Mr. Andrew Persinko, MOX Project Manager
US Nuclear Regulatory Commission
MS T8A33
Special Projects Branch
Office of Nuclear Material Safety & Safeguards
Washington, DC 20555

Subject: Transmittal of MOX Fuel Qualification Plan

Dear Mr. Persinko:

The U.S. Department of Energy (DOE) has contracted with Duke COGEMA Stone & Webster (DCS) to dispose of a significant portion of the nation’s surplus weapons-grade plutonium by fabricating the plutonium into mixed-oxide (MOX) fuel and irradiating that fuel in commercial light water reactors. Under this contract, DCS has prepared and submitted to DOE a Fuel Qualification Plan (FQP) that provides the basis for qualifying the MOX fuel to meet DOE objectives and NRC requirements.

On June 28, 2000, several NRC staff members from the research and regulatory branches held a telephone conference with DCS and DOE to discuss the MOX project and the fuel qualification effort. As a result of that conference, DCS agreed to provide the NRC with the Fuel Qualification Plan to aid in the NRC’s understanding of the program. Enclosed you will find one copy of this Fuel Qualification Plan.

This plan establishes the overall strategy for fuel qualification, and the process and schedule to implement this strategy. The strategy is based on the application of extensive European experience to a proven fuel assembly design, confirmed by irradiation of lead assemblies with prototypical fuel in one of the mission reactors. The fuel fabrication process will utilize aqueous polishing to remove impurities, most notably gallium, to ensure that the MOX fuel produced for the Materials Disposition program is consistent with the European data base.

The Fuel Qualification Plan includes lead assembly fabrication at the Los Alamos National Laboratory. However, as has been publicly noted by DOE, the decision has been made not to fabricate the lead assemblies at LANL. Therefore, DCS is evaluating other alternatives, and the plan will change once an alternative is selected. It is expected that the selected alternative will preserve the fuel qualification schedule and will require only the fabrication portion of the FQP to be changed.
While the lead assembly fabrication portion of the FQP will be revised, this document is being provided to you at this time to introduce our strategy for qualifying MOX fuel and to serve as a basis for future interactions between DCS and the NRC staff. Please feel free to call me at (804) 832-3218 or Larry Losh at (804) 832-3603 with any questions concerning this plan.

Sincerely,

George A. Meyer
Fuel Qualification Manager

GAM:cec
Attachment
cc w/o att: J. Thompson, DOE
R. Ihde, DCS
N. Jain, DCS
R. Clark, DCS
T. Coleman, FCF
G. Urquhart, FCF
S. Bailey, NRC/NRR

c w/att: J. Wilson, NRC/NRR
R. Lee, NRC/RES
M. Chatterton, NRC/NRR
Fuel Qualification Plan

Prepared for:
U.S. Department of Energy
Office of Material Disposition

On Behalf of:

DUKE COGEMA
STONE & WEBSTER

Under Contract Number:
DE-AC02-99CH10888

DCS Document Number: DCS-FQ-1999-001, Rev 1
FCF Document Number: 77-5005775-01

January 2000
This Page
Intentionally Left Blank
SUMMARY

The U.S. Department of Energy (DOE) has contracted with Duke COGEMA Stone & Webster (DCS) to qualify mixed oxide (MOX) fuel for disposition of surplus weapons-grade (WG) plutonium.

The overall Strategy for this fuel qualification effort is based on the application of extensive European experience to a proven fuel assembly design and confirmed with a lead assembly irradiation with prototypical fuel in one of the mission reactors. Fabrication uses the COGEMA/BELGONUCLEAIRE developed Micronized MASTer blend (MIMAS) process currently supplying MOX fuel to 32 reactors in Europe. The manufacturing process will utilize aqueous polishing to remove impurities, most notably gallium, to ensure that the MOX fuel produced for the Materials Disposition (MD) program is consistent with the European data base.

This Fuel Qualification Plan has been prepared to outline the step-by-step process to be followed for implementing this Strategy. Through these steps, the Fuel Qualification Plan addresses the issues associated with implementation of MOX fuel at the mission reactors and defines the technical approach to resolving those issues.

The process for qualifying the MOX fuel for mission reactor implementation consists of the following steps:

1. Development of the MOX Fuel Pellet Specification

Based on the Framatome MOX European experience and the FCF UO₂ experience, a MOX pellet specification will be prepared addressing the issues associated with weapons grade plutonium versus reactor grade plutonium, i.e. isotopics and impurities (gallium).

2. Analysis of Mark-BW Fuel Assembly with MOX Pellets

The MOX pellet design will be used to design a fuel rod for the Mark-BW/1 fuel assembly, FCF’s adaptation of the proven Advanced Mark-BW fuel design for MOX applications. Only the fuel rod design will change to accommodate the MOX pellet; all other external (to the fuel rod) dimensions, materials, and specifications will remain the same as the UO₂ version of the Advanced Mark-BW. Use of the Mark-BW/1 design ensures that the qualification effort can focus on the MOX application only. A complete Technical File for the Mark-BW/1 will be prepared reflecting the fuel rod design change. This information will be provided to the mission reactor utilities and the fabrication facilities as a Design Interface Document. Analyses of the Mark-BW/1 will be performed to confirm performance.
3. Core Performance and Safety Evaluations

Having confirmed the fuel assembly performance with MOX pellets, the qualification process will next evaluate the mission reactor core performance operating with the Mark-BW/MOXI assembly. The core evaluations will be performed by the mission reactor utilities, supported by the extensive European experimental database and operating experience. The plutonium disposition objective will be accomplished with a maximum fuel assembly burnup of 45,000 MWd/MThm and a maximum fuel rod burnup of 50,000 MWd/MThm. In addition to these modest burnup requirements, NRC approval will be aided by a schedule that focuses on early submittal of licensing documentation with allowance for extended reviews.

4. Confirmation through Lead Assembly Program

The scope of the Lead Assembly Program includes fabrication using the proven MIMAS process from Europe, shipping, irradiation and post-irradiation examinations. Two lead assemblies will be supplied to Duke Power’s McGuire Nuclear Station, Unit 2, for irradiation starting in October 2003. The lead assemblies will confirm the acceptability of the Mark-BW/MOXI for certification of the mission reactor fuel for batch implementation. The lead assemblies will also help to address: 1) use of weapons grade versus reactor grade plutonium, 2) operation with trace levels of impurities including gallium, 3) U.S. reactor operating conditions versus the European experience, 4) MOX fuel assembly neutronic response, and 5) licensing. Fabrication and delivery of the lead assemblies will provide the opportunity to demonstrate successful transition of the MIMAS process to the U.S. and all infrastructure issues associated with transportation, receipt, inspection, handling, safeguards, security, storage, and loading of the Mark-BW/MOXI, in advance of batch deliveries.

5. Certification and Mission Reactor Implementation

Having confirmed the expected performance of the Mark-BW/MOXI, the final step in the qualification process will be the Certification of Qualification for subsequent implementation of the MOX fuel on a batch basis in the mission reactors. Design and fabrication of the mission reactor fuel will be based on the same drawings, specifications and manufacturing processes as the Lead Assemblies to ensure that the fuel product for batch implementation is prototypical of the Lead Assemblies and the European MOX fuel.

Certification of completion of the Fuel Qualification Plan will be issued by October 2006, based on successful completion of the poolside examination of the lead assemblies following their second cycle of irradiation. This certification schedule supports the DOE requirement for batch irradiation to begin in 2007.
CONTENTS

1. INTRODUCTION ... 1

2. OBJECTIVES ... 2

 2.1 Material Disposition Program .. 2
 2.2 Fuel Qualification Plan ... 2

3. FUEL QUALIFICATION STRATEGY .. 3

4. FUEL QUALIFICATION PROCESS ... 4

 4.1 Process Steps ... 4
 4.2 Schedule .. 5
 4.3 Roles and Responsibilities .. 6
 4.4 Assumptions ... 7
 4.5 Interface with Other Program Elements 7

5. MOX FUEL PELLET SPECIFICATION 11

 5.1 Mixed Oxide Fuel .. 11
 5.2 Weapons Grade Plutonium versus Reactor Grade Plutonium 11
 5.3 Specification .. 14

6. DESIGN AND ANALYSIS OF MARK-BW/MOX1 19

 6.1 Fuel Rod Design ... 19
 6.2 Utility Operating Information ... 20
 6.3 Analytical Tools ... 20

7. CORE PERFORMANCE AND SAFETY EVALUATIONS 30

 7.1 Performance/Safety Evaluation .. 30
 7.2 Domestic Experience .. 40
 7.3 European MOX Experience ... 45
 7.4 NRC Interactions .. 51
 7.5 Technical Issues ... 52

8. CONFIRMATION - LEAD ASSEMBLY PROGRAM 67

 8.1 Purpose ... 67
 8.2 Design Description .. 69
 8.3 Fabrication ... 69
 8.4 Lead Assembly Shipment .. 81
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Lead Assembly Approval</td>
<td>81</td>
</tr>
<tr>
<td>8.6</td>
<td>Irradiation Plan</td>
<td>81</td>
</tr>
<tr>
<td>8.7</td>
<td>Fuel Examinations</td>
<td>82</td>
</tr>
<tr>
<td>9.</td>
<td>MOX FUEL IMPLEMENTATION</td>
<td>88</td>
</tr>
<tr>
<td>9.1</td>
<td>Production Design and Processes</td>
<td>88</td>
</tr>
<tr>
<td>9.2</td>
<td>Fuel Design Change Control</td>
<td>88</td>
</tr>
<tr>
<td>9.3</td>
<td>Shipping</td>
<td>89</td>
</tr>
<tr>
<td>9.4</td>
<td>Handling and Storage</td>
<td>89</td>
</tr>
<tr>
<td>9.5</td>
<td>Security and Safeguards</td>
<td>90</td>
</tr>
<tr>
<td>10.</td>
<td>CONCLUSION</td>
<td>92</td>
</tr>
<tr>
<td>10.1</td>
<td>Action Plan</td>
<td>92</td>
</tr>
<tr>
<td>10.2</td>
<td>Certification of Fuel Qualification</td>
<td>93</td>
</tr>
<tr>
<td>Appendix A</td>
<td>QUALIFIED FUEL DESIGN</td>
<td>94</td>
</tr>
<tr>
<td>A.1</td>
<td>Design Description</td>
<td>94</td>
</tr>
<tr>
<td>A.2</td>
<td>Qualification Testing</td>
<td>98</td>
</tr>
<tr>
<td>A.3</td>
<td>Operating Experience</td>
<td>99</td>
</tr>
<tr>
<td>A.4</td>
<td>Compatibility</td>
<td>100</td>
</tr>
<tr>
<td>Appendix B</td>
<td>DOMESTIC MOX EXPERIENCE</td>
<td>111</td>
</tr>
<tr>
<td>B.1</td>
<td>Saxton</td>
<td>111</td>
</tr>
<tr>
<td>B.2</td>
<td>Commercial PWR Irradiations</td>
<td>111</td>
</tr>
<tr>
<td>B.3</td>
<td>GETR Tests</td>
<td>111</td>
</tr>
<tr>
<td>B.4</td>
<td>INEEL ATR Tests</td>
<td>112</td>
</tr>
<tr>
<td>Appendix C</td>
<td>MOX PELLET SPECIFICATION</td>
<td>113</td>
</tr>
</tbody>
</table>
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-1</td>
<td>Milestone Schedule</td>
<td>10</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>MOX Fission Gas Release</td>
<td>26</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>Nuclear Code Benchmarks</td>
<td>27</td>
</tr>
<tr>
<td>Figure 7-1</td>
<td>Mark-BW/MOX1 Fuel Assembly Design</td>
<td>60</td>
</tr>
<tr>
<td>Figure 7-2</td>
<td>Mark-BW Burnup Experience</td>
<td>61</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>MIMAS Flow Diagram</td>
<td>86</td>
</tr>
<tr>
<td>Figure A-1</td>
<td>Mark-BW/MOX1 Fuel Assembly</td>
<td>101</td>
</tr>
<tr>
<td>Figure A-2</td>
<td>Zircaloy Intermediate Spacer Grid Features</td>
<td>102</td>
</tr>
<tr>
<td>Figure A-3</td>
<td>Mid-Span Mixing Grid Features</td>
<td>103</td>
</tr>
<tr>
<td>Figure A-4</td>
<td>Mark-BW/MOX1 Upper Nozzle</td>
<td>104</td>
</tr>
<tr>
<td>Figure A-5</td>
<td>Mark-BW/MOX1 Lower Nozzle</td>
<td>105</td>
</tr>
<tr>
<td>Figure A-6</td>
<td>Mark-BW/MOX1 Fuel Rod Design</td>
<td>106</td>
</tr>
<tr>
<td>Figure A-7</td>
<td>Cladding Corrosion</td>
<td>107</td>
</tr>
<tr>
<td>Figure A-8</td>
<td>BPRA Design</td>
<td>108</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5-1</td>
<td>Comparison of Uranium Based and MOX Fuel (WG) Isotopics</td>
<td>16</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Typical Plutonium Isotopics (wt %)</td>
<td>17</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Typical Plutonium Isotopics (wt%) Acceptable Ranges</td>
<td>18</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Mark-BW/MOX1 Design Summary</td>
<td>28</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>MOX Fuel Criticality Experiments</td>
<td>29</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Lead Assembly Experience</td>
<td>62</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>French MOX Qualification Program</td>
<td>63</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>European Plants using MOX from MIMAS Process</td>
<td>64</td>
</tr>
<tr>
<td>Table 7-4</td>
<td>European MOX Burnup Experience</td>
<td>65</td>
</tr>
<tr>
<td>Table 7-5</td>
<td>Fuel Qualification Licensing Submittals</td>
<td>66</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Lead Assembly Poolside Post Irradiation Examination</td>
<td>87</td>
</tr>
<tr>
<td>Table A-1</td>
<td>Mark-BW Qualification Testing</td>
<td>109</td>
</tr>
<tr>
<td>Table A-2</td>
<td>Summary of M5TM Irradiation Experience</td>
<td>110</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADU</td>
<td>Ammonium diuranate</td>
</tr>
<tr>
<td>APT</td>
<td>Average Power Test</td>
</tr>
<tr>
<td>ATR</td>
<td>Advanced Test Reactor</td>
</tr>
<tr>
<td>AUC</td>
<td>Ammonium uranyl carbonate</td>
</tr>
<tr>
<td>AOA</td>
<td>Axial offset anomaly</td>
</tr>
<tr>
<td>BN</td>
<td>BELGONUCLEAIRE</td>
</tr>
<tr>
<td>BOC</td>
<td>Beginning-of-cycle</td>
</tr>
<tr>
<td>BP</td>
<td>Burnable poison</td>
</tr>
<tr>
<td>BPRA</td>
<td>Burnable poison rod assembly</td>
</tr>
<tr>
<td>DCP</td>
<td>Distinctive CRUD pattern</td>
</tr>
<tr>
<td>DCS</td>
<td>Duke COGEMA Stone & Webster</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>EDF</td>
<td>Electricité de France</td>
</tr>
<tr>
<td>EOC</td>
<td>End-of-cycle</td>
</tr>
<tr>
<td>FCF</td>
<td>Framatome Cogema Fuels</td>
</tr>
<tr>
<td>FRA</td>
<td>Framatome</td>
</tr>
<tr>
<td>GWd/MThm</td>
<td>Gigawatt-Days per metric ton of heavy metal</td>
</tr>
<tr>
<td>HFP</td>
<td>Hot full power</td>
</tr>
<tr>
<td>Hm</td>
<td>Heavy metal – plutonium plus uranium isotopes</td>
</tr>
<tr>
<td>HZP</td>
<td>Hot zero power</td>
</tr>
<tr>
<td>IFBA</td>
<td>Integral Fuel Burnable Absorber</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LEU</td>
<td>low enriched uranium</td>
</tr>
<tr>
<td>MD</td>
<td>material disposition (program)</td>
</tr>
<tr>
<td>MFFF</td>
<td>MOX fuel fabrication facility</td>
</tr>
<tr>
<td>MFFP</td>
<td>MOX fresh fuel package (shipping)</td>
</tr>
<tr>
<td>MIMAS</td>
<td>Micronized master blend</td>
</tr>
<tr>
<td>MOX</td>
<td>Mixed Oxide-uranium dioxide and plutonium dioxide</td>
</tr>
<tr>
<td>MSMG</td>
<td>Mid-span mixing grid</td>
</tr>
<tr>
<td>MThm</td>
<td>Metric tons of heavy metal</td>
</tr>
<tr>
<td>MWd/MThm</td>
<td>Megawatt-Days per metric ton of heavy metal</td>
</tr>
<tr>
<td>NRC</td>
<td>Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>PCI</td>
<td>Pellet-clad interaction</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>RG</td>
<td>Reactor grade (plutonium)</td>
</tr>
<tr>
<td>SOW</td>
<td>Statement of Work</td>
</tr>
<tr>
<td>SGT</td>
<td>Safeguards Transporter</td>
</tr>
<tr>
<td>T</td>
<td>Tonne – 1000 kg</td>
</tr>
<tr>
<td>WG</td>
<td>Weapons grade (plutonium)</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The U.S. Department of Energy (DOE) has recommended that a significant portion of the nation’s surplus weapons-grade plutonium be disposed of by reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning in commercial light water reactors. Accordingly, the DOE has contracted with Duke-COGEMA-Stone & Webster (DCS) to design and license the MOX fuel, fabricate lead assemblies, irradiate the lead assemblies, and ultimately qualify the design for batch irradiation starting in 2007.

The DCS team performing the qualification brings together the experience and expertise of Duke Engineering, COGEMA, Stone & Webster, Framatome Cogema Fuels (FCF), Duke Power, and Virginia Power, with the support of Framatome (FRA), Electricité de France (EDF), and BELGONUCLEAIRE (BN).

Fuel Qualification Strategy

The overall Strategy for Fuel Qualification is based on the application of extensive European experience to a proven fuel assembly design and confirmed with a lead assembly irradiation of prototypical fuel in one of the mission reactors.

Fuel Qualification Process

This Fuel Qualification Plan outlines the step-by-step process to be followed for implementing the Strategy presented above. The process for fuel qualification consists of the tasks to be performed in qualifying the fuel for disposition of the weapons grade plutonium in the mission reactors. Through these steps, the Fuel Qualification Plan addresses the issues associated with implementation of MOX fuel in the U.S. and the technical approach to resolving those issues.

Fuel Assembly Design Designation

The MOX fuel assembly to be qualified is designated the Mark-BW/MOX1, FCF’s Advanced Mark-BW fuel assembly design modified only for the internal fuel rod design to accommodate MOX fuel pellets.

The organization of this document follows the process steps for qualifying the MOX fuel for use in the mission reactors: Section 2 lists the objectives of the DOE program and the objectives of the fuel qualification effort. Section 3 summarizes the Strategy for fuel qualification and the assumptions necessary for implementation. The Process steps are summarized in Section 4, including the roles and responsibilities of the DCS team members for performing these tasks, and the schedule for implementation; the details of each process step are provided in Sections 5-9. Section 10 provides the Conclusion, with an Action Plan leading to a Certification of Fuel Qualification. Appendices are provided for technical detail and supporting documentation.
2. OBJECTIVES

2.1 Material Disposition Program

The overall objective of the DOE MOX Fuel Project is to transform 33 metric tons of the nation's surplus weapons grade plutonium into a form that meets the spent fuel standard by irradiation in commercial light water reactors by 2022. To accomplish this objective the irradiation in the six mission reactors of the DCS team must begin with batch deployment by 2007, with all fuel achieving one cycle of operation and a burnup of 20,000 MWh/MThm by 2022.

To achieve these objectives the Mark-BW/MOX1 must be certified for batch implementation during 2006, the year prior to the loading of the first production batch. The process by which the fuel is certified as fully qualified for this mission is detailed in this Fuel Qualification Plan.

2.2 Fuel Qualification Plan

The objective of the Fuel Qualification Plan is to demonstrate the safe and reliable operation of the fuel design that will be used for the disposition of the weapons-grade (WG) plutonium. The program will establish for the public, the NRC, DOE, Duke Power, and Virginia Power, that operation of the Mark-BW/MOX1 in a commercial nuclear reactor will be acceptable from a public safety, regulatory, and performance perspective. The Fuel Qualification Plan will confirm that all aspects of the fuel rod design, fuel assembly design, and fuel fabrication process will provide reliable, safe operation, comparable to equivalent UO2 designs.
3. FUEL QUALIFICATION STRATEGY

The overall Strategy for the qualification effort is based on the extensive European experience applied to a proven fuel assembly design and confirmed with a lead assembly irradiation with prototypical fuel in one of the mission reactors.

- Through the DCS team, the extensive European experience and technology gained in designing, fabricating and irradiating MOX fuel in commercial pressurized water reactors (PWRs) is transferred to the U.S. where it is applied to a proven fuel assembly design. The use of an existing, proven fuel assembly design as the platform for the introduction of the MOX pellet will allow qualification efforts to focus specifically on the MOX pellet.

- Fabrication processes developed by COGEMA/ BELGONUCLEAIRE will be replicated in the U.S. facilities for producing the MOX fuel. Use of this proven MIcronized MASter blend (MIMAS) process for producing the MOX fuel pellets ensures that the performance of the U.S. produced MOX fuel is consistent with the European data base.

- The fabrication process for the WG material includes an aqueous polishing step to remove impurities, most notably gallium. The use of polished plutonium ensures that the MOX fuel produced with the MIMAS process in the U.S. with WG plutonium is consistent with the MOX fuel produced and irradiated in Europe. This direct link to the European MOX fuel ensures the materials and operational data from Europe are applicable to the U.S. program.

- Confirmation of the MOX fuel fabrication processes, licensing and performance is obtained through the fabrication, shipment, irradiation and post-irradiation examination of Lead Assemblies.

This Fuel Qualification Plan details the steps to be followed in meeting the objectives based on this overriding Strategy.
4. FUEL QUALIFICATION PROCESS

The steps to qualify the Mark-BW/MOX1 for use in mission reactors are summarized below and detailed in the following Sections (Section 5.0 – 9.0). In addition to summarizing the process steps, this section provides the overall schedule for completing these tasks and lists the DCS team member responsible for each task. Assumptions required for successful completion of the qualification effort are also detailed.

4.1 Process Steps

4.1.1 Develop MOX Fuel Pellet Specification

Based on the COGEMA/Framatome European MOX experience and the FCF UO₂ experience, a MOX pellet specification will be prepared addressing the issues associated with weapons grade plutonium versus reactor grade plutonium, i.e. isotopics and specific impurities (gallium).

4.1.2 Analysis of Mark-BW/MOX1

The MOX pellet design will be used to design a fuel rod for the Mark-BW/MOX1. Only the fuel rod design will change to accommodate the MOX pellet; all other external (to the fuel rod) dimensions, materials, and specifications will remain the same as the UO₂ version of the Advanced Mark-BW. A complete Technical File for the Mark-BW/MOX1 will be prepared reflecting the fuel rod design change and provided to the mission reactor utilities and the fabrication facilities as a design interface document. Analyses of the Mark-BW/MOX1 will be performed to confirm the performance.

4.1.3 Core Performance and Safety Evaluations

Having confirmed the fuel assembly performance with MOX pellets, the qualification process next evaluates the mission reactor core performance, operating with the Mark-BW/MOX1 assembly. The core evaluations will be performed by the mission reactor utilities, supported by the extensive European experimental database and operating experience.

4.1.4 Confirmation through Lead Assembly Program

Confirmation of the licensing basis for the Mark-BW/MOX1 operating in the mission reactor core will be obtained through a Lead Assembly Program. The scope of the Lead Assembly Program includes fabrication of two (2) Mark-BW/MOX1 fuel assemblies using the proven MIMAS process from Europe, shipping, irradiation, and post-irradiation examinations.
4.1.5 Certification and Mission Reactor Implementation

Having confirmed the performance and licensing basis of the MOX fuel design, the final step in the confirmation process is the Certification of Qualification for subsequent implementation of the MOX fuel on a batch basis in the mission reactors.

4.2 Schedule

An integrated milestone schedule for the execution of this Fuel Qualification Plan is shown in Figure 4-1.

4.2.1 Design and Licensing

Key milestones in the design and analysis process include:

- Complete WG MOX Pellet Specification
- Submit COPERNIC MOX Addendum to NRC
- Complete Design Technical File
- Submit LOCA EM MOX Addendum to NRC
- Submit CASMO4/SIMULATE-3 MOX to NRC
- Submit Fuel Design Topical with LA Add. to NRC
- Submit McGuire 2 License Amend. Request to NRC
- Issue Final Design Interface Document
- Submit Virginia Power Rod Eject. Topical to NRC
- Submit Virginia Power PDQ Topical to NRC
- Submit Duke Power Multi-Dimensional Transient Analysis Topical to NRC

- February 2000
- August 2000
- November 2000
- August 2001
- August 2001
- August 2001
- August 2001
- July 2002
- July 2002
- July 2002
- August 2003
- September 2002
- November 2002

4.2.2 Lead Assembly

The schedule for activities supporting the Lead Assembly program are shown below:

4.2.2.1 Fabrication

- Complete Host Site facility modification
- Complete Host Site facility qualification
- Complete LA pellet qualification
- Complete LA pellet fabrication
- Complete LA fuel assembly qualification
- Complete LA certification
- Complete LA shipment

- December 2001
- June 2002
- October 2002
- March 2003
- May 2003
- July 2003
- August 2003
4.2.2.2 Irradiation

Start LA irradiation
Complete 1st cycle irradiation
Start LA 2nd cycle irradiation
Complete 2nd cycle irradiation
October 2003
March 2005
April 2005
September 2006

4.2.2.3 Examinations

Perform 1st cycle poolside PIE
Perform 2nd cycle poolside PIE
March 2005
September 2006

4.2.3 Certification

Certification of completion of the Fuel Qualification Plan will be issued upon completion of the second cycle PIE on the Lead Assemblies and analysis of the results.

Certification for Batch Implementation
October 2006

4.2.4 Post-Fuel Qualification/Certification Activities

Start LA 3rd cycle irradiation
Complete 3rd cycle irradiation
Perform 3rd cycle poolside PIE
Rod extraction and shipment to hot cell
Completion of hot cell PIE on 3rd cycle LA rods
October 2006
March 2008
March 2008
November 2008
November 2009

4.3 Roles and Responsibilities

DCS will address the steps of the Fuel Qualification Process with the resources of its entire team. The team members responsible for each task, and the supporting organizations, are listed below:

<table>
<thead>
<tr>
<th>Task</th>
<th>Responsible Team Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination and Interface Fuel Qualification</td>
<td>Duke COGEMA Stone & Webster</td>
</tr>
<tr>
<td>Provide MOX Fuel Fabrication Technology</td>
<td>Framatome Cogema Fuels</td>
</tr>
<tr>
<td>Provide MOX Fuel Design Experience</td>
<td>COGEMA/ BELGONUCLEAIRE</td>
</tr>
<tr>
<td>Provide MOX Fuel Operating Experience</td>
<td>Framatome</td>
</tr>
<tr>
<td>Fabricate Lead Assembly (LA)</td>
<td>Framatome/Electricité de France</td>
</tr>
<tr>
<td>Perform LA Irradiation</td>
<td>Framatome Cogema Fuels</td>
</tr>
<tr>
<td></td>
<td>Duke Power</td>
</tr>
</tbody>
</table>
4.4 Assumptions

The work scope and schedule planned for the Fuel Qualification effort are based on the following assumptions:

- The schedules developed for LA fabrication were based on a Record of Decision (ROD) confirming Los Alamos National Laboratory (LANL) as the selection as Host Site for Lead Assembly fabrication being issued by November 15, 1999. The ROD was issued January 4, 2000; it is assumed that this delay in issuing the ROD will not impact the LA fabrication schedules.

- The fuel performance code COPERNIC will be reviewed by the NRC for UO₂ application prior to the submittal of the MOX topical report addendum.

- The Fuel Qualification certification schedule assumes that the host reactor for Lead Assembly (LA) irradiation (McGuire Unit 2) completes two cycles of operation, following Lead Assembly insertion, prior to the end of 2006.

- The Department of Energy (DOE) will supply polished PuO₂ powder that meets the technical requirements of the fuel specification.

- The DOE will supply polished PuO₂ powder on a schedule that meets the requirements of the Lead Assembly fabrication schedule.

- The WG plutonium to be used for the LAs or mission reactor fuel contains no contaminants that will not be reduced to acceptable levels by the polishing process.

- The NRC will issue the necessary license amendment for McGuire Unit 2 to allow lead assembly irradiation.

4.5 Interface with Other Program Elements

Fuel qualification is broadly described as those activities that must be accomplished in order to meet the host site utilities’ requirements and NRC requirements. Thus, fuel qualification involves fuel shipping, reactor licensing, and fuel irradiation activities as well as fuel qualification activities. These other elements of the DCS project integrate with the fuel qualification effort as outlined below:

4.5.1 Mission Reactor Irradiation Plan

Concurrent with the release of the Fuel Qualification Plan, DCS will issue a Mission Reactor Irradiation Plan to detail the utilities’ plans to use MOX fuel starting in 2007. The primary interface between the Mission Reactor Irradiation Plan and the Fuel Qualification Plan is that fuel qualification must be successfully performed in order to implement the Irradiation Plan. Certification of completion of the Qualification Plan must be provided by October 2006 in order to support the Irradiation Plan’s schedule for disposal of the surplus WG material. This Certification will allow the host utilities to proceed with the
Irradiation Plan, pending NRC issuance of a site-specific license amendment for each mission reactor.

Completion of the Fuel Qualification efforts requires the coordination of activities with the host utilities. As noted in the Mission Reactor Irradiation Plan, the fuel performance objectives are provided by the utilities. Through the fuel cycle design process, the utilities will specify the plutonium loading for the fuel assembly, the loading for each of the enrichment zones within the fuel assembly, the boron concentration for the BPRAs and the number and location of the individual pins within the BPRA.

The fuel assembly design details used by the utilities to perform the core design is specified in the Design Interface Document, which also specifies to the utilities any limits of operation derived from calculations on fuel performance using the COPERNIC code. This Design Interface Document is also supplied to the fabrication facility to ensure that all parties utilize identical information for the design and fabrication of the fuel.

The utilities have the responsibility to benchmark and verify their neutronic codes for application to MOX fuel, and have that methodology approved by the NRC. This activity by the utilities is a necessary step in the overall Fuel Qualification process.

4.5.2 Mission Reactor Licensing Plan

The DCS team will issue a Mission Reactor Licensing Plan in August, 2000, detailing the steps to be taken by the utilities in licensing the mission reactors for MOX fuel implementation. The non-LOCA safety analyses performed in support of the batch implementation of the Mark-BW/MOX1 will be included in this plan. Although not necessary for lead assembly approval, NRC approval of these analyses supports the overall fuel qualification effort. The utilities' plans for handling, storage, safeguards and security for the Mark-BW/MOX1, both for lead assemblies and batch implementation, will be detailed. The Design Interface Document, produced as a part of the fuel qualification effort, will provide the utility with the Mark-BW/MOX1 design details and operating limits for performing the safety analyses.

4.5.3 Special Nuclear Material (SNM) Transportation and Integration Plan

Plans for shipping the Mark-BW/MOX1 are detailed in the DCS document, SNM Transportation Integration Management Plan, released November 17, 1999 (TNY-TD-001). These plans support the fuel qualification effort by assuring that the fresh fuel shipping package is designed, fabricated, tested and licensed on a schedule to support the Certification of completion of the Fuel Qualification Plan. The Design Interface Document produced under the fuel qualification
effort will provide the DCS team member, TransNuclear/Pac-Tec, with the required Mark-BW/MOX1 interface requirements.

4.5.4 MOX Fuel Fabrication Facility Design

The design of the MOX Fuel Fabrication Facility (MFFF) will use Mark-BW/MOX1 design specifications and drawings to ensure that the manufactured product meets all technical requirements. The Design Interface Document produced under the fuel qualification effort will be provided to the MFFF designers to ensure consistency with the lead assemblies produced at LANL, and to maintain consistency with the European database. Also, the Fuel Fabrication Manager for the Lead Assembly fabrication works under the direction and guidance of the MFFF Process Manager regarding issues of fuel design and prototypicality.
Figure 4-1 Milestone Schedule

Implementation of Fuel Qualification Plan

- Complete All Design and Analysis
- Submit Topical Report(s) to NRC
- Procure, Supply, Install, Checkout Equipment and Qualify All Process for Lead Assembly Fabrication
- Complete Core Design
- Fabricate Lead Assemblies
- Deliver Lead Assemblies to McGuire
- Start Lead Assembly Irradiation M2C16
- Complete 1st Cycle Irradiation and PIE
- Initial Decision to Proceed with Batch Implementation
- Complete 2nd Cycle Irradiation and PIE
- Final Decision to Proceed with Batch Implementation
- Certificate of Successful Completion of Fuel Qualification Plan

MOX Fuel Fabrication Facility

- Preliminary Design Data Package (PD)
- Final Design Packages

Irradiation Services

- Submit Mission Reactors Irradiation Plan
- Submit Mission Reactors Licensing Plan

MOX Fuel Packaging & Transportation Services

- MOX Fresh Fuel Package Certification Plan
- SNM Transportation Integration Mgmnt Plan
- MOX FF Pkg Certificate of Compliance
5. MOX FUEL PELLET SPECIFICATION

Development of a specification for the MOX fuel pellet design is the first step in the Fuel Qualification Process. This specification is derived from the Framatome specification for MOX pellets used with COGEMA supplied MOX fuel in Europe using the MIMAS process. Since the MIMAS process will be replicated in the U.S. fabrication facilities for the MD program, this European experience is directly applicable.

The European specification must be adapted to the weapons grade plutonium being supplied by DOE. The following section details the modifications necessary to the Framatome specification to accommodate the WG material. As background information, the general issues associated with mixed oxide fuel relative to uranium based fuels are discussed, and the differences between WG and RG material are presented. The final product of this step in the qualification process is the preparation of the Mark-BW/MOX1 pellet specification, as detailed in Section 5.3.3.

5.1 Mixed Oxide Fuel

Mixed oxide (MOX) fuel is an intimate mixture of PuO$_2$ in a depleted or natural uranium matrix. With UO$_2$ fuel the fissionable component is provided by U-235. The U-235 concentration is specified by the fuel designer and produced through the enrichment process. With MOX fuel, the Pu-239 isotope provides most of the fissionable component. This concentration is also determined by the fuel designer, but the quantity of PuO$_2$ added is controlled by the pellet manufacturing process.

When inserted into the reactor, uranium based fuel operates as mixed oxide fuel soon after irradiation begins due to the generation and subsequent burning of plutonium. Both fuels, uranium based as well as MOX, are primarily U-238, as shown in Table 5-1. At Beginning-of-Life (BOL) the uranium fuel has no plutonium, but by the End-of-Life (EOL) the uranium fuel is producing a significant portion (about 30%) of its power from the plutonium that has been generated during operation. Thus, uranium and MOX fuels are quite similar, with physical characteristics that are virtually identical. However, there are differences in isotopics and properties that affect performance; these differences have been successfully addressed, as evidenced by the extensive European experience with MOX fuel in commercial reactors.

5.2 Weapons Grade Plutonium versus Reactor Grade Plutonium

The MOX fuel produced from weapons-grade material will be virtually identical to the fuel produced from reactor-grade material in terms of physical characteristics and performance. The major differences between the materials, and the issues these differences introduce, are discussed below.
5.2.1 Plutonium Isotopics

Reactor-grade plutonium is produced from reprocessed spent LWR uranium based fuel that has been irradiated to commercial burnups, typically in the range of 30 to 50 GWd/MTU. The plutonium isotopes produced at these burnups, and extracted following irradiation, include significant percentages of Pu-240 and Pu-242. The weapons-grade plutonium is created from irradiating U-238 to very low burnups, with the isotopes separated to produce a different isotopic mix. Whereas the RG material typically has 24% Pu-240, the WG material is limited to less than 7% Pu-240. These differences in isotopics are readily addressed through the appropriate analytical model, as discussed in the sections on modeling and verification. See Table 5-2 for typical plutonium isotopic composition of WG and RG material.

The use of WG plutonium significantly reduces the PuO₂ content of MOX fuel relative to RG material. The WG material is about 95% fissile, whereas the RG material contains significant amounts of absorber isotopes (Pu-240, Pu-242). Thus, MOX fuel from RG material can require Pu contents as high as 8% to 9%.

The use of WG plutonium significantly reduces the radioactivity of MOX pellets relative to RG material. As noted above, the WG material allows a reduction in the PuO₂ content. Furthermore, the WG material contains much smaller levels of the main n-emitters – Pu-238, Am-241, and Pu-240 – than the RG material. Thus the neutron dose from WG material is significantly reduced compared to the RG material. In a similar manner the heating due to the alpha activity, primarily from Pu-238 and Am-241, and the gamma dose rates from these two isotopes are significantly smaller for WG MOX pellets compared to the RG material.

5.2.2 Impurities

The use of alloying materials in the production of plutonium metals for weapons creates a second major difference between the WG and RG materials. Such alloying elements would appear as impurities in WG plutonium dioxide powder when used for LWR operation if the elements were not first removed from the plutonium metal. The impurity identified as the one of most concern is gallium because it is known to react with a number of metals and alloys including zirconium. The WG material being supplied for the plutonium disposition mission will contain gallium, at a maximum concentration of 1.2%.

Gallium and other impurities will be effectively eliminated through the use of an aqueous polishing process step added to the manufacturing process being used to produce the MOX fuel. The solvent extraction or ion-
exchange polishing operation is expected to produce purity levels for the WG material consistent with that of the RG material. A discussion of the gallium levels achieved with this process, and the gallium levels found in normal operating uranium fuels and RG MOX fuels is provided in Section 7.5.

5.2.3 Pellet Microstructure

Uranium dioxide fuel is enriched in the U-235 isotope, an operation that occurs on a molecular scale. Homogeneity of the product is thus guaranteed on a very fine scale since the enrichment operation is in the gaseous phase. Metallographic examinations of sintered UO₂ pellets will thus show very uniform appearances and grain sizes. By contrast, MOX manufactured by the MIMAS process involves blending and milling of UO₂ and PuO₂ powders (master mix) and then dilution of the master mix with more UO₂ to reach the final Pu content. The products of this process are not as homogeneous as the UO₂ pellet on a micro-scale although they approximate to the same condition on a macro-scale. Microscopic examination of MOX pellets shows Pu finely dispersed in a UO₂ matrix and micron size islands of Pu rich particles. The particles are not pure PuO₂ particles but master mix particles with a maximum Pu content determined by the ratio of UO₂ to PuO₂ in the master mix. For reactor grade plutonium used in Europe, this ratio is typically 70/30. Due to the different isotopics the weapons grade material will have a fissile content approximately 50% greater than that of the reactor grade material. Therefore, this ratio will be changed to 80/20 for the weapons grade material to ensure that the fissile content of the Pu rich particles remains the same as the reactor grade material, and consistent with the European experience base. Furthermore, the 80/20 mix being used for the WG material is within COGEMA's experience base for the MIMAS process in Europe.

For design and safety evaluations, it is necessary to control the maximum size and Pu content of the particles. This is done during production through a milling and sieving operation followed by a sintering process that induces diffusion of the PuO₂ bearing particles into the UO₂ lattice. Control of the process is verified through metallographic examination and autoradiography of a representative number of samples from each batch of pellets. These examinations provide measurements of the effective particle size, the grain size and the plutonium content. Alternate methods to determine these parameters are also available and may be used. One of the primary criteria for acceptance of MOX fuel batches is the microstructure.
5.3 Specification

5.3.1 FCF UO₂ Specification

The FCF UO₂ pellet specification has been developed over an extended period of time to define the requirements for a pellet that essentially guarantees zero probability of failure under irradiation. Of the very few fuel rod failures experienced by FCF, none have been attributed to pellet problems over the last 20+ years. The early failures experienced by other suppliers due to hydriding and fuel densification are all adequately controlled by design and/or pellet processing. The essential requirements of the specification cover the O/U ratio, or stoichiometry, the impurity content including Equivalent Boron Content (EBC) and hydrogen values, the resinter characteristics, the grain size, the uranium and isotopic content, the density and the dimensions. Additional control is imposed on the fissile content per linear inch to address specific reactor criteria. Certain specification criteria are required on a batch basis while others may be addressed on a qualification basis only. Acceptance of qualification data is based on a thorough understanding of the production process and the fact that the manufacturer does not deviate from qualified production parameters.

5.3.2 Framatome (FRA) MOX Specification

The FRA MOX pellet specification is quite similar to the FCF UO₂ pellet specification where such requirements are common since MOX fuel is 95% UO₂. For example, the O/U (oxygen/uranium) requirement of 1.99 to 2.02 for the FCF UO₂ specification is essentially the same as the O/M (oxygen/heavy metal) requirement of 1.98 to 2.01 for the FRA MOX specification recognizing that the PuO₂ addition tends to decrease the O/M ratio. The impurity lists are also similar; however, limits on some additional elements such as gallium will be addressed for the WG specification.

In some areas the MOX specification covers additional limits, primarily the size of the plutonium rich particle and the concentration of the plutonium content. Additional analyses are also required for the plutonium isotopes and other transuranic elements associated with RG PuO₂.

5.3.3 Mark-BW/MOX1 Pellet Specification

The Mark-BW fuel assembly (UO₂) using the FCF pellet specification has been loaded in five of the six mission reactors and has operated successfully. The fuel specification for the Mark-BW/MOX1 will be based on the FCF UO₂ pellet specification with integration of the FRA
MOX specification for all aspects specific to MOX. Use of the existing FCF specification as the basis provides consistency with existing FCF performance, ordering practice and supporting analyses, e.g. hot channel factor criteria are addressed and controlled.

This specification will convey all of the MOX requirements from the European experience while adding limits necessary to address WG plutonium. Criteria to be derived from the MOX pellet requirements include plutonium homogeneity, plutonium rich particle size, and derivation of the equivalent fissile content. The specification also defines the criteria for three MOX pellet types associated with fuel rod zones within an assembly. The specific plutonium concentrations for each of the zones vary with the plutonium isotopic content and with the design burnup of the assembly. These concentrations will not be defined in the specification since they may vary with each reload. A limit on gallium will be added to the specification since this limit does not currently appear in the FCF or Framatome specifications. The value is based on ORNL studies that have confirmed that a DF of 10^5 will be achievable for the aqueous polishing process. The maximum gallium content will be imposed on the PuO$_2$ power specification at the 100 ppb level. (Detection limits of 10-20 ppb on the PuO$_2$ powder are achievable with high-resolution mass spectrometry, even after dilution.) With the MOX pellet containing less than 5% PuO$_2$, the resulting gallium level in the finished pellets will be 5 ppb maximum. As noted in Section 7.5.1, limiting the gallium content of finished pellets to less than 5 ppb will ensure that there will be no detrimental effects on fuel performance, and ensure the applicability of the European RG plutonium data base.

The MOX pellet specification and drawing will place tolerances on the allowable variation in specific Pu and U isotopes for a given fuel batch. Some deviation from the normal isotopic distribution is expected from batch to batch and can be accommodated by making appropriate adjustments in the specification. The range of acceptable isotopics is provided in Table 5-3.

A summary of the specification is given in Appendix C.
Table 5-1. Comparison of Uranium Based and MOX Fuel (WG) Isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Uranium Fuel BOL</th>
<th>MOX Fuel BOL</th>
<th>Uranium Fuel (55 GWd/MTU)</th>
<th>MOX Fuel (45 GWd/MThm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-234</td>
<td>0.04</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>U-235</td>
<td>4.60</td>
<td>0.24</td>
<td>0.82</td>
<td>0.09</td>
</tr>
<tr>
<td>U-236</td>
<td>-</td>
<td>-</td>
<td>0.62</td>
<td>0.03</td>
</tr>
<tr>
<td>U-238</td>
<td>95.36</td>
<td>95.39</td>
<td>91.51</td>
<td>92.28</td>
</tr>
<tr>
<td>Pu-238</td>
<td>-</td>
<td>0.00</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Pu-239</td>
<td>-</td>
<td>4.08</td>
<td>0.65</td>
<td>1.39</td>
</tr>
<tr>
<td>Pu-240</td>
<td>-</td>
<td>0.29</td>
<td>0.28</td>
<td>0.85</td>
</tr>
<tr>
<td>Pu-241</td>
<td>-</td>
<td>0.00</td>
<td>0.19</td>
<td>0.50</td>
</tr>
<tr>
<td>Pu-242</td>
<td>-</td>
<td>0.00</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>Am-241*</td>
<td>-</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Concentration (wt%) for the most abundant isotopes in Uranium and MOX fuels.

*Amount varies with decay time.
Table 5-2. Typical plutonium isotopes (wt %) for the most abundant isotopes.

<table>
<thead>
<tr>
<th>Plutonium Isotope</th>
<th>Weapons Grade</th>
<th>Reactor Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-238</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pu-239</td>
<td>93.6</td>
<td>59.0</td>
</tr>
<tr>
<td>Pu-240</td>
<td>5.9</td>
<td>24.0</td>
</tr>
<tr>
<td>Pu-241</td>
<td>0.4</td>
<td>11.0</td>
</tr>
<tr>
<td>Pu-242</td>
<td>0.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Am-241*</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Amount varies with decay time.
Table 5-3. Typical plutonium isotopes (wt %) for Weapons Grade material, with acceptable ranges

<table>
<thead>
<tr>
<th>Plutonium Isotope</th>
<th>Weapons Grade</th>
<th>Acceptable Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-238</td>
<td>0.0</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Pu-239</td>
<td>93.6</td>
<td>90.0-95.0</td>
</tr>
<tr>
<td>Pu-240</td>
<td>5.9</td>
<td>5.0-9.0</td>
</tr>
<tr>
<td>Pu-241</td>
<td>0.4</td>
<td>≤1.0</td>
</tr>
<tr>
<td>Pu-242</td>
<td>0.1</td>
<td>≤0.1</td>
</tr>
</tbody>
</table>
6. DESIGN AND ANALYSIS OF MARK-BW/MOX1

The second task in the Fuel Qualification Process is the design and analysis of the fuel assembly utilizing the MOX fuel pellet specification. This task requires analytical tools properly modified and verified with applicable data to accommodate MOX material properties and operating characteristics. These upgraded models will be submitted to the NRC for review and approval. The approved models will then be available for use in the performance evaluations to be performed in Section 7.0.

6.1 Fuel Rod Design

Following development of the MOX pellet specification, the fuel rod design is set to accommodate the utilities' operational requirements, as defined in Section 6.2, while meeting licensing requirements for fission gas release and internal pin pressure. As noted in Section 6.3.1, the increased operating temperatures and microstructure of the MOX pellet will create a slight increase in fission gas release that is accommodated in the fuel rod design through increases in plenum volume. No other changes to the fuel assembly design are required to accommodate the MOX pellet outside of the fuel rod internal design. By using a previously qualified fuel assembly design as the platform for the MOX design, the licensing effort can focus on the pellet and fuel rod design.

The fully qualified fuel assembly chosen by the DCS team for the MOX application is FCF's Advanced Mark-BW design. For its application to MOX pellets, the design has been designated Mark-BW/MOX1. The Mark-BW/MOX1 assembly will contain the features of the base Mark-BW, plus M5T™ fuel rod cladding and, where necessary for compatibility with the resident fuel, mid-span mixing grids (MSMGs). This product for UO₂ applications, with the M5T™ cladding and MSMGs, is designated Advanced Mark-BW. A summary of the design is presented in Table 6-1. A complete design description of this 17X17 product for Westinghouse-designed reactors can be found in Appendix A, including details of the qualification testing performed on the base Mark-BW and the Advanced Mark-BW, and operating experience. This experience includes current operation of the base Mark-BW in four of the six mission reactors, and operation of four Lead Test Assemblies of the Advanced Mark-BW in a fifth mission reactor. Details of the Mark-BW's compatibility evaluations with resident fuel designs are also provided in Appendix A.

The M5T™ fuel rod cladding being utilized on the Mark-BW/MOX1 has been reviewed and approved for batch implementation by the NRC. This review included the performance of the cladding material for normal operation as well as LOCA conditions. This cladding material demonstrated a significant reduction in steady state corrosion and fuel rod growth relative to Zircaloy-4. For application to the MOX design, with a projected licensed burnup of 45,000 MWd/MThm, maximum assembly, there will be significant margin to design limits through the
use of this advanced cladding. The reduced steady state corrosion levels will provide additional margin for the reactivity insertion accident evaluation.

The expected operating conditions (power level, coolant temperatures, burnup) of the mission fuel are bounded by the data for $M5^{TM}$ cladding submitted to the NRC in support of the topical report on $M5^{TM}$. The NRC technical approval for the use of $M5^{TM}$ applies to use in the mission reactors, at burnups in excess of those projected in the Mission Reactor Irradiation Plan. (Administratively, the plant Technical Specifications at the mission reactors will need to be modified prior to batch implementation of $M5^{TM}$.)

The reduced oxide buildup of the $M5^{TM}$ cladding is particularly effective at high burnup. At low burnup, where debris fretting failures have been observed, the protective oxide layer has been observed to be essentially the same as Zircaloy 4, thereby assuring that there will be no additional risk of debris fretting failure with $M5^{TM}$ cladding.

6.2 Utility Operating Information

The fuel rod for MOX applications is designed to satisfy the utilities' needs with respect to performance capability and operational lifetime. This input to the design process is provided by the utility in terms of the fuel cycle design pin power peaking for the MOX fuel as a function of reactor operating time. Additional requirements, such as coolant chemistry or reactor coastdown capability, are also considered in the design process. Once the design has been established, the rod capabilities are conveyed to the utility though the Design Interface Document, which establishes limits for the fuel cycle designer. The final fuel cycle design is then performed by the utility to meet the operational limits set by FCF for the MOX fuel.

6.3 Analytical Tools

Design and analysis tools affected by the replacement of UO_2 fuel with MOX fuel require modification and verification. The modified codes will then be submitted to the NRC for review and approval. No code modifications are required to accommodate the approved $M5^{TM}$ cladding; the $M5^{TM}$ models (creep, corrosion, growth) are contained within the current UO_2 version of COPERNIC.

6.3.1 Fuel Performance – COPERNIC

COPERNIC is a recently developed fuel performance code that is being implemented by Framatome in Europe and FCF in the United States. It produces accurate steady-state and transient extended-burnup fuel performance predictions and can be applied to UO_2, UO_2-Gd_2O_3, and MOX fuel types.
COPERNIC is based upon the TRANSURANUS code, which contains a modern architecture that provides fast, accurate, and numerically stable solutions. It also offers the flexibility for incorporating complex fuel rod models. COPERNIC contains pre- and post processors that improve the speed and ease of using the code. Further modifications to the TRANSURANUS code contained in COPERNIC include advanced material models and refined thermal, mechanical, and fission gas release models. The improved mechanical models include discrete radial modeling of the cladding, fuel-cladding mechanical interaction, fuel mechanical relocation effects, and high stress material models that are benchmarked to ramp test data.

COPERNIC models specific to MOX fuel were developed for thermal conductivity, MOX material melting point, radial power profiles and fission gas release. The other phenomena are common to UO$_2$ fuel, vary little from UO$_2$ fuel or are conservatively described by the UO$_2$ model.

The thermal models in the COPERNIC code contain advanced gap conductance, gap closure, fuel thermal conductivity, radial power profile, and fuel rim models. For the MOX fuel, COPERNIC will use specific thermal conductivity, melting point, and power distribution models.

The COPERNIC fission gas release models contain algorithms that are optimized for both steady-state and transient conditions. The MOX steady-state and transient fission gas release models were developed recognizing the non-homogeneity of MOX fuel as compared to UO$_2$ fuel. PuO$_2$ is present in the matrix mainly in the form of Pu-rich particles and, to a lesser extent, as a solid solution. The burnup and fission product concentrations are therefore much higher in these heterogeneous zones than in the rest of the fuel matrix. The fission products can migrate to the outside of the zones in which they were created, afterwards diffusing and following the release laws of the surrounding fuel matrix. This phenomenon may lead to partial release of these fission products to the outside of the fuel by free paths. Hence, a generally larger release may be observed for MOX fuel than for UO$_2$.

As noted in Section 7.3.5.1 the predominant factors affecting fission gas release from UO$_2$ or MOX fuel are the power and temperature of the rod. The COPERNIC models have been shown to accurately predict measured gas release from MOX fuel rods, including those subjected to transients. (See figure 6-1)

The pellet strain model shows many common features between the UO$_2$, Gd$_2$O$_3$ and MOX fuels. Thus, no specific adaptation was necessary to correctly predict the MOX fractured fuel relocation model, since measurements and predictions agreed as well as for UO$_2$ rods. The
densification model for the UO₂ fuel matrix was shown in the 70s to be the same for Pu-bearing fuel. The UO₂ gaseous swelling model was also applied to MOX.

The cladding strain is the result of the interactions of irradiation creep, high stress creep/relaxation and irradiation growth. The mixed-oxide fuel influence depends upon the strain phenomenon considered, as well as the nature of the cladding, since various models exist for each type of cladding. Thus, the irradiation creep modeling for MOX-filled stress-relieved Zircaloy-4 cladding yields dimensional variations that are equivalent to those observed for UO₂, except that a coefficient is applied for fast flux variations. The irradiation growth is affected similarly. However, the nature of the fuel pellet does not affect the modeling of the high stress creep and relaxation phenomenon, since this is a mechanical interaction between pellets and cladding.

Corrosion and internal pressure predictions for MOX fuel use the same models developed for the UO₂ fuels.

The small projected increase in fuel temperatures related to a reduction in thermal conductivity will be calculated by COPERNIC. Fuel temperature predictions used for core safety analyses will directly include the effects of the MOX fuel influence on thermal conductivity.

The COPERNIC predictions have been benchmarked to an extensive database that includes data from international as well as the following French proprietary programs: BOSS, CONTACT, GRIMOX, REGATE, RECOR, GONCOR, and HATAC.

- The COPERNIC thermal models have been benchmarked with approximately 2000 centerline temperature measurements for rod average burnups up to 102 GWd/MThm. The MOX centerline temperatures were benchmarked with data from the French proprietary programs. The COPERNIC predictions agree well with these data.

- The numerous MOX benchmarking data points from hot cell examination of more than 50 commercial fuel rods with a maximum burnup of 53,000 MWd/MThm agreed well with the COPERNIC predictions for fission gas release, rod growth, internal pressure and free volume.

- Corrosion thicknesses were measured on more than 6000 rods representing all types of fuel.
Data from these programs will be submitted to the NRC in a proprietary topical report addendum to the COPERNIC topical.

6.3.2 Core Physics - CASMO-4/SIMULATE-3 MOX

The major NRC approved nuclear design codes to be used in the development of core loading patterns and in the confirmation of licensing basis assumptions for reload cores containing MOX fuel are CASMO-4 and SIMULATE-3 MOX.

CASMO-4 is a multi-group, two-dimensional transport theory computer program used to calculate two-group cross sections, group constants, discontinuity factors, fission product data, reaction rates and pin power data. CASMO has been approved by the NRC for use on UO$_2$ fuel. CASMO-4 is used by many utilities, but is not presently being used by Duke. A topical report will be submitted to the NRC for approval for use in MOX fuel core analyses.

SIMULATE-3 MOX is an advanced two-group three-dimensional nodal code that is based on the QPANDA neutronic model which employs either an exact analytic, or polynomial representation of the intranodal flux distribution in both energy groups. It is a version of Studsvik’s core simulator that was developed specifically for MOX fuel applications. SIMULATE-3 MOX will also be submitted to the NRC for review and approval.

These two codes have been benchmarked against critical experiments encompassing fissile plutonium concentrations that bound the fissile plutonium concentrations the mission reactors will use.

In order to provide additional confidence in the core physics predictions of the lead assemblies, FCF will use the SCIENCE code package to perform calculations in parallel with those of Duke Power. This suite of reactor physics codes has been developed by Framatome and is currently being used in Europe for core design of both UO$_2$ and MOX fuel cores. SCIENCE is currently under review by the NRC for application by FCF to UO$_2$ cores. Approval of SCIENCE for MOX fuel applications is not considered necessary.

Virginia Power will use the PDQ code as the primary design tool in their nuclear analyses. Cross sections for MOX fuel will be generated using a combination of transport and Monte Carlo methods using CELL2 and MCNP, respectively. These methods have been extensively applied to the analysis of LEU cores by Virginia Power. Combustion Engineering has previously employed this methodology in partial MOX core design.
Virginia Power will request NRC approval for application of these methods to MOX core design analysis.

Duke Power and Virginia Power will demonstrate the acceptability of the nuclear analysis codes for MOX fuel analyses through the types of benchmark calculations shown in Figure 6-2. Additionally, benchmark calculations will be performed against reference analytical calculations to assess code fidelity. Hypothetical core configurations representing the intersection of four LEU and MOX fuel assemblies will be evaluated by performing either reference lattice physics codes or Monte Carlo calculations to produce a reference solution. SIMULATE-3 MOX and PDQ calculations will be compared against the reference solutions to ensure that the effects of the large thermal flux gradient at the UO$_2$/MOX fuel assembly interface are accurately accounted for in the generation of group constants and in the calculation of the global and local power distributions.

Data from critical experiments will be used to develop pin power distribution uncertainty factors and any code reactivity bias applicable to MOX fuel. Duke Power will benchmark the CASMO-4 and SIMULATE-3 MOX codes, and Virginia Power will benchmark the PDQ and MCNP codes against the proprietary EPICURE, ERASME, and WAPD/CRX criticality experiments (Table 6-2) that are applicable to the Mark-BW/MOX1. Summaries of these calculations will be provided to the NRC for review in accordance with the submittal schedules shown in Section 4.2. These criticality experiments are important for code qualification because they contain core configurations with high fissile plutonium concentration MOX fuel. A wide range of fuel types, concentrations, moderator-to-fuel ratios, and cell types are encompassed by these experiments. Therefore, they are considered to be sufficiently representative and applicable to the MOX fuel design, WG plutonium isotopics, and the plutonium concentrations that Duke Power and Virginia Power will irradiate.

Duke Power and Virginia Power will demonstrate the accuracy of the reactor physics codes to predict global power distributions, reactivity, and physics parameters through benchmark calculations performed against zero power physics test data and core operating data for several partial MOX fuel cycles at a French or Belgian PWR. These calculations will encompass comparisons against the following measured parameters:

- Hot full power (HFP) and hot zero power (HZP) critical boron concentrations
- BOC, HZP, all rods out and isothermal temperature coefficient (ITC)
- HZP control rod integral worths for each control and shutdown bank
The above approach involving thorough cross-checking and benchmarking with independent code versions, criticality experiments, and European partial MOX operation will maximize the utilization of available resources for confirming the technical accuracy of the modeling methodologies and computer programs.

6.3.3 LOCA - Evaluation Model

The NRC approved FCF LOCA evaluation model (EM) comprises a suite of codes and methods that have been approved for licensing analysis of the mission reactors. For MOX fuel implementation, the EM and its associated codes will be modified and submitted to the NRC for review and approval. The specific models to be evaluated for MOX application include the decay heat model and fuel rod model. It is expected that the use of the existing decay heat model will be justified for MOX fuel. The RELAP fuel pin gap conductivity model, currently based on the TACO code, will be modified to facilitate initialization with the MOX gap model used in COPERNIC. Also, the use of multiple MOX concentrations within the assembly, and the differing types of fuel in the core necessitates that a core model be developed capable of analyzing the core with different fuel types. These changes and appropriate impact evaluations will be performed for lead assembly operation as a subset of the batch implementation analyses.

6.3.4 Mechanical/Thermal-Hydraulic

The Mark-BW/MOX1 design contains no changes to the fuel rod outside diameter, fuel assembly structure, spacer grids, guide thimble, upper nozzle, lower nozzle, or any component or material other than the fuel rod internals. Thermal-hydraulic analyses, including CHF performance and CHF correlations, are not affected by the change to the rod internals. Thus, no modifications to analytical tools are required in the fuel assembly mechanical analysis and thermal-hydraulic areas to accommodate MOX fuel pellets.
Figure 6-1: MOX Fission Gas Release

As-measured fractional release (%) vs. As-Predicted Fractional Release (%)

- Base Irradiation
- Ramp Irradiation
- Measured vs. Predicted
Figure 6-2 Nuclear Code Benchmarks

<table>
<thead>
<tr>
<th>Nuclear Code Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reference analytical MOX calculations</td>
</tr>
<tr>
<td>• Criticality experiments</td>
</tr>
<tr>
<td>• Partial MOX core operating data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Determination</td>
</tr>
<tr>
<td>- Pin power distribution uncertainty</td>
</tr>
<tr>
<td>- Global power distribution uncertainty</td>
</tr>
<tr>
<td>- Reactivity and physical parameter uncertainty</td>
</tr>
</tbody>
</table>
Table 6-1 Mark-BW/MOX1 Design Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellets</td>
<td></td>
</tr>
<tr>
<td>Fuel Pellet Material</td>
<td>Ceramic PuO$_2$ and Depleted UO$_2$</td>
</tr>
<tr>
<td>Fuel Pellet Diameter</td>
<td>0.3225 in</td>
</tr>
<tr>
<td>Fuel Pellet Theoretical Density</td>
<td>95%</td>
</tr>
<tr>
<td>Fuel Pellet Volume Reduction due to Chamfer and Dish</td>
<td>~1%</td>
</tr>
<tr>
<td>Rods</td>
<td></td>
</tr>
<tr>
<td>Fuel Rod Length</td>
<td>152.16 in</td>
</tr>
<tr>
<td>Fuel Rod Cladding Material</td>
<td>M5$^\text{TM}$</td>
</tr>
<tr>
<td>Fuel Rod Inside Diameter</td>
<td>0.329 in</td>
</tr>
<tr>
<td>Fuel Rod Outside Diameter</td>
<td>0.374 in</td>
</tr>
<tr>
<td>Active Fuel Stack Height</td>
<td>144 in</td>
</tr>
<tr>
<td>Assemblies</td>
<td></td>
</tr>
<tr>
<td>Fuel Assembly Length</td>
<td>159.8 in</td>
</tr>
<tr>
<td>Lattice Geometry</td>
<td>17x17</td>
</tr>
<tr>
<td>Fuel Rod Pitch</td>
<td>0.496 in</td>
</tr>
<tr>
<td>Number of Fuel Rods per Assembly</td>
<td>264</td>
</tr>
<tr>
<td>Heavy Metal Loading per Assembly</td>
<td>463.3 kg</td>
</tr>
<tr>
<td>Number of Grids</td>
<td></td>
</tr>
<tr>
<td>Bottom End</td>
<td>1</td>
</tr>
<tr>
<td>Vaneless Intermediate</td>
<td>1</td>
</tr>
<tr>
<td>Vaned Intermediate</td>
<td>5</td>
</tr>
<tr>
<td>Mid-Span Mixing</td>
<td>3</td>
</tr>
<tr>
<td>Top End</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 6-2 MOX Fuel Criticality Experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>Lattice</th>
<th>Plutonium Concentration</th>
<th>Isotopic Contents</th>
<th>Mod. to Fuel Vol. Ratio</th>
<th>No. of Config./Acc. Of Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA/EPICURE</td>
<td></td>
<td>Uniform lattice of 7.0% PuO₂ in 0.25% UO₂ and multi-region lattice of 4.3%, 7.0% and 8.7% PuO₂ in 0.25% UO₂</td>
<td>Pu 238: 1.4% Pu 239: 57.8% Pu 240: 24.55% Pu 241: 9.67% Pu 242: 5.33% Am 241: 1.25%</td>
<td>1.2 - 1.4</td>
<td>59 Axial and Radial B2: 1% to 2% (2σ) Flux Distribution 1% to 2% (1σ)</td>
</tr>
<tr>
<td>CEA/ERASME</td>
<td></td>
<td>11% PuO₂ in 0.25% UO₂</td>
<td>Pu 238: 1.17% Pu 239: 67.98% Pu 240: 18.59% Pu 241: 7.37% Pu 242: 2.66% Am 241: 2.23%</td>
<td>2.1</td>
<td>3 Axial and Radial B2: 1.5% to 2% (2σ) Flux Distribution 2% (1σ)</td>
</tr>
<tr>
<td>WAPD/CRD</td>
<td></td>
<td>6.6% PuO₂ in natural UO₂</td>
<td>Pu 238: 0% Pu 239: 90.49% Pu 240: 8.57% Pu 241: 0.89% Pu 242: 0.04%</td>
<td>(1): 1.683 (2): 2.163 (3): 4.700 (4): 5.675 (5): 10.75</td>
<td>5 Total B2: 1% to 2% (2σ)</td>
</tr>
</tbody>
</table>
7. CORE PERFORMANCE AND SAFETY EVALUATIONS

Having completed the design of the fuel rod and fuel assembly for MOX applications, and the modification and verification of analysis tools, the performance and safety evaluation of the MOX cores is the next step in the Fuel Qualification Process. This section presents the analyses that will be performed for the MOX cores, including the cores supporting the Lead Assembly irradiation (Section 8.0), and the experience base supporting these analyses.

The European operational experience includes MOX fuel assemblies that have been operated by EDF and other European utilities under a variety of fuel management schemes and operating conditions. The operating schemes include 1/3 MOX fuel core, 1/4 MOX fuel core, hybrid refueling (where UO₂ assemblies are used for four annual cycles while MOX assemblies are used for three), annual cycles, and 18-month cycle designs. The MOX fuel assemblies have been discharged with assembly average burnups as high as 55,000 MWd/MThm. In addition, average linear power levels of 5.43 to 6.28 kW/ft and core exit coolant temperatures from 610°F to 619°F have been experienced. These conditions envelop those of the mission reactors. In addition, the methodologies to be described in the FCF and utility topical reports are either currently approved methods, extensions of currently approved methods, or methods that have already been submitted for NRC review and approval. These similarities will greatly assist in providing the NRC with assurance that the analytical methodologies adequately model MOX fuel behavior, although the adequacy of methods is directly addressed by the physics code certification plan discussed in section 6.3.2.

The results of these analyses will be provided to the NRC as part of the approval process as described in Section 7.4, NRC Interactions. In the course of performing these analyses specific regulatory issues will be addressed, including issues that have been identified and discussed in the public forum. The plan to address these issues is presented in Section 7.5, Technical Issues.

7.1 Performance/Safety Evaluation

7.1.1 Core Design

The lead assembly neutronic design will use the same three-zone plutonium distribution that is planned for batch implementation (with the average plutonium content adjusted as necessary) as shown in Figure 7-1. This scheme optimizes the trade-off between core management and production efficiency for batch implementation, and is the same approach developed by the MOX fuel partners: Framatome, COGEMA, and EDF. Calculations of the lead assembly neutronics will model these assemblies explicitly, using three independent sets of reactor physics codes, as discussed in section 6.3.2, to provide accurate power predictions during each cycle of operation.
In addition to the code qualification plan discussed in section 6.3.2, the insertion and operation of the two lead assemblies in McGuire Unit 2 will provide information to demonstrate the adequacy of the modeling methodologies via startup physics tests and routine flux maps. At least one of the lead assemblies will be located in an instrumented location to verify predicted operational neutronic performance during the irradiation cycles. The assemblies will be located in a relatively high power, but non-limiting core region to ensure representative operating parameters for full-scale operation.

Reload design impacts from using MOX fuel result from changes in key physics parameters which affect certain plant characteristics during normal operations and plant responses to postulated transients and accidents. Changes to key physics and other related parameters are discussed in the following sections.

7.1.1.1 Soluble Boron Concentrations

The harder neutron spectrum and reduced thermal neutron flux associated with MOX fuel decreases the efficiency of thermal neutron absorbers, and therefore significantly increases the beginning of cycle (BOC) soluble boron requirements for partial MOX cores above the corresponding values for LEU cores. Higher soluble boron requirements are seen for both normal operation and postulated accidents. The loss of coolant accident (LOCA) is most affected by high boron concentrations, because the licensee must demonstrate long term subcriticality in the reactor core at cold conditions, with no credit taken for control rod insertion. Because of reactor coolant system chemistry considerations, sampling ability, and boron precipitation concerns, there is a practical upper limit to BOC boron concentrations. The use of additional burnable poisons (BPs), and, if necessary, the use of enriched soluble boron can reduce the boron concentration requirements to more manageable levels. However, the use of additional BPs results in an economic penalty due to the residual boron at end of cycle. The use of isotopically enriched boron to 25% or more ^{10}B adds cost because it is more expensive than natural boron, but a number of PWRs in Europe have switched to operation with enriched boron, including several PWRs that use MOX fuel. Duke Power and Virginia Power will consider operational, safety and economic impacts of using enriched boron and/or additional BPs to offset the increased boron requirements associated with partial MOX fuel designs.
7.1.1.2 Control Rod Worth

The control rod worths of partial MOX fuel cores are lower than the control rod worths of LEU cores as a result of the harder neutron spectrum and reduced thermal neutron flux associated with MOX fuel. Because of the reduced control rod worth, demonstrating that adequate shutdown margin (SDM) exists must be addressed when designing partial MOX fuel cores. At the proposed mission reactors, both North Anna units and McGuire Unit 1 currently use silver-indium-cadmium (Ag-In-Cd) control rods, while McGuire Unit 2 and both Catawba units use hybrid boron-carbide control rods (B$_4$C rod with a 40" Ag-In-Cd tip). Duke Power and Virginia Power have calculated the available SDM for the mission reactors for both full LEU cores and for equilibrium cycle partial MOX cores. These analyses show that the hybrid B$_4$C design is more efficient, resulting in approximately 200 pcm more SDM relative to the full-length Ag-In-Cd design. Therefore, the replacement of the Ag-In-Cd control rods at McGuire Unit 1 with hybrid B$_4$C control rods will be evaluated during the base contract to ensure adequate SDM and design flexibility for partial MOX core operation. For the North Anna Units, the use of higher worth control rods, such as enriched hybrid B$_4$C control rods, will be required to maintain ample SDM.

7.1.1.3 Cross Sections

Duke and Virginia Power will make maximum use of the extensive European MOX fuel experience and database to justify the adequacy of PuO$_2$ properties and nuclear cross sections.

7.1.1.4 Delayed Neutron Fraction and Prompt Neutron Lifetime

Partial MOX fuel cores have a somewhat lower delayed neutron fraction (β_{eff}) and smaller prompt neutron lifetime than LEU cores. This difference in β_{eff} and in lifetime are most pronounced at beginning of cycle (BOC). For a given reactivity insertion, this results in an increase in the peak core power. Because of the large reactivity insertions associated with the rod ejection event, Duke Power used its three-dimensional kinetics code SIMULATE-3k to explicitly analyze rod ejection accidents in representative McGuire/Catawba partial MOX fuel cores. These calculations demonstrated that the peak core power response for a partial MOX core can be maintained at or below the predicted peak core power response for the comparable LEU case by crediting the compensating lower control rod worths and more negative Doppler temperature coefficient associated with partial MOX fuel cores.
In order to ensure smooth and safe operations, Duke Power and Virginia Power will also (1) update simulators with MOX fuel core reactivity characteristics, (2) train the plant operators in normal operations and off-normal situations, and (3) adjust plant control and protection set points, as necessary.

7.1.1.5 Reactivity Coefficients

The predicted moderator temperature coefficients (MTCs) and Doppler coefficients for the partial MOX fuel cores in the mission reactors are more negative than the reference LEU fuel core cases. These differences have the potential to exacerbate the plant responses to overcooling events. The steam line break accident is the most severe overcooling event for partial MOX fuel cores because of (1) the high peaking factors associated with this accident, (2) the potential for the preferential redistribution of power to MOX or LEU fuel assemblies, and (3) the reduced differential boron worth in partial MOX fuel cores which reduces the effectiveness of injected boron. However, end of cycle (EOC) conditions are typically bounding for overcooling events, and the EOC MTCs and Doppler coefficients are only slightly different from the corresponding reactivity coefficients for all-LEU fuel cores. Therefore, the EOC SLB accident response for partial MOX fuel cores is not appreciably different from that of a LEU core.

7.1.1.6 Vessel Fluence

The use of MOX fuel may result in an increase in fast fluence to the reactor vessel. However, the assemblies on the core periphery are those that contribute the major portion of vessel fluence. So, the placement of MOX assemblies within the core can be used to mitigate the extent of increase in fluence to the vessel, if any. The impact of MOX fuel on fluence will be evaluated, and it will be demonstrated that all acceptance criteria are met. If necessary, the fuel management schemes will be modified to maintain fluence at acceptable levels.

7.1.1.7 Decay Heat

The decay heat from MOX fuel differs from that of uranium fuel due to the different fission product inventories. Different post-trip decay heat will affect undercooling events such as loss of feedwater and LOCA. FCF plans to utilize ORNL’s ORIGEN-S computer program to quantify the decay heat power from WG MOX fuel. Framatome has used ORIGEN-S in the calculation of
isotopic inventories and decay heat for both UO$_2$ and MOX fuel. Extensive benchmarks of fuel isotopics were performed against destructive examinations of fuel samples of various compositions, burnups, power histories, and decay times. Additionally, comparisons of ORIGEN-S decay heat and isotopic predictions were made with the French APOLLO/PEPIN codes (UO$_2$ and MOX), ORIGEN2 (UO$_2$), and ANSI/ANS 5.1/1994 (UO$_2$ decay heat) for benchmark problems. FCF plans to take advantage of this work in order to perform its own certification of ORIGEN-S for these purposes. The impact of decay heat differences will be assessed for its effect on transient and accident analyses. The Loss-of-Coolant Accident evaluation model will be adjusted if required, and NRC approval will be requested for application to MOX fuel. As necessary, plant systems will be reviewed to verify that they are capable of handling MOX decay heat loads.

7.1.1.8 Xenon Worth

The harder neutron spectrum and reduced thermal neutron flux associated with MOX fuel decreases the xenon worth. The reduced xenon worth and higher power coefficients will make the core more stable against xenon induced oscillations, and make the axial xenon transient less pronounced.

7.1.1.9 Burnable Poison Rod Assembly (BPRA)

Pressurized water reactors have a need for beginning of cycle (BOC) reactivity holddown. Soluble boron, a neutron absorber, in the reactor coolant system is used to compensate for the initial excess reactivity of the fresh fuel in the core. As the fuel depletes and becomes less reactive, the boron concentration is reduced to maintain criticality. For longer cycles, such as 18-month fuel cycles, the initial excess reactivity of the core is larger, and more reactivity holddown is required. Due to limits on the amount of soluble boron allowed in the reactor coolant system, burnable absorbers are utilized as an alternate means of providing reactivity holddown.

In addition to reducing the BOC soluble boron concentration required for normal and post-accident reactivity control, burnable absorbers are also used to reduce power peaking in high reactivity fresh fuel assemblies, allowing for more economical core designs. Ideally, the BPRAs will be used up during the cycle, minimizing parasitic neutron absorption at the end of cycle when reactivity holddown and reduced power peaking are no longer needed.
Reducing parasitic absorption is important in achieving efficient core designs with lower enrichments and reduced feed batch sizes.

Typical burnable absorbers in use today include: (1) poison material such as erbium or gadolinium integrated within the fuel pellets, (2) zirconium diboride coating on the outside of the fuel pellets (integral fixed burnable absorber or IFBA), or (3) BPRAs containing boron carbide/aluminum oxide mixture pellets loaded into tubes and placed in the control rod guide thimbles of fresh assemblies. The DOE has required that the MOX fuel project not incorporate poison material inside or coated onto the MOX pellets. Therefore, BPRAs are the only feasible option of these three means of reactivity holddown. The baseline BPRA design for MOX fuel assemblies is the FCF design that provides for varying both the boron content of the burnable poison (BP) rods and the number of BP rods per BPRA for optimum reactivity and power distribution control. See Appendix A for a complete description of the FCF BPRA design.

The European MOX experience base does not include the use of BPRAs due to the reduced need for additional reactivity holddown in the shorter annual cycles. However, the use of BPRAs with MOX fuel does not present any particular difficulty. Discrete burnable absorber rods have been used extensively in LEU fuel at both Duke and Virginia Power. All of the McGuire and Catawba's forty-six (46) fuel cycles have operated using discrete boron-containing burnable absorber rods. All of North Anna's twenty-seven (27) fuel cycles have operated with boron containing burnable absorber rods. The last twenty-three (23) fuel cycles at McGuire and Catawba and the last twelve (12) fuel cycles at North Anna have utilized the FCF discrete burnable absorber rods, identical to those used in the Mission Reactor Irradiation Plan.

Virginia Power has design and operating experience using fresh burnable poison rods in burned LEU fuel. The once burned fuel contained approximately 0.8 w/o of Pu from conversion of U-238. Measured power distributions in these assemblies showed no adverse trends.

The ability to predict the depletion and reactivity worth of boron is demonstrated by the ability to predict the critical boron concentration in the reactor coolant system. The behavior of boron is very predictable because it is a 1/v absorber (neutron absorption cross section is inversely proportional to the speed of the incident neutron), and no absorbing isotopes are formed as a result of neutron capture in boron. Furthermore, the validation of the
nuclear analysis codes will include benchmarks of critical experiments that have poison rods (control rods) in the MOX fuel rod array. These benchmarks will demonstrate the ability of the analytical codes to accurately predict pin power distributions in the presence of absorber rods.

7.1.2 Fuel Rod Performance Analyses

FCF will perform analyses of the fuel rod thermal performance to establish design and operating limits for the mission reactors. Internal pin pressure considerations will establish allowable burnup and power levels. The heat rate-to-melt will be evaluated using the MOX models in COPERNIC to reflect the reduction in thermal conductivity and melting temperature of the MOX fuel. These design and operating limits will be transmitted to the utilities through the Design Interface Document.

7.1.3 Thermal-Hydraulic Analyses

Duke Power will perform thermal analyses for cores containing the lead assemblies with the VIPRE code, which has been approved by the NRC. The Mark-BW/MOX1 fuel assembly is designed to be hydraulically compatible with the resident fuel that will be in core when the lead assemblies are introduced. Mid-span mixing grids (MSMGs) are used in the lead assemblies to closely match the thermal-hydraulic performance of the resident 17x17 fuel.

7.1.3.1 CHF Correlations

Two licensed critical heat flux (CHF) correlations, BWCMV-A and BWU-Z, are available for supporting the irradiation of the Mark-BW/MOX1 LAs in McGuire 2 and subsequent batch irradiation in the mission reactors. Since the Mark-BW/MOX1 design is identical to the Mark-BW in terms of dimensions and materials affecting the thermal analyses, these correlations will remain applicable to the MOX evaluations.

7.1.3.2 Thermal Evaluation

Thermal margin design calculations are performed to ensure that the minimum departure from nucleate boiling ratio (DNBR) provides margin to for all steady-state core conditions or transients of moderate frequency allowed by the Reactor Protection System (RPS). Duke Power will use the VIPRE computer code in conjunction with their Statistical Core Design technique to assess thermal margin.
7.1.3.3 Statistical Core Design

Statistical Core Design (SCD) uses a statistical combination of uncertainties technique. In the SCD method, input uncertainties are analyzed using statistical methods and an overall DNBR uncertainty is determined. This overall uncertainty is then used to establish a design limit DNBR known as the Statistical Design Limit (SDL).

Once the SDL has been established, the calculated DNBR at a specific core state is compared to the SDL to demonstrate that the DNB protection criterion is met. Duke Power's SCD methodology for both B&W- and Westinghouse-designed reactors has been approved by the NRC.

7.1.3.4 Hydraulic Compatibility

The Mark-BW/MOX1 is designed to be hydraulically compatible with the resident fuel that will be in core when the lead assemblies are introduced. Mid-span mixing grids are used in the lead assemblies to closely match the pressure-drop distribution of the surrounding fuel. Core hydraulic analyses will be performed by FCF to model the lead assemblies explicitly to develop predictions of core axial flow distributions, pressure drop, and to predict crossflow conditions between the lead assemblies and the surrounding assemblies. Since lead assembly pressure drop will not vary significantly from that of the surrounding fuel, these analyses will confirm that inter-assembly flow rates, fuel assembly lift force and core pressure drop are all well within established limits.

7.1.3.5 Core Pressure Drop

The unrecoverable core pressure drop includes pressure drops across the lower support plate, fuel assemblies, control components and upper core support plate. The unrecoverable core pressure drop will be determined by FCF for a full Mark-BW/MOX1 LA core and compared to that of a full core of resident fuel. The mixed core configuration is bracketed by the full core configurations of each fuel design.

7.1.3.6 Fuel Assembly Lift

Fuel assembly hydraulic lift force will be determined by FCF for two bounding core configurations. The limiting mixed core configurations are the lead assembly core configuration (two
Mark-BW/MOX1 assemblies in a core of resident fuel, and the maximum MOX core loading (for this analysis a conservative assumption of 50% MOX assemblies will be made).

Hydraulic lift forces (lift force minus buoyant weight) will be determined at both isothermal and 'at power' conditions; analyses will be performed for core flowrates at both the Mechanical Design and the Pump Overspeed ('at power' only) conditions. The net hydraulic lift force will be compared against the available holddown force at these conditions demonstrating the margin to prevent fuel assembly lift.

7.1.3.7 Inter-Assembly Crossflow Velocity

Mixed core analyses with a single LA in a core of resident Westinghouse assemblies will be used by FCF to determine span average crossflows. The hydraulic similarity of the two fuel designs assures the crossflow velocity will be well below established limits.

7.1.4 Mechanical Analysis

The lead assemblies and fuel rods will be evaluated by FCF for mechanical performance based on NRC approved methods. The assembly analyses will be the same as those performed for the Mark-BW/X1 design. The fuel rod analysis will follow the previously approved methods except that the fuel performance code COPERNIC with MOX specific models will be used to provide pressures, oxide thickness and strains used in mechanical analyses.

Specific fuel rod mechanical analyses to be performed include:
1) Fuel rod axial growth and shoulder gap closure
2) Fuel rod shipping and handling
3) Cladding corrosion
4) Cladding stress
5) Cladding fatigue

The specific mechanical analyses to be performed on the fuel assembly include:
1) Fuel assembly growth
2) Fuel assembly structural corrosion
3) Fuel assembly normal operation stresses
4) Fuel assembly normal operation fatigue
5) Fuel assembly LOCA/Seismic stresses
6) Fuel assembly shipping and handling
A summary of the methods, criteria and results of these analyses will be presented in the lead assembly design report.

7.1.5 LOCA Analysis

LOCA analyses will be performed by FCF for the MOX fuel assemblies. The work effort will include:

- Definition, development, implementation, testing, and NRC approval of methods necessary for the analysis of MOX fuel
- Analysis of the lead assemblies to support insertion into McGuire Unit 2, Cycle 16

The initial work will define the LOCA evaluation model (EM) and plant model changes required for analyzing and licensing MOX fuel. The fuel rod and decay heat models are the primary areas for development work and modification. During this phase, the experience of Framatome in analyzing MOX fuel for use in commercial reactors will be utilized. Framatome will provide any supporting data necessary for EM approval by the NRC. Duke Power will supply the inputs necessary for the modeling of McGuire Unit 2 resident fuel.

The two MOX fuel lead assemblies will be mixed with a core of resident 17X17 fuel having similar hydraulic characteristics. The lead assemblies will be located in a high powered, but non-limiting, core region and analyzed as a hot assembly. Large break LOCA calculations will be performed for the MOX fuel lead assemblies. Mixed core, coolable geometry, long-term cooling, and small break LOCA analyses will be evaluated. No impact on the results of these analyses from the MOX fuel is expected; the existing licensing basis calculations will be justified as applicable to the licensing of the MOX lead assemblies.

7.1.6 Non-LOCA Safety Analysis

Duke Power and Virginia Power will perform the non-LOCA safety analyses to support batch implementation of the Mark-BW/MOXI in the mission reactors. Each utility will submit analyses for NRC review and approval documenting the evaluation of the limiting transients.

For the Lead Assembly irradiation in McGuire 2, Duke Power will perform the necessary safety analysis evaluations. However, the core response to limiting transients will not be affected by the presence of the two Mark-BW/MOXI Lead Assemblies. Duke Power will document these safety analysis evaluations as part of the overall reload analysis.
7.2 Domestic Experience

7.2.1 MOX Experience

Prior to the U.S. policy decision in 1977 to defer indefinitely the commercial reprocessing and recycling of plutonium there were a number of developmental programs completed that demonstrated the technical feasibility of MOX fuel. However, only minimal PWR demonstration irradiations were completed, and no batch experience was obtained. Thus, the U.S. experience with MOX fuel is limited relative to the data available from Europe. Details of the U.S. MOX programs are provided in Appendix B.

7.2.2 UO₂ Experience

Through FCF, Duke Power, and Virginia Power, the DCS team has amassed extensive experience in the design, fabrication and operation of UO₂ fuel. This experience provides assurance that the team has the resources, knowledge, technical capability, and commitment to complete the fuel qualification effort detailed in this plan.

7.2.2.1 Design and Fabrication Experience

FCF has 27 years of successful design and fabrication experience of nuclear fuel for PWR’s. Nuclear fuel assemblies were first delivered to Duke Power’s Oconee Nuclear Station in 1971; to date FCF has supplied nearly 10,000 fuel assemblies for PWR’s.

For the mission reactor design (Westinghouse designed reactors), FCF began delivery of fuel assemblies in 1987 to Duke Power Company’s McGuire Nuclear Station. Currently, FCF fuel is operating in the U.S. in seven Westinghouse-designed 17X17 reactors: Duke Power’s Catawba Units 1 and 2, McGuire Units 1 and 2; Virginia Power’s North Anna Unit 1 (lead test assemblies); and TVA’s Sequoyah Units 1 and 2. An eighth plant, Portland General Electric’s Trojan Plant, also operated with FCF fuel. As of August 1999, FCF has supplied nearly 2,500 fuel assemblies to the 17X17 reactors, most of which were supplied to four of the six mission reactors (McGuire and Catawba). Combined with the 17X17 fuel experience of FCF’s parent companies, Framatome and COGEMA, a total of 40,000 fuel assemblies have been successfully designed, licensed and operated in reactors similar to the mission reactors around the world. Of particular significance, FCF fuel has operated in five of the six mission reactors. The burnup experience of the FCF Mark-BW fuel design is shown in Figure 7-2 to envelop the expected MOX fuel burnups.
FCF will provide the fuel design experience for the mission reactor fuel; FCF has an established fuel assembly, fuel rod and fuel component design experience base that will be applied to the MOX fuel. This experience ranges from the evolutionary revisions of long established fuel designs, such as the Mark-B fuel products, to the establishment of new fuel designs, such as the Mark-BW and Mark-B11, which were designed in response to the challenges of a competitive nuclear fuel market. The lead assembly programs used by FCF to demonstrate design upgrades are detailed in Table 7-1.

7.2.2.2 Related Services Experience

FCF's fuel-related products and services include control rod assemblies, incore detectors, and burnable poison rod assemblies. Full-scope engineering services cover the full spectrum of fuel-related and reactor system analyses. Comprehensive field services include fuel inspection and repair, control rod examinations, and post irradiation examinations. All of these FCF products and services are directly relevant to the scope of work for the WG plutonium MOX fuel program.

7.2.2.3 Utility Experience

Duke Power and Virginia Power both perform reactor core design, fuel reload qualification, and safety analyses for their reload cores. This capability differentiates them from more typical utilities that rely upon their fuel vendor to provide these qualification services. In addition, both utilities take part in extensive support and review of fuel design, fuel fabrication, and PIE examinations. The combined experience of these utilities supplements that of FCF in providing and qualifying reload fuel designs.

7.2.3 Fuel Reliability

Fuel reliability of the Mark-BW/MOX1 design is expected to be consistent with the current Mark-BW reliability, equal to the best in the industry. The Mark-BW design has experienced a failure rate of less than one per 100,000 rods, from all manufacturing related causes, since its inception in 1987. The proven MIMAS-produced MOX reliability, combined with the proven Mark-BW reliability, provides the basis for the expectation that the performance of the Mark-BW/MOX1 will continue at this high level.
7.2.3.1 Response to Known Failure Mechanisms

The Mark-BW design has been improved from its inception to address fuel failures that have occurred during operation of the Mark-BW as well as other designs in the industry. Specific responses to known failure mechanisms include:

a) Debris Fretting

The Mark-BW fuel design experienced four fuel failures, as confirmed by ultrasonic testing, due to fretting from debris in the reactor coolant. In response, FCF collaborated with Framatome to develop the Trapper™, fine mesh filter plate lower nozzle. This design was shown through testing to improve debris filtering to near 100%. Since the inception of the Trapper™ design, there have been no debris fretting failures in the Mark-BW design.

b) Grid Fretting

One failed fuel rod occurred in the Mark-BW design due to grid fretting on a peripheral rod in the lower end grid. FCF reviewed the design and modified the grid to increase the interference between the rod and the spring (soft stop) thereby making the design more robust in terms of margin for manufacturing variability, or for accommodating an inadvertent impact from a neighboring assembly during handling. There have been no grid fretting failures in the Mark-BW design since the introduction of the design change.

c) Creep Collapse

The Mark-BW design experienced one confirmed failure due to creep collapse. Creep collapse has been virtually eliminated as a failure cause since the inception of pellets with theoretical densities greater than 95% and stable pellets that have reduced the stack shortening due to densification. The root cause of the Mark-BW creep collapse failure was found to be missing pellets due to manufacturing error. As a result, rod loading processes were modified to eliminate the possibility of a recurrence and X-ray scanning equipment was upgraded to allow detection of a single missing pellet. There have been no additional creep collapse failures in the Mark-BW design since these improvements were implemented.
d) End Cap Weld

FCF produces a Mark-B fuel product for the B&W-designed 15X15 plants. Several incidents of unknown fuel failures occurred with the Mark-B design prior to 1995. Extensive investigations produced a finding that defective end cap welds were the likely cause of these failures. As a result, several design and processing improvements were implemented including a real time X-ray system for 100% inspection of every end cap weld. These design and process improvements have also been applied to the Mark-BW design. Since these changes were implemented there have been no Mark-B or Mark-BW failures due to end cap welding.

7.2.3.2 Industry Operating Issues

a) Incomplete Rod Insertion

In early 1996, the NRC issued Bulletin 96-01, which described events concerning incomplete control rod insertion (IRI) in Westinghouse-designed plants and requested that licensees evaluate the concern for applicability to the licensee’s situation. FCF provided a response in 1997 with data that demonstrated that RCCA drop times did not show any adverse trends at higher burnups and burnups greater than 50,000 MWD/MTU had been achieved with successful rod insertion.

In the fall of 1999, an incident of IRI was observed in FCF’s Mark-B fuel design at the end of TMI 1 Cycle 12, during post shutdown control rod assembly (CRA) drop time testing. Mark-B fuel is used exclusively in B&W designed 177 Fuel Assembly (FA) Reactors. Through extensive investigation of the incident, the root cause was determined to be excessive guide tube distortion causing the CRA to stop prior to insertion to the limits of the Technical Specifications. Further investigation of the TMI incident and data from other B&W 177 FA reactors, identified a number of factors which, to varying degrees, correlate to the incidence of IRI. These factors include 2-year cycle designs, same quadrant fuel shuffles, and excessive fuel assembly hold down force. Same quadrant fuel shuffles have been minimized or eliminated and FCF has reduced the fuel assembly hold down force of fuel being delivered and in the field. Further optimization of the Mark-B hold down spring design is underway to lower the compressive loads on the fuel assembly. Other design changes, such as increasing the guide tube to control rod clearance are also being investigated.
b) Axial Offset Anomaly

The axial offset anomaly (AOA) phenomenon is characterized by a significant negative axial offset deviation from predictions. It has been hypothesized that CRUD deposits on the fuel rods provide a location for boron poison to concentrate. The boron buildup in the higher core elevations, due to the thicker CRUD layers at these elevations, causes a shift in power to the lower region of the core (negative offset). AOA has occurred in 18 fuel cycles in 8 Westinghouse-designed plants and may have occurred at 2 B&W-designed plants. The exact causes are not precisely understood, but the conditions required for occurrence appear to include soluble boron and lithium in the coolant, corrosion products in the coolant, and subcooled boiling at the rod surfaces.

Prevention of AOA appears to be related to close adherence to water chemistry guidelines and reduction in the reactor coolant CRUD inventory.

The mission reactor utilities will take the appropriate actions to prevent the occurrence of AOA. Due to the harder neutron spectrum in MOX fuel and the resulting lower boron worth, the Mark-BW/MOX1 fuel design is expected to be less susceptible to AOA than UO$_2$ fuel. Also, the use of enriched soluble boron in the MOX cores should further reduce the risk of AOA.
c) Distinctive CRUD Pattern

Similar to the AOA phenomenon, a distinctive CRUD pattern (DCP) has occurred at B&W-designed plants. At TMI-1, during cycle 10, nine first burn fuel rods were found to have failures associated with DCP. The DCP was also observed on a number of other fuel rods. Hot cell examinations concluded that the fuel rods failed due to accelerated corrosion associated with abnormally thick CRUD deposits resulting from the cycle 10 water chemistry control. Operating guidelines were adopted to guard against occurrence of DCP, with water chemistry control the key factor.

As in the case for AOA, the mission reactor utilities will adhere to water chemistry controls designed to prevent these CRUD related phenomena. The Mark-BW/MOX1 fuel design will provide the same performance as UO₂ fuel for these CRUD related phenomena. The use of M₅⁷⁷ cladding on the Mark-BW/MOX1 provides additional margin for corrosion related failure mechanisms.

7.2.3.3 Continuous Improvement

The Mark-BW has successfully addressed these issues and continues to operate with high reliability. No fuel failures related to the design or manufacturing process have occurred in any Mark-BW fuel manufactured after January 1992. Furthermore, FCF is committed to the pursuit of zero defect fuel. Fabrication processes and equipment are continually being upgraded to improve fuel performance. When fuel failures occur, they are aggressively investigated to determine root cause and take corrective action. This commitment will apply to the Mark-BW/MOX1 design to ensure that the fuel performance is maintained at the highest level.

7.3 European MOX Experience

Fabrication and irradiation of MOX fuel in Europe represents the largest database for MOX fuel in the world. Fabrication and operation of MOX fuel in the U.S. will directly benefit from the experience of COGEMA, Framatome, EDF, and BELGONUCLEAIRE. This experience will provide the data to support benchmarking, verification and licensing of computer codes, as well as the processes for fabrication of the MOX fuel. These data will be submitted to the NRC in support of specific proprietary topical reports.
7.3.1 European Qualification Experience

The European experience directly applicable to the qualification of MOX fuel for the mission reactor irradiation includes a MOX fuel development and qualification program that has been in progress in Europe for 35 years. The first MOX fuel rods were loaded in the PWR test reactor BR3 by BELGONUCLEAIRE in 1963. Framatome, COGEMA and EDF have carried out a MOX fuel qualification program in France since 1974. The major elements of this French MOX qualification program are shown in Table 7-2.

7.3.2 European Fabrication Experience

The first MOX fuel rods using Zircaloy cladding with MOX fuel produced utilizing the MIMAS process were introduced in the St. Laurent B1 core in 1987. By mid-1999, MOX fuel was operating in 18 EDF commercial reactors, with 21 projected by the end of 2000.

The fabrication of MOX fuel in the U.S. will utilize the same MIMAS process used in Europe. Details of the process are provided in Section 8.3.9. Through the use of the aqueous polishing process, the impurities introduced to the weapons grade MOX will be effectively eliminated, thereby ensuring that the European experience is applicable to the MOX fuel produced in the U.S. from WG plutonium.

The qualification of the U.S. MOX fuel requires the successful transfer of this process to the U.S. facilities and the successful startup of these new facilities. Through COGEMA, DCS has extensive experience in the startup, qualification, and operation of MOX fuel fabrication facilities. The production of MOX fuel has been qualified in the MELOX, Cadarache, and BELGONUCLEAIRE / P0 manufacturing plants. These three facilities have produced a combined total of more than 335,000 MOX fuel rods for 31 of the 33 commercial nuclear reactor units irradiating MOX fuel in Europe. In addition, the various production runs in these plants led to the development of the MIMAS process which is currently in use at all three of these facilities. A complete listing of all of the European plants using MOX fuel from the MIMAS process is provided in Table 7-3.

DCS will apply this extensive experience in the upgrading and operation of the appropriate DOE facility supporting the fabrication of Lead Assemblies as well as the MOX Fuel Fabrication Facility.

7.3.3 European Operational Experience

The extensive European operational experience will be used in the fuel qualification effort to benchmark the appropriate core physics analysis
tools, and as an overall demonstration of the maturity of the MOX technology. This experience includes MOX fuel assemblies that have been irradiated by EDF and other European utilities under a variety of fuel management schemes and operating conditions.

The operating schemes include 1/3 MOX fuel core, 1/4 MOX fuel core, hybrid refueling (where UO$_2$ assemblies are used for four annual cycles while MOX assemblies are used for three); annual cycles; and 18-month cycle designs. The MOX fuel assemblies have been discharged with assembly average burnups as high as 45,000 MWd/MThm. Average linear power for these plants ranged from 5.43 to 6.28 kW/ft, with core exit temperatures from 610°F to 619°F.

The European experience also includes load follow operation, a more challenging fuel duty than the U.S. plant operational mode. Since 1991, two EDF reactors using MOX fuel have been operating under load follow and frequency control conditions. Based on this successful experience, all of the EDF reactors using MOX fuel have been authorized, since 1995, to operate under load follow conditions.

In the EDF 900 MWt (157 fuel assembly core) plants, which are comparable to the North Anna mission reactors, up to 16 MOX assemblies are loaded in an equilibrium batch using one-third core reload management. The replacement of UO$_2$ assemblies by MOX fuel assemblies is done without any penalty on core operating conditions. An extended rod burnup goal of 61,000 MWd/MThm (50,000 MWd/MThm assembly burnup) has been set for 2004, well in advance of the required mission reactor initial core loading in 2007.

In Belgian reactors, two schemes of fuel management are followed:
- Doel Unit 3 uses annual cycles with 1/4 core reloads.
- Tihange Unit 2 uses extended cycles with 1/3 core reloads, similar to the practice at the mission reactors.

The current rod design burnup in France is 48,000 MWd/MThm (43,000 MWd/MThm assembly burnup). In Belgium the average discharge burnup is about 44,000 MWd/MThm at Tihange 2 and 46,500 MWd/MThm at Doel 3. Design assembly burnups as high as 55,000 MWd/MThm are currently proposed in Germany. Thus the MOX exposure experience in Europe clearly envelops the projected licensed burnup target for the mission fuel of 45,000 MWd/MThm. Table 7-4 shows the maximum discharge burnup for the European plants using MOX fuel produced by Framatome/COGEMA with the same MIMAS process to be used on the Lead Assemblies and Mission Reactor fuel.
Use of MOX fuel with M5TM cladding is proceeding in advance of the U.S. application of MOX with M5TM in the mission reactors. The German reactor KKP-2 loaded 16 MOX fuel assemblies with M5TM cladding in 1998; an additional 16 MOX fuel assemblies with M5TM were loaded in 1999. Current plans include 16 MOX fuel assemblies to be loaded into the German reactor GKN-2 in 2000.

7.3.4 Fuel Reliability Experience

A comparison of the reliability of European MIMAS-produced MOX fuel with that of UO\textsubscript{2} shows very similar operating experience. Fuel rod failure rates of less than 1 in 100,000 have been observed with both fuel types. During the ten years that reload quantities of MIMAS-produced MOX fuel rods have been irradiated in commercial reactors, representing over 300,000 operating fuel rods, only three failed rods have been seen in two fuel assemblies. None of the failures have been attributed to the use of MOX fuel. Two of the failures are known to be due to debris fretting, and the third is believed to be due to the same mechanism. Similar failures have been observed in UO\textsubscript{2} fuel assemblies.

The fuel reliability experience with MOX fuel in Europe is expected to be applicable to the U.S. The use of the aqueous polishing process for preparing the WG plutonium will ensure that there are no effects due to contaminants such as gallium. Furthermore, the base fuel design to utilize the MOX pellets (Mark-BW) has reliability as high as any fuel design in operation in the U.S. as detailed in Section 7.2.3. Thus, the reliability of the MOX fuel with WG plutonium is expected to be very high.

7.3.5 European Experimental Data

Performance data for fuel and materials have been obtained from poolside and hot cell examinations. The examinations have concluded that there have been no differences in MOX fuel assembly operational characteristics relative to UO\textsubscript{2} fuel. MOX fuel has been examined poolside after one to four cycles of irradiation. In addition, 55 irradiated MOX fuel rods have been examined in hot cells. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models and codes necessary for the continuing improvement of the MOX product. These comprehensive data will be provided to the NRC in support of specific code and model submittals, ensuring an efficient review and approval.

Following are details of specific examinations supporting the overall qualification effort:
7.3.5.1 Hot Cell Examination of the Current MOX Fuel

Fuel rods from the first MOX fuel batch in the St.Laurent B1 reactor were characterized and withdrawn after each of three irradiation cycles. These data included rod burnups up to approximately 43,000 MWd/MThm and three different plutonium concentrations. Fuel rods irradiated for three cycles at St Laurent B2, including load following operation in the last cycle, were also examined. These examinations showed that the MOX fuel rods behaved similarly to UO$_2$ fuel for both waterside corrosion and rod dimensional effects. Furthermore, the rods operating under load follow conditions behaved similarly to the reference rods operated under base load conditions. Moreover, prototypical MELOX fuel rods (MIMAS process with an ADU/TU2 UO$_2$ powder) have been examined after 1, 2 and 3 irradiation cycles. Four-cycle fuel rods will be hot cell examined in year 2000. Fractional fission gas release of the 3-cycle fuel rods lies in the lower range of the MIMAS/AUC database.

The data show higher fission gas release for MOX fuel rods relative to UO$_2$ fuel rods at the same burnup, particularly above 40,000 MWd/MThm. Analysis of the data with the COPERNIC fuel performance code shows that this difference is primarily due to the differences in power production of the rods. Due to differences in the fuel properties the relative power of the MOX rods tends to increase with burnup, while that of the UO$_2$ rods decreases.

The waterside corrosion result was also confirmed more recently on optimized Zircaloy-4 cladding in high temperature reactors in Germany for a rod average burnup of 49,000 MWd/MThm. For both MOX fuel and UO$_2$ fuel, the maximum oxide thicknesses were on the order of 80 microns at this burnup, confirming that MOX fuel performs the same as UO$_2$ fuel relative to Zircaloy cladding corrosion. Confirmation of the same equivalence for the advanced cladding (M5TM) to be used on the Mission Reactor fuel will be obtained in Germany where M5TM rods containing MOX fuel will achieve a burnup of 55,000 MWd/MThm in 2002.

7.3.5.2 High Burnup Hot Cell Examination

To provide verification of performance and benchmarking data to support higher burnup needs, four-cycle MOX fuel rods with burnups up to 53,000 MWd/MThm have been examined in hot cells. The data did not show any fission gas release enhancement due to the burnup effect. One assembly has completed a fifth
irradiation cycle in the Gravelines-4 reactor. Fuel rods up to burnups of 61,000 MWD/MThm will be examined in hot cells beginning of year 2000.

7.3.5.3 Analytical Experiments

Out-of-pile and in-pile experimental tests have been conducted to promote an improved understanding of MOX fuel behavior. These R&D programs conducted by the French partners, or part of international programs, most notably the Halden Reactor Project, have addressed normal and off-normal conditions. The primary areas of research have concerned thermal, fission gas release and mechanical properties.

These data have been used for the development and benchmarking of the models implemented in the COPERNIC thermal/mechanical code.

7.3.5.4 Power Ramp Testing

Ramp testing has established that the performance of MOX fuel rods relative to pellet-cladding interaction (PCI) is equivalent to or better than that of UO₂ fuel. Transient fission gas release from the MOX rods was equivalent to that of UO₂ fuel.

Power ramp tests were performed in the Studsvik experimental reactor in a PWR environment in terms of temperature, power and neutron flux. Short fuel rods were fabricated from segments of irradiated MOX fuel rods from St. Laurent B1. The rods were ramped from typical operational power levels to terminal levels up to 14.6 kW/ft without cladding failure, demonstrating the excellent performance of MOX fuel for PCI considerations.

These ramp test rods also produced information on transient fission gas release (since the rod did not fail and the gas inventory was retained). The measured fractional release rates of the five tested MOX fuel rods are consistent with the burnup and power, and did not show any unexpected behavior. The current transient fission gas release model for UO₂ contained in the COPERNIC code gives good agreement with the MOX transient gas release data, as shown in Figure 6-1. Other programs with ramp tests in BR2, OSIRIS, and Halden after irradiation in PWR reactors have also confirmed the good behavior of MOX fuel.

7.3.5.5 Reactivity Insertion Testing
Reactivity insertion tests have been used to determine the enthalpy addition criterion for UO₂ and MOX fuel. Three test series, for reactivity insertion impact on UO₂ and MOX fuel, were performed in the SPERT test program in Idaho, the reactivity insertion accident (RIA) test program in the Nuclear Safety Research Reactor in Japan, and most recently the RIA test series in the CABRI loop in France. The six low enriched uranium (LEU) and three MOX fuel tests at CABRI included two uranium fuel failures (tests NA-1 and NA-8) and one MOX fuel failure (test NA-7). The CABRI data are still being evaluated and no definitive conclusions have been drawn about any differences associated with MOX fuel behavior during RIA.

7.4 NRC Interactions

The overall approach to the fuel qualification effort was presented to the NRC in a public meeting held June 2, 1999. This initial meeting focused on the use of a qualified fuel design supported by extensive European experience and verified through a Lead Assembly program. The expected NRC interactions and schedule for submittals were presented; the NRC's general concurrence with the requested review schedule was obtained. Further NRC interactions will take place in the form of individual licensing submittals, with meetings supporting these submittals as necessary.

Upon approval, and as directed by the DOE, this Fuel Qualification Plan will be submitted to the NRC for their information and planning. NRC concurrence with the plan's completeness and adequacy will be requested.

The topical reports to be submitted in support of the fuel qualification effort are listed below with the projected submittal dates. The data to be provided to the NRC in support of each of the submittals is summarized in Table 7-5.

7.4.1 COPERNIC

This fuel performance code is currently under review by the NRC for application to UO₂ fuel. COPERNIC contains models for MOX as well as UO₂, and has been used for MOX fuel applications in Europe since 1997. A topical report addendum supporting the use of COPERNIC for MOX applications will be prepared and is scheduled to be submitted to the NRC by August 1, 2000.

7.4.2 LOCA Evaluation Model

The NRC approved FCF LOCA evaluation model (EM) comprises a suite of codes and methods that have been approved for licensing analysis of the mission reactors and other similar reactors. For MOX applications the EM
will be modified and a topical report addendum to the EM topical submitted to the NRC by August 1, 2001.

7.4.3 CASMO-4/SIMULATE-3 MOX

Duke Power will use CASMO-4 and SIMULATE-3 MOX with methods that have been approved by the NRC for UO$_2$ applications. A topical report for CASMO-4 and SIMULATE-3 MOX, demonstrating benchmarks to the European MOX database will be submitted to the NRC by August 1, 2001.

7.4.4 Fuel Design Topical with Lead Assembly Addendum

A fuel design report will be prepared addressing the requirements of NRC Standard Review Plan 4.2. The report will address the mechanical and hydraulic compatibility with the resident fuel, the fuel assembly structural design and performance, and the MOX fuel rod design. The applicability of codes developed for UO$_2$ to MOX fuel will be demonstrated, as well as the applicability of existing NRC approved CHF correlations to the MOX fuel design. An addendum to the report will address Lead Assembly specific issues. The fuel design topical will be submitted to the NRC by August 1, 2001.

7.4.5 Non-LOCA Safety Analysis

In addition to the submittals by FCF in support of the Lead Assemblies and batch implementation, Duke Power and Virginia Power will submit topical reports related to specific transient analyses affected by the MOX fuel characteristics. These submittals are not required for Lead Assembly approval, but support the overall fuel qualification effort. Duke Power will submit a Multidimensional Reactor Transient and Safety Analysis topical by November 1, 2002; Virginia Power will submit a Rod Ejection Analysis Report by July 1, 2002.

7.5 Technical Issues

7.5.1 Gallium

Gallium is a low melting point element and is liquid at slightly above room temperature. It can cause embrittlement in many metals and alloys and is considered highly undesirable in both the processing and use of MOX fuel.

There are two primary concerns with the presence of gallium in nuclear fuel. The first relates to fabrication of the fuel. The second relates to the
operation of the fuel and particularly the potential for cladding attack with subsequent fuel rod failure.

The percentage of gallium present in weapons grade plutonium is on the order of 1% by weight (maximum of 1.2%). Depending on the quantity of plutonium being processed during fuel fabrication, this concentration could fail various furnace components used in the thermal processing (sintering) and result in extensive repairs or replacement of contaminated items. Since the mission reactors require tonnage quantities of fuel, the risk associated with furnace downtime and failures from gallium embrittlement could be high and it is therefore recommended that the gallium be reduced to low levels prior to any sintering operations.

Regarding in-reactor performance, a concern has been expressed that low levels of gallium could cause degradation of the cladding. Also, the gallium could migrate to the cooler regions of the fuel rod, particularly the susceptible weld area, and cause embrittlement and fuel rod failure.

To address the potential harmful effects of gallium, the fabrication process will utilize an aqueous polishing step to effectively eliminate gallium and other impurities from the WG plutonium prior to conversion to powder form. The polishing process may utilize either ion exchange or solvent extraction; either process is expected to produce an acceptably pure feed material for conversion to PuO$_2$ powder.

Based on COGEMA experience and predictions, the use of a polishing process is expected to allow production of MOX fuel pellets with gallium levels in the parts-per-billion (ppb) range. Gallium, at these extremely low concentrations, is not expected to have any detrimental effect on processing equipment or cladding performance. Currently operating UO$_2$ and MOX fuel rods contain traces of gallium and operate successfully.

Gallium may occur in trace amounts in fuel and cladding material, and is also created during irradiation as a fission product, and as a result of direct activation of zinc that is found in small amounts in pellets and cladding from processing. The gallium concentration after the polishing process (<5 ppb) is expected to be the same order of magnitude as the gallium concentration in successfully operating fuel rods.

The effectiveness of the polishing process to remove gallium will be evaluated well in advance of the lead assembly fabrication through a series of laboratory tests being conducted by ORNL. The ORNL tests introduced gallium in known quantities prior to subjecting the material to the same chemical process as the production facility. To allow the measurement of the very small amounts of gallium remaining after the polishing process, the gallium was first activated in ORNL's High Flux
Isotope Reactor (HFIR). These tests confirmed that the decontamination factor (DF) for the process is greater than 10^5. Such a DF produces a final gallium concentration less than 100 parts per billion (ppb) for plutonium containing 1% gallium, and less than 5 ppb for the MOX pellet. Given the level of gallium currently present in operating rods, the presence of gallium in the pellet at the 5 ppb level will have no detrimental effect on fuel performance.

Testing of the effects of gallium on fuel performance, at significantly higher levels than expected in the mission reactor fuel, is currently underway in the Advanced Test Reactor (ATR). The Average Power Test (APT) began irradiation in January 1998 with two types of MOX fuel:

1. The first fuel type was untreated relative to impurities and contained a gallium concentration of 2,000 ppb.
2. The second fuel type was thermally treated to reduce the impurities and contained gallium at the 700 ppb level.

The test rods have operated up to 8,800 MWd/MThm at heat rates of 6-10 kW/ft. The burnups are projected to exceed 40,000 MWd/MThm during future irradiation cycles. The post irradiation examinations are aimed at determining the effects of gallium on fuel rod performance. While the achieved burnups to date are relatively low, performance of the test capsules has been good with no anomalous effects. These tests will continue to be followed and are expected to provide additional assurance that operation of MOX pellets with gallium concentrations as great as 2,000 ppb offers no concern for fuel rod performance.

7.5.2 Reactivity Insertion Accident

The control rod ejection accident is the bounding reactivity insertion accident (RIA) for light water reactors. Design basis rod ejections in pressurized water reactors (PWRs) are analyzed by assuming the instantaneous insertion of positive reactivity (corresponding to a bounding maximum control rod worth) into the core. The reactor power increases rapidly until the fuel heats up and the resulting negative Doppler feedback surpasses the positive reactivity insertion from the ejected rod. The initial power increase triggers a reactor trip signal, and the other control rods fall into the core, terminating the power excursion. The accident is terminated in a few seconds. The event is postulated to occur at either hot full power or hot zero power, and at any time in cycle.

Control rod ejection is not considered to be a credible event for PWRs. Probabilistic safety assessments indicate that control rod ejection is not a significant contributor to risk of either core melt or offsite dose consequences. However, control rod ejections have been the bounding
reactivity insertion accident evaluated in licensing basis safety analyses for nuclear power reactors.

There are three acceptance criteria for licensing basis analyses of control rod ejection accidents:

1. Energy deposition: Typically, PWRs are required to demonstrate that the radially averaged enthalpy of the fuel resulting from the accident is less than 280 calories per gram. This limit was imposed to ensure that the fuel does not vaporize and produce an energetic fuel-coolant interaction. The cal/g acceptance criterion is based largely on fresh fuel experimental data generated in the 1950s and 1960s.

2. Reactor coolant system pressure: The acceptance criterion is to maintain the pressure below 120% of system design pressure.

3. Dose: Offsite dose acceptance criteria for control rod ejection accidents are 25% of 10 CFR Part 100 dose limits (i.e., 6.25 rem whole body and 75 rem to the thyroid at the exclusion area boundary). During a bounding control rod ejection accident, conservative licensing analyses indicate that a number of fuel rods will undergo departure from nuclear boiling (DNB) and are therefore assumed to fail and release fission products into the reactor coolant. Some of the reactor coolant activity is released to the environment through two pathways:
 a) A release to containment through the breach in the reactor vessel head with containment leakage to the environment.
 b) A release to the steam generator secondary side through an assumed concurrent steam generator tube leak with release to the environment through steam line relief valves.

The fuel response to control rod ejection accidents is analyzed using a coupled neutronic and thermal-hydraulic computer code. A point kinetics model has been traditionally used for many licensing calculations, and such models provide for very conservative results (overpredicting the peak power). More recently, three-dimensional kinetics models such as ARROTTA, SIMULATE-3k, and NEMO-K have been used to provide a more accurate prediction of core power response, resulting in more margin for core design.

The fundamental response of MOX fuel during a control rod ejection accident should be largely similar to the response of LEU fuel. However, there are some thermal and neutronic differences between the fuel types, discussed below.
1. Initial fuel temperature. MOX fuel thermal conductivity is lower, so the initial fuel temperature is higher while at power, making the overheating greater.

2. Doppler reactivity feedback. Partial MOX fuel cores have a more negative Doppler coefficient, which helps to mitigate the accident.

3. Effective delayed neutron fraction (beta-effective). Partial MOX fuel cores have lower delayed neutron fractions, leading to a more rapid power increase for the same positive reactivity addition.

4. Ejected control rod worth. Control rods are worth less in partial MOX fuel cores, tending to make the accident less severe. Control rod replacement with enriched B_4C rods (Section 7.1.1.2) could affect the magnitude of this reduction; however, the net effect is expected to be a reduction in the ejected rod worth.

These differences can be quantified and the overall impact assessed using state-of-the-art analytical tools. Preliminary assessments by Duke Power using the SIMULATE-3k computer code indicated that the overall impact of MOX fuel on control rod ejection analysis results is not substantial.

There is another issue associated with hypothetical control rod ejection accidents in MOX fuel – the validity of the cal/g acceptance criterion. This issue is part of a larger issue associated with cal/g acceptance criterion for high burnup fuel - LEU or MOX. Some experimental data have produced fuel rod failures at lower than expected energy insertion levels. A test program conducted at the CABRI facility in France indicates that rod failure during reactivity insertion events can be influenced by factors such as cladding corrosion and energy pulse width as well as total incremental energy deposition. The NRC has continued to accept the current criteria for LEU fuel up to the fuel burnup licensing limit of 62,000 MWD/t. The NRC position is based on a number of factors, including the fact that the very nature of irradiated fuel (much of the reactivity is depleted) makes it very unlikely to exceed 100 cal/g in LEU fuel with burnups in excess of 40,000 MWD/t, the conservative nature of the licensing based analysis, and margin to the 10 CFR 100 radiological release limits.

The CABRI facility is a sodium-cooled test loop that conducted nine experiments related to RIAs. In each test, a part-length irradiated fuel rod was exposed to a neutron power excursion similar in magnitude to (but generally higher than) energy depositions that might be experienced in realistic rod ejection accidents. Six of the tests used a LEU fuel rod, and three of the tests used a MOX fuel rod. Two LEU tests and one MOX test experienced a rod failure during the test. In the MOX test, the fuel rod
failure was unusually energetic in nature. Although post-test examinations on the specimens are not complete, a "MOX fuel effect" leading to the unexpectedly disruptive failure has been postulated.

To address this issue, the utilities will perform rod ejection accident simulations with partial MOX fuel cores and quantify the impact of using MOX fuel on accident consequences. No additional testing is expected to be required. These analyses should demonstrate that partial MOX fuel cores meet the current licensing basis acceptance criteria (280 cal/g energy deposition, 10 CFR Part 100 dose limits). If generic, bounding analyses do not meet the criteria with sufficient margin, the utilities will perform cycle-specific calculations. In addition, the utilities will perform more realistic rod ejection simulations to demonstrate the true margin to fuel failure for rod ejection accidents.

The submittal to the NRC will also discuss the acceptability of the MOX fuel design for rod ejection accidents based on the following arguments:

1. The extremely low probability of a worst-case rod ejection event, especially in light of the recent NRC initiative to focus oversight on risk-significant issues.
2. The substantial safety margin demonstrated by more realistic rod ejection calculations. For best estimate rod ejection calculations (using realistic calculated rod worths and reactivity parameters), most control rod ejections are so benign that they do not lead to reactor trip.
3. Proposed burnup limits for MOX fuel that are substantially lower than LEU fuel (50,000 MWD/t MOX fuel rod burnup, vs. 62,000 MWD/t for LEU fuel rods).
4. Use of a low corrosion cladding alloy (M5®) on MOX fuel rods. (CABRI tests indicate that cladding corrosion is an exacerbating factor for high burnup RIAs).

Should the NRC propose lower cal/g acceptance criteria for MOX fuel control rod ejection accident analyses, Duke Power and Virginia Power would propose to relax some of the extreme conservatism in terms of ejected rod worth and initial conditions that is currently present in the licensing calculations, through the use of cycle specific analyses.

7.5.3 Source Term/Severe Accident

Severe accidents are hypothetical events which lead to large-scale fuel damage (core melt) at light water reactors. If the primary coolant system and containment barriers are also breached, fission products and core activation products could be released to the environment, leading to significant consequences (offsite doses) to the public. These
consequences could include prompt fatalities and latent cancer fatalities. Severe accidents are by their nature beyond design basis events. There has been one severe accident at a United States light water reactor – TMI-2 in 1979. At that event, the radionuclides were largely confined to the primary coolant system and the containment, and offsite consequences were minimal. Following the TMI-2 event, numerous safety enhancements were implemented at United States reactors to further reduce the probability and consequences of a severe accident.

MOX fuel is expected to behave similarly to low enriched uranium (LEU) fuel during postulated core melt events. MOX fuel, like LEU fuel, is a ceramic oxide that is primarily uranium. LEU fuel, after residence in reactors, contains appreciable amounts of plutonium and other actinides, like MOX fuel. From the perspective of fuel behavior during core melt scenarios, the fundamental severe accident phenomenology should not change with MOX fuel.

Irradiated MOX fuel has a somewhat different radionuclide inventory than LEU fuel. For fission products, this is attributed to different fission product yields. For actinides, this is attributed to different initial inventories of plutonium and americium in the fuel. The radioisotopes present in irradiated MOX fuel are the same as the radionuclides present in irradiated LEU fuel, but the quantities of each radionuclide are different. In other words, the number of Curies of a given radioisotope in MOX fuel will be different than the number of Curies in LEU fuel of similar burnup. Some radioisotopes are relatively more abundant in the MOX fuel; other radioisotopes are relatively more abundant in LEU fuel.

The magnitude and impact of the differing radionuclide inventories was assessed by the Department of Energy (DOE) in the 1999 Surplus Plutonium Disposition Environmental Impact Statement (SPD EIS). The results indicated that severe accident consequences were generally higher for the mission reactors if they had some MOX fuel (as opposed to all-LEU fuel) in their cores.

However, it should be noted that all of these scenarios are extremely low probability, beyond design basis events. The Nuclear Regulatory Commission has established safety goals for risk to the public from nuclear power plant operation. Those safety goals state that the risk of prompt fatality to a person in the vicinity of a nuclear reactor should be less than 0.5% of the overall prompt fatality risk to such a person. Similarly, the risk of latent cancer fatality to a person near a nuclear reactor should be less than 0.5% of the overall cancer risk to that person. All six mission reactors are far below (much safer than) the NRC safety goals, with or without MOX fuel in their cores.
It has been alleged that the probability of severe accidents is worse for light water reactors using MOX fuel. There is, however, no credible evidence to support this assertion. Typically, the dominant core melt sequences at light water reactors involve severe external events, such as high magnitude earthquakes, or multiple equipment failures that remove decay heat removal systems from service. These types of severe accident sequences are insensitive to nuances of fuel behavior.

To address this issue the utilities will quantify the incremental risk associated with using partial MOX fuel cores, as opposed to all-LEU cores. The first step will be calculating the radionuclide source term for typical LEU cores and partial MOX fuel cores using the ORIGEN-S code, which is being validated for MOX fuel applications by FCF. The source terms will be input to a Level 3 PRA calculation to be performed by the respective utilities. Based on the DOE SPD EIS work, it is expected that the results of the calculation will be that the overall risk associated with reactor operation with partial MOX fuel cores will increase marginally. The calculations will show that there is no significant incremental risk to the public associated with partial MOX fuel core operation. The PRA results will be provided to the NRC as a part of the license amendment request to allow for reactor operation using MOX fuel.

Through FCF (Framatome) and EDF, DUKE COGEMA STONE&WEBSTER (DCS) will maintain cognizance of European developments related to MOX fuel. When relevant to severe accident issues, such experience will be translated to the U.S. MOX fuel project.
Figure 7-1 Mark-BW/MOX1 Fuel Assembly Design

Mark-BW/MOX1 Plutonium Concentrations
Figure 7-2 Mark-BW Burnup Experience

![Bar chart showing Mark-BW Burnup Experience]

- FCF LEU Fuel Assemblies discharged as of 1/98
- FCF LEU Fuel Assemblies discharged after present cycles
- FRA MOX Fuel Assemblies discharged as of 1/98
- FRA MOX Fuel Assemblies discharged after present cycles
Table 7-1 Lead Assembly Experience

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Reactor</th>
<th>Post Irradiation Programs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark B</td>
<td>15x15 base design</td>
<td>Oconee 1</td>
<td>Poolside + hot cell</td>
<td>Irradiated 5 cycles 50,200 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark BZ</td>
<td>15x15 Zircaloy spacer grid</td>
<td>Oconee 2</td>
<td>Poolside</td>
<td>Irradiated 3 cycles, 38,000 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-GdB</td>
<td>Zirc grids, RXA GTs & Gd-U02 Rods</td>
<td>Oconee 1</td>
<td>Poolside + hot cell</td>
<td>Irradiated 4 cycles, 58,300 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-BEB</td>
<td>Extended burn-up features</td>
<td>ANO-1</td>
<td>Poolside + hot cell</td>
<td>Irradiated 4 cycles, 57,300 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-BW15</td>
<td>Zircaloy lead assemblies</td>
<td>Haddam Neck</td>
<td>Poolside</td>
<td>Irradiated 3 cycles, 38,000 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-BW17</td>
<td>17x17 lead assembly</td>
<td>McGuire 1</td>
<td>Poolside</td>
<td>Irradiated 3 cycles, 44,000 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-BW17 SCA</td>
<td>Advanced Cladding Demo</td>
<td>McGuire 1</td>
<td>Poolside</td>
<td>Irradiated 3 cycles, 39,300 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-BW17 Adv Alloy</td>
<td>M5 Advanced Alloy Cladding Demo</td>
<td>McGuire 1</td>
<td>Poolside + hot cell</td>
<td>Irradiated 3 cycles, 41,600 MWd/t burn-up</td>
</tr>
<tr>
<td>Mark-B11</td>
<td>Lead assemblies with small diameter pin, mixing grids</td>
<td>Oconee 2</td>
<td>Poolside</td>
<td>In second cycle of irradiation</td>
</tr>
<tr>
<td>Mark-BW17 HEU</td>
<td>Demo of downloadable HEU</td>
<td>Sequoyah 2</td>
<td>Poolside</td>
<td>In first cycle of irradiation</td>
</tr>
<tr>
<td>Advanced Mark-BW</td>
<td>Demo of M5 advanced alloy, mid-span mixing grids</td>
<td>North Anna 1</td>
<td>Poolside</td>
<td>In second cycle of irradiation</td>
</tr>
<tr>
<td>Mark-B advanced alloy</td>
<td>Demo of M5 advanced cladding</td>
<td>TMI-1</td>
<td>Poolside</td>
<td>In third cycle of irradiation</td>
</tr>
</tbody>
</table>
Table 7-2 French MOX Qualification Program

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Item</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974-1986</td>
<td>Irradiation + PIE</td>
<td>Investigation of MOX fuel performance - 10 contracts, 48,000 MWd/MTHM rod burnup</td>
<td>Demonstration/fuel performance modeling</td>
</tr>
<tr>
<td>1974-1986</td>
<td>EURATOM PROGRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987-1991</td>
<td>Surveillance</td>
<td>15 fuel rods examined after 1, 2, and 3 cycles of first MOX reload (SLBI reactor) 43,000 MWd/MTHM rod burnup</td>
<td>Qualification of product and performance modeling</td>
</tr>
<tr>
<td>1987-1991</td>
<td>Irradiation + PIE</td>
<td>Irradiation of MOX fuel rods in the small CAP PWR under load follow condition - rod burnup = 20,000 MWd/MTHM</td>
<td>Fuel performance/modeling</td>
</tr>
<tr>
<td>1989-1990</td>
<td>Analytical experiment</td>
<td>Irradiation of a leaking MOX fuel rod in an experimental loop</td>
<td>Fission product behavior - EDF reload policy basis</td>
</tr>
<tr>
<td>1989-1992</td>
<td>Surveillance + PIE</td>
<td>Fuel rods examined after three cycles, irradiated under load follow during third cycle - rod burnup = 43,000 MWd/MTHM</td>
<td>MOX fuel performance under load follow condition for qualification</td>
</tr>
<tr>
<td>1991-1994</td>
<td>Ramp testing + PIE</td>
<td>Ramp testing of two and three cycle fuel rodlets at Studsvik and OSIRIS</td>
<td>Pellet clad interaction data for load follow qualification</td>
</tr>
<tr>
<td>1992-1993</td>
<td>Analytical experiment</td>
<td>Experimental irradiation to get densification kinetics data</td>
<td>Material properties modeling</td>
</tr>
<tr>
<td>1992-1993</td>
<td>DENSIMOX</td>
<td>Instrumented experimental irradiation for fuel temperature and FGR kinetics - 0 to 4,500 MWd/MTHM burnup</td>
<td>Fuel performance at high burnup, for 1/4 core management licensing</td>
</tr>
<tr>
<td>1993-1995</td>
<td>GRIMOX</td>
<td>Fourth irradiation cycle at core periphery - 7 rods examined (3 + 4 cycles) - rod burnup = 52,000 MWd/MTHM</td>
<td>Material properties modeling</td>
</tr>
<tr>
<td>1990-1994</td>
<td>Surveillance + PIE</td>
<td>Fourth irradiation cycle at core center - 4 rods examined - rod burnup = 53,000 MWd/MTHM</td>
<td>Fuel performance at high burnup, for 1/4 core management licensing</td>
</tr>
<tr>
<td>1990-1994</td>
<td>(4 Lead assemblies)</td>
<td></td>
<td>Modeling</td>
</tr>
<tr>
<td>1996-1998</td>
<td>Surveillance + PIE</td>
<td>Instrumented experimental irradiation of UO$_2$ and MOX fuel; online measurement of clad deformation</td>
<td>High burnup surveillance - six cycles expected</td>
</tr>
<tr>
<td>1996-1998</td>
<td>(1 Lead assembly)</td>
<td></td>
<td>Fuel performance at high burnup for 2/3 core management licensing (UO$_2$/MOX parity)</td>
</tr>
<tr>
<td>1996</td>
<td>Analytical experiment</td>
<td>First reload of second generation fuel design (MELOX fuel)</td>
<td>Modeling for global rod behavior</td>
</tr>
<tr>
<td>1997-</td>
<td>DEFORMOX</td>
<td>Fifth cycle irradiation of one assembly at core center - rod burnup expected = 61,000 MWd/MTHM</td>
<td>Modeling for fuel temperature and FGR kinetics</td>
</tr>
<tr>
<td>1998-2000</td>
<td>Surveillance + PIE</td>
<td>Examination of 15 rods irradiated at BR3 + ramp test - rod burnup = 55,000 MWd/MTHM</td>
<td></td>
</tr>
<tr>
<td>1987-1993</td>
<td>International program</td>
<td>Instrumented irradiation (central temperature + internal pressure) of rodlets pre-irradiated at Beznau - rod burnup = 48,000 MWd/MTHM</td>
<td></td>
</tr>
<tr>
<td>1993-1998</td>
<td>PRIMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993-1998</td>
<td>FIGARO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-3 European Plants using MOX from MIMAS Process

<table>
<thead>
<tr>
<th>No.</th>
<th>Country</th>
<th>Reactor</th>
<th>MELOX</th>
<th>Cadarache</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>France</td>
<td>Blayais 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Blayais 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Dampierre 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Dampierre 2</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Dampierre 3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Dampierre 4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Tricastin 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Tricastin 2</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Tricastin 3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Tricastin 4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>St. Laurent 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>St. Laurent 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Gravelines 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Gravelines 2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Gravelines 3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Gravelines 4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Chinon 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Chinon 3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Chinon 4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Belgium</td>
<td>Tihange 2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Doel 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Germany</td>
<td>Unterweser</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Grafenrheinfeld</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Phillipsburg 2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Brokdorf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Gundremmingen B</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Gundremmingen C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Grohnde</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Isar 2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Obrigheim</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Neckarwestheim 2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Switzerland</td>
<td>Beznau 1</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Gosgen</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7-4 European MOX Burnup Experience

<table>
<thead>
<tr>
<th>Country</th>
<th>Reactors</th>
<th>Maximum Discharge Burnups (MWd/MThm) of Assemblies Having Completed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Type</td>
</tr>
<tr>
<td>France</td>
<td>18</td>
<td>17 X 17</td>
</tr>
<tr>
<td>Belgium</td>
<td>2</td>
<td>17 X 17</td>
</tr>
<tr>
<td>Germany</td>
<td>2</td>
<td>16 X 16</td>
</tr>
</tbody>
</table>
Fuel Qualification Licensing Submittals

<table>
<thead>
<tr>
<th>Application</th>
<th>Submittal Format</th>
<th>Submittal Date</th>
<th>Performance Attributes</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCA Evaluation Model</td>
<td>FCF Topical Report</td>
<td>August 2001</td>
<td>Decay Heat</td>
<td>Framatome ORIGEN-S Benchmarks COPERNIC</td>
</tr>
</tbody>
</table>

Fuel Melting Temperature (Non-Proprietary)
8. CONFIRMATION - LEAD ASSEMBLY PROGRAM

The fourth step on the Fuel Qualification Process is the Lead Assembly Program. Having completed the design and supporting analyses for the Mark-BW/MOX1 fuel assembly, lead assemblies will be fabricated, irradiated and examined as final confirmation of the design and fabrication processes.

Two complete Lead Assemblies will be fabricated with the same materials and processes, and using the same design as the mission reactor fuel. Irradiation is planned for Duke Power Company’s McGuire Unit 2, Cycle, 16, starting in October 2003. At least one of the two assemblies will be placed in an instrumented location. Poolside post irradiation examinations will be performed after each irradiation cycle. After two cycles an accumulated burnup of 40,000 MWd/MThm is projected. Based on the demonstration of satisfactory fuel performance through two cycles, the mission reactor fuel will be certified for batch implementation by October 2006.

Beyond the activities required for Fuel Qualification, a third cycle of irradiation will be performed to gain information to support higher burnup operation. A hot cell examination on selected rods from the lead assemblies will be performed at a DOE facility following this third cycle.

8.1 Purpose

The primary purpose of the Lead Assembly Program is to confirm the acceptability of the MOX fuel design for certification of the mission reactor fuel for batch implementation. In achieving this purpose, the Lead Assembly Program will address several issues, including:

a) Weapons Grade Plutonium vs. Reactor Grade Plutonium

The fuel qualification effort relies heavily on European experience that is almost exclusively with reactor grade plutonium. The lead assembly program will help to confirm that irradiation of MOX fuel from weapons grade plutonium presents no unique challenges to the analytical methodologies that were developed for MOX fuel from reactor grade plutonium.

b) Manufacturing Processes

The Lead Assembly Program will demonstrate the successful transition of the MIMAS process from Europe to the U.S. and the successful application of the aqueous polishing process to reduce impurities to an acceptable level in weapons grade plutonium.
c) Trace Levels of Impurities

The lead assembly program will help confirm that the presence of trace levels of gallium (<< 1 ppm) does not adversely affect fuel rod cladding integrity.

d) Fuel Assembly Hardware

The performance of the Mark-BW/MOX1 fuel design will be demonstrated.

e) Fuel Irradiation History and Burnup

The lead assembly program will demonstrate acceptable MOX fuel performance under linear heat rate, coolant chemistry, and burnup conditions that are characteristic of U.S. PWR's operating on 18 month fuel cycles.

f) MOX Fuel Assembly Neutronic Response

Measurement of neutron power in MOX fuel assemblies is more difficult than UO$_2$ fuel due to the lower thermal neutron flux in the MOX fuel. The Westinghouse-design plants use a movable incore detector to indicate assembly power from fission chambers. The signal from the fission chambers comes from a combination of the neutron and gamma flux at the detector. The gamma signal constituent is much lower than the neutron signal in a UO$_2$ assembly and is typically neglected. However, in a MOX assembly the gamma signal is a greater fraction of the total signal, requiring compensation for the gamma signal input to allow accurate assembly power measurements. The lead assembly program will provide an opportunity to measure the WG MOX fuel assembly power using the existing movable incore detector system in order to validate the ability to predict and measure accurately the core power distribution in a mixed core.

g) Infrastructure

The lead assembly program will provide the opportunity to exercise the required interfaces in terms of fuel transportation, receipt, inspection, storage, and loading of MOX assemblies, in advance of batch deliveries.

h) NRC Approval

The lead assembly program will provide the opportunity to identify and resolve MOX technical issues well in advance of batch implementation. Topical reports on the fuel design as well as the methods topicals for fuel performance and LOCA evaluations will be submitted, reviewed and approved by the NRC in support of the lead assemblies, providing assurance for batch implementation that all technical issues have been successfully addressed.
8.2 Design Description

The lead assembly design will be the design to be used in the mission reactors. One fuel assembly design will be used for all six mission reactors, as described in Section 6.1. One variation on this base design may be required for hydraulic compatibility with the resident fuel to meet utility core design requirements; it is possible that the mission reactor resident fuel may not have intermediate flow mixers. In this event, the Mark-BW/MOX1 assembly will have the MSMGs deleted from that application. Three plutonium concentrations will be used within the assemblies, as shown in Figure 7-1. This three-zone design is identical to the approach used in the EDF reactors and will be used in the mission fuel design.

The Lead Assemblies, as well as the mission reactor fuel, will utilize Burnable Poison Rod Assemblies (BPRAs), as described in Section 7.1.1.9. The BPRAs will be supplied by FCF based on the specification (boron concentration and number of active pins/assembly) provided by the utility.

As described in Section 6.1 and Appendix A, the Advanced Mark-BW design used as the basis for the Mark-BW/MOX1 design is fully qualified. The only changes required are those associated with the MOX pellets. The MOX pellets will be fabricated to substantially the same specifications and with the same processes as the MOX pellets used in Europe, ensuring the applicability of the extensive European database. Some differences will be necessary to account for the higher fissile content of WG plutonium compared to RG plutonium.

8.3 Fabrication

The lead assembly program will demonstrate the manufacturing processes that will be used for the disposition of the weapons grade plutonium. These processes will replicate the processes used in Europe for fabrication of MOX pellets. Polished PuO₂ powder will be supplied by DOE for the lead assemblies and will be prototypical of the powder that will be produced in the MOX Fuel Fabrication Facility for the mission reactors. The chemical and physical properties of this powder will be within the database of powders routinely used in Europe, thereby ensuring consistency with the European product and applicability of the European performance database.

There will be two complete assemblies fabricated at the DOE host site, prototypical of batch production design and material, to demonstrate that the changes associated with implementation of MOX fuel do not adversely impact the operability of the fuel and core. The use of two fuel assemblies provides adequate symmetry and operational exposure, while supporting the mission schedule.
8.3.1 Host Site Selection

The host site modifications, which are necessary to implement the MIMAS technology and accommodate the throughput requirements, involve a process of planning, licensing, procurement, and test efforts. The schedule imposes an early selection of this site; DCS has prepared a Host Site Recommendation Report based on the survey of potential sites operated by DOE. For the purposes of this qualification plan it is assumed that LANL will be the host site for Lead Assembly fabrication.

8.3.2 Host Site Modification Planning

Infrastructure functional requirements at the host site for the Lead Assembly fabrication interfaces are based on the project requirements. Specific fuel fabrication requirements are defined below.

Expected interfaces to be established with the host site include:

- Regulatory approval of necessary modifications.
- Facilities for fuel fabrication.
- Suitable equipment for fuel fabrication and control.
- Operational and analytical services and support during fuel fabrication.
- Services and support for supplementary equipment procurement, installation, and operation.
- Hardware and parts supply by DCS
- Technical oversight from the DCS team.
- Site and facility access to the DCS team.
- Incorporation of MOX fuel fabrication into the overall site administrative infrastructure.

DCS will examine and analyze the existing conditions at the host site and define in close agreement with the site operator the necessary improvements either in hardware or work procedures. This agreement will be formalized as the Work Task Agreement (WTA) and submitted to DOE per the DOE/DCS contract.

8.3.3 Host Site Modification

Implementation of the WTA will involve modifications to the facilities at the host site. Due to the time necessary to meet the requirements imposed on a plutonium facility relative to security, safety, health and administration, DCS will focus on the early supply, for each modification
agreed upon, of the input data required by the host site regulations for establishing the requested change packages.

Once the design change packages are established, DCS will determine if the final design of the facility is compatible with the sound implementation of the fabrication process and is consistent with the fabrication specifications.

8.3.4 Host Site Integration Requirements

DCS will implement the Fuel Qualification Plan by integrating the required project activities of DCS with the existing infrastructure and established activities at the host site. Integration of DCS and the host site will begin with the site recommendation, followed by identification of responsibilities based on the fuel qualification plan. A Work Task Agreement (WTA) will be developed by DCS to formalize roles, responsibilities, and methodologies by which activities will be managed for the fuel qualification services.

Integration activities will include process definition and characterization, necessary host-site permitting, equipment planning, supply and installation, process qualification, start-up and transition to operations.

DCS will accomplish this integration process by:

- Establishing an Integration Office at the Host Site.
- Establishing ground rules for formal integration activities.
- Identifying and defining host-site integration activities interface by interface, so both DCS and host site roles and responsibilities can be finalized and implemented consistent with established schedules.
- Negotiating with the host site to ensure that necessary host site actions are scoped, scheduled, and implemented consistent with the overall fuel qualification schedule; and that DCS operations comply with host site imposed requirements.
- Implementing and updating the WTA.

The Host Site Integration Office will provide a single-point interface and control point with the host site, facilitate technical exchanges, maintain continuity throughout all project phases, provide field support during construction, testing, startup, and lead assembly production and provide guidance and training to host site personnel.
8.3.5 Quality Assurance Requirements

The MOX Lead Assemblies are classified as nuclear safety related; all operations involved with the design and production of the MOX fuel pellets, fuel rods and the lead assemblies will be performed in accordance with the latest approved version of the FCF Quality Assurance Program. This program is fully compliant with the requirements of Appendix B to 10CFR50, "QA Criteria for Nuclear Power Plants and Fuel Reprocessing Plants," 10CFR21, "Reporting of Defects and Noncompliance's," ANSI NQA-1, and ISO-9001. The FCF QA Specification 09-1212 translates the requirements of 10CFR50, Appendix B, for imposition on FCF suppliers.

8.3.5.1 Lead Assembly Design

Design activities for the Lead Assemblies will be conducted at FCF under the provisions of the FCF QA Program.

8.3.5.2 Pellet Fabrication

Pellet fabrication activities will be performed at the Host Site under the provisions of the FCF QA Program. Audits will be performed by FCF QA personnel to verify compliance. During the fabrication campaign FCF QA personnel will maintain an overview of the Host Site activity.

The pellet and rod fabrication activities must also meet the requirements of all applicable drawings and technical specifications provided by FCF.

8.3.5.3 Lead Assembly Fabrication

The lead assembly fabrication will be conducted in compliance with FCF specifications and procedures, and with FCF’s direct participation and overview. All fabrication activities will be performed under the provisions of the FCF QA Program. FCF will conduct audits to verify compliance. FCF will be responsible for certifying that the Lead Assemblies meet the applicable requirements.

8.3.6 Modifications and Supplementary Equipment Specifications

For the design change package, including the planning and drawings of supplementary equipment to be installed, DCS will work in close cooperation with the host site personnel. DCS will take advantage of the team’s technical expertise with respect to MOX equipment (design and
operation), through the involvement of COGEMA and BELGONUCLEAIRE, to direct the design effort. In addition, cooperation with people working on the MFFF will ensure that the processes and equipment at the two facilities are consistent and will permit full application of the European database.

After the initial design phase, the detailed design effort will be performed in close cooperation with the host site to accommodate local conditions governing design installation. The specifications of the equipment will be established during this design phase to enhance the collaboration between the DCS team and the host site engineers, and to increase the ability of the local suppliers to fabricate suitable equipment.

8.3.7 Functional Requirements Definition

The host site is assumed to have an existing facility that is presently available and suitable for transuranic processing. Suitability means that the infrastructure is presently on site to support plutonium handling and processing, including being designed for external events and having the applicable safety classification. The following functions must be accommodated on site.

- Regulation and permitting.
- Quality assurance organization capable of adapting to 10CFR50 Appendix B requirements in support of lead assembly manufacturing.
- Environmental safety and health (ES&H).
- Radiation protection, monitoring and criticality safety.
- Formal design methodology to support installation of process equipment.
- Physical security for SNM.
- Special nuclear material control and accountability (MC&A).
- Civil support.
- Storage and handling of chemicals and utilities.
- Analytical laboratories for transuranic material including analytical and physical characterization capabilities.
- Standard metallography laboratory capability.
- Transportation of powder, pellets, rods, and fuel assemblies.
- Waste management capability.
- Transuranic material handling, packaging and storage capability.
- Decontamination and decommissioning.
- Trained staff to support manufacturing operations as required.
- Project management.
8.3.8 Equipment Procurement and Testing

A procurement strategy will be defined and discussed with DOE to manage the procurement and testing activities taking into account the following requirements:

- Contractual requirements.
- Specialized know how of foreign manufacturers for specific MOX equipment.
- Technological content of the supply.
- Manufacturer capability.
- Consistency with the MFFF equipment.
- Technical risks.
- Schedule.
- Cost.
- Standardization.
- Interface requirements with other suppliers.

8.3.9 Process Description and Implementation

8.3.9.1 Process Description

The MIMAS process for fabricating MOX fuel for LWRs is the most recent evolution of the fabrication processes developed by BELGONUCLEAIRE and COGEMA to produce fuel pellets characterized by an intimate dispersion of plutonium in the fuel matrix. (See Figure 8-1 for the MIMAS process outline.) The MIMAS name is derived from MIcronized MAster blend, a key intermediate product in the fabrication process. The MIMAS process is currently in use at the BELGONUCLEAIRE P0 plant located at Dessel, the COGEMA Cadarache plant and the COGEMA MELOX plant.

This process was developed in 1984 by BELGONUCLEAIRE to meet the requirements for high plutonium solubility while maintaining a pellet microstructure closer to the UO₂ pellet than the MOX fuel pellets initially produced by other processes. This new process also has the benefit of allowing larger recycling of scrap. To achieve these objectives, the PuO₂ powder is micronized with UO₂ powder and sintered recycled scraps to form a master blend with plutonium content in the range of 20 to 35 % of the total mass. The successive blending and sieving steps deliver very small plutonium rich particles whose plutonium content never exceeds the plutonium content of the primary blend.
This primary blend is force sieved and then mechanically diluted and mixed with freeflowing UO₂ powder to obtain the specified plutonium content of the MOX fuel. The advantage of this process is to maintain the characteristics associated with the use of the UO₂ powder while significantly reducing the heterogeneous character of the plutonium distribution, which was observed in previous types of MOX fuel.

After final blending the fuel is processed the same as in UO₂ fuel fabrication by pressing the final blend into green pellets, sintering, dry grinding and inspecting the pellets before loading them into rods.

The main advantages of the MIMAS process regarding fabrication quality, flexibility and throughput are:

- The micronization step which concerns only about 20% of the powder leads to a reduced Pu milling time and reduced Pu dust production.
- The adequate dilution of primary blend in a flowable UO₂ powder avoids the use of any granulation after micronization.
- High flexibility, due to the capability for intermediate storage of the master blend and the ease of cross blending of powders for isotopic homogenization.
- The process allows for a high percentage of scrap recycling, qualified and used on a routine basis.
- The types and limited numbers of equipment used provides for minimal powder retention.
- The fine dispersion of primary blend in UO₂ is easily obtained by using efficient industrially proven mixers which do not affect the morphology of the UO₂ powders.

The early differences that existed between UO₂ and MOX fuels have been dramatically reduced with the introduction of the MIMAS process. However, small differences still exist with regard to performance in reactor. The fuel properties and performance for MIMAS produced MOX fuel are well established from an extensive database that has been used for code benchmarking and verification. By replicating the MIMAS process for the LA fabrication and MFFF production, this database will remain valid for the WG plutonium disposition program.
8.3.9.2 Process Implementation

The process will be implemented at the host site through the delivery of specific equipment, modification of existing equipment, exchange of documents, flow sheets, data sheets, drawings, specifications, procedures, etc. The presence of an Integration Office will facilitate the guidance and training of the host site personnel in design, installation, test, qualification and operation processes.

8.3.10 Feed Material Requirements

8.3.10.1 Plutonium Feed

The plutonium oxide feed powder used in the fabrication of the Lead Assembly MOX pellets will have the same chemical and physical properties as the oxide powder routinely used in the fabrication of European MOX fuel. In both cases the oxide is derived from the nitrate through the oxalate precipitation process. This process provides significantly better control of the PuO\(_2\) particle size, shape, and distribution compared to product obtained by dry processing, e.g. burning Pu metal to the oxide. Close control of particle size and size distribution is essential in powder production both from a manufacturing perspective and fuel performance. Following precipitation and calcination in the temperature range of 600°C to 650°C, the PuO\(_2\) powder will be homogenized and thoroughly characterized. The chemical and physical properties of such PuO\(_2\) must be repeatable and within the PuO\(_2\) powder specification that DCS will provide to the Host Site in order to be fully consistent with the database of powders produced in Europe. Thus, this experience base will be applicable to the LA product.

8.3.10.2 Plutonium Polishing

Weapons grade plutonium may have a gallium content up to 1.2%. This gallium has the potential for causing manufacturing and operational problems and thus must be removed by polishing down to the ppb range in the finished MOX pellet. The specification for the PuO\(_2\) powder will limit the gallium levels to less than 100 ppb following polishing. This limit will ensure that the finished pellets, after mixing with UO\(_2\) powder, will have a maximum gallium concentration of 5 ppb.

Other contaminating elements may be present in the plutonium. Polishing is expected to reduce these elements to acceptable levels.
and typical of the values observed in Pu feeds currently used in Europe. The host site is expected to confirm the decontamination factors (DF) for the various elements, including gallium, to ensure that acceptable levels will be achieved by the polishing process. DCS will support the host site for this specific check and qualification.

DCS will evaluate the equipment presently used and the current operating conditions to determine if the host site is able to meet the PuO₂ specification and make appropriate recommendations. The specification for the plutonium dioxide powder will be established by DCS and provided to the host site.

It is assumed that the WG plutonium to be used for the lead assemblies and mission reactor fuel contains no contaminants that would not be removed by the polishing process.

8.3.10.3 Uranium Feed

The majority of the European MOX irradiation experience is based on the use of depleted (and some natural) UO₂ prepared by the ammonium diuranate (ADU) wet route process, or by the ammonium uranyl carbonate (AUC) wet route process. The MELOX production and most of the European MOX fuel are based on ADU powder produced in the COGEMA TU-2 plant. A sufficient quantity of this UO₂ powder will be made available by DCS for the Lead Assembly program. This approach ensures complete similarity, from the UO₂ standpoint, between the LA and the European MOX experience, while avoiding any possible effects due to differences in uranium feed characteristics.

For the UO₂ supply for batch implementation at the mission reactors, a number of options are available. These options include the qualification of a U.S. facility for the fabrication of ADU powder, continued use of COGEMA source powder, and the use of UO₂ powder produced by other process routes. Use of UO₂ powder from any source other than the current experience base (ADU and AUC) will require an appropriate qualification program to ensure that properties remain consistent with previous experience. Such a qualification program for alternate supplies of UO₂ powder will include out-of-reactor characterization of powder properties, pellet properties and microstructure, and in-reactor performance verification prior to use in the MOX MD program.
8.3.11 Mark-BW/MOX1 Qualification and Fabrication Support

Following design, procurement, installation, and testing of the required equipment, start-up and qualification of the MOX pellet production line will be performed. Fuel rod and fuel assembly production processes will be tested and qualified. Two (2) Mark-BW/MOX1 fuel assemblies will be produced for shipment to McGuire Unit 2 for the lead assembly irradiation.

8.3.11.1 Pellet Qualification and Production

The pellet production equipment will be designed, procured, installed and tested to produce a product that meets the appropriate pellet specification.

The WG MOX pellet fabrication process is identical to that used for RG fuel fabrication even though the Pu content for lead assembly fabrication is lower than the Pu content used in European commercial fuel fabrication. The MIMAS process has been qualified for a large range of Pu contents. The capability of the process using two cross blending operations will permit differences in the isotopic compositions of the Pu feed.

The pellet production steps include primary dosing, milling, sieving, secondary dosing, homogenizing, and pelletizing. The dosing process takes into account the isotopic characteristics of the components (PuO₂, UO₂, and scrap). The primary blend is sieved before dosing, secondary blending and incorporation of additives. The secondary dosing takes into account the targeted Pu content and isotopic characteristics of the components. Homogenization of the secondary blend is performed just before pressing the green pellets. The green pellets are sintered, dry ground, sorted and prepared for rod loading.

The process equipment provides for intermediate powder storage to allow for cross-blending at each of the blending steps and to take into account the different throughputs and operating modes of each process step. The atmosphere in the glove boxes is specified and monitored to insure proper pellet quality.

The qualification of production will be performed prior to each concentration production campaign. The lower concentration, requiring no scrap, or only a low scrap content, is qualified and produced first. The two other concentrations are qualified and produced subsequently. Enough pellets are produced to cope with
requirements for archive rods or defective rod filling or assembling.

DCS will provide all specifications, procedures and assistance to host site personnel in the set up of the operating parameters of the plant. The host site personnel will be responsible for operation of the plant under the technical guidance of DCS.

Final inspection of the pellets will be performed to ensure that all the dimensional and specification requirements are met.

8.3.11.2 Rod Qualification and Production

The alloy M5™ cladding used for the MOX fuel program will be the same as that used for commercial UO₂ fuel. Fuel rod sub-assemblies will be boxed after comprehensive testing, along with the upper plenum springs and upper end plugs, and shipped to the DOE host site in preparation for fuel rod fabrication.

FCF will supply all procedures, route cards, specifications and inspection plans necessary for fuel rod fabrication. All equipment supplied will have been pre-qualified prior to installation at the host site and will be re-qualified after installation, prior to first production.

FCF is responsible for the qualification of the fuel rod fabrication equipment, processes and personnel, with COGEMA/BN personnel providing technical support as necessary. DCS personnel will train and qualify host site personnel during qualification of the equipment and processes and during cold and hot start-up operations. Host site personnel will perform the fuel rod production fabrication with DCS providing technical support as necessary.

As part of the qualification process, preproduction fuel rods utilizing simulated pellets will be made to exercise and qualify the total rod fabrication process prior to "hot" use of the glove box with MOX fuel pellets. The qualification will also confirm that the production equipment and inspection equipment have been correctly installed and are functioning correctly.

During production the rod will be loaded with the appropriate number of MOX fuel pellets, the column length will be verified and the upper plenum spring and upper end plug will be inserted. The upper end plug will then be welded to the fuel rod using the qualified parameters derived from the qualification program. The
rod will be pressurized, seal welded, and decontaminated prior to removal from the glove box. The subsequent operations will include weld inspection, gamma scanning, fuel column gap scanning, helium leak checking and final cleaning and pre-characterization of the lead assembly rods. A unique marking that will identify the rod to the specific plutonium loading will be used.

Consistent with standard nuclear practice, archive samples of the product will be retained for the MOX fuel program. The purpose of the archive rods is to provide a base line for root cause analysis studies in the event of unexpected MOX fuel behavior, and for comparison of the irradiated condition with the unirradiated base case during the hot-cell examinations.

8.3.11.3 Fuel Assembly Qualification and Production

Qualification, fabrication, and characterization of the Lead Assemblies will be in accordance with the standard procedures utilized at the FCF fuel fabrication facility. FCF will supply all procedures, route cards, specifications and inspection plans necessary for fuel assembly fabrication. All equipment supplied will have been pre-qualified prior to installation at the host site and will be re-qualified after installation and prior to first production use. FCF will supply trained, qualified personnel to perform these activities.

FCF is responsible for the qualification of the fuel assembly fabrication equipment, processes and personnel. As part of the qualification process, a pre-production fuel assembly utilizing dummy fuel rods will be made to exercise and qualify the total assembly fabrication process prior to first use of MOX fuel rods. A dummy fuel assembly will also be fabricated (at the FCF plant) and used to check out and verify fuel assembly interfaces for shipping, handling, and storage prior to first use of the completed MOX assemblies.

The MOX fuel lead assemblies will be fabricated using standard UO₂ fuel assembly fixturing, sub-components, processes, and inspections. FCF will supply the fuel assembly hardware to the DOE host site for assembly fabrication. The location of each fuel rod within each lead assembly will be recorded by rod serial number, and the location of the different plutonium loadings will be verified and documented for each assembly. Actual overall assembly dimensions will be recorded. Water channel spacing measurements will be taken at every mid-span elevation. A final pre-characterization report will be issued to document all relevant
data of the lead assembly pellets, rods, and assemblies. This information will be used as the pre-irradiation baseline data for the post-irradiation examinations. The fuel assemblies will be certified by FCF to document conformance to the specification requirements.

8.4 Lead Assembly Shipment

Shipment of the lead assemblies from the DOE host site to the mission reactor will utilize the MO-1 shipping container and Safeguards Transporter (SGT), to be provided by DOE. Any required exemptions or approvals for use of the MO-1 will be the responsibility of the DOE. Prior to use of the shipping container for lead assembly shipment, all interfaces and settings will be reviewed and verified for compatibility with the lead assembly requirements. In addition, a pre-production assembly will be used to directly check the interfaces and settings. The MO-1 container will be shipped to the reactor site with the dummy fuel assembly inside for receipt and fuel handling verification. This prototype test of the interfaces will precede the actual shipment of the lead assemblies.

8.5 Lead Assembly Approval

The use of the Advanced Mark-BW fuel assembly as the structure for the MOX lead assemblies and the mission reactor fuel will facilitate NRC approval since the Advanced Mark-BW is fully qualified and approved. The only significant change will be the use of MOX fuel pellets rather than UO\textsubscript{2} pellets. The approval process for the lead assemblies will include NRC submittals for the COPERNIC fuel performance code topical report addendum, Loss-of-Coolant Accident (LOCA) evaluation model addendum, and a Mark-BW/MOX fuel assembly design topical. The topical report on the Mark-BW/MOX fuel assembly design will include an appendix to specifically address the lead assembly application. These submittals will be made to allow approval, assuming a one-year NRC review time, at least one year prior to delivery of the lead assemblies to McGuire. Duke Power will submit a specific license amendment request to allow the insertion of lead assemblies into McGuire Unit 2.

8.6 Irradiation Plan

The two lead assemblies will be irradiated in half-core-symmetric locations in McGuire Unit 2, Cycle 16, with three cycles of irradiation planned. One of the lead assemblies will be located in an instrumented location to verify predicted operational neutronic performance during the irradiation cycles. The lead assemblies will be located in relatively high power, non-limiting positions to ensure representative operating parameters for batch implementation. Neutronic data will be compared to similar data obtained from instrumented UO\textsubscript{2} assemblies to verify core predictions. The lead assemblies are projected to reach a burnup of
approximately 40,000 MWd/MThm in two cycles, consistent with the expected mission burnup.

While Fuel Qualification activities will be completed after the second cycle of LA irradiation, a third irradiation cycle of one or both of the lead assemblies will be performed to obtain data at higher burnup to confirm performance, verify margin predictions, and benchmark fuel performance models. Fuel assembly burnup is expected to reach 50,000 MWd/MThm. These data may also be used to justify extended burnup operation of the MOX fuel. This maximum burnup exceeds the maximum allowable fuel assembly burnup of 45,000 MWd/MThm, as defined in the Mission Reactor Irradiation Plan.

8.7 Fuel Examinations

The post irradiation examinations (PIEs) provide performance data to confirm the assumptions and models used for design and analysis of the WG MOX lead assemblies. The evaluation of the performance depends on several tasks. These tasks are:

- Characterization of the as-built condition of the fuel
- Poolside PIEs
- Rod Extraction and Hot Cell Examinations
- Detailed Operational History
- Data Reduction and Benchmarking to Models and Other Data Sources

The following sections describe these tasks in detail.

8.7.1 Characterization of the as-built condition of the fuel

All of the major components of the lead assembly and fuel rods will be characterized prior to irradiation. The measured characteristics of lead assembly fuel pellets will be placed in a database for use in licensing and PIE comparisons. The pellets will be measured for grain size and microstructure features including PuO₂ particle size, homogeneity of PuO₂ dispersion, resinter test performance, diameter, length, porosity distribution, and complete chemical impurity content. A statistically valid sample of pellets will be examined to completely quantify the MOX pellet attributes. Archive samples will be retained from each MOX pellet lot.

For characterization of the lead assembly rods, a number of non-routine inspections will also be included in the lead assembly inspection steps. As a minimum, the length of each MOX rod, the pellet active length, and the plenum length will be measured and recorded by serial number. Samples of in-process end plug welds and seal welds will be retained. The weight of as-loaded pellets will be identifiable to each rod serial number. A
unique marking that will identify the rod to the specific plutonium loading will be used.

Consistent with standard nuclear practice, archive samples of the product will be retained for the MOX fuel program. A minimum of one full archive rod of each of the three plutonium loading and one rod representative of each batch of MOX fuel produced (approximately ten rods) will be retained at the DOE host site. The purpose of the archive rods is to provide a base line for root cause analysis studies in the event of unexpected MOX fuel behavior, and for comparison of the irradiated condition with the unirradiated base case during hot cell examinations.

Following standard nuclear identification procedures, each Lead Assembly will be specially identified with unique serial numbers. The location of each fuel rod within each Lead Assembly will be recorded by serial number, and the location of the different plutonium loadings will be verified and documented for each assembly. Actual overall assembly dimensions will be recorded. Water channel spacing measurements will be taken at every mid-span elevation.

All of the characterization data will be issued in a final report that documents all relevant data of the lead assembly pellets, rods and assemblies. This information will be used as the pre-irradiation baseline data for the post-irradiation examinations.

8.7.2 Poolside PIE

The lead assemblies will be irradiated in McGuire 2 starting in cycle 16. After two cycles of irradiation, the lead assemblies will reach a burnup of approximately 40,000 MWd/MThm, with a maximum projected rod burnup of 44,000 MWd/MThm. After each cycle the assemblies will be examined poolside to verify acceptable performance and provide data for later evaluation. The poolside examinations will employ proven non-destructive techniques typically used in the examination of irradiated UO₂ fuel assemblies. The scope of the poolside examinations is expected to include the items listed in Table 8-1. This Table includes the purpose of each inspection and the expected result, relative to UO₂ assembly performance.

8.7.3 Rod Extraction and Hot Cell Examinations

DCS will extract fuel rods from the lead assemblies after the third cycle of operation. The rods will then be shipped to a DOE host laboratory, using a DCS contracted rod-shipping cask vendor. The scope of work to be performed in the hot cell is expected to include (as a minimum):
8.7.4 Operational History

Detailed operational data will be obtained and recorded in a database to aid in the evaluation of the lead assemblies. One of the lead assemblies will be placed in an instrumented location to verify predicted operational neutronic performance during irradiation cycles. Also overall plant performance parameters such as power levels, temperatures, transient conditions and RCS chemistry will be recorded in detail. Detailed fuel rod power histories will be generated following the completion of the fuel cycle to allow for better accuracy in comparing predicted-to-measured performance. The detailed operational data will be provided in an Appendix in the PIE report issued after each cycle.

8.7.5 Acceptance Criteria

After each fuel cycle, the lead assembly operational conditions and the PIE measurements will be compared to specific predictions and to the overall UO2 fuel database. The measurements performed after the first and second cycle will provide the basis for final Certification that the Fuel Qualification Plan has been completed and the fuel is ready for batch implementation.

<table>
<thead>
<tr>
<th>Lead Assembly Performance Criteria for Batch Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
</tr>
<tr>
<td>Fuel assembly growth</td>
</tr>
<tr>
<td>Fuel rod growth</td>
</tr>
<tr>
<td>Fuel assembly RCCA drag force</td>
</tr>
<tr>
<td>Fuel rod integrity</td>
</tr>
<tr>
<td>Fuel rod oxide thickness</td>
</tr>
</tbody>
</table>
Later, after the third cycle hot cell exam a second comparison will be performed to compare hot cell results to specific predictions, the overall UO$_2$ fuel database, and to both specific MOX results and the overall MOX database. In addition the hot cell results will be compared to poolside measurements to verify poolside measurement techniques.
Figure 8-1 MIMAS Flow Diagram
Table 8-1 Lead Assembly Poolside Post Irradiation Examination

<table>
<thead>
<tr>
<th>INSPECTION</th>
<th>PURPOSE</th>
<th>EXPECTED RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel assembly visual</td>
<td>Overcheck to provide confirmation of acceptable performance.</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods and guide thimbles.</td>
</tr>
<tr>
<td>Fuel rod visual</td>
<td>Overcheck to provide confirmation of acceptable performance.</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods.</td>
</tr>
<tr>
<td>Fuel rod CRUD measurements</td>
<td>Confirm equivalency to UO₂ fuel rod. Address AOA issues.</td>
<td>Same as UO₂ fuel – light CRUD deposits</td>
</tr>
<tr>
<td>Fuel rod growth</td>
<td>Confirm acceptable margin for fuel rod operation. Verify shoulder gap.</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods and guide thimbles</td>
</tr>
<tr>
<td>(shoulder gap closure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel assembly growth</td>
<td>Confirm predictions and equivalency with UO₂ assembly</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods and guide thimbles</td>
</tr>
<tr>
<td>Fuel assembly RCCA drag force</td>
<td>Address incomplete RCCA insertion issue.</td>
<td>Same as UO₂ with M₅ᵀᴹ guide thimbles</td>
</tr>
<tr>
<td>Fuel rod oxide thickness</td>
<td>Confirm equivalency to UO₂ rod. Compare to corrosion predictions.</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods</td>
</tr>
<tr>
<td>Water gaps (fuel rod bowing)</td>
<td>Determine rod bow equivalence to UO₂ rod and FA envelope</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods and guide thimbles</td>
</tr>
<tr>
<td>Grid width</td>
<td>Confirm grid growth predictions, equivalency to UO₂ fuel assembly.</td>
<td>Same as UO₂ with Zircaloy grids</td>
</tr>
<tr>
<td>Grid oxide thickness</td>
<td>Confirm grid strength margins.</td>
<td>Same as UO₂ with Zircaloy spacer grids</td>
</tr>
<tr>
<td>Guide thimble plug gauge</td>
<td>Address incomplete RCCA insertion issue. Verify distortion free operation.</td>
<td>Same as UO₂ with M₅ᵀᴹ guide thimbles, all gauges pass all grid spans,</td>
</tr>
<tr>
<td>Guide thimble oxide</td>
<td>Verify guide thimble corrosion margins.</td>
<td>Same as UO₂ with M₅ᵀᴹ guide thimbles</td>
</tr>
<tr>
<td>Fuel assembly bow and</td>
<td>Address incomplete RCCA insertion issue. Verify FA growth models.</td>
<td>Same as UO₂ with M₅ᵀᴹ clad fuel rods and M₅ᵀᴹ guide thimbles</td>
</tr>
<tr>
<td>distortion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. CERTIFICATION AND BATCH IMPLEMENTATION

The final step in the Fuel Qualification Process is the Certification of completion of the Fuel Qualification Plan to allow batch implementation. This Certification will be issued following confirmation of the fuel performance through two cycles of lead assembly irradiation. The following sections detail the processes to be followed for the interfaces between the Fuel Qualification effort and the production fuel relative to design and design control, manufacturing, shipping and handling, storage, security and safeguards.

9.1 Production Design and Processes

The fuel assembly design basis is maintained through an FCF QA controlled procedure that defines the product by way of the applicable drawings and specifications. This Technical File describes the product in sufficient detail to ensure consistency from one manufacturing campaign to another. The Technical File for the Mark-BW/MOX1 will be transmitted by way of a Design Interface Document to the utilities using the fuel, to the Lead Assembly Host Site, and to the MFFF. In this manner, the mission reactor fuel produced at the MFFF for McGuire and Catawba will be identical to the Lead Assemblies produced at LANL (as noted previously, the fuel for North Anna will likely not include the MSMG in order to be compatible with the resident fuel).

Further, the pellet manufacturing process to be used at the MFFF, and the process to be used at LANL, will replicate the MIMAS process used in Europe. Maintaining the same fabrication process will ensure that the U.S. produced fuel is prototypical of the fuel produced in Europe, which is the source of the data used for benchmarking and verification.

9.2 Fuel Design Change Control

In response to utilities' needs for continuing improvements in fuel reliability and safety margins, fuel designs will continue to evolve. Given the significant time span of this program, it is likely that additional evolutionary changes will be made to the proposed fuel and BPRA design prior to the lead assembly program or the irradiation of reload batches. Any major fuel assembly or BPRA changes to be incorporated into the lead assemblies or batch fuel will be qualified for UO₂ fuel assemblies prior to their incorporation into the MOX assemblies. This will ensure that the MOX fuel lead assemblies will clearly demonstrate the effects of MOX fuel while also being representative of, and consistent with, the UO₂ fuel designs that will be available at the time of batch implementation.

The design change process at FCF is controlled by administrative procedure to ensure that all changes are thoroughly reviewed, including review and approval by the utility customer, prior to implementation. The mission reactor utilities are required to maintain the licensing basis for the fuel per NRC Bulletin 96-02.
relative to Literal Compliance. Therefore, the utilities must be involved with, and fully cognizant of, all fuel design changes. Significant design changes require the review of an independent Design Review Board, and may also require NRC review and approval prior to implementation. All design changes must be supported by appropriate analysis and testing to ensure compliance with all design criteria.

9.3 Shipping

The fresh fuel assemblies will be shipped from the MOX Fuel Fabrication Facility (MFFF) to the mission reactor sites utilizing the new MOX Fresh Fuel Package (MFFP) and DOE-provided Safeguards Transporter (SGT). The MFFP will be designed and certified to interface with the Mark-BW/MOX1 fuel assembly. The design will ensure that the Mark-BW/MOX1 assemblies are adequately secured and supported for fuel handling shock, vibration, and temperature limits for both normal and accident conditions. Design requirements for the MFFP will be provided through the Design Interface Document prepared under the fuel qualification effort.

9.4 Handling and Storage

The European experience with RG MOX fuel indicates that special fuel handling and storage precautions are required relative to UO₂ fuel with respect to heat load and radiological issues. However, the WG material is expected to require no special handling considerations due to the different isotopic makeup of the WG plutonium. New fuel from RG plutonium will have a significantly larger concentration of Pu-240 (24%) than the WG material (<6%) and will contain significant concentrations of Pu-238, 241, 242 and Am-241, whereas the WG material will have less than .5% of these isotopes. The WG material with its low concentrations of Pu-240 and Am-241 is not expected to require special shielding once the pellets are loaded into the cladding and the rods are sealed.

In addition to the shielding considerations, fresh MOX fuel will generate heat that must be removed to meet temperature limits for the fuel. Fresh MOX fuel from RG material produces several hundred watts; due to the different isotopic makeup of the WG material, the projected heat load of the mission reactor fuel is only about one-fifth that of the RG fuel.

FCF supplies the utility customers for UO₂ fuel with documentation of fuel handling recommendations, limits and precautions. This documentation will be supplied to the mission reactor utilities for the Mark-BW/MOX1, for both the lead assemblies and the mission reactor fuel. Sections of the document will deal specifically with radiation protection and shielding requirements, and with special handling and storage requirements due to the residual heat production of the fresh MOX fuel. It is expected that no special requirements will be imposed for the Mark-BW/MOX1 and will be comparable to UO₂ fuel.
Based on the design parameters discussed above, a Mark-BW/MOX1 fuel assembly may be handled and stored in the following manner:

- Upon initial receipt at the site, a visual examination of the assembly will be performed. This examination is planned to be performed without the use of video cameras. If fuel assembly documentation indicates there are additional radiological concerns associated with the receipt inspection, site radiological protection personnel will determine additional measures to take.

- Following the visual examination, the mission reactor fuel will be stored in either the new fuel storage area or the spent fuel pool, depending on the specific security requirements associated with the program and the residual heat production of the fresh MOX fuel. Both areas are within the Fuel Building, which is classified as a Vital Area. The mission reactor fuel will remain in storage within this Vital Area until it is transferred into the Reactor Building for use in the reactor core. The Reactor Building and fuel transfer path are also classified as Vital Areas, thereby providing the same level of security as the Fuel Building.

9.5 Security and Safeguards

The lead assembly and mission reactor fuel will be fabricated in DOE facilities. All security and safeguards during fabrication will be provided by the DOE. Shipping of fresh fuel will be the responsibility of DOE using Safeguards Transporters (SGT) with fresh fuel packaging supplied by the DCS team.

After arrival at the mission reactor site, responsibility for security will be transferred to the utility upon acceptance of the shipment by utility personnel. DOE supplied security for the shipment (convoy escorts) will remain on site until responsibility for the fuel is transferred to the utility. The SGT operators will remain with the shipment until the containers are offloaded in the fuel receiving area. The fresh fuel will be stored in the spent fuel pool prior to loading into the reactor where it will be inaccessible.

An appropriate level of security will be provided during the fuel receipt/unloading process and during the time the fuel is in the spent fuel pool. Specific security measures will be developed by Duke and Virginia Power as part of the reactor licensing process lead assembly irradiation and batch implementation. This process will be described in more detail in the Mission Reactor Licensing Plan to be submitted to DOE. These additional security measures will address personnel access controls to the storage area, as well as the capabilities for detection, assessment, and security force response to unauthorized access attempts. Specific details of the Security & Safeguards program elements will also be documented in the facilities’ Security Plan.
International Atomic Energy Agency (IAEA) safeguards requirements will also be implemented at the three mission reactor sites. The specific IAEA safeguards requirements and the programmatic and procedural changes necessary to meet these requirements will be developed in conjunction with NRC as part of the licensing process.
10. CONCLUSION

This Fuel Qualification Plan has implemented the overall qualification strategy by providing a description of the step-by-step process to be used by the DCS team to design, license, confirm, and implement WG MOX fuel in the mission reactors.

10.1 Action Plan

Following are the significant tasks to be performed in implementing the Fuel Qualification Plan, with the projected completion date:

<table>
<thead>
<tr>
<th>Action</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete MOX Pellet Specification</td>
<td>February 2000</td>
</tr>
<tr>
<td>Complete MOX Fuel Rod Design</td>
<td>February 2000</td>
</tr>
<tr>
<td>Complete Design Technical File</td>
<td>November 2000</td>
</tr>
<tr>
<td>Submit COPERNIC MOX Addendum</td>
<td>August 2000</td>
</tr>
<tr>
<td>Submit LOCA EM MOX Addendum</td>
<td>August 2001</td>
</tr>
<tr>
<td>Submit Duke CASMO4/SIMULATE-3 MOX</td>
<td>August 2001</td>
</tr>
<tr>
<td>Submit Fuel Design Topical with LA Addendum</td>
<td>August 2001</td>
</tr>
<tr>
<td>Complete Host Site facility modifications</td>
<td>December 2001</td>
</tr>
<tr>
<td>Complete Host Site facility qualification</td>
<td>June 2002</td>
</tr>
<tr>
<td>Submit Virginia Power Rod Ejection Topical</td>
<td>July 2002</td>
</tr>
<tr>
<td>Release Design Interface Document</td>
<td>July 2002</td>
</tr>
<tr>
<td>Perform Final Design Review</td>
<td>July 2002</td>
</tr>
<tr>
<td>Submit Virginia Power PDQ Topical to NRC</td>
<td>September 2002</td>
</tr>
<tr>
<td>Complete LA pellet fabrication qualification</td>
<td>October 2002</td>
</tr>
<tr>
<td>Submit Duke Power Multi-Dimensional Transient Analysis Topical</td>
<td>November 2002</td>
</tr>
<tr>
<td>Complete LA pellet fabrication</td>
<td>March 2003</td>
</tr>
<tr>
<td>Complete LA certification</td>
<td>July 2003</td>
</tr>
<tr>
<td>Complete LA shipment</td>
<td>August 2003</td>
</tr>
<tr>
<td>Start LA irradiation</td>
<td>October 2003</td>
</tr>
<tr>
<td>Complete 1st cycle irradiation</td>
<td>March 2005</td>
</tr>
<tr>
<td>Perform 1st cycle poolside PIE</td>
<td>March 2005</td>
</tr>
<tr>
<td>Start LA 2nd cycle irradiation</td>
<td>April 2005</td>
</tr>
<tr>
<td>Complete 2nd cycle irradiation</td>
<td>September 2006</td>
</tr>
<tr>
<td>Perform 2nd cycle poolside PIE</td>
<td>September 2006</td>
</tr>
<tr>
<td>In addition to the activities required for Certification, the following tasks will be performed in support of model upgrades and potential improvement in burnup limits.</td>
<td></td>
</tr>
<tr>
<td>Start LA 3rd cycle irradiation</td>
<td>October 2006</td>
</tr>
<tr>
<td>Complete 3rd cycle irradiation</td>
<td>March 2008</td>
</tr>
</tbody>
</table>
Perform 3rd cycle poolside PIE
Rod extraction and shipment to hot cell
Complete hot cell examinations

March 2008
November 2009
November 2010

10.2 Certification of Fuel Qualification

Certification of completion of the Fuel Qualification Plan will be issued upon completion of the second cycle PIE on the Lead Assemblies and analysis of the results.

Certification for Batch Implementation
October 2006
Appendix A QUALIFIED FUEL DESIGN

The MOX program will utilize FCF’s Advanced Mark-BW, a fully qualified fuel assembly design that will allow the qualification program to focus on the MOX fuel implementation.

A.1 Design Description

The Advanced Mark-BW fuel assembly, shown in Figure A-1, is a 17X17, standard lattice fuel assembly specifically designed for Westinghouse-design reactors. All six mission reactors utilize the 17X17 product. The Advanced Mark-BW adaptation for MOX application, the Mark-BW/MOXI, is dimensionally and structurally identical to the Advanced Mark-BW with the only change appearing in the fuel rod internal design. The Advanced Mark-BW and Mark-BW/MOXI include the following base features:

- Seated fuel rods
- Floating intermediate spacer grids
- Keyable spacer grids
- Removable top nozzle
- High thermal performance spacer grids
- TRAPPER™ bottom nozzle
- M5™ alloy fuel rod cladding

A.1.1 Advanced Mark-BW Structure

The structural cage of the Advanced Mark-BW and Mark-BW/MOXI designs consists of twenty-four (24) M5™ control rod guide thimbles attached to an upper and lower nozzle, and a center location in the array reserved for instrumentation. The lower Inconel end grid is mechanically attached to the guide thimble lower end plug; the end plug is threaded and bolted to the lower nozzle. The upper Inconel end grid is restrained by twenty-four (24) sleeves welded to the grid. These sleeves surround the guide thimbles and react against the lower surface of the upper nozzle. Six (6) Zircaloy intermediate grids create the 17X17 lattice array; these grids are not rigidly attached to the guide thimbles, but remain free to move upward with the fuel rods as the rods grow due to irradiation. Excessive movement of the grids under hydraulic loading is controlled by eight (8) ferrules attached to selected guide thimbles, plus the instrument tube, at each grid elevation. This design feature reduces the compressive stresses in the guide thimbles thereby reducing guide thimble distortion that can affect control rod insertion.

The end grids and intermediate grids utilize a keying feature that compresses the contacting spring during fuel rod insertion at the time of
manufacturing. This keying action allows fuel rods to be inserted without excessive loading and without scratching.

The guide thimbles have two diameters – a larger diameter at the top provides a relatively large annular clearance that permits rapid insertion of the rod cluster control assembly (RCCA) during a reactor trip and accommodates coolant flow during normal operation. The reduced diameter section, the dashpot, located at the lower end of the guide thimble, provides a relatively close fit with the RCCA rodlets to decelerate the RCCA near the end of its travel. The deceleration limits the impact loads on the top nozzle. Four (4) small holes located just above the dashpot allow both outflow of water during RCCA insertion and coolant flow into the tube during normal operation to cool the control component. A small hole in the guide thimble bolt provides a flow path for the lower section of the guide thimble.

A.1.2 Spacer Grids

The primary features of the Mark-BW/MOX1 spacer grids are illustrated in Figure A-2. At each fuel rod location a combination of springs (softstops) and dimples (hardstops) acting in two orthogonal planes support each rod. All spring and dimple edges are bent inward to resist scratching of fuel rods during loading. Tight control of dimple and spring heights ensures a constant, uniform rod pitch and fuel rod restraint load. Each guide and instrumentation thimble cell features saddles and scallops to facilitate loading and support of the thimbles. A laser weld performed at each strip intersection on both faces of the assembled grid secures the strips. To ensure high quality and consistency, robotic equipment is used to laser weld the strip end tabs. Grid strip height and thickness are optimized to meet crush and impact strength, pressure drop and dimensional requirements.

Mixing vanes are incorporated on the trailing edges of five (5) intermediate grids used in the high heat flux region of the core. The vanes improve the heat transfer characteristics of the grid/assembly. The lowest intermediate grid does not have vanes to reduce the overall fuel assembly hydraulic resistance.

A.1.3 Mid-Span Mixing Grids

Mid-Span Mixing Grids (MSMG’s) are non-structural components installed at the mid-span between the top four intermediate vaned grids to promote improved heat transfer. The MSMG is an optional component on the base Mark-BW and is currently operating on four Lead Test Assemblies at North Anna. For hydraulic compatibility with the resident fuel design in operation at the time of insertion, the MSMG’s are expected
to be incorporated on the Mark-BW/MOX1 to be used at the McGuire and Catawba reactors of Duke Power. The resident fuel at Virginia Power's North Anna reactors currently does not have a comparable component, although use of such grids is under consideration. Therefore, MSMG's may not be needed on the Mark-BW/MOX1 design for this application.

The primary features of the MSMG are shown in Figure A-3. Stops formed in each of the four cell walls prevent the fuel rods from contacting the mixing vanes but impose no grip force (slip load) onto the rods. The outer strips incorporate a wrap-around corner design to improve the corner handling interface. To minimize the effect of the MSMG on pressure drop the grids are made from strips that are thinner than the standard strips; also, the grid height is less than the intermediate grid. The overall envelope dimensions of the MSMG are reduced to eliminate grid interaction with adjacent fuel assemblies during transition fuel cycles.

The mixing vanes on the MSMG are the same design and pattern utilized on the Mark-BW intermediate spacer grid. The MSMG's are attached to the guide thimbles by restraint sleeves that are welded to the top of the grid straps. These restraint sleeves are then mechanically attached to selected guide thimbles by dimpling.

A.1.4 Nozzle Design

The Mark-BW/MOX1 fuel assembly utilizes the same removable top nozzle (Figure A-4) found on the Mark-BW fuel assembly to facilitate rod removal and reconstitution, if necessary. The design incorporates a threaded nut with a deformable locking cup. The top nozzle contains four sets of leaf springs (four leaves per set for MSMG applications, three leaves per set for non-MSMG applications) made of precipitation hardened Inconel 718 alloy fastened to the nozzle with preloaded Inconel 718 bolts. The upper leaf has an extended tongue that engages a cutout in the top plate of the nozzle to ensure spring leaf retention in the unlikely event of a spring failure. There have been no spring failures in a Mark-BW assembly.

The bottom nozzle design (Figure A-5) incorporates a fine mesh filter plate concept to achieve a high level of debris resistance. The Trapper™ design has a stainless steel structural frame of deep ribs connecting the guide thimble locations, with conventional legs for interface with the reactor internals. The frame distributes the primary loads on the fuel assembly through the bottom nozzle. A high strength A286 alloy filter plate is attached to the top of the frame by pins welded at the four corners. The filter plate is 0.118 inch thick with a mesh of approximately 9000 holes 0.055 inch square.
During bundle assembly the fuel rods are placed in contact with, or 'seated' on, the bottom nozzle. Seated fuel rods provide a direct load path to the bottom nozzle which allows the majority of the fuel assembly weight and holddown loads to be distributed across the surface of the bottom nozzle by the fuel rods instead of being carried through the assembly structure. This feature also produces a lower component pressure drop and provides more predictable, linear fuel assembly growth.

A.1.5 Fuel Rod Design

The fuel rod design, shown in Figure A-6, consists of UO₂–PuO₂ (MOX) fuel pellets contained in a seamless M₅™ alloy tube with end plugs welded at each end. The design utilizes a 144.0 inch stack length made up of 95% theoretical density MOX fuel pellets. The fuel pellets have a length of 0.4 inch and a diameter of 0.3225 inch. The fuel rod cladding has a 0.374 inch outside diameter and 0.0225 inch wall thickness. This configuration leaves a small (approximately 0.003 inch radial) clearance between the inside diameter of the cladding and the outside surface of the pellets. The rod utilizes one stainless steel spring in the upper plenum to prevent the formation of fuel stack gaps during shipping and handling, while also allowing for the expansion of the fuel stack during operation. The fuel stack rests on the lower end plug, which has a taper to provide a smooth flow transition in addition to facilitating reinsertion of the rods into the assembly if any rods are removed after the fuel has been irradiated. The upper end plug has a grip-able top hat shape; in conjunction with the removable top nozzle, this grip-able fuel rod end plug allows for easy removal of fuel rods following irradiation. This feature has been proven through irradiated rod removal operations at the mission reactors in support of fuel examinations and failed rod replacement. A hole in the upper end plug permits evacuation and back-filling of the fuel rod with high pressure helium gas prior to sealing.

The fuel pellets are a sintered ceramic of 95% Theoretical Density (TD) UO₂–PuO₂. The pellets are cylindrically shaped with a spherical dish at each end. The corners of the pellet have an outward land taper (chamfer) that eases the loading of the pellets into the cladding. The dish and taper geometry also reduces the tendency for the pellets to assume an 'hourglass' shape during operation.

A.1.6 Fuel Rod Cladding

The Mark-BW/MOX1 fuel rod design utilizes an advanced, corrosion-resistant, zirconium-niobium alloy (M₅™) for fuel rod cladding. M₅™ cladding has demonstrated significant margins for corrosion, clad creep, hydriding, and growth. Corrosion performance, compared to that of Zircaloy-4, is shown in Figure A-7. The improved cladding performance
Fuel Qualification Plan January 2000

will provide more margin for the fuel cycle designers and will contribute to resolution of potential RIA concerns. Experience with M5™ cladding worldwide is shown in Table A-2.

A.1.7 BPRA Design

The 17X17 BPRA (Figure A-8) consists of an arrangement of poison rods and thimble plugs suspended from a flat plate and held in place by a spring-loaded holddown assembly. The holddown assembly fits within the fuel assembly upper nozzle and rests on the adapter plate. To ensure that the cluster remains seated in the fuel assembly during operation, the holddown springs are compressed by the upper core plate, thereby providing a downward force in excess of the hydraulic lift forces from the coolant. The holddown assembly is made of 304 stainless steel, and the holddown springs are Inconel 718.

The burnable poison rod design contains a 132 inch long absorber stack of variable weight % Al₂O₃-B₄C pellets. The pellets are encased in cold-worked, stress relieved annealed Zircaloy-4 cladding with Zircaloy-4 end plugs welded to each end. The upper end plug provides a threaded attachment to the holddown assembly plate, and a bullet nose lower end plug provides lead-in guidance for the rods. A stainless steel spring, located in the plenum above the poison column, prevents gross movement of the pellet column during shipping and handling. Prior to the final seal weld, each rod is pressurized with helium to reduce the pressure differential across the clad wall during operation.

The pellets consist of a uniform sintered dispersion of boron carbide (B₄C) in an alumina (Al₂O₃) matrix. The boron-10 concentrations are adjusted by varying the boron carbide content of the pellets.

As noted in Section 7.1.1.9 this BPRA design is fully qualified and currently in operation in all six mission reactors.

A.2 Qualification Testing

The base design for the Mark-BW/MOX1 is fully qualified for UO₂ applications. The qualification of the design included lead test assembly irradiations and extensive out of reactor testing. These tests are fully applicable to the MOX version of the design; no changes to the external dimensions or interfaces will be made in accommodating the MOX pellets.

The out of reactor testing performed to support qualification of the Mark-BW include prototype mechanical tests as well as full scale prototype tests at full reactor operating conditions. Table A-1 contains a summary of the testing performed in support of the Mark-BW qualification. This testing is directly
applicable to the Mark-BW/MOX1 design; no changes are being made that will affect the validity of these tests.

The testing included a full scale Mark-BW prototype that was subjected to a series of thermal/hydraulic, environmental and mechanical characterization tests in a single bundle, high temperature pressurized loop. The assembly was characterized by pressure drop and spacer grid laser Doppler velocimeter (LDV) tests. The environmental, or life-and-wear, tests consisted of exposing the fuel assembly to representative reactor conditions of temperature, pressure and flow for two 500 hour periods. The fuel assembly exhibited no significant corrosion or wear. Control rod trip testing was also performed as part of the test sequence. Subsequent in reactor testing and operation have confirmed the excellent operational performance of the Mark-BW design.

A second full-scale prototype test was conducted in a two-assembly flow loop to evaluate the flow-induced-vibration (FIV) performance in a high crossflow configuration. Mark-BW prototypes, with and without MSMG's were tested in adjacent positions to simulate the worst case hydraulic mismatch encountered in transition cores. Testing demonstrated excellent performance; operational performance has confirmed this result.

A.3 Operating Experience

The Mark-BW operating and burnup experience is summarized in Figure 7-2.

A.3.1 Total Experience Base

For Westinghouse-designed reactors, FCF began delivery of fuel assemblies in 1987 to Duke Power Company's McGuire Nuclear Station. Currently the base Mark-BW fuel assembly is operating in the U.S. in six Westinghouse-designed reactors: Duke Power Company's Catawba Units 1 and 2, and McGuire Units 1 and 2; and TVA's Sequoyah Units 1 and 2. Four lead test assemblies of the Advanced Mark-BW are currently operating in a seventh plant, Virginia Power's North Anna Unit 1. An eighth plant, Portland General Electric's Trojan Plant, also operated with FCF fuel. As of August 1999, FCF has supplied nearly 2,300 fuel assemblies to the 17X17 reactors.

A.3.2 Operational Experience in Mission Reactors

The base Mark-BW design is currently in operation in four of the six mission reactors and four lead test assemblies of the Advanced Mark-BW are in operation at a fifth. Since 1991, FCF has delivered 25 batches of Mark-BW fuel to Duke Power's four units at McGuire and Catawba. Four lead test assemblies of the Advanced Mark-BW, with MSMGs and M5™
cladding and guide thimbles, are currently in operation at Virginia Power's North Anna Power Station.

A.4 Compatibility

Compatibility issues are discussed with respect to the Mark-BW/MOX1 assembly.

A.4.1 Mechanical Compatibility

The Mark-BW/MOX1 fuel assembly will be fully compatibility with the current mission reactor mechanical interfaces, including:

- Compatibility with core internals
- Compatibility with control components
- Compatibility with resident fuel
- Shipping and handling compatibility

Analyses will be performed to demonstrate compatibility of the Mark-BW/MOX1 design with the resident fuel to be in core at the time of the lead assembly irradiation at McGuire and the batch implementation at all six of the mission reactors.

FCF's successful reload transition experience also demonstrates the ability to assure full compatibility of the Mark-BW/MOX1 assembly. This experience includes the successful supply and operation of 12 LTAs and 23 batches of fuel to eight different reactors, totaling over 2300 Mark-BW fuel assemblies.

Additional confirmation of compatibility with shipping and handling interfaces will be obtained through the fabrication, shipment, and delivery of a Mark-BW/MOX1 assembly from the lead assembly host site to McGuire Unit 2, as part of the trial run of these interfaces.

A.4.2 Thermal-Hydraulic Compatibility

The Mark-BW fuel assembly, on which the Mark-BW/MOX1 is based, was designed specifically for mechanical and thermal-hydraulic compatibility with both the Westinghouse LOPAR and OFA fuel designs, which also ensures compatibility with the VANTAGE-5 and PERFORMANCE+ designs. Experience with lead test assemblies at North Anna has also demonstrated compatibility with the Westinghouse VANTAGE-5H design. Thus, the compatibility evaluations previously performed for the Mark-BW design will be applicable to the Mark-BW/MOX1 design relative to the Westinghouse fuel designs projected to be in operation as the resident fuel in the mission reactors.
Figure A-1 Mark-BW/MOX1 Fuel Assembly
Figure A-2 Mark-BW/MOX1 Zircaloy Intermediate Spacer Grid Features
Figure A-3 Mark-BW/MOX1 Mid-Span Mixing Grid Features

Mid Span Mixing Grid

- Mixing Vanes
- Wrapping Corner
- Single Dimples
- Double Dimples
- Diagonal Inner Strap

DCS No. DCS-FQ-1999-001, Rev. 1

January 2000
Figure A-4 Mark-BW/MOX1 Upper Nozzle

Top Nozzle

Top End Grid

Resistance Weld Joint
(End Grid-to-Grid Sleeve)
Figure A-5 Mark-BW/MOX1 Lower Nozzle
Grippable Upper End Plug

High Density (95% TD) Fuel Stack

Alpha-Numeric Serial Number

Single Spring Spacer

Lower Pressure Drop Bullet-Nose Lower End Plug
Figure A-7 Cladding Corrosion

- Zircaloy-4
- M5
- Poly. (Zircaloy-4)
- Linear (M5)

Measured Oxide Thickness (μm)

Average Rod Burn-up (MWd/1U)
Figure A-8 BPRA Design
<table>
<thead>
<tr>
<th>TEST</th>
<th>INFORMATION OBTAINED</th>
</tr>
</thead>
</table>
| FA Prototype Static Axial Compression Test | - FA axial stiffness under compression
- FA stability
- GT load distribution
- GT stresses |
| FA Prototype Static Lateral Bending Test | - FA lateral stiffness
- GT stresses |
| FA Prototype Natural Frequency & Mode Shape Test ("Shaker") | - FA first six natural frequencies and mode shapes
- FA damping |
| FA Prototype Lateral Pluck W/O Impact Test | - FA frequency and damping versus displacement amplitude |
| FA Prototype Lateral Pluck w/ Impact Test | - FA Spacer Grid internal stiffness and damping
- FA Spacer Grid impact force versus displacement |
| FA Prototype Axial Drop Test | - FA impact force versus displacement
- FA impact force versus impact velocity
- GT stresses |
| FA Prototype Axial Tension Test | - FA axial stiffness under tension
- GT load distribution
- GT stresses |
| FA Spacer Grid Static Crush Test | - SG static crush load to cause failure
- SG elastic spring rate
- SG failure mode
- SG crush and recovery height |
| FA Spacer Grid Dynamic Crush Test | - SG dynamic crush load to cause failure
- SG damping
- SG post-buckling behavior |
| FA HD Spring Compression Test | - HD Spring load/deflection characteristic
- Max. HD Spring deflection
- Max./Min. HD loads |
| FA ΔP Test | - FA Pressure Drop |
| FA Prototype Life and Wear Test | - FA 1000 Hour Endurance - Corrosion & Wear
- RCCA Drop Times
- Endurance under RCCA Stepping/Stroking |
| FA Flow-Induced Vibration Test | - Flow-induced behavior of prototype X1 and Mark BW fuel assemblies |
| Bottom Nozzle Tests | - Bottom Nozzle Pressure Drop
- Bottom Nozzle Debris Filtering Effectiveness |
Table A-2 Summary of M5™ Irradiation Experience

<table>
<thead>
<tr>
<th>Location</th>
<th>Array</th>
<th>No. of Plants</th>
<th>Core Average Linear Power W/cm</th>
<th>Burnup Achieved GWd/MTU</th>
<th>T_{inlet} °F</th>
<th>T_{outlet} °F</th>
<th>Max Coolant Temp °F</th>
<th>Max Heat Flux W/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPE</td>
<td>17X17</td>
<td>7</td>
<td>170-186</td>
<td>63</td>
<td>549-552</td>
<td>612-615</td>
<td>630.5</td>
<td>78</td>
</tr>
<tr>
<td>USA</td>
<td>17X17</td>
<td>2</td>
<td>178</td>
<td>40</td>
<td>558</td>
<td>622</td>
<td>636.8</td>
<td>78</td>
</tr>
<tr>
<td>EUROPE</td>
<td>14X14</td>
<td>1</td>
<td>220</td>
<td>50</td>
<td>545</td>
<td>601</td>
<td>615</td>
<td>84</td>
</tr>
<tr>
<td>EUROPE</td>
<td>15X15</td>
<td>1</td>
<td>238</td>
<td>1st Cycle</td>
<td>543</td>
<td>612</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>USA</td>
<td>15X15</td>
<td>1</td>
<td>190</td>
<td>13</td>
<td>556</td>
<td>606</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EUROPE</td>
<td>16X16</td>
<td>4</td>
<td>207-211</td>
<td>42</td>
<td>556</td>
<td>622</td>
<td>649.6</td>
<td>91</td>
</tr>
<tr>
<td>EUROPE</td>
<td>18X18</td>
<td>2</td>
<td>166</td>
<td>48</td>
<td>556</td>
<td>621</td>
<td>646.3</td>
<td>82</td>
</tr>
</tbody>
</table>

Number of M5™ rods irradiated – 10,000

Number of utilities – 10

Maximum burnup achieved – 63,000 MWd/MTU
Appendix B DOMESTIC MOX EXPERIENCE

Prior to the U.S. policy decision in 1977 to defer indefinitely the commercial reprocessing and recycling of plutonium there were a number of developmental programs completed that demonstrated the technical feasibility of MOX fuel. However, only minimal PWR demonstration irradiations were completed, and no batch experience was obtained. Thus, the MOX experience available from U.S. programs is limited relative to the data available from Europe.

Following is summary of the domestic programs, most performed prior to the decision to defer plutonium reprocessing in the U.S. Also included is the current Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) test of MOX representative of WG plutonium. Except for this INEEL test, the limited domestic information forces reliance on the European experience.

B.1 Saxton

The Saxton Plutonium project produced the first information on the basic characteristics of MOX fuel in the mid-1960's. Nine MOX assemblies in the core consisting of a total of 21 fuel assemblies produced irradiated fuel rods for hot cell examination. The isotopic composition of the MOX fuel was representative of the fuel to be made from WG plutonium and irradiated in the mission reactors. Pellet restructuring was found to be limited, PCI was not evident and densification of the MOX fuel occurred during irradiation as expected. The overall performance of the MOX fuel in Saxton was similar to UO$_2$ fuel and was satisfactory.

B.2 Commercial PWR Irradiations

Commercial reactor irradiations were conducted at Quad Cities, San Onofre, and Big Rock Point under a program sponsored by the Electric Power Research Institute (EPRI). Post irradiation examinations concluded that MOX fuel performance was similar to UO$_2$ fuel performance in commercial LWR's. The differences noted between MOX and UO$_2$ consisted of the reactivity effects, including reactivity control, and decay heat. In addition, four (4) MOX assemblies were irradiated at RGE's Ginna reactor to a burnup of 40,000 MWd/MThm, with no failures.

B.3 GETR Tests

Studies of pellet densification behavior of MOX fuel were conducted in an EPRI sponsored program, with irradiation in the General Electric Test Reactor (GETR). It was determined that MOX fuel shows similar densification behavior to UO$_2$ fuel, and the presence of up to 6 wt% plutonium and particle sizes up to 500 microns did not affect the physical behavior of the fuel.
B.4 INEEL ATR Tests

MOX fuel irradiation experiments are currently being conducted in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). These tests are the first irradiation of MOX fuel derived from actual weapons grade plutonium. The tests and the test hardware were designed by the staff at Oak Ridge National Laboratory (ORNL), where the post irradiation examinations are in progress. The MOX fuel pellets for the tests were fabricated by Los Alamos National Laboratory (LANL) staff in the Technical Area 55 laboratory where the MOX Lead Assemblies will be produced.

The Average Power Test (APT) began irradiation in January 1998 with two types of MOX fuel: the first fuel type was untreated relative to impurities and contained a gallium concentration 2 parts per million (ppm), the second fuel type was thermally treated to reduce the impurities and contained gallium at the 0.7 ppm level. Both fuel types contain gallium at significantly higher levels than the proposed mission reactor fuel. The mission reactor fuel will utilize aqueous polishing which is expected to reduce gallium concentrations to the parts per billion (ppb) range.

The test rods have operated up to 8,800 MWD/MThm at heat rates of 6-10 kW/ft. The burnups are projected to reach 30,000 MWD/MThm during future irradiation cycles, with potentially higher burnups (up to 40,000 MWD/MThm possible). The post irradiation examinations are aimed at determining the effects of gallium from the WG plutonium on fuel rod performance. While the achieved burnups to date are relatively low, performance of the test capsules has been good with no anomalous effects.
Appendix C

MOX PELLET SPECIFICATION

SUMMARY

The following criteria have been established for the MOX pellet attributes. These criteria are based on the current FCF UO₂ pellet specification amended as required to accommodate the use of MOX fuel.

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>LIMITS AND COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellet Dimensions</td>
<td>Details defined on drawing</td>
</tr>
<tr>
<td>Density</td>
<td>95 +/-1.5% theoretical. The theoretical density varies as a function of PuO₂ content. The theoretical density of UO₂ is 10.96 g/cm³; theoretical density of PuO₂ is 11.46 g/cm³.</td>
</tr>
<tr>
<td>Surface Appearance</td>
<td>100% inspection for defects (cracks, chips, capping, etc.). Acceptance criteria to be defined. Surface finish to meet 70 microinch RMS max.</td>
</tr>
<tr>
<td>U, Pu content</td>
<td>As defined for each batch</td>
</tr>
<tr>
<td>Isotopic contents</td>
<td>As defined for each batch</td>
</tr>
<tr>
<td>Fissile Content/inch of stack</td>
<td>As defined on the pellet drawing (to meet hot channel factor criteria).</td>
</tr>
<tr>
<td>O/M ratio</td>
<td>Individual values in the range 1.98 to 2.01; mean ≥1.99.</td>
</tr>
<tr>
<td>Impurities</td>
<td>1500 ppm max. value for sum of all following impurities: Fe, Ni, Cr, Al, Ca, C, N, Cl, F, Zn, Ba, B, Cd, Co, Cu, Dy, Eu, Ga, Gd, Hf, Li, Mn, Mo, P, Sm, Si, Ag, Ta, Sn, Ti, W, V. Individual ppm limits of Al - 250, Si - 250, Fe - 350, F - 15, C - 50, N - 25, Cl - 25. Ga content to be controlled on the PuO₂ powder on a lot basis (to achieve < 5 ppb on the pellet).</td>
</tr>
<tr>
<td>EBC.</td>
<td>3.90 ppm max. Equivalent Boron Content based on above impurities</td>
</tr>
</tbody>
</table>
Hydrogen

1.00 ppm max. UTL

Resinter Test

Density increase between 0.0 % TD and 1.5 % TD based on standard Reg. Guide 1.126 test adjusted to maintain pellet stoichiometry.

Sorbed gas content

0.01 cc/gm max.

Loadability Test

Stacks of 10 pellets loaded axially to withstand 60lb minimum load without chipping. (Verifies pellet strength for fuel rod loading).

Grain Size (mean)

Greater than 6 μm

Plutonium rich particle size

At least 95% of the plutonium rich particles shall have an effective diameter of less than 100 μm. The mean plutonium rich particle distribution shall be less than 50 μm. No pure plutonium grain shall be greater than 400 μm.

Pore Size

At least 70% shall be 1 μm or greater. At least 90% shall be 50 μm or less.

Open Porosity (fractional volume)

Less than 0.010.