

ROCHESTER GAS AND ELECTRIC CORPORATION • 89 EAST AVENUE, ROCHESTER, N.Y. 14649-0001 • 716-771-3250

www.rge.com

JOSEPH A. WIDAY VICE PRESIDENT & PLANT MANAGER GINNA STATION

February 8, 2001

U.S. Nuclear Regulatory Commission Document Control Desk Attn: Guy S. Vissing

Project Directorate I

Washington, D.C. 20555

Subject:

Emergency Operating Procedures

R.E. Ginna Nuclear Power Plant

Docket No. 50-244

Dear Mr. Vissing:

As requested, enclosed are Ginna Station Emergency Operating Procedures.

Very truly yours,

oseph A. Widay

JAW/jdw

xc:

U.S. Nuclear Regulatory Commission

Region I

475 Allendale Road

King of Prussia, PA 19406-1415

Ginna USNRC Senior Resident Inspector

Enclosure(s):

AP Index FIG Index AP-ELEC.14/16, rev 2 AP-RHR.1, rev 15 FIG-3.1, rev 1

AOOA

GINNA NUCLEAR POWER PLANT

PROCEDURES INDEX

DOC TYPE: PRAP ABNORMAL PROCEDURE

PARAMETERS: DOC TYPES - PRFIG PRER PRAR PRAP

STATUS: EF QU 5 YEARS ONLY:

02/08/01 PAGE: 1

	o milo man man	0111100. DI	20 3 12/11/10	OIIII.			
PROCEDURE NUMBER	PROCEDURE TITLE		REV	EFFECT DATE	LAST REVIEW	NEXT REVIEW	ST
AP-CCW.1	LEAKAGE INTO THE COMPONENT COOLING LOOP		014	01/09/01	05/01/98	05/01/03	EF
AP-CCW.2	LOSS OF CCW DURING POWER OPERATION		014	05/18/00	08/17/99	08/17/04	EF
AP-CCW.3	LOSS OF CCW - PLANT SHUTDOWN		012	05/18/00	08/17/99	08/17/04	EF
AP-CR.1	CONTROL ROOM INACCESSIBILITY		016	01/11/00	01/11/00	01/11/05	EF
AP-CVCS.1	CVCS LEAK		012	05/01/98	05/01/98	05/01/03	EF
AP-CVCS.3	LOSS OF ALL CHARGING FLOW		002	02/11/00	02/26/99	02/26/04	EF
AP-CW.1	LOSS OF A CIRC WATER PUMP		010	07/16/98	05/01/98	05/01/03	EF
AP-ELEC.1	LOSS OF 12A AND/OR 12B BUSSES		020	09/08/00	05/01/98	05/01/03	EF
AP-ELEC.2	SAFEGUARD BUSSES LOW VOLTAGE OR SYSTEM LOW FREQUENCY		009	03/22/99	03/22/99	03/22/04	EF
AP-ELEC.3	LOSS OF 12A AND/OR 12B TRANSFORMER (BELOW 350 F)		008	09/08/00	05/01/98	05/01/03	EF
AP-ELEC.14/16	LOSS OF SAFEGUARDS BUS 14/16		002	02/08/01	06/09/97	06/09/02	EF
AP-ELEC.17/18	LOSS OF SAFEGUARDS BUS 17/18		002	10/18/99	06/09/97	06/09/02	EF
AP-FW.1	PARTIAL OR COMPLETE LOSS OF MAIN FEEDWATER		012	02/11/00	02/27/98	02/27/03	EF
AP-IA.1	LOSS OF INSTRUMENT AIR		017	12/02/99	05/01/98	05/01/03	EF
AP-PRZR.1	ABNORMAL PRESSURIZER PRESSURE		011	12/02/99	12/02/99	12/02/04	EF
AP-RCC:1	CONTINUOUS CONTROL ROD WITHDRAWAL/INSERTION		006	02/24/96	05/14/98	05/14/03	EF
AP-RCC.2	RCC/RPI MALFUNCTION		008	11/16/98	02/06/97	02/06/02	EF
AP-RCC.3	DROPPED ROD RECOVERY		004	11/16/98	02/27/98	02/27/03	EF
AP-RCP.1	RCP SEAL MALFUNCTION		013	06/09/00	05/01/98	05/01/03	EF
AP-RCS.1	REACTOR COOLANT LEAK		015	09/08/00	05/01/98	05/01/03	EF
AP-RCS.2	LOSS OF REACTOR COOLANT FLOW		010	12/14/98	05/01/98	05/01/03	EF
AP-RCS.3	HIGH REACTOR COOLANT ACTIVITY		007	08/05/97	08/05/97	08/05/02	EF
AP-RCS.4	SHUTDOWN LOCA		011	12/02/99	05/01/98	05/01/03	EF
AP-RHR.1	LOSS OF RHR		015	02/08/01	05/01/98	05/01/03	EF

REPORT NO. 01
REPORT: NPSP0200
DOC TYPE: PRAP

GINNA NUCLEAR POWER PLANT PROCEDURES INDEX

02/08/01 PAGE: 2

-71

PRAP ABNORMAL PROCEDURE

PARAMETERS: DOC TYPES - PRFIG

PRER

PRAP

PRAR

STATUS: EF QU 5 YEARS ONLY:

PROCEDURE NUMBER	PROCEDURE TITLE	REV	EFFECT DATE	LAST REVIEW	NEXT REVIEW	ST
AP-RHR.2	LOSS OF RHR WHILE OPERATING AT RCS REDUCED INVENTORY CONDITIONS	009	10/13/00	03/31/00	03/31/05	EF
AP-SG.1	STEAM GENERATOR TUBE LEAK	000	09/08/00	09/08/00	09/08/05	EF
AP-SW.1	SERVICE WATER LEAK	015	10/18/99	06/03/98	06/03/03	EF
AP-TURB.1	TURBINE TRIP WITHOUT RX TRIP REQUIRED	010	02/12/99	10/10/97	10/10/02	EF
AP-TURB.2	TURBINE LOAD REJECTION	017	02/11/00	05/13/98	05/13/03	EF
AP-TURB.3	TURBINE VIBRATION	010	02/11/00	02/10/98	02/10/03	EF
AP-TURB.4	LOSS OF CONDENSER VACUUM	014	05/01/98	05/01/98	05/01/03	EF
AP-TURB.5	RAPID LOAD REDUCTION	005	06/09/00	06/09/00	06/09/05	EF

TOTAL FOR PRAP

32

GINNA NUCLEAR POWER PLANT 02/08/01 PAGE: 34

PROCEDURES INDEX

EOP FIGURE PROCEDURES

PARAMETERS: DOC TYPES - PRFIG PRER PRAR PRAP STATUS: EF QU 5 YEARS ONLY:

		 *					
PROCEDURE NUMBER	PROCEDURE TITLE		REV	EFFECT DATE	LAST REVIEW	NEXT REVIEW	ST
FIG-1.0	FIGURE MIN SUBCOOLING		000	05/01/98	05/01/98	05/01/03	EF
FIG-2.0	FIGURE SDM		002	10/13/00	05/01/98	05/01/03	EF
FIG-3.0	FIGURE NAT CIRC C/D WITH SHROUD FANS		000	05/01/98	05/01/98	05/01/03	EF
FIG-3.1	FIGURE NAT CIRC C/D WITHOUT SHROUD FANS		001	02/08/01	05/01/98	05/01/03	EF
FIG-3.2	FIGURE NC C/D WITH VOID IN UPPER HEAD		000	05/01/98	05/01/98	05/01/03	EF
FIG-4.0	FIGURE RCP SEAL LEAKOFF		001	10/13/00	05/01/98	05/01/03	EF
FIG-5.0	FIGURE RHR INJECTION		000	05/01/98	05/01/98	05/01/03	EF
FIG-6.0	FIGURE MIN RCS INJECTION		000	05/01/98	05/01/98	05/01/03	EF
FIG-7.0	FIGURE INTACT S/G PRESSURE		001	05/18/98	05/01/98	05/01/03	EF
FIG-8.0	FIGURE TSAT		000	05/01/98	05/01/98	05/01/03	EF
FIG-9.0	FIGURE TECH SPEC C/D		000	05/01/98	05/01/98	05/01/03	EF
FIG-9.1	FIGURE C/D LIMITS		000	05/01/98	05/01/98	05/01/03	EF
FIG-10.0	FIGURE LIMIT A		000	05/01/98	05/01/98	05/01/03	EF
FIG-11.0	FIGURE SOAK LIMITS		000	05/01/98	05/01/98	05/01/03	EF
FIG-12.0	FIGURE CNMT HYDROGEN		000	05/01/98	05/01/98	05/01/03	EF
FIG-13.0	FIGURE BACK PRESSURE		000	05/01/98	05/01/98	05/01/03	EF
FIG-14.0	FIGURE IA ISOL		000	05/01/98	05/01/98	05/01/03	EF

TOTAL FOR PRFIG 17

EOP:	TITLE:	T000 00		DC DUC 1	4 /1 C	REV: 2	
AP-ELEC.14/16		LUSS OF	SAFEGUAI	RDS BUS 1	4/10	PAGE 1	of I
				·			

GINNA STATION
CONTROLLED COPY NUMBER 23

RESPONSIBLE MANAGER

2-8-2001 EFFECTIVE DATE

CATEGORY	1.0	
REVIEWED	BY:	

EOP:	TITLE:	REV:	2	<u></u>
AP-ELEC.14/16	LOSS OF SAFEGUARDS BUS 14/16		2.	
		PAGE	2 of	17

A. PURPOSE - This procedure provides actions to respond to a loss of AC Emergency Bus 14 or Bus 16.

B. ENTRY CONDITIONS/SYMPTOMS

- SYMPTOMS The symptoms of a LOSS OF SAFEGUARDS BUS 14/16 are;
 - a. Annunciator J-7, 480V MAIN OR TIE BREAKER TRIP, lit, or
 - b. Annunciator J-29, 480V TRANSFORMER BREAKER TRIP, lit.

EOP:	TITLE:	REV: 2
AP-ELEC.14/16	LOSS OF SAFEGUARDS BUS 14/16	PAGE 3 of 17

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

CAUTION

- o IF A LOSS OF BUS 12A OR 12B HAS OCCURRED, THEN NO OUTSIDE, SHOULD BE PERFORMED.
- o IF A TURBINE RUNBACK HAS OCCURRED, THEN AP-TURB.2, TURBINE LOAD REJECTION, SHOULD BE PERFORMED.
- O OBSERVE D/G LOADING LIMITS OF 2300 KW FOR 1/2 HOUR, 2250 KW FOR 2 HOURS, AND 1950 KW FOR CONTINUOUS SERVICE.
- o DO NOT ATTEMPT TO ENERGIZE A BUS THAT IS POTENTIALLY FAULTED.

NOTE: Conditions should be evaluated for site contingency reporting (Refer to EPIP-1.0, GINNA STATION EVENT EVALUATION AND CLASSIFICATION).

- 1 Establish Manual Rod Control
 - a. Place Rod Control Bank Selector Switch to MANUAL
 - b. Verify control rod motion stops
- b. Manually trip the reactor and go to E-0, REACTOR TRIP OR SAFETY INJECTION.
- c. Manually move control rods as necessary
- 2 Verify Emergency D/G
 Associated With Affected Bus
 - RUNNING AND LOADED
 - o Bus 14 D/G A
 - o Bus 16 D/G B

Attempt to start and load emergency D/G(s) manually. (Refer to ER-D/G.1, RESTORING D/Gs)

EOP: T	ITLE:		
AP-ELEC.14/16	LOSS OF SAFEGUA	ARDS BUS 14/16	REV: 2
			PAGE 4 of 17
STEP ACT	TION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	1000 Ent Bottle Neet on BE	Nasi ones nos osmanas	ַ
AC Emer	At Least One Train of gency Busses Energized east 420 Volts:	Go to ECA-0.0, LOSS OF step 1.	ALL AC POWER
o Bus 14	4 and Bus 18		
	- OR -		
o Bus 16	5 and Bus 17		
* * * * * *	CAUTIC	* * * * * * * * * * * * * * * * * * *	* * * * * * *
RCP MOTOR BE	TO A RCP IS INTERRUPTED FOR EARING TEMPERATURE EXCEEDS 20 * * * * * * * * * * * * * * * * * * *		
a. At lea	ast one CCW Pump - RUNNING	a. Start one CCW pump	(124 KW)
	r	1) <u>IF</u> neither CCW postarted, <u>THEN</u> perfollowing: a) Trip the react b) Trip <u>BOTH</u> RCI c) Go to E-0, REA	imp can be rform the tor. P's. ACTOR TRIP OR
DISCHA	ciator A-22, CCW PUMP ARGE LO PRESS 60 PSIG - GUISHED	b. Start second CCW pur	np (124 KW).

.

P: TITLE: P-ELEC.14/16 LOSS OF SAFEGUA	REV: 2 PAGE 5 of 17
STEP ACTION/EXPECTED RESPONSE 5 Verify Charging Pump Status- AT LEAST ONE RUNNING	RESPONSE NOT OBTAINED Secure letdown flowpaths o Close loop B cold leg to REGEN Hx, AOV-427. o Ensure closed loop A cold leg to EXCESS LETDOWN Hx, AOV-310. o Ensure closed EXCESS LETDOWN HCV-123.
6 Monitor S/G Level Control: o S/G level - TRENDING TO 52% o MFW regulating valves - CONTROLLING IN AUTO	Place MFW regulating valves in MANUAL and control feed flow as necessary.

EOP: TITLE: REV: 2
AP-ELEC.14/16 LOSS OF SAFEGUARDS BUS 14/16 PAGE 6 of 17

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

7 Verify Bus 14 - ENERGIZED TO AT LEAST 420 VOLTS

Perform the following:

- a. Close loop B cold leg to REGEN Hx, AOV-427.
- b. <u>IF</u> steam dump is armed, <u>THEN</u> place STEAM DUMP MODE SELECTOR Switch to MANUAL.
- c. Ensure only one charging pump operating.
- d. Transfer Inst Bus B to maintenance supply.
- e. Return steam dump to AUTO, if desired.
- f. Ensure the following equipment operating as necessary:
 - CCW Pump B
 - PRZR Backup Heaters
 - CNMT Recirc Fans B and C
 - Boric Acid Pump B
 - RMW Pump B
 - Reactor Compartment Cooling Fan B
 - Penetration Cooling Fan B
- g. IF Bus 14 can $\underline{\text{NOT}}$ be energized, $\underline{\text{THEN}}$:
 - o Provide alternate room cooling for D/G A.
 - o Cross-connect D/G B fuel oil transfer pump to D/G A (Refer to ER-D/G.1).

AP-ELEC.14/16 LOSS OF SAFEGUA	REV: 2 ARDS BUS 14/16 PAGE 7 of 17
	ARDS BUS 14/16

.

EOP:

TITLE:

AP-ELEC.14/16

LOSS OF SAFEGUARDS BUS 14/16

REV: 2

PAGE 8 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

 $\underline{\text{NOTE}}$: IF VCT level decreased to 5%, charging pump suction will swap to the RWST. This may required a load reduction.

- 9 Check VCT Makeup System:
 - a. Verify the following:

 a. Adjust controls as necessary.
 - 1) RMW mode selector switch in AUTO
 - 2) RMW control armed RED LIGHT LIT
 - b. Check VCT level:
 - o Level GREATER THAN 20%

-OR-

o Level - STABLE OR INCREASING

a. Adjust controls as necessary

b. Check letdown divert valve, LCV-112A, aligned to VCT.

Manually increase VCT makeup flow as follows:

- 1) Ensure BA transfer pumps and RMW pumps running.
- 2) Adjust RMW flow control valve, HCV-111, to increase RMW flow.
- Increase boric acid flow as necessary to maintain required concentration.

<u>IF</u> VCT level can <u>NOT</u> be maintained, <u>THEN</u> refer to ER-CVCS.1, REACTOR MAKEUP CONTROL MALFUNCTION, if necessary.

		•	
AP-ELEC.14/16 LOS	S OF SAFEGUARDS	BUS 14/16	REV: 2 PAGE 9 of 17
STEP ACTION/EXPECTED R	RESPONSE	RESPONSE NOT OBTAINED	
10 Check Charging Pump Aligned To VCT:	Suction		
a. VCT level - GREATER	THAN 20% a	. IF VCT level can NOT maintained greater t perform the followin 1) Ensure charging paligned to RWST o LCV-112B open o LCV-112C close 2) Continue with Ste VCT level greater THEN do Step 10b.	han 5%, <u>THEN</u> g: ump suction d p 11. <u>WHEN</u>
b. Verify charging pump VCT o LCV-112C open o LCV-112B closed	ps aligned to b	. Manually align valve necessary.	s as

-

EOP:

TITLE:

LOSS OF SAFEGUARDS BUS 14/16

REV: 2

PAGE 10 of 17

STEP

AP-ELEC.14/16

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

<u>NOTE</u>: When restarting equipment for recovery, it is preferable to start equipment on busses being supplied from offsite power, if possible.

11 Check CVCS Operation:

a. Charging pumps - AT LEAST ONE RUNNING

- b. Charging line flow GREATER
 THAN 20 GPM
- c. Check letdown indications:
 - o Check PRZR level GREATER
 THAN 13%
 - o Letdown flow APPROXIMATELY 40 GPM
 - o Letdown flow STABLE

- d. Adjust charging pump speed and HCV-142 as necessary to restore PRZR level and labyrinth seal D/P
- e. Go to Step 13

- a. <u>IF</u> charging pump(s) available, <u>THEN</u> perform the following:
 - Start charging pumps as necessary.
 - 2) Establish greater than 20 gpm charging line flow.

 $\underline{\text{IF}}$ NO charging pumps available, $\underline{\text{THEN}}$ go to step 13

- b. Establish charging line flow to REGEN Hx GREATER THAN 20 GPM
- c. Perform the following:
 - 1) Close loop B cold leg to REGEN Hx, AOV-427.
 - 2) Close letdown orifice valves (AOV-200A, AOV-200B, and AOV-202)
 - 3) <u>IF PRZR level greater than 13%, THEN</u> go to Step 12. <u>IF NOT</u>, <u>THEN</u> continue with Step 14. <u>WHEN</u> PRZR level greater than 13%, <u>THEN</u> do Steps 12 and 13.

EOP:

TITLE:

AP-ELEC.14/16

LOSS OF SAFEGUARDS BUS 14/16

REV: 2

PAGE 11 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Steps 12 and 13 may be performed concurrently.

12 Establish Normal Letdown:

- a. Establish charging line flow to REGEN Hx GREATER THAN 20 GPM
- b. Place letdown controllers in MANUAL at 40% open
 - TCV-130
 - PCV-135
- c. Open AOV-427
- d. Open letdown orifice valves as necessary
- e. Place TCV-130 in AUTO at 105°F
- f. Place PCV-135 in AUTO at 250 psig
- g. Adjust charging pump speed and HCV-142 as necessary

13 Verify PRZR Heaters Restored:

- o PRZR proportional heater breaker CLOSED
- o PRZR backup heater breaker -RESET/IN AUTO

Perform the following steps in sequence to establish excess letdown, if desired:

- o Place excess letdown divert valve, AOV-312, to NORMAL
- o Ensure CCW from excess letdown open, AOV-745
- o Ensure RCP seal return isolation valve open, MOV-313
- o Open excess letdown isolation valve, AOV-310
- o Slowly open HCV-123 to maintain excess letdown temperature less than 195°F and pressure less than 100 psig

<u>IF</u> adequate D/G capacity available for PRZR heaters (400 kw each bank), <u>THEN</u> perform the following:

- a. Reset and close PRZR proportional heater breaker if necessary.
- b. Reset PRZR backup heater breaker and return to AUTO if necessary.

<u>IF</u> adequate D/G capacity <u>NOT</u> available, <u>THEN</u> refer to ER-PRZR.1.

EOP: TITLE: REV: 2 AP-ELEC. 14/16 LOSS OF SAFEGUARDS BUS 14/16 PAGE 12 of 17 RESPONSE NOT OBTAINED STEP ACTION/EXPECTED RESPONSE 14 Verify Normal Rod Control Restored: a. Annunciator C-5, PPCS ROD a. IF alarm is due to a loss of SEQUENCE OR ROD DEVIATION power to MRPI, THEN maintain EXTINGUISHED rods in manual AND minimize rod motion. <u>IF</u> alarm is due to actual rod misalignment, THEN refer to AP-RCC.2, RCC/RPI MALFUNCTION. while continuing with this procedure. b. Annunciator E-28, POWER RANGE b. Perform the following: ROD DROP ROD STOP - EXTINGUISHED 1) Place rod control bank selector switch in MANUAL. 2) Reset NIS rod drop rod stop signals (at NIS racks) as necessary. c. Annunciator F-15, RCS TAVG DEV c. Go to step 15 4°F - EXTINGUISHED d. Place rod control bank selector switch in AUTO if desired

AP-ELEC.14/16 LOSS OF SAFEGUARDS BUS 14/16 PAGE 13 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 15 Establish Stable Plant Conditions:
 - a. Check Tavg TRENDING TO TREF
 - b. Check PRZR pressure TRENDING TO 2235 PSIG
 - c. Check PRZR level TRENDING TO PROGRAM

- a. Insert control rods or, if necessary, decrease turbine load to match Tavg to Tref.
- b. Verify proper operation of PRZR heaters and spray or take manual control of PRZR pressure controller 431K.
- c. Verify proper operation of charging pump speed controllers or take manual control of speed controllers to control PRZR level.
- 16 Restore Normal Electric System Alignment:
 - a. Verify circuit 767 and/or 751 AVAILABLE
 - b. Verify all emergency AC bus normal feed breakers - CLOSED
 - Bus 14
 - Bus 16
 - Bus 17
 - Bus 18

- a. Continue with Step 17. <u>WHEN</u> offsite power available, <u>THEN</u> do Steps 16b and c.
- b. Perform the following:
 - Restore emergency AC busses to normal power supply (Refer to ER-ELEC.1, RESTORATION OF OFFSITE POWER)
 - 2) <u>IF</u> normal power is restored to all AC emergency buses, <u>THEN</u> return to step 7. <u>IF</u> <u>NOT</u>, <u>THEN</u> go to step 17.
- c. Stop any unloaded emergency D/G and place in standby (Refer to T-27.4)

TITLE: EOP: REV: 2 AP-ELEC.14/16 LOSS OF SAFEGUARDS BUS 14/16 PAGE 14 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 17 Establish Normal Plant Conditions:
 - a. Verify 2 charging pumps RUNNING
- a. Perform the following:
 - 1) Manually start charging pumps as necessary.
 - 2) Place selected charging pump speed controller in AUTO if desired.
- b. Start CNMT recirc fans as necessary (240 kw each).
- c. Locally verify two CCW pumps running, THEN manually stop one pump.
- d. Restore sample pumps and radiation monitors as necessary. (Refer to CHA-RETS-ODCM).
- b. Verify at least 2 CNMT recirc fans - RUNNING
- c. Check CCW pumps ONLY ONE RUNNING
- d. Check radiation monitoring systems:
 - CNMT vent sample pump -RUNNING
 - o Plant vent sample pump -RUNNING
 - o All area and process monitors operating as required
- 18 Check Status Of DC System Loads:
 - a. Verify TDAFW pump DC oil pump a. Perform the following: OFF IN AUTO
- - 1) Direct AO to locally check TDAFW AC oil pump running. IF not running, THEN start pump from MCB.
 - 2) Stop TDAFW pump DC oil pump.

AP-ELEC.14/16 LOSS OF SAFEGUARDS BUS 14/16 REV: 2
PAGE 15 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Inst Bus C provides power to all MCB manual controllers.

- 19 Check Status of Battery Chargers:
 - a. Battery Chargers 1A <u>OR</u> 1A1 a. <u>IF BOTH</u> battery chargers are deenergized. THEN direct the
 - b. Battery Chargers 1B <u>OR</u> 1B1 ENERGIZED
- a. <u>IF BOTH</u> battery chargers are deenergized, <u>THEN</u> direct the Electricians to crosstie TSC battery charger to main battery A (Refer to ATTACHMENT TRANSFER BATTERY TO TSC).
- b. <u>IF BOTH</u> battery chargers are deenergized, <u>THEN</u> direct the Electricians to crosstie TSC battery charger to main battery B (Refer to ATTACHMENT TRANSFER BATTERY TO TSC).

AP-ELEC.14/16 LOSS OF SAFEGUARDS BUS 14/16 PAGE 16 of 17

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

20 Restore Equipment Alignment:

- a. Verify annunciator L-1, AUX BLDG VENT SYSTEM CONTROL PANEL -EXTINGUISHED
- b. Restore affected bus equipment as desired
 - o SFP Cooling
 - o Penetration cooling fans
 - o Reactor compartment cooling fans
 - o Hydrogen panel
 - o PA system inverter (Battery Room A)
 - o Auxiliary Bldg lighting
 (normal supply MCC D, manual
 throwover to MCC C)(located
 at MCC C)
 - o Fire system (Refer to SC-3.16.2.3)
- c. Check control board annunciator panels - ALARM STATUS VALID FOR PLANT CONDITIONS
- d. Verify control board valve alignment - NORMAL (Refer to O-6.13, DAILY SURVEILLANCE LOG)

a. Dispatch AO to restore AUX BLDG ventilation (Refer to T-35A, AUX AND INTERMEDIATE BUILDING VENTILATION STARTUP AND SHUTDOWN)

- c. Perform alarm response procedures for unexpected alarms.
- d. Manually align valves as necessary.

EOP:
AP-ELEC.14/16
LOSS OF SAFEGUARDS BUS 14/16
PAGE 17 of 17

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

 $\underline{\text{NOTE}}\colon$ Refer to 0-9.3, NRC IMMEDIATE NOTIFICATION, for reporting requirements.

21 Verify emergency AC bus normal feed breakers closed

Return to Step 7

- o Bus 14
- o Bus 16
- 22 Verify Inst Bus B on normal supply

Place Inst Bus B on normal supply (Refer to ER-INST.3, INSTRUMENT BUS POWER RESTORATION).

- 23 Reset UV relay targets on undervoltage cabinets
 - o Bus 14
 - o Bus 16
- 24 Notify Higher Supervision
- 25 Return To Procedure Or Guidance In Effect

-END-

EOP: TITLE:		REV:	2
AP-ELEC.14/16	LOSS OF SAFEGUARDS BUS 14/16	PAGE	1 of 1

AP-ELEC.14/16 APPENDIX LIST

TITLE

1) ATTACHMENT TRANSFER BATTERY TO TSC (ATT-24.0)

REV: 15
PAGE 1 of 13

ROCHESTER GAS AND ELECTRIC CORPORATION

GINNA STATION

controlled copy number <u>23</u>

RESPONSIBLE MANAGER

2-8-2001 EFFECTIVE DATE

CATEGORY 1.0

REVIEWED BY:

EOP:	TITLE:	REV: 15	
AP-RHR.1	LOSS OF RHR		_
		PAGE 2 of 1	.3

A. PURPOSE - This procedure provides guidance in the event of a loss of RHR cooling at or above normal loop levels. (i.e. RCS loop levels of 64 inches or greater)

B. ENTRY CONDITIONS/SYMPTOMS

- 1. ENTRY CONDITIONS This procedure is entered from;
 - a. FR-C.3, RESPONSE TO SATURATED CORE COOLING, or
 - b. AP-ELEC.3, LOSS OF 12A AND/OR 12B TRANSFORMER (BELOW 350°F), when RHR flow can NOT be restored, or
 - c. AP-CCW.3, LOSS OF CCW PLANT SHUTDOWN when CCW is inadequate for RHR cooling
- 2. SYMPTOMS The following are symptoms of LOSS OF RHR;
 - a. No RHR pumps running, or
 - b. Annunciator A-20, RESIDUAL HEAT REMOVAL LOOP LO FLOW 2900 GPM (Set at 400 GPM per 0-2.2 in RHR Cooling mode), lit, or
 - c. Unexpected increase in temperature while on RHR cooling, or
 - d. Erratic or no flow on FI-626, RHR Loop Flow, or
 - e. Annunciator J-9, SAFEGUARD BREAKER TRIP, lit.

EOP:	TITLE:	REV: 15
AP-RHR.1	LOSS OF RHR	1.2.1
		PAGE 3 of 13

STEP ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED

CAUTION

DO NOT START ANOTHER RHR PUMP UNTIL THE CAUSE OF THE ABNORMAL RHR INDICATIONS HAS BEEN DETERMINED. IF A RUNNING PUMP HAS TRIPPED FOR REASONS OTHER THAN LOSS OF SUCTION FLOW, THEN REDUNDANT PUMP MAY BE STARTED.

NOTE: Conditions should be evaluated for site contingency reporting (Refer to EPIP-1.0, GINNA STATION EVENT EVALUATION AND CLASSIFICATION).

1 Check PRZR Wide Range Level - GREATER THAN 0 INCHES

<u>IF</u> RCS loop level indicator in service and loop level less than 64 inches, <u>THEN</u> go to AP-RHR.2, LOSS OF RHR WHILE OPERATING AT RCS REDUCED INVENTORY CONDITIONS.

EOP:	TITLE:	REV: 15
AP-RHR.1	LOSS OF RHR	1.00. 10
		PAGE 4 of 13

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 2 Check If RHR Pump(s) Should
 Be Stopped:
 - a. RHR pump ANY RUNNING
 - b. Check RHR pump flow LESS THAN 1500 GPM PER PUMP
- a. Go to Step 3.
- b. Decrease RHR flow as necessary. <u>IF</u> RHR flow can <u>NOT</u> be controlled, <u>THEN</u> perform the following:
 - 1) Stop running RHR pump.
 - 2) Dispatch an AO with a locked valve key to locally throttle RHR Hx outlet valves to approximately half open.
 - A RHR Hx, HCV-625 handwheel
 - B RHR Hx, HCV-624 handwheel
 - 3) Start an RHR pump.
 - 4) Direct AO to locally adjust RHR flow to less than 1500 gpm.
- c. RHR pumps cavitating:
 - o RHR pump flow OSCILLATING

-OR-

- o RHR pump NPSH APPROXIMATELY ZERO (PPCS group GD NPSH)
- d. Stop RHR pumps

c. Go to Step 17.

EOP: AP-RHR.1	TITLE:	REV: 15
AP-RHR.1	LOSS OF RHR	1/11/1. 13
		PAGE 5 of 13

* * * * * * * * * * * * * * * * * *

ACTION/EXPECTED RESPONSE

STEP

RESPONSE NOT OBTAINED

CAUTION

- O DO NOT INITIATE ANY ACTIONS WHICH MAY ADD POSITIVE REACTIVITY TO THE CORE.
- o NOTIFY S/G OFFICE THAT CNMT BREATHING AIR MAY BE LOST.
- o IF REFUELING IN PROGRESS, THEN STOP REFUELING OPERATIONS (NOTIFY REFUELING SRO).

NOTE: Personnel remaining in CNMT to assist in event mitigation should consult Health Physics for changes in radiological concerns.

- 3 Initiate Actions To Protect
 Personnel In CNMT:
 - a. Evacuate non-essential personnel from CNMT
 - b. Verify all available CNMT RECIRC fan(s) RUNNING
 - c. Initiate monitoring of CNMT area and process radiation monitors
 - d. Verify CNMT penetrations with direct access to outside atmosphere - CLOSED (Refer to Attachment CNMT CLOSURE)
- b. Manually start available CNMT RECIRC fans.
- c. Refer to appropriate alarm response procedures for required actions.
- d. Within 4 hours, close all CNMT penetrations to outside atmosphere.

EOP: AP-RHR.1	TITLE:	REV: 15
AP-RHR.1	LOSS OF RHR	
		PAGE 6 of 13

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

4 Check RHR Cooling Valve Manually or locally align valves as necessary. Attachment - NORMAL (Refer to necessary. Attachment NORMAL RHR COOLING)

THE RHR HX OUTLET VALVES (HCV-624 AND HCV-625) WILL FAIL OPEN ON LOSS OF INSTRUMENT AIR PRESSURE.

- 5 Check IA System:
 - a. Verify 2 IA compressors RUNNING
 - b. Check IA supply
 - o Pressure GREATER THAN 60 PSIG
 - o Pressure STABLE OR INCREASING

- a. Manually start IA compressors as necessary (75 kw each). <u>IF</u> IA compressors can <u>NOT</u> be started manually, <u>THEN</u> dispatch AO to locally reset and start compressors (75 kw each).
- b. <u>IF</u> IA pressure can <u>NOT</u> be restored, <u>THEN</u> perform the following:
 - 1) Dispatch AO with a locked valve key to locally throttle RHR Hx outlet valves to approximately half open.
 - A RHR Hx, HCV-625 handwheel
 - B RHR Hx, HCV-624 handwheel
 - 2) <u>WHEN</u> conditions permit, <u>THEN</u> refer to AP-IA.1, LOSS OF INSTRUMENT AIR, to restore IA.

	LE:	REV: 15
AP-RHR.1	LOSS OF RHR	PAGE 7 of 13

* 6 Monitor RCS Temperature - GREATER THAN 200°F

ACTION/EXPECTED RESPONSE

STEP

Perform the following:

RESPONSE NOT OBTAINED

- a. Notify Plant Staff to attempt to establish CNMT integrity <u>AND</u> CNMT heat removal capability.
- b. Go to step 8.

CAUTION

- O CHANGES IN RCS PRESSURE COULD RESULT IN INACCURACIES IN RCS LOOP LEVEL INDICATION
- O UNSTABLE OR FLUCTUATING LEVEL INSTRUMENTS SHOULD NOT BE RELIED ON FOR INDICATION OF RCS INVENTORY.

7 Verify RCS Intact:

- o PRZR level GREATER THAN 5% AND STABLE
- o RCS pressure STABLE
- o RCS subcooling based on core exit T/Cs - GREATER THAN 0°F USING FIGURE MIN SUBCOOLING
- o RCS vent paths CLOSED

Perform the following:

- a. Verify charging line flow control valve, HCV-142, open as necessary.
- b. Ensure charging line valve to loop B cold leg, AOV-294, open.
- Start charging pumps as necessary.
- d. Control charging pump speed and letdown flow as necessary to stabilize RCS conditions.
 - PRZR pressure
 - PRZR level
 - Loop level

<u>IF</u> charging flow greater than 75 gpm with letdown isolated <u>OR</u> unable to verify RCS inventory, <u>THEN</u> go to AP-RCS.4, SHUTDOWN LOCA.

EOP:	TITLE:	REV: 15
AP-RHR.1	LOSS OF RHR	100. 15
		PAGE 8 of 13

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 8 Establish Conditions To Start
 RHR Pump:
 - a. RHR pump AVAILABLE

- b. Verify CCW cooling to RHR system in service
 - o CCW pumps AT LEAST ONE RUNNING
 - o CCW to RHR Hxs, MOV-738A AND MOV-738B OPEN AS NECESSARY
- c. Close RHR pump flow control valves (controllers at 100% demand)
 - HCV-624
 - HCV-625
- d. Place RHR Hx bypass valve, HCV-626, to MANUAL and close valve

- a. Perform the following:
 - 1) Start trending core exit TCs.
 - 2) <u>IF</u> RCS closed, <u>THEN</u> go to Step 10. <u>IF</u> RCS open to atmosphere, <u>THEN</u> go to Step 16.
- b. Perform the following:
 - 1) Ensure at least one CCW pump running.
 - 2) Open MOV-738A and MOV-738B as necessary.

<u>IF</u> CCW can <u>NOT</u> be restored, <u>THEN</u> continue with Step 9 while attempting to restore CCW (Refer to AP-CCW.3, LOSS OF CCW - PLANT SHUTDOWN).

EOP:	TITLE:	REV:	15	
AP-RHR.1	LOSS OF RHR	PAGE	9 of	13

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

CAUTION

STARTING AN RHR PUMP MAY RESULT IN AN RCS LEVEL OR PRESSURE DECREASE DUE TO SHRINK OR VOID COLLAPSE.

9 Restore RHR Flow:

- a. Start one RHR pump RHR PUMP a. Go to Step 9e. RUNNING
- b. Check RHR flow LESS THAN 1500 GPM PER PUMP
- c. Adjust RHR Hx bypass flow control valve, HCV-626, to desired flowrate
- d. Place RHR Hx bypass flow control valve, HCV-626, controller in AUTO
- e. RHR flow RESTORED

e. Perform the following:

b. Manually adjust RHR flow as

necessary.

- 1) Start trending core exit T/Cs.
- 2) <u>IF</u> RCS closed, <u>THEN</u> go to Step 10. <u>IF</u> RCS vented to atmosphere, <u>THEN</u> go to Step 16.
- f. Open RHR Hx outlet valves as necessary to control RCS temperature
 - HCV-624
 - HCV-625

EOP: TITLE: AP-RHR.1 LOSS C	REV: 15
AP-RHR.1 LOSS C	PAGE 10 of 13
STEP ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
10 Monitor RCS Temperature: a. RCS temperature - STABLE OR DECREASING b. Go to Step 19	a. <u>IF</u> RCS closed, <u>THEN</u> go to Step 11. <u>IF</u> RCS open to atmosphere, <u>THEN</u> go to Step 16.
11 Check Any S/G Level - GREATER THAN 17%	Verify at least 200 gpm AFW flow available. <u>IF NOT</u> , <u>THEN</u> go to Step 17.
12 Check RCS Pressure - GREATER THAN 300 PSIG	Increase RCS pressure to greater than 300 psig. <u>IF</u> RCS pressure can <u>NOT</u> be increased, <u>THEN</u> go to Step 17.
13 Check RCP Status - ANY RCP RUNNING	Perform the followig: a. Establish conditions for starting an RCP. o Verify bus 11A or 11B energized.

o Refer to Attachment RCP START.

 $\underline{\text{IF}}$ an RCP can $\underline{\text{NOT}}$ be started, $\underline{\text{THEN}}$ verify natural circulation. (Refer

b. Start one RCP.

to Attachment NC.)

steam.

 $\underline{\text{IF}}$ natural circulation $\underline{\text{NOT}}$

verified, THEN increase dumping

EOP:	TITLE:	REV:	15		
AP-RHR.1	LOSS OF RHR	1.2			
		PAGE	11	of	13

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

- 14 Establish Condenser Steam Dump Manual Control:
 - a. Verify condenser available:
 - o Any MSIV OPEN
 - o Annunciator G-15, STEAM DUMP ARMED - LIT
 - b. Place condenser steam dump controller HC-484 in MANUAL
 - c. Place steam dump mode selector switch to MANUAL
 - d. Open steam dump valves as necessary to stabilize RCS temperature
- 15 Monitor RCS Temperature:
 - a. RCS temperature STABLE OR DECREASING

- a. Perform the following:
 - 1) Place S/G ARV controller in MANUAL and open ARVs as necessary to stabilize RCS temperature.
 - 2) Go to Step 15.

- a. <u>IF</u> dumping steam does <u>NOT</u> provide adequate cooling, <u>THEN</u> perform the following:
 - 1) Initiate S/G blowdown from both S/Gs.
 - Maintain both S/G levels stable by controlling AFW flow.
 - 3) Go to Step 17.

b. Go to Step 18

EOP:	TITLE:	REV:	15		
AP-RHR.1	LOSS OF RHR	INDV.	10		
		PAGE	12	of	13

STEP

ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

16 Check RCS Conditions:

- a. Rx vessel head REMOVED
- b. Stop refueling operations if in progress
- c. Verify Refueling Cavity Level -GREATER THAN 23 FEET ABOVE VESSEL FLANGE
- d. Verify refueling cavity sweep fans RUNNING
- 17 Check CCW System Operation:
 - o CCW pumps AT LEAST ONE RUNNING
 - o CCW to RHR Hxs, MOV-738A AND MOV-738B OPEN AS NECESSARY
 - o Annunciator A-21, COMP COOLING HX OUT HI TEMP EXTINGUISHED
 - o Annunciator A-22, CCW PUMP DISCHARGE LO PRESS - EXTINGUISHED
 - o Annunciator A-30, CCW PUMP INLET HEADER HI TEMP EXTINGUISHED

- a. Go to Step 17.
- c. Increase refueling cavity level to greater than 23 feet (Refer to 0-15.3, FILLING REFUELING CANAL).
- d. Locally start refueling cavity sweep fans if available.

To restore CCW cooling to RHR Hxs, perform the following:

- a. Ensure the standby CCW pump is running.
- b. Open MOV-738A and MOV-738B as necessary.

<u>IF</u> CCW can <u>NOT</u> be restored, <u>THEN</u> continue attempts to restore CCW (Refer to AP-CCW.3, LOSS OF CCW - PLANT SHUTDOWN).

EOP:	TITLE:	REV.	V: 15		
AP-RHR.1	LOSS OF RHR	INDV.	10		
	·	PAGE	13	of	13

STEP ACTION/EXPECTED RESPONSE

RESPONSE NOT OBTAINED

NOTE: Consult with Plant Staff to determine alternatives for long term cooling.

18 Monitor RHR Cooling:

- o RCS temperature STABLE OR DECREASING

Perform the following:

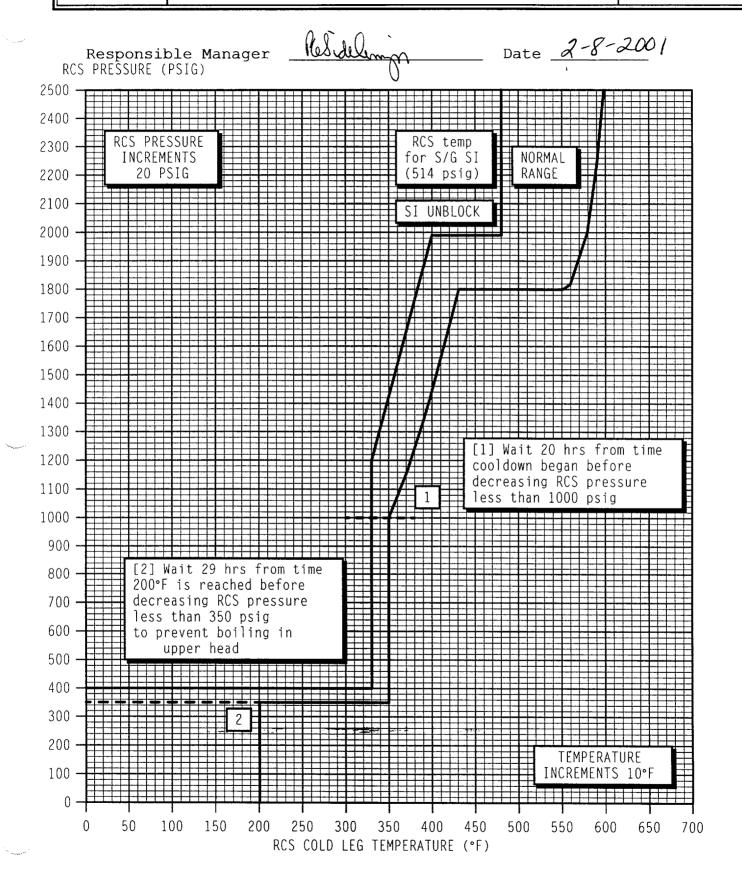
- o RHR cooling RESTORED a. Evaluate alternatives for long term cooling (Consult Plant Staff)
 - Consider establishing secondary heat sink
 - Refer to ER-RHR.1, RCDT PUMP OPERATION FOR CORE COOLING
 - Consider RCS feed and bleed
 - b. Continue attempts to restore RHR to operable.
 - c. Return to Step 3.

NOTE: Refer to 0-9.3, NRC IMMEDIATE NOTIFICATION, for reporting requirements.

- 19 Notify Higher Supervision
- 20 Return to Procedure Or Guidance In Effect

-END-

EOP:	TITLE: LOSS OF RHR	REV: 15
AP-RHR.1		PAGE 1 of 1


AP-RHR.1 APPENDIX LIST

TITLE

- 1) FIGURE MIN SUBCOOLING (FIG-1.0)
- 2) ATTACHMENT NORMAL RHR COOLING (ATT-14.0)
- 3) ATTACHMENT RCP START (ATT-15.0)
- 4) ATTACHMENT NC (ATT-13.0)
- 5) ATTACHMENT CNMT CLOSURE (ATT-3.1)

23

FIG-3.1 FIGURE NAT CIRC C/D WITHOUT SHROUD FANS
PAGE 1 of 1

