10 CFR 50.90

Exelon Nuclear 200 Exelon Way KSA 3-E Kennett Square, PA 19348 Telephone 610.765.5520 www.exeloncorp.com

January 17, 2001

Docket Nos. 50-352 50-353

License Nos. NPF-39 NPF-85

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

- Subject: Limerick Generating Station, Units 1 and 2 Technical Specifications Change Request 00-05-0
- Reference: Letter from J. A. Hutton (PECO Energy Company), to U. S. Nuclear Regulatory Commission, dated September 5, 2000

Dear Sir/Madam:

In the Referenced letter, PECO Energy Company (PECO Energy) submitted Technical Specifications Change Request 00-05-0 for Limerick Generating Station (LGS), Units 1 and 2. This proposed change will revise Surveillance Requirement 4.6.3.4 to require testing of a representative sample of Excess Flow Check Valves (EFCVs) such that each EFCV will be tested at least once every 120 months. The purpose of this letter is to transmit updated camera ready pages, which have been revised to reflect the approval of other Technical Specification changes to these pages.

If you have any questions, please do not hesitate to contact us.

Very truly yours,

James A. Hutton Director - Licensing

Enclosures: Affidavit, Attachment

cc: H. J. Miller, Administrator, Region I, USNRC A. L. Burritt, USNRC Senior Resident Inspector, LGS R. R. Janati, Commonwealth of Pennsylvania

COMMONWEALTH OF PENNSYLVANIA :

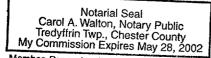
COUNTY OF MONTGOMERY

SS.

:

J. D. von Suskil, being first duly sworn, deposes and says:

That he is Vice President of Exelon Corporation, the Applicant herein, that he has read the attached information concerning Technical Specifications Change Request 00-05-0 involving excess flow check valves for Limerick Generating Station Facility Operating Licenses NPF-39 and NPF-85, and knows the contents thereof; and that the statements and matters set forth therein are true and correct to the best of his knowledge, information and belief.


Vice President

Subscribed and sworn to

before me this 17 th day

of

Notary Public

Member, Pennsylvania Association of Notaries

ATTACHMENT

4

LIMERICK GENERATING STATION UNITS 1 AND 2

Docket Nos. 50-352 50-353

License Nos. NPF-39 NPF-85

FINAL TECHNICAL SPECIFICATIONS CHANGES

Attached Pages

Units 1 and 2

3/4 6-18 Bases B 3/4 6-4 Bases B 3/4 6-4a

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shall be demonstrated OPERABLE at least once per 24 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 A representative sample of reactor instrumentation line excess flow check valves shall be demonstrated OPERABLE at least once per 24 months, such that each valve is tested at least once every 120 months, by verifying that the valve checks flow.*

4.6.3.5 Each traversing in-core probe system explosive isolation valve shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 24 months by removing the explosive squib from the explosive valve, such that each explosive squib in each explosive valve will be tested at least once per 120 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufactured batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life and/or operating life, as applicable.

*The reactor vessel head seal leak detection line (penetration 29A) excess flow check valve is not required to be tested pursuant to this requirement.

LIMERICK - UNIT 1

Amendment No. 1,29,33,71,146

BASES

DEPRESSURIZATION SYSTEMS (Continued)

The drywell-to-suppression chamber bypass test at a differential pressure of at least 4.0 psi verifies the overall bypass leakage area for simulated LOCA conditions is less than the specified limit. For those outages where the drywell-to-suppression chamber bypass leakage test in not conducted, the VB leakage test verifies that the VB leakage area is less than the bypass limit, with a 76% margin to the bypass limit to accommodate the remaining potential leakage area through the passive structural components. Previous drywell-to-suppression chamber bypass test data indicates that the bypass leakage through the passive structural components will be much less than the 76% margin. The VB leakage limit, combined with the negligible passive structural leakage area, ensures that the drywell-to-suppression chamber bypass leakage limit is met for those outages for which the drywell-to-suppression chamber bypass test is not scheduled.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation values ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR Part 50. Containment isolation within the time limits specified for those isolation values designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

The opening of a containment isolation valve that was locked or sealed closed to satisfy Technical Specification 3.6.3 Action statements, may be reopened on an intermittent basis under administrative controls. These controls consist of stationing a dedicated individual at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated.

Primary containment isolation values governed by this Technical Specification are identified in Table 3.6.3-1 of the TRM.

This Surveillance Requirement requires a demonstration that a representative sample of reactor instrument line excess flow check valves (EFCVs) is OPERABLE by verifying that the valve actuates to the isolation position on a simulated instrument line break signal. The representative sample consists of an approximately equal number of EFCVs, such that each EFCV is tested at least once every 10 years. In addition, the EFCVs in the sample are representative of the various plant configurations, models, sizes, and operating environments. This ensures that any potentially common problem with a specific type or application of EFCV is detected at the earliest possible time. This Surveillance Requirement provides assurance that the instrumentation line EFCVs will perform so that predicted radiological consequences will not be exceeded during a postulated instrument line break event. The 10 year interval is based on other performance-based testing programs. Furthermore, any EFCV failures will be evaluated to determine if additional testing in the test interval is warranted to ensure overall reliability is maintained. Operating experience has demonstrated that these components are highly reliable and that failures to isolate are very infrequent. Therefore, testing of a representative sample was concluded to be acceptable from a reliability standpoint. For some EFCVs, this Surveillance can be performed with the reactor at power.

BASES

3/4.6.4 VACUUM RELIEF

Vacuum relief valves are provided to equalize the pressure between the suppression chamber and drywell. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. Two pairs of valves are required to protect containment structural integrity. There are four pairs of valves (three to provide minimum redundancy) so that operation may continue for up to 72 hours with no more than two pairs of vacuum breakers inoperable in the closed position.

Each vacuum breaker valve's position indication system is of great enough sensitivity to ensure that the maximum steam bypass leakage coefficient of

 $\frac{A}{\sqrt{k}} = 0.05 \text{ ft}^2$

for the vacuum relief system (assuming one valve fully open) will not be exceeded.

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shall be demonstrated OPERABLE at least once per 24 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 A representative sample of instrumentation line excess flow check valves shall be demonstrated OPERABLE at least once per 24 months, such that each valve is tested at least once every 120 months, by verifying that the valve checks flow.*

4.6.3.5 Each traversing in-core probe system explosive isolation valve shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 24 months by removing the explosive squib from the explosive valve, such that each explosive squib in each explosive valve will be tested at least once per 120 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufactured batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life and/or operating life, as applicable.

*The reactor vessel head seal leak detection line (penetration 29A) excess flow check valve is not required to be tested pursuant to this requirement.

LIMERICK - UNIT 2

BASES

DEPRESSURIZATION SYSTEMS (Continued)

The drywell-to-suppression chamber bypass test at a differential pressure of at least 4.0 psi verifies the overall bypass leakage area for simulated LOCA conditions is less than the specified limit. For those outages where the drywell-to-suppression chamber bypass leakage test in not conducted, the VB leakage test verifies that the VB leakage area is less than the bypass limit, with a 76% margin to the bypass limit to accommodate the remaining potential leakage area through the passive structural components. Previous drywell-to-suppression chamber bypass test data indicates that the bypass leakage through the passive structural components will be much less than the 76% margin. The VB leakage limit, combined with the negligible passive structural leakage area, ensures that the drywell-tosuppression chamber bypass leakage limit is met for those outages for which the drywell-to-suppression chamber bypass test is not scheduled.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation values ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR Part 50. Containment isolation within the time limits specified for those isolation values designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

The opening of a containment isolation valve that was locked or sealed closed to satisfy Technical Specification 3.6.3 Action statements, may be reopened on an intermittent basis under administrative controls. These controls consists of stationing a dedicated individual at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated.

Primary containment isolation values governed by this Technical Specification are identified in Table 3.6.3-1 of the TRM.

This Surveillance Requirement requires a demonstration that a representative sample of reactor instrument line excess flow check valves (EFCVs) is OPERABLE by verifying that the valve actuates to the isolation position on a simulated instrument line break signal. The representative sample consists of an approximately equal number of EFCVs, such that each EFCV is tested at least once every 10 years. In addition, the EFCVs in the sample are representative of the various plant configurations, models, sizes, and operating environments. This ensures that any potentially common problem with a specific type or application of EFCV is detected at the earliest possible time. This Surveillance Requirement provides assurance that the instrumentation line EFCVs will perform so that predicted radiological consequences will not be exceeded during a postulated instrument line break event. The 10 year interval is based on other performance-based testing programs. Furthermore, any EFCV failures will be evaluated to determine if additional testing in the test interval is warranted to ensure overall reliability is maintained. Operating experience has demonstrated that these components are highly reliable and that failures to isolate are very infrequent. Therefore, testing of a representative sample was concluded to be acceptable from a reliability standpoint. For some EFCVs, this Surveillance can be performed with the reactor at power.

LIMERICK - UNIT 2

BASES

3/4.6.4 VACUUM RELIEF

Vacuum relief valves are provided to equalize the pressure between the suppression chamber and drywell. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. Two pairs of valves are required to protect containment structural integrity. There are four pairs of valves (three to provide minimum redundancy) so that operation may continue for up to 72 hours with no more than two pairs of vacuum breakers inoperable in the closed position.

Each vacuum breaker valve's position indication system is of great enough sensitivity to ensure that the maximum steam bypass leakage coefficient of

$$\frac{A}{\sqrt{k}} = 0.05 \text{ ft}^2$$

for the vacuum relief system (assuming one valve fully open) will not be exceeded.