

FEB 1 2 2001

LRN-01-0052 LCR H00-05, Sup. 1

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

Gentlemen:

SUPPLEMENTAL INFORMATION FOR REQUEST FOR LICENSE AMENDMENT INCREASED LICENSED POWER LEVEL HOPE CREEK GENERATING STATION FACILITY OPERATING LICENSE NO. NPF-57 DOCKET NO. 50-354

On December 1, 2000, PSEG Nuclear LLC submitted a request to change Facility Operating License No. NPF-57 and the Technical Specifications (TS) in Appendix A thereto for Hope Creek Generating Station. The proposed license amendment would increase the licensed core power level for operation to 3339 megawatts, 1.4% greater than the current level. As part of this request for amendment, Figures 3.4.6.1-1, 3.4.6.1-2 and 3.4.6.1-3, which contain the pressure-temperature (P-T) limit curves for the Hope Creek Reactor Pressure Vessel, were revised.

In a teleconference between members of the NRC and PSEG Nuclear on February 2, 2001, the NRC indicated that the neutron fluence used to develop the revised P-T curves did not reflect the guidance contained in Draft Regulatory Guide DG-1053, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," and therefore the NRC could not support approval of the new P-T limits out to 32 Effective Full Power Years (EFPY). Since there are no currently NRC approved methods that follow the guidance of DG-1053, PSEG Nuclear requests that the curves submitted on December 1, 2000 be approved for use until the end of Hope Creek Cycle 11 (currently scheduled to end in April 2003). This will allow continued operation of Hope Creek until methods are approved by the NRC that follow the guidance of DG-1053. Attachment 1 provides the revised marked-up pages of figures 3.4.6.1-1, 3.4.6.1-2, and 3.4.6.1-3 with a note that states that the new P-T curves are only valid until the end of Hope Creek Cycle 11. Please replace the revised P-T curves contained in the December 1, 2001 submittal with the P-T curves contained in Attachment 1 of this submittal.

ACCI

Document Control Desk LRN-01-0052

In addition, as discussed by teleconference between the NRC and PSEG Nuclear on January 22, 2001, PSEG Nuclear is providing a copy of calculation H-1-BB-NDC-1858, Rev 0IR0, "Reactor Vessel Fluence Calculation for 1.5% Power Uprate," as Attachment 2.

This supplemental information does not alter the information supporting the conclusion of No Significant Hazards Consideration contained in the December 1, 2000 submittal.

Should you have any questions regarding this submittal, please contact Mr. Brian Thomas at (856)339-2022.

Sincerely. LISKIL

Mark B. Bezilla Vice President – Technical Support

Affidavit Attachments (2)

FEB 1 2 2001

Document Control Desk LRN-01-0052

Mr. H. J. Miller, Administrator - Region I
 U. S. Nuclear Regulatory Commission
 475 Allendale Road
 King of Prussia, PA 19406

Mr. R. Ennis Licensing Project Manager - Hope Creek U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 8B1 11555 Rockville Pike Rockville, MD 20852

USNRC Senior Resident Inspector - Hope Creek (X24)

Mr. K. Tosch, Manager IV Bureau of Nuclear Engineering P.O. Box 415 Trenton, NJ 08625

Document Control Desk LRN-01-0052

BJT

BC Manager - Hope Creek Operations (H07) Director - QA/Nuclear Training/Emergency Planning (120) Manager - Licensing (N21) Manager - Business Planning & Co-Owners Affairs (N18) Manager - System Engineering - Hope Creek (H18) Manager - Nuclear Fuels (N20) Project manager - NRB (N38) J. Keenan, Esq. (N21) Records Management (N21) Microfilm Copy File Nos. 1.2.1 (Hope Creek) 2.3 (LCR H00-05) REF: LRN-01-0052 LCR H00-05, Sup. 1

STATE OF NEW JERSEY)) SS. COUNTY OF SALEM)

Mark B. Bezilla, being duly sworn according to law deposes and says:

I am Vice President – Technical Support of PSEG Nuclear LLC, and as such, I find the matters set forth in the above referenced letter, concerning Hope Creek Generating Station are true to the best of my knowledge, information and belief.

V

Subscribed and Sworn to before me this $\underline{13^{+h}}$ day of $\underline{12^{+h}}$, 2001

100 Public of New Jersev

My Commission expires on <u>6/16/2003</u>

Attachment 1

· —

LRN-01-0052

HOPE CREEK GENERATING STATION UNIT 1

DOCKET NO. 50-354

Document Control Desk Attachment 1

LRN-01-0052 LCR H00-05 Sup. 1

Note: This figure is valid through Cycle 11 Operation in accordance with NRC Safety Evaluation Report supporting Amendment No. _____

Insert 1

Figure 3.4.6.1-1

MINIMUM REACTOR VESSEL METAL TEMPERATURE ("F)

Insert Note

Insort Z

MINIMUM REACTOR VESSEL METAL TEMPERATURE (°F)

InsERT Note

Figure 3.4.6.1-2

Figure 3.4.6.1-3

 \checkmark

MINIMUM REACTOR VESSEL METAL TEMPERATURE (*F)

INSERT NOTE

Attachment 2

.

LRN-01-0052

HOPE CREEK GENERATING STATION UNIT 1

DOCKET NO. 50-354

FORM 1 Page 2 of 2 Page 1 contains the instructions

	(Page	i contains	s the instructions)							
CALC NO.: H-1-BB- REVISION: 0IR0	NDC-1858	CAL	CULATION COVER S	Page 1 of 9						
CALC. TITLE:	Reactor Vessel Fluen	ce Calculatio	on for 1.5% Power Upra	ate						
# SHTS (CALC): 9	(CALC): 9 # ATT / # SHTS: // # IDV/50.59 SHTS: / # TOTAL SHTS: //									
CHECK ONE:				L						
	FINAL INTERIM (Proposed Plant Change) FINAL (Future Confirmation Req'd)									
SALEM OR HOPE CF HOPE CREEK ONLY	REEK: DQ-LIST	「 □ IMF □Qsh [PORTANT TO SAFETY		N-SAFETY RELAT	ED				
STATION PROCEI CDs INCORPORA	DURES IMPACTED, IF TED (IF ANY):	SO CONTA	CT SYSTEM MANAGE	ĒR						

DESCRIPTION OF CALCULATION REVISION (IF APPL.):

Initial Issue

This calculation will be used to calculate information that will be used in a significant hazard evaluation (10CFR 50.92), which will be submitted to the NRC. Therefore a 50.59 applicability review is not required.

PURPOSE:

This calculation establishes for Hope Creek, 32 EFPY and 48 EFPY peak fluence estimates at the surface of the reactor vessel and at ¼ T location for the 1.5% power uprate condition. The 32 EFPY fluence values will be used as inputs for the RPV Fracture Toughness analysis being performed for power uprate. The Fracture Toughness analysis will develop Pressure Temperature curves and will evaluate upper shelf energy IAW 10CFR50, Appendix G. The 48EFPY fluence values will only be used for informational purposes.

CONCLUSIONS:

The fluence values have been calculated and are included in the continuation sheets. The 32 EFPY values can be used for the development of Pressure Temperature curves and to evaluate upper shelf energy IAW 10CFR50, Appendix G for power uprate. No actions are necessary to support the conclusion.

ORIGINATOR/COMPANY MAME	Printed Name / Signature	Date
CINERATOR/COMPANY NAME:	RJSchmidt Mortug	9/22/00
PEER REVIEWER/COMPANY NAME:	Enju Ertalon Such Data	18, 280
VERIFIER/COMPANY NAME:	Foria Datala Più Ortular	4/29/0T 128, 310
PSEG SUPERVISOR APPROVAL:	Controlation Exms ()Malun	9/29/00
	ROBERT DENIGHT Kolunt WA	9/28/00

Nuclear Common

Page 10 of 12

Revision 7

NC.DE-AP.ZZ-0002(Q)

FORM 2 Page 2 of 2 (Page 1 contains the instructions) CALCULATION CONTINUATION SHEET

	CALCI	JLAT		ONTIN	NUATION SHEET SHEET: 2 CONT'D ON SHEET: 3						
CALC. NO.: H-1-BB-NDC	-1858				REFE	RENCE:					
ORIGINATOR, DATE	REV:	NS	9 2 15 1	7/00	OIRO						
REVIEWER/VERIFIER,	DATE	3K	30	9/24	100			L			
Purpose:						L,			<u></u>		
values will be used as in uprate. The Fracture To evaluate upper shelf ene- used for informational pu Scope: This calculation will be po cycle 10. The 32 EFPY EFPY value used for det oughness analyses. The cense extension.	erformed ergy IAW	for 32 on 40 the er PY ca	2 EFP PV Fra /sis wil R50, A 2 EFP -year o nd-of-li lculatio	Y and Append Y and Append Apperation on will	48 EFF dix G. 48 use	5% power less analys issure Tem The 48EFF PY for the n in 80% cap non-licens id for inform	ew up ew up ew up acity e extention	e cond ing per ure cui ence v factor factor in futu	ition. The formed for rves and alues will alues will alues the in RPV I ure studie	e 32 E or pow will I only starti e stan Fractu es for	EFPY ver be ng in dard ire
ntermediate shell, and th	e LPCI n	iozzle	e react	or ves	sel's lo	wer-interm	ediate	e shell,	lower sh	ell,	
esign Inputs:											
This calculation uses of from the last RPV Sur	data from veillance	the la Mater	atest F rial Te	lope C sting F	reek F Report	lux Wire ar [1].	alysi	s that v	vas perfo	rmed	
Flux wire fluen	се						1.4	42x10 ¹	⁷ n/cm ²		
 EFPY associat 	ed with fl	ux wir	re				6.	01 EFI	PY		
 Lead factor (rail location to the 	tio of flux peak insi	at the	e surve rface lo	eillance ocatior	e flux w ו)	vire	1.	01			

Nuclear Common

		CALC	ULATION	CONTIN	UATIC	ON SHEE	T: 4				
	CALC. NO.: H-1-BB-NDC	-1858			REFE	RENCE:					
4	ORIGINATOR, DATE	REV:	1/2 -9/2	127/00	OIRO						
F	REVIEWER/VERIFIER,	DATE	ZBO	9/28/	00						
	Elevation fact intermediate lower-interme	or for the vessel sh diate sh	e decrease nell (no. 3) ell (no. 4)	ed fluend versus	ce at th the	e	(D.66			
	 Azimuthal factor for the decrease in fluence due to the 0.82 LPCI nozzle azimuthal variation versus the peak location of the intermediate vessel shell 										
2	EFPH associated witl is 95769 EFF	n the firs PH / 24 h	t nine (9) c rs / 365.25	cycles of 5 days =	operat 10.93	ion is 95769 EFPY.	9 [2].	This o	converted	to EFP	Υ
3	This calculation will be starting in cycle 10. T is the standard EFPY Toughness analyses. license extension.	e perforn The 32 E value us The 48	ned for 32 FPY is bas sed for deto EFPY calo	EFPY a sed on 4 ermining culation	nd 48 0-year) the er will be	EFPY for the operation at id-of-life cor used for info	e new t an & idition prmat	v uprat 30% ca n in RI ion in	ted conditi apacity fac PV Fractur future stud	on tor and re dies for	t.
4.	The vessel beltline low	ver-inter	mediate sh	nell and	interme	ediate shell a	are 6.	.10 inc	hes thick	[1].	
As	sumptions:										
1.	This calculation will as at the vessel surface of 1.5%, thus the calcula analysis.	sume a of 1.5%. ted fluen	1.5% powe The actua ice will be	er uprate Il approv a conse	e condi red pov rvative	tion. This w ver uprate co input to the	ill res onditi RPV	sult in a ion will Fracti	an increas I be less th ure Tough	e in flu nan ness	×
2	This calculation will as operation and beyond. is planned to be uprate actual. Therefore this	sume a p Actually d during will provi	oower upra y at the be cycle 10. de a conse	ate cond ginning This ca ervative	ition ha of cycle Iculatic input te	as occurred t e 10 reactor on will provid o the RPV F	for th powe le a h ractu	e entir er was ligher re Tou	e cycle 10 not uprate fluence the ughness ar) ed and an nalysis	

Nuclear Common

		CALC	ULATION CONTIN	NUATIC	ON SHEET	SHEET: 4 CONT'D	I ON SHEET: 5	;			
4	CALC. NO.: H-1-BB-NDC	-1858	· · · · · · · · · · · · · · · · · · ·	REFE	RENCE:						
(DRIGINATOR,DATE	REV:	4/29/00	OIRO							
F	REVIEWER/VERIFIER,	DATE	2BE 9/24/	00		·I					
E	Estimate of 32 EFPY F	luence(USING THE METHODOL	064 • 4	Reference 1).		<u> </u>				
1	. Peak vessel inside s	urface flu	uence for the non p	oower u	uprated perio	od (end of a	cycle 9)				
	To determine this, use the flux wire results and extrapolate to end of cycle 9, adjusting with the lead factor.										
	f _{surf} (end of cycle 9) = flux wire fluence*(EFPY @ end of cycle 9/EFPY of flux wire)/lead factor										
	f _{surf} (end of cycle 9)	= 1.4	2x10 ¹⁷ * (10.93/6.0)1) / 1.0)1						
	f _{surf} (end of cycle 9)	= 2.5	6x10 ¹⁷ n/cm ²								
2.	Peak vessel inside su EFPY or beyond cycl	urface flu e 9)	ence for the uprate	ed perio	od (beginnin	g of cycle '	10 through 32				
	To determine this use beyond cycle 9 to 32	the flux EFPY.	wire results, adjus	t for the	e power upra	ate (1.015)	, and extrapol	ate			
	EFPY beyond cycle 9	= 32	- EFPY beginning	of cycle	e 10						
		= 32	10.93 = 21.07 EF	ΡY							
	f _{surf} (beyond cycle 9) = flux wire	fluence*	power uprate*(EFF	⊃Y bey	ond cycle 9/	flux wire El	FPY)/lead fac	tor			
	f _{surf} (beyond cycle 9)	= 1.42	x10 ¹⁷ * 1.015 * (21	.07/6.0	1) / 1.01						
	f _{surf} (beyond cycle 9)	= 5.00	x10 ¹⁷ n/cm ²								

	CALC		CONTIN	ONTINUATION SHEET SHEET: 5 CONT'D ON SHEET: 6						
CALC. NO.: H-1-BB-NDC	C-1858			REFE	RENCE:	L				
ORIGINATOR,DATE	REV:	Ills of	29/0	oird						
REVIEWER/VERIFIER	,DATE	EKO	9/28/	100						
3. Peak vessel inside s	surface flu	ience at 32	2 EFPY							
$f_{surf}(32 EFPY) = f_{surf}$	f(end of c	ycle 9) + f _s	_{surf} (beyo	nd cycl	e 9)					
$f_{surf}(32 \text{ EFPY}) = 2.56 \times 10^{17} + 5.00 \times 10^{17}$										
$f_{surf}(32 \text{ EFPY}) = 7.56 \text{ x} 10^{17} \text{ n/cm}^2$										
This fluence represents the peak fluence, which occurs in the lower-intermediate shell (no. 4) and will be conservatively applied to the lower shell (no. 5). See figure 3-2 of reference [1].										
4. Peak intermediate sh	nell (no. 3) inside su	rface flu	ience a	t 32 EFPY					
f _{surf} (32 EFPY) = pea	ak vessel	inside surf	ace flue	nce (lo	wer-interme	diate	shell)	* elevation	factor	
$f_{surf}(32 \text{ EFPY}) = 7.5$	6x10 ¹⁷ *	0.66								
= 4.9	9x10 ¹⁷ n/	′cm²								
Peak LPCI nozzle ins	ide surfa	ce fluence	at 32 E	FPY						
f _{surf} (32 EFPY) = Pea	ik interme	diate shell	inside :	surface	fluence * a	zimuti	hal fa	ctor		
$f_{surf}(32 \text{ EFPY}) = 4.9$	9x10 ¹⁷ *0	.82								
= 4.0	9x10 ¹⁷ n/	cm ²								

Nuclear Common

.

	CALCI	ULATION CONTIN	IUATIC	N SHEET	SHEET SHEET: 6 CONT'D ON SHEET: 7				
CALC. NO.: H-1-BB-ND	C-1858		REFE	RENCE:					
ORIGINATOR,DATE	REV:	4/29/00 000	OIRO						
REVIEWER/VERIFIER	,DATE	250 9/3	1/07						
6. ¼ T fluence (f) is ca	Iculated a	as follows to Reg. (Guide '	.99 [3]					
$f = f_{surf} * (e^{-0.24x})$	where	e x=distance, in inc	ches, to	o the ¼ dept	h.				
The vessel beltline I corresponding depth	ower-inte n x is 1.53	rmediate shell and inches. The abov	interm /e equa	ediate shell ation yields:	are 6.10 ir	iches thick. The			
$f(32 EFPY) = f_{surf} * (f)$	0.693) = {	5.24x10 ¹⁷ n/cm ²		for the lo	wer-interm	ediate & lower shell			
$f(32 EFPY) = f_{surf} * ($	(0.693) =	3.46x10 ¹⁷ n/cm ²		for the in	termediate	shell			
$f(32 EFPY) = f_{surf} * ($	0.693) =	2.83x10 ¹⁷ n/cm ²		for the LF	PCI nozzle				

.

	CALCI	ULATI	ON CONTIN	IUATIO	, ON SHEET: (8			
CALC. NO.: H-1-BB-NDC	-1858			REFE	RENCE:				
ORIGINATOR,DATE	REV:	NØ	9/25/00 4	OIRD					
REVIEWER/VERIFIER,I	DATE	9	50 9/2	28 4/00					_L
Estimate of 48 EFPY FI	uence:								
1. Peak vessel inside su	urface flu	ience f	for the non p	ower u	prated perio	od (e	nd of c	cycle (9)	
To determine this, us lead factor.	e the flu:	x wire i	results and e	extrapo	plate to end o	of cy	cle 9, a	adjusting with	n the
f _{surf} (end of cycle 9) = 1	flux wire	fluenc	e*(EFPY @	end of	cycle 9/EFF	PY of	f flux w	/ire)/lead fact	or
f _{surf} (end of cycle 9)	= 1.42	2x10 ¹⁷	* (10.93/6.0	1) / 1.0)1				
f _{surf} (end of cycle 9)	= 2.56	5x10 ¹⁷	n/cm²						
 Peak vessel inside su EFPY or beyond cycle 	rface flue 9)	ence fo	or the uprate	ed perio	od (beginning	g of (cycle 1	0 through 48	5
To determine this use beyond cycle 9 to 48 E	the flux EFPY.	wire re	sults, adjusi	t for the	e power upra	ate (1	1.015),	and extrapo	late
EFPY beyond cycle 9	= 48 –	EFPY	beginning c	of cycle	10				
	= 48 -	10.93	= 37.07 EFF	эγ					
f _{surf} (beyond cycle 9) = flux wire f	luence*p	ower i	uprate*(EFP	Y bey	ond cycle 9/f	lux v	vire EF	PY)/lead fac	tor
f _{surf} (beyond cycle 9)	= 1.42	×10 ¹⁷ *	1.015 * (37.	.07/6.0	1) / 1.01			,	
f _{surf} (beyond cycle 9)	= 8.80	(10 ¹⁷ n	/cm ²						

.

	CALCL	CALCULATION CONTINUATION S					ET: 8 IT'D OI	N SHEET:	9
CALC. NO.: H-1-BB-NDC	-1858		R	REFE	RENCE:	L	·		
ORIGINATOR,DATE	REV:	Mfs 9/25/0	34 07	I RD					
REVIEWER/VERIFIER,	DATE	Sker 9	134/0	0		·····			
3. Peak vessel inside s	urface flu	ence at 48 EF	Pγ						
$f_{surf}(48 EFPY) = f_{surf}$	f(end of c	ycle 9) + f _{surf} (be	eyond	cycl	e 9)				
f _{surf} (48 EFPY) = 2.5	6x10 ¹⁷ +	8.80x10 ¹⁷							
f _{surf} (48 EFPY) = 11.	36x10 ¹⁷ n	/cm ²							
This fluence represent will be conservatively	nts the pe / applied t	ak fluence, wh to the lower sh	ich oc ell (no	ccurs (, 5).	in the lowe See figure	r-inter 3-2 of	mediat f refere	e shell (no. nce [1].	4) and
4. Peak intermediate sh	ell (no. 3)) inside surface	fiuen	ice a	t 48 EFPY				
f _{surf} (48 EFPY) = pea	ık vessel i	inside surface	fluence	e (lo	wer-interme	diate	shell) *	elevation f	actor
$f_{surf}(48 EFPY) = 11.$	36x10 ¹⁷ *	0.66							
= 7.5	i0x10 ¹⁷ n/	cm²							
5. Peak LPCI nozzle ins	ide surfac	ce fluence at 4	8 EFP	Ϋ́					
f _{suff} (48 EFPY) = Pea	k interme	diate shell insi	de sur	face	fluence * a	zimuth	nal fact	or	
$f_{surf}(48 \text{ EFPY}) = 7.56$	0x10 ¹⁷ *0.	82							}
= 6.1	5x10 ¹⁷ n/c	cm ²							

•

	CALCULATION CONTINUATION SHEET SHEET: 9 CONT'D ON SHEE							st
CALC. NO.: H-1-BB-NDC	-1858		REFE	RENCE:	L			
ORIGINATOR, DATE	REV:	NES 9/27/00-	oiro					
REVIEWER/VERIFIER,	DATE	8M5 1/2	100					<u> </u>
 6. ¼ T fluence (f) is call f = f_{surf} * (e^{-0.24x}) The vessel beltline locorresponding depth 	culated a where ower-inter x is 1.53	as follows to Reg. (e x=distance, in inc rmediate shell and b inches. The abov	Guide 1 hes, to interm re equa	1.99 [3] o the ¼ dept ediate shell ation yields:	h. are 6	.10 in	ches thick. The	e
$f(48 EFPY) = f_{surf} * (0)$	0.693) = 7	⁷ .87x10 ¹⁷ n/cm ²		for the lo	wer-ir	nterme	ediate & lower :	shell
$f(48 EFPY) = f_{surf} * (0)$	0.693) = :	5.20x10 ¹⁷ n/cm ²		for the in	terme	diate	shell	
$f(48 EFPY) = f_{surf} * (0.693) = 4.26 \times 10^{17} \text{ n/cm}^2$ for the LPCI nozzle								
Conclusions:								
The above fluence value	s can be	used for the devel	onmer	it of Pressur	o Tor	nnora		

nt of Pressure Temperature curves and to evaluate upper shelf energy IAW 10CFR50, Appendix G for power uprate. No actions are necessary to support the conclusion.

Documents Affected:

None

References:

- [1] "Hope Creek 1 Generating Station RPV Surveillance Materials Testing and Fracture Toughness Analysis," General Electric report GE-NE-523-A164-1294R1, December 1997. Vendor document number 323326.
- [2] NFS 00-212, "HCGS End of Cycle 9 Effective Full Power Hours," September 25, 2000.
- [3] "Radiation Embrittlement of Reactor Vessel materials," USNRC Regulatory Guide 1.99, Revision 2, May 1988.

Revision O

Attachment 1 pase 1 of 1

To: Randy Schmidt Senior Engineer – Material/Chemistry Technology

From: Don Notigan Am Why. Engineering Supervisor - Fuels

 Subject:
 HCGS END OF CYCLE 9 EFFECTIVE FULL POWER HOURS

 Date:
 09/25/2000 NFS 00-212

In response to your request, the following information is provided.

The total effective full power hours (EFPH) from cycle 1 to end of cycle 9 is 95769 EFPH. This value was established by Westinghouse for the Cycle 10 databank utilizing the POLCA7 nodal simulator. The POLCA7 nodal simulator is and will continue to be the Core Monitoring System exposure tracking bases for HCGS.

If you have any further questions, please contact Frank Safin on extension 1265.

Reference: NFSI-2000-128, Hope Creek Cycle 10 Data Bank and Databook, 04/27/00.

FJS

FORM-1 (Page 2 of 3)

CERTIFICATION FOR DESIGN VERIFICATION

Reference No. Calc. H-1-BB-NDC-1858, R0 IRO

SUMMARY STATEMENT

Reviewed calculation in its entirety. Check the inputs and the approached used. Assumptions are conservative for the intended use. Verified the math. Thus, calculation is acceptable.

The undersigned hereby certifies (in the right column) that the design verification for the subject document has been completed, the questions from the generic checklist have been reviewed and addressed as appropriate, and all comments have been adequately incorporated.

R.W. DENIGHT Kuntu

Design Verifier Assigned By (signature of Manager/Director)

Design Verifier Assigned By (signature of Manager/Director)

Euro Malon 9/26/00

Signature of Design Verifier / Date

Signature of Design Verifier / Date

Design Verifier Assigned By (signature of Manager/Director)

Signature of Design Verifier / Date

Design Verifier Assigned By (signature of Manager/Director)

Signature of Design Verifier / Date

*If the Manager/Supervisor acts as the Design Verifier, the signature of the next higher level of technical management is required in the left column.

Page lof

Nuclear Common

Page 17 of 21

Rev. 4