explosive valve tested

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

SR 3.1.7.8 and SR 3.1.7.9 (continued)

should be alternated such that both complete flow paths are tested every 48 months at alternating 24 month intervals. The Surveillance may be performed in separate steps to prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency; therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

Demonstrating that all heat traced piping between the boron solution storage tank and the suction inlet to the injection pumps is unblocked ensures that there is a functioning flow path for injecting the sodium pentaborate solution. An acceptable method for verifying that the suction piping is unblocked is to pump from the storage tank to the storage tank.

The 24 month Frequency is acceptable since there is a low probability that the subject piping will be blocked due to precipitation of the boron from solution in the heat traced piping. This is especially true in light of the temperature verification of this piping required by SR 3.1.7.3. However, if, in performing SR 3.1.7.3, it is determined that the temperature of this piping has fallen below the specified minimum, SR 3.1.7.9 must be performed once within 24 hours after the piping temperature is restored to within the limits of Figure 3.1.7-2.

REFERENCES

- 1. 10 CFR 50.62.
- 2. UFSAR, Section 9.3.5.3.

B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves

BASES

BACKGROUND

The SDV vent and drain valves are normally open and discharge any accumulated water in the SDV to ensure that sufficient volume is available at all times to allow a complete scram. During a scram, the SDV vent and drain valves close to contain reactor water. The SDV is a volume of header piping that connects to each hydraulic control unit (HCU) and drains into an instrument volume. There are two SDVs (headers) and two instrument volumes, each receiving approximately one half of the control rod drive (CRD) discharges. Each instrument volume has a drain line with two valves in series. Each header is connected to a common vent line via two valves in series. The header piping is sized to receive and contain all the water discharged by the CRDs during a scram. The design and functions of the SDV are described in Reference 1.

APPLICABLE SAFETY ANALYSES

The Design Basis Accident and transient analyses assume all of the control rods are capable of scramming. The acceptance criteria for the SDV vent and drain valves are that they operate automatically to:

- a. Close during scram to limit the amount of reactor coolant discharged so that adequate core cooling is maintained and offsite doses remain within the limits of 10 CFR 100 (Ref. 2); and
- b. Open on scram reset to maintain the SDV vent and drain path open so that there is sufficient volume to accept the reactor coolant discharged during a scram.

Isolation of the SDV can also be accomplished by manual closure of the SDV valves. Additionally, the discharge of reactor coolant to the SDV can be terminated by scram reset or closure of the HCU manual isolation valves. For a bounding leakage case, the offsite doses are well within the limits of 10 CFR 100 (Ref. 2), and adequate core cooling is maintained (Ref. 3). The SDV vent and drain valves allow continuous drainage of the SDV during normal plant operation

BASES

APPLICABLE SAFETY ANALYSES (continued)

to ensure that the SDV has sufficient capacity to contain the reactor coolant discharge during a full core scram. To automatically ensure this capacity, a reactor scram (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation") is initiated if the SDV water level in the instrument volume exceeds a specified setpoint. The setpoint is chosen so that all control rods are inserted before the SDV has insufficient volume to accept a full scram.

SDV vent and drain valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of all SDV vent and drain valves ensures that the SDV vent and drain valves will close during a scram to contain reactor water discharged to the SDV piping. Since the vent and drain lines are provided with two valves in series, the single failure of one valve in the open position will not impair the isolation function of the system. Additionally, the valves are required to open on scram reset to ensure that a path is available for the SDV piping to drain freely at other times.

APPLICABILITY

In MODES 1 and 2, a scram may be required; therefore, the SDV vent and drain valves must be OPERABLE. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. Also, during MODE 5, only a single control rod can be withdrawn from a core cell containing fuel assemblies. Therefore, the SDV vent and drain valves are not required to be OPERABLE in these MODES since the reactor is subcritical and only one rod may be withdrawn and subject to scram.

ACTIONS

The ACTIONS Table is modified by a Note indicating that a separate Condition entry is allowed for each SDV vent and drain line. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SDV line. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SDV lines are governed by subsequent Condition entry and application of associated Required Actions.

<u>(continued)</u>

ACTIONS (continued)

The ACTIONS Table is modified by a second Note stating that an isolated line may be unisolated under administrative control to allow draining and venting of the SDV. When a line is isolated, the potential for an inadvertent scram due to high SDV level is increased. During these periods, the line may be unisolated under administrative control. This allows any accumulated water in the line to be drained, to preclude a reactor scram on SDV high level. This is acceptable since the administrative controls ensure the valve can be closed quickly, by a dedicated operator at the valve controls, if a scram occurs with the valve open.

A.1

When one SDV vent or drain valve is inoperable in one or more lines, the line must be isolated to contain the reactor coolant during a scram. The 7 day Completion Time is reasonable, given the level of redundancy in the lines and the low probability of a scram occurring while the valve(s) are inoperable and the line(s) not isolated. The SDV is still isolable since the redundant valve in the affected line is OPERABLE. During these periods, the single failure criterion may not be preserved, and a higher risk exists to allow reactor water out of the primary system during a scram.

<u>B.1</u>

If both valves in a line are inoperable, the line must be isolated to contain the reactor coolant during a scram. The 8 hour Completion Time to isolate the line is based on the low probability of a scram occurring while the line is not isolated and unlikelihood of significant CRD seal leakage.

C.1

If any Required Action and associated Completion Time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion

BASES

ACTIONS

C.1 (continued)

Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.1.8.1

During normal operation, the SDV vent and drain valves should be in the open position (except when performing SR 3.1.8.2) to allow for drainage of the SDV piping. Verifying that each valve is in the open position ensures that the SDV vent and drain valves will perform their intended functions during normal operation. This SR does not require any testing or valve manipulation; rather, it involves verification that the valves are in the correct position.

The 31 day Frequency is based on engineering judgment and is consistent with the procedural controls governing valve operation, which ensure correct valve positions. Improper valve position (closed) would not affect the isolation function.

SR 3.1.8.2

During a scram, the SDV vent and drain valves should close to contain the reactor water discharged to the SDV piping. Cycling each valve through its complete range of motion (closed and open) ensures that the valve will function properly during a scram. The 92 day Frequency is based on operating experience and takes into account the level of redundancy in the system design.

SR 3.1.8.3

SR 3.1.8.3 is an integrated test of the SDV vent and drain valves to verify total system performance. After receipt of a simulated or actual scram signal, the closure of the SDV vent and drain valves is verified. The closure time of 30 seconds after receipt of a scram signal is based on the

BASES

SURVEILLANCE REQUIREMENTS

SR 3.1.8.3 (continued)

bounding leakage case evaluated in the accident analysis (Ref. 3). Similarly, after receipt of a simulated or actual scram reset signal, the opening of the SDV vent and drain valves is verified. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3.1.1 and the scram time testing of control rods in LCO 3.1.3, "Control Rod OPERABILITY," overlap this Surveillance to provide complete testing of the assumed safety function. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency; therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

RFFERENCES

- 1. UFSAR, Section 4.6.3.3.2.8.
- 2. 10 CFR 100.
- 3. NUREG-0803, "Generic Safety Evaluation Report Regarding Integrity of BWR Scram System Piping," August 1981.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

BASES

BACKGROUND

The APLHGR is a measure of the average LHGR of all the fuel rods in a fuel assembly at any axial location. Limits on the APLHGR are specified to ensure that the criteria specified in 10 CFR 50.46 are met during the postulated design basis loss of coolant accident (LOCA). Additionally, for General Electric fuel types in the Unit 2 core, APLHGR limits are specified to ensure that the fuel design limits identified in Reference 1 are not exceeded during anticipated operational occurrences (AOOs).

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating Design Basis Accidents (DBAs) that determine the APLHGR limits are presented in References 1, 2, 3, 4, and 5.

LOCA analyses are performed to ensure that the APLHGR limits are adequate to meet the peak cladding temperature (PCT) and maximum oxidation limits of 10 CFR 50.46. The analysis is performed using calculational models that are consistent with the requirements of 10 CFR 50, Appendix K. A complete discussion of the analysis code is provided in References 1 and 5. The PCT following a postulated LOCA is a function of the average heat generation rate of all the rods of a fuel assembly at any axial location and is not strongly influenced by the rod to rod power distribution within an assembly. A conservative multiplier is applied to the LHGR and APLHGR assumed in the LOCA analysis to account for the uncertainty associated with the measurement of the APLHGR. For Unit 2 GE fuel, the APLHGR limits specified are equivalent to the LHGR of the highest powered fuel rod assumed in the LOCA analysis divided by the minimum anticipated local peaking factor. For Unit 1 GE fuel and all Siemens Power Corporation fuel, APLHGR limits are typically set high enough such that the LHGR limits are more limiting than the APLHGR limits.

For single recirculation loop operation, a conservative multiplier is applied to the exposure dependent APLHGR limits for two loop operation (Ref. 6). This additional limitation is due to the conservative analysis assumption of

APPLICABLE SAFETY ANALYSES (continued)

an earlier departure from nucleate boiling with one recirculation loop available, resulting in a more severe cladding heatup during a LOCA.

For GE fuel types in the Unit 2 core, the APLHGR limits also incorporate the results of the fuel design limits. The analytical methods and assumptions used in evaluating the fuel design limits are presented in References 1, 2, 3 and 4. Fuel design evaluations are performed to demonstrate that the 1% limit on the fuel cladding plastic strain and other fuel design limits described in Reference 1 are not exceeded during AOOs for operation with LHGRs up to the operating limit LHGR. APLHGR limits are equivalent to the LHGR limit for each fuel rod divided by the local peaking factor of the fuel assembly. APLHGR limits are developed as a function of exposure to ensure adherence to fuel design limits during the limiting AOOs (Ref. 4).

The APLHGR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LC0

The APLHGR limits specified in the COLR are the result of the fuel design, DBA, and transient analyses. For two recirculation loops operating, the limit is dependent on exposure. With only one recirculation loop in operation, in conformance with the requirements of LCO 3.4.1, "Recirculation Loops Operating," the limit is determined by multiplying the exposure dependent APLHGR limit by a conservative multiplier determined by a specific single recirculation loop analysis (Ref. 6).

APPLICABILITY

The APLHGR limits are primarily derived from fuel design evaluations and LOCA and transient analyses that are assumed to occur at high power levels. Studies and operating experience have shown that as power is reduced, the margin to the required APLHGR limits increases. This trend continues down to the power range of 5% to 15% RTP when entry into MODE 2 occurs. When in MODE 2, the intermediate range monitor scram function provides prompt scram initiation during any significant transient, thereby effectively removing any APLHGR limit compliance concern in MODE 2. Therefore, at THERMAL POWER levels \leq 25% RTP, the reactor is operating with substantial margin to the APLHGR limits; thus, this LCO is not required.

BASES (continued)

ACTIONS

A.1

If any APLHGR exceeds the required limits, an assumption regarding an initial condition of the DBA and transient analyses may not be met. Therefore, prompt action should be taken to restore the APLHGR(s) to within the required limits such that the plant operates within analyzed conditions and within design limits of the fuel rods. The 2 hour Completion Time is sufficient to restore the APLHGR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the APLHGR out of specification.

B.1

If the APLHGR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.1.1

APLHGRs are required to be initially calculated within 12 hours after THERMAL POWER is $\geq 25\%$ RTP and then every 24 hours thereafter. They are compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER \geq 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.

BASES (continued)

REFERENCES

- 1. NEDE-24011-P-A "General Electric Standard Application for Reactor Fuel" (as specified in Technical Specification 5.6.5).
- 2. UFSAR, Chapter 4.
- 3. UFSAR, Chapter 6.
- 4. UFSAR, Chapter 15.
- 5. EMF-94-217(NP), Revision 1, "Boiling Water Reactor Licensing Methodology Summary," November 1995.
- 6. UFSAR, Section 6.3.3.2.2.4.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.2 MINIMUM CRITICAL POWER RATIO (MCPR)

BASES

BACKGROUND

MCPR is a ratio of the fuel assembly power that would result in the onset of boiling transition to the actual fuel assembly power. The MCPR Safety Limit (SL) is set such that 99.9% of the fuel rods are expected to avoid boiling transition if the limit is not violated (refer to the Bases for SL 2.1.1.2). The operating limit MCPR is established to ensure that no fuel damage results during anticipated operational occurrences (AOOs). Although fuel damage does not necessarily occur if a fuel rod actually experienced boiling transition (Ref. 1), the critical power at which boiling transition is calculated to occur has been adopted as a fuel design criterion.

The onset of transition boiling is a phenomenon that is readily detected during the testing of various fuel bundle designs. Based on these experimental data, correlations have been developed to predict critical bundle power (i.e., the bundle power level at the onset of transition boiling) for a given set of plant parameters (e.g., reactor vessel pressure, flow, and subcooling). Because plant operating conditions and bundle power levels are monitored and determined relatively easily, monitoring the MCPR is a convenient way of ensuring that fuel failures due to inadequate cooling do not occur.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the AOOs to establish the operating limit MCPR are presented in References 2, 3, 4, 5, 6, 7, 8, and 9. To ensure that the MCPR SL is not exceeded during any transient event that occurs with moderate frequency, limiting transients have been analyzed to determine the largest reduction in critical power ratio (CPR). The types of transients evaluated are loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease. The limiting transient yields the largest change in CPR (Δ CPR). When the largest Δ CPR is added to the MCPR SL, the required operating limit MCPR is obtained.

APPLICABLE SAFETY ANALYSES (continued)

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow state (MCPR $_{\rm f}$) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency as identified in UFSAR, Chapter 15 (Ref. 5).

Flow dependent MCPR limits are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 8) and a multichannel thermal hydraulic code (Ref. 9) to analyze slow flow runout transients on a cyclespecific basis. For core flows less than rated, the established MCPR operating limit is adjusted to provide protection of the MCPR SL in the event of an uncontrolled recirculation flow increase to the physical limit of the Protection is provided for manual and automatic flow control by applying appropriate flow dependent MCPR operating limits. The MCPR operating limit for a given flow state is the greater of the rated conditions MCPR operating limit or the flow dependent MCPR operating limit. For automatic flow control, in addition to protecting the MCPR SL during the flow run-up event, protection is provided by the flow dependent MCPR operating limit to prevent exceeding the rated flow MCPR operating limit during an automatic flow increase to rated core flow. The operating limit is dependent on the maximum core flow limiter setting in the Recirculation Flow Control System.

The MCPR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LC0

The MCPR operating limits specified in the COLR are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the appropriate MCPR_{f} or the rated condition MCPR limit.

APPLICABILITY

The MCPR operating limits are primarily derived from transient analyses that are assumed to occur at high power levels. Below 25% RTP, the reactor is operating at a low recirculation pump speed and the moderator void ratio is small. Surveillance of thermal limits below 25% RTP is unnecessary due to the large inherent margin that ensures that the MCPR SL is not exceeded even if a limiting

APPLICABILITY (continued)

transient occurs. Statistical analyses indicate that the nominal value of the initial MCPR expected at 25% RTP is > 3.5. Studies of the variation of limiting transient behavior have been performed over the range of power and flow conditions. These studies encompass the range of key actual plant parameter values important to typically limiting transients. The results of these studies demonstrate that a margin is expected between performance and the MCPR requirements, and that margins increase as power is reduced to 25% RTP. This trend is expected to continue to the 5% to 15% power range when entry into MODE 2 $\,$ occurs. When in MODE 2, the intermediate range monitor provides rapid scram initiation for any significant power increase transient, which effectively eliminates any MCPR compliance concern. Therefore, at THERMAL POWER levels < 25% RTP, the reactor is operating with substantial margin to the MCPR limits and this LCO is not required.

ACTIONS

<u>A.1</u>

If any MCPR is outside the required limits, an assumption regarding an initial condition of the design basis transient analyses may not be met. Therefore, prompt action should be taken to restore the MCPR(s) to within the required limits such that the plant remains operating within analyzed conditions. The 2 hour Completion Time is normally sufficient to restore the MCPR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the MCPR out of specification.

B.1

If the MCPR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.2.2.1

The MCPR is required to be initially calculated within 12 hours after THERMAL POWER is $\geq 25\%$ RTP and then every 24 hours thereafter. It is compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER $\geq 25\%$ RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.

SR 3.2.2.2

Because the transient analyses take credit for conservatism in the scram speed performance, it must be demonstrated that the specific scram speed distribution is consistent with that used in the transient analyses. SR 3.2.2.2 determines the actual scram speed distribution and compares it with the assumed distribution. The MCPR operating limit is then determined based on either the applicable limit associated with the scram times of LCO 3.1.4, "Control Rod Scram Times," or the realistic scram times. The MCPR limit, including the scram insertion times for rated and off-rated flow conditions, are contained in the COLR. This determination must be performed once within 72 hours after each set of scram time tests required by SR 3.1.4.1, SR 3.1.4.2, and SR 3.1.4.4 because the effective scram speed distribution may change during the cycle or after maintenance that could affect scram times. The 72 hour Completion Time is acceptable due to the relatively minor changes in the actual scram speed distribution expected during the fuel cycle.

REFERENCES

- 1. NUREG-0562, June 1979.
- 2. NEDE-24011-P-A, "General Electric Standard Application for Reactor Fuel" (as specified in Technical Specification 5.6.5).

BASES

REFERENCES (continued)

- 3. UFSAR, Chapter 4.
- 4. UFSAR, Chapter 6.
- 5. UFSAR, Chapter 15.
- 6. EMF-94-217(NP), Revision 1, "Boiling Water Reactor Licensing Methodology Summary," November 1995.
- 7. NFSR-0091, Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, Commonwealth Edison Topical Report, (as specified in Technical Specification 5.6.5).
- 8. XN-NF-80-19(P)(A), Volume 1, Exxon Nuclear Methodology for Boiling Water Reactors Neutronics Methods for Design and Analysis, (as specified in Technical Specification 5.6.5).
- 9. XN-NF-80-19(P)(A), Volume 3, Exxon Nuclear Methodology for Boiling Water Reactors THERMEX Thermal Limits Methodology Summary Description, (as specified in Technical Specification 5.6.5).

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.3 LINEAR HEAT GENERATION RATE (LHGR)

BASES

BACKGROUND

The LHGR is a measure of the heat generation rate of a fuel rod in a fuel assembly at any axial location. Limits on LHGR are specified to ensure that fuel design limits are not exceeded anywhere in the core during normal operation, including anticipated operational occurrences (A00s). Exceeding the LHGR limit could potentially result in fuel damage and subsequent release of radioactive materials. Fuel design limits are specified to ensure that fuel system damage, fuel rod failure, or inability to cool the fuel does not occur during the normal operations and anticipated operating conditions identified in References 1 and 2.

APPLICABLE SAFETY ANALYSES

The analytical methods and assumptions used in evaluating the fuel system design are presented in References 1 and 2. The fuel assembly is designed to ensure (in conjunction with the core nuclear and thermal hydraulic design, plant equipment, instrumentation, and protection system) that fuel damage will not result in the release of radioactive materials in excess of the guidelines of 10 CFR, Parts 20, 50, and 100. A mechanism that could cause fuel damage during normal operations and operational transients and that is considered in fuel evaluations is a rupture of the fuel rod cladding caused by strain from the relative expansion of the UO2 pellet.

A value of 1% plastic strain of the fuel cladding has been defined as the limit below which fuel damage caused by overstraining of the fuel cladding is not expected to occur (Ref. 3).

Fuel design evaluations have been performed and demonstrate that the 1% fuel cladding plastic strain design limit is not exceeded during continuous operation with LHGRs up to the operating limit specified in the COLR. The analysis also includes allowances for short term transient excursions above the operating limit while still remaining within the AOO limits, plus an allowance for densification power spiking.

The LHGR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

BASES (continued)

LC0

The LHGR is a basic assumption in the fuel design analysis. The fuel has been designed to operate at rated core power with sufficient design margin to the LHGR calculated to cause a 1% fuel cladding plastic strain. The operating limit to accomplish this objective is specified in the COLR.

APPLICABILITY

The LHGR limits are derived from fuel design analysis that is limiting at high power level conditions. At core thermal power levels < 25% RTP, the reactor is operating with a substantial margin to the LHGR limits and, therefore, the Specification is only required when the reactor is operating at \geq 25% RTP.

ACTIONS

<u>A.1</u>

If any LHGR exceeds its required limit, an assumption regarding an initial condition of the fuel design analysis is not met. Therefore, prompt action should be taken to restore the LHGR(s) to within its required limits such that the plant is operating within analyzed conditions. The 2 hour Completion Time is normally sufficient to restore the LHGR(s) to within its limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LHGR out of specification.

B.1

If the LHGR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER is reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER TO < 25% RTP in an orderly manner and without challenging plant systems.

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.2.3.1

The LHGRs are required to be initially calculated within 12 hours after THERMAL POWER is $\geq 25\%$ RTP and then every 24 hours thereafter. They are compared to the LHGR limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the slow changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER \geq 25% RTP is achieved is acceptable given the large inherent margin to operating limits at lower power levels.

REFERENCES

- 1. UFSAR, Chapter 4.
- 2. UFSAR, Chapter 15.
- 3. NUREG-0800, Section 4.2.II.A.2(g), Revision 2, July 1981.

B 3.2 POWER DISTRIBUTION LIMITS

B 3.2.4 Average Power Range Monitor (APRM) Gain and Setpoint

BASES

BACKGROUND

The OPERABILITY of the APRMs and their setpoints is an initial condition of all safety analyses that assume rod insertion upon reactor scram. Applicable general design criteria are discussed in UFSAR, Sections 3.1.2.1, 3.1.3.2, 3.1.3.4, 3.1.3.5, and 3.1.4.8 (Ref. 1). This LCO is provided to require the APRM gain or APRM Flow Biased Neutron Flux—High Function Allowable Value (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," Function 2.b) to be adjusted when operating under conditions of excessive power peaking to maintain acceptable margin to the fuel cladding integrity Safety Limit (SL) and the fuel cladding 1% plastic strain limit.

For General Electric (GE) fuel, the condition of excessive power peaking is determined by the ratio of the actual power peaking to the limiting power peaking at RTP. This ratio is equal to the ratio of the core limiting MFLPD to the Fraction of RTP (FRTP), where FRTP is the measured THERMAL POWER divided by the RTP. Excessive power peaking exists when:

$$\frac{\text{MFLPD}}{\text{FRTP}} > 1$$
,

indicating that MFLPD is not decreasing proportionately to the overall power reduction, or conversely, that power peaking is increasing. For Siemens (SPC) fuel, the condition of excessive power peaking is determined by Fuel Design Limit Ratio for Centerline Melt (FDLRC), which is defined as:

$$FDLRC = (LHGR)(1.2) ;$$

$$(TLHGR)(FRTP)$$

where LHGR is the Linear Heat Generation Rate, FRTP is the Fraction of Rated Thermal Power, and TLHGR is the Transient Linear Heat Generation Rate limit. The TLHGR limit is specified in the COLR and protects against fuel centerline melting and the fuel cladding 1% plastic strain during transient conditions throughout the life of the fuel.

BASES

BACKGROUND (continued)

To maintain margins similar to those at RTP conditions, the excessive power peaking is compensated by a gain adjustment on the APRMs or modification of the APRM Neutron Flux—High Function Allowable Value. Either of these adjustments has effectively the same result as maintaining FDLRC and the ratio of MFLPD to FRTP less than or equal to 1.0 and thus maintains RTP margins for APLHGR, MCPR, and LHGR. Adjustments are based on the lowest APRM Neutron Flux—High Function Allowable Value or highest APRM reading resulting from the two methods (GE or Siemens).

The normally selected APRM Flow Biased Neutron Flux-High Function Allowable Value positions the scram above the upper bound of the normal power/flow operating region that has been considered in the design of the fuel rods. The Allowable Value is flow biased with a slope that approximates the upper flow control line, such that an approximately constant margin is maintained between the flow biased trip level and the upper operating boundary for core flows in excess of about 45% of rated core flow. In the range of infrequent operations below 45% of rated core flow, the margin to scram is reduced because of the nonlinear core flow versus drive flow relationship. The normally selected APRM Allowable Value is supported by the analyses presented in Reference 2 that concentrate on events initiated from rated conditions. Design experience has shown that minimum deviations occur within expected margins to operating limits (APLHGR, MCPR, and LHGR), at rated conditions for normal power distributions. However, at other than rated conditions, control rod patterns can be established that significantly reduce the margin to thermal limits. Therefore, the APRM Flow Biased Neutron Flux-High Function Allowable Value may be reduced during operation when FDLRC or the combination of THERMAL POWER and MFLPD indicates an excessive power peaking distribution.

APPLICABLE SAFETY ANALYSES

The acceptance criteria for the APRM gain or setpoint adjustments are that acceptable margins (to APLHGR, MCPR, and LHGR) be maintained to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit.

APPLICABLE SAFETY ANALYSES (continued)

UFSAR safety analyses (Ref. 2) concentrate on the rated power condition for which the minimum expected margin to the operating limits (APLHGR, MCPR, and LHGR) occurs. LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," and LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)," limit the initial margins to these operating limits at rated conditions so that specified acceptable fuel design limits are met during transients initiated from rated conditions. At initial power levels less than rated levels, the margin degradation of the APLHGR, the MCPR, or the LHGR during a transient can be greater than at the rated condition event. This greater margin degradation during the transient is primarily offset by the larger initial margin to limits at the lower than rated power levels. However, power distributions can be hypothesized that would result in reduced margins to the pre-transient operating limit. When combined with the increased severity of certain transients at other than rated conditions, the fuel design limits and MCPR SL could be approached. At substantially reduced power levels, highly peaked power distributions could be obtained that could reduce thermal margins to the minimum levels required for transient events. To prevent or mitigate such situations, either the APRM gain is adjusted upward by the higher of the core limiting value of FDLRC or the ratio of the core limiting MFLPD to the FRTP, or the APRM Flow Biased Neutron Flux-High Function Allowable Value is required to be reduced by the lesser of either the reciprocal of the core limiting FDLRC or by the ratio of FRTP to the core limiting MFLPD. Either of these adjustments effectively counters the increased severity of some events at other than rated conditions by proportionally increasing the APRM gain or proportionally lowering the APRM Flow Biased Neutron Flux - High Function Allowable Value, dependent on the increased peaking that may be encountered.

The APRM gain and setpoint satisfy Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LC0

Meeting any one of the following conditions ensures acceptable operating margins for events described above:

a. Limiting excess power peaking;

LCO (continued)

- b. Reducing the APRM Flow Biased Neutron Flux—High Function Allowable Value by multiplying the APRM Flow Biased Neutron Flux—High Function Allowable Value by the lesser of either 1/FDLRC or the ratio of FRTP and the core limiting value of MFLPD; or
- c. Increasing APRM gains to cause the APRM to read greater than or equal to 100 (%) times the higher of the core limiting value of FDLRC times FRTP or the core limiting MFLPD. This condition is to account for the reduction in margin to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit.

For GE fuel, MFLPD is the ratio of the limiting LHGR to the LHGR limit for the specific bundle type. For Siemens fuel, FDLRC times FRTP is the ratio of the LHGR times $1.2\ \text{to}$ TLHGR. As power is reduced, if the design power distribution is maintained, MFLPD and FDLRC are reduced in proportion to the reduction in power. However, if power peaking increases above the design value, the MFLPD and FDLRC are not reduced in proportion to the reduction in power. Under these conditions, the APRM gain is adjusted upward or the APRM Flow Biased Neutron Flux-High Function Allowable Value is reduced accordingly. When the reactor is operating with peaking less than the design value, it is not necessary to modify the APRM Flow Biased Neutron Flux-High Function Allowable Value. Adjusting APRM gain or modifying the APRM Flow Biased Neutron Flux - High Function Allowable Value is equivalent to maintaining FDLRC and the ratio of MFLPD to FRTP less than or equal to 1.0, as stated in the LCO.

For compliance with LCO 3.2.4.b (APRM Flow Biased Neutron Flux—High Function Allowable Value modification) or LCO 3.2.4.c (APRM gain adjustment), only APRMs required to be OPERABLE per LCO 3.3.1.1, Function 2.b are required to be modified or adjusted. In addition, each APRM may be allowed to have its gain adjusted or Allowable Value modified independently of other APRMs that are having their gain adjusted or Allowable Value modified.

BASES (continued)

APPLICABILITY

The FDLRC or the ratio of MFLPD to FRTP limit, APRM gain adjustment, or APRM Flow Biased Neutron Flux—High Function Allowable Value modification are provided to ensure that the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit are not violated during design basis transients. As discussed in the Bases for LCO 3.2.1, LCO 3.2.2, and LCO 3.2.3 sufficient margin to these limits exists below 25% RTP and, therefore, these requirements are only necessary when the reactor is operating at \geq 25% RTP.

ACTIONS

A.1

If the APRM gain or Flow Biased Neutron Flux—High Function Allowable Value is not within limits while FDLRC or the ratio of MFLPD to FRTP exceed 1.0, the margin to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit may be reduced. Therefore, prompt action should be taken to restore FDLRC and the ratio of MFLPD to FRTP to within its required limit or make acceptable APRM adjustments such that the plant is operating within the assumed margin of the safety analyses.

The 6 hour Completion Time is normally sufficient to restore either FDLRC and the ratio of MFLPD to FRTP to within limits or to adjust the APRM gain or modify the APRM Flow Biased Neutron Flux—High Function Allowable Value to within limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LCO not met.

B.1

If FDLRC and the ratio of MFLPD to FRTP, the APRM gain, or the APRM Flow Biased Neutron Flux—High Function Allowable Value cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER is reduced to <25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to <25% RTP in an orderly manner and without challenging plant systems.

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.2.4.1 and SR 3.2.4.2

FDLRC and the ratio of MFLPD to FRTP is required to be calculated and compared to 1.0 or APRM gain adjusted or APRM Flow Biased Neutron Flux-High Function Allowable Value modified to ensure that the reactor is operating within the assumptions of the safety analysis. These SRs are only required to determine FDLRC and the ratio of MFLPD to FRTP and, assuming either exceeds 1.0, determine the appropriate APRM gain or APRM Flow Biased Neutron Flux-High Function Allowable Value and are not intended to be a CHANNEL FUNCTIONAL TEST for the APRM gain or Flow Biased Neutron Flux-High Function circuitry. SR 3.2.4.1 and SR 3.2.4.2 have been modified by Notes, which clarify that the respective SR does not have to be met if the alternate requirement demonstrated by the other SR is satisfied. The 24 hour Frequency of SR 3.2.4.1 is chosen to coincide with the determination of other thermal limits, specifically those for the APLHGR (LCO 3.2.1), MCPR (LCO 3.2.2), and LHGR (LCO 3.2.3). The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER \geq 25% RTP is achieved is acceptable given the large inherent margin to APLHGR, MCPR, and LHGR operating limits at low power levels.

The 12 hour Frequency of SR 3.2.4.2 is required when either FDLRC or the ratio of MFLPD to FRTP is greater than 1.0, because more rapid changes in power distribution are typically expected.

REFERENCES

- 1. UFSAR, Sections 3.1.2.1, 3.1.3.2, 3.1.3.4, 3.1.3.5, and 3.1.4.8.
- 2. UFSAR, Chapter 15.

B 3.3 INSTRUMENTATION

B 3.3.1.1 Reactor Protection System (RPS) Instrumentation

BASES

BACKGROUND

The RPS initiates a reactor scram when one or more monitored parameters exceed their specified limits to preserve the integrity of the fuel cladding and the reactor coolant pressure boundary (RCPB) and minimize the energy that must be absorbed following a loss of coolant accident (LOCA). This can be accomplished either automatically or manually.

The protection and monitoring functions of the RPS have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system parameters and equipment performance. The LSSS are defined in this Specification as the Allowable Values, which, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits, including Safety Limits (SLs) during Design Basis Accidents (DBAs).

The RPS, as described in the UFSAR, Section 7.2 (Ref. 1), includes sensors, relays, bypass circuits, and switches that are necessary to cause initiation of a reactor scram. Functional diversity is provided by monitoring a wide range of dependent and independent parameters. The input parameters to the scram logic are from instrumentation that monitors reactor vessel water level, reactor vessel pressure, neutron flux, main steam line isolation valve position, turbine control valve (TCV) fast closure, turbine stop valve (TSV) position, drywell pressure, scram discharge volume (SDV) water level, and turbine condenser vacuum, as well as reactor mode switch in shutdown position and manual scram signals. There are at least four redundant sensor input signals from each of these parameters (with the exception of the reactor mode switch in shutdown and manual scram signals). Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an RPS trip signal to the trip logic.

BACKGROUND (continued)

The RPS is comprised of two independent trip systems (A and B) with three logic channels in each trip system (automatic logic channels A1 and A2 and manual logic channel A3, automatic logic channels B1 and B2 and manual logic channel B3) as described in Reference 1. The outputs of the automatic logic channels in a trip system are combined in a one-out-of-two logic so that either channel can trip the associated trip system. The tripping of both trip systems will produce a reactor scram. This logic arrangement is referred to as a one-out-of-two taken twice logic. There are four RPS channel test switches, one associated with each of the four automatic trip channels. These test switches allow the operator to test the OPERABILITY of the individual trip channel automatic scram contactors. In addition, trip channels A3 and B3 (one trip channel per trip system) are provided for manual scram. Placing the reactor mode switch in shutdown position or depressing both manual scram push buttons (one per trip system) will initiate the manual trip function. Each trip system can be reset by use of a reset switch. If a full scram occurs (both trip systems trip) and after the reactor mode switch is placed in the shutdown position, a relay prevents reset of the trip systems for 10 seconds. This 10 second delay on reset ensures that the scram function will be completed.

Two scram pilot valves are located in the hydraulic control unit for each control rod drive (CRD). Each scram pilot valve is solenoid operated, with the solenoids normally energized. The scram pilot valves control the air supply to the scram inlet and outlet valves for the associated CRD. When either scram pilot valve solenoid is energized, air pressure holds the scram valves closed and, therefore, both scram pilot valve solenoids must be de-energized to cause a control rod to scram. The scram valves control the supply and discharge paths for the CRD water during a scram. One of the scram pilot valve solenoids for each CRD is controlled by trip system A, and the other solenoid is controlled by trip system B. Any trip of trip system A in conjunction with any trip in trip system B results in de-energizing both solenoids, air bleeding off, scram valves opening, and control rod scram.

BACKGROUND (continued)

The backup scram valves, which energize on a scram signal to depressurize the scram air header, are also controlled by the RPS. Additionally, the RPS System controls the SDV vent and drain valves such that when both trip systems trip, the SDV vent and drain valves close to isolate the SDV.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The actions of the RPS are assumed in the safety analyses of References 2, 3, and 4. The RPS initiates a reactor scram when monitored parameter values exceed the Allowable Values, specified by the setpoint methodology and listed in Table 3.3.1.1-1 to preserve the integrity of the fuel cladding, the RCPB, and the containment by minimizing the energy that must be absorbed following a LOCA.

RPS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Functions not specifically credited in the accident analysis are retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

The OPERABILITY of the RPS is dependent on the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.1.1-1. Each Function must have a required number of OPERABLE channels per RPS trip system, with their setpoints within the specified Allowable Value, where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each channel must also respond within its assumed response time, where applicable.

Allowable Values are specified for each RPS Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the actual setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis.

For nuclear instrumentation Functions (i.e., Functions 1.a, 2.a, 2.b, and 2.c), the Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints for these Functions are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

For all Functions other than these associated with nuclear instrumentation (i.e., other than Functions 1.a, 2.a, 2.b, and 2.c), the trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The OPERABILITY of scram pilot valves and associated solenoids, backup scram valves, and SDV valves, described in the Background section, are not addressed by this LCO.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

The individual Functions are required to be OPERABLE in the MODES or other conditions specified in the table, which may require an RPS trip to mitigate the consequences of a design basis accident or transient. To ensure a reliable scram function, a combination of Functions are required in each MODE to provide primary and diverse initiation signals.

The only MODES specified in Table 3.3.1.1-1 are MODES 1 and 2, and MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies. No RPS Function is required in MODES 3 and 4, since all control rods are fully inserted and the Reactor Mode Switch Shutdown Position control rod withdrawal block (LCO 3.3.2.1) does not allow any control rod to be withdrawn. In MODE 5, control rods withdrawn from a core cell containing no fuel assemblies do not affect the reactivity of the core and, therefore, are not required to have the capability to scram. Provided all other control rods remain inserted, no RPS Function is required. In this condition, the required SDM (LCO 3.1.1) and refuel position one-rod-out interlock (LCO 3.9.2) ensure that no event requiring RPS will occur. Under these conditions, the RPS function is not required to be OPERABLE.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

Intermediate Range Monitor (IRM)

1.a. Intermediate Range Monitor Neutron Flux-High

The IRMs monitor neutron flux levels from the upper range of the source range monitor (SRM) to the lower range of the average power range monitors (APRMs). The IRMs are capable of generating trip signals that can be used to prevent fuel damage resulting from abnormal operating transients in the intermediate power range. In this power range, the most significant source of reactivity change is due to control rod withdrawal. The IRM provides a diverse protection function from the rod worth minimizer (RWM), which monitors and controls the movement of control rods at low power. The

APPLICABLE <u>1.a. Inter</u>
SAFETY ANALYSES, (continued)
LCO, and
APPLICABILITY RWM prevent

1.a. Intermediate Range Monitor Neutron Flux - High (continued)

RWM prevents the withdrawal of an out of sequence control rod during startup that could result in an unacceptable neutron flux excursion (Ref. 5). The IRM provides mitigation of the neutron flux excursion. To demonstrate the capability of the IRM System to mitigate control rod withdrawal events, generic analysis has been performed (Ref. 6) to evaluate the consequences of control rod withdrawal events during startup that are mitigated only by the IRM. This analysis, which assumes that one IRM channel in each trip system is bypassed, demonstrates that the IRMs provide protection against local control rod withdrawal errors and results in peak fuel enthalpy below the 170 cal/gm fuel failure threshold criterion.

The IRMs are also capable of limiting other reactivity excursions during startup, such as cold water injection events, although no credit is specifically assumed.

The IRM System is divided into two groups of IRM channels, with four IRM channels inputting to each trip system. The analysis of Reference 6 assumes that one channel in each trip system is bypassed. Therefore, six channels with three channels in each trip system are required for IRM OPERABILITY to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. This trip is active in each of the 10 ranges of the IRM, which must be selected by the operator to maintain the neutron flux within the monitored level of an IRM range.

The analysis of Reference 6 has adequate conservatism to permit the IRM Allowable Value specified in Table 3.3.1.1-1.

The Intermediate Range Monitor Neutron Flux—High Function must be OPERABLE during MODE 2 when control rods may be withdrawn and the potential for criticality exists. In MODE 5, when a cell with fuel has its control rod withdrawn, the IRMs provide monitoring for and protection against unexpected reactivity excursions. In MODE 1, the APRM

APPLICABLE
SAFETY ANALYSES
LCO and
APPLICABILITY

1.a. Intermediate Range Monitor Neutron Flux - High (continued)

System, the RWM, and Rod Block Monitor provide protection against control rod withdrawal error events and the IRMs are not required. The IRMs are automatically bypassed when the Reactor Mode Switch is in the run position.

1.b. Intermediate Range Monitor - Inop

This trip signal provides assurance that a minimum number of IRMs are OPERABLE. Anytime an IRM mode switch is moved to any position other than "Operate," the detector voltage drops below a preset level, or when a module is not plugged in, an inoperative trip signal will be received by the RPS unless the IRM is bypassed. Since only one IRM in each trip system may be bypassed, only one IRM in each RPS trip system may be inoperable without resulting in an RPS trip signal.

This Function was not specifically credited in the accident analysis but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

Six channels of Intermediate Range Monitor—Inop with three channels in each trip system are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.

There is no Allowable Value for this Function.

This Function is required to be OPERABLE when the Intermediate Range Monitor Neutron Flux-High Function is required.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

Average Power Range Monitor

2.a. Average Power Range Monitor Neutron Flux - High. Setdown

The APRM channels receive input signals from the local power range monitors (LPRMs) within the reactor core. which provide an indication of the power distribution and local power changes. The APRM channels average these LPRM signals to provide a continuous indication of average reactor power from a few percent to greater than RTP. For operation at low power (i.e., MODE 2), the Average Power Range Monitor Neutron Flux-High, Setdown Function is capable of generating a trip signal that prevents fuel damage resulting from abnormal operating transients in this power range. For most operation at low power levels, the Average Power Range Monitor Neutron Flux-High, Setdown Function will provide a secondary scram to the Intermediate Range Monitor Neutron Flux-High Function because of the relative setpoints. With the IRMs at Range 9 or 10, it is possible that the Average Power Range Monitor Neutron Flux-High, Setdown Function will provide the primary trip signal for a core-wide increase in power.

No specific safety analyses take direct credit for the Average Power Range Monitor Neutron Flux—High, Setdown Function. However, this Function indirectly ensures that before the reactor mode switch is placed in the run position, reactor power does not exceed 25% RTP (SL 2.1.1.1) when operating at low reactor pressure and low core flow. Therefore, it indirectly prevents fuel damage during significant reactivity increases with THERMAL POWER < 25% RTP.

The APRM System is divided into two groups of channels with three APRM channel inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Neutron Flux—High, Setdown with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

<u>2.a. Average Power Range Monitor Neutron Flux-High, Setdown</u> (continued)

this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 50% of the LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located.

The Allowable Value is based on preventing significant increases in power when THERMAL POWER is < 25% RTP.

The Average Power Range Monitor Neutron Flux—High, Setdown Function must be OPERABLE during MODE 2 when control rods may be withdrawn and the potential for fuel damage from abnormal operating transients exists. In MODE 1, the Average Power Range Monitor Neutron Flux—High Function provides protection against reactivity transients and the RWM and rod block monitor protect against control rod withdrawal error events.

<u>2.b. Average Power Range Monitor Flow Biased Neutron</u> Flux — <u>High</u>

The Average Power Range Monitor Flow Biased Neutron Flux—High Function monitors neutron flux. The APRM neutron flux trip level is varied as a function of recirculation drive flow (i.e., at lower core flows, the setpoint is reduced proportional to the reduction in power experienced as core flow is reduced but is clamped at an upper limit that is equivalent to the Average Power Range Monitor Fixed Neutron Flux—High Function Allowable Value. The Average Power Range Monitor Flow Biased Neutron Flux—High Function provides protection against transients where THERMAL POWER increases slowly (such as the recirculation loop flow controller failure event with increasing flow and the loss of feedwater heating event) and protects the fuel cladding integrity by ensuring that the MCPR SL is not exceeded. During any transient event that occurs at a reduced

<u>(continued)</u>

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

<u>2.b. Average Power Range Monitor Flow Biased Neutron Flux-High</u> (continued)

recirculation flow, because of a lower scram trip setpoint, the Average Power Range Monitor Flow Biased Neutron Flux—High Function will initiate a scram before the clamped Allowable Value is reached.

The APRM System is divided into two groups of channels with three APRM channels providing inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Flow Biased Neutron Flux-High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 50% of the LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located. Each APRM channel receives one total drive flow signal representative of total core flow. The total drive flow signals are generated by two flow converters, one of which supplies signals to the trip system A APRMs, while the other supplies signals to the trip system B APRMs. Each flow converter signal is provided by summing up a flow signal from the two recirculation loops. Each required Average Power Range Monitor Flow Biased Neutron Flux-High channel requires an input from one OPFRABLE flow converter (e.g., if a converter unit is inoperable, the associated Average Power Range Monitor Flow Biased Neutron Flux-High channels must be considered inoperable). An APRM flow converter is considered inoperable whenever it cannot deliver a flow signal less than or equal to actual recirculation flow conditions for all steady state and transient reactor conditions while in MODE 1. Reduced flow or downscale flow converter conditions due to planned maintenance or testing activities during derated plant conditions (i.e., end of cycle coast down) will result in conservative setpoints for the APRM flow bias functions, thus maintaining the function OPERABLE.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

<u>2.b. Average Power Range Monitor Flow Biased Neutron Flux-High</u> (continued)

The Allowable Value is selected to ensure the fuel cladding integrity by ensuring that the MCPR SL is not exceeded. "W," in the Allowable Value column of Table 3.3.1.1-1, is the percentage of recirculation loop flow which provides a rated core flow of 98 million lbs/hr.

The Average Power Range Monitor Flow Biased Neutron Flux—High Function is required to be OPERABLE in MODE 1 when there is the possibility of generating excessive THERMAL POWER and potentially exceeding the SL applicable to high pressure and core flow conditions (MCPR SL). During MODES 2 and 5, other IRM and APRM Functions provide protection for fuel cladding integrity.

2.c. Average Power Range Monitor Fixed Neutron Flux-High

The APRM channels provide the primary indication of neutron flux within the core and respond almost instantaneously to neutron flux increases. The Average Power Range Monitor Fixed Neutron Flux—High Function is capable of generating a trip signal to prevent fuel damage or excessive Reactor Coolant System (RCS) pressure. For the overpressurization protection analysis of Reference 2, the Average Power Range Monitor Fixed Neutron Flux—High Function is assumed to terminate the main steam isolation valve (MSIV) closure event and, along with the safety valves, limits the peak reactor pressure vessel (RPV) pressure to less than the ASME Code limits. The control rod drop accident (CRDA) analysis (Ref. 7) takes credit for the Average Power Range Monitor Fixed Neutron Flux—High Function to terminate the CRDA.

The APRM System is divided into two groups of channels with three APRM channels inputting to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of

APPLICABLE 2.c. Average SAFETY ANALYSES, (continued) LCO, and APPLICABILITY Average Power Average Power Applicability

2.c. Average Power Range Monitor Fixed Neutron Flux - High (continued)

Average Power Range Monitor Fixed Neutron Flux—High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 50% of the LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located.

The Allowable Value is based on the Analytical Limit assumed in the CRDA analyses.

The Average Power Range Monitor Fixed Neutron Flux—High Function is required to be OPERABLE in MODE 1 where the potential consequences of the analyzed transients could result in the SLs (e.g., MCPR and RCS pressure) being exceeded. Although the Average Power Range Monitor Fixed Neutron Flux—High Function is assumed in the CRDA analysis (Ref. 7), which is applicable in MODE 2, the Average Power Range Monitor Neutron Flux—High, Setdown Function conservatively bounds the assumed trip and, together with the assumed IRM trips, provides adequate protection. Therefore, the Average Power Range Monitor Fixed Neutron Flux—High Function is not required in MODE 2.

2.d. Average Power Range Monitor - Inop

This signal provides assurance that a minimum number of APRMs are OPERABLE. For any APRM, anytime its APRM mode switch is moved to any position other than "Operate," an APRM module is unplugged, or the APRM has too few LPRM inputs (< 50%), an inoperative trip signal will be received by the RPS, unless the APRM is bypassed. Since only one APRM in each trip system may be bypassed, only one APRM in each trip system may be inoperable without resulting in an RPS trip signal. This Function was not specifically credited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

<u>(continued)</u>

2.d. Average Power Range Monitor - Inop (continued)

Four channels of Average Power Range Monitor — Inop with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal.

There is no Allowable Value for this Function.

This Function is required to be OPERABLE in the MODES where the other APRM Functions are required.

3. Reactor Vessel Steam Dome Pressure - High

An increase in the RPV pressure during reactor operation compresses the steam voids and results in a positive reactivity insertion. This causes the neutron flux and THERMAL POWER transferred to the reactor coolant to increase, which could challenge the integrity of the fuel cladding and the RCPB. No specific safety analysis takes direct credit for this Function. However, the Reactor Vessel Steam Dome Pressure-High Function initiates a scram for transients that results in a pressure increase, counteracting the pressure increase by rapidly reducing core power. For the overpressurization protection analysis of Reference 2. reactor scram (the analyses conservatively assume scram on the Average Power Range Monitor Fixed Neutron Flux-High signal, not the Reactor Vessel Steam Dome Pressure - High or the Main Steam Isolation Valve - Closure signals), along with the safety valves, limits the peak RPV pressure to less than the ASME Section III Code limits.

High reactor pressure signals are initiated from four pressure transmitters that sense reactor pressure. The Reactor Vessel Steam Dome Pressure—High Allowable Value is chosen to provide a sufficient margin to the ASME Section III Code limits during the event.

Four channels of Reactor Vessel Steam Dome Pressure—High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a

3. Reactor Vessel Steam Dome Pressure - High (continued)

scram from this Function on a valid signal. The Function is required to be OPERABLE in MODES 1 and 2 when the RCS is pressurized and the potential for pressure increase exists.

4. Reactor Vessel Water Level - Low

Low RPV water level indicates the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, a reactor scram is initiated at this level to substantially reduce the heat generated in the fuel from fission. The Reactor Vessel Water Level — Low Function is assumed in the analysis of the recirculation line break (Ref. 8) and is credited in the loss of normal feedwater flow event (Ref. 9). The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the Emergency Core Cooling Systems (ECCS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level — Low signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

Four channels of Reactor Vessel Water Level — Low Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.

The Reactor Vessel Water Level — Low Allowable Value is selected to ensure that during normal operation the separator skirts are not uncovered (this protects available recirculation pump net positive suction head (NPSH) from significant carryunder) and, for transients involving loss of all normal feedwater flow, initiation of the low pressure ECCS subsystems at Reactor Vessel Water—Low Low will not be required.

4. Reactor Vessel Water Level - Low (continued)

The Function is required in MODES 1 and 2 where considerable energy exists in the RCS resulting in the limiting transients and accidents. ECCS initiations at Reactor Vessel Water Level — Low Low provide sufficient protection for level transients in all other MODES.

5. Main Steam Isolation Valve-Closure

MSIV closure results in loss of the main turbine and the condenser as a heat sink for the nuclear steam supply system and indicates a need to shut down the reactor to reduce heat generation. Therefore, a reactor scram is initiated on a Main Steam Isolation Valve-Closure signal before the MSIVs are completely closed in anticipation of the complete loss of the normal heat sink and subsequent overpressurization transient. However, for the overpressurization protection analysis of Reference 2, the Average Power Range Monitor Fixed Neutron Flux-High Function, along with the safety valves, limits the peak RPV pressure to less than the ASME Code limits. That is, the direct scram on position switches for MSIV closure events is not assumed in the overpressurization analysis. Additionally, MSIV closure is assumed in the transients analyzed in Reference 4 (e.g., low steam line pressure, manual closure of MSIVs, high steam line flow).

The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the ECCS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

MSIV closure signals are initiated from position switches located on each of the eight MSIVs. Each MSIV has a position switch which operates two contacts; one contact inputs to RPS trip system A while the other inputs to RPS trip system B. Thus, each RPS trip system receives an input from eight Main Steam Isolation Valve—Closure channels, each consisting of a position switch and contact. The logic for the Main Steam Isolation Valve—Closure Function is

5. Main Steam Isolation Valve-Closure (continued)

arranged such that either the inboard or outboard valve on three or more of the main steam lines must close in order for a scram to occur. In addition, certain combinations of valves closed in two lines will result in a half-scram.

The Main Steam Isolation Valve—Closure Allowable Value is specified to ensure that a scram occurs prior to a significant reduction in steam flow, thereby reducing the severity of the subsequent pressure transient.

Sixteen channels of the Main Steam Isolation Valve-Closure Function, with eight channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude the scram from this Function on a valid signal. This Function is only required in MODE 1 since, with the MSIVs open and the heat generation rate high, a pressurization transient can occur if the MSIVs close. In MODE 2, the heat generation rate is low enough so that the other diverse RPS functions provide sufficient protection.

6. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. A reactor scram is initiated to minimize the possibility of fuel damage and to reduce the amount of energy being added to the coolant and the drywell. The Drywell Pressure—High Function is assumed to scram the reactor for LOCAs inside primary containment (Ref. 3).

The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the ECCS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

6. <u>Drywell Pressure - High</u> (continued)

High drywell pressure signals are initiated from four pressure switches that sense drywell pressure. The Allowable Value was selected to be as low as possible and indicative of a LOCA inside primary containment.

Four channels of Drywell Pressure—High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required in MODES 1 and 2 where considerable energy exists in the RCS, resulting in the limiting transients and accidents.

7.a, 7.b. Scram Discharge Volume Water Level - High

The SDV receives the water displaced by the motion of the CRD pistons during a reactor scram. Should this volume fill to a point where there is insufficient volume to accept the displaced water, control rod insertion would be hindered. Therefore, a reactor scram is initiated while the remaining free volume is still sufficient to accommodate the water from a full core scram. The two types of Scram Discharge Volume Water Level — High Functions are an input to the RPS logic. No credit is taken for a scram initiated from these Functions for any of the design basis accidents or transients analyzed in the UFSAR. However, they are retained to ensure the RPS remains OPERABLE.

SDV water level is measured by two diverse methods. The level in each of the two SDVs is measured by two differential pressure transmitters (and associated switch) and two thermal probes for a total of eight level signals. The outputs of these devices are arranged so that there is a signal from a differential pressure switch and a thermal probe to each RPS logic channel. The level measurement instrumentation satisfies the recommendations of Reference 10.

The Allowable Value is chosen low enough to ensure that there is sufficient volume in the SDV to accommodate the water from a full scram.

7.a, 7.b. Scram Discharge Volume Water Level - High (continued)

Four channels of each type of Scram Discharge Volume Water Level—High Function, with two channels of each type in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from these Functions on a valid signal. These Functions are required in MODES 1 and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn. At all other times, this Function may be bypassed.

8. Turbine Stop Valve-Closure

Closure of the TSVs results in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated at the start of TSV closure in anticipation of the transients that would result from the closure of these valves. The Turbine Stop Valve—Closure Function is the primary scram signal for the turbine trip event analyzed in Reference 11. For this event, the reactor scram reduces the amount of energy required to be absorbed and ensures that the MCPR SL is not exceeded.

Turbine Stop Valve-Closure signals are initiated from position switches located on each of the four TSVs. A position switch and two independent contacts are associated with each stop valve. One of the two contacts provides input to RPS trip system A; the other, to RPS trip system B. Thus, each RPS trip system receives an input from four Turbine Stop Valve-Closure channels, each consisting of one position switch (which is common to a channel in the other RPS trip system) and a switch contact. The logic for the Turbine Stop Valve-Closure Function is such that three or more TSVs must be closed to produce a scram. This Function must be enabled at THERMAL POWER \geq 45% RTP. This is

8. Turbine Stop Valve-Closure (continued)

normally accomplished automatically by pressure switches sensing turbine first stage pressure; therefore, opening the turbine bypass valves may affect the OPERABILITY of this Function.

The Turbine Stop Valve-Closure Allowable Value is selected to be high enough to detect imminent TSV closure, thereby reducing the severity of the subsequent pressure transient.

Eight channels of Turbine Stop Valve-Closure Function, with four channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function even if one TSV should fail to close. This Function is required, consistent with analysis assumptions, whenever THERMAL POWER is \geq 45% RTP. This Function is not required when THERMAL POWER is < 45% RTP since the Reactor Vessel Steam Dome Pressure-High and the Average Power Range Monitor Fixed Neutron Flux-High Functions are adequate to maintain the necessary safety margins.

9. Turbine Control Valve Fast Closure, Trip Oil Pressure - Low

Fast closure of the TCVs results in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated on TCV fast closure in anticipation of the transients that would result from the closure of these valves. The Turbine Control Valve Fast Closure, Trip Oil Pressure—Low Function is the primary scram signal for the generator load rejection event analyzed in Reference 12. For this event, the reactor scram reduces the amount of energy required to be absorbed and ensures that the MCPR SL is not exceeded.

Turbine Control Valve Fast Closure, Trip Oil Pressure — Low signals are initiated by the electrohydraulic control (EHC) fluid pressure at each control valve. One pressure switch is associated with each control valve, and the signal from each switch is assigned to a separate RPS logic channel. This Function must be enabled at THERMAL POWER \geq 45% RTP.

9. Turbine Control Valve Fast Closure, Trip Oil Pressure - Low (continued)

This is normally accomplished automatically by pressure switches sensing turbine first stage pressure; therefore, opening the turbine bypass valves may affect the OPERABILITY of this Function.

The Turbine Control Valve Fast Closure, Trip Oil Pressure — Low Allowable Value is selected high enough to detect imminent TCV fast closure.

Four channels of Turbine Control Valve Fast Closure, Trip Oil Pressure—Low Function with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. This Function is required, consistent with the analysis assumptions, whenever THERMAL POWER is \geq 45% RTP. This Function is not required when THERMAL POWER is < 45% RTP, since the Reactor Vessel Steam Dome Pressure—High and the Average Power Range Monitor Fixed Neutron Flux—High Functions are adequate to maintain the necessary safety margins.

10. Turbine Condenser Vacuum - Low

The Turbine Condenser Vacuum—Low Function is provided to shut down the reactor and reduce the energy input to the main condenser to help prevent overpressurization of the main condenser in the event of a loss of the main condenser vacuum. The Turbine Condenser Vacuum—Low Function is the primary scram signal for the loss of condenser vacuum event analyzed in Reference 9. For this event, the reactor scram reduces the amount of energy required to be absorbed by the main condenser and helps to ensure the MCPR SL is not exceeded by reducing the core energy prior to the fast closure of the turbine stop valves. This Function helps maintain the main condenser as a heat sink during this event.

Turbine condenser vacuum pressure signals are derived from four pressure switches that sense the pressure in the condenser. The Allowable Value was selected to reduce the

10. Turbine Condenser Vacuum - Low (continued)

severity of a loss of main condenser vacuum event by anticipating the transient and scramming the reactor at a higher vacuum than the setpoints that close the turbine stop valves and bypass valves.

Four channels of Turbine Condenser Vacuum—Low Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required in MODE 1 since in this MODE there is a significant amount of core energy that can be rejected to the main condenser. During MODES 2, 3, 4, and 5, the core energy is significantly lower. This Function is automatically bypassed with the reactor mode switch in any position other than run.

11. Reactor Mode Switch - Shutdown Position

The Reactor Mode Switch—Shutdown Position Function provides signals, via the two manual scram logic channels (A3 and B3), which are redundant to the automatic protective instrumentation channels and provide manual reactor trip capability. This Function was not specifically credited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

The reactor mode switch is a single switch with two channels, each of which provides input into one of the two manual scram RPS logic channels.

There is no Allowable Value for this Function, since the channels are mechanically actuated based solely on reactor mode switch position.

Two channels of Reactor Mode Switch — Shutdown Position Function, with one channel in each manual trip system, are available and required to be OPERABLE. The Reactor Mode Switch — Shutdown Position Function is required to be

11. Reactor Mode Switch - Shutdown Position (continued)

OPERABLE in MODES 1 and 2, and MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn.

12. Manual Scram

The Manual Scram push button channels provide signals, via the two manual scram logic channels (A3 and B3), which are redundant to the automatic protective instrumentation channels and provide manual reactor trip capability. This Function was not specifically credited in the accident analysis but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.

There is one Manual Scram push button channel for each of the two manual scram RPS logic channels. In order to cause a scram it is necessary that both channels be actuated.

There is no Allowable Value for this Function since the channels are mechanically actuated based solely on the position of the push buttons.

Two channels of Manual Scram with one channel in each manual trip system are available and required to be OPERABLE in MODES 1 and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn.

ACTIONS

Note 1 has been provided to modify the ACTIONS related to RPS instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial

<u>(continued)</u>

ACTIONS (continued)

entry into the Condition. However, the Required Actions for inoperable RPS instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable RPS instrumentation channel.

Note 2 has been provided to modify the ACTIONS for the RPS $\,$ instrumentation functions of APRM Flow Biased Neutron Flux-High (Function 2.b) and APRM Fixed Neutron Flux-High (Function 2.c) when they are inoperable due to failure of SR 3.3.1.1.2 and gain adjustments are necessary. Note 2 allows entry into associated Conditions and Required Actions to be delayed for up to 2 hours if the APRM is indicating a lower power value than the calculated power (i.e., the gain adjustment factor (GAF) is high (non-conservative)), and for up to 12 hours if the APRM is indicating a higher power value than the calculated power (i.e., the GAF is low (conservative)). The GAF for any channel is defined as the power value determined by the heat balance divided by the APRM reading for that channel. Upon completion of the gain adjustment, or expiration of the allowed time, the channel must be returned to OPERABLE status or the applicable Condition entered and the Required Actions taken. This Note is based on the time required to perform gain adjustments on multiple channels and additional time is allowed when the GAF is out of limits but conservative.

A.1 and A.2

Because of the diversity of sensors available to provide trip signals and the redundancy of the RPS design, an allowable out of service time of 12 hours has been shown to be acceptable (Ref. 13) to permit restoration of any inoperable required channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function's inoperable channel is in one trip system and the Function still maintains RPS trip capability (refer to Required Actions B.1, B.2, and C.1 Bases). If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel or the associated trip system must be placed in the tripped condition per Required Actions A.1 and A.2. Placing the inoperable channel in trip (or the associated trip system in

A.1 and A.2 (continued)

trip) would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternatively, if it is not desired to place the channel (or trip system) in trip (e.g., as in the case where placing the inoperable channel in trip would result in a scram), Condition D must be entered and its Required Action taken. The 12 hour allowance is not allowed for Reactor Mode Switch—Shutdown Position and Manual Scram Function channels since with one channel inoperable RPS trip capability is not maintained. In this case, Condition C must be entered and its Required Actions taken.

B.1 and B.2

Condition B exists when, for any one or more Functions, at least one required channel is inoperable in each trip system. In this condition, provided at least one channel per trip system is OPERABLE, the RPS still maintains trip capability for that Function, but cannot accommodate a single failure in either trip system.

Required Actions B.1 and B.2 limit the time the RPS scram logic, for any Function, would not accommodate single failure in both trip systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four channel Function). The reduced reliability of this logic arrangement was not evaluated in Reference 13 for the 12 hour Completion Time. Within the 6 hour allowance, the associated Function will have all required channels OPERABLE or in trip (or any combination) in one trip system.

Completing one of these Required Actions restores RPS to a reliability level equivalent to that evaluated in Reference 13, which justified a 12 hour allowable out of service time as presented in Condition A. The trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g., a trip system with two inoperable channels could be in a more degraded state than a trip system with four inoperable channels if the two inoperable channels are in the same Function while the four

B.1 and B.2 (continued)

inoperable channels are all in different Functions). The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e., what MODE the plant is in). If this action would result in a scram, it is permissible to place the other trip system or its inoperable channels in trip.

The 6 hour Completion Time is judged acceptable based on the remaining capability to trip, the diversity of the sensors available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of a scram.

Alternately, if it is not desired to place the inoperable channels (or one trip system) in trip (e.g., as in the case where placing the inoperable channel or associated trip system in trip would result in a scram), Condition D must be entered and its Required Action taken. The 6 hour allowance is not allowed for Reactor Mode Switch—Shutdown and Manual Scram Function channels since with two channels inoperable RPS trip capability is not maintained. In this case, Condition C must be entered and its Required Action taken.

C.1

Required Action C.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same trip system for the same Function result in the Function not maintaining RPS trip capability. A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (or the associated trip system is in trip), such that both trip systems will generate a trip signal from the given Function on a valid signal. For the typical Function with one-out-of-two taken twice logic and the IRM and APRM Functions, this would require both trip systems to have one channel OPERABLE or in trip (or the associated trip system in trip). For Function 5 (Main Steam Isolation Valve-Closure), this would require both trip systems to

<u>(continued)</u>

C.1 (continued)

have each channel associated with the MSIVs in three main steam lines (not necessarily the same main steam lines for both trip systems) OPERABLE or in trip (or the associated trip system in trip). For Function 8 (Turbine Stop Valve-Closure), this would require both trip systems to have three channels, each OPERABLE or in trip (or the associated trip system in trip).

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

D.1

Required Action D.1 directs entry into the appropriate Condition referenced in Table 3.3.1.1-1. The applicable Condition specified in the Table is Function and MODE or other specified condition dependent and may change as the Required Action of a previous Condition is completed. Each time an inoperable channel has not met any Required Action of Condition A, B, or C and the associated Completion Time has expired, Condition D will be entered for that channel and provides for transfer to the appropriate subsequent Condition.

E.1, F.1, and G.1

If the channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in trip) within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. The allowed Completion Times are reasonable, based on operating experience, to reach the specified condition from full power conditions in an orderly manner and without challenging plant systems. In addition, the Completion Time of Required Action E.1 is consistent with the Completion Time provided in LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)."

ACTIONS (continued)

<u>H.1</u>

If the channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in trip) within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by immediately initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and are, therefore, not required to be inserted. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each RPS instrumentation Function are located in the SRs column of Table 3.3.1.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains RPS trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 13) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the RPS will trip when necessary.

SR 3.3.1.1.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.1.1.1</u> (continued)

approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.1.1.2

To ensure that the APRMs are accurately indicating the true core average power, the APRMs are calibrated to the reactor power calculated from a heat balance. LCO 3.2.4, "Average Power Range Monitor (APRM) Gain and Setpoint," allows the APRMs to be reading greater than actual THERMAL POWER to compensate for localized power peaking. When this adjustment is made, the requirement for the APRMs to indicate within 2% RTP of calculated power is modified to require the APRMs to indicate within 2% RTP of the calculated value established by SR 3.2.4.2. The Frequency of once per 7 days is based on minor changes in LPRM sensitivity, which could affect the APRM reading between performances of SR 3.3.1.1.10.

An allowance is provided that requires the SR to be performed only at \geq 25% RTP because it is difficult to accurately maintain APRM indication of core THERMAL POWER

SURVEILLANCE REQUIREMENTS

SR 3.3.1.1.2 (continued)

consistent with a heat balance when < 25% RTP. At low power levels, a high degree of accuracy is unnecessary because of the large, inherent margin to thermal limits (MCPR, APLHGR, and LHGR). At \geq 25% RTP, the Surveillance is required to have been satisfactorily performed within the last 7 days, in accordance with SR 3.0.2. A Note is provided which allows an increase in THERMAL POWER above 25% if the 7 day Frequency is not met per SR 3.0.2. In this event, the SR must be performed within 12 hours after reaching or exceeding 25% RTP. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.

SR 3.3.1.1.3

The Average Power Range Monitor Flow Biased Neutron Flux—High Function uses the recirculation loop drive flows to vary the trip setpoint. This SR ensures that the total loop drive flow signals from the flow converters used to vary the setpoint is appropriately compared to a calibrated flow signal and, therefore, the APRM Function accurately reflects the required setpoint as a function of flow. Each flow signal from the respective flow converter must be $\leq 100\%$ of the calibrated flow signal. If the flow converter signal is not within the limit, all required APRMs that receive an input from the inoperable flow converter must be declared inoperable.

The Frequency of 7 days is based on engineering judgment, operating experience, and the reliability of this instrumentation.

SR 3.3.1.1.4 and SR 3.3.1.1.8

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required

SURVEILLANCE REQUIREMENTS

$\underline{\mathsf{SR}}$ 3.3.1.1.4 and $\underline{\mathsf{SR}}$ 3.3.1.1.8 (continued)

contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

As noted, SR 3.3.1.1.4 is not required to be performed when entering MODE 2 from MODE 1, since testing of the MODE 2 required IRM and APRM Functions cannot be performed in MODE 1 without utilizing jumpers, lifted leads, or movable links. This allows entry into MODE 2 if the 7 day Frequency is not met per SR 3.0.2. In this event, the SR must be performed within 24 hours after entering MODE 2 from MODE 1. Twenty four hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.

A Frequency of 7 days for SR 3.3.1.1.4 provides an acceptable level of system average unavailability over the Frequency interval and is based on reliability analysis (Ref. 13). The Frequency of 31 days for SR 3.3.1.1.8 is acceptable based on engineering judgment, operating experience, and the reliability of this instrumentation.

SR 3.3.1.1.5

A functional test of each automatic scram contactor is performed to ensure that each automatic RPS logic channel will perform the intended function. There are four RPS channel test switches, one associated with each of the four automatic trip channels (A1, A2, B1, and B2). These test switches allow the operator to test the OPERABILITY of the individual trip logic channel automatic scram contactors as an alternative to using an automatic scram function trip. This is accomplished by placing the RPS channel test switch in the test position, which will input a trip signal into the associated RPS logic channel. The RPS channel test switches are not specifically credited in the accident analysis. The Manual Scram Functions are not configured the same as the generic model used in Reference 13. However, Reference 13 concluded that the Surveillance Frequency

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.1.1.5</u> (continued)

extensions for RPS Functions were not affected by the difference in configuration since each automatic RPS logic channel has a test switch which is functionally the same as the manual scram switches in the generic model. As such, a functional test of each RPS automatic scram contactor using either its associated test switch or by test of any of the associated automatic RPS Functions is required to be performed once every 7 days. The Frequency of 7 days is based on the reliability analysis of Reference 13.

SR 3.3.1.1.6 and SR 3.3.1.1.7

These Surveillances are established to ensure that no gaps in neutron flux indication exist from subcritical to power operation for monitoring core reactivity status.

The overlap between SRMs and IRMs is required to be demonstrated to ensure that reactor power will not be increased into a neutron flux region without adequate indication. This is required prior to fully withdrawing SRMs since indication is being transitioned from the SRMs to the IRMs.

The overlap between IRMs and APRMs is of concern when reducing power into the IRM range. On power increases, the system design will prevent further increases (by initiating a rod block) if adequate overlap is not maintained. The IRM/APRM and SRM/IRM overlaps are acceptable if a ½ decade overlap exists.

As noted, SR 3.3.1.1.7 is only required to be met during entry into MODE 2 from MODE 1. That is, after the overlap requirement has been met and indication has transitioned to the IRMs, maintaining overlap is not required (APRMs may be reading downscale once in MODE 2).

If overlap for a group of channels is not demonstrated (e.g., IRM/APRM overlap), the reason for the failure of the Surveillance should be determined and the appropriate channel(s) declared inoperable. Only those appropriate channels that are required in the current MODE or condition should be declared inoperable.

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

SR 3.3.1.1.6 and SR 3.3.1.1.7 (continued)

A Frequency of 7 days is reasonable based on engineering judgment and the reliability of the IRMs and APRMs.

SR 3.3.1.1.9

LPRM gain settings are determined from the local flux profiles measured by the Traversing Incore Probe (TIP) System. This establishes the relative local flux profile for appropriate representative input to the APRM System. The 2000 effective full power hours (EFPH) Frequency is based on operating experience with LPRM sensitivity changes.

SR 3.3.1.1.10 and SR 3.3.1.1.15

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The 92 day Frequency of SR 3.3.1.1.10 is based on the reliability analysis of Reference 13. The 24 month Frequency of SR 3.3.1.1.15 is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.1.11

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.1.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

The Frequency of 92 days is based on the reliability analysis of Reference 13.

SR 3.3.1.1.12, 3.3.1.1.14, and SR 3.3.1.1.16

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies that the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

Note 1 to SR 3.3.1.1.14 and SR 3.3.1.1.16 states that neutron detectors are excluded from CHANNEL CALIBRATION because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. For the APRMs, changes in neutron detector sensitivity are compensated for by performing the 7 day calorimetric calibration (SR 3.3.1.1.2) and the 2000 EFPH LPRM calibration against the TIPs (SR 3.3.1.1.9). A second Note is provided that requires the APRM and IRM SRs to be performed within 24 hours of entering MODE 2 from MODE 1. Testing of the MODE 2 APRM and IRM Functions cannot be performed in MODE 1 without utilizing jumpers, lifted leads, or movable links. This Note allows entry into MODE 2 from MODE 1 if the associated Frequency is not met per SR 3.0.2. Twenty four hours is based on operating experience and in consideration of providing a reasonable time in which to

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

$\underline{\text{SR}} \quad 3.3.1.1.12, \ 3.3.1.1.14, \ \text{and} \ \ \underline{\text{SR}} \quad 3.3.1.1.16 \quad \text{(continued)}$

complete the SR. Note 3 to SR 3.3.1.1.14 states that for Function 2.b, this SR is not required for the flow portion of these channels. This allowance is consistent with the plant specific setpoint methodology. This portion of the Function 2.b channels must be calibrated in accordance with SR 3.3.1.1.16.

The Frequency of SR 3.3.1.1.12 is based upon the assumption of a 92 day calibration interval in determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.1.1.14 is based upon the assumption of a 184 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.1.1.16 is based upon the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.1.1.13

This SR ensures that scrams initiated from the Turbine Stop Valve-Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure-Low Functions will not be inadvertently bypassed when THERMAL POWER is $\geq 45\%$ RTP. This involves calibration of the bypass channels. Adequate margins for the instrument setpoint methodologies are incorporated into the actual setpoint. Because main turbine bypass flow can affect this setpoint nonconservatively (THERMAL POWER is derived from turbine first stage pressure), the main turbine bypass valves must remain closed during an in-service calibration at THERMAL POWER $\geq 45\%$ RTP, if performing the calibration using actual turbine first stage pressure, to ensure that the calibration remains valid.

If any bypass channels setpoint is nonconservative (i.e., the Functions are bypassed at \geq 45% RTP, either due to open main turbine bypass valve(s) or other reasons), then the affected Turbine Stop Valve-Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure-Low Functions are considered inoperable. Alternatively, the bypass channel can be placed in the conservative condition (nonbypass). If placed in the nonbypass condition, this SR is met and the channel is considered OPERABLE.

SURVEILLANCE REQUIREMENTS

SR 3.3.1.1.13 (continued)

The Frequency of 92 days is based on engineering judgment and reliability of the components.

SR 3.3.1.1.17

The LOGIC SYSTEM FUNCTIONAL TEST (LSFT) demonstrates the OPERABILITY of the required trip logic for a specific channel. The functional testing of control rods (LCO 3.1.3, "Control Rod Operability"), and SDV vent and drain valves (LCO 3.1.8, "Scram Discharge Volume (SDV) Vent and Drain Valves"), overlaps this Surveillance to provide complete testing of the assumed safety function.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power.

Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

SR 3.3.1.1.<u>18</u>

This SR ensures that the individual channel response times are less than or equal to the maximum values assumed in the accident analysis. This test may be performed in one measurement or in overlapping segments, with verification that all components are tested. The RPS RESPONSE TIME acceptance criteria are included in Reference 14.

As noted (Note 1), neutron detectors are excluded from RPS RESPONSE TIME testing because the principles of detector operation virtually ensure an instantaneous response time.

RPS RESPONSE TIME tests are conducted on a 24 month STAGGERED TEST BASIS. Note 2 requires STAGGERED TEST BASIS Frequency to be determined based on 4 channels per trip system, in lieu of the 8 channels specified in Table 3.3.1.1-1 for the MSIV Closure Function. This Frequency is

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.1.1.18</u> (continued)

based on the logic interrelationships of the various channels required to produce an RPS scram signal. The 24 month Frequency is consistent with the typical industry refueling cycle and is based upon plant operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

REFERENCES

- 1. UFSAR, Section 7.2.
- 2. UFSAR, Section 5.2.2.2.3.
- 3. UFSAR, Section 6.2.1.3.2.
- 4. UFSAR, Chapter 15.
- 5. UFSAR, Section 15.4.1.
- 6. NEDO-23842, "Continuous Control Rod Withdrawal in the Startup Range," April 18, 1978.
- 7. UFSAR, Section 15.4.10.
- 8. UFSAR. Section 15.6.5.
- 9. UFSAR, Section 15.2.5.
- 10. P. Check (NRC) letter to G. Lainas (NRC), "BWR Scram Discharge System Safety Evaluation," December 1, 1980.
- 11. UFSAR, Section 15.2.3.
- 12. UFSAR, Section 15.2.2.
- 13. NEDC-30851-P-A , "Technical Specification Improvement Analyses for BWR Reactor Protection System,"

 March 1988.
- 14. Technical Requirements Manual.

R 3.3 INSTRUMENTATION

B 3.3.1.2 Source Range Monitor (SRM) Instrumentation

BASES

BACKGROUND

The SRMs provide the operator with information relative to the neutron flux level at very low flux levels in the core. As such, the SRM indication is used by the operator to monitor the approach to criticality and determine when criticality is achieved. The SRMs are not fully withdrawn until the count rate is greater than a minimum allowed count rate (a control rod block is set at this condition). After SRM to intermediate range monitor (IRM) overlap is demonstrated (as required by SR 3.3.1.1.6), the SRMs are normally fully withdrawn from the core.

The SRM subsystem of the Neutron Monitoring System (NMS) consists of four channels. Each of the SRM channels can be bypassed, but only one at any given time, by the operation of a bypass switch. Each channel includes one detector that can be physically positioned in the core. Each detector assembly consists of a miniature fission chamber with associated cabling, signal conditioning equipment, and electronics associated with the various SRM functions. The signal conditioning equipment converts the current pulses from the fission chamber to analog DC currents that correspond to the count rate. Each channel also includes indication, alarm, and control rod blocks. However, this LCO specifies OPERABILITY requirements only for the monitoring and indication functions of the SRMs.

During refueling, shutdown, and low power operations, the primary indication of neutron flux levels is provided by the SRMs or special movable detectors connected to the normal SRM circuits. The SRMs provide monitoring of reactivity changes during fuel or control rod movement and give the control room operator early indication of unexpected subcritical multiplication that could be indicative of an approach to criticality.

APPLICABLE SAFETY ANALYSES

Prevention and mitigation of prompt reactivity excursions during refueling and low power operation is provided by LCO 3.9.1, "Refueling Equipment Interlocks"; LCO 3.1.1, "SHUTDOWN MARGIN (SDM)"; LCO 3.3.1.1, "Reactor Protection

APPLICABLE SAFETY ANALYSES (continued)

System (RPS) Instrumentation"; IRM Neutron Flux - High and Average Power Range Monitor (APRM) Neutron Flux - High, Setdown Functions; and LCO 3.3.2.1, "Control Rod Block Instrumentation."

The SRMs have no safety function and are not assumed to function during any UFSAR design basis accident or transient analysis. However, the SRMs provide the only on scale monitoring of neutron flux levels during startup and refueling. Therefore, they are being retained in Technical Specifications.

1.00

During startup in MODE 2, three of the four SRM channels are required to be OPERABLE to monitor the reactor flux level prior to and during control rod withdrawal, subcritical multiplication and reactor criticality, and neutron flux level and reactor period until the flux level is sufficient to maintain the IRM on Range 3 or above. All but one of the channels are required in order to provide a representation of the overall core response during those periods when reactivity changes are occurring throughout the core.

In MODES 3 and 4, with the reactor shut down, two SRM channels provide redundant monitoring of flux levels in the core.

In MODE 5, during a spiral offload or reload, an SRM outside the fueled region will no longer be required to be OPERABLE, since it is not capable of monitoring neutron flux in the fueled region of the core. Thus, CORE ALTERATIONS are allowed in a quadrant with no OPERABLE SRM in an adjacent quadrant provided the Table 3.3.1.2-1, footnote (b), requirement that the bundles being spiral reloaded or spiral offloaded are all in a single fueled region containing at least one OPERABLE SRM is met. Spiral reloading and offloading encompass reloading or offloading a cell on the edge of a continuous fueled region (the cell can be reloaded or offloaded in any sequence).

In nonspiral routine operations, two SRMs are required to be OPERABLE to provide redundant monitoring of reactivity changes occurring in the reactor core. Because of the local nature of reactivity changes during refueling, adequate

LCO (continued)

coverage is provided by requiring one SRM to be OPERABLE in the quadrant of the reactor core where CORE ALTERATIONS are being performed, and the other SRM to be OPERABLE in an adjacent quadrant containing fuel. These requirements ensure that the reactivity of the core will be continuously monitored during CORE ALTERATIONS.

Special movable detectors, according to footnote (c) of Table 3.3.1.2-1, may be used in MODE 5 in place of the normal SRM nuclear detectors. These special detectors must be connected to the normal SRM circuits in the NMS, such that the applicable neutron flux indication can be generated. These special detectors provide more flexibility in monitoring reactivity changes during fuel loading, since they can be positioned anywhere within the core during refueling. They must still meet the location requirements of SR 3.3.1.2.2 and all other required SRs for SRMs.

For an SRM channel to be considered OPERABLE, it must be providing neutron flux monitoring indication. In addition, in MODE 5, the required SRMs must be inserted to the normal operating level and be providing continuous visual indication in the control room.

APPLICABILITY

The SRMs are required to be OPERABLE in MODE 2 prior to the IRMs being on scale on Range 3, and MODES 3, 4, and 5 to provide for neutron monitoring. In MODE 1, the APRMs provide adequate monitoring of reactivity changes in the core; therefore, the SRMs are not required. In MODE 2, with IRMs on Range 3 or above, the IRMs provide adequate monitoring and the SRMs are not required.

ACTIONS

A.1 and B.1

In MODE 2, with the IRMs on Range 2 or below, SRMs provide the means of monitoring core reactivity and criticality. With any number of the required SRMs inoperable, the ability to monitor neutron flux is degraded. Therefore, a limited time is allowed to restore the inoperable channels to OPERABLE status.

A.1 and B.1 (continued)

Provided at least one SRM remains OPERABLE, Required Action A.1 allows 4 hours to restore the required SRMs to OPERABLE status. This time is reasonable because there is adequate capability remaining to monitor the core, there is limited risk of an event during this time, and there is sufficient time to take corrective actions to restore the required SRMs to OPERABLE status or to establish alternate IRM monitoring capability. During this time, control rod withdrawal and power increase is not precluded by this Required Action. Having the ability to monitor the core with at least one SRM, proceeding to IRM Range 3 or greater (with overlap required by SR 3.3.1.1.6), and thereby exiting the Applicability of this LCO, is acceptable for ensuring adequate core monitoring and allowing continued operation.

With three required SRMs inoperable, Required Action B.1 allows no positive changes in reactivity (control rod withdrawal must be immediately suspended) due to inability to monitor the changes. Required Action A.1 still applies and allows 4 hours to restore monitoring capability prior to requiring control rod insertion. This allowance is based on the limited risk of an event during this time, provided that no control rod withdrawals are allowed, and the desire to concentrate efforts on repair, rather than to immediately shut down, with no SRMs OPERABLE.

C.1

In MODE 2 with the IRMs on Range 2 or below, if the required number of SRMs is not restored to OPERABLE status within the allowed Completion Time, the reactor shall be placed in MODE 3. With all control rods fully inserted, the core is in its least reactive state with the most margin to criticality. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

ACTIONS (continued)

D.1 and D.2

With one or more required SRMs inoperable in MODE 3 or 4, the neutron flux monitoring capability is degraded or nonexistent. The requirement to fully insert all insertable control rods ensures that the reactor will be at its minimum reactivity level while no neutron monitoring capability is available. Placing the reactor mode switch in the shutdown position prevents subsequent control rod withdrawal by maintaining a control rod block. The allowed Completion Time of 1 hour is sufficient to accomplish the Required Action, and takes into account the low probability of an event requiring the SRM occurring during this interval.

E.1 and E.2

With one or more required SRMs inoperable in MODE 5, the ability to detect local reactivity changes in the core during refueling is degraded. CORE ALTERATIONS must be immediately suspended and action must be immediately initiated to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Suspending CORE ALTERATIONS prevents the two most probable causes of reactivity changes, fuel loading and control rod withdrawal, from occurring. Inserting all insertable control rods ensures that the reactor will be at its minimum reactivity given that fuel is present in the core. Suspension of CORE ALTERATIONS shall not preclude completion of the movement of a component to a safe, conservative position.

Action (once required to be initiated) to insert control rods must continue until all insertable rods in core cells containing one or more fuel assemblies are inserted.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each SRM Applicable MODE or other specified conditions are found in the SRs column of Table 3.3.1.2-1.

SR 3.3.1.2.1 and SR 3.3.1.2.3

Performance of the CHANNEL CHECK ensures that a gross failure of instrumentation has not occurred. A CHANNEL

SURVEILLANCE REQUIREMENTS

SR 3.3.1.2.1 and SR 3.3.1.2.3 (continued)

CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on another channel. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency of once every 12 hours for SR 3.3.1.2.1 is based on operating experience that demonstrates channel failure is rare. While in MODES 3 and 4, reactivity changes are not expected; therefore, the 12 hour Frequency is relaxed to 24 hours for SR 3.3.1.2.3. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.1.2.2

To provide adequate coverage of potential reactivity changes in the core, one SRM is required to be OPERABLE in the quadrant where CORE ALTERATIONS are being performed, and the other OPERABLE SRM must be in an adjacent quadrant containing fuel. Note 1 states that the SR is required to be met only during CORE ALTERATIONS. It is not required to be met at other times in MODE 5 since core reactivity changes are not occurring. This Surveillance consists of a review of plant logs to ensure that SRMs required to be OPERABLE for given CORE ALTERATIONS are, in fact, OPERABLE. In the event that only one SRM is required to be OPERABLE, per Table 3.3.1.2-1, footnote (b), only the a. portion of

SURVEILLANCE REOUIREMENTS

SR 3.3.1.2.2 (continued)

this SR is effectively required. Note 2 clarifies that more than one of the three requirements can be met by the same OPERABLE SRM. The 12 hour Frequency is based upon operating experience and supplements operational controls over refueling activities that include steps to ensure that the SRMs required by the LCO are in the proper quadrant.

SR 3.3.1.2.4

This Surveillance consists of a verification of the SRM instrument readout to ensure that the SRM reading is greater than a specified minimum count rate with the detector full in, which ensures that the detectors are indicating count rates indicative of neutron flux levels within the core. With few fuel assemblies loaded, the SRMs will not have a high enough count rate to satisfy the SR. Therefore, allowances are made for loading sufficient "source" material, in the form of irradiated fuel assemblies, to establish the minimum count rate.

To accomplish this, the SR is modified by a Note that states that the count rate is not required to be met on an SRM that has less than or equal to four fuel assemblies adjacent to the SRM and no other fuel assemblies are in the associated core quadrant. With four or less fuel assemblies loaded around each SRM and no other fuel assemblies in the associated core quadrant, even with a control rod withdrawn, the configuration will not be critical. When movable detectors are being used, detector location must be selected such that each group of fuel assemblies is separated by at least two fuel cells from any other fuel assemblies.

The Frequency is based upon channel redundancy and other information available in the control room, and ensures that the required channels are frequently monitored while core reactivity changes are occurring. When no reactivity changes are in progress, the Frequency is relaxed from 12 hours to 24 hours.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.1.2.5 and SR 3.3.1.2.6

Performance of a CHANNEL FUNCTIONAL TEST demonstrates the associated channel will function properly. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. SR 3.3.1.2.5 is required in MODE 5, and the 7 day Frequency ensures that the channels are OPERABLE while core reactivity changes could be in progress. This Frequency is reasonable, based on operating experience and on other Surveillances (such as a CHANNEL CHECK), that ensure proper functioning between CHANNEL FUNCTIONAL TESTS.

SR 3.3.1.2.6 is required to be met in MODE 2 with IRMs on Range 2 or below, and in MODES 3 and 4. Since core reactivity changes do not normally take place in MODES 3 and 4 and core reactivity changes are due only to control rod movement in MODE 2, the Frequency is extended from 7 days to 31 days. The 31 day Frequency is based on operating experience and on other Surveillances (such as CHANNEL CHECK) that ensure proper functioning between CHANNEL FUNCTIONAL TESTS.

Verification of the signal to noise ratio also ensures that the detectors are inserted to an acceptable operating level. In a fully withdrawn condition, the detectors are sufficiently removed from the fueled region of the core to essentially eliminate neutrons from reaching the detector. Any count rate obtained while the detectors are fully withdrawn is assumed to be "noise" only.

With few fuel assemblies loaded, the SRMs will not have a high enough count rate to determine the signal to noise ratio. Therefore, allowances are made for loading sufficient "source" material, in the form of irradiated fuel assemblies, to establish the conditions necessary to determine the signal to noise ratio. To accomplish this, SR 3.3.1.2.5 is modified by a Note that states that the

SURVEILLANCE REQUIREMENTS

SR = 3.3.1.2.5 and SR = 3.3.1.2.6 (continued)

determination of signal to noise ratio is not required to be met on an SRM that has less than or equal to four fuel assemblies adjacent to the SRM and no other fuel assemblies are in the associated core quadrant. With four or less fuel assemblies loaded around each SRM and no other fuel assemblies in the associated quadrant, even with a control rod withdrawn the configuration will not be critical.

The Note to SR 3.3.1.2.6 allows the Surveillance to be delayed until entry into the specified condition of the Applicability (THERMAL POWER decreased to IRM Range 2 or below). The SR must be performed within 12 hours after IRMs are on Range 2 or below. The allowance to enter the Applicability with the 31 day Frequency not met is reasonable, based on the limited time of 12 hours allowed after entering the Applicability and the inability to perform the Surveillance while at higher power levels. Although the Surveillance could be performed while on IRM Range 3, the plant would not be expected to maintain steady state operation at this power level. In this event, the 12 hour Frequency is reasonable, based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to perform the Surveillances.

SR 3.3.1.2.7

Performance of a CHANNEL CALIBRATION at a Frequency of 24 months verifies the performance of the SRM detectors and associated circuitry. The Frequency considers the plant conditions required to perform the test, the ease of performing the test, and the likelihood of a change in the system or component status. The neutron detectors are excluded from the CHANNEL CALIBRATION (Note 1) because they cannot readily be adjusted. The detectors are fission chambers that are designed to have a relatively constant sensitivity over the range and with an accuracy specified for a fixed useful life.

BASES

SURVEILLANCE REQUIREMENTS

SR 3.3.1.2.7 (continued)

Note 2 to SR 3.3.1.2.6 allows the Surveillance to be delayed until entry into the specified condition of the Applicability. The SR must be performed in MODE 2 within 12 hours of entering MODE 2 with IRMs on Range 2 or below. The allowance to enter the Applicability with the 24 month Frequency not met is reasonable, based on the limited time of 12 hours allowed after entering the Applicability and the inability to perform the Surveillance while at higher power levels. Although the Surveillance could be performed while on IRM Range 3, the plant would not be expected to maintain steady state operation at this power level. In this event, the 12 hour Frequency is reasonable, based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to perform the Surveillances.

REFERENCES

None.

B 3.3 INSTRUMENTATION

B 3.3.2.1 Control Rod Block Instrumentation

BASES

BACKGROUND

Control rods provide the primary means for control of reactivity changes. Control rod block instrumentation includes channel sensors, logic circuitry, switches, and relays that are designed to ensure that specified fuel design limits are not exceeded for postulated transients and accidents. During high power operation, the rod block monitor (RBM) provides protection for control rod withdrawal error events. During low power operations, control rod blocks from the rod worth minimizer (RWM) enforce specific control rod sequences designed to mitigate the consequences of the control rod drop accident (CRDA). During shutdown conditions, control rod blocks from the Reactor Mode Switch—Shutdown Position Function ensure that all control rods remain inserted to prevent inadvertent criticalities.

The purpose of the RBM is to limit control rod withdrawal if localized neutron flux exceeds a predetermined setpoint during control rod manipulations (Ref. 1). It is assumed to function to block further control rod withdrawal to preclude a MCPR Safety Limit (SL) violation. The RBM supplies a trip signal to the Reactor Manual Control System (RMCS) to appropriately inhibit control rod withdrawal during power operation above the 30% RTP setpoint when a non-peripheral control rod is selected. The RBM has two channels, either of which can initiate a control rod block when the channel output exceeds the control rod block setpoint. One RBM channel inputs into one RMCS rod block circuit and the other RBM channel inputs into the second RMCS rod block circuit. The RBM channel signal is generated by averaging a set of local power range monitor (LPRM) signals. One RBM channel averages the signals from LPRM detectors at the A and C positions in the assigned LPRM assemblies, while the other RBM channel averages the signals from LPRM detectors at the B and D positions. Assignment of LPRM assemblies to be used in RBM averaging is controlled by the selection of control rods. The RBM is automatically bypassed and the output set to zero if a peripheral rod is selected or the APRM used to normalize the RBM reading is < 30% RTP. If any LPRM detector assigned to an RBM is bypassed, the computed

BACKGROUND (continued)

average signal is automatically adjusted to compensate for the number of LPRM input signals. The minimum number of LPRM inputs required for each RBM channel to prevent an instrument inoperative alarm is four when using four LPRM assemblies, three when using three LPRM assemblies, and two when using two LPRM assemblies. Each RBM also receives a recirculation loop flow signal from the associated flow converter.

With no control rod selected, the RBM output is set to zero. However, when a control rod is selected, the gain of each RBM channel output is normalized to a reference APRM. The gain setting is held constant during the movement of that particular control rod to provide an indication of the change in the relative local power level. If the indicated power increases above the preset limit, a rod block will occur. In addition, to preclude rod movement with an inoperable RBM, a downscale trip and an inoperable trip are provided.

The purpose of the RWM is to control rod patterns during startup and shutdown, such that only specified control rod sequences and relative positions are allowed over the operating range from all control rods inserted to 10% RTP. The sequences effectively limit the potential amount and rate of reactivity increase during a CRDA. A prescribed control rod sequence is stored in the RWM, which will initiate control rod withdrawal and insert blocks when the actual sequence deviates beyond allowances from the stored sequence. The RWM determines the actual sequence based on position indication for each control rod. The RWM also uses feedwater flow and steam flow signals to determine when the reactor power is above the preset power level at which the RWM is automatically bypassed (Ref. 2). The RWM is a single channel system that provides input into both RMCS rod block circuits.

With the reactor mode switch in the shutdown position, a control rod withdrawal block is applied to all control rods to ensure that the shutdown condition is maintained. This Function prevents inadvertent criticality as the result of a control rod withdrawal during MODE 3 or 4, or during MODE 5 when the reactor mode switch is required to be in the

BACKGROUND (continued)

shutdown position. The reactor mode switch has two channels, each inputting into a separate RMCS rod block circuit. A rod block in either RMCS circuit will provide a control rod block to all control rods.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

1. Rod Block Monitor

The RBM is designed to prevent violation of the MCPR SL and the cladding 1% plastic strain fuel design limit that may result from a single control rod withdrawal error (RWE) event. The analytical methods and assumptions used in evaluating the RWE event are summarized in Reference 3. The cycle-specific analysis considers the continuous withdrawal of the maximum worth control rod at its maximum drive speed from the reactor, which is operating at rated power with a control rod pattern that results in the core being placed on thermal design limits. The condition is analyzed to ensure that the results obtained are conservative; the approach also serves to demonstrate the functions of the RBM.

The RBM Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Two channels of the RBM are required to be OPERABLE, with their setpoints within the appropriate Allowable Values specified in the CORE OPERATING LIMITS REPORT to ensure that no single instrument failure can preclude a rod block from this Function. The actual setpoints are calibrated consistent with applicable setpoint methodology.

Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Values between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor power), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained

<u>(continued)</u>

1. Rod Block Monitor (continued)

from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The RBM is assumed to mitigate the consequences of an RWE event when operating \geq 30% RTP and a non-peripheral control rod is selected. Below this power level, or if a peripheral control rod is selected, the consequences of an RWE event will not exceed the MCPR SL and, therefore, the RBM is not required to be OPERABLE (Ref. 3).

2. Rod Worth Minimizer

The RWM enforces the analyzed rod position sequence to ensure that the initial conditions of the CRDA analysis are not violated. The analytical methods and assumptions used in evaluating the CRDA are summarized in References 4, 5, 6, 7, and 8. The analyzed rod position sequence requires that control rods be moved in groups, with all control rods assigned to a specific group required to be within specified banked positions. Requirements that the control rod sequence is in compliance with the analyzed rod position sequence are specified in LCO 3.1.6, "Rod Pattern Control."

The RWM Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Since the RWM is a system designed to act as a backup to operator control of the rod sequences, only one channel of the RWM is available and required to be OPERABLE (Ref. 9). Special circumstances provided for in the Required Action of

2. Rod Worth Minimizer (continued)

LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3.1.6 may necessitate bypassing the RWM to allow continued operation with inoperable control rods, or to allow correction of a control rod pattern not in compliance with the analyzed rod position sequence. The RWM may be bypassed as required by these conditions, but then it must be considered inoperable and the Required Actions of this LCO followed.

Compliance with the analyzed rod position sequence, and therefore OPERABILITY of the RWM, is required in MODES 1 and 2 when THERMAL POWER is $\leq 10\%$ RTP. When THERMAL POWER is > 10% RTP, there is no possible control rod configuration that results in a control rod worth that could exceed the 280 cal/gm fuel design limit during a CRDA (Refs. 9 and 10). In MODES 3 and 4, all control rods are required to be inserted into the core; therefore, a CRDA cannot occur. In MODE 5, since only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDM ensures that the consequences of a CRDA are acceptable, since the reactor will be subcritical.

3. Reactor Mode Switch - Shutdown Position

During MODES 3 and 4, and during MODE 5 when the reactor mode switch is in the shutdown position, the core is assumed to be subcritical; therefore, no positive reactivity insertion events are analyzed. The Reactor Mode Switch—Shutdown Position control rod withdrawal block ensures that the reactor remains subcritical by blocking control rod withdrawal, thereby preserving the assumptions of the safety analysis.

The Reactor Mode Switch — Shutdown Position Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Two channels are required to be OPERABLE to ensure that no single channel failure will preclude a rod block when required. There is no Allowable Value for this Function since the channels are mechanically actuated based solely on reactor mode switch position.

3. Reactor Mode Switch - Shutdown Position (continued)

During shutdown conditions (MODES 3 and 4, and MODE 5 when the reactor mode switch is in the shutdown position), no positive reactivity insertion events are analyzed because assumptions are that control rod withdrawal blocks are provided to prevent criticality. Therefore, when the reactor mode switch is in the shutdown position, the control rod withdrawal block is required to be OPERABLE. During MODE 5 with the reactor mode switch in the refueling position, the refuel position one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock") provides the required control rod withdrawal blocks.

ACTIONS

A.1

With one RBM channel inoperable, the remaining OPERABLE channel is adequate to perform the control rod block function; however, overall reliability is reduced because a single failure in the remaining OPERABLE channel can result in no control rod block capability for the RBM. For this reason, Required Action A.1 requires restoration of the inoperable channel to OPERABLE status. The Completion Time of 24 hours is based on the low probability of an event occurring coincident with a failure in the remaining OPERABLE channel.

<u>B.1</u>

If Required Action A.1 is not met and the associated Completion Time has expired, the inoperable channel must be placed in trip within 1 hour. If both RBM channels are inoperable, the RBM is not capable of performing its intended function; thus, one channel must also be placed in trip. This initiates a control rod withdrawal block, thereby ensuring that the RBM function is met.

The 1 hour Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities and is acceptable because it minimizes risk while allowing time for restoration or tripping of inoperable channels.

ACTIONS (continued)

C.1, C.2.1.1, C.2.1.2, and C.2.2

With the RWM inoperable during a reactor startup, the operator is still capable of enforcing the prescribed control rod sequence. However, the overall reliability is reduced because a single operator error can result in violating the control rod sequence. Therefore, control rod movement must be immediately suspended except by scram. Alternatively, startup may continue if at least 12 control rods have already been withdrawn, or a reactor startup with an inoperable RWM during withdrawal of one or more of the first 12 control rods was not performed in the last 12 months. These requirements minimize the number of reactor startups initiated with the RWM inoperable. Required Actions C.2.1.1 and C.2.1.2 require verification of these conditions by review of plant logs and control room indications. Once Required Action C.2.1.1 or C.2.1.2 is satisfactorily completed, control rod withdrawal may proceed in accordance with the restrictions imposed by Required Action C.2.2. Required Action C.2.2 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other task qualified member of the technical staff (e.g., shift technical advisor or reactor engineer).

The RWM may be bypassed under these conditions to allow continued operations. In addition, Required Actions of LCO 3.1.3 and LCO 3.1.6 may require bypassing the RWM, during which time the RWM must be considered inoperable with Condition C entered and its Required Actions taken.

D.1

With the RWM inoperable during a reactor shutdown, the operator is still capable of enforcing the prescribed control rod sequence. Required Action D.1 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other task qualified member of the technical

<u>(continued)</u>

ACTIONS

D.1 (continued)

staff (e.g., shift technical advisor or reactor engineer). The RWM may be bypassed under these conditions to allow the reactor shutdown to continue.

E.1 and E.2

With one Reactor Mode Switch—Shutdown Position control rod withdrawal block channel inoperable, the remaining OPERABLE channel is adequate to perform the control rod withdrawal block function. However, since the Required Actions are consistent with the normal action of an OPERABLE Reactor Mode Switch—Shutdown Position Function (i.e., maintaining all control rods inserted), there is no distinction between having one or two channels inoperable.

In both cases (one or both channels inoperable), suspending all control rod withdrawal and initiating action to fully insert all insertable control rods in core cells containing one or more fuel assemblies will ensure that the core is subcritical with adequate SDM ensured by LCO 3.1.1. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and are therefore not required to be inserted. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each Control Rod Block instrumentation Function are found in the SRs column of Table 3.3.2.1-1.

The Surveillances are modified by a second Note to indicate that when an RBM channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains control rod block capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 11)

SURVEILLANCE REQUIREMENTS (continued) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that a control rod block will be initiated when necessary.

SR 3.3.2.1.1

A CHANNEL FUNCTIONAL TEST is performed for each RBM channel to ensure that the entire channel will perform the intended function. It includes the Reactor Manual Control "Relay Select Marix" System input. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. The Frequency of 92 days is based on reliability analyses (Ref. 12).

SR 3.3.2.1.2 and SR 3.3.2.1.3

A CHANNEL FUNCTIONAL TEST is performed for the RWM to ensure that the entire system will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST for the RWM is performed by attempting to withdraw a control rod not in compliance with the prescribed sequence and verifying a control rod block occurs and by attempting to select a control rod not in compliance with

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

\underline{SR} 3.3.2.1.2 and \underline{SR} 3.3.2.1.3 (continued)

the prescribed sequence and verifying a selection error occurs. As noted in the SRs, SR 3.3.2.1.2 is not required to be performed until 1 hour after any control rod is withdrawn at \leq 10% RTP in MODE 2, and SR 3.3.2.1.3 is not required to be performed until 1 hour after THERMAL POWER is < 10% RTP in MODE 1. The Note to SR 3.3.2.1.2 allows entry into MODE 2 on a startup and entry in MODE 2 concurrent with a power reduction to \leq 10% RTP during a shutdown to perform the required Surveillance if the 92 day Frequency is not met per SR 3.0.2. The Note to SR 3.3.2.1.3 allows a THERMAL POWER reduction to < 10% RTP in MODE 1 to perform the required Surveillance if the 92 day Frequency is not met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs. Operating experience has shown that these components usually pass the Surveillance when performed at the 92 day Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SR 3.3.2.1.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

As noted, neutron detectors are excluded from the CHANNEL CALIBRATION because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Neutron detectors are adequately tested in SR 3.3.1.1.2 and SR 3.3.1.1.8.

The Frequency is based upon the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.1.5

The RBM is automatically bypassed when power is below a specified value or if a peripheral control rod is selected. The power level is determined from the APRM signals input to each RBM channel. The automatic bypass setpoint must be verified periodically to be < 30% RTP. In addition, it must also be verified that the RBM is not bypassed when a control rod that is not a peripheral control rod is selected (only one non-peripheral control rod is required to be verified). If any bypass setpoint is nonconservative, then the affected RBM channel is considered inoperable. Alternatively, the APRM channel can be placed in the conservative condition to enable the RBM. If placed in this condition, the SR is met and the RBM channel is not considered inoperable. As noted, neutron detectors are excluded from the Surveillance because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Neutron detectors are adequately tested in SR 3.3.1.1.2 and SR 3.3.1.1.8. The 92 day Frequency is based on the actual trip setpoint methodology utilized for these channels.

SR 3.3.2.1.6

The RWM is automatically bypassed when power is above a specified value. The power level is determined from feedwater flow and steam flow signals. The automatic bypass setpoint must be verified periodically to be > 10% RTP. If the RWM low power setpoint is nonconservative, then the RWM is considered inoperable. Alternately, the low power setpoint channel can be placed in the conservative condition (nonbypass). If placed in the nonbypassed condition, the SR is met and the RWM is not considered inoperable. The Frequency is based on the trip setpoint methodology utilized for the low power setpoint channel.

SR 3.3.2.1.7

A CHANNEL FUNCTIONAL TEST is performed for the Reactor Mode Switch—Shutdown Position Function to ensure that the entire channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

SR 3.3.2.1.7 (continued)

performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. The CHANNEL FUNCTIONAL TEST for the Reactor Mode Switch—Shutdown Position Function is performed by attempting to withdraw any control rod with the reactor mode switch in the shutdown position and verifying a control rod block occurs.

As noted in the SR, the Surveillance is not required to be performed until 1 hour after the reactor mode switch is in the shutdown position, since testing of this interlock with the reactor mode switch in any other position cannot be performed without using jumpers, lifted leads, or movable links. This allows entry into MODES 3 and 4 if the 24 month Frequency is not met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

SR 3.3.2.1.8

The RWM will only enforce the proper control rod sequence if the rod sequence is properly input into the RWM computer. This SR ensures that the proper sequence is loaded into the RWM so that it can perform its intended function. The Surveillance is performed once prior to declaring RWM OPERABLE following loading of sequence into RWM, since this is when rod sequence input errors are possible.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.2.1.9

LCO 3.1.3 and LCO 3.1.6 may require individual control rods to be bypassed (taken out of service) in the RWM to allow insertion of an inoperable control rod or correction of a control rod pattern not in compliance with the analyzed rod position sequence. With the control rods bypassed (taken out of service) in the RWM, the RWM will provide insert and withdraw blocks for bypassed control rods that are fully inserted and a withdraw block for bypassed control rods that are not fully inserted. To ensure the proper bypassing and movement of these affected control rods, a second licensed operator (Reactor Operator or Senior Reactor Operator) or other task qualified member of the technical staff (e.g., shift technical advisor or reactor engineer) must verify the bypassing and position of these control rods. Compliance with this SR allows the RWM to be OPERABLE with these control rods bypassed.

REFERENCES

- 1. UFSAR, Section 7.6.1.5.3.
- 2. UFSAR, Section 7.7.2.
- 3. UFSAR. Section 15.4.2.3.
- 4. UFSAR, Section 15.4.10.
- 5. XN-NF-80-19(P)(A), Volume 1, Supplement 2, Section 7.1 Exxon Nuclear Methodology for Boiling Water Reactor-Neutronics Methods for Design and Analysis, (as specified in Technical Specification 5.6.5).
- 6. NEDE-24011-P-A, "GE Standard Application for Reactor Fuel," (as specified in Technical Specification 5.6.5).
- 7. Letter to T.A. Pickens (BWROG) from G.C. Lainas (NRC), "Amendment 17 to General Electric Licensing Topical Report NEDE-24011-P-A," BWROG-8644, August 15, 1986.
- 8. NFSR-0091, Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods, Commonwealth Edison Topical Report, (as specified in Technical Specification 5.6.5).

BASES

REFERENCES (continued)

- 9. NRC SER, "Acceptance of Referencing of Licensing Topical Report NEDE-24011-P-A," "General Electric Standard Application for Reactor Fuel, Revision 8, Amendment 17," December 27, 1987.
- 10. "Modifications to the Requirements for Control Rod Drop Accident Mitigating Systems," BWR Owners' Group, July 1986.
- 11. GENE-770-06-1-A, "Addendum to Bases for Changes to Surveillance Test Intervals and Allowed Out-of-Service Times for Selected Instrumentation Technical Specifications," December 1992.
- 12. NEDC-30851-P-A, Supplement 1, "Technical Specification Improvement Analysis for BWR Control Rod Block Instrumentation," October 1988.

B 3.3 INSTRUMENTATION

B 3.3.2.2 Feedwater System and Main Turbine High Water Level Trip Instrumentation

BASES

BACKGROUND

The Feedwater System and Main Turbine High Water Level Trip Instrumentation is designed to detect a potential failure of the Feedwater Level Control System that causes excessive feedwater flow.

With excessive feedwater flow, the water level in the reactor vessel rises toward the high water level reference point, causing the trip of the three feedwater pumps and the main turbine.

Reactor Vessel Water Level—High signals are provided by differential pressure indicating switches that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level in the reactor vessel (variable leg). Two channels of Reactor Vessel Water Level—High instrumentation are provided as input to a two-out-of-two initiation logic that trips the three feedwater pumps and the main turbine. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a feedwater pump and main turbine trip signal to the trip logic.

A trip of the feedwater pumps limits further increase in reactor vessel water level by limiting further addition of feedwater to the reactor vessel. A trip of the main turbine and closure of the stop valves protects the turbine from damage due to water entering the turbine.

APPLICABLE SAFETY ANALYSES

The Feedwater System and Main Turbine High Water Level Trip Instrumentation is assumed to be capable of providing a feedwater pump and main turbine trip in the design basis transient analysis for a feedwater controller failure, maximum demand event (Ref. 1). The high level trip indirectly initiates a reactor scram from the main turbine trip (above 45% RTP) and trips the feedwater pumps, thereby terminating the event. The reactor scram mitigates the reduction in MCPR.

BASES

APPLICABLE SAFETY ANALYSES (continued) Feedwater System and Main Turbine High Water Level Trip Instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The LCO requires two channels of the Reactor Vessel Water Level - High instrumentation to be OPERABLE to trip the feedwater pumps and main turbine trip on a valid high level signal. Two channels are needed to provide trip signals in order for the feedwater pump and main turbine trips to occur. Each channel must have its setpoint set within the specified Allowable Value of SR 3.3.2.2.3. The Allowable Value is set to ensure that the thermal limits are not exceeded during the event. The actual setpoint is calibrated to be consistent with the applicable setpoint methodology assumptions. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects,

BASES

LCO (continued)

calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

APPLICABILITY

The Feedwater System and Main Turbine High Water Level Trip Instrumentation is required to be OPERABLE at $\geq 25\%$ RTP to ensure that the fuel cladding integrity Safety Limit and the cladding 1% plastic strain limit are not violated during the feedwater controller failure, maximum demand event. As discussed in the Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," LCO 3.2.3, "LINEAR HEAT GENERATION RATE," and LCO 3.2.4, "Average Power Range Monitor (APRM) Gain and Setpoint," sufficient margin to these limits exists below 25% RTP; therefore, these requirements are only necessary when operating at or above this power level.

ACTIONS

A.1

With one or more channels inoperable, the Feedwater System and Main Turbine High Water Level Trip Instrumentation cannot perform its design function (Feedwater System and main turbine high water level trip capability is not maintained). Therefore, continued operation is only permitted for a 2 hour period, during which Feedwater System and main turbine high water level trip capability must be restored. The trip capability is considered maintained when sufficient channels are OPERABLE or in trip such that the Feedwater System and main turbine high water level trip logic will generate a trip signal on a valid signal. This requires two channels to each be OPERABLE or in trip. If the required channels cannot be restored to OPERABLE status or placed in trip, Condition B must be entered and its Required Action taken.

The 2 hour Completion Time is sufficient for the operator to take corrective action, and takes into account the likelihood of an event requiring actuation of Feedwater System and Main Turbine High Water Level Trip Instrumentation occurring during this period. It is also consistent with the 2 hour Completion Time provided in LCO 3.2.2 for Required Action A.1, since this instrumentation's purpose is to preclude a MCPR violation.

ACTIONS (continued)

B.1 and B.2

With a channel not restored to OPERABLE status or placed in trip, THERMAL POWER must be reduced to < 25% RTP within 4 hours. As discussed in the Applicability section of the Bases, operation below 25% RTP results in sufficient margin to the required limits, and the Feedwater System and Main Turbine High Water Level Trip Instrumentation is not required to protect fuel integrity during the feedwater controller failure, maximum demand event. Alternatively; if a channel is inoperable solely due to an inoperable feedwater pump breaker, the affected feedwater pump breaker may be removed from service since this performs the intended function of the instrumentation. The allowed Completion Time of 4 hours is based on operating experience to reduce THERMAL POWER to < 25% RTP from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 2 hours. Upon completion of the Surveillance, or expiration of the 2 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken.

SR 3.3.2.2.1

Performance of the CHANNEL CHECK once every 24 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels, or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.2.2.1</u> (continued)

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limits.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.2.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The Frequency of 92 days is based on operating experience.

SR 3.3.2.2.3

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

BASES

SURVEILLANCE REQUIREMENTS

SR 3.3.2.2.3 (continued)

The Frequency is based upon the assumption of a 12 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.2.2.4

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the feedwater pump breakers and main turbine stop valves is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a main turbine stop valve or feedwater pump breaker is incapable of operating, the associated instrumentation would also be inoperable. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

1. UFSAR, Section 15.1.2.

B 3.3 INSTRUMENTATION

B 3.3.3.1 Post Accident Monitoring (PAM) Instrumentation

BASES

BACKGROUND

The primary purpose of the PAM instrumentation is to display, in the control room, plant variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Events. The instruments that monitor these variables are designated as Type A, Category I, and non-Type A, Category I, in accordance with Regulatory Guide 1.97 (Ref. 1).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected plant parameters to monitor and assess plant status and behavior following an accident. This capability is consistent with the recommendations of Reference 1.

APPLICABLE SAFETY ANALYSES

The PAM instrumentation LCO ensures the OPERABILITY of Regulatory Guide 1.97, Type A variables so that the control room operating staff can:

- Perform the diagnosis specified in the Emergency Operating Procedures (EOPs). These variables are restricted to preplanned actions for the primary success path of Design Basis Accidents (DBAs), (e.g., loss of coolant accident (LOCA)), and
- Take the specified, preplanned, manually controlled actions for which no automatic control is provided, which are required for safety systems to accomplish their safety function.

The PAM instrumentation LCO also ensures OPERABILITY of Category I, non-Type A, variables so that the control room operating staff can:

 Determine whether systems important to safety are performing their intended functions;

APPLICABLE SAFETY ANALYSES (continued)

- Determine the potential for causing a gross breach of the barriers to radioactivity release;
- Determine whether a gross breach of a barrier has occurred: and
- Initiate action necessary to protect the public and for an estimate of the magnitude of any impending threat.

The plant specific Regulatory Guide 1.97 Analysis (Ref. 2) documents the process that identified Type A and Category I, non-Type A, variables.

Accident monitoring instrumentation that satisfies the definition of Type A in Regulatory Guide 1.97 meets Criterion 3 of 10 CFR 50.36(c)(2)(ii). Category I, non-Type A, instrumentation is retained in Technical Specifications (TS) because they are intended to assist operators in minimizing the consequences of accidents. Therefore, these Category I variables are important for reducing public risk.

LC0

LCO 3.3.3.1 requires two OPERABLE channels for all but one Function to ensure that no single failure prevents the operators from being presented with the information necessary to determine the status of the plant and to bring the plant to, and maintain it in, a safe condition following an accident. Furthermore, providing two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information.

The exception to the two channel requirement is primary containment isolation valve (PCIV) position. In this case, the important information is the status of the primary containment penetrations. The LCO requires one position indicator for each active (e.g., automatic) PCIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of passive valve or via system boundary status. If a normally active PCIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for closed and deactivated valves is not required to be OPERABLE.

LC0 (continued) The following list is a discussion of the specified instrument Functions listed in Table 3.3.3.1-1.

1. Reactor Vessel Pressure

Reactor vessel pressure is a Type A and Category I variable provided to support monitoring of Reactor Coolant System (RCS) integrity and to verify operation of the Emergency Core Cooling Systems (ECCS). Two independent pressure transmitters with a range of 0 psig to 1500 psig monitor pressure and provide pressure indication to the control room. The output from one of these channels is recorded on an independent pen recorder and the other channel output is directed to an indicator. The wide range recorder and indicator are the primary indications used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

2. Reactor Vessel Water Level

Reactor vessel water level is a Type A and Category \boldsymbol{I} variable provided to support monitoring of core cooling and to verify operation of the ECCS. Two different range channels, wide range and narrow range, provide the PAM Reactor Vessel Water Level Function. The wide range water level channels measure from approximately 202 inches above the top of active fuel to approximately 198 inches below the top of active fuel while the narrow range channels measure from approximately 82 inches above the top of active fuel to approximately 202 inches above the top of active fuel. Wide range water level is measured by two independent differential pressure transmitters. The output from one of these channels is recorded on an independent pen recorder and the other output is directed to an indicator. Narrow range level is measured by two independent differential pressure transmitters. The output from these channels is directed to two independent indicators. These instruments are the primary indications used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

LC0

2. Reactor Vessel Water Level (continued)

The reactor vessel water level instruments are uncompensated for variation in reactor water density and are calibrated to be most accurate at a specific vessel pressure and temperature. The wide range instruments are calibrated to be accurate at post-DBA LOCA pressure and temperature. The narrow range instruments are calibrated to be accurate at the normal operating pressure and temperature.

3. Torus Water Level

Torus water level is a Type A and Category I variable provided to detect a breach in the reactor coolant pressure boundary (RCPB). This variable is also used to verify and provide long term surveillance of ECCS function. The wide range torus water level measurement provides the operator with sufficient information to assess the status of both the RCPB and the water supply to the ECCS. The wide range water level indicators monitor the torus water level from the bottom to the top of the torus. Two wide range torus water level signals are transmitted from separate differential pressure transmitters to two control room indicators and also continuously displayed on two recorders in the control room. These instruments are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

4. Drywell Pressure

Drywell pressure is a Type A and Category I variable provided to detect a breach of the RCPB and to verify ECCS functions that operate to maintain RCS integrity. Two different range channels provide the PAM Drywell Pressure Function. The wide range instruments measure from -5 psig to 250 psig while the narrow range instruments monitor between -5 psig and 70 psig. The wide range drywell pressure signals are transmitted from separate pressure transmitters and are continuously displayed on two control room recorders and indicators. Two narrow range drywell

LCO <u>4.</u>

4. <u>Drywell Pressure</u> (continued)

pressure signals are transmitted from separate transmitters and are continuously displayed on independent indicators in the control room. These recorders and indicators are the primary indications used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel. The drywell pressure channels also satisfy the Reference 2 monitoring requirement for suppression chamber (torus) pressure (a Type A and Category 1 variable) since the suppression chamber-to-drywell vacuum breakers ensure the suppression chamber pressure is maintained within 0.5 psig of the drywell pressure.

5. Drywell Radiation

Drywell radiation is a Category 1 variable provided to monitor the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Two redundant radiation sensors are located in capped drywell penetrations and have a range from 10° R/hr to 10^{8} R/hr. These radiation monitors display on recorders located in the control room. Two radiation monitors/recorders are required to be OPERABLE (one per division). Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

6. Penetration Flow Path Primary Containment Isolation Valve (PCIV) Position

PCIV (excluding check valves) position is a Category 1 variable provided for verification of containment integrity. In the case of PCIV position, the important information is the isolation status of the containment penetration. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active PCIV in a containment penetration flow path requiring post-accident valve position indication, i.e., two total channels of PCIV position indication for a penetration flow path with two active valves requiring post-accident valve position indication. For containment penetrations with only one

LC0

6. Penetration Flow Path Primary Containment Isolation Valve (PCIV) Position (continued)

active PCIV having control room indication, Note (b) requires a single channel of valve position indication to be OPERABLE. This is sufficient to redundantly verify the isolation status of each isolable penetration via indicated status of the active valve, as applicable, and prior knowledge of passive valve or system boundary status. If a penetration flow path is isolated, position indication forthe PCIV(s) in the associated penetration flow path is not needed to determine status. Therefore, the position indication for valves in an isolated penetration flow path is not required to be OPERABLE. Each penetration is treated separately and each penetration flow path is considered a separate function. Therefore, separate Condition entry is allowed for each inoperable penetration flow path.

The indication for each PCIV is provided at the valve controls in the control room. Each indication consists of green and red indicator lights that illuminate to indicate whether the PCIV is fully open, fully closed, or in a midposition. Therefore, the PAM Specification deals specifically with this portion of the instrumentation channel.

7, 8. Drywell Hydrogen and Oxygen Concentration Analyzers and Monitors

Drywell hydrogen and oxygen analyzers and monitors are Category I instruments provided to detect high hydrogen or oxygen concentration conditions that represent a potential for containment breach. This variable is also important in verifying the adequacy of mitigating actions. Hydrogen and oxygen concentrations are each measured by two independent analyzers and are monitored in the control room. The drywell hydrogen and oxygen analyzer PAM instrumentation consists of two independent gas analyzer systems. Each gas analyzer system consists of a hydrogen analyzer and an oxygen analyzer. The analyzers are capable of determining hydrogen concentration in the range of 0% to 10% and oxygen concentration in the range of 0% to 10%. Each gas analyzer

LC0

7, 8. Drywell Hydrogen and Oxygen Concentration Analyzers and Monitors (continued)

system must be capable of sampling the drywell. There are two independent recorders in the control room to display the results. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.

9. Torus Water Temperature

Torus water temperature is a Type A and Category I variable provided to detect a condition that could potentially lead to containment breach and to verify the effectiveness of ECCS actions taken to prevent containment breach. The torus water temperature instrumentation allows operators to detect trends in torus water temperature in sufficient time to take action to prevent steam quenching vibrations in the torus. Sixteen temperature sensors are arranged in two groups of eight sensors in independent and redundant channels, located such that there are two sensors (one inner and one outer) located in each of the four quadrants to assure an accurate measurement of bulk water temperature. The range of the torus water temperature channels is 0°F to 300°F.

Thus, two groups of sensors are sufficient to monitor the bulk average temperature of the torus water. Each group of eight sensors is averaged to provide two bulk temperature inputs for PAM. The outputs for the sensors are recorded on two independent recorders in the control room. Both of these recorders must be OPERABLE to furnish two channels of PAM indication. These recorders are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channels.

APPLICABILITY

The PAM instrumentation LCO is applicable in MODES 1 and 2. These variables are related to the diagnosis and preplanned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1 and 2. In MODES 3, 4, and 5, plant conditions are such that the likelihood of an event that would require PAM instrumentation is extremely low; therefore, PAM instrumentation is not required to be OPERABLE in these MODES.

BASES (continued)

ACTIONS

Note 1 has been added to the ACTIONS to exclude the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require plant shutdown. This exception is acceptable due to the passive function of the instruments, the operator's ability to diagnose an accident using alternative instruments and methods, and the low probability of an event requiring these instruments.

Note 2 has been provided to modify the ACTIONS related to PAM instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable PAM instrumentation channels provide appropriate compensatory measures for separate Functions. As such, a Note has been provided that allows separate Condition entry for each inoperable PAM Function.

A.1

When one or more Functions have one required channel that is inoperable, the required inoperable channel must be restored to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channels or remaining isolation barrier (in the case of primary containment penetrations with only one PCIV), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval.

ACTIONS (continued)

<u>B.1</u>

If a channel has not been restored to OPERABLE status in 30 days, this Required Action specifies initiation of action in accordance with Specification 5.6.6, which requires a written report to be submitted to the NRC. This report discusses the results of the root cause evaluation of the inoperability and identifies proposed restorative actions. This Required Action is appropriate in lieu of a shutdown requirement, since another OPERABLE channel is monitoring the Function, an alternate method of monitoring is available, and given the likelihood of plant conditions that would require information provided by this instrumentation.

C.1

When one or more Functions have two required channels that are inoperable (i.e., two channels inoperable in the same Function), one channel in the Function should be restored to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur.

D.1

This Required Action directs entry into the appropriate Condition referenced in Table 3.3.3.1-1. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met the Required Action of Condition C and the associated Completion Time has expired, Condition D is entered for that channel and provides for transfer to the appropriate subsequent Condition.

ACTIONS (continued)

<u>E.1</u>

For the majority of Functions in Table 3.3.3.1-1, if the Required Action and associated Completion Time of Condition C is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

F.1

Since alternate means of monitoring drywell radiation have been developed and tested, the Required Action is not to shut down the plant, but rather to follow the directions of Specification 5.6.6. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the following SRs apply to each PAM instrumentation Function in Table 3.3.3.1-1, except where identified in the SR.

The Surveillances are modified by a second Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the other required channel in the associated Function is OPERABLE. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. The 6 hour testing allowance is acceptable since it does not significantly reduce the probability of properly monitoring post-accident parameters, when necessary.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.3.1.1

Performance of the CHANNEL CHECK once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel against a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation should be compared to similar plant instruments located throughout the plant.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.

The Frequency of 31 days is based upon plant operating experience, with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given Function in any 31 day interval is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of those displays associated with the channels required by the LCO.

SR 3.3.3.1.2 and SR 3.3.3.1.3

A CHANNEL CALIBRATION is performed every 92 days for Functions 7 and 8 and every 24 months for all other functions. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies the channel responds to measured parameter with the necessary range and accuracy. For Function 5, the CHANNEL CALIBRATION shall consist of an electronic calibration of

SURVEILLANCE REQUIREMENTS

$\underline{\mathsf{SR}} \quad \underline{\mathsf{3.3.3.1.2}} \quad \mathsf{and} \quad \underline{\mathsf{SR}} \quad \underline{\mathsf{3.3.3.1.3}} \quad \mathsf{(continued)}$

the channel, excluding the detector, for range decades > 10 R/hour and a one point calibration check of the detector with an installed or portable gamma source for the range decade < 10 R/hour. For Function 6, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual valve position.

The 92 day Frequency for CHANNEL CALIBRATION of Functions 7 and 8 is based on operating experience. The 24 month Frequency for CHANNEL CALIBRATION of all other PAM Instrumentation of Table 3.3.3.1-1 is based on operating experience and consistency with the refueling cycles.

REFERENCES

- 1. Regulatory Guide 1.97, "Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 2, December 1980.
- 2. NRC letter, T. Ross (NRC) to H.E. Bliss (Commonwealth Edison Company), "Conformance of Post Accident Monitoring Instrumentation at Quad Cities with Regulatory Guide 1.97," dated August 16, 1988.

B 3.3 INSTRUMENTATION

B 3.3.4.1 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation

BASES

BACKGROUND

The ATWS-RPT System initiates an RPT, adding negative reactivity, following events in which a scram does not but should occur, to lessen the effects of an ATWS event. Tripping the recirculation pumps adds negative reactivity from the increase in steam voiding in the core area as core flow decreases. When Reactor Vessel Water Level — Low Low or Reactor Vessel Steam Dome Pressure — High setpoint is reached, the recirculation motor generator (MG) drive motor field breakers trip.

The ATWS-RPT System (Ref. 1) includes sensors, relays, bypass capability circuit breakers, and switches that are necessary to cause initiation of an RPT. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an ATWS-RPT signal to the trip logic.

The ATWS-RPT consists of two independent trip systems, with two channels of Reactor Vessel Steam Dome Pressure—High and two channels of Reactor Vessel Water Level—Low Low in each trip system. Each ATWS-RPT trip system is a two-out-of-two logic for each Function. Thus, either two Reactor Water Level—Low Low or two Reactor Pressure—High signals are needed to trip a trip system. The outputs of the channels in a trip system are combined in a logic so that either trip system will trip both recirculation pumps (by tripping the respective MG drive motor field breakers). Each Reactor Vessel Water Level—Low Low channel output must remain below the setpoint for approximately 9 seconds for the channel output to provide an actuation signal to the associated trip system.

There is one MG drive motor field breaker provided for each of the two recirculation pumps for a total of two breakers. The output of each trip system is provided to both recirculation pump MG drive motor field breakers.

BASES (continued)

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

The ATWS-RPT is not assumed to mitigate any accident or transient in the safety analysis. The ATWS-RPT initiates an RPT to aid in preserving the integrity of the fuel cladding following events in which a scram does not, but should, occur. Based on its contribution to the reduction of overall plant risk, however, the instrumentation meets Criterion 4 of 10 CFR 50.36(c)(2)(ii).

The OPERABILITY of the ATWS-RPT is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have a required number of OPERABLE channels in each trip system, with their setpoints within the specified Allowable Value of SR 3.3.4.1.4. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Channel OPERABILITY also includes the associated recirculation pump drive motor breakers.

Allowable Values are specified for each ATWS-RPT Function specified in the LCO. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the ATWS analysis (Ref. 2). The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The individual Functions are required to be OPERABLE in MODE 1 to protect against common mode failures of the Reactor Protection System by providing a diverse trip to mitigate the consequences of a postulated ATWS event. The Reactor Vessel Steam Dome Pressure-High and Reactor Vessel Water Level - Low Low Functions are required to be OPERABLE in MODE 1, since the reactor is producing significant power and the recirculation system could be at high flow. During this MODE, the potential exists for pressure increases or low water level, assuming an ATWS event. In MODE 2, the reactor is at low power and the recirculation system is at low flow; thus, the potential is low for a pressure increase or low water level, assuming an ATWS event. Therefore, the ATWS-RPT is not necessary. In MODES 3 and 4, the reactor is shut down with all control rods inserted; thus, an ATWS event is not significant and the possibility of a significant pressure increase or low water level is negligible. In MODE 5, the one rod out interlock ensures that the reactor remains subcritical; thus, an ATWS event is not significant. In addition, the reactor pressure vessel (RPV) head is not fully tensioned and no pressure transient threat to the reactor coolant pressure boundary (RCPB) exists.

The specific Applicable Safety Analyses and LCO discussions are listed below on a Function by Function basis.

a. Reactor Vessel Water Level - Low Low

Low RPV water level indicates the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the ATWS-RPT System is initiated at low low RPV water level to aid in maintaining level above the top of the active fuel. The reduction of core flow reduces the neutron flux and THERMAL POWER and, therefore, the rate of coolant boiloff.

a. Reactor Vessel Water Level - Low Low (continued)

Reactor vessel water level signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

Four channels of Reactor Vessel Water Level - Low Low, with two channels in each trip system. are available and required to be OPERABLE to ensure that no single instrument failure can preclude an ATWS-RPT from this Function on a valid signal. Each channel includes a time delay relay which delays the Reactor Vessel Water Level-Low Low Function channel output signal from providing input to the associated trip system. The Reactor Vessel Water Level - Low Low Allowable Value is chosen so that the system will not be initiated after a reactor vessel water level scram with feedwater still available, and for convenience with the reactor core isolation cooling and high pressure coolant injection initiation. The Reactor Vessel Water Level - Low Low Function trip is delayed since there is an insignificant affect on the ATWS consequences and it is desirable to avoid making the consequences of a loss of coolant accident more severe.

b. Reactor Vessel Steam Dome Pressure - High

Excessively high RPV pressure may rupture the RCPB. An increase in the RPV pressure during reactor operation compresses the steam voids and results in a positive reactivity insertion. This increases neutron flux and THERMAL POWER, which could potentially result in fuel failure and overpressurization. The Reactor Vessel Steam Dome Pressure—High Function initiates an RPT for transients that result in a pressure increase, counteracting the pressure increase by rapidly reducing core power generation. For the overpressurization event, the RPT aids in the termination of the ATWS event and, along with the

b. Reactor Vessel Steam Dome Pressure - High (continued)

safety valves, limits the peak RPV pressure to less than the ASME Section III Code Service Level C limits (1500 psig).

The Reactor Vessel Steam Dome Pressure—High signals are initiated from four pressure transmitters that monitor reactor vessel steam dome pressure. Four channels of Reactor Vessel Steam Dome Pressure—High, with two channels in each trip system, are available and are required to be OPERABLE to ensure that no single instrument failure can preclude an ATWS-RPT from this Function on a valid signal. The Reactor Vessel Steam Dome Pressure—High Allowable Value is chosen to provide an adequate margin to the ASME Section III Code Service Level C allowable Reactor Coolant System pressure.

ACTIONS

A Note has been provided to modify the ACTIONS related to ATWS-RPT instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable ATWS-RPT instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable ATWS-RPT instrumentation channel.

A.1 and A.2

With one or more channels inoperable, but with ATWS-RPT trip capability for each Function maintained (refer to Required Actions B.1 and C.1 Bases), the ATWS-RPT System is capable of performing the intended function. However, the

ACTIONS

A.1 and A.2 (continued)

reliability and redundancy of the ATWS-RPT instrumentation is reduced, such that a single failure in the remaining trip system could result in the inability of the ATWS-RPT System to perform the intended function. Therefore, only a limited time is allowed to restore the inoperable channels to OPERABLE status. Because of the diversity of sensors available to provide trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of ATWS-RPT, 14 days is provided to restore the inoperable channel (Required Action A.1). Alternately, the inoperable channel may be placed in trip (Required Action A.2), since this would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. As noted, placing the channel in trip with no further restrictions is not allowed if the inoperable channel is the result of an inoperable breaker, since this may not adequately compensate for the inoperable breaker (e.g., the breaker may be inoperable such that it will not open). If it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an RPT), or if the inoperable channel is the result of an inoperable breaker, Condition D must be entered and its Required Actions taken.

B.1

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in the Function not maintaining ATWS-RPT trip capability. A Function is considered to be maintaining ATWS-RPT trip capability when sufficient channels are OPERABLE or in trip such that the ATWS-RPT System will generate a trip signal from the given Function on a valid signal, and both recirculation pumps can be tripped. This requires two channels of the Function in the same trip system to each be OPERABLE or in trip, and the recirculation pump drive motor breakers to be OPERABLE or in trip.

ACTIONS

B.1 (continued)

The 72 hour Completion Time is sufficient for the operator to take corrective action (e.g., restoration or tripping of channels) and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period and that one Function is still maintaining ATWS-RPT trip capability.

C.1

Required Action C.1 is intended to ensure that appropriate Actions are taken if multiple, inoperable, untripped channels within both Functions result in both Functions not maintaining ATWS-RPT trip capability. The description of a Function maintaining ATWS-RPT trip capability is discussed in the Bases for Required Action B.1 above.

The 1 hour Completion Time is sufficient for the operator to take corrective action and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period.

D.1 and D.2

With any Required Action and associated Completion Time not met, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours (Required Action D.2). Alternately, the associated recirculation pump may be removed from service since this performs the intended function of the instrumentation (Required Action D.1). The allowed Completion Time of 6 hours is reasonable, based on operating experience, both to reach MODE 2 from full power conditions and to remove a recirculation pump from service in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into the

SURVEILLANCE REQUIREMENTS (continued)

associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains ATWS-RPT trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 3) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the recirculation pumps will trip when necessary.

SR 3.3.4.1.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the required channels of this LCO.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.4.1.2

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in SR 3.3.4.1.4. If the trip setting is discovered to be less conservative than the setting accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the ATWS analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

The Frequency of 31 days is based on engineering judgement and the reliability of these components.

SR 3.3.4.1.3

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The Frequency of 92 days is based on the reliability analysis of Reference 3.

SR 3.3.4.1.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor, including the time delay relays associated with the Reactor Vessel Water Level — Low Low Function. This test verifies the channel responds to the

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.4.1.4</u> (continued)

measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency is based upon the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.4.1.5

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the pump breakers is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a breaker is incapable of operating, the associated instrument channel(s) would be inoperable.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 7.8.
- 2. UFSAR, Section 15.8
- 3. GENE-770-06-1-A, "Bases for Changes To Surveillance Test Intervals and Allowed Out-of-Service Times For Selected Instrumentation Technical Specifications," December 1992.

B 3.3 INSTRUMENTATION

B 3.3.5.1 Emergency Core Cooling System (ECCS) Instrumentation

BASES

BACKGROUND

The purpose of the ECCS instrumentation is to initiate appropriate responses from the systems to ensure that the fuel is adequately cooled in the event of a design basis accident or transient.

For most anticipated operational occurrences and Design Basis Accidents (DBAs), a wide range of dependent and independent parameters are monitored.

The ECCS instrumentation actuates core spray (CS), low pressure coolant injection (LPCI), high pressure coolant injection (HPCI), Automatic Depressurization System (ADS), and the diesel generators (DGs). The equipment involved with each of these systems is described in the Bases for LCO 3.5.1, "ECCS-Operating" and LCO 3.8.1, "AC Sources-Operating."

Core Spray System

The CS System may be initiated by either automatic or manual means, although manual initiation requires manipulation of individual pump and valve control switches. Automatic initiation occurs for conditions of Reactor Vessel Water Level - Low Low (coincident with Reactor Steam Dome Pressure - Low (Permissive)) or Drywell Pressure - High. The Reactor Vessel Water Level - Low Low variable is monitored by four redundant differential pressure switches and the Drywell Pressure-High variable is monitored by four redundant pressure switches. The output of each switch is connected to relays whose contacts input into two trip systems. Each trip system is arranged in a one-out-of-two taken twice logic for each Function. The Reactor Steam Dome Pressure - Low (Permissive) variable is monitored by two redundant pressure switches. The output of each switch is connected to relays whose contacts input into two trip systems. Each trip system is arranged in a one-out-of-two logic. Each trip system will delay CS pump start logic on low low reactor vessel water level until reactor steam dome

Core Spray System (continued)

pressure has fallen to a value below the CS System's maximum design pressure. The CS pumps start logic will receive the high drywell pressure signals without delay, however, the opening of the injection valves will be delayed for both Functions. Each trip system will start one CS pump and provide signals to the associated CS subsystem valves. Each CS subsystem also receives an ADS initiation signal. Upon receipt of an initiation signal, the CS pumps are started immediately if offsite power is available, otherwise the CS pumps start in approximately 10 seconds after AC power is available from the DG.

The CS test line isolation valve, which is also a primary containment isolation valve (PCIV), is closed on a CS initiation signal to allow full system flow assumed in the accident analyses and maintain primary containment isolated in the event CS is not operating.

The CS pump discharge flow is monitored by a flow transmitter. When the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum flow return line valve is opened. The valve is automatically closed if flow is above the minimum flow setpoint to allow the full system flow assumed in the accident analysis.

Low Pressure Coolant Injection System

The LPCI is an operating mode of the Residual Heat Removal (RHR) System, with two LPCI subsystems. The LPCI subsystems may be initiated by automatic or manual means, although manual initiation requires manipulation of individual pump and valve control switches. Automatic initiation occurs for conditions of Reactor Vessel Water Level — Low Low (coincident with Reactor Steam Dome Pressure — Low (Permissive)) or Drywell Pressure — High. The Reactor Vessel Water Level — Low Low variable is monitored by four redundant differential pressure switches and the Drywell Pressure — High variable is monitored by four redundant pressure switches. The output of each switch is connected to relays whose contacts input into two trip systems. Each

<u>(continued)</u>

<u>Low Pressure Coolant Injection System</u> (continued)

trip system is arranged in a one-out-of-two taken twice logic for each Function. The Reactor Steam Dome Pressure - Low (Permissive) variable is monitored by two redundant pressure switches. The output of each switch is connected to relays whose contacts input into two trip systems. Each trip system is arranged in a one-out-of-two logic. Each trip system will delay LPCI pump start logic on low low reactor vessel water level until reactor steam dome pressure has fallen to a value below the LPCI System's maximum design pressure. The LPCI pumps start logic will receive the high drywell pressure signals without delay, however, the opening of the injection valves will be delayed for both Functions. Each trip system will start the associated LPCI pumps and provide signals to the associated LPCI valves. Each LPCI subsystem also receives an ADS initiation signal.

Upon receipt of an initiation signal, the LPCI A and C pumps start immediately if offsite power is available, otherwise the pumps start immediately if AC power is available from the associated DG. LPCI B and D pumps start immediately if offsite power is available, otherwise the pumps are started after approximately a 5 second delay after AC power from the associated DG is available. This time delay limits the loading of the standby power sources.

Each LPCI subsystem's discharge flow is monitored by a flow transmitter. When a pump is running and discharge flow is low enough so that pump overheating may occur, the respective minimum flow return line valve is opened.

The RHR test line suppression pool cooling isolation valve, suppression pool spray isolation valves, and containment spray isolation valves (which are also PCIVs) are also closed on a LPCI initiation signal to allow the full system flow assumed in the accident analyses and maintain primary containment isolated in the event LPCI is not operating.

The LPCI System initiation logic also contains LPCI Loop Select Logic whose purpose is to identify and direct LPCI flow to the unbroken recirculation loop if a Design Basis Accident (DBA) occurs. The LPCI Loop Select Logic is

Low Pressure Coolant Injection System (continued)

initiated upon the receipt of either a LPCI Reactor Vessel Water Level - Low Low signal or a LPCI Drywell Pressure - High signal, as discussed previously. When initiated, the LPCI Loop Select Logic first determines recirculation pump operation by sensing the differential pressure (dp) between the suction and discharge of each pump. There are four dp switches monitoring each recirculation loop which are, in turn, connected to relays whose contacts are connected to two trip systems. The dp switches will trip when the dp across the pump is approximately 8 psid. The contacts are arranged in a one-out-of-two taken twice logic for each recirculation pump. If the logic senses that either pump is not running, i.e., single loop operation, then a trip signal is sent to both recirculation pumps to eliminate the possibility of pipe breaks being masked by the operating recirculation pump pressure. However, the pump trip signal is delayed approximately 0.5 seconds (one time delay relay per trip system) to ensure that at least one pump is off since the break detection sensitivity is greater with both pumps running. If a pump trip signal is generated, reactor steam dome pressure must drop to a specified value before the logic will continue. This adjusts the selection time to optimize sensitivity and still ensure that LPCI injection is not unnecessarily delayed. The reactor steam dome pressure is sensed by four pressure switches which in turn are connected to relays whose contacts are connected to two trip systems. The contacts are arranged in a one-out-of-two taken twice logic. After the satisfaction of this pressure requirement or if both recirculation pumps indicate they are running, a 2 second time delay is provided to allow momentum effects to establish the maximum differential pressure for loop selection. Selection of the unbroken recirculation loop is then initiated. This is done by comparing the absolute pressure of the two recirculation riser loops. The broken loop is indicated by a lower pressure than the unbroken loop. The loop with the higher pressure is then used for LPCI injection. If, after a small time delay of approximately 0.5 seconds (one time delay relay per trip system), the pressure in loop A is not indicating higher

Low Pressure Coolant Injection System (continued)

than loop B, the logic will provide a signal to close the B recirculation loop discharge valve, open the LPCI injection valve to the B recirculation loop and close the LPCI injection valve to the A recirculation loop. This is the "default" choice in the LPCI Loop Select Logic. If recirculation loop A pressure indicates higher than loop B pressure (> 1 psig), the recirculation discharge valve in loop A is closed, the LPCI injection valve to loop A is signaled to open and the LPCI injection valve to loop B is signaled to close. The four dp switches which provide input to this portion of the logic detect the pressure difference between the corresponding risers to the jet pumps in each recirculation loop. The four dp switches are connected to relays whose contacts are connected to two trip systems. The contacts in each trip system are arranged in a one-out-of-two taken twice logic. There are two redundant trip systems in the LPCI Loop Select Logic. The complete logic in each trip system must actuate for operation of the LPCI Loop Select Logic.

High Pressure Coolant Injection System

The HPCI System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level—Low Low or Drywell Pressure—High. The Reactor Vessel Water Level—Low Low variable is monitored by four redundant differential pressure switches and the Drywell Pressure—High variable is monitored by four redundant pressure switches. The output of each switch is connected to relays whose contacts are arranged in a one-out-of-two taken twice logic for each Function. The logic can also be initiated by use of a Manual Initiation push button.

The HPCI pump discharge flow is monitored by a differential pressure switch. When the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum flow return line valve is opened.

The HPCI full flow test line isolation valves are closed upon receipt of a HPCI initiation signal to allow the full system flow assumed in the accident analysis.

High Pressure Coolant Injection System (continued)

The HPCI System also monitors the water levels in the two contaminated condensate storage tanks (CCSTs) and the unit suppression pool because these are the two sources of water for HPCI operation. Reactor grade water in the CCSTs is the normal source. The HPCI System is normally aligned to both CCSTs. Upon receipt of a HPCI initiation signal, the CCST suction valve is automatically signaled to open (it is normally in the open position) unless both pump suction valves from the suppression pool are open. If the water level in any CCST falls below a preselected level, first the suppression pool suction valves automatically open, and then when the valves are fully open the CCST suction valve automatically closes. Two level switches are used to detect low water level in each CCST. The outputs for these switches are provided to logics of HPCI in both Unit 1 and Unit 2. Any switch can cause the suppression pool suction valves to open and the CCST suction valve to close. The suppression pool suction valves also automatically open and the CCST suction valve closes if high water level is detected in the suppression pool (one-out-of-two logic). To prevent losing suction to the pump, the suction valves are interlocked so that one suction path must be open before the other automatically closes.

The HPCI provides makeup water to the reactor until the reactor vessel water level reaches the Reactor Vessel Water Level—High trip, at which time the HPCI turbine trips, which causes the turbine's stop valve and the pump discharge valve to close. The logic is two-out-of-two to provide high reliability of the HPCI System. The HPCI System automatically restarts if a Reactor Vessel Water Level—Low Low signal is subsequently received.

Automatic Depressurization System

The ADS may be initiated by either automatic or manual means, although manual initiation requires manipulation of each individual relief valve control switch. Automatic initiation occurs when signals indicating Reactor Vessel Water Level — Low Low, Drywell Pressure — High, CS or LPCI Pump Discharge Pressure — High are all present and the ADS

Automatic Depressurization System (continued)

Initiation Timer has timed out. ADS automatic initiation also occurs when signals indicating Reactor Vessel Water Level - Low Low are present and the ADS Low Low Water Level Actuation Timer times out. However, this initiation occurs since this logic provides a direct initiation of the associated low pressure ECCS pumps, thereby bypassing the CS or LPCI Reactor Steam Dome Pressure (Permissive) channels. After the pumps start the ADS Drywell Pressure-High contacts are effectively bypassed and the above logic is completed after CS or LPCI Pump Discharge Pressure-High channels are actuated and the ADS Initiation Timer has also timed out. There are two differential pressure switches for Reactor Vessel Water Level - Low Low and two pressure switches for Drywell Pressure-High, in each of the two ADS trip systems. Each of these switches connects to a relay whose contacts form the initiation logic.

Each ADS trip system includes time delays between satisfying the initiation logic and the actuation of the ADS valves. The ADS Initiation Timer time delay setpoint and the Low Low Water Level Actuation Time Delay Setpoint are chosen to be long enough that the HPCI has sufficient operating time to recover to a level above Low Low, yet not so long that the LPCI and CS Systems are unable to adequately cool the fuel if the HPCI fails to maintain that level. An alarm in the control room is annunciated when either of the timers is timing. Resetting the ADS initiation signals resets the ADS Initiation Timers.

The ADS also monitors the discharge pressures of the four LPCI pumps and the two CS pumps. Each ADS trip system includes two discharge pressure permissive switches from all CS and LPCI pumps. However, only the switches in the associated division are required to be OPERABLE for each trip system (i.e., Division 1 LPCI pumps A and B input to ADS trip system A, and Division 2 LPCI pumps C and D input to ADS trip system B). The signals are used as a permissive for ADS actuation, indicating that there is a source of core coolant available once the ADS has depressurized the vessel. Any one of the six low pressure pumps is sufficient to permit automatic depressurization.

Automatic Depressurization System (continued)

The ADS logic (low low reactor vessel and high drywell pressure) in each trip system is arranged in two strings. Each string has a contact from a Reactor Vessel Water Level - Low Low and Drywell Pressure - High Function channel. In addition, each string receives a contact input of a pressure switch associated with each CS and LPCI pump via the use of auxiliary relays and one string includes the ADS initiation timer. All contacts in both logic strings must close, the ADS initiation timer must time out, and a CS or LPCI pump discharge pressure signal must be present to initiate an ADS trip system. Either the A or B trip system will cause all the ADS relief valves to open. Once the Drywell Pressure-High signal or the ADS initiation signal is present, it is sealed in until manually reset. Both trip strings associated with each ADS logic will also trip if both Reactor Vessel Water Level - Low Low Function channel contacts close, the ADS Low Low Water Level Actuation Timer times out, and a CS or LPCI pump discharge pressure signal is present in each string. This is accomplished since with both Reactor Vessel Water Level - Low Low Function channels tripped and with the ADS Low Low Water Level Actuation Timer timed out the associated low pressure ECCS pumps will receive an initiation signal from this logic, thus bypassing the associated ADS Drywell Pressure-High and CS or LPCI Reactor Steam Dome Pressure (Permissive) Function channels. to start the low pressure ECCS pumps.

Manual inhibit switches are provided in the control room and auxiliary equipment room for the ADS; however, their function is not required for ADS OPERABILITY (provided ADS is not inhibited when required to be OPERABLE).

Diesel Generators

The DGs may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level—Low Low or Drywell Pressure—High. The DGs are also initiated upon loss of voltage signals. (Refer to the Bases for LCO 3.3.8.1, "Loss of Power (LOP) Instrumentation," for a discussion of these signals.) The Reactor Water Level—Low Low variable is

Diesel Generators (continued)

monitored by four redundant differential pressure switches and the Drywell Pressure-High variable is is monitored by four redundant pressure switches. The output of each switch is connected to relays whose contacts are connected to two trip systems. Each trip system is arranged in a one-out-of-two taken twice logic. One trip system starts the unit DG and the other trip system starts the common DG (DG 1/2). The DGs receive their initiation signals from the CS System initiation logic. The DGs can also be started manually from the control room and locally from the associated DG room. Upon receipt of a loss of coolant accident (LOCA) initiation signal, each DG is automatically started, is ready to load in approximately 10 seconds, and will run in standby conditions (rated voltage and speed, with the DG output breaker open). The DGs will only energize their respective Essential Service System (ESS) buses if a loss of offsite power occurs (Refer to Bases for LCO 3.3.8.1).

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

The actions of the ECCS are explicitly assumed in the safety analyses of References 1, 2, and 3. The ECCS is initiated to preserve the integrity of the fuel cladding by limiting the post LOCA peak cladding temperature to less than the $10\ CFR\ 50.46\ limits$.

ECCS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the ECCS instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.5.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Values, where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Table 3.3.5.1-1, footnote (b), is added to show that certain ECCS instrumentation Functions are also required to be OPERABLE to perform DG initiation.

Allowable Values are specified for each ECCS Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

Some Functions (i.e, Functions 1.c, 1.d, 2.c, 2.d, 4.d, 4.e, 5.d, and 5.e) have both an upper and lower analytic limit that must be evaluated. The Allowable Values and trip setpoints are derived from both an upper and lower analytic limit using the methodology describe above. Due to the upper and lower analytic limits, Allowable Values of these Functions appear to incorporate a range. However, the upper and lower Allowable Values are unique, with each Allowable Value associated with one unique analytic limit and trip setpoint.

In general, the individual Functions are required to be OPERABLE in the MODES or other specified conditions that may

require ECCS (or DG) initiation to mitigate the consequences of a design basis transient or accident. To ensure reliable ECCS and DG function, a combination of Functions is required to provide primary and secondary initiation signals.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

Core Spray and Low Pressure Coolant Injection Systems

1.a, 2.a. Reactor Vessel Water Level - Low Low

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. The low pressure ECCS and associated DGs are initiated at Low Low to ensure that core spray and flooding functions are available to prevent or minimize fuel damage. The Reactor Vessel Water Level — Low Low is one of the Functions assumed to be OPERABLE and capable of initiating the ECCS during the transients analyzed in References 1 and 3. In addition, the Reactor Vessel Water Level — Low Low Function is directly assumed in the analysis of the recirculation line break (Ref. 2). The core cooling function of the ECCS, along with the scram action of the Reactor Protection System (RPS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level — Low Low signals are initiated from four differential pressure switches that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level — Low Low Allowable Value is chosen to allow time for the low pressure core flooding systems to activate and provide adequate cooling.

Four channels of CS Reactor Vessel Water Level — Low Low Function are only required to be OPERABLE when the CS or DG(s) are required to be OPERABLE to ensure that no single instrument failure can preclude ECCS and DG initiation. Also, four channels of the LPCI Reactor Vessel Water

1.a, 2.a. Reactor Vessel Water Level - Low Low (continued)

Level — Low Low Function are only required to be OPERABLE when the LPCI System is required to be OPERABLE to ensure no single instrument failure can preclude LPCI initiation. Refer to LCO 3.5.1 and LCO 3.5.2, "ECCS—Shutdown," for Applicability Bases for the low pressure ECCS subsystems; LCO 3.8.1, "AC Sources—Operating"; and LCO 3.8.2, "AC Sources—Shutdown," for Applicability Bases for the DGs.

1.b, 2.b. Drywell Pressure - High

High pressure in the drywell could indicate a break in the reactor coolant pressure boundary (RCPB). The low pressure ECCS and associated DGs are initiated upon receipt of the Drywell Pressure—High Function in order to minimize the possibility of fuel damage. The Drywell Pressure—High Function, along with the Reactor Water Level—Low Low Function, is directly assumed in the analysis of the recirculation line break (Ref. 2). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

High drywell pressure signals are initiated from four pressure switches that sense drywell pressure. The Allowable Value was selected to be as low as possible and be indicative of a LOCA inside primary containment.

The Drywell Pressure - High Function is required to be OPERABLE when the ECCS or DG is required to be OPERABLE in conjunction with times when the primary containment is required to be OPERABLE. Thus, four channels of the CS Drywell Pressure - High Function are required to be OPERABLE in MODES 1, 2, and 3 to ensure that no single instrument failure can preclude CS and DG initiation. Also, four channels of the LPCI Drywell Pressure - High Function are required to be OPERABLE in MODES 1, 2, and 3 to ensure no single instrument failure can preclude LPCI initiation. In MODES 4 and 5, the Drywell Pressure - High Function is not required, since there is insufficient energy in the reactor to pressurize the primary containment to Drywell Pressure - High setpoint. Refer to LCO 3.5.1 for Applicability Bases for the low pressure ECCS subsystems and to LCO 3.8.1 for Applicability Bases for the DGs.

1.c, 2.c. Reactor Steam Dome Pressure - Low (Permissive)

Low reactor steam dome pressure signals are used as permissives for the low pressure ECCS subsystems. This ensures that, prior to opening the injection valves of the low pressure ECCS subsystems, the reactor pressure has fallen to a value below these subsystems' maximum design pressure. The channels also delay CS and LPCI pump starts on Reactor Vessel Water Level-Low Low until reactor steam dome pressure is below the setpoint. The Reactor Steam Dome Pressure-Low (Permissive) is one of the Functions assumed to be OPERABLE and capable of permitting initiation of the ECCS during the transients analyzed in References 1 and 3. In addition, the Reactor Steam Dome Pressure - Low Function is directly assumed in the analysis of the recirculation line break (Ref. 2). The core cooling function of the ECCS, along with the scram action of the RPS. ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

The Reactor Steam Dome Pressure - Low (Permissive) signals are initiated from two pressure switches that sense the reactor steam dome pressure.

The Allowable Value is low enough to prevent overpressuring the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.

Two channels of Reactor Steam Dome Pressure — Low Function are only required to be OPERABLE when the ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.

1.d, 2.f. Core Spray and Low Pressure Coolant Injection Pump Discharge Flow-Low (Bypass)

The minimum flow instruments are provided to protect the associated low pressure ECCS pump from overheating when the pump is operating and the associated injection valve is not sufficiently open. The minimum flow line valve is opened when low flow is sensed, and the valve is automatically closed when the flow rate is adequate to protect the pump. The CS Pump Discharge Flow-Low (Bypass) Function is assumed to be OPERABLE and capable of closing the minimum flow valves to ensure that the CS flow assumed during the transients and accidents analyzed in References 1, 2, and 3 is met. The LPCI Pump Discharge Flow-Low (Bypass) Function is only required to be OPERABLE for opening since the LPCI minimum flow valves are assumed to remain open during the transients and accidents analyzed in References 1, 2, and 3. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

One flow transmitter per CS pump and one flow transmitter per LPCI subsystem are used to detect the associated subsystems' flow rates. The logic is arranged such that each transmitter causes its associated minimum flow valve to open when flow is low with the pump running. The logic will close the minimum flow valve once the closure setpoint is exceeded. The LPCI minimum flow valves are time delayed such that the valves will not open for 10 seconds after the switches detect low flow. The time delay is provided to limit reactor vessel inventory loss during the startup of the RHR shutdown cooling mode. The Pump Discharge Flow-Low (Bypass) Allowable Values are high enough to ensure that the pump flow rate is sufficient to protect the pump. The Core Spray Discharge Flow - Low (Bypass) Allowable Value is also low enough to ensure that the closure of the minimum flow valve is initiated to allow full flow into the core. For LPCI, the closure of the minimum flow valves is not credited.

Each channel of Pump Discharge Flow — Low (Bypass) Function (two CS channels and two LPCI channels) is only required to be OPERABLE when the associated ECCS is required to be

1.d. 2.f. Core Spray and Low Pressure Coolant Injection Pump Discharge Flow - Low (Bypass) (continued)

OPERABLE to ensure that no single instrument failure can preclude the ECCS function. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.

1.e, 2.e. Core Spray and Low Pressure Coolant Injection Pump Start-Time Delay Relay

The purpose of this time delay is to stagger the start of CS and LPCI pumps that are in each of Divisions 1 and 2, thus limiting the starting transients on the 4160 V ESS buses. This Function is only necessary when power is being supplied from the standby power sources (DG). The CS and LPCI Pump Start-Time Delay Relays are assumed to be OPERABLE in the accident and transient analyses requiring ECCS initiation. That is, the analyses assume that the pumps will initiate when required and excess loading will not cause failure of the power sources.

There are two CS Pump Start—Time Delay relays and two LPCI Pump Start—Time Delay Relays, one for each CS pump and one for LPCI pump B and D. While each time delay relay is dedicated to a single pump start logic, a single failure of a LPCI Pump Start—Time Delay Relay could result in the failure of the three low pressure ECCS pumps, powered from the same ESS bus, to perform their intended function (e.g., as in the case where both ECCS pumps on one ESS bus start simultaneously due to an inoperable time delay relay). This still leaves three of the six low pressure ECCS pumps OPERABLE; thus, the single failure criterion is met (i.e., loss of one instrument does not preclude ECCS initiation). The Allowable Values for the CS and LPCI Pump Start—Time Delay Relays are chosen to be short enough so that ECCS operation is not degraded.

Each CS and LPCI Pump Start-Time Delay Relay Function is required to be OPERABLE only when the associated LPCI subsystem is required to be OPERABLE. Refer to LCO 3.5.1 and LCO 3.5.2 for Applicability Bases for the CS and LPCI subsystems.

<u>(continued)</u>

2.d, 2.j. Reactor Steam Dome Pressure - Low (Break Detection) and Reactor Steam Dome Pressure Time Delay-Relay (Break Detection)

The purpose of the Reactor Steam Dome Pressure - Low (Break Detection) and Reactor Steam Dome Pressure Time Delay-Relay (Break Detection) Functions are to optimize the LPCI Loop Select Logic sensitivity if the logic previously actuated recirculation pump trips. This is accomplished by preventing the logic from continuing on to the unbroken loop selection activity until reactor steam dome pressure has dropped below a specified value. These Functions are only required to be OPERABLE for the DBA LOCA analysis, i.e., if the break location is in the recirculation system suction piping (Ref. 2). For a DBA LOCA, the analysis assumes that the LPCI Loop Select Logic successfully identifies and directs LPCI flow to the unbroken recirculation loop so that core reflooding is accomplished in time to ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. For other LOCA events, (i.e., non-DBA recirculation system pipe breaks), or other RPV pipe breaks the success of the Loop Select Logic is less critical than for the DBA.

Reactor Steam Dome Pressure - Low (Break Detection) signals are initiated from four pressure switches that sense the reactor steam dome pressure. Reactor Steam Dome Pressure Time Delay - Relay (Break Detection) signals are initiated from two time delay relays.

The Reactor Steam Dome Pressure - Low (Break Detection) Allowable Value is chosen to allow for coastdown of any recirculation pump which has just tripped, this optimizes the sensitivity of the LPCI Loop Select Logic while ensuring that LPCI injection is not delayed. The Reactor Steam Dome Pressure Time Delay - Relay (Break Detection) Allowable Value is chosen to allow momentum effects to establish the maximum differential pressure for break detection.

Four channels of the Reactor Steam Dome Pressure - Low (Break Detection) Function and two channels of the Reactor Steam Dome Pressure Time Delay-Relay (Break Detection) Function are only required to be OPERABLE in MODES 1, 2, and 3 to ensure that no single failure can prevent the LPCI Loop

<u>(continued)</u>

2.d, 2.j. Reactor Steam Dome Pressure - Low (Break Detection) and Reactor Steam Dome Pressure Time Delay-Relay (Break Detection) (continued)

Select Logic from successfully selecting the unbroken recirculation loop for LPCI injection. These Functions are not required to be OPERABLE in MODES 4 and 5 because, in those MODES, the loop for selection is controlled by plant operating procedures which ensure an OPERABLE LPCI flow path.

2.g, 2.i. Recirculation Pump Differential Pressure - High (Break Detection) and Recirculation Pump Differential Pressure Time Delay - Relay (Break Detection)

Recirculation Pump Differential Pressure signals are used by the LPCI Loop Select Logic to determine if either recirculation pump is running. If either pump is not running, i.e., Single Loop Operation, the logic, after a short time delay, sends a trip signal to both recirculation pumps. This is necessary to eliminate the possibility of small pipe breaks being masked by a running recirculation pump. These Functions are only required to be OPERABLE for the DBA LOCA analysis, i.e., if the break location is in the recirculation system suction piping (Ref. 2). For a DBA LOCA, the analysis assumes that the LPCI Loop Select Logic successfully identifies and directs LPCI flow to the unbroken recirculation loop so that core reflooding is accomplished in time to ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. For other LOCA events (i.e., non-DBA recirculation system pipe breaks or other RPV pipe breaks), the success of the Loop Select Logic is less critical than for the DBA.

Recirculation Pump Differential Pressure—High (Break Detection) signals are initiated from eight differential pressure switches, four of which sense the pressure differential between the suction and discharge of each recirculation pump. Recirculation Pump Differential Pressure Time Delay—Relay (Break Detection) signals are initiated by two time delay relays.

The Recirculation Pump Differential Pressure—High (Break Detection) Allowable Value is chosen to be as low as

2.g. 2.i. Recirculation Pump Differential Pressure - High (Break Detection) and Recirculation Pump Differential Pressure Time Delay - Relay (Break Detection) (continued)

possible, while still maintaining the ability to differentiate between a running and non-running recirculation pump. Recirculation Pump Differential Pressure Time Delay - Relay (Break Detection) Allowable Value is chosen to allow enough time to determine the status of the operating conditions of the recirculation pumps.

Eight channels of the Recirculation Pump Differential Pressure—High (Break Detection) Function and two channels of the Recirculation Pump Differential Pressure Time Delay—Relay (Break Detection) Function are only required to be OPERABLE in MODES 1, 2, and 3 to ensure that no single failure can prevent the LPCI Loop Select Logic from successfully determining if either recirculation pump is running. This Function is not required to be OPERABLE in MODES 4 and 5 because, in those MODES, the loop for selection is controlled by plant operating procedures which ensure an OPERABLE LPCI flow path.

2.h, 2.k. Recirculation Riser Differential Pressure - High (Break Detection) and Recirculation Riser Differential Pressure Time Delay - Relay (Break Detection)

Recirculation Riser Differential Pressure signals are used by the LPCI Loop Select Logic to determine which, if any. recirculation loop is broken. This is accomplished by comparing the pressure of the two recirculation loops. A broken loop will be indicated by a lower pressure than an unbroken loop. The loop with the higher pressure is then selected, after a short delay, for LPCI injection. If neither loop is broken, the logic defaults to injecting into the "B" recirculation loop. These Functions are only required to be OPERABLE for the DBA LOCA analysis, i.e., if the break location is in the recirculation system suction piping (Ref. 2). For a DBA LOCA, the analysis assumes that the LPCI Loop Select Logic successfully identifies and directs LPCI flow to the unbroken recirculation loop, the analysis assumes that the LPCI Loop Select Logic successfully identifies and directs LPCI flow to the

2.h. 2.k. Recirculation Riser Differential Pressure - High (Break Detection) and Recirculation Riser Differential Pressure Time Delay - Relay (Break Detection) (continued)

unbroken recirculation loop so that core reflooding is accomplished in time to ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. For other LOCA events, (i.e., non-DBA recirculation system pipe breaks), or other RPV pipe breaks, the success of the Loop Select Logic is less critical than for the DBA.

Recirculation Riser Differential Pressure—High (Break Detection) signals are initiated from four differential pressure switches that sense the pressure differential between the A recirculation loop riser and the B recirculation loop riser. If, after a small time delay, the pressure in loop A is not indicating higher than loop B pressure, the logic will select the B loop for injection. If recirculation loop A pressure is indicating higher than loop B pressure, the logic will select the A loop for LPCI injection. Recirculation Riser Differential Pressure Time Delay—Relay (Break Detection) signals are initiated by two time delay relays.

The Recirculation Riser Differential Pressure—High (Break Detection) Allowable Value is chosen to be as low as possible, while still maintaining the ability to differentiate between a broken and unbroken recirculation loop. The Recirculation Riser Differential Pressure Time Delay—Relay (Break Detection) Allowable Value is chosen to provide a sufficient amount of time to determine which loop is broken.

Four channels of the Recirculation Riser Differential Pressure—High (Break Detection) Function and two channels of the Recirculation Riser Differential Pressure Time Delay—Relay (Break Detection) Function are only required to be OPERABLE in MODES 1, 2, and 3 to ensure that no single failure can prevent the LPCI Loop Select Logic from successfully selecting the unbroken recirculation loop for LPCI injection. This Function is not required to be OPERABLE in MODES 4 and 5 because, in those MODES, the loop for selection is controlled by plant operating procedures which ensure an OPERABLE LPCI flow path.

HPCI System

3.a. Reactor Vessel Water Level - Low Low

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the HPCI System is initiated at Low Low to maintain level above the top of the active fuel. The Reactor Vessel Water Level—Low Low is one of the Functions assumed to be OPERABLE and capable of initiating HPCI during the transients analyzed in References 1 and 3. Additionally, the Reactor Vessel Water Level—Low Low Function associated with HPCI is directly assumed in the analysis of the recirculation line break (Ref. 2). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level — Low Low signals are initiated from four differential pressure switches that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level — Low Low Allowable Value is high enough such that for complete loss of feedwater flow, the Reactor Core Isolation Cooling (RCIC) System flow with HPCI assumed to fail will be sufficient to maintain reactor vessel water level above the core.

Four channels of Reactor Vessel Water Level — Low Low Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI initiation. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.b. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. The HPCI System is initiated upon receipt of the Drywell Pressure—High Function in order to minimize the

3.b. <u>Drywell Pressure - High</u> (continued)

possibility of fuel damage. The Drywell Pressure—High Function, along with the Reactor Water Level—Low Low Function, is directly assumed in the small break LOCA analysis (Ref. 2). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

High drywell pressure signals are initiated from four pressure switches that sense drywell pressure. The Allowable Value was selected to be as low as possible to be indicative of a LOCA inside primary containment.

Four channels of the Drywell Pressure—High Function are required to be OPERABLE when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI initiation. Refer to LCO 3.5.1 for the Applicability Bases for the HPCI System.

3.c. Reactor Vessel Water Level-High

High RPV water level indicates that sufficient cooling water inventory exists in the reactor vessel such that there is no danger to the fuel. Therefore, the Reactor Vessel Water Level—High Function signal is used to trip the HPCI turbine to prevent overflow into the main steam lines (MSLs). The Reactor Vessel Water Level—High Function is not assumed in the plant specific accident and transient analyses. It was retained since it is a potentially significant contributor to risk.

Reactor Vessel Water Level—High signals for HPCI are initiated from two differential pressure switches from the narrow range water level measurement instrumentation. Both signals are required in order to close the HPCI injection valve. This ensures that no single instrument failure can preclude HPCI initiation. The Reactor Vessel Water Level—High Allowable Value is chosen to prevent flow from the HPCI System from overflowing into the MSLs.

Two channels of Reactor Vessel Water Level-High Function are required to be OPERABLE only when HPCI is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.d. Contaminated Condensate Storage Tank Level - Low

Low level in a CCST indicates the unavailability of an adequate supply of makeup water from this normal source. Normally the suction valves between HPCI and the CCSTs are open and, upon receiving a HPCI initiation signal, water for HPCI injection would be taken from the CCSTs. However, if the water levels in the CCSTs fall below a preselected level, first the suppression pool suction valves automatically open, and then the CCST suction valve automatically closes. This ensures that an adequate supply of makeup water is available to the HPCI pump. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CCST suction valve automatically closes. The Function is implicitly assumed in the accident and transient analyses (which take credit for HPCI) since the analyses assume that the HPCI suction source is the suppression pool.

Contaminated Condensate Storage Tank Level — Low signals are initiated from four level switches (two associated with each CCST). The output from these switches are provided to the logics of both HPCI Systems. The logic is arranged such that any level switch can cause the suppression pool suction valves to open and the CCST suction valve of both units to close. The Contaminated Condensate Storage Tank Level — Low Function Allowable Value is high enough to ensure adequate pump suction head while water is being taken from either CCST.

While four channels of the Contaminated Condensate Storage Tank Level—Low Function are available, only two channels are required to be OPERABLE when HPCI is required to be OPERABLE and both CCSTs are aligned to the HPCI System. In addition, when one CCST is isolated from the unit HPCI System, the two channels required are those associated with the CCST that is aligned to HPCI. These requirements will ensure that no single instrument failure can preclude HPCI swap to suppression pool source. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.e. Suppression Pool Water Level - High

Excessively high suppression pool water could result in the loads on the suppression pool exceeding design values should there be a blowdown of the reactor vessel pressure through the relief valves. Therefore, signals indicating high suppression pool water level are used to transfer the suction source of HPCI from the CCST to the suppression pool to eliminate the possibility of HPCI continuing to provide additional water from a source outside containment. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CCST suction valve automatically closes.

This Function is implicitly assumed in the accident and transient analyses (which take credit for HPCI) since the analyses assume that the HPCI suction source is the suppression pool.

Suppression Pool Water Level—High signals are initiated from two level switches. The logic is arranged such that either switch can cause the suppression pool suction valves to open and the CCST suction valve to close. The Allowable Value for the Suppression Pool Water Level—High Function is chosen to ensure that HPCI will be aligned for suction from the suppression pool before the water level reaches the point at which suppression pool design loads would be exceeded. The Allowable Value is confirmed by performance of a CHANNEL FUNCTIONAL TEST. This is acceptable since the design layout of the installation ensures the switches will trip at a level lower than the Allowable Value.

Two channels of Suppression Pool Water Level—High Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI swap to suppression pool source. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.f. High Pressure Coolant Injection Pump Discharge Flow - Low (Bypass)

The minimum flow instruments are provided to protect the HPCI pump from overheating when the pump is operating and the associated injection valve is not sufficiently open. The minimum flow line valve is opened when low flow is

3.f. High Pressure Coolant Injection Pump Discharge Flow-Low (Bypass) (continued)

sensed, and the valve is automatically closed when the flow rate is adequate to protect the pump. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

One differential pressure switch is used to detect the HPCI System's flow rate. The logic is arranged such that the switch causes the minimum flow valve to open. The logic will close the minimum flow valve once the closure setpoint is exceeded.

The High Pressure Coolant Injection Pump Discharge Flow - Low (Bypass) Allowable Value is high enough to ensure that pump flow rate is sufficient to protect the pump.

One channel is required to be OPERABLE when the HPCI is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

3.g. Manual Initiation

The Manual Initiation push button channel introduces signals into the HPCI logic to provide manual initiation capability and is redundant to the automatic protective instrumentation. There is one push button for the HPCI System.

The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the HPCI function as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the channel is mechanically actuated based solely on the position of the push button. One channel of the Manual Initiation Function is required to be OPERABLE only when the HPCI System is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.

Automatic Depressurization System

4.a, 5.a. Reactor Vessel Water Level - Low Low

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, ADS receives one of the signals necessary for initiation from this Function. The Reactor Vessel Water Level — Low Low is one of the Functions assumed to be OPERABLE and capable of initiating the ADS during the accident analyzed in Reference 2. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Reactor Vessel Water Level—Low Low signals are initiated from four differential pressure switches that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level—Low Low Function are required to be OPERABLE only when ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two channels input to ADS trip system A, while the other two channels input to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

The Reactor Vessel Water Level — Low Low Allowable Value is chosen to allow time for the low pressure core flooding systems to initiate and provide adequate cooling.

4.b, 5.b. Drywell Pressure - High

High pressure in the drywell could indicate a break in the RCPB. Therefore, ADS receives one of the signals necessary for initiation from this Function in order to minimize the possibility of fuel damage. The Drywell Pressure—High is assumed to be OPERABLE and capable of initiating the ADS during the accidents analyzed in Reference 2. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

4.b, 5.b. Drywell Pressure - High (continued)

Drywell Pressure—High signals are initiated from four pressure switches that sense drywell pressure. The Allowable Value was selected to be as low as possible and be indicative of a LOCA inside primary containment.

Four channels of Drywell Pressure—High Function are only required to be OPERABLE when ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two channels input to ADS trip system A, while the other two channels input to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.c, 5.c. Automatic Depressurization System Initiation Timer

The purpose of the Automatic Depressurization System Initiation Timer is to delay depressurization of the reactor vessel to allow the HPCI System time to maintain reactor vessel water level. Since the rapid depressurization caused by ADS operation is one of the most severe transients on the reactor vessel, its occurrence should be limited. By delaying initiation of the ADS Function, the operator is given the chance to monitor the success or failure of the HPCI System to maintain water level, and then to decide whether or not to allow ADS to initiate, to delay initiation further by recycling the timer, or to inhibit initiation permanently. The Automatic Depressurization System Initiation Timer Function is assumed to be OPERABLE for the accident analyses of Reference 2 that require ECCS initiation and assume failure of the HPCI System.

There are two Automatic Depressurization System Initiation Timer relays, one in each of the two ADS trip systems. The Allowable Value for the Automatic Depressurization System Initiation Timer is chosen so that there is still time after depressurization for the low pressure ECCS subsystems to provide adequate core cooling.

Two channels of the Automatic Depressurization System Initiation Timer Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. One

4.c, 5.c. Automatic Depressurization System Initiation Timer (continued)

channel inputs to ADS trip system A, while the other channel inputs to ADS trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.d, 4.e, 5.d, 5.e. Core Spray and Low Pressure Coolant Injection Pump Discharge Pressure - High

The Pump Discharge Pressure—High signals from the CS and LPCI pumps (indicating that the associated pump is running) are used as permissives for ADS initiation, indicating that there is a source of low pressure cooling water available once the ADS has depressurized the vessel. Pump Discharge Pressure—High is one of the Functions assumed to be OPERABLE and capable of permitting ADS initiation during the events analyzed in Reference 2 with an assumed HPCI failure. For these events the ADS depressurizes the reactor vessel so that the low pressure ECCS can perform the core cooling functions. This core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Pump discharge pressure signals are initiated from twelve pressure switches, two on the discharge side of each of the six low pressure ECCS pumps. In order to generate an ADS permissive in one trip system, it is necessary that only one pump (both channels for the pump) indicate the high discharge pressure condition. The Pump Discharge Pressure—High Allowable Value is less than the pump discharge pressure when the pump is operating in a full flow mode and high enough to avoid any condition that results in a discharge pressure permissive when the CS and LPCI pumps are aligned for injection and the pumps are not running. The actual operating point of this function is not assumed in any transient or accident analysis.

Twelve channels of Core Spray and Low Pressure Coolant Injection Pump Discharge Pressure—High Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Two CS channels associated with CS

4.d, 4.e, 5.d, 5.e. Core Spray and Low Pressure Coolant Injection Pump Discharge Pressure - High (continued)

pump A and two LPCI channels associated with LPCI pump A and two channels associated with LPCI pump B are required for trip system A. Two CS channels associated with CS pump B and two LPCI channels associated with LPCI pump C and 2 channels associated with LPCI pump D are required for trip system B. Refer to LCO 3.5.1 for ADS Applicability Bases.

4.f, 5.f. Automatic Depressurization System Low Low Water Level Actuation Timer

One of the signals required for ADS initiation is Drywell Pressure—High. However, if the event requiring ADS initiation occurs outside the drywell (e.g., main steam line break outside containment), a high drywell pressure signal may never be present. Therefore, the Automatic Depressurization System Low Low Water Level Actuation Timer is used to bypass the Drywell Pressure—High Function after a certain time period has elapsed. Operation of the Automatic Depressurization System Low Water Level Actuation Timer Function is not assumed in any plant specific accident analyses or transient analyses. The instrumentation is retained in the TS because ADS is part of the primary success path for mitigation of a DBA.

There are two Automatic Depressurization System Low Low Water Level Actuation Timer relays, one in each of the two ADS trip systems. The Allowable Value for the Automatic Depressurization System Low Low Water Level Actuation Timer is chosen to ensure that there is still time after depressurization for the low pressure ECCS subsystems to provide adequate core cooling.

Two channels of the Automatic Depressurization System Low Water Level Actuation Timer Function are only required to be OPERABLE when the ADS is required to be OPERABLE to ensure that no single instrument failure can preclude ADS initiation. Refer to LCO 3.5.1 for ADS Applicability Bases.

ACTIONS

A Note has been provided to modify the ACTIONS related to ECCS instrumentation channels. Section 1.3, Completion

ACTIONS (continued)

Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable ECCS instrumentation channels provide appropriate compensatory measures for separate inoperable Condition entry for each inoperable ECCS instrumentation channel.

<u>A.1</u>

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.5.1-1. The applicable Condition referenced in the table is Function dependent. Each time a required channel is discovered inoperable, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

B.1, B.2, and B.3

Required Actions B.1 and B.2 are intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same variable result in redundant automatic initiation capability being lost for the feature(s). Required Action B.1 features would be those that are initiated by Functions 1.a, 1.b, 2.a, 2.b, 2.d and 2.j (i.e., low pressure ECCS and associated DG). The Required Action B.2 system would be HPCI. For Required Action B.1, redundant automatic initiation capability is lost if (a) two or more Function 1.a channels are inoperable and untripped such that both trip systems lose initiation capability, (b) two or more Function 2.a channels are inoperable and untripped such that both trip systems lose initiation capability, (c) two or more Function 1.b channels are inoperable and untripped such that both trip systems lose initiation capability, (d) two or more Function 2.b channels are inoperable and untripped such that both trip systems lose initiation capability. (e) two or more Function 2.d channels are inoperable and untripped such that

ACTIONS

B.1, B.2, and B.3 (continued)

both trip systems lose initiation capability, or (f) two Function 2.j channels are inoperable and untripped. For low pressure ECCS, since each inoperable channel would have Required Action B.1 applied separately (refer to ACTIONS Note), each inoperable channel would only require the affected portion of the associated system of low pressure ECCS and DGs to be declared inoperable. However, since channels in both associated low pressure ECCS subsystems (e.g., both CS subsystems) are inoperable and untripped, and the Completion Times started concurrently for the channels in both subsystems, this results in the affected portions in the associated low pressure ECCS and DGs being concurrently declared inoperable. For Required Action B.2. redundant automatic initiation capability (i.e., loss of automatic start capability for Functions 3.a and 3.b) is lost if two Function 3.a or two Function 3.b channels are inoperable and untripped in the same trip system.

In this situation (loss of redundant automatic initiation capability), the 24 hour allowance of Required Action B.3 is not appropriate and the feature(s) associated with the inoperable, untripped channels must be declared inoperable within 1 hour. As noted (Note 1 to Required Action B.1), Required Action B.1 is only applicable in MODES 1, 2, and 3. In MODES 4 and 5, the specific initiation time of the low pressure ECCS is not assumed and the probability of a LOCA is lower. Thus, a total loss of initiation capability for 24 hours (as allowed by Required Action B.3) is allowed during MODES 4 and 5. There is no similar Note provided for Required Action B.2 since HPCI instrumentation is not required in MODES 4 and 5; thus, a Note is not necessary. Notes are also provided (Note 2 to Required Action B.1 and the Note to Required Action B.2) to delineate which Required Action is applicable for each Function that requires entry into Condition B if an associated channel is inoperable. This ensures that the proper loss of initiation capability check is performed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action B.1, the Completion Time only begins

ACTIONS

B.1, B.2, and B.3 (continued)

upon discovery that a redundant feature in the same system (e.g., both CS subsystems) cannot be automatically initiated due to inoperable, untripped channels within the same Function as described in the paragraph above. For Required Action B.2, the Completion Time only begins upon discovery that the HPCI System cannot be automatically initiated due to two inoperable, untripped channels for the associated variable in the same trip system. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.3. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition H must be entered and its Required Action taken.

C.1 and C.2

Required Action C.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within the same variable result in redundant automatic initiation capability being lost for the feature(s). Required Action C.1 features would be those that are initiated by Functions 1.c, 1.e, 2.c, 2.e, 2.g, 2.h, 2.i, and 2.k (i.e., low pressure ECCS). Redundant automatic initiation capability is lost if either (a) two Function 1.c channels are inoperable in both trip systems, (b) two Function 2.c channels are inoperable in both trip systems, (c) two Function 1.e channels are inoperable, (d) two Function 2.e channels are inoperable, (e) two or more Function 2.g

C.1 and C.2 (continued)

channels, associated with a recirculation pump are inoperable such that both trip systems lose initiation capability, (f) two or more Function 2.h channels are inoperable such that both trip systems lose initiation capability, (g) two Function 2.i channels are inoperable, or (h) two Function 2.k channels are inoperable. Since each inoperable channel would have Required Action C.1 applied separately (refer to ACTIONS Note), each inoperable channel would only require the affected portion of the associated system to be declared inoperable. However, since channels for both low pressure ECCS subsystems are inoperable (e.g., both CS subsystems), and the Completion Times started concurrently for the channels in both subsystems, this results in the affected portions in both subsystems being concurrently declared inoperable. For Functions 1.e, and 2.e, the affected portions are the associated low pressure ECCS pumps. For Functions 1.c and 2.c, the affected portions are the associated ECCS pumps and valves. For Functions 2.g, 2.h, 2.i, and 2.k, the affected portions are the associated LPCI valves.

In this situation (loss of redundant automatic initiation capability), the 24 hour allowance of Required Action C.2 is not appropriate and the feature(s) associated with the inoperable channels must be declared inoperable within 1 hour. As noted (Note 1), Required Action C.1 is only applicable in MODES 1, 2, and 3. In MODES 4 and 5, the specific initiation time of the ECCS is not assumed and the probability of a LOCA is lower. Thus, a total loss of automatic initiation capability for 24 hours (as allowed by Required Action C.2) is allowed during MODES 4 and 5.

Note 2 states that Required Action C.1 is only applicable for Functions 1.c, 1.e, 2.c, 2.e, 2.g, 2.h, 2.i, and 2.k. Required Action C.1 is not applicable to Function 3.g (which also requires entry into this Condition if a channel in this Function is inoperable), since it is the HPCI Manual Initiation Function which is not assumed in any accident or transient analysis. Thus, a total loss of HPCI Manual Initiation capability for 24 hours (as allowed by Required Action C.2) is allowed. Required Action C.1 is also not applicable to Function 3.c (which also requires entry into

<u>(continued)</u>

C.1 and C.2 (continued)

this Condition if a channel in this Function is inoperable), since the loss of the Function was considered during the development of Reference 4 and considered acceptable for the 24 hours allowed by Required Action C.2.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action C.1, the Completion Time only begins upon discovery that the same feature in both subsystems (e.g., both CS subsystems) cannot be automatically initiated due to inoperable channels within the same variable as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would either cause the initiation or it would not necessarily result in a safe state for the channel in all events.

D.1. D.2.1, and D.2.2

Required Action D.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of automatic component initiation capability for the HPCI System. If both CCSTs are available, HPCI automatic initiation capability is lost if two required Function 3.d channels are inoperable and untripped. If one CCST is not available, automatic initiation capability is lost if two channels associated with the aligned CCST are inoperable and untripped. HPCI automatic initiation capability is lost if

D.1, D.2.1, and D.2.2 (continued)

two Function 3.e channels are inoperable and untripped. In this situation (loss of automatic suction swap), the 24 hour allowance of Required Actions D.2.1 and D.2.2 is not appropriate and the HPCI System must be declared inoperable within 1 hour after discovery of loss of HPCI initiation capability. As noted, Required Action D.1 is only applicable if the HPCI pump suction is not aligned to the suppression pool, since, if aligned, the Function is already performed.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action D.1, the Completion Time only begins upon discovery that the HPCI System cannot be automatically aligned to the suppression pool due to two inoperable, untripped channels in the same Function. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action D.2.1 or the suction source must be aligned to the suppression pool per Required Action D.2.2. Placing the inoperable channel in trip performs the intended function of the channel (shifting the suction source to the suppression pool). Performance of either of these two Required Actions will allow operation to continue. If Required Action D.2.1 or D.2.2 is performed, measures should be taken to ensure that the HPCI System piping remains filled with water. Alternately, if it is not desired to perform Required Actions D.2.1 and D.2.2 (e.g., as in the case where shifting the suction source could drain down the HPCI suction piping), Condition H must be entered and its Required Action taken.

ACTIONS (continued)

E.1 and E.2

Required Action E.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within the Core Spray and Low Pressure Coolant Injection Pump Discharge Flow-Low (Bypass) Functions result in redundant automatic initiation capability being lost for the feature(s). For Required Action E.1, the features would be those that are initiated by Functions 1.d and 2.f (i.e., low pressure ECCS). Redundant automatic initiation capability is lost if (a) two Function 1.d channels are inoperable or (b) two Function 2.f channels are inoperable. Since each inoperable channel would have Required Action E.1 applied separately (refer to ACTIONS Note), each inoperable channel would only require the affected low pressure ECCS pump to be declared inoperable. However, since channels for more than one low pressure ECCS pump are inoperable, and the Completion Times started concurrently for the channels of the low pressure ECCS pumps, this results in the affected low pressure ECCS pumps being concurrently declared inoperable.

In this situation (loss of redundant automatic initiation capability), the 7 day allowance of Required Action E.2 is not appropriate and the subsystem associated with each inoperable channel must be declared inoperable within 1 hour. As noted (Note 1 to Required Action E.1), Required Action E.1 is only applicable in MODES 1, 2, and 3. In MODES 4 and 5, the specific initiation time of the ECCS is not assumed and the probability of a LOCA is lower. Thus, a total loss of initiation capability for 7 days (as allowed by Required Action E.2) is allowed during MODES 4 and 5. A Note is also provided (Note 2 to Required Action E.1) to delineate that Required Action E.1 is only applicable to low pressure ECCS Functions. Required Action E.1 is not applicable to HPCI Function 3.f since the loss of one channel results in a loss of the Function (one-out-of-one logic). This loss was considered during the development of Reference 4 and considered acceptable for the 7 days allowed by Required Action E.2.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal

E.1 and E.2 (continued)

"time zero" for beginning the allowed outage time "clock." For Required Action E.1, the Completion Time only begins upon discovery that a redundant feature in the same system (e.g., both CS subsystems) cannot be automatically initiated due to inoperable channels within the same Function as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration of channels.

If the instrumentation that controls the pump minimum flow valve is inoperable, such that the valve will not automatically open, extended pump operation with no injection path available could lead to pump overheating and failure. If there were a failure of the instrumentation, such that the core spray valve would not automatically close, a portion of the pump flow could be diverted from the reactor vessel injection path, causing insufficient core cooling. The low pressure coolant injection minimum flow valve is assumed to remain open during injection. These consequences can be averted by the operator's manual control of the valve, which would be adequate to maintain ECCS pump protection and required flow. Furthermore, other ECCS pumps would be sufficient to complete the assumed safety function if no additional single failure were to occur. The 7 day Completion Time of Required Action E.2 to restore the inoperable channel to OPERABLE status is reasonable based on the remaining capability of the associated ECCS subsystems, the redundancy available in the ECCS design, and the low probability of a DBA occurring during the allowed out of service time. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would not necessarily result in a safe state for the channel in all events.

ACTIONS (continued)

F.1 and F.2

Required Action F.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within similar ADS trip system A and B Functions result in redundant automatic initiation capability being lost for the ADS. Redundant automatic initiation capability is lost if either (a) one or more Function 4.a channels and one or more Function 5.a channels are inoperable and untripped or (b) one or more Function 4.b channels and one or more Function 5.b channels are inoperable and untripped.

In this situation (loss of automatic initiation capability), the 96 hour or 8 day allowance, as applicable, of Required Action F.2 is not appropriate and all ADS valves must be declared inoperable within 1 hour after discovery of loss of ADS initiation capability.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action F.1, the Completion Time only begins upon discovery that the ADS cannot be automatically initiated due to inoperable, untripped channels within similar ADS trip system Functions as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 8 days has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status if both HPCI and RCIC are OPERABLE. If either HPCI or RCIC is inoperable, the time is shortened to 96 hours. If the status of HPCI or RCIC changes such that the Completion Time changes from 8 days to 96 hours, the 96 hours begins upon discovery of HPCI or RCIC inoperability. However, the total time for an inoperable, untripped channel cannot exceed 8 days. If the status of HPCI or RCIC changes such that the Completion Time changes

F.1 and F.2 (continued)

from 96 hours to 8 days, the "time zero" for beginning the 8 day "clock" begins upon discovery of the inoperable, untripped channel. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action F.2. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition H must be entered and its Required Action taken.

G.1 and G.2

Required Action G.1 is intended to ensure that appropriate actions are taken if multiple, inoperable channels within similar ADS trip system Functions result in automatic initiation capability being lost for the ADS. Automatic initiation capability is lost if either (a) one Function 4.c channel and one Function 5.c channel are inoperable, (b) a combination of Function 4.d, 4.e, 5.d, and 5.e channels are inoperable such that channels associated with five or more low pressure ECCS pumps are inoperable, or (c) one Function 4.f channel and one Function 5.f channel are inoperable.

In this situation (loss of automatic initiation capability), the 96 hour or 8 day allowance, as applicable, of Required Action G.2 is not appropriate, and all ADS valves must be declared inoperable within 1 hour after discovery of loss of ADS initiation capability.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action G.1, the Completion Time only begins upon discovery that the ADS cannot be automatically

<u>G.1 and G.2</u> (continued)

initiated due to inoperable channels within similar ADS trip system Functions as described in the paragraph above. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the diversity of sensors available to provide initiation signals and the redundancy of the ECCS design, an allowable out of service time of 8 days has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status if both HPCI and RCIC are OPERABLE (Required Action G.2). If either HPCI or RCIC is inoperable, the time shortens to 96 hours. If the status of HPCI or RCIC changes such that the Completion Time changes from 8 days to 96 hours, the 96 hours begins upon discovery of HPCI or RCIC inoperability. However, the total time for an inoperable channel cannot exceed 8 days. If the status of HPCI or RCIC changes such that the Completion Time changes from 96 hours to 8 days, the "time zero" for beginning the 8 day "clock" begins upon discovery of the inoperable channel. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time. Condition H must be entered and its Required Action taken. The Required Actions do not allow placing the channel in trip since this action would not necessarily result in a safe state for the channel in all events.

H.1

With any Required Action and associated Completion Time not met, the associated feature(s) may be incapable of performing the intended function, and the supported feature(s) associated with inoperable untripped channels must be declared inoperable immediately.

SURVEILLANCE REQUIREMENTS

As noted in the beginning of the SRs, the SRs for each ECCS instrumentation Function are found in the SRs column of Table 3.3.5.1-1.

SURVEILLANCE REQUIREMENTS (continued) The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours as follows: (a) for Functions 3.c, 3.f, and 3.g; and (b) for Functions other than 3.c, 3.f, and 3.g provided the associated Function or redundant Function maintains ECCS initiation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 4) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the ECCS will initiate when necessary.

SR 3.3.5.1.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK guarantees that undetected outright channel failure is limited to 12 hours; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

SURVEILLANCE REQUIREMENTS

SR 3.3.5.1.1 (continued)

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.5.1.2 and SR 3.3.5.1.4

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The Frequency of 31 days for SR 3.3.5.1.2 is based on engineering judgement and the reliability of the equipment. The Frequency of 92 days for SR 3.3.5.1.4 is based on the reliability analyses of Reference 4.

SR 3.3.5.1.3, SR 3.3.5.1.6, SR 3.3.5.1.7, and SR 3.3.5.1.8

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency of SR 3.3.5.1.3 is based upon the assumption of a 60 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The

SURVEILLANCE REQUIREMENTS

$\frac{\text{SR}}{\text{SR}}$ 3.3.5.1.3, $\frac{\text{SR}}{\text{SR}}$ 3.3.5.1.6, $\frac{\text{SR}}{\text{SR}}$ 3.3.5.1.7, and

Frequency of SR 3.3.5.1.6 is based upon the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.5.1.7 is based upon the assumption of a 184 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.5.1.8 is based upon the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.5.1.5

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.5.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analyses. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than the setting accounted for in the appropriate setpoint methodology.

The Frequency of 92 days is based on the reliability analysis of Reference 4.

SR 3.3.5.1.9

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.5.1, LCO 3.5.2, LCO 3.8.1, and LCO 3.8.2 overlaps this Surveillance to provide complete testing of the assumed safety function.

BASES

SURVEILLANCE REQUIREMENTS

SR 3.3.5.1.9 (continued)

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 5.2.
- 2. UFSAR, Section 6.3.
- 3. UFSAR, Chapter 15.
- 4. NEDC-30936-P-A, "BWR Owners' Group Technical Specification Improvement Analyses for ECCS Actuation Instrumentation, Part 1 and Part 2," December 1988.

B 3.3 INSTRUMENTATION

B 3.3.5.2 Reactor Core Isolation Cooling (RCIC) System Instrumentation

BASES

BACKGROUND

The purpose of the RCIC System instrumentation is to initiate actions to ensure adequate makeup water when the reactor vessel is isolated from its primary heat sink (the main condenser) and normal coolant makeup flow from the Reactor Feedwater System is insufficient or unavailable, such that RCIC System initiation occurs and maintains sufficient reactor water level precluding initiation of the low pressure Emergency Core Cooling Systems (ECCS) pumps. A more complete discussion of RCIC System operation is provided in the Bases of LCO 3.5.3, "RCIC System."

The RCIC System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level—Low Low level. The variable is monitored by four level indicating switches. The outputs are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic arrangement. The logic can also be initiated by use of a manual initiation push button. Once initiated, the RCIC logic seals in and can be reset by the operator only when the reactor vessel water level signals have cleared.

The RCIC test line isolation valve is closed on a RCIC initiation signal to allow full system flow to the reactor vessel.

The RCIC System also monitors the water levels in the contaminated condensate storage tanks (CCSTs) and the suppression pool since these are the two sources of water for RCIC operation. Reactor grade water in the CCST is the normal source. Upon receipt of a RCIC initiation signal, the CCST suction valve is automatically signaled to open (it is normally in the open position) unless both pump suction valves from the suppression pool are open. If the water level in any CCST falls below a preselected level, first the suppression pool suction valves automatically open, and then when these valves are fully open the CCST suction valve automatically closes. Two level switches are used to detect low water level in each CCST. The outputs for these

BACKGROUND (continued)

switches are common between Units 1 and 2. Any switch can cause the suppression pool suction valves to open and the CCST suction valve to close. The suppression pool suction valves also automatically open and the CCST suction valve closes if high water level is detected in the suppression pool (one-out-of-two logic). To prevent losing suction to the pump, the suction valves are interlocked so that one suction path must be open before the other automatically closes.

The RCIC System provides makeup water to the reactor until the reactor vessel water level reaches the high water level trip (two-out-of-two logic), at which time the RCIC turbine steam supply valve, and minimum flow valve to the suppression pool close. The RCIC System automatically restarts if a Reactor Vessel Water Level — Low Low signal is subsequently received.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The function of the RCIC System to provide makeup coolant to the reactor is used to respond to transient events. The RCIC System is not an Engineered Safety Feature System and no credit is taken in the safety analyses for RCIC System operation. Based on its contribution to the reduction of overall plant risk, however, the RCIC System, and therefore its instrumentation, meets Criterion 4 of $10 \ \text{CFR} \ 50.36(c)(2)(ii)$. Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the RCIC System instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.5.2-1. Each Function must have a required number of OPERABLE channels with their setpoints within the specified Allowable Values, where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each RCIC System instrumentation Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits (or design limits) are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects. calibration tolerances. instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The individual Functions are required to be OPERABLE in MODE 1, and in MODES 2 and 3 with reactor steam dome pressure > 150 psig since this is when RCIC is required to be OPERABLE. Refer to LCO 3.5.3 for Applicability Bases for the RCIC System.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low Low

Low reactor pressure vessel (RPV) water level indicates that normal feedwater flow is insufficient to maintain reactor vessel water level and that the capability to cool the fuel

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

1. Reactor Vessel Water Level - Low Low (continued)

may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, the RCIC System is initiated at Reactor Vessel Water Level — Low Low to assist in maintaining water level above the top of the active fuel.

Reactor Vessel Water Level — Low Low signals are initiated from four level indicating switches that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

The Reactor Vessel Water Level — Low Low Allowable Value is set high enough such that for complete loss of feedwater flow, the RCIC System flow with high pressure coolant injection assumed to fail will be sufficient to avoid injection of low pressure ECCS.

Four channels of Reactor Vessel Water Level — Low Low Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC initiation. Refer to LCO 3.5.3 for RCIC Applicability Bases.

2. Reactor Vessel Water Level - High

High RPV water level indicates that sufficient cooling water inventory exists in the reactor vessel such that there is no danger to the fuel. Therefore, the Reactor Vessel Water Level—High signal is used to close the RCIC turbine steam supply valve, to prevent overflow into the main steam lines (MSLs). The minimum flow valve to the suppression pool also closes.

Reactor Vessel Water Level—High signals for RCIC are initiated from two level indicating switches from the narrow range water level measurement instrumentation, which sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

2. Reactor Vessel Water Level - High (continued)

The Reactor Vessel Water Level—High Allowable Value is high enough to preclude isolating the injection valve of the RCIC during normal operation, yet low enough to trip the RCIC System prior to water overflowing into the MSLs.

Two channels of Reactor Vessel Water Level—High Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC initiation. Refer to LCO 3.5.3 for RCIC Applicability Bases.

3. Contaminated Condensate Storage Tank Level - Low

Low level in a CCST indicates the unavailability of an adequate supply of makeup water from this normal source. Normally, the suction valve between the RCIC pump and the CCST is open and, upon receiving a RCIC initiation signal, water for RCIC injection would be taken from the CCSTs. However, if the water level in the CCSTs fall below a preselected level, first the suppression pool suction valves automatically open, and then the CCST suction valve automatically closes. This ensures that an adequate supply of makeup water is available to the RCIC pump. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CCST suction valve automatically closes.

Two level switches are used to detect low water level in each CCST. The Contaminated Condensate Storage Tank Level — Low Function Allowable Value is set high enough to ensure adequate pump suction head while water is being taken from the CCST.

While four channels of Contaminated Condensate Storage Tank Level — Low Function are available, only two channels are required to be OPERABLE when RCIC is required to be OPERABLE and both CCSTs are aligned to the RCIC System. In addition, when one CCST is isolated from the unit RCIC System, the two channels required are those associated with the CCST that is aligned to RCIC. These requirements will ensure that no single instrument failure can preclude RCIC swap to suppression pool source. Refer to LCO 3.5.3 for RCIC Applicability Bases.

<u>(continued)</u>

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

4. Suppression Pool Water Level - High

Excessively high suppression pool water level could result in the loads on the suppression pool exceeding design values should there be a blowdown of the reactor vessel pressure through the relief valves. Therefore, signals indicating high suppression pool water level are used to transfer the suction source of RCIC from the CCSTs to the suppression pool to eliminate the possibility of RCIC continuing to provide additional water from a source outside primary containment. This Function satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CCST suction valve automatically closes.

Suppression pool water level signals are initiated from two level switches. The Allowable Value for the Suppression Pool Water Level—High Function is set low enough to ensure that RCIC will be aligned to take suction from the suppression pool before the water level reaches the point at which suppression design loads would be exceeded. The Allowable Value is confirmed by performance of a CHANNEL FUNCTIONAL TEST. This is acceptable since the design layout of the installation ensures the switches will trip at a level lower than the Allowable Value.

Two channels of Suppression Pool Water Level—High Function are available and are required to be OPERABLE when RCIC is required to be OPERABLE to ensure that no single instrument failure can preclude RCIC swap to suppression pool source. Refer to LCO 3.5.3 for RCIC Applicability Bases.

5. Manual Initiation

The Manual Initiation push button switch introduces a signal into the RCIC System initiation logic that is redundant to the automatic protective instrumentation and provides manual initiation capability. There is one push button for the RCIC System.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

5. Manual Initiation (continued)

The Manual Initiation Function is not assumed in any accident or transient analyses in the UFSAR. However, the Function is retained for overall redundancy and diversity of the RCIC function as required by the NRC in the plant licensing basis.

There is no Allowable Value for this Function since the channel is mechanically actuated based solely on the position of the push button. One channel of Manual Initiation is required to be OPERABLE when RCIC is required to be OPERABLE.

ACTIONS

A Note has been provided to modify the ACTIONS related to RCIC System instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable RCIC System instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable RCIC System instrumentation channel.

A.1

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.5.2-1. The applicable Condition referenced in the Table is Function dependent. Each time a required channel is discovered to be inoperable, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

ACTIONS (continued)

B.1 and B.2

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of automatic initiation capability for the RCIC System. In this case, automatic initiation capability is lost if two Function 1 channels in the same trip system are inoperable and untripped. In this situation (loss of automatic initiation capability), the 24 hour allowance of Required Action B.2 is not appropriate, and the RCIC System must be declared inoperable within 1 hour after discovery of loss of RCIC initiation capability.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action B.1, the Completion Time only begins upon discovery that the RCIC System cannot be automatically initiated due to two inoperable, untripped Reactor Vessel Water Level — Low Low channels in the same trip system. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the redundancy of sensors available to provide initiation signals and the fact that the RCIC System is not credited in any accident or transient analysis, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 1) to permit restoration of any inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.2. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an initiation), Condition E must be entered and its Required Action taken.

ACTIONS (continued)

<u>C.1</u>

A risk based analysis was performed and determined that an allowable out of service time of 24 hours (Ref. 1) is acceptable to permit restoration of any inoperable channel to OPERABLE status (Required Action C.1). A Required Action (similar to Required Action B.1) limiting the allowable out of service time, if a loss of automatic RCIC initiation capability exists, is not required. This Condition applies to the Reactor Vessel Water Level - High Function whose logic is arranged such that any inoperable channel will result in a loss of automatic RCIC initiation (high water level trip) capability. As stated above, this loss of automatic RCIC initiation (high water level trip) capability was analyzed and determined to be acceptable. This Condition also applies to the Manual Initiation Function. This is allowed since this Function is not assumed in any accident or transient analysis, thus a total loss of manual initiation capability (Required Action C.1) for 24 hours is allowed. The Required Action does not allow placing a channel in trip since this action would not necessarily result in a safe state for the channel in all events.

D.1, D.2.1, and D.2.2

Required Action D.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in automatic initiation capability being lost for the RCIC System. this case if both CCSTs are available RCIC automatic initiation (RCIC source swap over) capability is lost if two required Function 3 channels are inoperable and untripped. If one CCST is not available, automatic initiation capability is lost if two channels associated with the aligned CCST are inoperable and untripped. In addition, automatic initiation (RCIC source swap over) capability is lost if two Function 4 channels are inoperable and untripped. In this situation (loss of automatic suction swap), the 24 hour allowance of Required Actions D.2.1 and D.2.2 is not appropriate, and the RCIC System must be declared inoperable within 1 hour from discovery of loss of RCIC initiation capability. As noted, Required Action D.1 is only applicable if the RCIC pump suction is not aligned to the suppression pool since, if aligned, the Function is already performed.

D.1, D.2.1, and D.2.2 (continued)

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action D.1, the Completion Time only begins upon discovery that the RCIC System cannot be automatically aligned to the suppression pool due to two inoperable, untripped channels in the same Function. The 1 hour Completion Time from discovery of loss of initiation capability is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

Because of the redundancy of sensors available to provide initiation signals and the fact that the RCIC System is not assumed in any accident or transient analysis, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 1) to permit restoration of any inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action D.2.1, which performs the intended function of the channel (shifting the suction source to the suppression pool). Alternatively, Required Action D.2.2 allows the manual alignment of the RCIC suction to the suppression pool, which also performs the intended function. If Required Action D.2.1 or D.2.2 is performed, measures should be taken to ensure that the RCIC System piping remains filled with water. If it is not desired to perform Required Actions D.2.1 and D.2.2 (e.g., as in the case where shifting the suction source could drain down the RCIC suction piping), Condition E must be entered and its Required Action taken.

E.1

With any Required Action and associated Completion Time not met, the RCIC System may be incapable of performing the intended function, and the RCIC System must be declared inoperable immediately.

BASES (continued)

SURVEILLANCE REQUIREMENTS

As noted in the beginning of the SRs, the SRs for each RCIC System instrumentation Function are found in the SRs column of Table 3.3.5.2-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed as follows: (a) for up to 6 hours for Functions 2 and 5; and (b) for up to 6 hours for Functions 1, 3, and 4, provided the associated Function maintains RCIC initiation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 1) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the RCIC will initiate when necessary.

SR 3.3.5.2.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a parameter on other similar channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

SURVEILLANCE REQUIREMENTS

SR 3.3.5.2.1 (continued)

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.5.2.2 and SR 3.3.5.2.4

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions.

Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The 31 day Frequency of SR 3.3.5.2.2 is based on the reliability of the components. The 92 day Frequency of SR 3.3.5.2.4 is based on the reliability analysis of Reference 1.

SR 3.3.5.2.3 and SR 3.3.5.2.5

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.5.2.3 and SR 3.3.5.2.5</u> (continued)

The Frequency of SR 3.3.5.2.3 is based upon the assumption of a 60 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

The Frequency of SR 3.3.5.2.5 is based upon the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.5.2.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.5.3 overlaps this Surveillance to provide complete testing of the safety function.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

1. GENE-770-06-2A, "Addendum to Bases for Changes to Surveillance Test Intervals and Allowed Out-of-Service Times for Selected Instrumentation Technical Specifications," December 1992.

B 3.3 INSTRUMENTATION

B 3.3.6.1 Primary Containment Isolation Instrumentation

BASES

BACKGROUND

The primary containment isolation instrumentation automatically initiates closure of appropriate primary containment isolation valves (PCIVs). The function of the PCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs). Primary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a DBA.

The isolation instrumentation includes the sensors, relays, and switches that are necessary to cause initiation of primary containment and reactor coolant pressure boundary (RCPB) isolation. Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a primary containment isolation signal to the isolation logic. Functional diversity is provided by monitoring a wide range of independent parameters. The input parameters to the isolation logics are (a) reactor vessel water level, (b) area ambient temperatures, (c) main steam line (MSL) flow measurement, (d) Standby Liquid Control (SLC) System initiation. (e) main steam line pressure, (f) high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) steam line flow, (g) drywell radiation and pressure, (h) HPCI and RCIC steam line pressure, and (i) reactor vessel pressure. Redundant sensor input signals from each parameter are provided for initiation of isolation. The only exception is SLC System initiation.

Primary containment isolation instrumentation has inputs to the trip logic of the isolation functions listed below.

BACKGROUND (continued)

1. Main Steam Line Isolation

The Reactor Vessel Water Level — Low Low, the Main Steam Line Pressure — Low, and the Main Steam Line Pressure — Timer Functions receive inputs from four channels. One channel associated with each Function inputs to one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation of all main steam isolation valves (MSIVs), MSL drain valves, and recirculation loop sample isolation valves. Any channel will trip the associated trip string. Only one trip string must trip to trip the associated trip system. The trip strings are arranged in a one-out-of-two taken twice logic to initiate isolation.

The Main Steam Line Flow—High Function uses 16 flow channels, four for each steam line. One channel from each steam line inputs to one of the four trip strings. Two trip strings make up each trip system and both trip systems must trip to cause an isolation of all MSIVs, MSL drain valves, and recirculation sample isolation valves. Each trip string has four inputs (one per MSL), any one of which will trip the trip string. The trip strings are arranged in a one-out-of-two taken twice logic. This is effectively a one-out-of-eight taken twice logic arrangement to initiate isolation.

The Main Steam Line Tunnel Temperature—High Function receives input from 16 channels, four for each of the four tunnel areas. The logic is arranged similar to the Main Steam Line Flow—High Function. One channel from each steam tunnel area inputs to one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation.

MSL Isolation Functions isolate the Group 1 valves.

2. Primary Containment Isolation

The Reactor Vessel Water Level-Low and Drywell Pressure-High Functions receive inputs from four channels. One channel associated with each Function inputs to one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation of the PCIVs identified in Reference 1. Any channel will trip the

2. Primary Containment Isolation (continued)

associated trip string. Only one trip string must trip to trip the associated trip system. The trip strings are arranged in a one-out-of-two taken twice logic to initiate isolation.

The Drywell Radiation—High Function receives input from two radiation detector assemblies each connected to a switch. Each switch actuates two contacts. Each contact inputs to one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation of the PCIVs identified in Reference 1. The contacts associated with the same switch provide input to both trip strings in the same trip system. Any contact will trip the associated trip string. The trip strings are arranged in a one-out-of-two taken twice logic. For the purpose of this Specification, a channel is considered to include a radiation detector assembly, a switch, and one of two contacts.

Primary Containment Isolation Functions isolate the Group 2 valves.

3, 4. High Pressure Coolant Injection System Isolation and Reactor Core Isolation Cooling System Isolation

The HPCI Steam Flow—High and HPCI Steam Flow Timer Functions each receive input from two channels, with each channel in one trip system using a one-out-of-one logic. Each of the two trip systems is connected to one of the two valves on the HPCI Steam supply penetration. The RCIC Steam Flow—High and RCIC Steam Flow—Timer Functions each receive input from two channels. Each channel is connected to two trip systems, each using a one-out-of-two logic. Each of the two trip systems is connected to both RCIC steam supply isolation valves, such that any trip system will isolate both valves. For the purpose of this Specification, two RCIC Steam Flow—High Function channels and the associated RCIC Steam Flow—Timers must be OPERABLE (one separate channel for each trip system).

The HPCI and RCIC Steam Supply Line Pressure — Low Functions receive inputs from four steam supply pressure channels for each system. The outputs from HPCI steam supply pressure

3. 4. High Pressure Coolant Injection System Isolation and Reactor Core Isolation Cooling System Isolation (continued)

channels are each connected to two two-out-of-two trip systems. Each trip system isolates one valve on the HPCI steam supply penetration. The RCIC Steam Supply Line Pressure - Low channels are arranged in a one one-out-of-two twice trip system. The trip system is connected to both RCIC steam supply isolation valves.

The HPCI Drywell Pressure-High Function receives input from four channels. Two channels provide input to one trip system and the other two channels provide input to a second trip system. In addition, four HPCI Steam Supply Line Pressure - Low Function channels are also connected to these trip systems. Each of the two trip systems receives input from two additional HPCI Steam Supply Line Pressure-Low Function channels. Each trip system is arranged such that one channel associated with each Function must trip in order to initiate isolation of one HPCI vacuum breaker isolation valve. The logic in each trip system is one-out-of-two for each Function.

The HPCI Turbine Area Temperature - High Function receives input from four channels. Two channels monitor the area near the steam supply line while the other two channels monitor the temperature near the turbine exhaust rupture disc. Each of the two trip systems receives input from one channel in each of the two areas. Each trip system is arranged such that both channels must trip in order to initiate isolation. This is effectively a two-out-of-two logic arrangement. Each of the two trip systems is connected to one of the two valves on the HPCI steam supply penetration. The RCIC Turbine Area Temperature-High Function receives input from four channels. The four channels monitor the area near the RCIC turbine. Each of the two trip systems receives input from the four channels. Each trip system is arranged in a one-out-of-two taken twice logic to initiate isolation. Each of the two trip systems is connected to both RCIC steam supply isolation valves, such that any trip system will isolate both valves. For the purpose of this Specification, two unique RCIC Turbine Area Temperature - High Function channels must be OPERABLE to support each trip system such that with both channels tripped in a trip system an isolation signal will occur.

3, 4. High Pressure Coolant Injection System Isolation and Reactor Core Isolation Cooling System Isolation (continued)

HPCI and RCIC Functions isolate the Group 4 and 5 valves, as appropriate.

5. Reactor Water Cleanup System Isolation

The Reactor Vessel Water Level - Low Isolation Function receives input from four reactor vessel water level channels. Each channel inputs into one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation of the reactor water cleanup (RWCU) valves. Any channel will trip the associated trip string. Only one trip string must trip to trip the associated trip system. The trip strings are arranged in a one-out-of-two taken twice logic to initiate isolation. The SLC System Initiation Function receives input from the SLC initiation switch. The switch provides trip signal inputs to both trip systems in any position other than "OFF". The other switch positions are SYS 1, SYS 2. SYS 1+2 and SYS 2+1. For the purpose of this Specification, the SLC initiation switch is considered to provide 1 channel input into each trip system. Each of the two trip systems is connected to one of the two RWCU valves.

RWCU Functions isolate the Group 3 valves.

6. Residual Heat Removal (RHR) Shutdown Cooling (SDC) System Isolation

The Reactor Vessel Water Level — Low Function receives input from four reactor vessel water level channels. Each channel inputs into one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to cause an isolation of the RHR SDC suction isolation valves. Any channel will trip the associated trip string. Only one trip string must trip to trip the associated trip system. The trip strings are arranged in a one-out-of-two taken twice logic to initiate isolation. The Reactor Vessel Pressure—High Function receives input from two channels, both of which provide input to both trip systems. Any

6. Residual Heat Removal (RHR) Shutdown Cooling (SDC) System Isolation (continued)

channel will trip both trip systems. This is a one-out-of-two logic for each trip system. Each of the two trip systems is connected to one of the two valves on the RHR SDC suction penetration.

Shutdown Cooling System Isolation Functions isolate some Group 2 valves (RHR SDC suction isolation valves).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The isolation signals generated by the primary containment isolation instrumentation are implicitly assumed in the safety analyses of References 3 and 4 to initiate closure of valves to limit offsite doses. Refer to LCO 3.6.1.3, "Primary Containment Isolation Valves (PCIVs)," Applicable Safety Analyses Bases for more detail of the safety analyses.

Primary containment isolation instrumentation satisfies Criterion 3 of 10 CFR 50.35(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the primary containment instrumentation is dependent on the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.6.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Values, where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Each channel must also respond within its assumed response time, where appropriate.

Allowable Values are specified for each Primary Containment Isolation Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required

APPLICABLE
SAFETY ANALYSES
LCO, and
APPLICABILITY
(continued)

Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

Certain Emergency Core Cooling Systems (ECCS) valves (e.g., RHR containment spray isolation valves) also serve the dual function of automatic PCIVs. The signals that isolate these valves are also associated with the automatic initiation of the ECCS. Some instrumentation requirements and ACTIONS associated with these signals are addressed in LCO 3.3.5.1, "Emergency Core Cooling Systems (ECCS) Instrumentation," and are not included in this LCO.

In general, the individual Functions are required to be OPERABLE in MODES 1, 2, and 3 consistent with the Applicability for LCO 3.6.1.1, "Primary Containment." Functions that have different Applicabilities are discussed below in the individual Functions discussion.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

Main Steam Line Isolation

1.a. Reactor Vessel Water Level - Low Low

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of the MSIVs and other interfaces with the reactor vessel occurs to prevent offsite dose limits from being exceeded. The Reactor Vessel Water Level—Low Low Function is one of the many Functions assumed to be OPERABLE and capable of providing isolation signals. The Reactor Vessel Water Level—Low Low Function associated with isolation is assumed in the analysis of the recirculation line break (Ref. 5). The isolation of the MSLs supports actions to ensure that offsite dose limits are not exceeded for a DBA.

Reactor vessel water level signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level — Low Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level — Low Low Allowable Value is chosen to be the same as the ECCS Reactor Vessel Water Level — Low Low Allowable Value (LCO 3.3.5.1) to ensure that the MSLs isolate on a potential loss of coolant accident (LOCA) to prevent offsite doses from exceeding 10 CFR 100 limits.

This Function isolates the Group 1 valves.

1.b. Main Steam Line Pressure - Low

Low MSL pressure indicates that there may be a problem with the turbine pressure regulation, which could result in a low reactor vessel water level condition and the RPV cooling down more than 100° F/hr if the pressure loss is allowed to continue. The Main Steam Line Pressure – Low Function is directly assumed in the analysis of the pressure regulator

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

1.b. Main Steam Line Pressure - Low (continued)

failure (Ref. 6). For this event, the closure of the MSIVs ensures that the RPV temperature change limit ($100^\circ F/hr$) is not reached. In addition, this Function supports actions to ensure that Safety Limit 2.1.1.1 is not exceeded. (This Function closes the MSIVs prior to pressure decreasing below 785 psig, which results in a scram due to MSIV closure, thus reducing reactor power to < 25% RTP.)

The MSL low pressure signals are initiated from four pressure switches that are connected to the MSL header close to the turbine stop valves. The switches are arranged such that, even though physically separated from each other, each switch is able to detect low MSL pressure. Four channels of Main Steam Line Pressure—Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be high enough to prevent excessive RPV depressurization.

The Main Steam Line Pressure — Low Function is only required to be OPERABLE in MODE 1 since this is when the assumed transient can occur (Ref. 6).

This Function isolates the Group 1 valves.

1.c. Main Steam Line Pressure - Timer

The Main Steam Line Pressure—Timer is provided to prevent false isolations on low MSL pressure as a result of pressure transients, however, the timer must function in a limited time period to support the OPERABILITY of the Main Steam Line Pressure—Low Function by enabling the associated channels after a certain time delay. The Main Steam Line Pressure—Timer is directly assumed in the analysis of the pressure regulator failure (Ref. 6). For this event, the closure of the MSIVs ensures that the RPV temperature change limit (100°F/hr) is not reached. In addition, this Function supports actions to ensure that Safety Limit 2.1.1.1 is not exceeded.

The MSL low pressure timer signals are initiated when the associated MSL low pressure switch actuates. Four channels

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

1.c Main Steam Line Pressure - Timer (continued)

of Main Steam Line Pressure - Timer Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value is chosen to be long enough to prevent false isolations due to pressure transients but short enough as to prevent excessive RPV depressurization.

This Function isolates the Group 1 valves.

1.d. Main Steam Line Flow-High

Main Steam Line Flow—High is provided to detect a break of the MSL and to initiate closure of the MSIVs. If the steam were allowed to continue flowing out of the break, the reactor would depressurize and the core could uncover. If the RPV water level decreases too far, fuel damage could occur. Therefore, the isolation is initiated on high flow to prevent or minimize core damage. The Main Steam Line Flow—High Function is directly assumed in the analysis of the main steam line break (MSLB) (Ref. 7). The isolation action, along with the scram function of the Reactor Protection System (RPS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46 and offsite doses do not exceed the 10 CFR 100 limits.

The MSL flow signals are initiated from 16 differential pressure switches that are connected to the four MSLs (the differential pressure switches sense differential pressure across a flow restrictor). The differential pressure switches are arranged such that, even though physically separated from each other, all four connected to one MSL would be able to detect the high flow. Four channels of Main Steam Line Flow-High Function for each MSL (two channels per trip system) are available and are required to be OPERABLE so that no single instrument failure will preclude detecting a break in any individual MSL.

The Allowable Value is chosen to ensure that offsite dose limits are not exceeded due to the break.

This Function isolates the Group 1 valves.

(continued)

BASES

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

1.e. Main Steam Line Tunnel Temperature - High

Main steam line tunnel temperature is provided to detect a leak in the RCPB in the steam tunnel and provides diversity to the high flow instrumentation. Temperature is sensed in four different areas of the steam tunnel above each main steam line. The isolation occurs when a very small leak has occurred in any one of the four areas. If the small leak is allowed to continue without isolation, offsite dose limits may be reached. However, credit for these instruments is not taken in any transient or accident analysis in the UFSAR, since bounding analyses are performed for large breaks, such as MSLBs.

Main steam line tunnel temperature signals are initiated from bimetallic temperature switches located in the four areas being monitored. Even though physically separated from each other, any temperature switch in any of the four areas is able to detect a leak. Therefore, sixteen channels of Main Steam Line Tunnel Temperature—High Function are available, but only eight channels (two channels in each of the four trip strings) are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Main Steam Line Tunnel Temperature—High Allowable Value is chosen to detect a leak equivalent to between 1% and 10% rated steam flow.

These Functions isolate the Group 1 valves.

Primary Containment Isolation

2.a. Reactor Vessel Water Level - Low

Low RPV water level indicates that the capability to cool the fuel may be threatened. The valves whose penetrations communicate with the primary containment are isolated to limit the release of fission products. The isolation of the primary containment on low RPV water level supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Reactor Vessel Water Level — Low Function associated with isolation is implicitly assumed in the UFSAR analysis as these leakage paths are assumed to be isolated post LOCA.

<u>(continued)</u>

2.a. Reactor Vessel Water Level - Low (continued)

Reactor Vessel Water Level — Low signals are initiated from differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level — Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level — Low Allowable Value was chosen to be the same as the RPS Reactor Vessel Water Level — Low scram Allowable Value (LCO 3.3.1.1), since isolation of these valves is not critical to orderly plant shutdown.

This Function isolates the Group 2 valves.

2.b. Drywell Pressure - High

High drywell pressure can indicate a break in the RCPB inside the primary containment. The isolation of some of the primary containment isolation valves on high drywell pressure supports actions to ensure that offsite dose limits of 10 CFR 100 are not exceeded. The Drywell Pressure—High Function, associated with isolation of the primary containment, is implicitly assumed in the UFSAR accident analysis as these leakage paths are assumed to be isolated post LOCA.

High drywell pressure signals are initiated from pressure switches that sense the pressure in the drywell. Four channels of Drywell Pressure—High per Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be the same as the RPS Drywell Pressure-High scram Allowable Value (LCO 3.3.1.1), since this may be indicative of a LOCA inside primary containment.

This Function isolates the Group 2 valves.

<u>(continued)</u>

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

2.c. Drywell Radiation - High

High drywell radiation indicates possible gross failure of the fuel cladding. Therefore, when Drywell Radiation—High is detected, an isolation is initiated to limit the release of fission products. However, this Function is not assumed in any accident or transient analysis in the UFSAR because other leakage paths (e.g., MSIVs) are more limiting.

The drywell radiation signals are initiated from radiation detectors that are located in capped drywell penetrations. Two channels of Drywell Radiation—High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value is low enough to promptly detect gross failures in the fuel cladding.

This Function isolates the Group 2 valves.

<u>High Pressure Coolant Injection and Reactor Core Isolation</u>
Cooling Systems Isolation

3.a, 4.a. HPCI and RCIC Steam Line Flow-High

Steam Line Flow—High Functions are provided to detect a break of the RCIC or HPCI steam lines and initiate closure of the steam line isolation valves of the appropriate system. If the steam is allowed to continue flowing out of the break, the reactor will depressurize and the core can uncover. Therefore, the isolations are initiated on high flow to prevent or minimize core damage. The isolation action, along with the scram function of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. Specific credit for these Functions is not assumed in any UFSAR accident analyses since the bounding analysis is performed for large breaks such as recirculation and MSL breaks. However, these instruments prevent the RCIC or HPCI steam line breaks from becoming bounding.

3.a, 4.a. HPCI and RCIC Steam Line Flow-High (continued)

The HPCI Steam Line Flow-High signals are initiated from differential pressure transmitters while the RCIC Steam Line Flow-High signals are initiated from differential pressure switches that are connected to the system steam lines. Two channels of both HPCI and RCIC Steam Line Flow-High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to be low enough to ensure that the trip occurs to prevent fuel damage and maintains the MSLB event as the bounding event.

These Functions isolate the Group 4 and 5 valves, as appropriate.

3.b, 4.b. HPCI and RCIC Steam Line Flow-Timer

The HPCI and RCIC Steam Line Flow-Timer is provided to prevent false isolations on HPCI or RCIC Steam Line Flow-High, as applicable, during system startup transients and therefore improves system reliability. These Functions are not assumed in any UFSAR transient or accident analyses since the bounding analysis is performed for large breaks such as recirculation and MSL breaks. However, these instruments support prevention of the HPCI and RCIC steam line breaks from becoming bounding.

The HPCI and RCIC Steam Line Flow-Timer Function delays the HPCI and RCIC Steam Line Flow-High signals, respectively by use of time delay relays. When a HPCI or RCIC Steam Line Flow-High signal is generated, the time delay relays delay the tripping of the associated HPCI or RCIC isolation trip system for a short time. Two channels of both HPCI and RCIC Steam Line Flow-Timer Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to be long enough to prevent false isolations due to system starts but not so long as to impact offsite dose calculations.

3.b, 4.b. HPCI and RCIC Steam Line Flow-Timer (continued)

These Functions, in conjunction with the HPCI and RCIC Steam Line Flow-High Functions, isolate the Group 4 and 5 valves, as appropriate.

3.c, 4.c. HPCI and RCIC Steam Supply Line Pressure - Low

Low HPCI or RCIC steam supply line pressure, as applicable, indicates that the pressure of the steam in the HPCI or RCIC turbine may be too low to continue operation of the associated system turbine. These isolations are for equipment protection and are not assumed in any transient or accident analysis in the UFSAR. However, they also provide a diverse signal to indicate a possible system break. These instruments are included in Technical Specifications (TS) because of the potential for risk due to possible failure of the instruments preventing HPCI and RCIC initiations. Therefore, they meet Criterion 4 of 10 CFR 50.36(c)(2)(ii).

The HPCI Steam Supply Line Pressure – Low signals are initiated from pressure transmitters while the RCIC Steam Supply Line Pressure – Low signals are initiated from pressure switches that are connected to the system steam line. Four channels of both HPCI and RCIC Steam Supply Line Pressure – Low Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function. As noted (Note (a) to Table 3.3.6.1-1), for Function 4.c, this Function only inputs into one trip system. The trip system is connected to both RCIC steam supply isolation valves.

The Allowable Values are selected to be high enough to prevent damage to the system turbine.

These Functions isolate the Group 4 and 5 valves, as appropriate.

3.d. Drywell Pressure - High

High drywell pressure can indicate a break in the RCPB. The HPCI isolation of the turbine exhaust is provided to prevent communication with the drywell when high drywell pressure

3.d. Drywell Pressure - High (continued)

exists. A potential leakage path exists via the turbine exhaust. The isolation is delayed until the system becomes unavailable for injection (i.e., low HPCI steam line pressure). The isolation of the HPCI turbine exhaust by Drywell Pressure—High is indirectly assumed in the UFSAR accident analysis because the turbine exhaust leakage path is not assumed to contribute to offsite doses.

High drywell pressure signals are initiated from pressure switches that sense the pressure in the drywell. Four channels of HPCI Drywell Pressure—High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Value was selected to be the same as the RPS Drywell Pressure—High Allowable Value (LCO 3.3.1.1), since this is indicative of a LOCA inside primary containment.

This Function isolates the Group 4 HPCI turbine exhaust vacuum breaker valves.

3.e. 4.d. HPCI and RCIC Turbine Area Temperature - High

HPCI and RCIC turbine area temperatures are provided to detect a leak from the associated system steam piping. The isolation occurs when a very small leak has occurred and is diverse to the high flow instrumentation. If the small leak is allowed to continue without isolation, offsite dose limits may be reached. These Functions are not assumed in any UFSAR transient or accident analysis, since bounding analyses are performed for large breaks such as recirculation or MSL breaks.

HPCI and RCIC Turbine Area Temperature—High signals are initiated from thermocouples that are appropriately located to detect a leak from the system piping that is being monitored. Four instruments monitor the RCIC area and four channels monitor each HPCI area. Four channels for HPCI and RCIC Turbine Area Temperature—High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

APPLICABLE 3.e., 4.d.
SAFETY ANALYSES, (continued)
LCO, and
APPLICABILITY The Allowab

3.e., 4.d. HPCI and RCIC Turbine Area Temperature - High (continued)

The Allowable Values are set low enough to detect a leak equivalent to 25 gpm.

These Functions isolate the Group 4 and 5 valves, as appropriate.

Reactor Water Cleanup System Isolation

5.a. SLC System Initiation

The isolation of the RWCU System is required when the SLC System has been initiated to prevent dilution and removal of the boron solution by the RWCU System (Ref. 8). SLC System initiation signals are initiated from the SLC initiation switch.

Two channels of the SLC System Initiation Function are available and are required to be OPERABLE only in MODES 1 and 2, since these are the only MODES where the reactor can be critical, and these MODES are consistent with the Applicability for the SLC System (LCO 3.1.7).

There is no Allowable Value associated with this Function since the channels are mechanically actuated based solely on the position of the SLC System initiation switch.

This Function isolates the Group 3 valves.

5.b. Reactor Vessel Water Level - Low

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of some interfaces with the reactor vessel occurs to isolate the potential sources of a break. The isolation of the RWCU System on low RPV water level supports actions to ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. The Reactor Vessel Water Level - Low Function associated with RWCU isolation is not directly assumed in the UFSAR safety analyses because the RWCU System

5.b. Reactor Vessel Water Level - Low (continued)

line break is bounded by breaks of larger systems (recirculation and MSL breaks are more limiting).

Reactor Vessel Water Level—Low signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level—Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level-Low Allowable Value was chosen to be the same as the RPS Reactor Vessel Water Level-Low Allowable Value (LCO 3.3.1.1), since the capability to cool the fuel may be threatened.

This Function isolates the Group 3 valves.

Residual Heat Removal (RHR) Shutdown Cooling (SDC) System Isolation

6.a. Reactor Vessel Pressure - High

The Reactor Vessel Pressure - High Function is provided to isolate the shutdown cooling portion of the Residual Heat Removal (RHR) System. This interlock is provided only for equipment protection to prevent an intersystem LOCA scenario, and credit for the interlock is not assumed in the accident or transient analysis in the UFSAR.

The Reactor Vessel Pressure—High signals are initiated from two pressure switches that are connected to different taps on the reactor recirculation loop B suction line. Two channels (both providing input into two trip systems) of Reactor Vessel Pressure—High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function. The Function is only required to be OPERABLE in MODES 1, 2, and 3, since these are the only MODES in which the reactor can be pressurized; thus, equipment protection is needed. The Allowable Value was chosen to be low enough to protect the system equipment from overpressurization.

6.a. Reactor Vessel Pressure - High (continued)

This Function isolates the Group 2 residual heat removal shutdown cooling suction and injection valves.

6.b. Reactor Vessel Water Level - Low

Low RPV water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, isolation of some reactor vessel interfaces occurs to begin isolating the potential sources of a break. The Reactor Vessel Water Level—Low Function associated with RHR Shutdown Cooling System isolation is not directly assumed in safety analyses because a break of the RHR Shutdown Cooling System is bounded by breaks of the recirculation and MSL. The RHR Shutdown Cooling System isolation on low RPV water level supports actions to ensure that the RPV water level does not drop below the top of the active fuel during a vessel draindown event caused by a leak (e.g., pipe break or inadvertent valve opening) in the RHR Shutdown Cooling System.

Reactor Vessel Water Level - Low signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels (two channels per trip system) of the Reactor Vessel Water Level - Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function. As noted (footnote (b) to Table 3.3.6.1-1), only one channel per trip system (with an isolation signal available to one shutdown cooling pump suction isolation valve) of the Reactor Vessel Water Level-Low Function is required to be OPERABLE in MODES 4 and 5, provided the Shutdown Cooling System integrity is maintained. System integrity is maintained provided the piping is intact and no maintenance is being performed that has the potential for draining the reactor vessel through the system.

The Reactor Vessel Water Level — Low Allowable Value was chosen to be the same as the RPS Reactor Vessel Water

6.b. Reactor Vessel Water Level - Low (continued)

Level — Low Allowable Value (LCO 3.3.1.1), since the capability to cool the fuel may be threatened.

The Reactor Vessel Water Level — Low Function is only required to be OPERABLE in MODES 3, 4, and 5 to prevent this potential flow path from lowering the reactor vessel level to the top of the fuel. In MODES 1 and 2, another isolation (i.e., Reactor Steam Dome Pressure—High) and administrative controls ensure that this flow path remains isolated to prevent unexpected loss of inventory via this flow path.

This Function isolates the Group 2 residual heat removal shutdown cooling suction and injection valves.

ACTIONS

A Note has been provided to modify the ACTIONS related to primary containment isolation instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable primary containment isolation instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable primary containment isolation instrumentation channel.

A.1

Because of the diversity of sensors available to provide isolation signals and the redundancy of the isolation design, an allowable out of service time of 12 hours or 24 hours, depending on the Function (12 hours for those Functions that have channel components common to RPS instrumentation and 24 hours for those Functions that do not have channel components common to RPS instrumentation), has been shown to be acceptable (Refs. 9 and 10) to permit restoration of any inoperable channel to OPERABLE status.

A.1 (continued)

This out of service time is only acceptable provided the associated Function is still maintaining isolation capability (refer to Required Action B.1 Bases). If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue with no further restrictions. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an isolation), Condition C must be entered and its Required Action taken.

<u>B.1</u>

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in redundant automatic isolation capability being lost for the associated penetration flow path(s). The MSL and Primary Containment Isolation Functions and portions of other system Isolation Functions are considered to be maintaining isolation capability when sufficient channels are OPERABLE or in trip, such that both trip systems will generate a trip signal from the given Function on a valid signal. For Functions 1.a, 1.b. 1.c. 2.a. 2.b, 2.c, 5.b, 6.a, and 6.b, this would require both trip systems to have one channel OPERABLE or in trip. For Function 1.d, this would require both trip systems to have one channel, associated with each MSL, OPERABLE or in trip. Function 1.e, consists of channels that monitor several locations within a given area (e.g., different locations within the main steam tunnel area). However, any channel in any of the four areas is able to detect a leak. Therefore, this would require both trip systems to have one channel OPERABLE or in trip. The HPCI, RCIC and portions of other system Isolation Functions are considered to be maintaining isolation capability when sufficient channels are OPERABLE or in trip, such that one trip system will generate a trip signal from the given Function on a valid signal. This ensures that one of the two PCIVs in the associated penetration flow path can

<u>(continued)</u>

B.1 (continued)

receive an isolation signal from the given Function. For Functions 3.c (associated with HPCI steam supply isolation), 3.e, and 4.d, this would require one trip system to have two channels, each OPERABLE or in trip. For Functions 3.a, 3.b, 3.c (associated with HPCI vacuum breaker isolation), 3.d, 4.a, 4.b, and 5.a, this would require one trip system to have one channel OPERABLE or in trip. For Function 4.c this would require two or more channels to be OPERABLE or in trip in the trip system.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

C.1

Required Action C.1 directs entry into the appropriate Condition referenced in Table 3.3.6.1-1. The applicable Condition specified in Table 3.3.6.1-1 is Function and MODE or other specified condition dependent and may change as the Required Action of a previous Condition is completed. Each time an inoperable channel has not met any Required Action of Condition A or B and the associated Completion Time has expired, Condition C will be entered for that channel and provides for transfer to the appropriate subsequent Condition.

D.1, D.2.1, and D.2.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time the associated MSLs may be isolated (Required Action D.1), and, if allowed (i.e., plant safety analysis allows operation with an MSL isolated), operation with that MSL isolated may continue. Isolating the affected MSL accomplishes the safety function of the inoperable channel. This Required Action will generally only be used if a Function 1.d channel is inoperable and untripped. The associated MSL(s) to be isolated are those whose Main Steam Line Flow-High Function channel(s) are inoperable. Alternately, the plant must be

D.1, D.2.1, and D.2.2 (continued)

placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 3 within 12 hours and in MODE 4 within 36 hours (Required Actions D.2.1 and D.2.2). The Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>E.1</u>

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 2 within 8 hours.

The allowed Completion Time of 8 hours is reasonable, based on operating experience, to reach MODE 2 from full power conditions in an orderly manner and without challenging plant systems.

F.1

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, plant operations may continue if the affected penetration flow path(s) is isolated. Isolating the affected penetration flow path(s) accomplishes the safety function of the inoperable channel.

Alternately, if it is not desired to isolate the affected penetration flow path(s) (e.g., as in the case where isolating the penetration flow path(s) could result in a reactor scram), Condition H must be entered and its Required Actions taken.

The 1 hour Completion Time is acceptable because it minimizes risk while allowing sufficient time for plant operations personnel to isolate the affected penetration flow path(s).

ACTIONS (continued)

G.1 and G.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, or any Required Action of Condition F is not met and the associated Completion Time has expired, the plant must be placed in a MODE or other specified condition in which the LCO does not apply. This is done by placing the plant in at least MODE 3 within 12 hours and in MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

H.1 and H.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the associated SLC subsystem(s) is declared inoperable or the RWCU System is isolated. Since this Function is required to ensure that the SLC System performs its intended function, sufficient remedial measures are provided by declaring the associated SLC subsystems inoperable or isolating the RWCU System.

The 1 hour Completion Time is acceptable because it minimizes risk while allowing sufficient time for personnel to isolate the RWCU System.

I.1 and I.2

If the channel is not restored to OPERABLE status or placed in trip within the allowed Completion Time, the associated penetration flow path should be closed. However, if the shutdown cooling function is needed to provide core cooling, these Required Actions allow the penetration flow path to remain unisolated provided action is immediately initiated to restore the channel to OPERABLE status or to isolate the RHR Shutdown Cooling System (i.e., provide alternate decay heat removal capabilities so the penetration flow path can be isolated). Actions must continue until the channel is restored to OPERABLE status or the RHR Shutdown Cooling System is isolated.

BASES (continued)

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each Primary Containment Isolation instrumentation Function are found in the SRs column of Table 3.3.6.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains isolation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Refs. 9 and 10) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the PCIVs will isolate the penetration flow path(s) when necessary.

SR 3.3.6.1.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

SURVEILLANCE REQUIREMENTS

SR 3.3.6.1.1 (continued)

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.6.1.2 and SR 3.3.6.1.5

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The 92 day Frequency of SR 3.3.6.1.2 is based on the reliability analyses described in References 9 and 10. The 24 month Frequency of SR 3.3.6.1.5 is based on engineering judgement and the reliability of the components.

SR 3.3.6.1.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.6.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than that accounted for in the appropriate setpoint methodology.

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.6.1.3</u> (continued)

The Frequency of 92 days is based on the reliability analyses of References 9 and 10.

SR 3.3.6.1.4 and SR 3.3.6.1.6

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency of SR 3.3.6.1.4 is based on the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.6.1.6 is based on the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.6.1.7

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required isolation logic for a specific channel. The system functional testing performed on PCIVs in LCO 3.6.1.3 overlaps this Surveillance to provide complete testing of the assumed safety function. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Table 6.2-7.
- 2. 10 CFR 50.62.
- 3. UFSAR, Section 6.2.

BASES

REFERENCES (continued)

- 4. UFSAR, Chapter 15.
- 5. UFSAR, Section 15.6.5.
- 6. UFSAR, Section 15.1.3.
- 7. UFSAR, Section 15.6.4.
- 8. UFSAR, Section 9.3.5.
- 9. NEDC-31677P-A, "Technical Specification Improvement Analysis for BWR Isolation Actuation Instrumentation," July 1990.
- 10. NEDC-30851P-A Supplement 2, "Technical Specifications Improvement Analysis for BWR Isolation Instrumentation Common to RPS and ECCS Instrumentation," March 1989.

B 3.3 INSTRUMENTATION

B 3.3.6.2 Secondary Containment Isolation Instrumentation

BASES

BACKGROUND

The secondary containment isolation instrumentation automatically initiates closure of appropriate secondary containment isolation valves (SCIVs) and starts the Standby Gas Treatment (SGT) System. The function of these systems, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) (Ref. 1). Secondary containment isolation and establishment of vacuum with the SGT System ensures that fission products that leak from primary containment following a DBA, or are released outside primary containment, or are released during certain operations when primary containment is not required to be OPERABLE are maintained within applicable limits.

The isolation instrumentation includes the sensors, relays, and switches that are necessary to cause initiation of secondary containment isolation. Most channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a secondary containment isolation signal to the isolation logic. Functional diversity is provided by monitoring a wide range of independent parameters. The input parameters to the isolation logic are (1) reactor vessel water level, (2) drywell pressure, (3) reactor building exhaust high radiation, and (4) refueling floor high radiation. Redundant sensor input signals from each parameter are provided for initiation of isolation.

For both the Reactor Vessel Water Level — Low and Drywell Pressure — High Function, the secondary containment isolation logic receives input from four channels. One channel associated with each Function inputs to one of four trip strings. Two trip strings make up a trip system and both trip systems must trip to initiate the secondary containment isolation function. Any channel will trip the associated trip string. Any trip string will trip the associated trip system. The trip strings are arranged in a one-out-of-two taken twice logic to initiate the secondary containment

<u>(continued)</u>

BACKGROUND (continued)

isolation function. For both Reactor Building Exhaust Radiation — High and Refueling Floor Radiation — High Functions, the secondary containment isolation trip system logic receives input from four channels. Two channels of Reactor Building Exhaust Radiation-High are located in each of the unit reactor building exhaust ducts and two channels of Refueling Floor Radiation-High are located where they can monitor the environment of each of the unit spent fuel pools. The output of the channels associated with Unit 1 are provided to one trip system while the output of the channels associated with Unit 2 are provided to the other trip system. The output from these channels are arranged in two one-out-of-two trip system logics for each Function to initiate the secondary containment isolation function. Any Reactor Building Exhaust Radiation-High or Refueling Floor Radiation - High channel will initiate the secondary containment isolation function. Initiating the secondary containment isolation function provides an input to both secondary containment Train A and Train B logic. Either train initiates isolation of all secondary containment isolation valves and provides a start signal to the associated SGT subsystem.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The isolation signals generated by the secondary containment isolation instrumentation are implicitly assumed in the safety analyses of References 2 and 3 to initiate closure of the SCIVs and start the SGT System to limit offsite doses.

Refer to LCO 3.6.4.2, "Secondary Containment Isolation Valves (SCIVs)," and LCO 3.6.4.3, "Standby Gas Treatment (SGT) System," Applicable Safety Analyses Bases for more detail of the safety analyses.

The secondary containment isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.

The OPERABILITY of the secondary containment isolation instrumentation is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

must have the required number of OPERABLE channels with their setpoints set within the specified Allowable Values, as shown in Table 3.3.6.2-1. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

In general, the individual Functions are required to be OPERABLE in the MODES or other specified conditions when SCIVs and the SGT System are required.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low

Low reactor pressure vessel (RPV) water level indicates that the capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. An isolation of the secondary containment and actuation of the SGT System are initiated in order to minimize the potential of an offsite dose release. The Reactor Vessel Water Level — Low Function is one of the Functions assumed to be OPERABLE and capable of providing isolation and initiation signals. The isolation and initiation of systems on Reactor Vessel Water Level — Low support actions to ensure that any offsite releases are within the limits calculated in the safety analysis (Ref. 2).

Reactor Vessel Water Level — Low signals are initiated from differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level — Low Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Reactor Vessel Water Level — Low Allowable Value was chosen to be the same as the Reactor Protection System (RPS) Reactor Vessel Water Level — Low Allowable Value (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"), since this could indicate that the capability to cool the fuel is being threatened.

The Reactor Vessel Water Level — Low Function is required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists in the Reactor Coolant System (RCS); thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. In MODES 4 and 5, the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES; thus, this Function is not required. In addition, the

1. Reactor Vessel Water Level - Low (continued)

Function is also required to be OPERABLE during operations with a potential for draining the reactor vessel (OPDRVs) to ensure that offsite dose limits are not exceeded if core damage occurs.

2. Drywell Pressure - High

High drywell pressure can indicate a break in the reactor coolant pressure boundary (RCPB). An isolation of the secondary containment and actuation of the SGT System are initiated in order to minimize the potential of an offsite dose release. The isolation and initiating of the systems on Drywell Pressure—High supports actions to ensure that any offsite releases are within the limits calculated in the safety analysis (Ref. 2).

High drywell pressure signals are initiated from pressure switches that sense the pressure in the drywell. Four channels of Drywell Pressure—High Functions are available and are required to be OPERABLE to ensure that no single instrument failure can preclude performance of the isolation function.

The Allowable Value was chosen to be the same as the RPS Drywell Pressure-High Function Allowable Value (LCO 3.3.1.1) since this is indicative of a loss of coolant accident (LOCA).

The Drywell Pressure—High Function is required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists in the RCS; thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. This Function is not required in MODES 4 and 5 because the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES.

APPLICABLE SAFETY ANALYSES. LCO. and APPLICABILITY (continued)

3, 4. Reactor Building Exhaust Radiation - High and Refueling Floor Radiation - High

High reactor building exhaust radiation or refuel floor radiation is an indication of possible gross failure of the fuel cladding. The release may have originated from the primary containment due to a break in the RCPB or the refueling floor due to a fuel handling accident. When Reactor Building Exhaust Radiation - High or Refueling Floor Radiation - High is detected, secondary containment isolation and actuation of the SGT System are initiated to support actions to limit the release of fission products as assumed in the UFSAR safety analyses (Refs. 2 and 3).

The Reactor Building Exhaust Radiation - High signals are initiated from radiation detectors that are located on the ventilation exhaust duct coming from the associated reactor building. Therefore, the channels must be declared inoperable if the associated reactor building ventilation exhaust duct is isolated. Refueling Floor Radiation-High signals are initiated from radiation detectors that are located to monitor the environment of the associated spent fuel storage pool. The signal from each detector is input to an individual monitor whose trip outputs are assigned to an isolation channel. Four channels of Reactor Building Exhaust Radiation - High Function and four channels of Refueling Floor Radiation - High Function are available and are required to be OPERABLE to ensure that no single instrument failure can preclude the isolation function.

The Allowable Values are chosen to promptly detect gross failure of the fuel cladding.

The Reactor Building Exhaust Radiation - High and Refueling Floor Radiation - High Functions are required to be OPERABLE in MODES 1, 2, and 3 where considerable energy exists in the RCS: thus, there is a probability of pipe breaks resulting in significant releases of radioactive steam and gas. In MODES 4 and 5, the probability and consequences of these events are low due to the RCS pressure and temperature limitations of these MODES; thus, these Functions are not required. In addition, the Functions are also required to

3. 4. Reactor Building Exhaust Radiation - High and Refueling Floor Radiation - High (continued)

be OPERABLE during CORE ALTERATIONS, OPDRVs, and movement of irradiated fuel assemblies in the secondary containment, because the capability of detecting radiation releases due to fuel failures (due to fuel uncovery or dropped fuel assemblies) must be provided to ensure that offsite dose limits are not exceeded.

ACTIONS

A Note has been provided to modify the ACTIONS related to secondary containment isolation instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition. discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable secondary containment isolation instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable secondary containment isolation instrumentation channel.

A.1

Because of the diversity of sensors available to provide isolation signals and the redundancy of the isolation design, an allowable out of service time of 12 hours or 24 hours depending on the Function (12 hours for those Functions that have channel components common to RPS instrumentation and 24 hours for those Functions that do not have channel components common to RPS instrumentation), has been shown to be acceptable (Refs. 4 and 5) to permit restoration of any inoperable channel to OPERABLE status. This out of service time is only acceptable provided the associated Function is still maintaining isolation capability (refer to Required Action B.1 Bases). If the inoperable channel cannot be restored to OPERABLE status

<u>(continued)</u>

A.1 (continued)

within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an isolation), Condition C must be entered and its Required Actions taken.

<u>B.1</u>

Required Action B.1 is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same Function result in a complete loss of isolation capability for the associated penetration flow path(s) or a complete loss of initiation capability for the SGT System. A Function is considered to be maintaining isolation capability when sufficient channels are OPERABLE or in trip, such that a trip signal will be generated from the given Function on a valid signal. This ensures that the two SCIVs in the associated penetration flow path and the SGT System can be initiated on an isolation signal from the given Function. For the Functions with two one-out-of-two logic trip systems (Functions 1 and 2), this would require one trip system to have one channel OPERABLE or in trip. For Functions 3 and 4, this would require each trip system to have one channel OPERABLE or in trip.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

C.1.1, C.1.2, C.2.1, and C.2.2

If any Required Action and associated Completion Time are not met, the ability to isolate the secondary containment and start the SGT System cannot be ensured. Therefore, further actions must be performed to ensure the ability to

<u>(continued)</u>

C.1.1, C.1.2, C.2.1, and C.2.2 (continued)

maintain the secondary containment function. Isolating the associated penetration flow path(s) and starting the associated SGT subsystem (Required Actions C.1.1 and C.2.1) performs the intended function of the instrumentation and allows operation to continue. The method used to place the SGT subsystem in operation must provide for automatically reinitiating the subsystem upon restoration of power following a loss of power to the SGT subsystem.

Alternately, declaring the associated SCIVs or SGT subsystem(s) inoperable (Required Actions C.1.2 and C.2.2) is also acceptable since the Required Actions of the respective LCOs (LCO 3.6.4.2 and LCO 3.6.4.3) provide appropriate actions for the inoperable components.

One hour is sufficient for plant operations personnel to establish required plant conditions or to declare the associated components inoperable without unnecessarily challenging plant systems.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each Secondary Containment Isolation instrumentation Function are located in the SRs column of Table 3.3.6.2-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains isolation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Refs. 4 and 5) assumption of the average time required to perform channel surveillance. That analysis demonstrated the 6 hour testing allowance does not significantly reduce the probability that the SCIVs will isolate the associated penetration flow paths and that the SGT System will initiate when necessary.

SURVEILLANCE REQUIREMENTS (continued)

SR <u>3.3.6.2.1</u>

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with channels required by the LCO.

SR 3.3.6.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

<u>(continued)</u>

SURVEILLANCE REQUIREMENTS

SR 3.3.6.2.2 (continued)

The Frequency of 92 days is based on the reliability analysis of References 4 and 5.

SR 3.3.6.2.3

Calibration of trip units provides a check of the actual trip setpoints. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.6.2-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than accounted for in the appropriate setpoint methodology.

The Frequency of 92 days is based on the reliability analysis of References 4 and 5.

SR 3.3.6.2.4 and SR 3.3.6.2.5

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequencies of SR 3.3.6.2.4 and SR 3.3.6.2.5 are based on the assumption of a 92 day and a 24 month calibration interval, respectively, in the determination of the magnitude of equipment drift in the setpoint analysis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.6.2.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required isolation logic for a specific channel. The system functional testing performed on SCIVs and the SGT System in LCO 3.6.4.2 and LCO 3.6.4.3, respectively, overlaps this Surveillance to provide complete testing of the assumed safety function.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 6.2.3.
- 2. UFSAR, Section 15.6.5.
- 3. UFSAR, Section 15.7.2.
- 4. NEDC-31677P-A, "Technical Specification Improvement Analysis for BWR Isolation Actuation Instrumentation," July 1990.
- 5. NEDC-30851P-A Supplement 2, "Technical Specifications Improvement Analysis for BWR Isolation Instrumentation Common to RPS and ECCS Instrumentation," March 1989.

B 3.3 INSTRUMENTATION

B 3.3.6.3 Relief Valve Instrumentation

BASES

BACKGROUND

The low set portion of relief valve instrumentation is designed to mitigate the effects of postulated thrust loads on the relief valve discharge lines by preventing subsequent actuations with an elevated water leg in the discharge line. It also mitigates the effects of postulated pressure loads on the torus shell or suppression pool by preventing multiple actuations in rapid succession of the relief valve subsequent to their initial actuation. The low set function of relief valve instrumentation is contained within the control logic of the two relief valves that are set to initiate first on an overpressure event. The relief valve instrumentation, as a whole, is designed to mitigate the effects of overpressurization transients via the relief mode of five relief valves.

The relief valve instrumentation logic consists of separate channels for each of the five relief valves with each channel controlling one associated relief valve. Each channel contains a high pressure (PSH) switch and a low pressure (PSL) switch. The pressure switches sense reactor pressure from the upstream side of the relief valve to open the associated relief valve on a sensed high reactor pressure and close the valve following a reduction in reactor pressure. Actuation of the associated relief valve is accomplished via closure of the PSH on a sensed high reactor pressure, which energizes the relief valve solenoid to open the valve. The PSL closes to seal in the actuation signal and opens when reactor pressure has decreased below the low pressure setpoint of the switch to de-energize the solenoid and allow the relief valve to close.

The relief valve high pressure setpoints are set such that two of the five relief valves (i.e., the Low Set Relief Valves) will actuate at a pressure that is approximately twenty pounds lower than the remaining three relief valves (i.e., the Relief Valves). The lower pressure settings are intended to reduce the frequency of multiple relief discharges.

BACKGROUND (continued)

Two Low Set Relief Valve Reactuation Time Delay channels are included in the associated control logic for the two relief valves designated to open at the lower reactor pressure (i.e., the Low Set Relief Valves). Each channel consists of a time delay dropout relay and its associated contacts. The channels are arranged in a two-out-of-two logic arrangement for each low set relief valve. The Low Set Relief Valve Reactuation Time Delay Function ensures a time delay of approximately 10 seconds occurs between the closure of the associated relief valve and any subsequent opening of the valve by preventing the reopening of the valve. In this fashion, the low set portion of relief valve instrumentation increases the time between (or prevents) subsequent actuations to allow the high water leg created from the initial relief valve opening to return to (or fall below) its normal water level; thus, reducing thrust loads from subsequent actuations to within their design limits.

APPLICABLE SAFETY ANALYSES

The relief valve instrumentation and low set function ensures that the containment loads remain within the primary containment design basis (Refs. 1 and 2). The opening setpoints of the relief valves also ensure that the transient analyses of Reference 3 can be met.

The relief valve instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The LCO requires OPERABILITY of sufficient relief valve instrumentation channels to ensure successfully accomplishing the relief valve function assuming any single instrumentation channel failure. Therefore, the OPERABILITY of the relief valve instrumentation is dependent on the OPERABILITY of the instrumentation channel Function specified in Table 3.3.6.3-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Value. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each relief valve actuation Function in Table 3.3.6.3-1. Nominal trip

LCO (continued)

setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel pressure), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The Low Set Relief Valve Reactuation Time Delay is based on preventing unacceptable thrust loads on relief valve discharge piping due to relief valve openings with elevated water leg conditions. The time delay setpoint was chosen to ensure the two low set relief valves will remain closed following their initial opening, until normal water level in the discharge line is restored and is based on the calculated worst case elevated water leg duration.

The relief valve Allowable Values are based on the safety analysis performed in References 1, 2, and 3.

APPLICABILITY

The relief valve instrumentation is required to be OPERABLE in MODES 1, 2, and 3 since considerable energy is in the

APPLICABILITY (continued)

nuclear system and the relief valves may be needed to provide pressure relief. If the relief valves are needed, then the relief valve function is required to ensure that the primary containment design basis is maintained. In MODES 4 and 5, the reactor pressure is low enough that the overpressure limit cannot be approached by assumed operational transients or accidents. Thus, relief valve instrumentation and associated pressure relief is not required.

ACTIONS

A.1

The failure of any relief valve instrument channel to provide the pressure setpoint or low set time delay for an individual relief valve does not affect the ability of the other relief valves to perform their relief or low set function. A relief valve is OPERABLE if the associated logic, has one Function 1.a or 2.a channel, as applicable, and, for low set relief valves, two Function 1.b channels OPFRABLE. Therefore, 14 days is provided to restore the inoperable channel(s) to OPERABLE status (Required Action A.1). If the inoperable channel(s) cannot be restored to OPERABLE status within the allowable out of service time, Condition B must be entered and its Required Action taken. The 14 day Completion Time is considered appropriate because of the redundancy in the design (five relief valves are provided and any four relief valves can perform the relief function, two low set relief valves are provided and one low set relief valve can perform the low set function) and the very low probability of multiple relief instrumentation channel failures, which render the remaining relief valves inoperable, occurring together with an event requiring the relief or low set function during the 14 day Completion Time. The 14 day Completion Time to restore inoperable channels to OPERABLE status is based on the relief capability of the remaining relief valves, the low probability of an event requiring relief valve actuation and a reasonable time to complete the Required Action.

ACTIONS (continued)

<u>B.1</u>

If the Required Action and associated Completion Time of Condition A is not met, or two or more relief valves are inoperable due to inoperable channels, the relief valves may be incapable of performing their intended relief or low set function. Therefore, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each LLS instrumentation Function are located in the SRs column of Table 3.3.6.3-1.

SR 3.3.6.3.1

CHANNEL CALIBRATION is a complete check of the instrument loop and sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency of once every 24 months for SR 3.3.6.3.1 is based on the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.6.3.2

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required actuation logic for a specified channel. The system functional testing performed in LCO 3.4.3, "Safety and Relief Valves" and LCO 3.6.1.6, "Low Set Relief Valves," overlaps this test to provide complete testing of the assumed safety function.

BASES

SURVEILLANCE REQUIREMENTS

SR 3.3.6.3.2 (continued)

The Frequency of once every 24 months for SR 3.3.6.3.2 is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Figure 5.2.2.
- 2. UFSAR, Section 6.2.1.3.4.
- 3. UFSAR, Chapter 15.

B 3.3 INSTRUMENTATION

B 3.3.7.1 Control Room Emergency Ventilation (CREV) System Isolation Instrumentation

BASES

BACKGROUND

The CREV System is designed to provide a radiologically controlled environment to ensure the habitability of the control room for the safety of control room operators under all plant conditions. The CREV System is capable of fulfilling the stated safety function. The instrumentation and controls for the CREV System automatically isolate the control room emergency zone to minimize the consequences of radioactive material in the control room environment.

In the event of a Reactor Vessel Water Level-Low, Drywell Pressure-High, Main Steam Line Flow-High, Refueling Floor Radiation-High, or Reactor Building Exhaust Radiation-High signal, the control room is automatically isolated.

For both the Reactor Vessel Water Level-Low and Drywell Pressure - High Functions, the CREV System isolation instrumentation logic receives input from four channels. The output from these channels are arranged into two one-out-of-two trip system logics. Both trip systems must trip to isolate the control room. The Main Steam Line Flow-High Function uses 16 channels, four for each main steam line. One channel from each main steam line inputs to one of the four trip strings. Two trip strings make up each trip system and both trip systems must trip to isolate the control room. Each trip string has four inputs (one per MSL), any one of which will trip the trip string. The trip strings are arranged in a one-out-of-two taken twice logic. This is effectively a one-out-of-eight taken twice logic arrangement to initiate isolation. For both Reactor Building Ventilation Exhaust Radiation - High and Refueling Floor Radiation - High Functions, the CREV System isolation logic receives input from four channels. Two channels associated with the Reactor Building Ventilation Exhaust Radiation - High Function are located in each reactor building exhaust duct while two channels associated with the Refueling Floor Radiation - High Function are located where they can monitor the environment of each of the unit spent fuel pools. The outputs of the channels associated with

BACKGROUND (continued)

Unit 1 are provided to one trip system while the outputs of the channels associated with Unit 2 are provided to the other trip system. The outputs from these channels are arranged into two one-out-of-two trip system logics for each Function. A trip of any trip system will initiate the control room isolation function. Any Reactor Building Exhaust Radiation - High or Refueling Floor Radiation - High channel will initiate the control room isolation function. All Refueling Floor Radiation-High and Reactor Building Ventilation Exhaust Radiation - High Function channels are common to both Unit 1 and 2. The channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. the setpoint is exceeded, the channel output relay actuates, which then outputs a CREV System isolation signal to the initiation logic.

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The ability of the CREV System to isolate and maintain the habitability of the control room emergency zone is explicitly assumed for certain accidents as discussed in the UFSAR safety analyses (Refs. 1, 2, and 3). CREV System isolation and operation ensures that the radiation exposure of control room personnel, through the duration of any one of the postulated accidents, does not exceed the limits set by GDC 19 of 10 CFR 50, Appendix A.

CREV System isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The OPERABILITY of the CREV System isolation instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.7.1-1. Each Function must have a required number of OPERABLE channels, with their setpoints within the specified Allowable Values, where appropriate. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each CREV System Isolation Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive CHANNEL

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. Reactor Vessel Water Level - Low

Low reactor pressure vessel (RPV) water level indicates that the capability of cooling the fuel may be threatened. A low reactor vessel water level could indicate a LOCA and will automatically initiate isolation of the control room emergency zone, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

1. Reactor Vessel Water Level - Low (continued)

Reactor Vessel Water Level—Low signals are initiated from four differential pressure transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. Four channels of Reactor Vessel Water Level—Low Function are available (two channels per trip system) and are required to be OPERABLE to ensure that a single instrument failure can preclude control room emergency zone isolation. The Reactor Vessel Water Level—Low Allowable Value was chosen to be the same as the Reactor Protection System (RPS) Reactor Vessel Water Level—Low Allowable Value (LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation").

The Reactor Vessel Water Level — Low Function is required to be OPERABLE in MODES 1, 2, and 3, and during operations with a potential for draining the reactor vessel (OPDRVs) to ensure that the control room personnel are protected during a LOCA. In MODES 4 and 5 at times other than OPDRVs, the probability of a vessel draindown event resulting in a release of radioactive material into the environment is minimal. In addition, adequate protection is performed by the Refueling Floor Radiation—High and Reactor Building Exhaust Radiation—High Functions. Therefore, this Function is not required in other MODES and specified conditions.

2. Drywell Pressure - High

High pressure in the drywell could indicate a break in the reactor coolant pressure boundary. A high drywell pressure signal could indicate a LOCA and will automatically initiate isolation of the control room emergency zone, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.

Drywell Pressure—High signals are initiated from four pressure switches that sense drywell pressure. Four channels of Drywell Pressure—High Function are available (two channels per trip system) and are required to be OPERABLE to ensure that no single instrument failure can

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

2. Drywell Pressure - High (continued)

preclude control room emergency zone isolation. The Drywell Pressure—High Allowable Value was chosen to be the same as the RPS Drywell Pressure—High Allowable Value (LCO 3.3.1.1).

The Drywell Pressure—High Function is required to be OPERABLE in MODES 1, 2, and 3 to ensure that control room personnel are protected in the event of a LOCA. In MODES 4 and 5, the Drywell Pressure—High Function is not required since there is insufficient energy in the reactor to pressurize the drywell to the Drywell Pressure—High setpoint.

3. Main Steam Line Flow-High

High main steam line (MSL) flow could indicate a break in the MSL and will automatically initiate the isolation of the control room emergency zone, since this could be a precursor to a potential radiation release and subsequent radiation exposure to control room personnel.

The Main Steam Line Flow-High signals are initiated from 16 differential pressure switches that are connected to the four MSLs (the differential pressure switches sense differential pressure across a flow restrictor). Four channels of Main Steam Line Flow-High Function for each MSL (two channels per trip system) are available and required to be OPERABLE so that no single instrument failure will preclude control room emergency zone isolation.

The Allowable Value was chosen to be the same as the Primary Containment Isolation Main Steam Line Flow-High Allowable Value (LCO 3.3.6.1, "Primary Containment Isolation Instrumentation").

The Main Steam Line Flow-High Function is required to be OPERABLE in MODES 1, 2, and 3 to ensure that control room personnel are protected during a main steam line break (MSLB) accident. In MODES 4 and 5, the reactor is depressurized; thus, MSLB protection is not required.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

4, 5. Refueling Floor Radiation - High and Reactor Building Ventilation Exhaust Radiation - High

High radiation in the refueling floor area or in the reactor building ventilation exhaust could be an indication of possible gross failure of the fuel cladding. The release may have originated from the primary containment due to a break in the reactor coolant pressure boundary (RCPB) or the refuel floor due to a fuel handling accident. A refueling floor or a reactor building ventilation exhaust high radiation signal will automatically initiate isolation of the control room emergency zone, since this radiation release could result in radiation exposure to control room personnel.

The Refueling Floor Radiation—High signals are initiated from radiation detectors that are located to monitor the environment of the associated spent fuel pool. The Reactor Building Ventilation Exhaust Radiation—High signals are initiated from radiation detectors that are located on the ventilation exhaust duct coming from the associated reactor building. Therefore, the channels must be declared inoperable if the associated reactor building ventilation exhaust duct is isolated. Four channels of Refueling Floor Radiation—High Function and four channels of Reactor Building Ventilation Exhaust Radiation—High Function are available and are required to be OPERABLE to ensure that no single instrument failure will preclude control room emergency zone isolation.

The Allowable Values were selected to ensure that the Functions will promptly detect high activity that could threaten exposure to control room personnel.

The Refueling Floor Radiation—High Function and Reactor Building Ventilation Exhaust Radiation—High Function are required to be OPERABLE in MODES 1, 2, and 3 and during movement of irradiated fuel assemblies in the secondary containment, CORE ALTERATIONS, and operations with a potential for draining the reactor vessel (OPDRVs), to ensure that control room personnel are protected during a LOCA, fuel handling event, or vessel draindown event. During MODES 4 and 5, when these specified conditions are not in progress (e.g., CORE ALTERATIONS), the probability of a LOCA or fuel damage is low; thus, the Functions are not required.

A Note has been provided to modify the ACTIONS related to CREV System isolation instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable CREV System isolation instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable CREV System isolation instrumentation channel.

A.1

Required Action A.1 directs entry into the appropriate Condition referenced in Table 3.3.7.1-1. The applicable Condition specified in the Table is Function dependent. Each time a channel is discovered inoperable, Condition A is entered for that channel and provides for transfer to the appropriate subsequent Condition.

B.1 and B.2

Because of the diversity of sensors available to provide isolation signals and the redundancy of the CREV System isolation instrumentation design, an allowable out of service time of 24 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function is still maintaining CREV System isolation capability. A Function is considered to be maintaining CREV System isolation capability when sufficient channels are OPERABLE or in trip such that an initiation signal is generated from the given Function on a valid signal. For Function 3, this would require both trip systems to have one channel associated with each MSL, OPERABLE or in trip. For Functions 4 and

B.1 and B.2 (continued)

5, this would require each trip system to have one channel OPERABLE or in trip. In this situation (loss of CREV System isolation capability), the 24 hour allowance of Required Action B.2 is not appropriate. If the Function is not maintaining CREV System isolation capability, the CREV System must be declared inoperable within 1 hour of discovery of the loss of CREV System isolation capability (Required Action B.1). This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action B.1, the Completion time only begins upon discovery that the CREV System cannot be automatically isolated due to inoperable, untripped channels in the same Function in one trip system. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoring or tripping of channels. If it is not desired to declare the CREV System inoperable, Condition D may be entered and Required Action D.1 or D.2, as applicable, taken.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action B.2. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an isolation), Condition D must be entered and its Required Action taken.

C.1 and C.2

Because of the diversity of sensors available to provide isolation signals and the redundancy of the CREV System instrumentation design, an allowable out of service time of 12 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function is still maintaining CREV System isolation capability. A Function is considered to be

C.1 and C.2 (continued)

maintaining CREV System isolation capability when sufficient channels are OPERABLE or in trip such that both trip systems will generate an initiation signal from the given Function on a valid signal. For Functions 1 and 2, this would require both trip systems to have one channel OPERABLE or in trip. In this situation (loss of CREV System isolation capability), the 12 hour allowance of Required Action C.2 is not appropriate. If the Function is not maintaining CREV System isolation capability, the CREV System must be declared inoperable within 1 hour of discovery of the loss of CREV System isolation capability in both trip systems (Required Action C.1). This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." For Required Action C.1, the Completion Time only begins upon discovery that the CREV System cannot be automatically isolated due to inoperable, untripped channels in the same Function in one trip system. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoring or tripping of channels. If it is not desired to declare the CREV System inoperable, Condition D may be entered and Required Action D.1 or D.2, as applicable, taken.

If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action C.2. Placing the inoperable channel in trip performs the intended function of the channel, conservatively compensates for the inoperability, restores capability to accommodate a single failure, and allows operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in an isolation), Condition D must be entered and its Required Action taken.

D.1, D.2, and D.3

With any Required Action and associated Completion Time not met, each required control room penetration "flow path" must be isolated per Required Action D.1 to ensure that control room personnel will be protected in the event of a Design

<u>(continued)</u>

D.1, D.2, and D.3 (continued)

Basis Accident. Alternately, if a Function 3 channel is inoperable and untripped, the associated MSL may be isolated, since isolating the MSL performs the intended function of the CREV System isolation instrumentation. Alternately, if it is not desired to isolate each required control room penetration flow path or isolate the MSL, the CREV System must be declared inoperable within 1 hour.

The 1 hour Completion Time is intended to allow the operator time to isolate each required control room penetration flow path or to isolate the associated MSLs if applicable. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels, for isolating each required control room penetration flow path, for isolating the associated MSLs, or for entering the applicable Conditions and Required Actions for the inoperable CREV System.

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each CREV System isolation instrumentation Function are located in the SRs column of Table 3.3.7.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains CREV System isolation capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 4) assumption of the average time required to perform channel surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the CREV System will isolate when necessary.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.7.1.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with channels required by the LCO.

SR 3.3.7.1.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

SURVEILLANCE REQUIREMENTS

<u>SR 3.3.7.1.2</u> (continued)

The Frequency of 92 days is based on the reliability analyses of Reference 4.

SR 3.3.7.1.3

The calibration of trip units provides a check of the actual trip setpoints. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. The channel must be declared inoperable if the trip setting is discovered to be less conservative than the Allowable Value specified in Table 3.3.7.1-1. If the trip setting is discovered to be less conservative than accounted for in the appropriate setpoint methodology, but is not beyond the Allowable Value, the channel performance is still within the requirements of the plant safety analysis. Under these conditions, the setpoint must be readjusted to be equal to or more conservative than the setting accounted for in the appropriate setpoint methodology.

The Frequency of 92 days is based on the reliability analyses of Reference 4.

SR 3.3.7.1.4 and SR 3.3.7.1.5

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The 92 day Frequency of SR 3.3.7.1.4 and the 24 month Frequency of SR 3.3.7.1.5 are based upon the assumption of a 92 day and 24 month calibration interval, respectively, in the determination of the magnitude of equipment drift in the setpoint analysis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.7.1.6

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required initiation logic for a specific channel. The system functional testing performed in LCO 3.7.4, "Control Room Emergency Ventilation (CREV) System," overlaps this Surveillance to provide complete testing of the assumed safety function.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 6.4.
- 2. UFSAR, Section 15.6.4.
- 3. UFSAR, Section 15.6.5.
- 4. GENE-770-06-1-A, "Bases for Changes to Surveillance Test Intervals and Allowed Out-of-Service Times for Selected Instrumentation Technical Specifications,"

 December 1992.

B 3.3 INSTRUMENTATION

B 3.3.7.2

Mechanical Vacuum Pump Trip Instrumentation

BASES

BACKGROUND

The Mechanical Vacuum Pump Trip Instrumentation initiates a trip of the main condenser mechanical vacuum pump breaker following events in which main steam line radiation exceeds predetermined values. Tripping the mechanical vacuum pump limits the offsite and control room doses in the event of a control rod drop accident (CRDA).

The Mechanical Vacuum Pump Trip Instrumentation (Refs. 1 and 2) includes detectors, monitors, and relays that are necessary to cause initiation of a mechanical vacuum pump trip. The channels include electronic equipment that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an isolation signal to the mechanical vacuum pump trip logic.

The trip logic consists of two independent trip systems, with two channels of Main Steam Line Radiation—High in each trip system. Each trip system is a one-out-of-two logic for this Function. Thus, either channel of Main Steam Line Radiation—High in each trip system is needed to trip a trip system. The outputs of the channels in a trip system are combined in a one-out-of-two taken twice logic so that both trip systems must trip to result in a pump trip signal.

APPLICABLE SAFETY ANALYSES

The Mechanical Vacuum Pump Trip Instrumentation is assumed in the safety analysis for the CRDA. The Mechanical Vacuum Pump Trip Instrumentation initiates a trip of the mechanical vacuum pump to limit offsite and control room doses resulting from fuel cladding failure in a CRDA (Ref. 3)

The mechanical vacuum pump trip instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of the mechanical vacuum pump trip is dependent on the OPERABILITY of the individual Main Steam Line Radiation—High instrumentation channels, which must have a required number of OPERABLE channels in each trip system, with their setpoints within the specified Allowable Value of SR 3.3.7.2.4. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions. Channel OPERABILITY also includes the mechanical vacuum pump breaker.

An Allowable Value is specified for the Main Steam Line Radiation - High Trip Function specified in the LCO. The nominal trip setpoint is specified in the setpoint calculations. The nominal setpoint is selected to ensure that the setpoint does not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The trip setpoint is that predetermined value of output at which an action should take place. The setpoint is compared to the actual process parameter (i.e., main steam line radiation) and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip auxiliary unit) changes state. The analytic limit is derived from the limiting value of the process parameter obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

BASES (continued)

APPLICABILITY

The mechanical vacuum pump trip is required to be OPERABLE in MODES 1 and 2, when any mechanical vacuum pump is in service (i.e., taking a suction on the main condenser) and any main steam line not isolated, to mitigate the consequences of a postulated CRDA. In this condition fission products released during a CRDA could be discharged directly to the environment. Therefore, the mechanical trip is necessary to assure conformance with the radiological evaluation of the CRDA. In MODE 3, 4 or 5 the consequences of a control rod drop are insignificant, and are not expected to result in any fuel damage or fission product releases. When the mechanical vacuum pump is not in service or the main steam lines are isolated, fission product releases via this pathway would not occur.

ACTIONS

A Note has been provided to modify the ACTIONS related to Mechanical Vacuum Pump Trip Instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable Mechanical Vacuum Pump Trip Instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable Mechanical Vacuum Pump Trip Instrumentation channel.

A.1 and A.2

With one or more channels inoperable, but with mechanical vacuum pump trip capability maintained (refer to Required Action B.1 Bases), the Mechanical Vacuum Pump Trip Instrumentation is capable of performing the intended function. However, the reliability and redundancy of the Mechanical Vacuum Pump Trip Instrumentation is reduced, such that a single failure in one of the remaining channels could

A.1 and A.2 (continued)

result in the inability of the Mechanical Vacuum Pump Trip Instrumentation to perform the intended function. Therefore, only a limited time is allowed to restore the inoperable channels to OPERABLE status. Because of the low probability of extensive numbers of inoperabilities affecting multiple channels, and the low probability of an event requiring the initiation of mechanical vacuum pump trip, 12 hours has been shown to be acceptable (Ref. 4) to permit restoration of any inoperable channel to OPERABLE status (Required Action A.1). Alternately, the inoperable channel, may be placed in trip (Required Action A.2), since this would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. As noted, placing the channel in trip with no further restrictions is not allowed if the inoperable channel is the result of an inoperable mechanical vacuum pump breaker, since this may not adequately compensate for the inoperable breaker. If it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in loss of condenser vacuum), or if the inoperable channel is the result of an inoperable breaker, Condition C must be entered and its Required Actions taken.

B.1

Condition B is intended to ensure that appropriate actions are taken if multiple, inoperable, untripped channels within the same trip system result in not maintaining mechanical vacuum pump trip capability. The mechanical vacuum pump trip capability is maintained when sufficient channels are OPERABLE or in trip such that the Mechanical Vacuum Pump Trip Instrumentation will generate a trip signal from a valid Main Steam Line Radiation—High signal, and the mechanical vacuum pump breaker will open. This would require both trip systems to have one channel OPERABLE or in trip, and the mechanical vacuum pump breaker to be OPERABLE.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

ACTIONS (continued)

C.1, C.2, C.3, and C.4

With any Required Action and associated Completion Time not met, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours (Required Action C.4). Alternately, the mechanical vacuum pump may be removed from service since this performs the intended function of the instrumentation (Required Actions C.1 and C.2). An additional option is provided to isolate the main steam lines (Required Action C.3), which may allow operation to continue. Isolating the main steam lines effectively provides an equivalent level of protection by precluding fission product transport to the condenser.

The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions, or to remove the mechanical vacuum pump from service, or to isolate the main steam lines, in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into the associated Conditions and Required Actions may be delayed for up to 6 hours provided mechanical vacuum pump trip capability is maintained. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 4) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the mechanical vacuum pump will trip when necessary.

SR 3.3.7.2.1

Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter

SURVEILLANCE REQUIREMENTS

SR 3.3.7.2.1 (continued)

indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit.

The Frequency is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the required channels of this LCO.

SR 3.3.7.2.2

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The Frequency of 92 days is based on the reliability analysis of Reference 4.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.7.2.3 and SR 3.3.7.2.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology. A Note to SR 3.3.7.2.3 states that radiation detectors are excluded from CHANNEL CALIBRATION since they are calibrated in accordance with SR 3.3.7.2.4.

The Frequency of SR 3.3.7.2.3 is based upon the assumption of a 92 day calibration interval in the determination of the magnitude of equipment drift associated with the channel, except for the radiation detectors, in the setpoint analysis. The Frequency of SR 3.3.7.2.4 is based upon the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift for the radiation detector in the setpoint analysis.

SR 3.3.7.2<u>.5</u>

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the mechanical vacuum pump breaker is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a breaker or the isolation valve is incapable of operating, the associated instrument channel(s) would be inoperable.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

BASES (continued)

REFERENCES

- 1. UFSAR, Section 7.3.2.2.2.
- 2. UFSAR, Section 11.5.2.6.
- 3. UFSAR. Section 15.4.10.
- 4. NEDC-30851-P-A, "Supplement 2, "Technical Specifications Improvement Analysis for BWR Isolation Instrumentation Common to RPS and ECCS Instrumentation," March 1989.

B 3.3 INSTRUMENTATION

B 3.3.8.1 Loss of Power (LOP) Instrumentation

BASES

BACKGROUND

Successful operation of the required safety functions of the Emergency Core Cooling Systems (ECCS) is dependent upon the availability of adequate power sources for energizing the various components such as pump motors, motor operated valves, and the associated control components. The LOP instrumentation monitors the 4160 V Essential Service System (ESS) buses. Offsite power is the preferred source of power for the 4160 V ESS buses. If the monitors determine that insufficient voltage is available, the buses are disconnected from the offsite power sources and connected to the onsite diesel generator (DG) power sources.

Each 4160 V ESS bus has its own independent LOP instrumentation and associated trip logic. The voltage for each bus is monitored at two levels, which can be considered as two different undervoltage Functions: Loss of Voltage and Degraded Voltage.

Each Division 1 and 2 4160 V ESS Bus Loss of Voltage and Degraded Voltage Function is monitored by two undervoltage relays for each ESS bus, whose outputs are arranged in a two-out-of-two logic configuration (Ref. 1). When, on decreasing voltage, the 4160 V ESS Bus Undervoltage (Loss of Voltage) Function setpoint has been exceeded on both relay channels, the Loss of Voltage Function sends a LOP signal to the respective bus load shedding scheme and starts the associated DG. For the Degraded Voltage Function, one Bus Undervoltage/Time Delay Function (two channels) and one Time Delay Function (one channel) are included. The Time Delay Function associated with the Bus Undervoltage relay is inherent to the Bus Undervoltage - Degraded Voltage relay and is nominally adjusted to seven seconds to prevent circuit initiation caused by grid disturbances and motor starting transients. The Bus Undervoltage/Time Delay Function provides input to the Time Delay Function. The Time Delay Function relay is nominally adjusted to five minutes to allow time for the operator to attempt to restore normal bus voltage. When a Bus Undervoltage/Time Delay Function setpoint has been exceeded and persists for seven

BACKGROUND (continued)

seconds on both relay channels, a control room annunciator alerts the operator of the degraded voltage condition and the five minute Time Delay Function timer is initiated. If the degraded voltage condition does not clear within five minutes, the five minute Time Delay Function relay sends a LOP signal to the respective bus load shedding scheme and starts the associated DG. If a degraded voltage condition exists coincident with an ECCS actuation signal, the five minute Time Delay Function is bypassed such that load shedding and the associated DG start will be initiated following the seven second time delay (Bus Undervoltage/Time Delay Function).

APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY

The LOP instrumentation is required for Engineered Safety Features to function in any accident with a loss of offsite power. The required channels of LOP instrumentation ensure that the ECCS and other assumed systems powered from the DGs, provide plant protection in the event of any of the Reference 2, 3, and 4 analyzed accidents in which a loss of offsite power is assumed. The initiation of the DGs on loss of offsite power, and subsequent initiation of the ECCS, ensure that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.

Accident analyses credit the loading of the DGs based on the loss of offsite power coincident with a loss of coolant accident (LOCA). The diesel starting and loading times have been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power.

The LOP instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The OPERABILITY of the LOP instrumentation is dependent upon the OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.8.1-1. Each Function must have a required number of OPERABLE channels per 4160 V ESS bus, with their setpoints within the specified Allowable Values. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY
(continued)

The Allowable Values are specified for each Function in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within the Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., degraded voltage), and when the measured output value of the process parameter exceeds the setpoint, the associated device changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The specific Applicable Safety Analyses, LCO, and Applicability discussions are listed below on a Function by Function basis.

1. 4160 V ESS Bus Undervoltage (Loss of Voltage)

Loss of voltage on a 4160 V ESS bus indicates that offsite power may be completely lost to the respective 4160 V ESS bus and is unable to supply sufficient power for proper operation of the applicable equipment. Therefore, the power supply to the bus is transferred from offsite power to DG power prior to the voltage on the bus dropping below the

<u>(continued)</u>

APPLICABLE
SAFETY ANALYSES,
LCO, and
APPLICABILITY

1. 4160 V ESS Bus Undervoltage (Loss of Voltage) (continued)

minimum Loss of Voltage Function Allowable Value but after the voltage drops below the maximum Loss of Voltage Function Allowable Value (loss of voltage). This ensures that adequate power will be available to the required equipment.

The Bus Undervoltage Allowable Values are low enough to prevent inadvertent power supply transfer, but high enough to ensure that power is available to the required equipment.

Two channels of 4160 V ESS Bus Undervoltage (Loss of Voltage) Function per associated emergency bus are required to be OPERABLE when the associated DG is required to be OPERABLE to ensure that no single instrument failure can preclude the bus undervoltage function. Refer to LCO 3.8.1, "AC Sources - Operating," and 3.8.2, "AC Sources - Shutdown," for Applicability Bases for the DGs.

2. 4160 V ESS Bus Undervoltage (Degraded Voltage)

A reduced voltage condition on a 4160 V ESS bus indicates that, while offsite power may not be completely lost to the respective emergency bus, available power may be insufficient for starting large ECCS motors without risking damage to the motors that could disable the ECCS function. Therefore, power supply to the bus is transferred from offsite power to onsite DG power when the voltage on the bus drops below the Degraded Voltage Function Allowable Value, however the transfer does not occur until after the inherent and No LOCA time delays have elapsed, as applicable. If a LOCA condition exists coincident with a loss of power to the bus, the Time Delay (No LOCA) Function is bypassed. This ensures that adequate power will be available to the required equipment.

The Bus Undervoltage Allowable Values are low enough to prevent inadvertent power supply transfer, but high enough to ensure that sufficient power is available to the required equipment. The Time Delay Allowable Values are long enough to provide time for the offsite power supply to recover or

APPLICABLE <u>2. 4160 V I</u>
SAFETY ANALYSES, (continued)
LCO, and
APPLICABILITY allow restor

2. 4160 V ESS Bus Undervoltage (Degraded Voltage) (continued)

allow restoration to normal voltages, but short enough to ensure that sufficient power is available to the required equipment.

Two channels of 4160 V ESS Bus Undervoltage/Time Delay (Degraded Voltage) Function and one channel of Degraded Voltage-Time Delay Function per associated bus are required to be OPERABLE when the associated DG is required to be OPERABLE to ensure that no single instrument failure can preclude the degraded voltage and time delay function. Refer to LCO 3.8.1 and LCO 3.8.2 for Applicability Bases for the DGs.

ACTIONS

A Note has been provided to modify the ACTIONS related to LOP instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable LOP instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable LOP instrumentation channel.

<u>A.1</u>

With one or more channels of a Function inoperable, the Function is not capable of performing the intended function. Therefore, only 1 hour is allowed to restore the inoperable channel to OPERABLE status. If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel must be placed in the tripped condition per Required Action A.1. Placing the inoperable channel in trip would conservatively compensate

A.1 (continued)

for the inoperability, restore capability to accommodate a single failure (within the LOP instrumentation), and allow operation to continue. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the channel in trip would result in a DG initiation), Condition B must be entered and its Required Action taken.

The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable because it minimizes risk while allowing time for restoration or tripping of channels.

B.1

If any Required Action and associated Completion Time are not met, the associated Function is not capable of performing the intended function. Therefore, the associated DG(s) is declared inoperable immediately. This requires entry into applicable Conditions and Required Actions of LCO 3.8.1 and LCO 3.8.2, which provide appropriate actions for the inoperable DG(s).

SURVEILLANCE REQUIREMENTS

As noted at the beginning of the SRs, the SRs for each LOP instrumentation Function are located in the SRs column of Table 3.3.8.1-1.

The Surveillances are modified by a Note to indicate that when a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 2 hours provided the associated Function maintains LOP initiation capability. LOP initiation capability is maintained provided the bus load shedding scheme and the associated DG can be initiated by the Loss of Voltage or Degraded Voltage Functions for one of the two 4160 V ESS buses. Upon completion of the Surveillance, or expiration of the 2 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.8.1.1 and SR 3.3.8.1.3

A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

The Frequencies of 18 months and 24 months are based on operating experience with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of a given Function in any 18 month or 24 month interval, as applicable, is a rare event.

SR 3.3.8.1.2 and SR 3.3.8.1.4

A CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency is based upon the assumption of an 18 month or 24 month calibration interval, as applicable, in the determination of the magnitude of equipment drift in the setpoint analysis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.8.1.5

The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required actuation logic for a specific channel. The system functional testing performed in LCO 3.8.1 and LCO 3.8.2 overlaps this Surveillance to provide complete testing of the assumed safety functions.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 8.3.1.8.
- 2. UFSAR, Section 5.2.
- 3. UFSAR, Section 6.3.
- 4. UFSAR, Chapter 15.

B 3.3 INSTRUMENTATION

B 3.3.8.2 Reactor Protection System (RPS) Electric Power Monitoring

BASES

BACKGROUND

RPS Electric Power Monitoring System is provided to isolate the RPS bus from the motor generator (MG) set or an alternate power supply in the event of overvoltage, undervoltage, or underfrequency. This system protects the loads connected to the RPS bus against unacceptable voltage and frequency conditions (Ref. 1) and forms an important part of the primary success path of the essential safety circuits. Some of the essential equipment powered from the RPS buses includes the RPS logic and scram pilot valve solenoids.

The RPS electric power monitoring assembly will detect any abnormal high or low voltage or low frequency condition in the outputs of the two MG sets or the alternate power supply and will de-energize its respective RPS bus, thereby causing all safety functions normally powered by this bus to de-energize.

In the event of failure of an RPS Electric Power Monitoring System (e.g., both inseries electric power monitoring assemblies), the RPS loads may experience significant effects from the unregulated power supply. Deviation from the nominal conditions can potentially cause damage to the scram pilot valve solenoids and other Class 1E devices.

In the event of a low voltage condition for an extended period of time, the scram pilot valve solenoids can chatter and potentially lose their pneumatic control capability, resulting in a loss of primary scram action.

In the event of an overvoltage condition, the RPS logic relays and scram pilot valve solenoids may experience a voltage higher than their design voltage. If the overvoltage condition persists for an extended time period, it may cause equipment degradation and the loss of plant safety function.

Two redundant Class 1E circuit breakers are connected in series between each RPS bus and its MG set, and between each RPS bus and its alternate power supply. Each of these

BACKGROUND (continued)

circuit breakers has an associated independent set of Class 1E overvoltage, undervoltage, and underfrequency sensing logic. Together, a circuit breaker and its sensing logic constitute an electric power monitoring assembly. If the output of the inservice MG set or alternate power supply exceeds predetermined limits of overvoltage, undervoltage, or underfrequency, a trip coil (undervoltage release coil) within the circuit breaker driven by this logic circuitry opens the circuit breaker, which removes the associated power supply from service.

APPLICABLE SAFETY ANALYSES

The RPS Electric Power Monitoring is necessary to meet the assumptions of the safety analyses by ensuring that the RPS equipment powered from the RPS buses can perform its intended function. RPS Electric Power Monitoring provides protection to the RPS components, by acting to disconnect the RPS bus from the power supply under specified conditions that could damage the RPS equipment.

RPS Electric Power Monitoring satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The OPERABILITY of each RPS electric power monitoring assembly is dependent on the OPERABILITY of the overvoltage, undervoltage, and underfrequency logic, as well as the OPERABILITY of the associated circuit breaker. Two electric power monitoring assemblies are required to be OPERABLE for each inservice power supply. This provides redundant protection against any abnormal voltage or frequency conditions to ensure that no single RPS electric power monitoring assembly failure can preclude the function of RPS bus powered components. Each of the inservice electric power monitoring assembly trip logic setpoints is required to be within the specified Allowable Value. The actual setpoint is calibrated consistent with applicable setpoint methodology assumptions.

Allowable Values are specified for each RPS electric power monitoring assembly trip logic (refer to SR 3.3.8.2.2). Nominal trip setpoints are specified in the setpoint

LCO (continued)

calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., overvoltage), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip coil) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The trip setpoints are determined from the analytic limits, corrected for defined process, calibration, and instrument errors. The Allowable Values are then determined, based on the trip setpoint values, by accounting for the calibration based errors. These calibration based errors are limited to reference accuracy, instrument drift, errors associated with measurement and test equipment, and calibration tolerance of loop components. The trip setpoints and Allowable Values determined in this manner provide adequate protection because instrument uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for and appropriately applied for the instrumentation.

The Allowable Values for the instrument settings are based on RPS component testing with the RPS providing 56 Hz \pm 1%, 126.5 V \pm 2.5%, and 108.0 V \pm 2.5%. The most limiting voltage requirement and associated line losses determine the settings of the electric power monitoring instrument channels. The settings are calculated based on the loads on the buses and RPS MG set or alternate power supply being 120 VAC and 60 Hz.

APPLICABILITY

The operation of the RPS electric power monitoring assemblies is essential to disconnect the RPS bus powered components from the inservice MG set or alternate power supply during abnormal voltage or frequency conditions. Since the degradation of a nonclass 1E source supplying

APPLICABILITY (continued)

power to the RPS bus can occur as a result of any random single failure, the OPERABILITY of the RPS electric power monitoring assemblies is required when the RPS bus powered components are required to be OPERABLE. This results in the RPS Electric Power Monitoring System OPERABILITY being required in MODES 1 and 2; and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies.

ACTIONS

<u>A.1</u>

If one RPS electric power monitoring assembly for an inservice power supply (MG set or alternate) is inoperable, or one RPS electric power monitoring assembly on each inservice power supply is inoperable, the OPERABLE assembly will still provide protection to the RPS bus powered components under degraded voltage or frequency conditions. However, the reliability and redundancy of the RPS Electric Power Monitoring System is reduced, and only a limited time (72 hours) is allowed to restore the inoperable assembly to OPERABLE status. If the inoperable assembly cannot be restored to OPERABLE status, the associated power supply(s) must be removed from service (Required Action A.1). This places the RPS bus in a safe condition. An alternate power supply with OPERABLE power monitoring assemblies may then be used to power the RPS bus.

The 72 hour Completion Time takes into account the remaining OPERABLE electric power monitoring assembly and the low probability of an event requiring RPS electric power monitoring protection occurring during this period. It allows time for plant operations personnel to take corrective actions or to place the plant in the required condition in an orderly manner and without challenging plant systems.

Alternately, if it is not desired to remove the power supply from service (e.g., as in the case where removing the power supply(s) from service would result in a scram), Condition C or D, as applicable, must be entered and its Required Actions taken.

ACTIONS (continued)

<u>B.1</u>

If both power monitoring assemblies for an inservice power supply (MG set or alternate) are inoperable or both power monitoring assemblies in each inservice power supply are inoperable, the system protective function is lost. In this condition, 1 hour is allowed to restore one assembly to OPERABLE status for each inservice power supply. If one inoperable assembly for each inservice power supply cannot be restored to OPERABLE status, the associated power supply(s) must be removed from service within 1 hour (Required Action B.1). An alternate power supply with OPERABLE assemblies may then be used to power one RPS bus. The 1 hour Completion Time is sufficient for the plant operations personnel to take corrective actions and is acceptable because it minimizes risk while allowing time for restoration or removal from service of the electric power monitoring assemblies.

Alternately, if it is not desired to remove the power supply(s) from service (e.g., as in the case where removing the power supply(s) from service would result in a scram), Condition C or D, as applicable, must be entered and its Reguired Actions taken.

C.1

If any Required Action and associated Completion Time of Condition A or B are not met in MODE 1 or 2, a plant shutdown must be performed. This places the plant in a condition where minimal equipment, powered through the inoperable RPS electric power monitoring assembly(s), is required and ensures that the safety function of the RPS (e.g., scram of control rods) is not required. The plant shutdown is accomplished by placing the plant in MODE 3 within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

ACTIONS (continued)

<u>D.1</u>

If any Required Action and associated Completion Time of Condition A or B are not met in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, the operator must immediately initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. Required Action D.1 results in the least reactive condition for the reactor core and ensures that the safety function of the RPS (e.g., scram of control rods) is not required.

SURVEILLANCE REQUIREMENTS

SR 3.3.8.2.1

A CHANNEL FUNCTIONAL TEST is performed on each overvoltage, undervoltage, and underfrequency channel to ensure that the channel will perform the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay. This clarifies what is an acceptable CHANNEL FUNCTIONAL TEST of a relay. This is acceptable because all of the other required contacts of the relay are verified by other Technical Specifications and non-Technical Specifications tests at least once per refueling interval with applicable extensions. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.

As noted in the Surveillance, the CHANNEL FUNCTIONAL TEST is only required to be performed while the plant is in a condition in which the loss of the RPS bus will not jeopardize steady state power operation (the design of the system is such that the power source must be removed from service to conduct the Surveillance). The 24 hours is intended to indicate an outage of sufficient duration to allow for scheduling and proper performance of the Surveillance.

The 184 day Frequency and the Note in the Surveillance are based on guidance provided in Generic Letter 91-09 (Ref. 2).

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.8.2.2

CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. This test verifies that the channel responds to the measured parameter within the necessary range and accuracy. CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency is based on the assumption of a 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.8.2.3

Performance of a system functional test demonstrates that, with a required system actuation (simulated or actual) signal, the logic of the system will automatically trip open the associated power monitoring assembly. The system functional test shall include actuation of the protective relays, tripping logic, and output circuit breakers. Only one signal per power monitoring assembly is required to be tested. This Surveillance overlaps with the CHANNEL CALIBRATION to provide complete testing of the safety function. The system functional test of the Class 1E circuit breakers is included as part of this test to provide complete testing of the safety function. If the breakers are incapable of operating, the associated electric power monitoring assembly would be inoperable.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES

- 1. UFSAR, Section 7.2.2.
- 2. NRC Generic Letter 91-09, "Modification of Surveillance Interval for the Electrical Protective Assemblies in Power Supplies for the Reactor Protection System."

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.1 Recirculation Loops Operating

BASES

BACKGROUND

The Reactor Recirculation System is designed to provide a forced coolant flow through the core to remove heat from the fuel. The forced coolant flow removes heat at a faster rate from the fuel than would be possible with just natural circulation. The forced flow, therefore, allows operation at significantly higher power than would otherwise be possible. The recirculation system also controls reactivity over a wide span of reactor power by varying the recirculation flow rate to control the void content of the moderator. The Reactor Recirculation System consists of two recirculation pump loops external to the reactor vessel. These loops provide the piping path for the driving flow of water to the reactor vessel jet pumps. Each external loop contains one variable speed motor driven recirculation pump, a motor generator (MG) set to control pump speed and associated piping, jet pumps, valves, and instrumentation. The recirculation loops are part of the reactor coolant pressure boundary and are located inside the drywell structure. The jet pumps are reactor vessel internals.

The recirculated coolant consists of saturated water from the steam separators and dryers that has been subcooled by incoming feedwater. This water passes down the annulus between the reactor vessel wall and the core shroud. A portion of the coolant flows from the vessel, through the two external recirculation loops, and becomes the driving flow for the jet pumps. Each of the two external recirculation loops discharges high pressure flow into an external manifold, from which individual recirculation inlet lines are routed to the jet pump risers within the reactor vessel. The remaining portion of the coolant mixture in the annulus becomes the suction flow for the jet pumps. This flow enters the jet pump at suction inlets and is accelerated by the driving flow. The drive flow and suction flow are mixed in the jet pump throat section and result in partial pressure recovery. The total flow then passes through the jet pump diffuser section into the area below the core (lower plenum), gaining sufficient head in the process to drive the required flow upward through the core. The subcooled water enters the bottom of the fuel channels and contacts the fuel cladding, where heat is transferred

<u>(continued)</u>

BACKGROUND (continued)

to the coolant. As it rises, the coolant begins to boil, creating steam voids within the fuel channel that continue until the coolant exits the core. Because of reduced moderation, the steam voiding introduces negative reactivity that must be compensated for to maintain or to increase reactor power. The recirculation flow control allows operators to increase recirculation flow and sweep some of the voids from the fuel channel, overcoming the negative reactivity void effect. Thus, the reason for having variable recirculation flow is to compensate for reactivity effects of boiling over a wide range of power generation (i.e., 55 to 100% of RTP) without having to move control rods and disturb desirable flux patterns.

Each recirculation loop is manually started from the control room. The MG set provides regulation of individual recirculation loop drive flows. The flow in each loop is manually controlled.

APPLICABLE SAFETY ANALYSES

The operation of the Reactor Recirculation System is an initial condition assumed in the design basis loss of coolant accident (LOCA) (Ref. 1). During a LOCA caused by a recirculation loop pipe break, the intact loop is assumed to provide coolant flow during the first few seconds of the accident. The initial core flow decrease is rapid because the recirculation pump in the broken loop ceases to pump reactor coolant to the vessel almost immediately. The pump in the intact loop coasts down relatively slowly. This pump coastdown governs the core flow response for the next several seconds until the jet pump suction is uncovered (Ref. 1). The analyses assume that both loops are operating at the same flow prior to the accident. However, the LOCA analysis was reviewed for the case with a flow mismatch between the two loops, with the pipe break assumed to be in the loop with the higher flow. While the flow coastdown and core response are potentially more severe in this assumed case (since the intact loop starts at a lower flow rate and the core response is the same as if both loops were operating at a lower flow rate), a small mismatch has been determined to be acceptable based on engineering judgement. The recirculation system is also assumed to have sufficient flow coastdown characteristics to maintain fuel thermal margins during abnormal operational transients (Ref. 2), which are analyzed in Chapter 15 of the UFSAR.

APPLICABLE SAFETY ANALYSES (continued)

A plant specific LOCA analysis has been performed assuming only one operating recirculation loop. This analysis has demonstrated that, in the event of a LOCA caused by a pipe break in the operating recirculation loop, the Emergency Core Cooling System response will provide adequate core cooling, provided the APLHGR requirements are modified accordingly (Ref. 3).

The transient analyses in Chapter 15 of the UFSAR have also been performed for single recirculation loop operation (Ref. 4) and demonstrate sufficient flow coastdown characteristics to maintain fuel thermal margins during the abnormal operational transients analyzed provided the MCPR requirements are modified. During single recirculation loop operation, modification to the Reactor Protection System (RPS) average power range monitor (APRM) and the Rod Block Monitor Allowable Values is also required to account for the different relationships between recirculation drive flow and reactor core flow. The APLHGR and MCPR limits for single loop operation are specified in the COLR. The APRM Flow Biased Neutron Flux-High Allowable Value is in LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation." The Rod Block Monitor - Upscale Allowable Value is in LCO 3.3.2.1, "Control Rod Block Instrumentation."

Recirculation loops operating satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LC0

Two recirculation loops are normally required to be in operation with their flows matched within the limits specified in SR 3.4.1.1 to ensure that during a LOCA caused by a break of the piping of one recirculation loop the assumptions of the LOCA analysis are satisfied. Alternatively, with only one recirculation loop in operation, modifications to the required APLHGR limits (LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)"), MCPR limits (LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)"), APRM Flow Biased Neutron Flux—High Allowable Value (LCO 3.3.1.1), and the Rod Block Monitor—Upscale Allowable Value (LCO 3.3.2.1) must be applied to allow continued operation consistent with the assumptions of Reference 3.

BASES (continued)

APPLICABILITY

In MODES 1 and 2, requirements for operation of the Reactor Coolant Recirculation System are necessary since there is considerable energy in the reactor core and the limiting design basis transients and accidents are assumed to occur.

In MODES 3, 4, and 5, the consequences of an accident are reduced and the coastdown characteristics of the recirculation loops are not important.

ACTIONS

A.1 and A.2

With no recirculation loops in operation, the probability of thermal-hydraulic oscillations is greatly increased. Therefore, action must be taken as soon as practicable to reduce power to assure stability concerns are addressed and place the unit in at least MODE 2 within 8 hours and to MODE 3 within 12 hours. In this condition, the recirculation loops are not required to be operating because of the reduced severity of DBAs and transients and minimal dependence on the recirculation loop coastdown characteristics. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

B.1 and C.1

With both recirculation loops operating but the flows not matched, the flows must be matched within 2 hours. If matched flows are not restored, the recirculation loop with the lower flow must be declared "not in operation," as required by Required Action B.1. This Required Action does not require tripping the recirculation pump in the lowest flow loop when the mismatch between total jet pump flows of the two loops is greater than the required limits. However, in cases where large flow mismatches occur, low flow or reverse flow can occur in the low flow loop jet pumps, causing vibration of the jet pumps. If zero or reverse flow is detected, the condition should be alleviated by changing pump speeds to re-establish forward flow or by tripping the pump.

ACTIONS

B.1 and C.1 (continued)

With the requirements of the LCO not met for reasons other than Condition A or B (e.g., one loop is "not in operation"), the recirculation loops must be restored to operation with matched flows within 24 hours. A recirculation loop is considered not in operation when the pump in that loop is idle or when the mismatch between total jet pump flows of the two loops is greater than required limits for greater than 2 hours (i.e., Required Action B.1 has been taken). Should a LOCA occur with one recirculation loop not in operation, the core flow coastdown and resultant core response may not be bounded by the LOCA analyses. Therefore, only a limited time is allowed to restore the inoperable loop to operating status.

Alternatively, if the single loop requirements of the LCO are applied to the APLHGR and MCPR operating limits and RPS and RBM Allowable Values, operation with only one recirculation loop would satisfy the requirements of the LCO and the initial conditions of the accident sequence.

The 2 hour and 24 hour Completion Times are based on the low probability of an accident occurring during this time period, on a reasonable time to complete the Required Action, and on frequent core monitoring by operators allowing abrupt changes in core flow conditions to be quickly detected.

D.1

With the Required Action and associated Completion Time of Condition C not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. In this condition, the recirculation loops are not required to be operating because of the reduced severity of DBAs and minimal dependence on the recirculation loop coastdown characteristics. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.1.1

This SR ensures the recirculation loops are within the allowable limits for mismatch. At low core flow (i.e., < 70% of rated core flow), the APLHGR and MCPR requirements provide larger margins to the fuel cladding integrity Safety Limit such that the potential adverse effect of early boiling transition during a LOCA is reduced. A larger flow mismatch can therefore be allowed when core flow is < 70% of rated core flow. The jet pump loop flow, as used in this Surveillance, is the summation of the flows from all of the jet pumps associated with a single recirculation loop.

The mismatch is measured in terms of percent of rated core flow. If the flow mismatch exceeds the specified limits, the loop with the lower flow is considered not in operation. This SR is not required when both loops are not in operation since the mismatch limits are meaningless during single loop or natural circulation operation. The Surveillance must be performed within 24 hours after both loops are in operation. The 24 hour Frequency is consistent with the Surveillance Frequency for jet pump OPERABILITY verification and has been shown by operating experience to be adequate to detect off normal jet pump loop flows in a timely manner.

REFERENCES

- UFSAR. Section 6.3.3.2. 1.
- UFSAR, Chapter 15. 2.
- UFSAR, Section 6.3.3.2.2.4. 3.
- UFSAR. Section 15.3.6. 4.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.2 Jet Pumps

BASES

BACKGROUND

The Reactor Recirculation System is described in the Background section of the Bases for LCO 3.4.1, "Recirculation Loops Operating," which discusses the operating characteristics of the system and how these characteristics affect the Design Basis Accident (DBA) analyses.

The jet pumps are part of the Reactor Recirculation System and are designed to provide forced circulation through the core to remove heat from the fuel. The jet pumps are located in the annular region between the core shroud and the vessel inner wall. Because the jet pump suction elevation is at two-thirds core height, the vessel can be reflooded and coolant level maintained at two-thirds core height even with the complete break of the recirculation loop pipe that is located below the jet pump suction elevation.

Each reactor recirculation loop contains ten jet pumps. Recirculated coolant passes down the annulus between the reactor vessel wall and the core shroud. A portion of the coolant flows from the vessel, through the two external recirculation loops, and becomes the driving flow for the jet pumps. Each of the two external recirculation loops discharges high pressure flow into an external manifold from which individual recirculation inlet lines are routed to the jet pump risers within the reactor vessel. The remaining portion of the coolant mixture in the annulus becomes the suction flow for the jet pumps. This flow enters the jet pump at suction inlets and is accelerated by the drive flow. The drive flow and suction flow are mixed in the jet pump throat section and result in partial pressure recovery. The total flow then passes through the jet pump diffuser section into the area below the core (lower plenum), gaining sufficient head in the process to drive the required flow upward through the core.

APPLICABLE SAFETY ANALYSES

Jet pump OPERABILITY is an explicit assumption in the design basis loss of coolant accident (LOCA) analysis evaluated in Reference 1.

APPLICABLE SAFETY ANALYSES (continued)

The capability of reflooding the core to two-thirds core height is dependent upon the structural integrity of the jet pumps. If the structural system, including the beam holding a jet pump in place, fails, jet pump displacement and performance degradation could occur, resulting in an increased flow area through the jet pump and a lower core flooding elevation. This could adversely affect the water level in the core during the reflood phase of a LOCA as well as the assumed blowdown flow during a LOCA.

Jet pumps satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LC0

The structural failure of any of the jet pumps could cause significant degradation in the ability of the jet pumps to allow reflooding to two-thirds core height during a LOCA. OPERABILITY of all jet pumps is required to ensure that operation of the Reactor Recirculation System will be consistent with the assumptions used in the licensing basis analysis (Ref. 1).

APPLICABILITY

In MODES 1 and 2, the jet pumps are required to be OPERABLE since there is a large amount of energy in the reactor core and since the limiting DBAs are assumed to occur in these MODES. This is consistent with the requirements for operation of the Reactor Recirculation System (LCO 3.4.1).

In MODES 3, 4, and 5, the Reactor Recirculation System is not required to be in operation, and when not in operation, sufficient flow is not available to evaluate jet pump OPERABILITY.

ACTIONS

<u>A.1</u>

An inoperable jet pump can increase the blowdown area and reduce the capability to reflood during a design basis LOCA. If one or more of the jet pumps are inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.2.1

This SR is designed to detect significant degradation in jet pump performance that precedes jet pump failure (Ref. 2). This SR is required to be performed only when the loop has forced recirculation flow since surveillance checks and measurements can only be performed during jet pump operation. The jet pump failure of concern is a complete mixer displacement due to jet pump beam failure. Jet pump plugging is also of concern since it adds flow resistance to the recirculation loop. Significant degradation is indicated if the specified criteria confirm unacceptable deviations from established patterns or relationships. The allowable deviations from the established patterns have been developed based on the variations experienced at plants during normal operation and with jet pump assembly failures (Refs. 2 and 3). Each recirculation loop must satisfy one of the performance criteria provided. Since refueling activities (fuel assembly replacement or shuffle, as well as any modifications to fuel support orifice size or core plate bypass flow) can affect the relationship between core flow, jet pump flow, and recirculation loop flow, these relationships may need to be re-established each cycle. Similarly, initial entry into extended single loop operation may also require establishment of these relationships. During the initial weeks of operation under such conditions, while base-lining new "established patterns", engineering judgement of the daily surveillance results is used to detect significant abnormalities which could indicate a jet pump failure.

The recirculation pump speed operating characteristics (pump flow versus pump speed) are determined by the flow resistance from the loop suction through the jet pump nozzles. A change in the relationship may indicate a plug, flow restriction, loss in pump hydraulic performance, leakage, or new flow path between the recirculation pump discharge and jet pump nozzle. For this criterion, the pump flow versus pump speed relationship must be verified.

Individual jet pumps in a recirculation loop normally do not have the same flow. The unequal flow is due to the drive flow manifold, which does not distribute flow equally to all risers. The flow pattern or relationship of one jet pump to

SURVEILLANCE REQUIREMENTS

3.4.2.1 (continued)

the loop average is repeatable. An appreciable change in this relationship is an indication that increased (or reduced) resistance has occurred in one of the jet pumps.

The deviations from normal are considered indicative of a potential problem in the recirculation drive flow or jet pump system (Ref. 2). Normal flow ranges and established jet pump flow patterns are established by plotting historical data as discussed in Reference 2.

Flow from a jet pump may be used to simulate the flow in the other jet pump with the same riser. This allowance may be used for two jet pumps, except that the two jet pumps may not be both of the calibrated jet pumps in the same recirculation loop. This allowance is necessary since one jet pump flow indication instrument line in Unit 1 has failed. An analysis has been performed which demonstrated the acceptability of this method (Refs. 4 and 5).

The 24 hour Frequency has been shown by operating experience to be timely for detecting jet pump degradation and is consistent with the Surveillance Frequency for recirculation loop OPERABILITY verification.

This SR is modified by two Notes. Note 1 allows this Surveillance not to be performed until 4 hours after the associated recirculation loop is in operation, since these checks can only be performed during jet pump operation. The 4 hours is an acceptable time to establish conditions appropriate for data collection and evaluation.

Note 2 allows this SR not to be performed until 24 hours after THERMAL POWER exceeds 25% RTP. During low flow conditions, jet pump noise approaches the threshold response of the associated flow instrumentation and precludes the collection of repeatable and meaningful data. The 24 hours is an acceptable time to establish conditions appropriate to perform this SR.

REFERENCES

1. UFSAR, Section 6.3.

BASES

REFERENCES (continued)

- 2. GE Service Information Letter No. 330, including Supplement 1, "Jet Pump Beam Cracks," June 9, 1980.
- 3. NUREG/CR-3052, "Closeout of IE Bulletin 80-07: BWR Jet Pump Assembly Failure," November 1984.
- 4. EAS 07-0289, Revision 1, "Safety Evaluation to Justify Operation With Loss of Jet Pump Flow Indication for Quad Cities 1 and 2," March 1989.
- 5. NRC SER supporting Quad Cities 1 and 2 Amendments 124 and 121, respectively, May 23, 1990.

- B 3.4 REACTOR COOLANT SYSTEM (RCS)
- B 3.4.3 Safety and Relief Valves

BASES

BACKGROUND

The ASME Boiler and Pressure Vessel Code requires the reactor pressure vessel be protected from overpressure during upset conditions by self-actuated safety valves. As part of the nuclear pressure relief system, the size and number of safety valves are selected such that peak pressure in the nuclear system will not exceed the ASME Code limits for the reactor coolant pressure boundary (RCPB). Each unit is designed with nine safety valves, one of which also functions in the relief mode. This valve is a dual function Target Rock safety/relief valve (S/RV).

The safety valves and S/RV are located on the main steam lines between the reactor vessel and the first isolation valve within the drywell. The safety valves actuate in the safety mode (or spring mode of operation). In this mode. the safety valve opens when the inlet steam pressure reaches the lift set pressure. At that point, the vertical upward force generated by the inlet pressure under the valve disc balances the downward force generated by the spring. Slight steam leakage develops across the valve disc-to-seat interface and is directed into the huddle chamber. Pressure builds up rapidly in the huddle chamber developing an additional vertical lifting force on the disc and disc holder. This additional force in conjunction with the expansive characteristic of steam causes the valve to "pop" open to almost full lift. This satisfies the Code requirement. The S/RV is a dual function Target Rock valve that can actuate by either of two modes: the safety mode or the relief mode. In the safety mode (or spring mode of operation), the S/RV opens in the same manner as described above for the safety valves. In the relief mode (or power actuated mode of operation), automatic or manual switch actuation energizes a solenoid valve which pneumatically actuates a plunger located within the main valve body. Actuation of the plunger allows pressure to be vented from the top of the main valve piston. This allows reactor pressure to lift the main valve piston, which opens the main valve. The relief valves and S/RV discharge steam through a discharge line to a point below the minimum water level in the suppression pool. All other safety valves discharge directly to the drywell.

BACKGROUND (continued)

In addition to the safety valves and S/RV, each unit is designed with four relief valves which actuate in the relief mode to control RCS pressure during transient conditions to prevent the need for safety valve actuation (except S/RV) following such transients. The relief valves are also located on the main steam lines between the reactor vessel and the first isolation valve within the drywell. These valves are sized by assuming a turbine trip, a coincident scram and a failure of the turbine bypass system. For Unit 1, four of the relief valves are of the Electromatic type. which are opened by automatic or manual switch actuation of a solenoid. The switch energizes the solenoid to actuate a plunger, which contacts the pilot valve operating lever, thereby opening the pilot valve. When the pilot valve opens, pressure under the main valve disc is vented. This allows reactor pressure to overcome main valve spring pressure, which forces the main valve disc downward to open the main valve. For Unit 2, four of the relief valves are of the Target Rock power operated relief valve type. When the solenoid is energized, a magnetic force is developed which moves a plunger upward until it contacts the moveable core. This motion is transmitted through the pilot rod to fully open two pilot discs, allowing the control pressure above the main disc to vent through the second pilot seat to the downstream side of the valve. In addition, the motion of the pilot disc partially reduces the control pressure above the main disc. When the force of the control pressure acting on the top of the main disc falls below the force of the inlet pressure acting on the lower annular area, the main disc will move to the open position. In the open position, with the moveable core positioned close to the fixed core, the magnetic force is well in excess of the closing forces due to control pressure and return spring This ensures that the main disc will be held firmly in the open position. The main disc can be opened even with the valve inlet pressure equal to 0 psig. Two of the five relief valves are the low set relief valves and all of the relief valves, including the S/RV, are Automatic Depressurization System (ADS) valves. The low set relief requirements are specified in LCO 3.6.1.6, "Low Set Relief Valves," and the ADS requirements are specified in LCO 3.5.1, "ECCS - Operating."

BASES (continued)

APPLICABLE SAFETY ANALYSES

The overpressure protection system must accommodate the most severe pressurization transient. Evaluations have determined that the most severe transient is the closure of all main steam isolation valves (MSIVs), followed by reactor scram on high neutron flux (i.e., failure of the direct scram associated with MSIV position) (Ref. 1). For the purpose of the analyses, nine safety valves (including the S/RV) are assumed to operate in the safety mode. The relief valves are not credited to function during this event. The analysis results demonstrate that the design safety valve capacity is capable of maintaining reactor pressure below the ASME Code limit of 110% of vessel design pressure (110% x 1250 psig = 1375 psig). This LCO helps to ensure that the acceptance limit of 1375 psig is met during the Design Basis Event.

From an overpressure standpoint, the design basis events are bounded by the MSIV closure with flux scram event described above. For other pressurization events, such as a turbine trip or generator load rejection with Main Turbine Bypass System failure (Refs. 2 and 3, respectively), the relief valves as well as the S/RV are assumed to function. [The opening of the relief valves during the pressurization event mitigates the increase in reactor vessel pressure, which affects the MINIMUM CRITICAL POWER RATIO (MCPR) during these events.] In these events, the operation of four of the five relief valves are required to mitigate the events. Reference 4 discusses additional events that are expected to actuate the safety and relief valves.

Safety and relief valves satisfy Criterion 3 of $10 \, \text{CFR} \, 50.36(c)(2)(ii)$.

LC0

The safety function of nine safety valves are required to be OPERABLE to satisfy the assumptions of the safety analysis (Ref. 1). The safety valve requirements of this LCO are applicable to the capability of the safety valves to mechanically open to relieve excess pressure when the lift setpoint is exceeded (safety function).

The safety valve setpoints are established to ensure that the ASME Code limit on peak reactor pressure is satisfied. The ASME Code specifications require the lowest safety valve

LCO (continued)

setpoint to be at or below vessel design pressure (1250 psig) and the highest safety valve to be set so that the total accumulated pressure does not exceed 110% of the design pressure for overpressurization conditions. The transient evaluations in the UFSAR are based on these setpoints, but also include the additional uncertainties of \pm 1% of the nominal setpoint drift to provide an added degree of conservatism.

Operation with fewer valves OPERABLE than specified, or with setpoints outside the ASME limits, could result in a more severe reactor response to a transient than predicted, possibly resulting in the ASME Code limit on reactor pressure being exceeded.

The relief valves, including the S/RV, are required to be OPERABLE to limit peak pressure in the main steam lines and maintain reactor pressure within acceptable limits during events that cause rapid pressurization, so that MCPR is not exceeded.

APPLICABILITY

In MODES 1, 2, and 3, all safety and relief valves must be OPERABLE, since considerable energy may be in the reactor core and the limiting design basis transients are assumed to occur in these MODES. The safety and relief valves may be required to provide pressure relief to discharge energy from the core until such time that the Residual Heat Removal (RHR) System is capable of dissipating the core heat.

In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure and MCPR limits are unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The safety and relief functions are not needed during these conditions.

ACTIONS

A.1

With the relief function of one relief valve (or S/RV) inoperable, the remaining OPERABLE relief valves are capable of providing the necessary protection. However, the overall

ACTIONS

A.1 (continued)

reliability of the pressure relief system is reduced because additional failures in the remaining OPERABLE relief valves could result in failure to adequately relieve pressure during a limiting event. For this reason, continued operation is permitted for a limited time only.

The 14 day Completion Time to restore the inoperable required relief valve to OPERABLE status is based on the relief capability of the remaining relief valves, the low probability of an event requiring relief valve actuation, and a reasonable time to complete the Required Action.

B.1 and B.2

With less than the minimum number of required safety valves OPERABLE, a transient may result in the violation of the ASME Code limit on reactor pressure. If the relief function of the inoperable relief valves cannot be restored to OPERABLE status within the associated Completion Time of Required Action A.1, or if the relief function of two or more relief valves are inoperable, or if the safety function of one or more safety valves is inoperable, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.3.1

This Surveillance requires that the safety valves, including the S/RV, will open at the pressures assumed in the safety analysis of Reference 1. The demonstration of the safety valve and S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the Inservice Testing Program. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The safety valve and S/RV setpoints are $\pm\,1\%$ for OPERABILITY.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.3.2

A manual actuation of each relief valve, including the S/RV, is performed to verify that, mechanically, the valve is functioning properly and no blockage exists in the valve discharge line. This can be demonstrated by the response of the turbine control valves or bypass valves, by a change in the measured steam flow, or by any other method suitable to verify steam flow. Adequate reactor steam dome pressure must be available to perform this test to avoid damaging the valve. Also, adequate steam flow must be passing through the main turbine or turbine bypass valves to continue to control reactor pressure when the relief valve or the S/RV diverts steam flow upon opening. Sufficient time is therefore allowed after the required pressure and flow are achieved to perform this test. Adequate pressure at which this test is to be performed is 300 psig (the pressure recommended by the valve manufacturer). Adequate steam flow is represented by at least 2 turbine bypass valves open.

This SR is modified by a Note that states the Surveillance is not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Unit startup is allowed prior to performing this test because valve OPERABILITY is verified, per ASME Code requirements (Ref. 5), prior to valve installation. The 12 hours allowed for manual actuation after the required pressure is reached is sufficient to achieve stable conditions for testing and provides a reasonable time to complete the SR. If the S/RV fails to actuate due only to the failure of the solenoid but is capable of opening on overpressure, the safety function of the S/RV is considered OPERABLE.

The 24 month Frequency ensures that each solenoid for each relief valve is tested. The 24 month Frequency was developed based on the relief valve tests required by the ASME Boiler and Pressure Vessel Code, Section XI (Ref. 5). Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.3.3

The relief valves, including the S/RV, are required to actuate automatically upon receipt of specific initiation signals. A system functional test is performed to verify that the mechanical portions (i.e., solenoids) of the relief valve operate as designed when initiated either by an actual or simulated automatic initiation signal. The LOGIC SYSTEM FUNCTIONAL TESTs in LCO 3.3.5.1, "Emergency Core Cooling System (ECCS) Instrumentation," and LCO 3.3.6.3, "Relief Valve Instrumentation," overlap this SR to provide complete testing of the safety function.

The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note that excludes valve actuation since the valves are individually tested in accordance with SR 3.4.3.2.

REFERENCES

- 1. UFSAR, Section 5.2.2.1.
- 2. UFSAR, Section 15.2.3.1.
- 3. UFSAR. Section 15.2.2.1.
- 4. UFSAR, Chapter 15.
- 5. ASME, Boiler and Pressure Vessel Code, Section XI.

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.4 RCS Operational LEAKAGE

BASES

BACKGROUND

The RCS includes systems and components that contain or transport the coolant to or from the reactor core. The pressure containing components of the RCS and the portions of connecting systems out to and including the isolation valves define the reactor coolant pressure boundary (RCPB). The joints of the RCPB components are welded or bolted.

During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. Limits on RCS operational LEAKAGE are required to ensure appropriate action is taken before the integrity of the RCPB is impaired. This LCO specifies the types and limits of LEAKAGE. This protects the RCS pressure boundary described in 10 CFR 50.2, 10 CFR 50.55a(c), and UFSAR, Sections 3.1.2.4 and 3.1.3.6 (Ref. 1).

The safety significance of RCS LEAKAGE from the RCPB varies widely depending on the source, rate, and duration. Therefore, detection of LEAKAGE in the primary containment is necessary. Methods for quickly separating the identified LEAKAGE from the unidentified LEAKAGE are necessary to provide the operators quantitative information to permit them to take corrective action should a leak occur that is detrimental to the safety of the facility or the public.

A limited amount of leakage inside primary containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected and isolated from the primary containment atmosphere, if possible, so as not to mask RCS operational LEAKAGE detection.

This LCO deals with protection of the RCPB from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident.

BASES (continued)

APPLICABLE SAFETY ANALYSES

The allowable RCS operational LEAKAGE limits are based on the predicted and experimentally observed behavior of pipe cracks. The normally expected background LEAKAGE due to equipment design and the detection capability of the instrumentation for determining system LEAKAGE were also considered. The evidence from experiments suggests that, for LEAKAGE even greater than the specified unidentified LEAKAGE limits, the probability is small that the imperfection or crack associated with such LEAKAGE would grow rapidly.

The unidentified LEAKAGE flow limit allows time for corrective action before the RCPB could be significantly compromised. The 5 gpm limit is a small fraction of the calculated flow from a critical crack in the primary system piping. Crack behavior from experimental programs (Refs. 2 and 3) shows that leakage rates of hundreds of gallons per minute will precede crack instability.

The low limit on increase in unidentified LEAKAGE assumes a failure mechanism of intergranular stress corrosion cracking (IGSCC) that produces tight cracks. This flow increase limit is capable of providing an early warning of such deterioration.

No applicable safety analysis assumes the total LEAKAGE limit. The total LEAKAGE limit considers RCS inventory makeup capability and drywell floor sump capacity.

RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO

RCS operational LEAKAGE shall be limited to:

a. Pressure Boundary LEAKAGE

No pressure boundary LEAKAGE is allowed, being indicative of material degradation. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE.

LCO (continued)

b. <u>Unidentified LEAKAGE</u>

The 5 gpm of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment atmospheric monitoring and drywell floor drain sump flow rate monitoring equipment can detect within a reasonable time period. Violation of this LCO could result in continued degradation of the RCPB.

c. <u>Total LEAKAGE</u>

The total LEAKAGE limit is based on a reasonable minimum detectable amount. The limit also accounts for LEAKAGE from known sources (identified LEAKAGE). Violation of this LCO indicates an unexpected amount of LEAKAGE and, therefore, could indicate new or additional degradation in an RCPB component or system.

d. <u>Unidentified LEAKAGE Increase</u>

An unidentified LEAKAGE increase of > 2 gpm within the previous 24 hour period indicates a potential flaw in the RCPB and must be quickly evaluated to determine the source and extent of the LEAKAGE. The increase is measured relative to the steady state value; temporary changes in LEAKAGE rate as a result of transient conditions (e.g., startup) are not considered. As such, the 2 gpm increase limit is only applicable in MODE 1 when operating pressures and temperatures are established. Violation of this LCO could result in continued degradation of the RCPB.

APPLICABILITY

In MODES 1, 2, and 3, the RCS operational LEAKAGE LCO applies, because the potential for RCPB LEAKAGE is greatest when the reactor is pressurized.

In MODES 4 and 5, RCS operational LEAKAGE limits are not required since the reactor is not pressurized and stresses in the RCPB materials and potential for LEAKAGE are reduced.

ACTIONS

A.1

With RCS unidentified or total LEAKAGE greater than the limits, actions must be taken to reduce the leak. Because the LEAKAGE limits are conservatively below the LEAKAGE that would constitute a critical crack size, 4 hours is allowed to reduce the LEAKAGE rates before the reactor must be shut down. If an unidentified LEAKAGE has been identified and quantified, it may be reclassified and considered as identified LEAKAGE; however, the total LEAKAGE limit would remain unchanged.

B.1 and B.2

An unidentified LEAKAGE increase of > 2 gpm within a 24 hour period is an indication of a potential flaw in the RCPB and must be quickly evaluated. Although the increase does not necessarily violate the absolute unidentified LEAKAGE limit, certain susceptible components must be determined not to be the source of the LEAKAGE increase within the required Completion Time. For an unidentified LEAKAGE increase greater than required limits, an alternative to reducing LEAKAGE increase to within limits (i.e., reducing the LEAKAGE rate such that the current rate is less than the "2 gpm increase in the previous 24 hours" limit; either by isolating the source or other possible methods) is to verify the source of the unidentified leakage increase is not material susceptible to IGSCC.

The 4 hour Completion Time is reasonable to properly reduce the LEAKAGE increase or verify the source before the reactor must be shut down without unduly jeopardizing plant safety.

C.1 and C.2

If any Required Action and associated Completion Time of Condition A or B is not met or if pressure boundary LEAKAGE exists, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable,

BASES

ACTIONS

C.1 and C.2 (continued)

based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.4.1

The RCS LEAKAGE is monitored by a variety of instruments designed to provide alarms when LEAKAGE is indicated and to quantify the various types of LEAKAGE. Leakage detection instrumentation is discussed in more detail in the Bases for LCO 3.4.5, "RCS Leakage Detection Instrumentation." The drywell floor drain sump flow integrator is typically monitored to determine actual LEAKAGE rates; however, an alternate method which may be used to quantify LEAKAGE is calculating flow rates using sump pump run times. In conjunction with alarms and other administrative controls, a 12 hour Frequency for this Surveillance is appropriate for identifying LEAKAGE and for tracking required trends (Ref. 4).

REFERENCES

- 1. UFSAR, Sections 3.1.2.4 and 3.1.3.6.
- 2. GEAP-5620, "Failure Behavior in ASTM A106B Pipes Containing Axial Through-Wall Flaws," April 1968.
- 3. NUREG-75/067, "Investigation and Evaluation of Cracking in Austenitic Stainless Steel Piping of Boiling Water Reactor Plants," October 1975.
- 4. Generic Letter 88-01, Supplement 1, February 1992.