

UNITED STATES NUCLEAR REGULATORY COMMIS WASHINGTON, D. C. 20555

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

SUPPORTING AMENDMENT NO. 32 TO FACILITY OPERATING LICENSE NO. DPR-50

METROPOLITAN EDISON COMPANY JERSEY CENTRAL POWER AND LIGHT COMPANY PENNSYLVANIA ELECTRIC COMPANY

THREE MILE ISLAND NUCLEAR STATION UNIT NO. 1

DOCKET NO. 50-289

INTRODUCTION

Following a fire at the Browns Ferry Nuclear Station in March 1975, we initiated an evaluation of the need for improving the fire protection programs at all licensed nuclear power plants. As part of this continuing evaluation, in February 1976 we published a report entitled "Recommendations Related to Browns Ferry Fire", NUREG-0050. This report recommended that improvements in the areas of fire prevention and fire control be made in most existing facilities and that consideration be given to design features that would increase the ability of nuclear facilities to withstand fires without the loss of important functions. To implement the report's recommendations, the NRC initiated a program for reevaluation of the fire protection programs at all licensed nuclear power stations and for a comprehensive review of all new license applications.

We have issued new guidelines for fire protection programs in nuclear power plants. These guidelines reflect the recommendations in NUREG-0050. These guidelines are contained in the following documents:

"Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants," NUREG-75/087, Section 9.5.1, "Fire Protection," May 1976, which includes "Guidelines for Fire Protection for Nuclear Power Plants," (BTP APCSB 9.5-1), May 1, 1976.

"Guidelines for Fire Protection for Nuclear Power Plants"(Appendix A to BTP APCSB 9.5-1), August 23, 1976.

"Supplementary Guidance on Information Needed for Fire Protection Program Evaluation," September 30, 1976.

"Nuclear Plant Fire Protection Functional Responsibilities, Administrative Controls and Quality Assurance," June 14, 1977.

Metropolitan Edison Company, Jersey Central Power and Light Company, and Pennsylvania Electric Company (licensees) have submitted a description of the fire protection program for the Three Mile Island Nuclear Station Unit No. 1 by letter dated April 1, 1977. This program is under detailed review by the NRC. In the interim, until we complete our detailed review, we have concluded that it is appropriate to amend the facility license by incorporating into the Technical Specifications operability and surveillance requirements for the existing fire protection equipment and systems. In addition, the amendment would include administrative requirements for the implementation of the fire protection program.

By letter dated September 30, 1976, we requested the licenses to submit Technical Specifications for the presently-installed fire protection equipment at this facility. By letter of December 2, 1976, we issued sample Technical Specifications and reiterated that these specifications were for existing systems only.

Subsequently, the licensees proposed Technical Specifications by letter dated February 10, 1977. Based on our review and consideration of that response and the responses of other licensees, we modified certain action statements and surveillance frequencies in order to provide more appropriate and consistent specifications which we forwarded to the licenseesby letter of June 16, 1977. That letter also requested submittal of appropriately revised specifications.

The licensees responded by letter dated August 12, 1977. We have reviewed the licensees' response and have made modifications where necessary to assure conformance to the fullest extent practicable with our requirements as set forth in the sample Technical Specifications pending completion of our ongoing detailed review of fire protection at this facility. We have discussed these modifications with the licensees, and they have agreed to all modifications. However, it will be necessary to provide a period of time to modify procedures to conform with the details of the modifications to the Technical Specifications and to provide time to complete the required personnel training where necessary, therefore the amendment would become effective 30 days after the date of issue.

DISCUSSION AND EVALUATION

The guidelines for Technical Specifications that we developed and sent to all licensees are based on assuring that the fire protection equipment currently installed for the protection of safety related areas of the plant is operable. This assurance is obtained by requiring periodic surveillance of the equipment and by requiring certain corrective actions to be taken if the limiting conditions for operation cannot be met. These guidelines also include administrative features for the overall fire protection program such as interim fire brigade requirements, training, procedures, management review and periodic independent fire protection and loss prevention program inspections.

The equipment and components existing at this facility and included in the scope of these Technical Specification requirements are fire detectors, the fire suppression systems, and the hose stations. Operability of the fire detection instrumentation provides warning capability for the prompt detection of fires, to reduce the potential for damage to safety related equipment by allowing rapid response of fire suppression systems. In the event that the minimum coverage of fire detectors cannot be met, hourly fire patrols are required in the affected area until the inoperable instrumentation is restored to operability. The operability of the fire suppression systems provides capability to confine and extinguish fires. In the event that portions of the fire suppression systems are inoperable, alternate backup fire fighting equipment is required to be made available in the affected areas until the inoperable equipment is returned to service. In the event that the fire suppression water system becomes inoperable, a backup fire protection water system is required within 24 hours and a report to the NRC is required within 24 hours to provide for prompt evaluation of the acceptability of the corrective measures for adequate fire suppression capability.

We have reviewed the licensees' proposed interim Technical Specifications against our requirements as implemented in the sample Technical Specifications. We have made some modifications to the Specifications that were proposed by the licensees in order to make them conform to our requirements. One of the proposed specifications that we changed involves the minimum size of the on-site fire brigade. In our previous sample Technical Specifications we did not identify the number of members on a fire brigade that we would find acceptable. We have now concluded that minimum number for a typical commercial nuclear power plant to be five (5). The basis for this conclusion is presented in an attachment to this SER entitled "Staff Position Minimum Fire Brigade Shift Size."

In the report of the Special Review Group on the Browns Ferry Fire (NUREG-0050) dated February 1976, consideration of the safety of operation of all operating nuclear power plants pending the completion of our detailed fire protection evaluation was presented. The following quotations from the report summarize the basis for our conclusion that the operation of the plants, until we complete our review, does not present an undue risk to the health and safety of the public.

"A probability assessment of public safety or risk in quantitative terms is given in the Reactor Safety Study (WASH-1400). As the result of the calculation based on the Browns Ferry fire, the study concludes that the potential for a significant release of radioactivity from such a fire is about 20% of that calculated from all other causes analyzed. This indicates that predicted potential accident risks from all causes were not greatly affected by consideration of the Browns Ferry fire. This is one of the reasons that urgent action in regard to reducing risks due to potential fires is not required. The study (WASH-1400) also points out that 'rather straightforward measures, such as may already exist at other nuclear plants, can significantly reduce the likelihood of a potential core melt accident that might result from a large fire.' The Review Group agrees.

*Fires occur rather frequently; however, fires involving equipment unavailability comparable to the Browns Ferry fire are quite infrequent (see Section 3.3 [of NUREG-0050]). The Review Group believes that steps already taken since March 1975 (see Section 3.3.2) have reduced this frequency significantly.

"Based on its review of the events transpiring before, during and after the Browns Ferry fire, the Review Group concludes that the probability of disruptive fires of the magnitude of the Browns Ferry event is small, and that there is no need to restrict operation of nuclear power plants for public safety. However, it is clear that much can and should be done to reduce even further the likelihood of disabling fires and to improve assurance of rapid extinguishment of fires that occur. Consideration should be given also to features that would increase further the ability of nuclear facilities to withstand large fires without loss of important functions should such fires occur."

Subsequent to the Browns Ferry fire and prior to the Special Review Group's investigation, the Office of Inspection and Enforcement took steps with regard to fire protection. Special bulletins were sent to all licensees of operating power reactors on March 24, 1975, and April 3, 1975, directing the imposition of certain controls over fire ignition sources, a review of procedures for controlling maintenance and modifications that might affect fire safety, a review of emergency procedures for alternate shutdown and cooling methods, and a review of flammability of materials used in floor and wall penetration seals. Special inspections covering the installation of fire stops in electrical cables and in penetration seals were completed at all operating power reactors in April and May 1975. Inspection findings which reflected non-compliance with NRC requirements resulted in requiring corrective action by licensees. Follow-up inspections have confirmed-that licensees are taking the required corrective actions and that administrative control procedures are in place.

Since these inspection activities and the subsequent Special Review Group recommendations in the 1975 to 1976 time period, there has been no new information to alter the conclusions of the Special Review Group, and the ongoing fire protection program flowing from those conclusions is still adequate.

Therefore, we have found these specifications acceptable on an interim basis until such time that our overall review is complete, required equipment is installed and operable, and final specifications have been developed and issued.

ENVIRONMENTAL CONSIDERATION

We have determined that the amendment does not authorize a change in effluent types or total amounts nor an increase in power level and will not result in any significant environmental impact. Having made this determination, we have further concluded that the amendment involves an action which is insignificant from the standpoint of environmental impact and, pursuant to 10 CFR \$51.5(d)(4), that an environmental impact statement or negative declaration and environmental impact appraisal need not be prepared in connection with the issuance of this amendment.

CONCLUSION

We have concluded, based on the considerations discussed above, that: (1) because the amendment does not involve a significant increase in the probability or consequences of accidents previously considered and does not involve a significant decrease in a safety margin, the amendment does not involve a significant hazards consideration, (2) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, and (3) such activities will be conducted in compliance with the Commission's regulations and the issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public.

Date: November 30, 1977

Staff Position

Minimum Fire Brigade Shift Size

INTRODUCTION

Nuclear power plants depend on the response of an onsite fire brigade for defense against the effects of fire on plant safe shutdown capabilities. In some areas, actions by the fire brigade are the only means of fire suppression. In other areas, that are protected by correctly designed automatic detection and suppression systems, manual fire fighting efforts are used to extinguish: (1) fires too small to actuate the automatic system; (2) well developed fires if the automatic system fails to function; and (3) fires that are not completely, controlled by the automatic system. Thus, an adequate fire brigade is essential to fulfill the defense in depth requirements which protect safe shutdown systems from the effects of fires and their related combustion by-products.

DISCUSSION

There are a number of factors that should be considered in establishing the minimum fire brigade shift size. They include:

1) plant geometry and size;

- 2) quantity and quality of detection and suppression systems;
- 3) fire fighting strategies for postulated fires;

4) fire brigade training;

5) fire brigade equipment; and

6) fire brigade supplements by plant personnel and local fire department(s).

In all plants, the majority of postulated fires are in enclosed windowless structures. In such areas, the working environment of the brigade created by the heat and smoke buildup within the enclosure, will require the use of self-contained breathing apparatus, smoke ventilation equipment, and a personnel replacement capability.

Certain functions must be performed for all fires, i.e., command brigade actions, inform plant management, fire suppression, ventilation control, provide extra equipment, and account for possible injuries. Until a site specific review can be completed, an interim minimum fire brigade size of five persons has been established. This brigade size should provide a minimum working number of personnel to deal with those postulated fires in a typical presently operating commercial nuclear power station.

If the brigade is composed of a smaller number of personnel, the fire attack may be stopped whenever new equipment is needed or a person is injured or fatigued. We note that in the career fire service, the minimum engine company manning considered to be effective for an initial minimum engine is also five, including one officer and four team members.

It is assumed for the purposes of this position that brigade training and equipment is adequate and that a backup capability of trained individuals exist whether through plant personnel call back or from the local fire department.

POSITION

- 1. The minimum fire brigade shift size should be justified by an analysis of the plant specific factors stated above for the plant, after modifications are complete.
- 2. In the interim, the minimum fire brigade shift size shall be five persons. These persons shall be fully qualified to perform their assigned responsibility, and shall include:

One Supervisor - This individual must have fire tactics training. He.will assume all command responsibilities for fighting the fire. During plant emergencies, the brigade supervisor should not have other responsibilities that would detract from his full attention being devoted to the fire. This supervisor should not be actively engaged in the fighting of the fire. His total function should be to survey the fire area, command the brigade, and keep the upper levels of plant management informed.

Two Hose Men - A 1.5 inch fire hose being handled within a windowless enclosure would require two trained individuals. The two team members are required to physically handle the active hose line and to protect each other while in the adverse environment of the fire.

Two Additional Team Members - One of these individuals would be required to supply filled air cylinders to the fire fighting. members of the brigade and the second to establish smoke ventilation and aid in filling the air cylinder. These two individuals would also act as the first backup to the engaged team.