PROJECT NO:	SCE-01	REVISION:	0
CALCULATION N	O: SCE-01.0204	PAGE:	B8-1 of B8-11
	Appendix	B 8	
	ANSYS Stress Intensity Co PT24PSI	ontour Plots for Run)P	
		· · · · · ·	
Note:			
The stress plots the rail support (shown in Figures B8-3, B8-4, B8-5, B8- bottom centerline).	8, B8-9, and B8-10 exclude elem	nents adjacent t

\mathcal{A}	TRANSNUCLEAR,	INC
S	TN WEST	

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B9-1 of B9-17

Appendix B9

ANSYS Temperature and Stress Intensity Contour Plots for Run PT24PTH

PROJEC	CT NO:	SCE-01	<u></u>	REVIS	ION:	0
CALCU	LATION NO:	SCE-01.0204		PAGE	;	B10-1 of B10-5
					•	
			Annendix B	10		
		•				
	ANSYS T	emperature a	nd Stress Inte PT24PTH2	nsity Contour Plo	ots for	Run
j						
1						
1						

Appendix B11

ANSYS Stress Intensity Contour Plots for Run PT24PTHP

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B11-1 of B11-4

Appendix B11

ANSYS Stress Intensity Contour Plots for Run PT24PTHP

- TRANS	SNUCLEAF	r, INC.		
'ROJECT NO:	SCE-01		REVISION:	0
CALCULATION NO:	SCE-01.0204		PAGE:	B12-1 of B12-10
			•	
		Annendix B12		

ANSYS Stress Intensity Contour Plots for Run PT24PTP2

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B13-1 of B13-4

Appendix B13

ANSYS Stress Intensity Contour Plots for Run PT24PTP3

×	TRANSNUCLEAR,	INC.
	INAAKSI	

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B14-1 of B14-4

Appendix B14

ANSYS Stress Intensity Contour Plots for Run PB24PLT

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B15-1 of B15-13

Appendix B15

ANSYS Stress Intensity Contour Plots for Run PB24PIP

[]	PROJECT NO:	SCE-01	REVISION:	0
	CALCULATION NO:	SCE-01.0204	PAGE:	B16-1 of B16-13

Appendix B16

ANSYS Stress Intensity Contour Plots for Run PB24PFL

	NSNUCLEAR,	INC.
--	------------	------

	PROJECT NO:	SCE-01	REVISION:	0
Ĺ	CALCULATION NO:	SCE-01.0204	PAGE:	B17-1 of B17-7

Appendix B17

ANSYS Stress Intensity Contour Plots for Run PB24P1G

TN WEST	CLEAR, INC		-
---------	------------	--	---

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B18-1 of B18-7

Appendix B18

ANSYS Stress Intensity Contour Plots for Run PB24PDW

TRANSNUCLEAR, INC.

۲	PROJECT NO:	SCE-01	REVISION:	0
	ALCULATION NO:	SCE-01.0204	PAGE:	B19-1 of B19-7

Appendix B19

ANSYS Stress Intensity Contour Plots for Run PB24THRM

'ROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B20-1 of B20
	Appendix	B20	
	ANSYS Stress Intensity C	ontour Plots for Run	
	PB24PS	D2	
Note:			
The stress plots show	n in Figures B20-3, B20-4, B20-6	, B20-9, B20-10, and B20-12 exc	lude elements
adjacent to the rail su	apport (bottom centerline).		

	PROJECT NO:	SCE-01	REVISION:	0
ſ	CALCULATION NO:	SCE-01.0204	PAGE:	B21-1 of B21-1
		Appendix	B21	
		ANSYS Stress Intensity C PB24PS	Contour Plots for Run	
` ſ	,			
ĺ				

Note:

 $\sim \sim$

The stress plots shown in Figures B21-3, B21-4, B21-6, B21-9, B21-10, and B24-12 exclude elements adjacent to the rail support (bottom centerline).

ROJECT NO:	SCE-01	REVISION:	0		
ALCULATION NO:	SCE-01.0204	PAGE:	B22-1 of B22-17		

Appendix B22

ANSYS Temperature and Stress Intensity Contour Plots for Run PB24PTH

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B23-1 of B23-5

Appendix B23

ANSYS Temperature and Stress Intensity Contour Plots for Run PB24PTH2

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B24-1 of B24-5

Appendix B24

ANSYS Stress Intensity Contour Plots for Run PB24PGP1

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B25-1 of B25-10

Appendix B25

ANSYS Stress Intensity Contour Plots for Run PB24PGP2

\sim			
X	THANSNUCLEAN, TN WEST	ING.	

(

ROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B26-1 of B26-4

Appendix B26

ANSYS Stress Intensity Contour Plots for Run PB24PGP3

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B27-1 of B27-13

Appendix B27

ANSYS Stress Intensity Contour Plots for Run PB24PTHG

.

.

-X-	TRANSNUCLEAR,	INC.

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B28-1 of B28-10

ANSYS Stress Intensity Contour Plots for Run PB24PT-G

R-	TRANSNUCLEAR,	INC.
~ \	TN WEST	

	PROJECT NO:	SCE-01	REVISION:	0
、	ALCULATION NO:	SCE-01.0204	PAGE:	B29-1 of B29-7

ANSYS Stress Intensity Contour Plots for Run PB24PRAM

<u>_____</u>_____

\bigotimes	TRANSNUCLEAR,	INC
--------------	---------------	-----

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B30-1 of B30-10

ANSYS Stress Intensity Contour Plots for Run PB24PTHR

.

.

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B31-1 of B31-4

ANSYS Stress Intensity Contour Plots for Run PB24PTR2

Stress Intensity Contour
-&-	TRANSNUCLEAR,	INC.
-----	---------------	------

PROJECT NO:	SCE-01	REVISION:	0
ALCULATION NO:	SCE-01.0204	PAGE:	B32-1 of B32-7

Appendix B32

ANSYS Stress Intensity Contour Plots for Run PB24PTR3

-&-	TRANSNUCLEAR,	INC.

PROJECT NO:	SCE-01	REVISION:	0
CALCULATION NO:	SCE-01.0204	PAGE:	B33-1 of B33-7

Appendix B33

ANSYS Stress Intensity Contour Plots for Run PB24THR2

· · · ·

PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	B34-1 of B34-16

Appendix B34

ANSYS Stress Intensity Contour Plots for Run PB24PED

-22-	TRANSNUCLEAR,	INC
\sim	IN WEST	

PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	B34-4 of B34
		ANSYS 5.3 SEP 6 2000	
		. 18:56:12 BLOT NO 7	
		NODAL SOLUTI	ON
		SUB =1	
		TIME=2 SINT (AV	G)
		DMX =.339E-0 SMN =9.982	3
		SMX =447.141	
		58.555	
		107.128	
		204.275	
		301.422	
		349.995	
		447.141	
24PT1- DSC (Bottom	End) 1g Top End Drop		
	Eigure D04.0		
	Figure D34-3		
24P-	FO DSC Shell Assembly, Cylindrical S	Shell (Bottom Half)	
	Stress Intensity Contour	r	

CALCUL ATION NO.	SCE-01	REVISION:	1
CALCOLATION NO.	SCE-01.0204	PAGE:	B34-5 of B34-1
		ANSYS 5.3 SEP 6 2000 18:57:13 PLOT NO. 21 NODAL SOLUTI STEP=3 SUB =1 TIME=3 SINT (AV DMX =.347823 SMN =44.4 SMX =27258 44.4 3068 6092 9116 12139 15163 18187 21211 24235 27258	ON (G)

Stress Intensity Contour

	TRANSNUCLEAR, INC.
--	--------------------

PROJECT NO:	SCE-01		REVISION:	1
CALCULATION NO:	SCE-01.0204		PAGE:	B34-8 of B34-1
ф.,			ANSYS 5.3	
		6	18:59:08	
		4	PLOT NO. 39	
		5	STEP=4	
			SUB =1	
			SINT (AVG)	
 A 24 <li< td=""><td></td><td></td><td>DMX =.347447 SMN =44.397</td><td></td></li<>			DMX =.347447 SMN =44.397	
			SMX =27247	
			44.397 3067	
			6090	
			12135	
			15157	
			21202	
			24225	
	and the second se			
24PT1- DSC (Bottom	End) 60g top End Drop (Outer Cover Pin	ned)		
	Figure B34-7			
24	P-FO DSC Shell Assembly, Botton	n End Comp	onents	
	Stress Intensity Cont	our		

PROJECT NO:	SCE-01	REVISION:
CALCULATION	NO: SCE-01.0204	PAGE:

Appendix C

1

C-1 of C-6

ANSYS Run Descriptions

(

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVISIO	<u>DN: 1</u>
CALCULATION NO:	SCE-01.0204	PAGE:	C-2 of C-6
Bold indicates pos	it processed.		
1. QT24PIP (T	OP MODEL INTERNAL PRESSU	IRE INNER PRESSURE	BOUNDARY)
10005 psi	internal pressure shell and inner cove	er plate	-
2. 10 psi int	ernal pressure on shell and inner o	over plate	
3. pin outer	cover plate weld	-	
4. 20 psi int	ernal pressure on shell and inner o	over plate	
5. unpin ou	ter cover plate weld		
6. 60 psi int	ernal pressure on shell and inner o	over plate	
7. Pin outer	cover plate weld		
2. QT24PFL (T	OP MODEL—EXTERNAL FLOO	D PRESSURE, INTERNA	AL PRESSURE)
10005 psi	external pressure shell and outer cov	er plate	-
2. 22 psi ex	ternal pressure shell and outer cov	er plate	
3. pin outer	cover plate weld	-	
4. Add 10 p	si internal pressure on shell and in	ner cover plate	
5. Unpin or	ter cover plate weld		
- 3. QT24PED (TOP MODEL 60G END DROP, I	NTERNAL PRESSURE)	
1001g bot	tom end drop		
2. 1g botton	n end drop		
3. 60g botto	om end drop		
4. pin outer	cover plate weld		
5. add 20 p	si internal pressure		
6. unpin ou	ter cover plate weld		
4. QT24P1G (IG AXIAL OUTWARD ACCELE	RATION, FUEL INTERN	AL PRESSURE)
1. 0.001g a	tial acceleration	-	•
2. 1g axial	acceleration		
3. Pin outer	cover		
5. T24PDW (D	EADWEIGHT ACCELERATION	UN HUHIZONTAL DSC	
1. 1g/20 ver	tical load, horizontal DSC on rail		
2. 1g vertic	al load, horizontal DSC on rail		
3. pin oute	cover plate weld		
6. T24THERM	(STEADY STATE THERMAL S	OLUTION)	
1. Thermal	Case 15 (AHSM -40°F).		
2. Thermal	Case 16 (AHSM 104°F).		

Thermal Case 16 (AHSM 104°F). 3. Thermal Case 26 (AHSM 117°F).

ROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	C-3 of C-6
7. T24PSD (750	SIDE DROP)		
1 75g/2000 g	ide drop on rail w/ plasticity and placom		
2. $75g/10$ side	dron on rail w/ plasticity and nigeom		
3. 75g side di	ron on rail w/ plasticity and nigeom		
4. pin outer	cover plate weld		
8. T24PSDP (7)	5G SIDE DROP WITH INTERNAL PRESSURE)		
1. $(1g+20psi)$	/2000 side drop on rail w/ plasticity and nlgeom		
2. $1g+20psis$	ide drop on rail w/ plasticity and nlgeom		
3. 7.5g+20ps	i side drop on rail w/ plasticity and nlgeom		
4. 75g+20psi	side drop on rail w/ plasticity and nlgeom		
5. pin outer	cover plate weld		
9. T24PTH (TH	ERMAL CASES)		
1. Temperat	ure Case 7, -40 deg Ambient		
2. Temperat	ure Case 8, 100 deg Ambient		
3. Temperat	ure Case 15; -40 deg Ambient		
4. Temperat	ure Case 16, 104 deg Ambient		
10.T24PTH2 (T	HERMAL CASES)		
1. Temperat	ure Case 26, 117 deg Ambient		
11.T24PTHP (T	HERMAL CASES + INTERNAL PRESSURE)		
1. Nonlinear	Pressure Start, 1 psi		
2. Temperat	ure Case 7, -40 deg Ambient + 10 psi		
3. Temperatu	re Case 8, 100 deg Ambient + 10 psi		
4. Temperatu	re Case 15, -40 deg Ambient + 10 psi		
5. Temperatu	re Case 16, 100 deg Ambient + 10 psi		
12.T24PTP2 (TI	HERMAL CASES + INTERNAL PRESSURE)		
1. Nonlinear	Pressure Start, 1 psi		
2 Temperat	ure Case 8 100 deg Ambient + 10 nsi		

- 3. Temperature Case 15, -40 deg Ambient + 10 psi
- 4. Temperature Case 16, 104 deg Ambient + 10 psi

13.T24PTP3 (THERMAL CASES + INTERNAL PRESSURE)

- 1. Nonlinear Pressure Start, 1 psi
- 2. Temperature Case 26, 117 deg Ambient + 10 psi

14.B24PLT (LEAK TEST PRESSURE AND AXIAL LOAD)

1. 155k axial + 14.7 psi ext. pressure on shell and inner cover

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVIS	ION: 1
CALCULATION N): SCE-01.0204	PAGE	: C-4 of C-6
15.QB24PIP 10005 p 2. 10 psi i 3. pin out 4. 60 psi i	(BOTTOM MODEL INTERNAL si internal pressure shell and inner on nternal pressure on shell and inn er cover plate weld nternal pressure on shell and inn	PRESSURE INNER PRES cover plate er cover plate er cover plate	SURE BOUNDARY)
5. Pin ou	er cover plate weld		
16.QB24PFL	(BOTTOM MODEL-EXTERNA	L FLOOD PRESSURE, IN	TERNAL PRESSUR
10005 r	si external pressure shell and outer	cover plate	
2. 22 psi	external pressure shell and outer	cover plate	
3. pin ou	er cover plate weld	-	
A			

- 4. Add 10 psi internal pressure on shell and inner cover plate
- 5. Unpin outer cover plate weld

17.QB24P1G (1G AXIAL OUTWARD ACCELERATION, FUEL INTERNAL PRESSURE)

- 1. 0.001g axial acceleration
- 2. 1g axial acceleration
- 3. Pin outer cover

18.B24PDW (DEADWEIGHT ACCELERATION ON HORIZONTAL DSC)

- 1. 1g vertical load, horizontal DSC on rail
- 2. pin outer cover plate weld

19.B24THERM (STEADY STATE THERMAL SOLUTION)

- 4. Thermal Case 15 (AHSM -40°F).
- 5. Thermal Case 16 (AHSM 104°F).
- 6. Thermal Case 26 (AHSM 117°F).

20.B24PSID2 (75G SIDE DROP)

- 1. 75g side drop on rail w/ plasticity and nlgeom
- 2. pin outer cover plate weld

21.B24PSID3 (75G SIDE DROP)

- 1. (75g+20psi)/2000 side drop on rail w/ plasticity and nlgeom
- 2. (75g+20psi)/10 side drop on rail w/ plasticity and nlgeom
- 3. 75g+20psi side drop on rail w/ plasticity and nlgeom
- 4. pin outer cover plate weld

22.B24PTH (THERMAL CASES)

- 1. Temperature Case 7, -40 deg Ambient
- 2. Temperature Case 8, 100 deg Ambient
- 3. Temperature Case 15, -40 deg Ambient .
- 4. Temperature Case 16, 104 deg Ambient

TRANSNUCLEAR, INC.

	PROJECT NO: SCE-01	REVISION:	1
4	CALCULATION NO: SCE-01.0204	PAGE:	C-5 of C-6
	23.B24PTH2 (THERMAL CASES)		
	1. Temperature Case 26, 117 deg Ambient	•	
	24.B24PGP1 (GRAPPLE PULL LOADS)		
	 60 kip tension load at grapple ring 80 kip tension at grapple ring 		
	25.B24PGP2 (GRAPPLE PULL)		
	 60 kip tension load at grapple ring w/ far end restr. 80 kip tension at grapple ring w/ far end restr. Add 20 psi to outer cover plate 		
	26.B24PGP3 (GRAPPLE PULL)		
	1. 60 kip tension load at grapple ring w/ far axisymmetric restr	•	
	27.B24PTHG (GRAPPLE PULL + THERMAL LOAD CASES)		
	1. 60 kip grapple load		
	3. 60 kip grapple load + temp case 15, -40 deg ambient		
	4. 60 kip grapple load + temp case 26, 117 deg ambient		
	28.B24PT-G (-GRAPPLE PULL + THERMAL LOAD CASES)		
	160 kip grapple load + temp case 15, -40 deg ambient		
	 -60 kip grapple load + temp case 16, 104 deg ambient -60 kip grapple load + temp case 26, 117 deg ambient 		
	29.B24PRAM (RAM PUSH LOADS)		
	1. 1 lb ram Compression load w/ far end restrained		
	2. 60 kip ram Compression load w/ far end restrained 3. 80 kin ram Compression load w/ far and restrained		
	30. B24PTHR (RAM PUSH LOADS + THERMAL LOAD CASES)		
	2. 1 lb ram Compression load w/ axisymmetric far end restrained		
	3. 60 kip grapple load + temp case 7, -40 deg ambient		
	4. 60 kip grapple load + temp case 8, 104 deg ambient		
	31.B24PTR2 (RAM PUSH LOADS + THERMAL LOAD CASES)		
	1. 1 lb ram Compression load w/ far end restrained		
	2. 60 kip ram Compression load w/ far end restrained		
	 J. OU KIP grapple load + temp case 7, -40 deg ambient 4. 60 kin grapple load ± temp case 8 104 deg ambient 		
\smile	1		

•

TRANSNUCLEAR, INC.

PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	C-6 of C-6

32.B24PTR3 (RAM PUSH LOADS + THERMAL LOAD CASES)

- 1. 1 lb ram Compression load w/ far end restrained
- 2. 80 kip ram Compression load w/ far end restrained
- 3. 80 kip grapple load + temp case 7, -40 deg ambient
- 4. 80 kip grapple load + temp case 8, 104 deg ambient

33.B24THER2 (STEADY STATE THERMAL SOLUTION) FOR FINE MESH

- 7. Thermal Case 15 (AHSM -40°F).
- 8. Thermal Case 16 (AHSM 104°F).
- 9. Thermal Case 26 (AHSM 117°F).

34.QT24PED (BOTTOM MODEL 60G END DROP, INTERNAL PRESSURE)

- 7. .001g top end drop
- 8. 1g top end drop
- 9. 60g top end drop
- 10. pin outer cover plate weld
- 11. add 20 psi internal pressure
- 12. unpin outer cover plate weld
Transnuclear West, Inc.

	Calculation	Sneet	
PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	302-01.0204	PAGE:	U-1 OT U-6
	Appendix l	D	
	Oofete Arekele Der	- 	
	Satety Analysis Rep	ort Tables	
ł			
1			

PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	D-2 of D-6

1. INTRODUCTION

This appendix presents the stress results from the structural analyses performed for the design of the SCE DSC. The results are summarized in tables which are formatted to correspond to the Safety Analysis Report (SAR) tables.

Table D1 through Table D2 are based on ANSYS[®] output summarized in calculation package SCE-01.0204 Table 9-5 through 9-17 for the selected DSC components. This does not include the stress intensities is the DSC shell for the 75g side drop load case (Table D-2) where the stress intensities listed are from calculation package SCE-01.0208. A description of the corresponding ANSYS[®] load steps is documented in Appendix C of SCE-01.0204.

Table D3 through Table D5 are based on Table 10-1 through Table 10-11 of calculation package SCE-01.0204 for the selected DSC components.

PROJECT NO:	SCE-01					REVISION	1: 1	
CALCULATION	NO: SCE-01.02	04				PAGE:	D-3 of	D-6
 Tai	ble D-1 24PT1-DSC	Normal	and Off	-Normal O	perating Co	ondition S	tresses	
				<u> </u>				
Component	Stress Type	Dead W	/eight Horiz.	Normai Internal Pressure	Off- Normal Internal Pressure	Thermal	Normal Handling	Off- Normal Handling
	Primary Membrane	0.9	2.6	1.7	3.4	N/A	17.0	22.6
Shell	Membrane + Bending	2.9	3.1	4.4	8.8	N/A	23.0	30.6
	Primary + Secondary	2.9	3.1	8.2	16.4	22.2	25.1	23.8
	Primary Membrane	0.2	1.1	1.3	2.6	N/A	0.0(1)	0.0(1)
Outer Top Cover Plate	Membrane + Bending	0.4	1.7	4.0	8.0	N/A	0.0(1)	0.0(1)
COVEL 1 late	Primary + Secondary	0.4	1.7	4.5	9.0	13.2	0.0(1)	0.0(1)
	Primary Membrane	1.7	0.6	0.4	0.8	N/A	0.0(1)	0.0(1)
Inner Top Cover Plate	Membrane + Bending	1.9	1.7	3.9	7.8	N/A	0.0(1)	0.0(1)
Cover 1 late	Primary + Secondary	1.9	1.7	3.9	7.8	11.2	0.0(1)	0.0(1)
O	Primary Membrane	1.3	0.7	0.6	1.2	N/A	15.1	20.1
Cover Plate	Membrane + Bending	2.2	1.2	1.1	2.2	N/A	23.9	31.9
Cover I late	Primary + Secondary	2.2	1.2	1.1	2.2	19.6	23.9	31.9
I Detter	Primary Membrane	0.2	0.7	0.3	0.6	N/A	9.9	13.2
Inner Bottom	Membrane + Bending	0.8	0.8	0.7	1.4	N/A	12.5	16.7
	Primary + Secondary	0.8	0.8	0.7	1.4	17.3	17.8	17.9
	Primary Membrane	0.3	0.2	0.5	1.0	N/A	N/A	N/A
Support Ring	Membrane + Bending	0.3	0.2	0.6	1.2	N/A	N/A	N/A
	Primary + Secondary	0.3	0.2	0.6	1.2	4.2	N/A	N/A

Notes:

ſ

1. The top cover plates are not loaded by AHSM insertion/extraction.

Table D-2 24PT1-DSC Accident Condition Stresses

		Stress Intensity (ksi)					
Component	Stress Type	Flood	Seismic	Drop Accident ⁽¹⁾	Accident Pressure		
	Primary Membrane	1.6	10.2	29.8	10.2		
Snell	Membrane + Bending	2.9	17.4	34.2	26.4		
Outer Top	Primary Membrane	0.2	1.2	36.9	7.8		
Cover Plate	Membrane + Bending	0.5	2.4	52.5	24.0		
Inner Top	Primary Membrane	0.2	10.2	25.3	2.4		
Cover Plate	Membrane + Bending	0.5	11.4	38.4	23.4		
Outer Bottom	Primary Membrane	0.3	7.8	23.3	3.6		
Cover Plate	Membrane + Bending	0.5	13.2	34.1	6.6		
Inner Bottom	Primary Membrane	0.8	1.2	39.1	1.8		
Cover Plate	Membrane + Bending	1.6	4.8	40.1	4.2		
	Primary Membrane	1.4	1.8	14.2	3.0		
Support Ring	Membrane + Bending	1.9	1.8	24.9	3.6		

Notes:

1. Envelope of 75g side drop and 25g corner drop.

·

PROJECT NO:	SCE-01	REVISION:	1
CALCULATION NO:	SCE-01.0204	PAGE:	D-4 of D-6

Table D-3 24PT1-DSC Load Combination Results for Normal and Off-Normal Loads (ASME Service Level A and B)

		Controlling	Stress Inter	nsity (ksi)	
Component	Stress Type	Load Combination	Calculated	Allowable	Stress Ratio
	Primary Membrane	UL-4	17.1	18.6	0.92
Shell	Membrane + Bending	UL-4	24.3	27.9	0.87
·····	Primary + Secondary	UL-4	30.5	55.9	0.55
Outer Ten Course	Primary Membrane	HSM-3 / HSM-4	4.5	16.7	0.27
Plate	Membrane + Bending	HSM-3 / HSM-4	15.7	25.0	0.63
	Primary + Secondary	HSM-3 / HSM-4	15.7	50.1	0.31
Inner Ton Course	Primary Membrane	TR-1 / TR-5	2.7	16.7	0.16
Plate	Membrane + Bending	DD-1	19.1	27.0	0.71
	Primary + Secondary	DD-1	42.9	54.0	0.79
Outer Better Cours	Primary Membrane	UL-4	17.0	18.6	0.91
Plate	Membrane + Bending	UL-4	27.2	27.9	0.97
	Primary + Secondary	UL-4	27.2	55.9	0.49
Inner Better Cours	Primary Membrane	UL-3/UL-4	11.1	16.7	0.67
Plate	Membrane + Bending	UL-3/UL-4	14.8	25.0	0.59
	Primary + Secondary	LD-3	20.1	50.1	0.40
	Primary Membrane	HSM-3 / HSM-4	1.2	16.7	0.07
Support Ring	Membrane + Bending	HSM-3 / HSM-4	1.4	25.0	0.05
	Primary + Secondary	· TR-1	4.8	50.1	0.10
Inner Top Cover	Primary	TR-3/TR-7	7.5	10.0	0.75
Plate to Shell Weld	Primary + Secondary	TR-7	12.8	30.1	0.13
Outer Top Cover	Primary	TR-3 / TR-7	2.8	10.0	0.28
Plate to Shell Weld	Primary + Secondary	TR-3	16.9	30.1	0.56
Outer Bottom Cover	Primary	UL-3/UL-4	8.6	10.0	0.86
Plate to Shell Weld	Primary + Secondary	LD-3	24.2	30.1	0.80

Note:

1. The shell seam welds and the inner bottom cover plate to shell weld are full penetration welds in compliance with Subsection NB. Qualification of the welds is demonstrated by qualification of the shell and cover plate.

SCE-01 **REVISION: PROJECT NO:** 1 **CALCULATION NO:** PAGE: SCE-01.0204 D-5 of D-6 Table D-4 24PT1-DSC Load Combination Results for Accident Loads (ASME Service Level C) Stress Intensity (ksi) Controlling Load Stress Component Stress Type Combination Ratio Allowable Calculated UL-5 23.2 0.97 **Primary Membrane** 22.5 Membrane + Bending UL-5 31.8 34.7 0.92 Shell Primary + Secondary N/A N/A **N/A** N/A **Primary Membrane** HSM-13 1.3 20.0 0.07 **Outer Top Cover** Membrane + Bending **HSM-13** 2.2 30.0 0.07 Plate Primary + Secondary N/A **N/A** N/A N/A **Primary Membrane HSM-13** 0.2 20.0 0.01 Inner Top Cover HSM-13 0.5 30.0 0.02 Membrane + Bending Plate N/A N/A N/A N/A Primary + Secondary **Primary Membrane** UL-5 21.6 23.2 0.93 Outer Bottom Cover UL-5 32.8 34.7 0.95 Membrane + Bending Plate N/A N/A Primary + Secondary N/A N/A 14.4 20.0 **Primary Membrane** UL-5 0.72 Inner Bottom Cover 19.0 30.0 Membrane + Bending UL-5 0.63 Plate NA N/A **N/A** N/A Primary + Secondary **Primary Membrane** HSM-13 1.6 20.0 0.08 2.2 30.0 Support Ring Membrane + Bending **HSM-13** 0.07 N/A NA Primary + Secondary N/A N/A Inner Top Cover HSM-13 3.1 12.0 0.26 Primary Plate to Shell Weld **Outer Top Cover** HSM-4 2.4 10.0 Primary 0.24 Plate to Shell Weld Outer Bottom Cover UL-5 10.9 12.0 0.90 Primary Plate to Shell Weld

Note:

1. The shell seam welds and the inner bottom cover plate to shell weld are full penetration welds in compliance with Subsection NB. Qualification of the welds is demonstrated by qualification of the shell and cover plate.

ECT NO:	SCE-01			REVISION:	1
ULATION NO:	SCE-01.0204			PAGE:	D-6 of D-
ble D-5 24PT1-D	SC Load Combinat	ion Results for Ac	cident Loads	(ASME Sen	vice Level I
Component	Stress Type	Controlling Load Combination	Calculated	Allowable	Stress Ratio
Shall	Primary Membrane	TR-10	29.8	50.2	0.59
Snell	Membrane + Bending	TR-10	38.2	64.6	0.59
Outer Top Cover Plate	Primary Membrane	TR-10	35.4	50.2	0.71
	Membrane + Bending	TR-10	52.1	64.6	0.81
Inner Top Cover	Primary Membrane	TR-10	25.3	50.2	0.50
Plate	Membrane + Bending	TR-10	41.8	64.6	0.65
Outer Bottom Cover	Primary Membrane	TR-10	23.2	50.2	0.46
Plate	Membrane + Bending	TR-10	34.1	64.6	0.53
Inner Bottom Cover	Primary Membrane	TR-10	39.1	50.2	0.78
Plate	Membrane + Bending	TR-10	40.1	64.6	0.62
0	Primary Membrane	TR-9	6.12	40.0	0.15
Support King	Membrane + Bending	TR-9	10.60	60.1	0.18
Inner Top Cover Plate to Shell Weld	Primary	TR-10	24.0	30.2	0.80
Outer Top Cover Plate to Shell Weld	Primary	TR-10	12.3	30.2	0.41
Outer Bottom Cover Plate to Shell Weld	Primary	TR-10	6.7	30.2	0.22

Note:

C

1. The shell seam welds and the inner bottom cover plate to shell weld are full penetration welds in compliance with Subsection NB. Qualification of the welds is demonstrated by qualification of the shell and cover plate.