CALVERT CLIFFS NUCLEAR POWER PLANT UNITS 1 & 2 STEAM GENERATOR REPLACEMENT

REPLACEMENT STEAM GENERATOR SAFETY EVALUATION REVIEW AND PROJECT STATUS PRESENTATION TO THE NRC NOVEMBER 1, 2000

Enclosure 2

Calvert Cliffs Nuclear Power Plant, Inc.

Calvert Cliffs Nuclear Power Plant Attendees

<u>Name</u>

A. R. Thornton
T. L. Konerth
G. Tesfaye
M. T. Finley
W. C. Holston
M. Massoud
K. J. Connell
M. D. Ceraldi
M. B. Baker
J. Millman

<u>Title</u>

CCNPP Manager-Nuclear Project Management Department CCNPP Project Engineer CCNPP Senior Licensing Engineer CCNPP Principal Engineer CCNPP Supervisor Eng. Assessment CCNPP Consulting Engineer SGT RSG Engineering Manager SGT Lead Licensing Engineer FTI Senior Licensing Engineer BWC Senior Project Engineer

Meeting Objectives

Present to the NRC staff an Overview of Replacement SG Safety Evaluation Update Licensing Status Update Engineering Status Update Fabrication Status

Agenda

Introduction
RSG Safety Evaluation
Licensing Status
Engineering Status
Fabrication Status
Fabrication Status
Open Discussion
Closing Remarks
Supplementary Presentation
"Gothic Application"

- A. R. Thornton
- M. T. Finley
- G. Tesfaye
- T. L. Konerth
- T. L. Konerth
- **All Attendees**
- A. R. Thornton
- M. Massoud

Functional Relationships

SG Replacement Events

- *****Warehouse construction starts March 2001
- ***OSG** storage facility construction starts March 2001
- *****Unit 1 RSGs arrive Oct-Nov 2001
- *****Unit 1 replacement outage starts March 2002
- ***** Unit 2 RSGs arrive Oct-Nov 2002
- Unit 2 replacement outage starts February 2003

* Background

- ► RSG designed similar to OSG
- Most significant design/operating changes:
 - * RSG tubing Alloy 690 with reduced wall thickness
 - ***** UA 4% above zero plugged tube UA for OSG
 - Secondary steam pressure increases 50 psi (25 psi above current safety analysis assumption)
 - RCS flow increases (back to zero plugged tube value)
 - Integral flow restrictor (1.9 ft²) installed
- ► Primary and secondary inventory very similar by design

RSG Safety Evaluation 10CFR50.59 Scope

Review Process (Performed by FTI)

► Review each accident and identify:

- ✤ the acceptance criteria
- the critical parameters that affect the approach to the acceptance criteria

► Compare the OSG and RSG characteristics

- ➤ Could use of the RSG adversely affect the approach to an acceptance criterion?
 - * No. . . UFSAR remains bounding
 - * Yes. . .Additional evaluation or analysis required

► Are all acceptance criteria met?

- ♣ Yes. . .Document evaluation or analysis in UFSAR
- * No. . .NRC prior approval required

All documents reviewed / approved by SGT & CCNPP

Accident	UESAR Chapter	Effect of RSG	Disposition
CEA Withdrawal	14.2	• UA ↑ beneficial	Evaluation
CEA Williurawai	14.2	 BCS flow ↑ beneficial 	
		Core physics unaffected	
Boron Dilution	14.3	RCS inventory very similar	Evaluation
		Boron worth unaffected	
Excessive Load	14.4	Steam flow increase is less than 3%	Evaluation
		Steam flow remains less than analysis of record since	
		5% margin was available	
		RCS flow ↑ beneficial	
Loss of Load	14.5	 UA ↑ beneficial for primary pressure, adverse for 	Analysis
		secondary pressure	
		Analysis for peak secondary pressure performed	
		• RSG design pressure ↑ 15 psi	
		Result is less than 110% of design pressure	E
Loss of Feedwater	14.6	Secondary inventory very similar	Evaluation
Flow		Decay and sensible near very similar Significant margin in analysis of record low level trip	
Europe Feedwater	447	Significant margin in analysis of record low lever trip	Evoluction
Excess reedwater	14.7	 RCS flow theneficial 	Evaluation
	14.0	PORV and pressurizer unaffected	Evoluation
RUS Depressurization	14.0	RCS flow 1 beneficial	Evaluation
	14.0	PCP coastdown loss rapid with fewer plugged tubes	Evoluation
Loss of Coolant	14.9	 RCS flow theneficial 	Evaluation
Loss of AC Bower	14.10	Decay and sensible beat year similar	Evaluation
LUSS OF AC FOWER	14.10	Secondary inventory very similar	
CEA Drop	14 11	Core physics unaffected	Evaluation
OEN DIOP		RCS flow ↑ beneficial	
Asymmetric SG	14.12	UA ↑ has small effect on core temperature tilt	Evaluation
		RCS flow ↑ beneficial	
CEA Ejection	14.13	Core physics unaffected	Evaluation
		RCS flow beneficial	
SLB – IC	14.14	 Integral flow restrictor beneficial (break area ↓) 	Evaluation
		 Secondary inventory very similar 	
SLB – OC	14.14	UA ↑ and secondary pressure increase adverse	Analysis
		Significant margin in break size in analysis of record	
		RCS flow T beneficial	
COTD	14 15	Secondary inventory very similar – dose unanected	Evoluction
SGIR	14.15	 Tube ID is adverse Shortest tube length ↑ is beneficial 	Evaluation
		 Secondary pressure ↑ is beneficial 	
		Ruptured tube flow is bounded	1
		Adequate overfill volume	
Seized Rotor	14.16	RCS flow distribution and step change unaffected	Evaluation
		RCS flow ↑ beneficial	
		UA ↑ beneficial	
LOCA	14.17	 Primary inventory very similar 	Evaluation
		• UA ↑ is beneficial	
		Decreased tube plugging is beneficial	
Fuel Handling Inc.	14.18	Unaffected	Evaluation
Turb. Overspeed	14.19	Unattected	Evaluation
Containment	14.20	Primary inventory very similar	Evaluation
Resp. – LOCA		RCS now if beneficial since lave	
Containment	14.20	Smaller break with dry steam adverse	Analysis
Resp. – MSLB		Peak pressure less than design	
Hydrogen Acour	1/ 21	Inaffected	Evaluation
Waste Cas Inc	14.21	Drimany inventory your similar	Evaluation
Waste Gas IIIC.	14.22	Inaffected	Evaluation
MUA	14.20		Evaluation
Evenes Charrier	14.24	Onanetieu Dessaurizer and oberging sumss unoffected	Evaluation
Excess Unarging	14.25	Primary inventory very similar	Evaluation
Feedline Brook	14.26	Secondary inventory very similar	Evaluation
Lecome Dieak	14.40	UA ↑ is beneficial	
		Significant margin in break uncovery assumption in	
		analysis of record	

* CEA Withdrawal

- ► Heatup event where increased UA is beneficial
- ►Increased RCS flow is beneficial
- ≻Core physics unaffected
- ***** Boron Dilution
 - ► Primary inventory is very similar
 - ➤Boron worth is unaffected

RSG Safety Evaluation

*** Excess Load**

- ► Steam flow increase is less than 3%
- Steam flow remains less than analysis of record since 5% margin is available
- ≻Increased RCS flow is beneficial

* Loss of Load

- Increased UA beneficial for primary pressure, adverse for secondary pressure
- ➤ Analysis required for maximum secondary pressure case
- ► RSG design pressure is 15 psi greater
- Result of analysis is peak secondary pressure is less than 110% of design pressure

* Loss of Feed

- ► Secondary inventory very similar
- ► Decay and sensible heat very similar
- Significant margin in analysis of record Low Level Trip set-point (-116" analysis trip vs. -50" actual trip set-point)

* Excess FW Heat Removal

- ► FW temperatures are not affected
- ►Increased RCS flow is beneficial

*** RCS Depressurization**

- ► PORV and pressurizer are not affected
- ►Increased RCS flow is beneficial
- * Loss of Flow
 - RCP coastdown less rapid with fewer plugged tubes
 - ➤Increased UA is beneficial

*Loss of AC Power

► Decay and sensible heat are very similar

►SG secondary inventory very similar

*** CEA Drop**

► Core physics unaffected

≻Increased RCS flow is beneficial

***** Asymmetric SG

- Increased UA has a small effect on RCS cold leg temperatures
- ➤Increased RCS flow is beneficial

* CEA Eject

- ► Core physics unaffected
- Increased RCS flow is beneficial since T_{hot} and fuel enthalpy are reduced

*** MSLB-IC (Post-trip)**

- Integral flow restrictor beneficial (smaller break size)
- Secondary inventory is very similar

*** MSLB-OC (Pre-trip)**

- ➤ Increased UA and higher secondary pressure are more adverse
- ➤ Increased RCS flow is beneficial
- ➤ Comparative analysis of peak power was performed
- ➤ Peak power increases slightly for same break
- Break size for RSG is decreased as compared to analysis of record
- ► Peak power for RSG is less than analysis of record
- ➤ Secondary inventory is similar so dose is unaffected

*** SGTR**

- ► Tube ID is slightly increased adverse
- ➤ Shortest tube length is increased beneficial
- Secondary pressure is increased beneficial (reduced tube delta-P)
- Detailed ruptured tube flow rate analysis shows RSG tube flow bounded by analysis of record
- ► Adequate dome volume available for overfill

***** Seized Rotor

- ► RCS flow distribution and step change not affected
- Increased RCS flow is beneficial
- ► Increased UA is beneficial

*** LOCA Core Response**

- Primary inventory very similar
- Decreased tube plugging benefits steam vent during reflood (large break)
- Increased UA is beneficial (small break)

***** LOCA Containment Response

- Primary inventory very similar
- ► Increased RCS flow with decreased T_{ave} is beneficial

*** MSLB Containment Response**

- Integral flow restrictor reduces break size and causes dry steam blowdown
- ► Current licensing basis is 20% moisture carryover
- ► Reanalysis performed with zero moisture carryover
- ► Methodologies have been approved for PWR use
- Peak pressure less than design-Structural integrity maintained
- ► Temperature spike short with redundant spray
- ► Currently evaluating effect of temperature spike on EQ
- ► No issues for NRC prior approval identified

***** Waste Evaporator and Waste Gas Incident

► Primary inventory very similar

* Excess Charging

- ► Pressurizer and charging flow are unaffected
- ► Primary inventory very similar

* Feed Line Break

- Secondary inventory very similar
- ► Increased UA is beneficial
- Significant margin in break uncovery assumption in analysis of record

Licensing Status

Draft Licensing Report (complete) July 1999
Interim Licensing Report May 2000
RSG 50.90 Submittal Dec 2000
RSG 50.59 Evaluation Mar 2001
Updated Licensing Report (Unit 1) April 2002
Updated Licensing Report (Unit 2) April 2003

Licensing Status

*Activities Requiring Prior NRC Review and Approval

- ► Technical Specification Revisions
- ► ASME Code Relief Requests
- ► No other items requiring NRC review are anticipated
- ► All Submittals are planned for December 2000

Licensing Status

*****Technical Specification Revision

►SG Level References

- Current SG levels are referenced with respect to the feed ring elevation
- SG level set points are not expected to change relative to % span
- Since feed ring elevation is lower, editorial change is needed
- ►SG Repair Options
- ► Increase RCS Minimum Required Flow

Licensing Status

***ASME Code Relief Requests**

➤Code Case N-20-4 (approved)

≻Code Case 2142-1 (approved)

≻Code Case 2143-1 (approved)

► Code Case N-619 (will be submitted 12/00)

*****Replacement Steam Generator

- Two piece replacement with new moisture separation equipment
- ➤Lower Assemblies designed to ASME III 1989 Edition No Addendum- NPT stamped
- ► Primary side hydrostatic test at BWC
- ► No secondary side hydrostatic Test at BWC
- Pre-service Inspection at BWC in accordance with ASME Section XI 1998 Edition No Addendum

*****Replacement Steam Generator

- Installation will be in accordance with ASME Section XI 1998 Edition No Addendum
- Post installation primary and secondary side Pressure test will be performed in accordance with Code Case N-416-1
- No post installation primary or secondary side hydrostatic test will be performed

NRC Presentation November 1, 2000, Slide 27

*****Structural Analysis

No. of the second s

- Re-created 3-D Dynamic Structural beam Model of RCS Loop in ANSYS
- Benchmarked to Original CE STRUDL Loop Analysis with excellent agreement
- Replaced the portion of the Model representing the Original Steam Generator with detailed Model of Replacement SG and recalculated seismic response.
- All loads and primary side attached piping anchor point motions bounded by original analysis loads/motions.

*****Engineering Packages

- ► 6 Packages Common to both Units
- ► 28 Packages specific to Unit 1
- ► 28 Packages specific to Unit 2

* Engineering Packages Common to Both Units

- ► Replacement Steam Generator
- ≻ Steam Generator Offload
- ► RSG Transport
- ≻ Site Facilities
- ≻OSG Storage Facility

***** Unit Specific Engineering Packages

- ≻Hatch Transfer System
- ► Steam Generator Insulation
- ► RCS Support

- ≻ Steam Generator Supports
- ≻Contingency Elbows
- ➤Temporary Power
- Various packages for interference removal and reinstallation

*****Status of Engineering Packages

- ► 14 Packages approved for installation
- ➤All Common and Unit 1 packages scheduled to be complete by June 2001
- ➤All Unit 2 packages scheduled to be complete by February 2002

Insertion of Shroud into NG2 in Clean Room

Primary Separator

Lower Assembly #4 without Primary Head

CCNPP-NRC Meeting Schedule

- ☆ Project overview meeting (July 29,1998)
- SG Fabrication QA/QC review and project status meeting (April 28, 1999) ✓
- Replacement SG safety evaluation review meeting (November 15, 1999) ✓
- ※ Replacement SG safety evaluation review meeting (November 1, 2000) ✓
- * Pre-installation meeting Unit 1 (Spring 2002)
- * Post installation meeting Unit 1(Fall 2002)
- * Pre-installation meeting Unit 2 (Spring 2003)
- * Post Installation meeting Unit 2 (Fall 2003)
- ***** Other meetings as needed

NRC Presentation November 1, 2000, Slide 39

CALVERT CLIFFS NUCLEAR POWER PLANT UNITS 1 & 2 STEAM GENERATOR REPLACEMENT

SUMMARY OF CCNPPI EXPERIENCE IN APPLICATION OF THE **GOTHIC** COMPUTER CODE PRESENTATION TO THE NRC NOVEMBER 1, 2000

Calvert Cliffs Nuclear Power Plant, Inc.

BACKGROUND

- **CCNPPI Has Been Using GOTHIC Since 1994**
- A Total Of 17 Design Calculations (Formally Quality Assured & Documented) Using The GOTHIC Code Are Prepared
- Extensive Benchmark Is Made With The COPATTA Code On Containment Response
 - * Cold-leg LOCA, Maximum Safety Injection
 - * Cold-leg LOCA, Minimum Safety Injection
 - * Hot-leg LOCA, Minimum Safety Injection
 - Main Steam Line Break

BACKGROUND (Cont'd)

- CCNPPI Has Also Gained Experience In Non-containment Related Applications
- COMPI Has Made 5 Presentations To GOTHIC Advisory Group Meetings

Containment Related Applications

- Developing Containment Response Model For Benchmark With COPATTA
- Developing Break Flow Model To Calculate Long Term Mass & Energy Transfer Rates
- Performing Sensitivity Study Regarding Time Step Size Effects On Containment Peak Pressure And Temperature

Containment Related Applications (Cont'd)

- Developing Models For Containment Electrical Penetrations
- Analyzing Containment Response To Various Heat Sink Coating (Paint/primer) Systems

Non-Containment Related Applications

- Natural Circulation In The Vessel And The Refueling Pool After Loss Of Shutdown Cooling With Upper Guide Structure (UGS) Installed Or Removed
- Analysis Of Issues On "Independent Spent Fuel Storage Installation (ISFSI)"
 - Calculation Of Maximum Flow Rate To Flood "Dry Storage Cask (DSC)" In Support Of Unload Procedure
 - Design Optimization Of Pump & Bypass Loop Orifice To Flood DSC
 - Determination Of The Critical Helium Mass And Temperature In Blowdown, Dry Up, And Fill Phases

Non-Containment Related Applications (Cont'd)

- Analysis Of Once-through Core Cooling (OTCC)
- RCS Response To SIT Nitrogen Ingress In A SB-LOCA
- Determination Of NPSH For HPSI Pumps In A Loss Of CCW To The Reactor Coolant Pump Seals

COMPARISON OF GOTHIC CODE WITH BECHTEL'S COPATTA

Pump Discharge LOCA, Min. Safety Injection

Containment Pressure (psia)

Constellation Nuclear

COMPARISON OF GOTHIC CODE WITH BECHTEL'S COPATTA

Pump Discharge LOCA, Min. Safety Injection

F		•••••	• • • • • • • • • •	· · · · · · · · · · · · · · ·			
PATTA							106
COI							105
							104
							c) [
							١U٢
							5
							2
							-
						10-2	•
300 280	260	240 220	200	180 160	140	120 100	

Containment Temperature (F)

NRC Presentation November 1, 2000, Slide 9

6/у

Time (sec)

Constellation Nuclear

GOTHIC Nodalization of Quadrant Vessel & RFP UGS (Installed)

NRC Presentation November 1, 2000, Slide 10

Constellation Nuclear

DSC Temperature & Pressure in Stage 6

CLx_rcs, Dt(min): 1.E-6 sec, Graph Int.: 0.1 sec 49.3 49.2 49.1 (psig) 49.0 48.9 Peak Pressure 48.8 48.7 48.6 48.5 48.4 48.3 48.2 10^{-2} 2 3 10 - 15 4 6 7 2 3 5 6 Time Step Size (sec)

Effect Of Time Step Size On Peak Pressure

NRC Presentation November 1, 2000, Slide 14

Constellation Nuclear

Calvert Cliffs OTTCC Matrix

	•				P	ORVs		
				1 *			2	
	•		Charging			Pumps		
			1	2	3		2 · ···	3
		0	x	x ·	x	x	X	CC
1		1	x	x	x	x	· x	CC
		2	CU [2: 40]	CU [3: 25]	CU [5: 5]	CU [2: 45]	CU [3: 30]	CC
		0	x	x	x	CU [3: 30]	CC	CC
HPSIs 2	ADVs ^C	1	x	x	x	CU [3: 45]	CC	CC
		2	CU [3: 10]	CU [3: 50]	CU [5: 15]	CC	CC	CC ^B
	0	x	x	CU [5: 10]	CC	CC .	CC	
3		1	x	x ·	CU [5: 10]	CC	CC	CC
		2	CU [3: 15]	CU [4]	CU [5: 40]	CC	CC	CC ^B
	n Quanta a sur		В	b	C	d	c	ſ

