Docket No. 50-333

Mr. John C. Brons Executive Vice President - Nuclear Generation Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Dear Mr. Brons:

SUBJECT: ISSUANCE OF AMENDMENT (TAC NO. 73361)

The Commission has issued the enclosed Amendment No. 150 to Facility Operating License No. DPR-59 for the James A. FitzPatrick Nuclear Power Plant. The amendment consists of changes to the Technical Specifications in response to your application transmitted by letter dated May 31, 1989.

The amendment modifies and updates Technical Specification Table 3.7-1, "Process Pipeline Penetrating Primary Containment," for clarity and to reflect the as-built condition of the plant.

A copy of the related Safety Evaluation is enclosed. A Notice of Issuance will be included in the Commission's next regular bi-weekly Federal Register notice.

Sincerely,

ORIGINAL SIGNED BY:

David E. LaBarge, Project Manager Project Directorate I-1 Division of Reactor Projects - I/II

				Offic	e of Nuclear	Reactor F	Regulation	
		ures: endment No. 1 fety Evaluat						
		nclosures: kt page						
	DISTRII Docket NRC & I PDI-1 I SVarga BBoger	File _ocal PDRs	CVogan DLaBarge OGC DHagan EJordan	GHill WJones JCalvo ACRS(10) GPA/PA	PLA JLi RCa	LFMB NT FILE nville pra nes		
OFC	:LA:PDI-1	:PM:PDI-1	SPLB A	-: 0GC	:D:PDI-1	:	::	-
NAME	:CVogan N	:DLaBarge:	bld RJones	EJ BMB	RCapra			-
	:01/1//90	:01/1//90	:01/ /9 /90	:0 1/ 2; /90	:0 2 //3/90		:	-
	20022700	AL RECORD COI 11 Name: FI 190 900213 10K 0500033 10K 0500033	ZPATRICK AMEN	D 73361			Drol	-

Mr. John C. Brons Power Authority of the State of New York James A. Fi___atrick Nuclear Power Plant

Mr. Gerald C. Goldstein Assistant General Counsel Power Authority of the State of New York 1633 Broadway New York, New York 10019

cc:

Resident Inspector's Office U. S. Nuclear Regulatory Commission Post Office Box 136 Lycoming, New York 13093

Mr. William Fernandez Resident Manager James A. FitzPatrick Nuclear Power Plant Post Office Box 41 Lycoming, New York 13093

Mr. J. A. Gray, Jr. Director Nuclear Licensing - BWR Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Supervisor Town of Scriba R. D. #4 Oswego, New York 13126

Ir. J. P. Bayne, President
Power Authority of the State
 of New York
1633 Broadway
New York, New York 10019

Mr. Richard Patch Quality Assurance Superintendent James A. FitzPatrick Nuclear Power Plant Post Office Box 41 Lycoming, New York 13093

Charlie Donaldson, Esquire Assistant Attorney General New York Department of Law 120 Broadway New York, New York 10271 Ms. Donna Ross New York State Energy Office 2 Empire State Plaza 16th Floor Albany, New York 12223

Regional Administrator, Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, Pennsylvania 19406

Mr. A. Klausman
Senior Vice President - Appraisal and Compliance Services
Power Authority of the State of New York
1633 Broadway
New York, New York 10019

Mr. George Wilverding, Manager Nuclear Safety Evaluation Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Mr. R. E. Beedle Vice President Nuclear Support Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Mr. S. S. Zulla Vice President Nuclear Engineering Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Mr. William Josiger, Vice President Operations and Maintenance Power Authority of the State of New York 123 Main Street White Plains, New York 10601

POWER AUTHORITY OF THE STATE OF NEW YORK

DOCKET NO. 50-333

JAMES A. FITZPATRICK NUCLEAR POWER PLANT

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 150 License No. DPR-59

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Power Authority of the State of New York (the licensee) dated May 31, 1989, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. DPR-59 is hereby amended to read as follows:

(2) <u>Technical Specifications</u>

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 150, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of the date of its issuance to be implemented within 30 days.

FOR THE NUCLEAR REGULATORY COMMISSION

AROBERT A. Capra, Director Project Directorate I-1 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Off Attachment: Changes to the Technical

Specifications

Date of Issuance: February 13, 1990

ATTACHMENT TO LICENSE AMENDMENT NO. 150

FACILITY OPERATING LICENSE NO. DPR-59

DOCKET NO. 50-333

Revise Appendix A as follows:

Remove Pages	Insert Pages
vi	vi
198	198
199	199
200	200
201	201
202	202
203	203
204	204
205	205
206	206
206a	206a
206Ь	206Ь
206c	206c
206d	206d
206e	206e
206f	206f
207	207
208	208
209	209

LIST OF TABLES (Cont'd)

Table	Title	Page
4.2-8	Minimum Test and Calibration Frequency for Accident Monitoring Instrumentation	86a
4.6-1	Comparison of the James A. FitzPatrick Nuclear Power Plant Inservice Inspection Program to ASME Inservice Inspection Code Requirements	157
4.6-2	Minimum Test and Calibration Frequency for Drywell Continuous Atmosphere Radioactivity Monitoring System	162a
3.7-1	Primary Containment Isolation Valves	198
4.7-1	Minimum Test and Calibration Frequency for Containment Monitoring Systems	210
4.7-2	Exception to Type C Tests	211
3.12-1	Water Spray/Sprinkler Protected Areas	244j
3.12-2	Carbon Dioxide Protected Areas	244k
3.12-3	Manual Fire Hose Stations	244
4.12-1	Water Spray/Sprinkler System Tests	244q
4.12-2	Carbon Dioxide System Tests	244r
4.12-3	Manual Fire Hose Station Tests	244s
6.2-1	Minimum Shift Manning Requirements	260a
6.10-1	Component Cyclic or Transient Limits	261

Amendment No. 20, 32, 92, 111, 120, 124 150

vi

TABLE 3.7-1 (Sh. 1 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

÷

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS	
7A 7B 7C 7D	Main Steam	29AOV-80A 29AOV-80B 29AOV-80C 29AOV-80D	B,C,D,E,M,P,R	3 to 5	Open	Note 1	
		29AOV-86A 29AOV-86B 29AOV-86C 29AOV-86D	B,C,D,E,M,P,R	3 to 5	Open	Note 1	
8	Main Steam Drain	29MOV-74	B,C,D,E,M,P,R	15	Closed		
		29MOV-77	B,C,D,E,M,P,R	15	Closed		
9A	Feedwater	34FWS-28A	Reverse Flow	N/A	Open		
		34NRV-111A	Reverse Flow	N/A	Open		
	RCIC-Disch.	13MOV-21	R	N/A	Closed		
	RWCU-Return	12MOV-69	A,F,J,R	20	Open		
9B	Feedwater	34FWS-28B	Reverse Flow	N/A	Open		
		34NRV-111B	Reverse Flow	N/A	Open		
	HPCI-Disch.	23MOV-19	R	N/A	Closed		
10	RCIC-Turbine Steam	13MOV-15	K,R	12	Open		<u> </u>
	Supply	13MOV-16	K,R	12	Open		

Amendment No. 48, 91, 148, 150

,

1

, 2

ì ٩

TABLE 3.7-1 (Sh. 2 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
11	HPCI-Turbine Steam	23MOV-15	L,R	13.5	Open	
	Supply	23MOV-16	L,R	13.5	Closed	
		23MOV-60	L,R	13.5	Open	
12	RHR-Shutdown Cooling	10MOV-18	A,F,R,U	38	Closed	
	Suction	10MOV-17	A,F,R,U	38	Closed	
13A	RHR-Shutdown Cooling and LPCI to	10AOV-68A	Reverse Flow	N/A	Closed	Testable check valve, Notes 3, 10.
	Reactor	10MOV-25A	R,X	120	Closed	Note 6
		10MOV-27A	R	90	Open	Throttle valve, Note 6.
13B	RHR-Shutdown Cooling and LPCI to	10AOV-68B	Reverse Flow	N/A	Closed	Testable check valve, Notes 3, 10.
	Reactor	10MOV-25B	R,X	120	Closed	Note 6.
		10MOV-27B	R	90	Open	Throttle valve, Note 6.
14	RWCU-Suction From Reactor	12MOV-15	A,F,J,R	20	Open	
		12MOV-18	A,F,J,R,V,Y	20	Open	
	RWCU-Suction From Reactor Warm-up	12MOV-80	A,F,J,R,V,Y	10	Closed	

Amendment No. 40, 46, 198, 178, 150

TABLE 3.7-1 (Sh. 3 of 15)

÷

PRIMARY CONTAINMENT ISOLATION VALVES

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
16A	Core Spray	14AOV-13A	Reverse Flow	N/A	Closed	Testable check valve, Notes 3, 10.
		14MOV-12A	R	N/A	Closed	Note 6.
		14MOV-11A	R	N/A	Open	
16B	Core Spray	14AOV-13B	Reverse Flow	N/A	Closed	Testable check valve, Notes 3, 10.
		14MOV-12B	R	N/A	Closed	Note 6.
		14MOV-11B	R	N/A	Open	
17	RHR-Reactor Head Spray	10MOV-32	A,F,R,U	20	Closed	
		10MOV-33	A,F,R,U	20	Closed	
18	Drywell- Floor Drain Sump Disch.	20MOV-82	A,F,R	30	Open	
		20AOV-83	A,F,R	N/A	Open	
19	Drywell - Equip. Drain	20MOV-94	A,F,R	30	Open	
	Sump Disch.	20AOV-95	A,F,R	N/A	Closed	Note 11
22	Instrument Air or	39IA5-22	Reverse Flow	N/A	Open	
	Nitrogen	27SOV-141	R	N/A	Open	Fail in open position to ensure adequate pneumatic supply.

Amendment No. 40, 48, 178, 150

TABLE 3.7-1 (Sh. 4 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
23	RBCLCW to Drywell	15AOV-130A	R	N/A	Open	To drywell cooler
		15RBC-24A	Reverse Flow	N/A	Open	assembly A and equipment sump cooler
	ESW to Drywell	46ESW-16B	Reverse Flow	N/A	Closed	
24	RBCLCW to Drywell	15AOV-130B	R	N/A	Open	To drywell cooler
		15RBC-24B	Reverse Flow	N/A	Open	assembly B.
	ESW to Drywell	46ESW-16A	Reverse Flow	N/A	Closed	
25 & 71	Drywell Purge Inlet	27AOV-112	A,F,H,R,Z	5	Closed	
	(Air)	27AOV-111	A,F,H,R,Z	5	Closed	
	Drywell Purge Inlet	27AOV-131A	A,F,H,R,Z	5	Closed	
	(Nitrogen)	27CAD-68	Reverse Flow	N/A	Closed	
		27AOV-131B	A,F,H,R,Z	5	Closed	
		27CAD-69	Reverse Flow	N/A	Closed	
26A & 26B	Drywell Purge Inlet	27AOV-113	A,F,H,R,Z	5	Closed	
	(Air and/or Nitrogen)	27AOV-114	A,F,H,R,Z	5	Closed	
	, ogoly	27MOV-113	A,F,H,R,Z	5	Closed	
		27MOV-122	A,F,H,R,Z	5	Closed	

Amendment No. 40, 48, 196, 1/34 150

TABLE 3.7-1 (Sh. 5 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
26A	Drywell Atmosphere	27SOV-119F2	A,F,R,Z	N/A	Closed	From elev. 250 -3"
	Sample (Suction)	27SOV-119F1	A,F,R,Z	N/A	Closed	to 27-PCA-101B. Note 13.
	27SOV-120E2 A,F,R,Z N/A Open	Open	From elev. 310´-6"			
		27SOV-120E1	A,F,R,Z	N/A	Open	to 27-PCA-101A. Note 13.
		27SOV-122E2	A,F,R,Z	N/A	Closed	From elev. 343
		27SOV-122E1	A,F,R,Z	N/A	Closed	to 27-PCA-101A. Note 13.
30a	Instrumen- tation	Various	N/A	N/A	Open	Typical of Group A
		Various	Excess Flow	N/A	Open	Instrumentation penetrations.
31Ac	Recircu- lation pump seal purge	02-2RWR-13A	Reverse Flow	N/A	Open	
		02-2SOV-001	B,F,R	N/A	Open	
31Bc	Recircu- lation pump	02-2RWR-13B	Reverse Flow	N/A	Open	
	seal purge	02-2SOV-002	B,F,R	N/A	Open	
31Ad	Drywell atmosphere	27SOV-135C	A,F,R,Z	N/A	Open	From elev. 276' to
	sample (Suction)	27SOV-135A	A,F,R,Z	N/A	Open	Radiation Monitors, Note 12.

Amendment No. 40, 46, 66, 198, 148, 150

TABLE 3.7-1 (Sh. 6 of 15)

PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
31Bd	Drywell atmosphere	27SOV-135D	A,F,R,Z	N/A	Open	From elev. 296' to
	sample (Suction)	27SOV-135B	A,F,R,Z	N/A	Open	Radiation Monitors Note 12.
35A	Traversing In-core	07NM-104A	A,F,R	N/A	Open	Notes 8, 14.
	Probe	07NM-104A	R	N/A	Open	Notes 14, 15.
35B	Traversing In-core	07NM-104B	A,F,R	N/A	Open	Notes 8, 14.
	Probe	07NM-104B	R	N/A	Open	Notes 14, 15.
35C	Traversing In-core	07NM-104C	A,F,R	N/A	Open	Notes 8, 14.
	Probe	07NM-104C	R	N/A	Open	Notes 14, 15.
35D	Traversing In-core	07NM-104D	A,F,R	N/A	Open	Notes 8, 14.
	Probe	07NM-104D	R	N/A	Open	Notes 14, 15.
35E	TIP Purge	27CAD-901	Reverse Flow	N/A	Open	
		27SOV-001	A,F,R	N/A	Closed	

Amendment No. 40, 48, 124 150

TABLE 3.7-1 (Sh. 7 of 15)

PRIMARY CONTAINMENT ISOLATION VALVES

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
37A 37B	Control Rod	SOV-120	N/A	N/A	Closed	Typical of 137 Control
37C 37D	Drive (Inlet)	SOV-123	N/A	N/A	Closed	Rod Hydraulic Contro Units. Valves listed
	、 <i>,</i>	AOV-126	N/A	N/A	Closed	isolate the CRD insert and scram inlet line.
		CRD-138	Reverse Flow	N/A	Open	Note 4.
38A 38B	Control Rod	SOV-121	N/A	N/A	Closed	Typical of 137 Control
38C 38D	Drive (Outlet)	SOV-122	N/A	N/A	Closed	Rod Hydraulic Contro Units. Valves listed
	(AOV-127	N/A	N/A	Closed	isolate the CRD withdraw and scram oulet line. Note 4.
39A	RHR Containment	10MOV-31A	G,S,R	10	Closed	Note 2.
	Spray	10MOV-26A	G,S,R	10	Closed	
		10RHR-52A	N/A	N/A	Closed	
39B	RHR Containment	10MOV-31B	G,S,R	10	Closed	Note 2.
	Spray	10MOV-26B	G,S,R	10	Closed	
		10RHR-52B	N/A	N/A	Closed	
41	Recirc Loop	02-2SOV-39	B,C,R	N/A	Open	
	Sample	02-2SOV-40	B,C,R	N/A	Open	

Amendment No. 40, 48, 150

TABLE 3.7-1 (Sh. 8 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
42	Standby Liquid	11SLC-17	Reverse Flow	N/A	Closed	
	Control	11SLC-16	Reverse Flow	N/A	Closed	
45	Drywell Pressure	16-1AOV-101A	A,F,R,Z	N/A	Open	
	Sensing	16-1AOV-101B	A,F,R,Z	N/A	Open	
50c	Instrumen- tation - Sensing DW Pressure	Various	N/A	N/A	Open	Typical of Group B instrumention penetra tions.
52a	Drywell Atmosphere	27SOV-125C	A,F,R,Z	N/A	Open	To elev. 282' from
	Sample (Return)	27SOV-125A	A,F,R,Z	N/A	Open	Radiation Monitors, Note 12.
55b	Drywell Atmosphere	27SOV-125D	A,F,R,Z	N/A	Open	To elev. 296' from
	Sample (Return)	27SOV-125B	A,F,R,Z	N/A	Open	Radiation Monitors, Note 12.
57c	CAD Supply to Instru- mentation in Drywell	27SOV-145	R	N/A	Open	Fail in open position to ensure adequate pneumatic supply.
	,	39IAS-29	Reverse Flow	N/A	Closed	

TABLE 3.7-1 (Sh. 9 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
58b	Drywell Hydrogen	27SOV-122F2	A,F,R,Z	N/A	Closed	From elev. 343'-3"
	Sample	27SOV-122F1	A,F,R,Z	N/A	Closed	to 27-PCA-101B. Note 13.
58c	Drywell Hydrogen	27SOV-120F2	A,F,R,Z	N/A	Open	From elev. 310 '-6"
	Sample	27SOV-120F1	A,F,R,Z	N/A	Open	to 27-PCA-101B. Note 13.
58d	Drywell Hydrogen	27SOV-123F2	A,F,R,Z	N/A	Closed	From elev. 276′-6"
	Sample	27SOV-123F1	A,F,R,Z	N/A	Closed	to 27-PCA-101B. Note 13.
59	Drywell Hydrogen	27SOV-123E2	A,F,R,Z	N/A	Closed	From elev. 276'
	Sample	27SOV-123E1	A,F,R,Z	N/A	Closed	to 27-PCA-101A. Note 13.
62	RBCLCW or ESW from Drywell	15AOV-131B	R	N/A	Open	From drywell cooler
		15RBC-26B	N/A	N/A	Open	assembly B.
63	RBCLCW to Drywell	15AOV-132A	R	N/A	Open	To recirculation
	,	15RBC-21A	Reverse Flow	N/A	Open	pump A and motor coolers.
	ESW to Drywell	46ESW-15B	Reverse Flow	N/A	Closed	
64	RBCLCW or ESW from	15AOV-133A	R	N/A	Open	From recirculation
	Drywell	15RBC-22A	N/A	N/A	Open	pump A and motor coolers.

Amendment No. 48, 193, 150

TABLE 3.7-1 (Sh. 10 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

ONTAINMENT ENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
65	RBCLCW or ESW from	15AOV-134A	R	N/A	Open	From drywell equipment
	Drywell	15RBC-33	N/A	N/A	Open	sump cooler.
66	RBCLCW or ESW from	15AOV-131A	R	N/A	Open	From drywell cooler
	Drywell	15RBC-26A	N/A	N/A	Open	assembly A.
67	RBCLCW to Drywell	15AOV-132B	R	N/A	Open	To recirculation
		15RBC-21B	Reverse Flow	N/A	Open	pump B and motor coolers.
	ESW to Drywell	46ESW-15A	Reverse Flow	N/A	Closed	
68	RBCLCW or ESW from	15AOV-133B	R	N/A	Open	From recirculation
	Drywell	15RBC-22B	N/A	N/A	Open	pump B and motor coolers.
202B	Vacuum Breaker - Reactor Building to	27AOV-101A	R	N/A	Closed	VBs open when
		27AOV-101B	R	N/A	Closed	suppression chamber pressure is 0.5 psid
	Suppression Chamber	27VB-6	Reverse Flow	N/A	Closed	below Reactor Building pressure.
		27VB-7	Reverse Flow	N/A	Closed	

TABLE 3.7-1 (Sh. 11 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
203A	Suppression Chamber	27SOV-119E2	A,F,R,Z	N/A	Closed	To 27-PCA-101A.
	Atmosphere Sample (Suction)	27SOV-119E1	A,F,R,Z	N/A	Closed	Note 13.
203B	Primary Containment	27SOV-124E2	A,F,R,Z	N/A	Open	From 27-PCA-101A
	Analyzer and Post Acci-	27SOV-124E1	A,F,R,Z	N/A	Open	Note 13. From 27-PCA-101B. Note 13.
	dent Sample (Return)	27SOV-124F2	A,F,R,Z	N/A	Open	
		27SOV-124F1	A,F,R,Z	N/A	Open	
205	Pressure Suppression	27AOV-117	A,F,H,R,Z	5	Closed	
	Chamber Purge	27AOV-118	A,F,H,R,Z	5	Closed	
	Exhaust (Air or	27MOV-117	A,F,H,R,Z	5	Closed	
	Nitrogen)	27MOV-123	A,F,H,R,Z	5	Closed	
210A	RHR to Suppression Pool	10MOV-34A	G,R	70	Closed	Throttle valve for flow test and suppression pool cooling. Note 2.

TABLE 3.7-1 (Sh. 12 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

t

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
210A (con't)	RHR to Suppression	10MOV-16A	R	N/A	Closed	Pump minimum flow.
	Pool	10MOV-21A	G,R	N/A	Closed	Heat exchanger drain.
		10MOV-167A	R	N/A	Closed	Heat exchanger vent.
	RCIC	13MOV-27	K,R	5	Closed	Pump minimum flow.
	Core Spray Test to Suppression Pool	14MOV-5A	R	N/A	Open	Pump minimum flow.
		14MOV-26A	G,R	45	Closed	Throttle valve for flow test.
210B	RHR to Suppression Pool	10MOV-34B	G,R	70	Closed	Throttle valve for flow test and suppression pool cooling. Note 2.
		10MOV-16B	R	N/A	Closed	Pump minimum flow.
		10MOV-21B	G,R	N/A	Closed	Heat exchanger drain.
		10MOV-167B	R	N/A	Closed	Heat exchanger vent.

TABLE 3.7-1 (Sh. 13 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS
210B (con't)	HPCI	23MOV-25	R	10	Closed	Pump minimum flow.
. ,	Core Spray Test to	14MOV-5B	R	N/A	Open	Pump minimum flow.
	Suppression Pool	14MOV-26B	G,R	45	Closed	Throttle valve for flow test.
211A	RHR to Suppression Spray Header	10MOV-38A	G,R,S	10	Closed	Throttle valve for suppression chamber spray. Note 2.
		10MOV-39A	G,R	N/A	Closed	Note 2.
211B	RHR to Suppression Spray Header	10MOV-38B	G,R,S	10	Closed	Throttle valve for suppression chamber spray. Note 2.
		10MOV-39B	G,R	N/A	Closed	Note 2.
212	RCIC - Turbine	13RCIC-04	Reverse Flow	N/A	Closed	
	Exhaust	13RCIC-05	Reverse Flow	N/A	Closed	
214	HPCI - Turbine	23HPI-12	Reverse Flow	N/A	Closed	
	Exhaust	23HPI-65	Reverse Flow	N/A	Closed	

TABLE 3.7-1 (Sh. 14 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS	
218	Torus Pressure	16-1AOV-102A	A,F,R,Z	N/A	Open		
	Sensing	16-1AOV-102B	A,F,R,Z	N/A	Open		
220	Torus Purge Inlet	27AOV-116	A,F,H,R,Z	5	Closed		
	(Air)	27AOV-115	A,F,H,R,Z	5	Closed		
	Torus Purge Inlet	27AOV-132A	A,F,H,R,Z	5	Closed		
	Purge miet (Nitrogen)	27CAD-67	Reverse Flow	N/A	Closed		
		27AOV-132B	A,F,H,R,Z	5	Closed		
		27CAD-70	Reverse Flow	N/A	Closed		
221	RCIC - Vacuum to Torus	13RCIC-07	Reverse Flow	N/A	Closed		
222	HPCI - Turb Drain Trap to Torus	23HPI-13	Reverse Flow	N/A	Closed		• <u> </u>
224	RCIC - Pump	13MOV-41	R	N/A	Closed		
	Suction (Torus)	13MOV-39	R	N/A	Closed		

TABLE 3.7-1 (Sh. 15 of 15) PRIMARY CONTAINMENT ISOLATION VALVES

CONTAINMENT PENETRATION	PENETRATION FUNCTION	VALVE NUMBER	ISOLATION SIGNAL	CLOSE TIME (SEC) (5)	NORMAL STATUS (7)	REMARKS	<u> </u>
225A	RHR - Pump Suction	10MOV-13A	R	N/A	Open		
		10MOV-13C	R	N/A	Open		
	RHR to Radwaste	10MOV-67	A,F,R	24	Closed		
	Hustrasic	10MOV-57	A,F,R	24	Closed		
225B	RHR - Pump Suction	10MOV-13B	R	N/A	Open		
		 10MOV-13D	R	N/A	Open		
226	HPCI - Pump Suction (Torus)	23MOV-58	L,R	N/A	Closed		
		23MOV-57	L,R	N/A	Closed		
227A	Core Spray - Pump Suction (Torus)	14MOV-7A	R	N/A	Open		
227B	Core Spray Pump Suction (Torus)	14MOV-7B	R	N/A	Open		
228	Condensate to Torus	33CND-102	N/A	N/A	Closed		

Amendment No. 150

•

ISOLATION SIGNAL CODES for Table 3.7-1

Signal

Description

- A* Reactor vessel low water level This is the highest of the three low water level signals. A scram occurs at this level.
- B* Reactor vessel low-low-low water level This is the lowest of the three low water level signals.
- C* High radiation main steam line
- D* Line break main steam (high steam flow)
- E* Line break main steam (tunnel high temperature)
- F* High drywell pressure
- G Reactor vessel low-low-low water level or high drywell pressure
- H* Containment high radiation
- J* Line break in Reactor Water Clean-up System high area temperature
- K* Line break in RCIC System steam line to turbine (high steam line area temperature, high steam flow, low steam line pressure, or high turbine exhaust diaphragm pressure)
- L* Line break in HPCI System steam line to turbine (high steam line space temperature, high steam flow, low steam line pressure, or high turbine exhaust diaphragm pressure)
- M* Low condenser vacuum in run mode only
- P* Low main steam line pressure at inlet to main turbine (RUN mode only)
- R* Remote manual switch from control room (automatic Group A & B isolaton valves are capable of remote manual operation from the control room)
- S Low drywell pressure
- T Low reactor pressure permissive to open Core Spray and RHR-LPCI valves
- U* High reactor vessel pressure or high drywell pressure
- V High temperature at outlet of Reactor Water Clean-up system non-regenerative heat exchanger
- X* Reactor vessel low water level or high drywell pressure when both shutdown cooling suction valves (10MOV-17 and 10MOV-18) are not fully closed and reactor vessel pressure is below 75 psig
- Y Standby Liquid Control System actuated
- Z* Reactor building ventilation exhaust high radiation

^{*} These are the isolation functions of the Primary Containment and Reactor Vessel Isolation Control System; other functions are given for information only. Setpoints for isolation signals are located in Tables 3.2-1 and 3.2-2.

*PRIMARY CONTAINMENT ISOLATION VALVES" (Sh. 1 of 2)

- 1. Main steam isolation valves require that both solenoid pilots be de-energized to close valves. Accumulator air pressure plus spring force act together to close valves when both pilots are de-energized. Voltage failure at only one pilot does not cause valve closure.
- 2. Primary containment spray and pressure suppression chamber (torus) cooling valves have interlocks that allow them to be manually reopened after automatic closure. This provision permits containment spray, for high drywell pressure conditions, and/or pressure suppression chamber water cooling. When automatic signals are not present, these valves may be opened for test or operating convenience.
- 3. Testable check valves are designed for remote opening with zero differential pressure across the valve seat. The valves close on reverse flow even through the test switches may be positioned for open. The valves open when pump pressure exceeds reactor pressure even though test switch may be positioned for close.
- 4. Control rod hydraulic lines are isolated by solenoid operated valves (normal insert and withdraw), air operated valves (scram inlet and outlet) and check valves (control rod drive cooling water). The lines that extend outside the primary containment are small and terminate in a system designed to prevent outleakage (i.e., the scram discharge volume and associated instrument volumes). Solenoid operated valves are normally closed, but open on normal rod movement (insert or withdraw). Air operated valves are normally closed during closed, but open for control rod scram. Check valves are normally open, but closed during control rod scram and insert. All valve numbers shown are prefixed with the system and control rod drive hydraulic control unit designation. For example, the complete designation for control rod 26-27 scram inlet valve is 03-26-27AOV-126.
- 5. The standard minimum closing rate for automatic motor operated isolation valves is based on a nominal line size of 12 inch. Using the standard closing rate, a 12 inch line is isolated in 60 seconds.
- 6. Coincident signals "G" and "T" open valves. Special interlocks permit testing these valves by manual switch except when automatic signals are present.
- 7. Normal status position of valve (open or closed) is the position during normal power operation of the reactor and is provided in this table for information only (see "Normal Status" column).
- 8. Signal "A" or "F" causes automatic withdrawal of TIP probe. When the probe is withdrawn, the ball valve automatically closes by mechanical action.
- 9. Reactor building ventilation exhaust high radiation signal "Z" is generated by two trip units. This requires one unit at high trip or both units at down scale (instrument failure) trip, in order to initiate isolation.
- 10. Leak testing shall be accomplished in accordance with Section 4.7.A.2.d.

Amendment No. 112, 150

Notes For Table 3.7-1 "PRIMARY CONTAINMENT ISOLATION VALVES" (Sh. 2 of 2)

- 11. Valve 20AOV-95 opens during pump out of the drywell equipment sump. Automatic isolation signals A and F override an open signal that might be present for sump pump out.
- 12. Radiation monitors used for sampling iodine, particulate, and gaseous are as follows:

Radiation Monitors	Sample
17-RM-101A 17-RM-101B	lodine
17-RM-102A 17-RM-102B	Particulate
17-RM-103A 17-RM-103B	Gaseous

- 13. Isolation signals A, F, and Z may be manually overridden by keylock switch on the Monitoring and Analysis Panel (MAP) located in the relay room.
- 14. Traversing In-core Probe (TIP) penetrations are isolated by a guide tube and valve assembly which includes a solenoid operated ball valve and an explosive shear valve designed to sever and seal the TIP tubing and TIP detector helix. The guide tube and valve assemblies are designated 07NM-104A, B, C, and D for pentrations 35A, B, C, and D, respectively.
- 15. The explosive shear valves are not normally actuated and require replacement parts and maintenance activity in order to open the valves following actuation.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION RELATED TO AMENDMENT NO. 150 TO FACILITY OPERATING LICENSE NO. DPR-59 POWER AUTHORITY OF THE STATE OF NEW YORK JAMES A. FITZPATRICK NUCLEAR POWER PLANT

A. THERMICK MOLLAR TORER T

DOCKET NO. 50-333

INTRODUCTION

By letter dated May 31, 1989, the Power Authority of the State of New York (PASNY or the licensee) submitted an amendment to the Technical Specifications (TS) for the James A. FitzPatrick Nuclear Power Plant. The amendment would affect TS Table 3.7-1 by changing its title from "Process Piping Penetrating Primary Containment" to "Primary Containment Isolation Valves," by modifying the format, by deleting unnecessary columns, by adding and deleting valves to reflect the as-built condition of the plant, and correcting the isolation signals. Other general changes such as wording clarification, nomenclature improvements and correction of typographical errors are also included.

DESCRIPTION

Table 3.7-1 consists of a list of all pipes which penetrate the Primary Containment, the penetration number, the type of valve (air operated globe, motor operated gate, check, spring operated, motor operated globe, etc.) which is designed to isolate the penetration, the power which opens the valve (AC, DC, air, etc.), its assigned Isolation Group (A, B, C), the location of the valve (inside or outside the drywell), the power which closes the valve, the Isolation Signal(s) which cause automatic closure of the valve, the required closing time (if any), and the normal status of the valve (open or closed).

The proposed format change consists of arranging the penetrations in order of penetration number, identifying the function of the penetration and adding appropriate valve numbers. These changes explicitly identify the isolation valves, which increases the functionality of the table. A comparison check was made to ensure that no information or requirements were inadvertently changed which were not addressed in the submittal. Since this check was satisfactory, the proposed format change coes not result in a change to any TS requirements. Similarly, the change to the title of the table was proposed to better indicate the purpose of the table. The proposed TS change would also add approximately sixty-two valves to the table, which has been verified to address all containment isolation valves. Some of these valves were inadvertently omitted from the initial Final Safety Analysis Report (FSAR) and the TS, but were part of the Containment Isolation System since the issuance of the FitzPatrick operating license. Other valves were installed as a result of post-TMI modifications per NUREG-0578 and NUREG-0737. These changes upgrade the table to existing plant status, result in a more usable table, and reflects a strengthening of the TS. The isolation signals which shut these valves, closure times and normal status entries in the table have been verified to accurately reflect the appropriate valves.

Other changes to the valves which were proposed in the submittal consist of changes which show Penetration No. 59 valves as normally closed rather than open since the valves are used for post accident sampling and are, in fact, normally closed. Therefore, this change corrects an error existing in the present TS. Also, the existing TS indicates that the Core Spray pumps' minimum flow valves (14 MOV-5A and 5B) are normally closed. The proposed change corrects this error to show them as normally open. Similarly, the proposed change would correct the TS associated with the Containment Atmosphere Sampling Lines connected to Penetration Nos. 26A and 26B from normally open to normally shut, to reflect their post accident sampling function and their correct position during normal plant operation.

The isolation signals associated with each valve have been verified to reflect the existing plant design and changes to the table proposed where necessary. Some of these signals were omitted from the initial FSAR and TS but were a part of the isolation system since issuance of the operating license. Other signals were added to reflect implementation of post-TMI modifications.

The proposal would also add signal "X" to the isolation signal code list at the end of the table. This signal affects the Residual Heat Removal System Shutdown Cooling Discharge Valves 10 MOV-25A and 10 MOV-25B and causes the valves to shut automatically if the reactor vessel water level is low or the drywell pressure is high when both of the shutdown cooling suction valves (10 MOV-17 and 10 MOV-18) are not fully closed and reactor pressure is below 75 psig. This function has been in place since initial plant operation and is shown in the FSAR. Therefore, the effect of this proposed TS change is to reflect actual plant conditions.

The changes to the table do not result in changes to plant design, plant operation, or limitations. They result in the table being more complete, accurate and reliable. The proposed change to the valve closure times reflect adjustments in valve stroke times made to meet the requirements of the environmental qualifications program. Other proposed changes, of a general nature, would change the name of Penetrations 26A and 26B from "Drywell Main Exhaust" to "Drywell Purge Inlet (Air and/or nitrogen)" to more clearly indicate the purpose of the penetration; correct the identification of valve 46ESW-16B valve as an Emergency Service Water valve rather than a Reactor Building Closed Loop Cooling Water valve on Penetration No. 23; delete the columns labeled Valve Type, Power to Open, Group, Location Ref. to Drywell, and Power to Close since they are not needed; replace the column titled "Valve Type" with "Valve Number" and add the appropriate valve numbers to better identify the valves; replace the designation for the isolation signal "RM" (Remote Manual) with "R"; correct Penetration No. 35B to 35E; delete Penetration No. 36 which has been cut and capped since it is no longer in service; and incorporate other verbage changes to clarify the TS sections.

SUMMARY

The changes described in the proposed amendment result in a general upgrading of the TS Table 3.7-1 to reflect actual plant conditions. As explained above and in the licensee's submittal, the proposed changes enhance the controls presented in the TS relating to the Primary Containment isolation valves and penetrations. They do not adversely affect the conclusions reached in the Final Safety Analysis Report or the Safety Evaluation Report. They are, therefore, acceptable.

ENVIRONMENTAL CONSIDERATION

This amendment changes a requirement with respect to the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20. The staff has determined that the amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released offsite, and that there is no significant increase in individual or cumulative occupational radiation exposure. The Commission has previously issued a proposed finding that this amendment involves no significant hazards consideration and there has been no public comment on such finding. Accordingly, this amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR Sec 51.22(c)(9). Pursuant to 10 CFR 51.22(b) no environmental impact statement or environmental assessment need be prepared in connection with the issuance of this amendment.

CONCLUSION

We have concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, and (2) such activities will be conducted in compliance with the Commission's regulations and the issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public.

Dated: February 13, 1990

PRINCIPAL CONTRIBUTOR:

D. LaBarge