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Developmaent of an embrittiement criterion for Zri%Nh cladding applicable to
loss-of-coolant sccident in LWRs and comperison with zircsloy.

roomﬂmmmmmwm»

hypothetical {LOCA) -
svaliable information, mainly from Germany, Russis snd Hungary, was reviewed. The
results of isothermal stesm-oxidation fests performed between 1000 and 1200°C
mmm-mmmmwmwm

. mwummmmnmmd
mmmaﬂm;zunnmu\mfwm

. oxygen content phase, deduced from hardnass measurements,
higher than for Zircaloy ; P '

» To summarisa, axygen is more uniformiy distributed than for zircaloy ;

tempersture can be very well correiated with the weight or sqguivalent
mmmmmuuwnsccsam%m
fo thess results lead 1 8 provisional criterion for the total axidation fimit
of 6 pevcent of the wall thickness associaied with the use of the Bochvar instituls’s
.hutmg::smbrm Thad:u‘:lm mwﬁmuwmdhm
comes the
num,ummmhhmmumL
phauatlul.oid«imst
Wmhmmmmw foading le applied, without

i
%
i
il
a




Thermal Shock Tests for Hydrided
Zircaloy Cladding Tube

M.TANIMOTO, F.NAGASE
and HUETSUKA

Fuel Safety Research Laboratory

Department of Reactor Safety Research
JAERI

November 13-14,2000
Prepared for 24th NSRR Technical Review Meeting, Tokyo, Japan

Outline of presentation

Objective
Experimental method
Results

Summary

JAERI

JAERI



JAERI

Objective

To investigate failure-bearing
capability of the cladding
during thermal shock taking
. into account of the whole
LOCA sequence

including rod-burst, oxidation
and reflooding.

Reflooding
Balloogmg, burst Failure
and oxidation
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Thermal shock test
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Sample and oxidation condition
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Parameters Present test condition Plan
. Unirradiated ; , _

(0] Ts 5 :1- S (——————EE 1 Irradiated cladding
(Wall thickness, pre- Zircaloy-4 PWR cladding, ! : .
oxidation, pre- 0 57mm thick : Thinned cladding
hydriding, irradiation) A ved i )

{ s-Tece1ve \\ - BWR cladding
Pre"hydnded :400~600thpnj I
Oxidation
temperature 1OSOK 1550K
Oxidation time 100s—7500s
Oxidation amount 5—65% ECR*
* ECR : Equivalent Cladding Reacted (Proportion of oxide layer thickness assuming that all of
absorbed oxygen forms stoichiometric ZrO,) 5
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History of cladding temperature
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Post-test examination
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mm) Evaluate oxidation amount, radial expansion, axial profile
of hydrogen concentration.

Post-test appearance JAERI
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As-received
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Failure map(1/2) -No restraint condition-
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Cladding temperature and load at fracture
under Restraint condition
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Failure map(2/2) -Restraint condition-
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Load at fracture (N)
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Influence of axial restraint on failure boundary
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Summary

Integral thermal shock tests have been performed with
as-received and pre-hydrided (400~ 600 wtppm)
Zircaloy-4 claddings, simulating rod-burst, double-side
oxidation and quench by reflooding.

Following information was obtained on thermal shock
failure behavior including

- Position of rod failure on quench

- Axial hydrogen profile

- Load at fracture under full restraint condition
- Oxidation condition of thermal shock failure

Influence of axial restraint during quench became larger
in pre-hydride cladding.
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