

U.S. NUCLEAR REGULATORY COMMISSION

REGULATORY GUIDE

OFFICE OF NUCLEAR REGULATORY RESEARCH

REGULATORY GUIDE 3.54

(Draft was issued as DG-3010)

SPENT FUEL HEAT GENERATION IN AN INDEPENDENT SPENT FUEL STORAGE INSTALLATION

A. INTRODUCTION

In 10 CFR Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste," paragraph (h)(1) of Section 72.122, "Overall Requirements," requires that spent fuel cladding be protected during storage against degradation that leads to gross ruptures or the fuel must be otherwise confined such that degradation of the fuel during storage will not pose operational safety problems with respect to its removal from storage. It has been shown that, under certain environmental conditions, high storage temperatures can cause degradation and gross rupture of the fuel rods to occur very rapidly. It is necessary to know what storage temperatures are anticipated during the life of the storage installation and that these temperatures will not significantly degrade the cladding to a point that causes gross ruptures. The temperature in an independent spent fuel storage installation is a function of the heat generated by the stored fuel assemblies. The spent fuel storage system is required by 10 CFR 72.128(a)(4) to be designed with a heat removal capability consistent with its importance to safety.

This regulatory guide presents a method acceptable to the Nuclear Regulatory Commission (NRC) staff for calculating heat generation rates for use as design input for an independent spent fuel storage installation. The original guide, issued in September 1984, was based on validated analyses performed for pressurized-water reactors (PWRs), and boiling-water reactors (BWRs) were considered only as a simple conservative extension of the PWR In this revision, the procedure for data base. determining heat generation rates for both PWRs and BWRs is based on analyses of each reactor type using calculational methods that have been validated against measured heat generation data from PWR and BWR assemblies.

Revision 1 January 1999

This revision presents a methodology that is simpler and is therefore expected to be more useful to applicants and reviewers.

This regulatory guide contains no information collection requirements and therefore is not subject to the requirements of the Paperwork Reduction Act of 1980 (44 U.S.C. 3501 et seq.).

USNRC REGULATORY GUIDES

Regulatory Guides are issued to describe and make available to the public such information as methods acceptable to the NRC staff for implementing specific parts of the Commission's regulations, techniques used by the staff in evaluating specific problems or postulated accidents, and data needed by the NRC staff in its review of applications for permits and licenses. Regulatory guides are not substitutes for regulations, and compliance with them is not required. Methods and solutions different from those set out in the guides will be acceptable if they provide a basis for the findings requisite to the issuance of continuance of a permit or license by the Commission.

This guide was issued after consideration of comments received from the public. Comments and suggestions for improvements in these guides are encouraged at all times, and guides will be revised, as appropriate, to accommodate comments and to reflect new information or experience.

Written comments may be submitted to the Rules and Directives Branch, ADM, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

The guides are issued in the following ten broad divisions:

- 1. Power Reactors
- 2. Research and Test reactors
- 3. Fuels and Materials Facilities

4. Environmental and Siting

5. Materials and Plant Protection

Single copies of regulatory guides may be obtained free of charge by writing the Reproduction and Distribution Services Section, Office of the Chief Information Officer, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; or by fax at (310)415-2289; or by e-mail to DISTRIBUTION @NRC.GOV.

6 Products

10. General

7. Transportation

8. Occupational Health

9. Antitrust and Financial Review

Issued guides may also be purchased from the National Technical Information Service on a standing order basis. Details on this service may be obtained by writing NTIS, 5285 Port Royal Road, Springfield, VA 22161.

B. DISCUSSION

The methodology of NUREG/CR-5625¹ is appropriate for computing the heat generation rates of fuel assemblies from light-water-cooled power reactors as a function of burnup, specific power, and decay time. The computed heat generation results are used in the next section in a procedure for determining heat generation rates for PWR and BWR assemblies.

Calculations of decay heat have been verified by comparison with the existing data base of experimentally measured decay heat rates for PWR and BWR spent fuel. The range of parameter values in the procedure is considered to lie in the mainstream of typical burnup, specific power, enrichment, and cooling time. A detailed example is shown in Appendix A.

The following terms and units have been used in this guide.

TERMS AND UNITS USED IN GUIDE

- B_e burnup in last cycle, MWd/kgU
- Be-1 burnup in next-to-last cycle, MWd/kgU
- B_i fuel burnup increase for cycle i, MWd/kgU
- B_{tot} total burnup of discharged fuel, MWd/kgU
- E_s initial fuel enrichment, wt-% 235U
- *P* specific power of fuel as in Equations 2 and 3, kW/kgU
- *Pave* average cumulative specific power during 80% uptime, kW/kgU
- *Pave,e-1* average cumulative specific power (at 80%) through cycle *e-1*, the next-to-last cycle
- P_e fuel-specific power during the last cycle e
- *P_{e-1}* fuel-specific power during cycle *e-1*, the next-to-last cycle
- P_L, P_H lower and higher values of specific power that bracket the specific power value of P_{ave}
- *P_{tab}* heat generation rate that is obtained from the table by interpolation between the lower and higher bracketing values
- P_{final} final heat generation rate determined by applying all adjustment factors, followed by the safety factor to the value P_{tab}
- T_L , T_H lower and higher time values in a table that bracket the cooling time of interest, T_C

- percentage safety factor applied to decay heat rates, p_{tab}
- cooling time of an assembly, in years

S

T_c

T_e

f7

f'7

fe

p

- cycle time of last cycle before discharge, in days
- T_{e-1} cycle time of next-to-last cycle, in days
- cycle time of *i*th reactor operating cycle, including downtime for all but last cycle of assembly history, in days
- *T_{res}* reactor residence time of assembly, from first loading to shutdown for discharge, in days
 - last-cycle short cooling time modification factor
 - next-to-last cycle short cooling time factor
 - ²³⁵U initial enrichment modification factor
- f_p excess power adjustment factor
 - heat generation rate of spent fuel assembly, W/kgU

C. REGULATORY POSITION

The following method for determining heat generation rates of reactor spent fuel assemblies is acceptable to the NRC staff. There may be fuel assemblies with characteristics that are sufficiently outside the mainstream of typical operations that they need a separate computation of the heat generation rate. A discussion of the characteristics of assumed typical reactor operations is given in Appendix B.

The first part of this section contains the definitions and derivations, as used in this guide, of parameters needed in the determination of the heat generation rate of a fuel assembly. The second part contains the procedure used in deriving the final heat rate of an assembly. Although allowance has been made to use simple adjustment factors for cases that are somewhat atypical, many cases will probably not require any adjustment of the table heat rate other than the safety factor.

Heat generation rate tables for actinides, fission products, and light elements are given in Appendix C for informational purposes only. They are not used directly in this guide's method for determining heat rates.

1. DEFINITIONS AND DERIVATIONS OF PARAMETERS

The following definitions and derivations of parameters of the spent fuel assembly are used in the procedure in this guide.

1.1 Heat Generation Rate (p)

The heat generation rate of the spent fuel assembly is the recoverable thermal energy (from radioactive decay) of the assembly per unit time per unit fuel mass.

¹ Technical Support for a Proposed Decay Heat Guide Using SAS2H/ ORIGEN-S Data, NUREG/CR-5625 (ORNL-6698), September 1994. Copies are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW., Washington, DC; the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202) 634-3273; fax (202) 634-3343. Copies may be purchased at current rates from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402-9328 [telephone (202) 512-1800]; or from the National Technical Information Service by writing NTIS at Port Royal Road, Springfield, VA 22161.

The units for heat generation rate used in this guide are watts per kilogram U (W/kgU), where U is the initial uranium loaded. Heat generation rate has also been referred to as decay heat rate, afterheat, or afterheat power.

1.2 Cycle and Cycle Times (T_i)

A cycle of the operating history for a fuel assembly is, with one exception, the duration between the time criticality is obtained for the initially loaded or reloaded reactor to the time at which the next reloaded core becomes critical. The exception is for the last cycle, in which the cycle ends with the last reactor shutdown before discharge of the assembly. T_i denotes the elapsed time during cycle *i* for the assembly. Specifically, the first and last cycles are denoted by i =*s* (for start) and i = e (for end), respectively. T_{res} , the total residence time of the assembly, is the sum of all T_i for i = s through *e*, inclusive. Except for the last cycle for an assembly, the cycle times include the downtimes during reload. Cycle times, in this guide, are in days.

1.3 Fuel Burnup of the Assembly $(B_i \text{ and } B_{int})$

The fuel burnup of cycle *i*, B_{i} , is the recoverable thermal energy per unit fuel mass during the cycle in units of megawatt days per metric ton (tonne) initial uranium (MWd/tU), or in the SI units² of mass used in this guide, megawatt days per kilogram U (MWd/ kgU). B_{i} is the best maximum estimate of the fuel assembly burnup during cycle *i*. B_{tot} is the total operating history burnup:

$$B_{tot} = \sum_{i=s}^{c} B_i \qquad (Equation 1)$$

1.4 Specific Power of the Fuel $(P_{p_{i}}, P_{p_{i}}, P_{p_{i}})$, and $P_{p_{i}}$, $P_{p_{i}}$

Specific power has a unique meaning in this guide. The reason for developing this definition is to take into account the differences between the actual operating history of the assembly and that used in the computation of the tabulated heat generation rates. The calculational model applied an uptime (time at power) of 80% of the cycle time in all except the last cycle (of the discharged fuel assembly), which had no downtime. The definition of specific power, used here, has two basic characteristics. First, when the actual uptime experienced by the assembly exceeds the 80% applied in the SAS2H/ORIGEN-S calculations, the heat rate derived by the guide procedure maintains equivalent accuracies within 1%. Second, when the actual uptime experienced is lower than the 80% applied in the calculations, the heat rate is reduced.

The technical basis for these characteristics is presented in NUREG/CR-5625.

The specific power of cycle i, or e (last cycle), in kW/kgU, using burnup in MWd/kgU, is determined by:

$$P_{i} = \frac{1000 B_{i}}{0.8 T_{i}} \text{ for } i < e$$
(Equation 2)
$$P_{e} = \frac{1000 B_{e}}{T_{e}} \text{ for } i = e$$

The average specific power over the entire operating history of a fuel assembly, using the same units as in Equation 2, is determined by:

$$P_{ave} = \frac{1000 B_{tot}}{T_e + 0.8 \sum_{i=e}^{e-1} T_i}$$
 (Equation 3)

The average specific power through the next-tolast cycle is used in applying the adjustment factor for short cooling time (see Regulatory Position 2.2). This parameter is determined by:

$$P_{ave,e-1} = \frac{1000(B_{sot} - B_e)}{0.8(T_{res} - T_e)}$$
 (Equation 4)

Note that B_{tot} and P_{ave} , as derived here, are used in determining the heat generation rate with this guide. Also, for cooling times ≤ 7 years, P_e is used in an adjustment formula. The method applied here accommodates storing a fuel assembly outside the reactor during one or two cycles and returning it to the reactor. Then, $B_i = 0$ may be set for all intermediate storage cycles. If the cooling time is short (i.e., ≤ 10 years), the results derived here may be excessively high for cases in which the fuel was temporarily discharged. Other evaluation methods that include the incorporation of storage cycles in the power history may be preferable.

1.5 Assembly Cooling Time (T_c)

The cooling time, T_c , of an assembly is the time elapsed from the last downtime of the reactor prior to its discharge (at end of T_c) to the time at which the heat generation rate is desired. Cooling times, in this guide, are in years.

1.6 Assembly Initial Fuel Enrichment (*E*,)

The initial enrichment, E_{s} , of the fuel assembly is considered to be the average weight percent ²³⁵U in the

² The International System of Units.

uranium when it is first loaded into the reactor. Heat generation rates vary with initial enrichment for fuel having the same burnup and specific power; the heat rate increases with lower enrichment. If the enrichment is different from that used in the calculations at a given burnup and specific power, a correction factor is applied.

2. DETERMINATION OF HEAT GENERATION RATES

Directions for determining the heat generation rates of light-water-reactor (LWR) fuel assemblies from Tables 1 through 8 are given in this section. First, a heat rate, p_{mb} , is found by interpolation from Tables 1 through 3 or Tables 5 through 7. Next, a safety factor and all the necessary adjustment factors are applied to determine the final heat generation rate, p_{final} . There are three adjustment factors (see Regulatory Positions 2.2 to 2.4) plus a safety factor (see Regulatory Position 2.5) that are applied in computing the final heat generation rate, p_{final} from p_{tob} . In many cases, the adjustment factors are unity and thus are not needed. An alternative to these directions is the use of the light-water-reactor afterheat rate calculation (LWRARC) code on a personal computer; the code is referred to in Regulatory Position 2.7. This code evaluates p_{tab} and p_{final} using the data and procedures established in this guide.

2.1 Computing Heat Rate Provided by Tables

Tables 1 through 3 are for BWR fuel, and Tables 5 through 7 are for PWR fuel. The heat rates in each table pertain to a single average specific power and are listed as a function of total burnup and cooling time. After determining P_{ave} , B_{tot} , and T_c as above, select the next lower (L-index) and next higher (H-index) heat rate values from the tables so that:

and

$$T_L \leq T_c \leq T_H$$

 $\begin{array}{l} P_L \leq P_{ave} \leq P_H \\ B_L \leq B_{tot} \leq B_H \end{array}$

Compute p_{tab} , the heat generation rate, at P_{ave} , B_{tot} , and T_c , by proper interpolation between the tabulated values of heat rates at the lower and higher parameter limits. A linear interpolation should be used between heat rates for either burnup or specific power interpolations. In computing the heat rate at T_c , the interpolation should be logarithmic in heat rate and linear in cooling time. Specifically, the interpolation formulas for interpolating in specific power, burnup, and cooling time are, respectively,

$$p = p_L + \frac{p_H - p_L}{P_H - P_L} (P_{ave} - P_L) \quad \text{(Equation 5)}$$

$$p = p_L + \frac{p_H - p_L}{B_H - B_L} (B_{tot} - B_L) \quad \text{(Equation 6)}$$

$$p = p_L \exp\left[\frac{\ln(p_H/p_L)}{T_H - T_L} (T_e - T_L)\right]$$
(Equation 7)

Where p_L and p_H represent the tabulated or interpolated heat rates at the appropriate parameter limits corresponding to the L and H index. If applied in the sequence given above, Equation 5 would need to be used four times to obtain p values that correspond to B_L and B_H at values of T_L and T_{H^*} . A mini-table of four p values at P_{ave} is now available to interpolate burnup and cooling time. Equation 6 would then be applied to obtain two values of p at T_L and T_{H^*} . One final interpolation of these two p values (at P_{ave} and B_{tot}) using Equation 7 is needed to calculate the final p_{tab} value corresponding to P_{ave} , B_{tot} , and T_c . The optional Lagrangian interpolation scheme offered by the LWRARC code is also considered an acceptable method for interpolating the decay heat data.

If P_{ave} or B_{tot} falls below the minimum table value range, the minimum table-specific power or burnup, respectively, may be used conservatively. If P_{ave} exceeds the maximum table value, the table with the maximum specific power (Table 3 for BWR fuel and Table 7 for PWR fuel) may be used in addition to the adjustment factor, f_p , described in Regulatory Position 2.3.

The tables should not be applied if B_{tot} exceeds the maximum burnup in the tables, or if T_c is less than the minimum (1 year). If T_c exceeds the maximum (110 years) cooling time of the tables, the 110-year value is acceptable, although it may be too conservative.

2.2 Short Cooling Time Factors f_{τ} and f'_{τ}

The heat rates presented in Tables 1 through 3 and Tables 5 through 7 were computed from operating histories in which a constant specific power and an uptime of 80% of the cycle time were applied. Expected variations from these assumptions cause only minor changes ($\leq 1\%$) in decay heat rates beyond approximately 7 years of cooling. However, if the specific power near the end of the operating history is

Table 1	and the second sec
BWR Spent Fuel Heat Generation Rates,	Watts Per
Kilogram U, for Specific Power = 12 k	W/kgU

Cooling		Fuel	Burnup, MWd	/kgU		
Time, Years	20	25	30	35	40	45
1.0	4.147	4.676	5.121	5.609	6.064	6.531
1.4	3.132	3.574	3.955	4.370	4.760	5.163
2.0	2.249	2.610	2.933	3.281	3.616	3.960
2.8	1.592	1.893	2.174	2.472	2.764	3.065
4.0	1.111	1.363	1.608	1.865	2.121	2.384
5.0	0.919	1.146	1.371	1.606	1.844	2.087
7.0	0.745	0.943	1.142	1.349	1.562	1.778
10.0	0.645	0.819	0.996	1.180	1.369	1.561
15.0	0.569	0.721	0.876	1.037	1.202	1.370
20.0	0.518	0.656	0.795	0.940	1.088	1.240
25.0	0.477	0.603	0.729	0.861	0.995	1.132
30.0	0.441	0.556	0.672	0.792	0.914	1.039
40.0	0.380	0.478	0.576	0.678	0.781	0.886
50.0	0.331	0.416	0.499	0.587	0.674	0.764
60.0	0.292	0.365	0.438	0.513	0.589	0.666
70.0	0.259	0.324	0.387	0.454	0.520	0.587
80.0	0.233	0.291	0.347	0.405	0.464	0.523
90.0	0.212	0.263	0.313	0.365	0.418	0.470
100.0	0.194	0.241	0.286	0.333	0.380	0.427
110.0	0.179	0.222	0.263	0.306	0.348	0.391

1 11 11

	—					
Cooling Time.	Fuel Burnup, MWd/kgU					
Years	20	25	30	35	40	45
1.0	5.548	6.266	6.841	7.455	8.000	8.571
1.4	4.097	4.687	5.173	5.690	6.159	6.647
2.0	2.853	3.316	3.718	4.142	4.540	4.950
2.8	1.929	2.296	2.631	2.982	3.324	3.673
4.0	1.262	1.549	1.827	2.117	2.410	2.705
5.0	1.001	1.251	1.501	1.760	2.024	2.292
7.0	0.776	0.985	1.199	1.420	1.650	1.882
10.0	0.658	0.838	1.023	1.215	1.413	1.616
15.0	0.576	0.731	0.890	1.056	1.227	1.403
20.0	0.523	0.663	0.805	0.954	1.107	1.263
25.0	0.480	0.608	0.737	0.871	1.009	1.150
30.0	0.444	0.560	0.678	0.800	0.925	1.053
40.0	0.382	0.481	0.579	0.682	0.786	0.893
50.0	0.332	0.417	0.501	0.588	0.677	0.767
60.0	0.292	0.365	0.438	0.513	0.589	0.666
70.0	0.259	0.324	0.386	0.452	0.518	0.585
80.0	0.233	0.290	0.345	0.403	0.460	0.519
90.0	0.211	0.262	0.311	0.362	0.413	0.465
100.0	0.193	0.239	0.283	0.329	0.375	0.421
110.0	0.178	0.220	0.260	0.302	0.343	0.385

Table 2 BWR Spent Fuel Heat Generation Rates, Watts Per Kilogram U, for Specific Power = 20 kW/kgU

Cooling	Fuel Burnup, MWd/kgU					
Time, Years	20	25	30	35	40	45
1.0	6.809	7.786	8.551	9.337	10.010	10.706
1.4	4.939	5.721	6.357	7.006	7.579	8.169
· 2.0	3.368	3.958	4.463	4.979	5.453	5.938
2.8	2.211	2.651	3.050	3.460	3.855	4.256
4.0	1.381	1.705	2.016	2.339	2.663	2.991
5.0	1.063	1.335	1.605	1.885	2.172	2.462
7.0	0.797	1.015	1.239	1.471	1.713	1.958
10.0	0.666	0.850	1.039	1.237	1.443	1.653
-15.0	0.579	0.737	0.898	1.067	1.242	1.422
20.0	0.525	0.667	0.811	0.962	1.117	1.276
25.0	0.482	0.611	0.741	0,877	1.017	1.160
30.0	0.445	0.563	0.681	0,805	0.931	1.061
40.0	0.382	0.482	0.581	0.685	0.790	0.898
50.0	0.332	0.418	0.502	0.589	0.678	0.769
60.0	0.292	0.366	0.438	0.513	0.589	0.666
70.0	0.259	0.323	0.386	0.451	0.517	0.584
80.0	0.232	0.289	0.344	0.401	0.459	0.517
90.0	0.210	0.261	0.310	0.361	0.411	0.463
100.0	0.192	0.238	0.282	0.327	0.372	0.418
110.0	0.177	0.219	0.259	0.300	0.340	0.382

Table 3 BWR Spent Fuel Heat Generation Rates, Watts Per Kilogram U, for Specific Power = 30 kW/kgU

Table 4BWR Enrichments for Burnups in Tables

Fuel Burnup, MWd/kgU	Average Initial Enrichment, wt-% U-235
20	1.9
25	2.3
30	2.7
35	3.1
40	3.4
45	3.8

3.54-7

1 12 12

Cooling		Fue	el Burnup, MW	d/kgU	· · · · · · · · · · · · · · · · · · ·	
Years	25	30	35	40	45	50
1.0	5.946	6.574	7.086	7.662	8.176	8.773
1.4	4.485	5.009	5.448	5.938	6.382	6.894
2.0	3.208	3.632	4.004	4.411	4.793	5.223
2.8	2.253	2.601	2.921	3.263	3.595	3.962
4.0	1.551	1.835	2.108	2.398	2.685	2.997
5.0	1.268	1.520	1.769	2.030	2.294	2.576
7.0	1.008	1.223	1.439	1.666	1.897	2.143
10.0	0.858	1.044	1.232	1.430	1.633	1.847
15.0	0.744	0.905	1.068	1.239	1.414	1.599
20.0	0.672	0.816	0.963	1.116	1.272	1.437
25.0	0.615	0.746	0.879	1.018	1.159	1.308
30.0	0.566	0.686	0.808	0.934	1.063	1.197
40.0	0.487	0.588	0.690	0.797	0.904	1.017
50.0	0.423	0.510	0.597	0.688	0.780	0.875
60.0	0.372	0.447	0.522	0.601	0.680	0.762
70.0	0.330	0.396	0.462	0.530	0.599	0.670
80.0	0.296	0.355	0.413	0.473	0.534	0.596
90.0	0.268	0.321	0.372	0.426	0.480	0.536
100.0	0.245	0.293	0.339	0.387	0.436	0.486
110.0	0.226	0.270	0.312	0.356	0.399	0.445

 Table 5

 PWR Spent Fuel Heat Generation Rates, Watts Per

 Kilogram U, for Specific Power = 18 kW/kgU

Cooling		Fuel	Burnup, MWd	/kgU		:
Time, Years	25	30	35	40	45	50
1.0	7.559	8.390	9.055	9.776	10.400	11.120
1.4	5.593	6.273	6.836	7.441	7.978	8.593
2.0	3.900	4.432	4.894	5.385	5.838	6.346
2.8	2.641	3.054	3.435	3.835	4.220	4.642
4.0	1.724	2.043	2.352	2.675	2.999	3.346
5.0	1.363	1.637	1.911	2.195	2.486	2.793
7.0	1.045	1.271	1.500	1.740	1.987	2.248
10.0	0.873	1.064	1.261	1.465	1.677	1.900
15.0	0.752	0.915	1.083	1.257	1.438	1.627
20.0	0.677	0.823	0.973	1.128	1.289	1.457
25.0	0.619	0.751	0.886	1.027	1.171	1.322
30.0	0.569	0.690	0.813	0.941	1.072	1.208
40.0	0.488	0.590	0.693	0.800	0.909	1.023
50.0	0.424	0.511	0.599	0.689	0.782	0.877
60.0	0.372	0.447	0.523	0.601	0.680	0.762
70.0	0.330	0.396	0.461	0.529	0.598	0.668
80.0	0.295	0.354	0.411	0.471	0.531	0.593
90.0	0.267	0.319	0.371	0.424	0.477	0.531
100.0	0.244	0.291	0.337	0.385	0.432	0.481
110.0	0.225	0.268	0.310	0.352	0.396	0.440

Table 6PWR Spent Fuel Heat Generation Rates, Watts Per
Kilogram U, for Specific Power = 28 kW/kgU

Cooling	Fuel Burnup, MWd/kgU					
Years	25	30	35	40	45	50
1.0	8.946	10.050	10.900	11.820	12.580	13.466
1.4	6.514	7.400	8.111	8.863	9.514	10.254
2.0	4.462	5.129	5.692	6.284	6.821	7.418
2.8	2.947	3.441	3.884	4.346	4.787	5.267
4.0	1.853	2.212	2.554	2.910	3.265	3.647
5.0	1.429	1.728	2.021	2.327	2.639	2.970
7.0	1.067	1.304	1.543	1.793	2.052	2.325
10.0	0.881	1.078	1.278	1.488	1.705	1.936
15.0	0.754	0.921	1.091	1.268	1.452	1.645
20.0	0.678	0.827	0.978	1.136	1.298	1.469
25.0	0.619	0.754	0.890	1.032	1.178	1.331
30.0	0.570	0.693	0.816	0.945	1.077	1.215
40.0	0.488	0.592	0.695	0.803	0.912	1.026
50.0	0.423	0.512	0.599	0.691	0.783	0.879
60.0	0.371	0.448	0.522	0.601	0.680	0.762
70.0	0.329	0.396	0.461	0.529	0.597	0.668
80.0	0.294	0.353	0.410	0.470	0.530	0.592
90.0	0.266	0.319	0.369	0.422	0.475	0.530
100.0	0.243	0.290	0.336	0.383	0.430	0.479
110.0	0.224	0.267	0.308	0.351	0.393	0.437

Table 7 PWR Spent Fuel Heat Generation Rates, Watts Per Kilogram U, for Specific Power = 40 kW/kgU

.

Fuel Burnup, MWd/kgU	Average Initial Enrichment, wt-% U-235
25	2.4
30	2.8
35	3.2
40	3.6
45	3,9
50	4.2

Table 8PWR Enrichments for Burnups in Tables

significantly different from the average specific power, P_{ave} , p_{tab} needs to be adjusted if $T_c \leq 7$. The ratios P/P_{ave} and $P_e/P_{ave,e-1}$ are, respectively, used to determine the adjustment factors f_7 and f'_7 . The factors reduce the heat rate p_{tab} if the corresponding ratio is less than 1 and increase the heat rate p_{tab} if the corresponding ratio is greater than 1. The formulas for the factors are below.

 $f_{7} = 1 \qquad \text{when } T_{c} > 7 \text{ years or } e = s$ (i.e., 1 cycle only) $f_{7} = 1 + 0.35 R / \sqrt{T_{c}} \text{ when } 0 \le R \le 0.3$ $f_{7} = 1 + 0.25 R / T_{c} \text{ when } -0.3 \le R \le 0$ $f_{7} = 1 - 0.075 / T_{c} \text{ when } R \le -0.3 \qquad \text{(Equation 8)}$

where

$$R = \frac{P_e}{P_{out}} - 1 \qquad (Equation 9)$$

$$f_{7} = 1 \qquad \text{when } T_{c} > 7 \text{ years or} \\ e < 3$$

$$f_{7}^{'} = 1 + 0.10 R^{\prime} / \sqrt{T_{c}} \text{ when } 0 \le R^{\prime} \le 0.6$$

$$f_{7}^{'} = 1 + 0.08 R^{\prime} / T_{c} \text{ when } -0.5 \le R^{\prime} < 0$$

$$f_{7}^{'} = 1 - 0.04 / T_{c} \text{ when } R^{\prime} < -0.5 \text{ (Equation 10)}$$

where

$$R' = \frac{P_{e-1}}{P_{ave,e-1}} - 1 \qquad (Equation 11)$$

It can be observed that there are upper limits to Rand R' in Equations 8 and 10. It is recommended to not use the decay heat values of this guide if any of the following conditions occur:

> if $T_c \le 10$ years and $P_e/P_{ave} > 1.3$, if 10 years $< T_c \le 15$ years and $P_e/P_{ave} > 1.7$, if $T_c \le 10$ years and $P_{e,l}/P_{ave,e,l} > 1.6$

Although it is safe to use the procedures in this guide, the heat rate values for p_{final} may be excessively high when

$$T \le 7$$
 years and $P_{ex}/P_{ex} < 0.6$,
 $T \le 7$ years and $P_{ex}/P_{ex} < 0.4$.

2.3 The Excess Power Adjustment Factor f_{μ}

The maximum specific power, P_{max} , used to generate the data in Tables 1 through 3 and Tables 5 through 7 is 40 kW/kgU for a PWR and 30 kW/kgU for a BWR. If P_{ove} , the average cumulative specific power, is more than 35% higher than P_{max} (i.e., 54 kW/kgU for PWR fuel and 40.5 kW/kgU for BWR fuel), the guide should not be used. When $1 < P_{ove}/P_{max} \le 1.35$, the guide can still be used, but an excess power adjustment factor, f_p , must be applied. The excess power adjustment factor is

$$f_p = \sqrt{P_{ave}/P_{max}}$$
 (Equation 12)

For
$$P_{ave} \leq P_{max}$$
, $f_p = 1$

2.4 The Enrichment Factor f.

The decay heat rates of Tables 1 through 3 and Tables 5 through 7 were calculated using initial enrichments of Tables 4 and 8. The enrichment factor f_i is used to adjust the value p_{rab} for the actual initial enrichment of the assembly E_i . To calculate f_i , the data in Tables 4 (BWR) or 8 (PWR) should be interpolated linearly to obtain the enrichment value E_{rab} that corresponds to the assembly burnup, B_{rat} . If $E/E_{rab} < 0.6$, the NRC staff recommends not using this guide. When $E_i/E_{rab} \ge 0.6$, set the enrichment factor as follows:

$$f_{e} = 1 + 0.01[a + b(T_{c} - d)][1 - E_{f}/E_{tab}]$$
when $E_{f}/E_{tab} \le 1.5$,
 $f_{e} = 1 - 0.005 [a + b(T_{c} - d)]$
(Equation 13)
when $E_{f}/E_{tab} > 1.5$,

where the parameters *a*, *b*, and *d* vary with reactor type, E_s, E_{tab} , and T_c . These variables are defined in Tables 9 and 10.

2.5 Safety Factor S

Before obtaining the final heat rate p_{final} , an appropriate estimate of a percentage safety factor S should be determined. Evaluations of uncertainties performed as part of this project indicate that the safety factor should vary with burnup and cooling time.

For BWR assemblies: (Equation 14)

$$S = 6.4 + 0.15 (B_{in} - 20) + 0.044 (T_i - 1)$$

For PWR assemblies:

(Equation 15)

$$S = 6.2 + 0.06 (B_{m} - 25) + 0.050 (T_{-} - 1)$$

The purpose of deriving spent fuel heat generation rates is usually to apply the heat rates in the computation of the temperatures for storage systems. A preferred engineering practice may be to calculate the temperatures prior to application of a final safety factor. This practice is acceptable if S is accounted for in the more comprehensive safety factors applied to the calculated temperatures.

Table 9
Enrichment Factor Parameter Values for BWR Assemblies

Parameter in	Parameter Value					
Equation 13	E,/E	_{lab} < 1	$E_s/E_{tab} > 1$			
	$1 \le T_c \le 40$	$T_c > 40$	$1 \le T_c \le 15$	$T_c > 15$		
a	5.7	5.7	0.6	0.6		
b	-0.525	0.184	-0.72	0.06		
d	40 40		15	15		

Table 10

Enrichment Factor Parameter	'Values for PWR Assemblies
-----------------------------	----------------------------

Parameter in	<u></u>	Parame	eter value	
Equation 13	$E_s / E_{tab} \leq 1$		E, /E	$E_{tab} > 1$
	$1 \le T_c \le 40$	$T_c > 40$	$1 \le T_c \le 20$	$T_{1} > 20$
a	4.8	4.8	1.8	1.8
b	-0.6	0.133	-0.51	0.033
d	40	40	20	20

2.6 Final Heat Generation Rate Evaluation

The equation for converting $p_{\mu\nu}$, determined in Regulatory Position 2.1, to the final heat generation rate of the assembly, is

$$p_{encl} = (1 + 0.01S) f_7 f_7 f_p f_e p_{tab}$$
 (Equation 16)

where f_r , f_r , f_r , f_r , and S are determined by the procedures given in Regulatory Positions 2.2 through 2.5.

2.7 Heat Rate Evaluation by LWRARC Code

The LWRARC (light-water-reactor afterheat rate calculation) code is an MS-DOS PC program that performs the calculations in this guide. The only input for cases in which the cooling time exceeds 15 years are B_{ipr} , T_{rer} , E_r , and T_c . Additionally, the short cooling time factors require B_i and T_i of the last and next-to-last cycles. The code features a pull-down menu system with data entry screens containing context-sensitive

help messages and verification dialog boxes. The menus may be used with either a keyboard or a mouse. The code printout (one page per case) contains the input data, the computed safety and adjustment factors, and the interpolated and final computed decay heat rates. The output file may be printed, observed on a monitor, or saved. Input cases may be saved, retrieved, duplicated, or stacked in the input file.

The LWRARC code may be requested from the Radiation Safety Information Computational Center (RSICC).

Radiation Safety Information Computational Center Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6362 Telephone: (423)574-6176 FAX: (423)574-6182 Electronic Mail: <u>PDC@ornl.gov</u>

<u>APPENDIX A</u>

SAMPLE CASE USING HEAT GENERATION RATE TABLES

A BWR fuel assembly with an average fuel enrichment of 2.6 wt-%²³⁵U was in the reactor for four cycles. Determine its final heat generation rate with safety factors, using the method in this guide, at 4.2 years cooling time. Adequate details of the operating history associated with the fuel assembly are shown in Table A.1.

 $T_{e} = 1240 - 940 = 300 \,\mathrm{d}$

 $B_e = 26,300 - 20,900 = 5,400 \text{ kWd/kgU}$

 $P_e = (26,300 - 20,900)/300 = 18.00 \text{ kW/kgU}$

 $T_{e-1} = 940 - 630 = 310 \text{ d}$

Table A.1	
Sample Case Operating History	

Relative Fuel	Relative Time from Startup of Fuel, Days Fuel		Accumulated Burnup (Best Maximum Estimate)
Cycle	Cycle Startup	Cycle Shutdown	MWd/kgU
1	0	300	8.1
2	340	590	14.7
3	630	910	20.9
4	940	1240	26.3

Note that the output of the LWRARC code for this case is shown in the first case of Appendix B of NUREG/CR-5625.¹

Using Regulatory Position 1

The following were given in the sample case (see Regulatory Position 1 for definitions):

 $T_{m} = 1240 \, \mathrm{d}$

 $B_{tot} = 26.30 \text{ MWd/kgU}$

 $T_{c} = 4.2 \text{ y}$

 $E_{\star} = 2.6 \text{ wt} \cdot \%^{235} \text{U}$

Compute T_{e} , B_{e} , P_{e} , T_{e-1} , P_{e-1} , $P_{ave,e-1}$, and P_{ave} from Regulatory Position 1 and Equations 2 through 4.

 $B_{e-1} = 20,900 - 14,700 = 6,200 \text{ kWd/kgU}$ $P_{e-1} = 6,200/[0.8(310)] = 25.0 \text{ kW/kgU}$ $P_{ave,e-1} = 20,900/[0.8(940)] = 27.793 \text{ kW/kgU}$ $P_{ave} = 26,300/[300 + 0.8(940)] = 25.00 \text{ kW/kgU}$

Using Regulatory Position 2

 P_{tab} should be determined from P_{ave} , B_{tab} , and T_{c} , as described in Regulatory Position 2.1. First, select the nearest heat rate values in Tables 2 and 3 for the following limits:

$$P_L = 20 \le P_{ave} \le P_H = 30$$
$$B_L = 25 \le B_{tot} \le B_H = 30$$
$$T_t = 4 \le T \le T_{u} = 5$$

Next, use the prescribed interpolation procedure for computing p_{tab} from the tabular data. Although the order is optional, the example here interpolates between specific powers, burnups, and then cooling times. Denote the heat rate, p, as a function of specific power, burnup, and cooling time by p(P,B,T).

¹ Technical Support for a Proposed Decay Heat Guide Using SAS2H/ ORIGEN-S Data, NUREG/CR-5625 (ORNL-6698), September 1994. Copies are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW., Washington, DC; the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202) 634-3273; fax (202) 634-3343. Copies may be purchased at current rates from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402-9328 [telephone (202) 512-1800]; or from the National Technical Information Service by writing NTIS at Port Royal Road, Springfield, VA 22161.

The table values at P_L and P_H for B_L and T_L are

$$p(P_{ll}, B_{ll}, T_{ll}) = p(20,25,4) = 1.549$$

 $p(P_{ll}, B_{ll}, T_{ll}) = p(30,25,4) = 1.705$

First, interpolate the above heat rates to P_{av} using

$$p(P_{ave}, 25, 4) = p(20, 25, 4) + F_p[p(30, 25, 4) - p(20, 25, 4)]$$

where

$$F_{p} = (P_{avr} - P_{L})/(P_{H} - P_{L}) = 0.5$$

The result at $p(P_{ave}, 25, 4)$ is

$$p(P_{ave}, 25, 4) = 1.549 + 0.5 (1.705 - 1.549)$$

= 1.627

The other three values at P_{ave} are computed with a similar method:

$$p(P_{ave}, 30, 4) = 1.827 + 0.5 (2.016 - 1.827)$$

= 1.9215
$$p(P_{ave}, 25, 5) = 1.293$$

$$p(P_{ave}, 30, 5) = 1.553$$

These are heat rates at the burnup and time limits.

Second, interpolate each of the above pairs of heat rates to B_{tot} from the values at B_L and B_H :

$$F_{R} = (B_{\mu\nu} - B_{I})/(B_{H} - B_{I}) = 0.26$$

 $p(P_{ave}, B_{tot}, 4) = 1.627 + 0.26 (1.9215 - 1.627)$ = 1.7036

 $p(P_{aux}, B_{aux}, 5) = 1.3606$

Third, compute the heat rate at T_c from the above values at T_L and T_H by an interpolation that is logarithmic in heat rate and linear in time:

$$F_r = (T_r - T_r)/(T_H - T_r) = 0.2$$

 $log[p(P_{ave}B_{lof}T_c)] = log 1.7036 + 0.2$ (log 1.3606 - log 1.7036) = 0.2118

$$p_{tob} = p(P_{avc}, B_{tot}, T_c) = 10^{0.2118} = 1.629 \text{ W/kgU}$$

With the value for p_{rab} , the formulas of Regulatory Positions 2.2 through 2.6 can be used to determine p_{final} . Since $T_c \leq 7$ y, use Equations 8 through 11 to calculate the short cooling time factors:

$$R = P_{e}/P_{ave} - 1 = (18/25) - 1 = -0.28$$

$$f_{7} = 1 + [0.25(-0.28)]/4.2 = 0.983$$

$$R' = P_{e-1}/P_{ave,e-1} - 1 = -0.1005$$

$$f'_{7} = 1 + [0.08(-0.1005)]/4.2 = 0.998$$

Since $P_{ave} \leq P_{H} = P_{max}$, the excess power factor, f_{p} , is unity. Interpolating Table 4 enrichments to obtain the enrichment associated with the burnup yields

$$E_{iab} = 2.3 + (2.7 - 2.3)(26.3 - 25)/(30 - 25)$$

= 2.404

The enrichment factor, f_{e} , is then calculated using Equation 13:

$$f_{\rm c} = 1 + 0.01 \ (8.376)(1 - 2.6/2.404) = 0.993$$

because $E_{i} > E_{iab}$

The safety factor, S, for a BWR is given in Equation 14:

$$S = 6.4 + 0.15 (26.3 - 20) + 0.044 (4.2 - 1)$$

= 7.49%

Then, using Equation 16,

$$p_{final} = (1 + 0.01 S) f_7 f'_7 f_p f_e p_{tab}$$

with the above adjustment factors and p_{lab} yields

$$p_{\text{curl}} = 1.0749 \text{ x } 0.983 \text{ x } 0.998 \text{ x } 1 \text{ x } 0.993 \text{ x } 1.629$$

= 1.0749 x 1.587 = 1.706 W/kgU

Thus, the final heat generation rate, including the safety factor, of the given fuel assembly is 1.706 W/kgU.

<u>APPENDIX B</u>

ACCEPTABILITY AND LIMITS OF THE GUIDE

Inherent difficulties arise in attempting to prepare a heat rate guide that has appropriate safety factors, is not excessively conservative, is easy to use, and applies to all commercial reactor spent fuel assemblies. In the endeavor to increase the value of the guide to licensees, the NRC staff made an effort to ensure that safe but not overly conservative heat rates were computed. The procedures and data recommended in the guide should be appropriate for most power reactor operations with only minor limitations in applicability.

In general, the guide should not be applied outside the parameters of Tables 1 through 8. These restrictions, in addition to certain limits on adjustment factors, are given in the text. The major table limits are summarized in Table B.1. applied to correct for variations in power history that differ from those used in the generation of the tables. For example, the heat rate at 1 year is increased substantially if the power in the last cycle is twice the average power of the assembly. The limits on the conditions in Regulatory Position 2.2 on ratios of cycle to average specific power are needed; first, to derive cooling time adjustment factors that are valid, and second, to exclude cases that are extremely atypical. Although these limits were determined so that the factors are safe, a reasonable degree of discretion should be used in the considerations of atypical assemblies—particularly with regard to their power histories.

Another variable that requires attention is the ⁵⁹Co content of the clad and structural materials. Cobalt-59

Table B.1 Parameter Range for Applicability of the Regulatory Guide

Parameter	BWR	PWR
$T_c(year)$	1–110	1–110
B ₁₀₁ (MWd/kgU)	20-45	25–50
P _{ave} (kW/kgU)	12–30	18-40

In using the guide, the lower limit on cooling time, T_c , and the upper limit on burnup, B_{tot} , should never be extended. An adjustment factor, f_p , can be applied if the specific power, P_{ave} , does not exceed the maximum value of the tables by more than 35%. Thus, if P_{ave} is greater than 54 kW/gU for PWR fuel or 40.5 kW/kgU for BWR fuel, the guide should not be applied. The minimum table value of specific power or burnup can be used for values below the table range; however, if the real value is considerably less than the table minimum, the heat rate derived can be excessively conservative. Also, the upper cooling time limit is conservative for longer cooling times.

In preparing generic depletion/decay analyses for specific applications, the most difficult condition to model is the power operating history of the assembly. Although a power history variation (other than the most extreme) does not significantly change the decay heat rate after a cooling time of approximately 7 years, it can have significant influence on the results in the first few years. Cooling time adjustment factors, f_7 and f'_7 , are

is partly transformed to ⁶⁰Co in the reactor and subsequently contributes to the decay heat rate. The ⁵⁹Co content used in deriving the tables here should apply only to assemblies containing Zircaloy-clad fuel pins. The ⁶⁰Co contribution can become excessive for ⁵⁹Co contents found in stainless-steel-clad fuel pins. Thus, the use of the guide for stainless-steel-clad assemblies should be limited to cooling times that exceed 20 years. Because ⁶⁰Co has a 5.27-year halflife, the heat rate contribution from ⁶⁰Co is reduced by the factor of 13.9 in 20 years.

In addition to the parameters used here, decay heat rates are a function of other variables to a lesser degree. Variations in moderator density (coolant pressure, temperature) can change decay heat rates, although calculations indicated that the expected differences (approximately 0.2% heat rate change per 1% change in water density, during any of the first 30-year decay times) are not sufficient to require additional corrections. The PWR decay heat rates in the tables were calculated for fuel assemblies containing water holes. Computed decay heat rates for assemblies containing burnable poison rods (BPRs) did not change significantly ($\leq 1\%$ during the first 30-year decay) from fuel assemblies containing water holes.

Several conditions were considered in deriving the safety factors (Equations 14 and 15) that were developed for use in the guide. Partial uncertainties in the heat generation rates were computed for selected cases by applying the known standard deviations of half-lives, Q-values, and fission yields of all the fission product nuclides that make a significant contribution to decay heat rates. This calculation did not account for uncertainties in contributions produced by the neutron absorption in nuclides in the reactor flux, or from variations in other parameters. In addition to the standard deviations in neutron cross sections, much of the uncertainty from neutron absorption arose from approximations in the model used in the depletion analysis. In developing the safety factors, these more indirect uncertainties were determined from comparisons of the calculated total or individual nuclide decay heat rates with those determined by independent computational methods, as well as comparisons of heat rate measurements obtained for a variety of reactor spent fuel assemblies. Note from the equations that the safety factors increase with both burnup and cooling time. This increase in the safety factor is a result of the increased importance of the actinides to the decay heat with increased burnup and cooling time together with the larger uncertainty in actinide predictions caused by model approximations and limited experimental data.

Whenever the design or operating conditions for a spent fuel assembly exceed the parameter ranges accepted in this guide, another well-qualified method of analysis that accounts for the exceptions should be used. A well-qualified method would be one that has a technical basis that is validated against measured heatrate data and has been demonstrated to provide conservative heat-rate estimates (i.e., per justified safety factors consistent with the measured data) for the extended design or operating conditions.

APPENDIX C

ACTINIDES, FISSION PROJECTS, AND LIGHT ELEMENTS CONTRIBUTIONS TO DECAY HEAT RATES BY

The decay heat rates determined by the methods recommended in this guide are totals resulting from actinides, fission products, and light elements are listed separately. These values were used to construct the totals given in Tables 1-7. The values in this Appendix C represent some of the many results available from all sources of radioactive decay. In the tables of this Appendix C, the contributions to these totals from the codes described in NUREG/CR-5625.

kgUJ of light clements, acturides, power = 12 kW/kgU, Set 1	Burnup = 25 Hid/kgU Light El Actinides Fis Prod	
r specific	Cooling Time, years	04080000000000000000000000000000000000
n products, fo	Navigue	
nd fissio	ip = 20 P Actinide	Y D000000000000000000000000000000000000
4 4016	Eight El	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.

Table C.1 BWR de

ris Prod	4444 44444 4444 4444 4444 4444 4444 4444 4444 4444 4444 4444
ap = 35 hH Actinides	
Light Li	2.13155 2.131555 2.131555 2.131555 2.131555 2.131555 2.131555 2.131555 2.131555 2.1315555 2.13155555555555555555555555555555555555
Coeling Time, years	
VkgV Fis Prod	
ap = 30 line Jetinides	
eura Light El	

Table C.2 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products. for specific power = 12 kW/kgU, Set 2

Burn	up = 40 HW	l/kgU	Cooling	Burnup = 45 HHd/kgU		
Light El	Actinides	Fis Prod	years	Light El	Actinides	Fis Prod
5.467E-02 4.027E-02 3.390E-02 2.970E-02 2.173E-02 1.657E-02 1.657E-02 1.657E-02 1.657E-03 1.641E-03 8.905E-04 9.697E-05 4.118E-05	1.008E+00 7.180E-01 5.141E-01 4.198E-01 3.875E-01 3.810E-01 3.797E-01 3.711E-01 3.711E-01 3.590E-01 3.590E-01 3.520E-01 3.320E-01 3.320E-01 3.188E-01	5.001E+00 4.002E+00 3.068E+00 2.315E+00 1.709E+00 1.440E+00 9.777E-01 8.199E-01 7.139E-01 6.280E-01 5.545E-01 5.545E-01 3.422E-01 2.701E-01 2.701E-01	1.0 1.4 2.0 2.8 4.0 5.0 10.0 10.0 10.0 25.0 30.0 40.0 40.0 40.0	5.559E-02 4.089E-02 3.439E-02 2.533E-02 2.205E-02 1.681E-02 1.681E-02 1.892E-03 3.118E-03 1.671E-03 3.086E-04 2.841E-04 1.001E-04 4.286E-05 2.557E-05	1.186E+00 8.574E-01 6.255E-01 5.175E-01 4.791E-03 4.723E-01 4.678E-01 4.678E-01 4.626E-01 4.533E-01 4.332E-01 4.332E-01 4.229E-02 3.840E-01 3.666E-01	5.289E+00 4.265E+00 3.300E+00 1.593E+00 1.593E+00 1.057E+00 9.110E-01 7.930E-01 6.973E-01 6.155E-01 4.824E-01 3.797E-01 2.996E-01 2.367E-01
2.2502-05 1.550E-05 1.242E-05 1.078E-05	2.948E-01 2.840E-01 2.735E-01 2.646E-01	1.688E-01 1.335E-01 1.057E-01 8.365E-02	80.0 90.0 100.0 110.0	1.629E-05 1.307E-05 1.135E-05 1.022E-05	3.358E-01 3.223E-01 3.099E-01 2.985E-01	1.872E-01 1.481E-01 1.172E-01 9.279E-02

Table C.3 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 12 kW/kgU, Set 3

Table C.4 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 20 kW/kgU, Set 1

Burnup = 20 Hkd/kgV			Cooling	Burnup = 25 HHd/kgU			
Light El	Actinides	Fis Prod	years	Light El	Actinides	Fis	Prod
6.181E-02 4.084E-02 3.278E-02 2.832E-02 2.832E-02 2.047E-02 1.551E-02 1.032E-02 5.299E-03 32.748E-03 7.570E-04 4.936E-05 2.712E-05 1.449E-05 1.027E-05 1.648E-06 7.618E-06	2,957E-01 2,036E-01 1,398E-01 1,051E-01 1,051E-01 1,064E-01 1,13E-01 1,372E-01 1,384E-01 1,450E-01 1,450E-01 1,450E-01 1,450E-01 1,450E-01 1,450E-01 1,450E-01 1,450E-01 1,572E-01 1,551E-01 1,552E-01 1	5.190E+00 3.853E+00 1.789E+00 1.789E+00 1.789E-01 6.493E-01 5.298E-03 4.431E-01 3.866E-01 3.406E-01 3.406E-01 3.406E-01 3.66E-01 1.865E-61 1.865E-61 1.473E-01 1.144E-03 9.208E-02 5.767E-02 5.767E-02 5.767E-02	1.4 1.4 2.8 4.0 5.0 150.0 150.0 150.0 25.0 30.0 450.0 450.0 90.0 90.0 90.0	6.573E-02 4.447E-02 5.605E-02 3.123E-02 2.262E-02 1.716E-02 1.716E-02 5.905E-03 3.081E-03 3.081E-03 3.081E-03 3.081E-03 3.640E-04 4.554E-04 8.361E-05 3.322E-05 9.719E-06 8.519E-06 8.519E-06	4.366E-01 3.012E-01 2.068E-01 1.531E-01 1.531E-01 1.582E-01 1.788E-01 1.788E-01 1.788E-01 1.788E-01 1.8849E-01 1.8649E-01 1.853E-01 1.855E-01 1.753E-01 1.713E-01 1.673E-01 1.675E-01	5.307.0022 5.307.0022 1.307.	4E+00 1E+000 0E+000 0E+000 0E+000 1E-01 1E-01 1E-01 1E-01 1E-01 1E-01 15E-01 5E-01 5E-01 5E-01 5E-02 6E-0

1 11 11

gU) of light clements, actinides, power = 20 kW/kgU, Set 2	Burnup = 35 HMd/kgU Light El Actinides Fis Prod	7.175E-02 7.543E-01 5.629E+00 4.074E-02 5.534E-01 5.629E+00 2.564E-02 5.731E-01 5.728E+00 2.564E-02 2.7732E-01 5.659E+00 2.5964E-02 2.779E-01 1.4898E+00 2.5964E-02 2.779E-01 1.4898E+00 1.3956E-02 2.779E-01 1.123E+00 5.574E-03 2.8838E-01 7.6546-01 3.1278-03 2.8838E-01 7.5567-01 3.1278-03 2.8838E-01 7.5567-01 3.1278-05 2.5597E-01 5.8546-01 4.0508-05 2.5597E-01 5.9556-01 1.4908-05 2.5597E-01 1.9318E-01 2.24008-05 2.5597E-01 1.9318E-01 3.1278E-05 2.5597E-01 1.9318E-01 3.1278E-05 2.5597E-01 1.9318E-01 3.1278E-05 2.5597E-01 1.9318E-01 3.1278E-05 2.5597E-01 1.9318E-01 3.1278E-05 2.5597E-01 1.5758E-01 1.0778E-05 2.5597E-01 1.5758E-01 1.0778E-05 2.5597E-01 1.5758E-01 1.0778E-05 2.5597E-01 1.5758E-01 1.0778E-05 2.5597E-01 1.5758E-01 1.0778E-05 2.55758E-01 1.5758E-01 1.5758E-01 1.0778E-05 2.55758E-01 1.5758E-01 1.5758E
ites (W/k) or specific	Cooling Time, years	0,4,6,8,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Table C.5 BWR decay heat ra and fission products, fe	Burnup = 30 HHd/kgU Light El Actinides Fis Prod	6.880E-02 5.899E-01 6.182E+00 3.856E-02 7.101E-01 4.716E+00 3.856E-02 2.2764E-01 3.395E+00 3.856E-02 2.2764E-01 3.395E+00 2.7948E-02 2.2764E-01 1.2577+00 2.430E-02 2.1305E-01 2.5776+00 1.896E-02 2.131E-01 7.9671E-01 5.3848E-03 2.289E-01 5.740E-01 5.3848E-03 2.289E-01 5.740E-01 5.588E-05 2.250E-01 5.757E-01 5.588E-05 2.250E-01 5.757E-01 2.588E-05 2.250E-01 5.757E-01 2.588E-05 2.037E-01 1.720E-01 2.557E-05 2.037E-01 1.720E-01 1.3577E-05 2.037E-01 1.720E-01 2.557E-05 2.037E-01 2.757E-01 2.557E-05 2.557E-01 2.757E-01 2.757E-01 2.557E-05 2.557E-01 2.757E-01 2.757E-01 2.757E-01 2.557E-05 2.557E-01 2.757E-01 2.557E-01 2.757E-01 2.557E-01 2.557E-

Table C.6 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 20 kW/kgU, Set 3

RAVED	s Fis Prod	
1 54 = dn	Actinide	
Bur	Light El	2009555555400000000000000000000000000000
Cooling	Years	04080000000000000000000000000000000000
TkgU	Fis Prod	6.9756 5.4326 2.4326 2.4326 2.4326 2.4326 2.4326 4.400 1.4236 4.400 1.4236 4.400 1.4246 4.400 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.4266 4.4000 1.400000000000000000000000000000
rp = 40 HW	Actinides	6.7526-01 9.7526-01 9.7526-01 9.7526-01 9.7566-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.5556666-01 9.5556666-01 9.5556666-01 9.5556666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.5556666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.5556666-01 9.5556666-01 9.5556666-01 9.5556666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666-01 9.555666666-00000000000000000000000000000
Burn	Light El	V. V

Burnup = 20 HWd/kgU			Cooling Burnup = 25 HWd/kgU			d/kgU
Light El	Actinides	Fis Prod	Time, years	Light El	Actinides	Fis Prod
7.591E-02 4.621E-02 3.561E-02 2.529E-02 2.529E-02 1.655E-02 1.100E-02 5.638E-03 2.918E-03 2.918E-03 8.003E-04 2.290E-04 7.194E-05 2.7692-05	2.580E-01 1.816E-01 1.289E-01 1.012E-01 1.028E-01 1.028E-01 1.028E-01 1.445E-01 1.357E-01 1.357E-01 1.357E-01 1.357E-01 1.457E-01 1.457E-01 1.452E-01 1.452E-01 1.452E-01 1.452E-01	6.475E+00 4.711E+00 3.203E+00 2.074E+00 1.255E+00 9.334E-01 6.725E-01 5.398E-01 4.492E-01 3.450E-01 5.450E-01 5.396E-01 1.888E-01 1.888E-01 1.491E-01	1.0 1.4 2.0 5.0 5.0 15.0 15.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	8.104E-02 5.080E-02 3.405E-02 2.830E-02 2.830E-02 1.855E-02 1.255E-02 1.255E-02 6.356E-03 3.302E-03 1.738E-03 9.222E-04 8.701E-05 3.402E-05 1.768E-05	3.892E-01 2.731E-01 1.924E-01 1.567E-01 1.472E-01 1.482E-01 1.5397E-01 1.597E-01 1.684E-01 1.786E-01 1.812E-01 1.812E-01 1.812E-01 1.823E-01 1.823E-01 1.799E-01	7.316E+00 5.397E+00 3.726E+00 1.529E+00 1.529E+00 6.438E-01 6.776E-01 5.619E-01 4.304E-01 3.604E-01 3.604E-01 2.986E-01 2.352E-01 1.657E-01 1.657E-01 1.657E-01
1.029E-05 8.564E-06 7.635E-06 6.986E-06	1.389E-01 1.364E-01 1.338E-01 1.312E-01	9.322E-02 7.376E-02 5.858E-02 4.621E-02	80.0 90.0 100.0 110.0	1.203E-05 9.736E-06 8.539E-06 7.745E-06	1.730E-01 1.693E-01 1.655E-01 1.618E-01	1.161E-01 9.185E-02 7.269E-02 5.754E-02

Table C.7 BWR decay heat rates (W/kgU) of light elements, actundes, and fission products, for specific power = 30 kW/kgU, Set 1

Table C.8 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 30 kW/kgU, Set 2

Burnup = 30 Hild/kgU			Cooling	Burnup = 35 HWd/kgU		
Light El	Actinides	Fis Prod	yeats	Light El	Actinides	Fis Prod
8.512E-02 5.455E-02 3.704E-02 3.704E-02 3.084E-02 2.672E-02 1.351E-02 3.648E-03 1.926E-03 1.926E-03 1.051E-03	5.349E-01 3.770E-01 2.666E-01 2.023E-01 2.021E-01 2.058E-01 2.112E-01 2.112E-01 2.118E-01 2.242E-01 2.251E-01 2.251E-01	7.931E+00 5.925E+00 4.153E+00 1.783E+00 1.783E+00 1.013E+00 8.144E-01 6.736E-01 6.736E-01 5.855E-01 5.151E-01 4.550E-01	1.0 1.4 2.6 2.6 7.0 10.0 15.0 25.0 30.0 40.0	8.934E-02 5.801E-02 3.971E-02 3.971E-02 2.868E-02 2.176E-02 1.453E-02 7.523E-03 3.942E-03 3.942E-03 3.126E-03 3.404E-04	6.945E-01 4.935E-01 3.525E-01 2.680E-01 2.680E-01 2.685E-01 2.718E-01 2.718E-01 2.753E-01 2.763E-01 2.764E-01 2.749E-01 2.697E-01	8.553E+00 6.454E+00 3.132E+00 2.038E+00 1.590E+00 1.590E+00 1.181E+00 9.504E-01 6.811E-01 5.988E-01 4.146E-01
1.014E-04 4.00JE-05 2.056E-05 1.364E-35 1.085E-05 9.393E-06 8.461E-06	2.206E-01 2.159E-01 2.108E-01 2.054E-01 2.054E-01 2.001E-01 1.949E-01 1.900E-01	2.811E-01 2.219E-01 1.753E-01 1.387E-01 1.097E-01 8.682E-02 6 873E-02	50.0 60.0 70.0 90.0 100.0 110.0	1.138E-04 4.528E-05 2.311E-05 1.516E-05 1.184E-05 1.015E-05 9.099E-06	2.629E-01 2.555E-01 2.479E-01 2.404E-01 2.332E-01 2.264E-01 2.264E-01 2.200E-01	3.264E-01 2.576E-01 2.036E-01 1.610E-01 1.274E-01 1.008E-01 7.979E-02

1

Burnup = 40 liHd/kgU			Cooling	Burnup = 45 MWd/kgU		
Light El	Actinides	Fis Frod	years	Light El	Actinides	Fis Prod
9.371E-02	8.840E-01	9.029E+00	1.0	9.716E-0Z	1.063E+00	9.546E+00
4.912E-02 4.241E-02	4.590E-01 3.780E-01	4.945E+00 3.435E+00	2.0 2.8	5.132E-02 4.435E-02	7.705E-01 5.651E-01 4.694E-01	7.334E+00 5.322E+00 3.742E+00
3.538E-02 3.068E-02 7.329E-07	3.507E-01 3.470E-01	2.277E+00 1.794E+00	4.0 5.0	3.701E-02 3.211E-02	4.357E-01 4.299E-01	2.518E+00 2.000E+00
1.556E-02 8.070E-03	3.460E-01 3.441E-01	1.081E+00 8.899E-01	10.0	2.438E-02 1.629E-02 8.457E-03	4.224E-01 4.149E-01	1.507E+00 1.214E+00 9.982E-01
4.243E-03 2.258E-03	3.407E-01 3.363E-01	7.719E-01 6.783E-01	20.0	4.451E-03 2.372E-03	4.067E-01 3.980E-01	8.653E-01 7.600E-01
3.703E-04 1.248E-04	3.202E-01 3.086E-01	4.692E-01 3.693E-01	40.0 50.0	1.281E-03 3.919E-04 1.328E-04	3.892E-01 3.718E-01	6.707E-01 5.255E-01
5.001E-05 2.555E-05	2.973E-01 2.866E-01	2.914E-01 2.303E-01	60.0 70.0	5.343E-05 2.730E-05	3.400E-01 3.260E-01	3.263E-01 2.578E-01
1.297E-05	2.671E-01 2.583E-01	1.441E-01 1.140E-01	80.0 90.0 100.0	1.777E-05 1.376E-05	3.131E-01 3.014E-01	2.039E-01 1.613E-01
9.9132-06	2.501E-01	9.024E-02	110.0	1.047E-05	2.806E-01	1.010E-01

Table C.9 BWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 30 kW/kgU, Set 3

Table C.10 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 18 kW/kgU, Set 1

Burnup = 25 HWd/kgU			Cooling	Burnup = 30 HHd/kgU		
Light El	Actinides	Fis Prod	Years	Light El	Actinides	Fis Prod
1.192E-01 1.062E-01 9.579E-02 8.550E-02 7.262E-02 4.369E-02 4.369E-02 1.696E-02 8.8062-03 4.589E-03 4.589E-03 4.589E-03 4.8062-03 4.872E-04 9.681E-05 4.912E-05 4.912E-05 5.904E-05	4.377E-01 3.002E-01 2.045E-01 1.505E-01 1.515E-01 1.515E-01 1.567E-01 1.642E-01 1.807E-01 1.807E-01 1.805E-01 1.885E-01 1.882E-01 1.842E-01 1.812E-01 1.772E-01 1.773E-01 1.693E-01	5.389E+00 4.079E+00 2.908E+00 1.322E+00 8.031E-01 6.609E-01 5.530E-01 4.822E-01 4.822E-01 3.755E-01 2.948E-01 2.323E-01 1.4350E-01 1.447E-01 9.072E-02 7.180E-02 5.684E-02	1.0 1.4 2.0 2.8 4.0 5.0 7.0 10.0 15.0 25.0 30.0 25.0 30.0 50.0 60.0 50.0 60.0 90.0 100.0	1.269E-01 1.130E-01 1.021E-02 7.742E-02 6.7742E-02 5.191E-02 3.492E-02 1.808E-02 9.389E-03 7.342E-04 2.566E-03 7.342E-04 2.399E-04 2.399E-04 1.047E-04 6.620E-05 5.379E-05 4.856E-05 4.293E-05 4.293E-05	5.912E-01 4.091E-01 2.814E-01 2.241E-01 2.072E-01 2.116E-01 2.182E-01 2.364E-01 2.351E-01 2.366E-01 2.366E-01 2.366E-01 2.366E-01 2.336E-01 2.290E-01 2.238E-01 2.182E-01 2.382E	5.855E+00 4.487E+00 3.249E+00 2.286E+00 1.550E+00 9.597E-01 7.905E-01 4.600E-01 5.749E-01 3.509E-01 2.764E-01 1.364E-01 1.364E-01 1.364E-01 1.364E-01 1.369E-01 6.539E-02

•••••••••••••••••••••••••••••••••••••••	-			
Burnup = 35 HHd/kgU	Cooling	Burnup = 40 tild/kgU		
Light El Actinides Fis Prod	years	Light El Actinides Fis Prod		
1.319E-01 7.602E-01 6.194E+00 1.177E-01 5.305E-01 4.800E+00 1.064E-01 3.696E-01 3.528E+00 9.506E-02 2.965E-01 2.529E+00 8.077E-02 2.736E-01 1.754E+00 7.064E-02 2.721E-01 1.426E+00 5.416E-02 2.751E-01 1.110E+00 3.643E-02 2.852E-01 7.640E-01 9.797E-03 2.852E-01 7.640E-01 9.797E-03 2.852E-01 6.649E-01 5.108E-03 2.888E-01 5.850E-01 2.680E-03 2.882E-01 3.191E-01 7.683E-04 2.778E-01 3.191E-01 1.114E-04 2.705E-01 2.518E-01 1.108E-05 2.628E-01 1.970E-01 5.809E-05 2.551E-01 1.574E-01		1.365E-01 9.352E-01 6.590E+00 1.221E-01 6.608E-01 5.155E+00 1.105E-01 4.680E-01 3.835E+00 9.870E-02 3.797E-01 2.785E+00 8.386E-02 3.507E-01 1.963E+00 7.335E-02 3.476E-01 1.649E+00 3.783E-02 3.486E-01 1.261E+00 3.783E-02 3.508E-01 1.041E+00 1.959E-02 3.522E-01 8.670E-01 1.017E-02 3.515E-01 7.540E-01 5.305E-03 3.492E-01 6.630E-01 2.784E-03 3.457E-01 5.854E-01 7.997E-04 3.367E-01 4.590E-01 2.641E-04 3.264E-01 2.652E-01 1.178E-04 3.156E-01 2.852E-01 1.559E-05 3.049E-01 1.782E-01 6.201E-05 2.947E-01 1.782E-01		
5.804E-05 2.551E-01 1.574E-01 5.251E-05 2.476E-01 1.245E-01 4.916E-05 2.404E-01 9.855E-02 4.652E-05 2.335E-01 7.801E-02	80.0 90.0 100.0 110.0	6.201E-05 2.947E-01 1.782E-0 5.621E-05 2.849E-01 1.410E-0 5.267E-05 2.758E-01 1.116E-0 4.989E-05 2.672E-01 8.831E-0		

Table C.11 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 18 kW/kgU, Set 2

Table C.12 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 18 kW/kgU, Set 3

Burnup = 45 HHd/kgU			Cooling	Burnup = 50 HHd/kgU		
Light El	Actinides	Fis Prod	years	Light El	Actinides	Fis Prod
1.410E-01 1.264E-01 1.04E-01 1.04E-01 1.04E-02 1.04E-02 3.918E-02 3.918E-02 2.029E-02 1.054E-03 2.887E-03 8.315E-04 1.246E-09 6.684E-05 6.696E-05 5.69	1.144E+00 8.180E-01 5.883E-01 4.820E-01 4.399E-01 4.399E-01 4.378E-01 4.312E-01 4.312E-01 4.181E-01 4.181E-01 5.789E-01 5.789E-01 5.493E-01 5.266E-01 5.256E-01 5.121E-01	6.891E+00 5.438E+00 4.090E+00 3.011E+00 2.153E+00 1.401E+00 1.401E+00 1.401E+00 1.354E-01 8.367E-01 8.367E-01 5.087E-01 1.5354E-01 1.574E-01 1.574E-01 1.562E-01 1.536E-01 2.436E-02	1.4 1.4 2.8 4.0 57.0 150.0 150.0 150.0 150.0 150.0 50.0 50	1.458E-01 1.308E-01 1.185E-01 1.059E-01 8.996E-02 7.869E-02 4.033E-02 4.059E-02 2.102E-02 1.092E-02 1.092E-02 1.092E-02 3.698E-03 3.641E-04 2.891E-04 1.315E-04 8.632E-05 7.150E-05 6.507E-01 6.108E-05 5.792E-05	1.354E+00 9.824E-01 7.198E-01 5.973E-01 5.452E-01 5.33E-01 5.393E-01 5.393E-01 5.074E-01 4.821E-01 4.821E-01 4.356E-01 5.356E-01 5.356E-01 5.356E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01 5.5643E-01	7.273E+00 5.781E+00 4.385E+00 2.354E+00 1.952E+00 1.952E+00 1.058E+00 1.058E+00 9.187E-01 8.072E-01 5.579E-01 4.391E-01 3.464E-01 2.747E-01 2.164E-01 1.712E-01 1.355E-01 1.055E-01

.

WR decay heat rates (W/kgU) of light elements. actinides.	ssion products, for specific power = 28 kW/kel1 Set 1
.13 PWR decay 1	and fission produ-
Table C.	63

DWG = 28 KW/KgU, SC I Burnue = 30 HMA/Arit	Burnup = 30 HAd/kgU	Light El Actinides fis Prod	1.461E 01 5.340E 01 5.772E 1.164E 01 5.675E 01 5.7710E 40 1.164E 01 5.615E 01 5.7710E 40 1.164E 01 5.7710E 10 5.7710E 40 1.164E 01 5.1710E 10 5.7410E 40 2.664E 01 2.7410E 10 7.7410E 40 2.664E 02 2.0956E 10 1756E 40 2.6947E 02 2.0956E 10 1756E 40 2.6447E 03 2.6447E 10 1756E 40 2.6447E 03 2.6447E 10 17567E 40 2.6447E 03 2.6447E 10 17567E 40 2.6447E 03 2.6447E 10<
Minode In	Copling	years	
i formorid i	d/kgU	Fis Prod	7.036E+00 2.502E+00 2.502E+00 1.502E+00 8.41640 8.41640 6.751E-01 3.026E-01 3.026E-01 3.026E-01 3.026E-01 1.668E-01 1.668E-01 1.668E-01 1.668E-01 1.668E-01 1.668E-01 3.0266E-01 1.668E-01 1.668E-01 3.0266E-010000000000000000000000000000000000
	up = 25 HR	Actinides	X.874E-01 2.874E-01 2.875E-01 1.5275E-01 1.5275E-01 1.5575E-01 1.6575E-01 1.6575E-01 1.6575E-01 1.6575E-01 1.7496E-01 1.7
	Burn	Light ET	1.361E-01 1.181E-01 1.181E-01 7.992E-022 5.952E-022 5.5386E-022 5.538E-022 5.538E-022 5.652E-065 7.657E-055 7.757E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-0557E-

		•
	ğ	
	Ē	(
	g	•
	널	
	ğ	1
-	ğ	
1	a	- 5
1	6) ,
4	5	
4	5	
2.0	ľ	
E	Ē	-
1	8	1
Ì	đ	4
te	ş	-
4	:	1
ŝ	ł	Ì
イベ	5	ļ
5		·5
à	•	Ĕ
P I		L'un
ç	Ĭ	
ble ble		
Ê		

# 2	a/kgU	8 .7472 6 .7472 6 .7472 6 .6822 7 .7256 7 .7256 6 .8777 7 .7256 6 .8756 6 .8756 6 .8756 6 .8756 6 .8756 6 .8756 6 .901 1 .7756 6 .901 1 .7556 1 .7557 1 .7557 1 .7557 1 .7557 1 .7557 1 .7557 1 .1557 1 .15577 1 .15577 1 .15577 1 .15577 1 .15577 1 .15577
kW/kgU, Sa	$\frac{1}{10} = \frac{1}{10}$	8,6,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
ower = 28]	Burn Liakt El	
or specific p	Cooling Time, years	0408969999999999999999999999999999999999
products, f	JkgU Fis Prod	8.2058 4.42111 4.42111 4.42111 4.4211141111111111
and lission	up = 35 RH. Actinides	4.964.984 4.964
	Burn Light El	4. 2012 10.00 4. 2012 10.00 4. 2012 10.00 4. 2016 10.00 5. 201

Burnup = 45 HMd/kgU			Cooling	Burnup = 50 MHd/kgU		
Light El	Actinides	Fis Prod	years	Light El	Actinides	Fis Prod
1.690E-01 1.493E-01 1.344E-01 1.01PE-01 1.01PE-01 1.01PE-02 6.821E-02 6.821E-02 6.821E-02 1.233E-02 6.422E-03 3.366E-03 9.603E-04 3.114E-04 1.342E-05 6.784E-05 6.784E-05 6.724E-05 5.7272E-05 5.425E-05	1.073E+00 7.710E-01 5.585E-01 4.267E-01 4.218E-01 4.218E-01 4.218E-01 4.189E-01 4.098E-01 4.098E-01 4.036E-01 3.820E-01 3.829E-01 3.529E-01 3.269E-01 3.152E-01 3.052E-01 3.052E-01 3.052E-01 3.052E-01 3.052E-01 3.052E-01	9.156E+00 7.058E+00 5.145E+00 2.471E+00 1.975E+00 1.499E+00 1.499E+00 1.212E+00 9.993E-01 8.666E-01 7.613E-01 5.264E-01 4.143E-01 3.269E-01 1.616E-01 1.616E-01 1.012E-01	1.6 1.4 2.8 2.8 4.0 5.0 10.0 15.0 25.0 30.0 25.0 30.0 50.0 50.0 50.0 50.0 100.0	1.767E-01 1.56E-01 1.410E-01 1.258E-01 1.068E-01 9.341E-02 7.158E-02 4.814E-02 2.492E-02 1.294E-02 1.294E-03 3.534E-03 3.285E-04 1.424E-05 5.823E-05 6.563E+05 6.563E+05 5.823E-05	1.282E+00 9.334E-01 6.870E-01 5.721E-01 5.721E-01 5.310E-01 5.180E-01 5.180E-01 5.003E-01 4.886E-01 4.648E-01 4.648E-01 4.648E-01 4.648E-01 4.648E-01 4.648E-01 3.641E-01 3.641E-01 3.681E-01 3.681E-01 3.536E-01 3.282E-01	9.661E+00 7.503E+00 5.518E+00 2.708E+00 1.658E+00 1.658E+00 1.658E+00 1.02E+00 9.552E-01 8.87E-01 5.796E-01 3.598E-01 2.842E-01 2.842E-01 2.842E-01 1.778E-01 1.407E-01 1.407E-01 1.42E-01

Table C.15 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 28 kW/kgU, Set 3

Table C.16 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 40 kW/kgU, Set 1

Burn	up = 25 HW	l/kgV	Cooling	Burnup = 30 HWd/kgU		
Light El	Actinides	Fis Prod	years	Light El	Actinides	Fis Frod
1.485E-01 1.259E-01 9.944E-02 8.428E-02 8.428E-02 5.641E-02 5.641E-02 1.963E-02 1.963E-02 1.963E-02 5.304E-03 7.867E-04 4.505E-05 4.985E-05 4.985E-05 4.459E-05 5.923E-05	3.419E-01 2.435E-01 1.754E-01 1.458E-01 1.458E-01 1.465E-01 1.465E-01 1.643E-01 1.643E-01 1.773E-01 1.773E-01 1.8041E-01 1.842E-01 1.842E-01 1.797E-01 1.764E-01 1.728E-01 1.692E-01 1.692E-01	8.456E+00 6.145E+00 4.175E+00 2.702E+00 1.630E+00 1.215E+00 8.646E-01 6.886E-01 4.960E-01 4.960E-01 4.960E-01 4.367E-01 3.857E-01 1.884E-01 1.489E-01 1.489E-01 1.178E-01 9.320E-02 7.376E-02 5.4839E-02	1.0 1.4 2.8 4.0 5.0 5.0 15.0 25.0 25.0 30.0 25.0 30.0 50.0 50.0 50.0 50.0 50.0 50.0 100.0 110.6	1.607E-01 1.374E-01 1.224E-01 1.088E-01 9.225E-02 8.061E-02 6.175E-02 2.148E-02 1.115E-02 5.805E-03 8.612E-04 2.743E-04 1.35E-04 8.612E-05 5.479E-05 4.574E-05 4.574E-05 4.322E-05	4.800E-01 3.420E-01 2.459E-01 1.917E-01 1.926E-01 1.977E-01 2.049E-01 2.203E-01 2.242E-01 2.242E-01 2.253E-01 2.253E-01 2.216E-01 2.120E-01 2.020E-01 1.972E-01	9.412E+00 6.921E+00 1.761E+00 1.928+00 1.455E+00 8.315E-01 6.859E-01 5.960E-01 5.960E-01 5.960E-01 5.960E-01 5.862E-01 1.631E-01 2.859E-01 1.785E-01 1.785E-01 1.117E-01 8.839E-02 6.997E-02

Burnup = 35 filld/kgU			Cooling	Burnup = 40 1/Hd/kgU		
Light El	Actinides	Fis Prod	Years	Light EL	Actinides	Fis Prod
1.706E-01 1.465E-01 1.311E-01 9.891E-02 8.644E-02 4.452E-02 2.304E-02 4.452E-02 2.304E-02 1.195E-02 6.224E-03 3.258E-03 9.238E-04 1.230E-04 1.230E-05 5.310E-05 5.310E-05 4.686E-05	6.341E-01 4.538E-01 3.277E-01 2.538E-01 2.538E-01 2.538E-01 2.571E-03 2.626E-01 2.745E-01 2.745E-01 2.745E-01 2.745E-01 2.665E-01 2.665E-01 2.533E-01 2.396E-01 2.331E-01 2.331E-01 2.368E-01	1.010E+01 7.510E+00 5.233E+00 3.496E+00 2.201E+00 1.681E+00 1.220E+00 9.713E-01 6.934E-01 6.934E-01 6.096E-01 3.323E-01 2.622E-01 1.639E-01 1.296E-01 1.296E-01 8.121E-02	1.0 1.4 2.0 2.8 4.0 5.0 10.0 15.0 20.0 25.0 30.0 50.0 50.0 60.0 70.0 80.0 90.0 100.0	1.800E-01 1.557E-01 1.239E-01 1.239E-01 1.051E-01 9.183E-02 7.034E-02 4.729E-02 2.447E-02 1.270E-02 4.729E-02 2.447E-03 3.461E-03 3.461E-03 9.818E-04 3.134E-04 1.311E-04 7.960E-05 6.688E-05 5.688E-05 5.313E-05 5.02E-05 5.02E-05 5.02E-05 5.032E-05 5.052E-05 5.052E-05 5.052E-05 5.052E-05 5.052E-05 5.0	7.998E-01 5.766E-01 4.201E-01 3.487E-01 3.258E-01 3.257E-01 3.267E-01 3.318E-01 3.318E-01 3.207E-01 3.207E-01 3.022E-01 2.927E-01 2.927E-01 2.834E-01 2.746E-01 2.663E-01	1.084E+01 8.131E+00 5.725E+00 3.873E+00 1.911E+00 1.397E+00 1.12E+00 9.125E-01 6.951E-01 6.136E-01 4.809E-01 3.786E-01 2.987E-01 2.360E-01 1.477E-01 1.477E-01 1.492E-01

Table C.17 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 40 kW/kgU, Set 2

Table C.18 PWR decay heat rates (W/kgU) of light elements, actinides, and fission products, for specific power = 40 kW/kgU, Set 3

		u ,
Burnup = 45 MMd/kgU	Cooling	Burnup = 50 HWd/kgU
Light El Actinides Fis Prod	years	Light El Actinides Fig Prod
1.901E-01 9.994E-01 1.139E+01 1.652E-01 7.266E-01 8.622E+00 1.480E-01 5.346E-01 6.138E+00 1.318E-01 4.460E-01 4.209E+00 1.318E-01 4.157E-01 2.738E+00 9.767E-02 4.114E-01 2.130E+00 7.482E-02 4.102E-01 1.567E+00 5.030E-02 4.092E-01 1.246E+00 1.351E-02 4.01CE-01 8.835E-01 7.034E-03 3.951E-01 7.757E-01 3.682E-03 3.886E-01 6.846E-01 1.045E-03 3.746E-01 5.363E-01 3.345E-04 3.604E-01 4.221E-01 1.406E-04 3.466E-01 3.330E-01 8.574E-05 3.215E-01 2.080E-01 6.848E-05 3.215E-01 2.080E-01	1.0 1.4 2.08 4.00 7.0 15.0 20.0 30.0 40.0 50.0 50.0 60.0 70.0	2.001E-01 1.206E+00 1.206E+01 1.746E-01 8.867E-01 9.193E+00 1.565E-01 6.612E-01 6.600E+00 1.394E-01 5.560E-01 4.572E+00 1.033E-01 5.184E-01 3.010E+00 1.033E-01 5.114E-01 2.355E+00 7.917E-02 5.064E-01 1.739E+00 5.323E-02 5.03E-01 1.382E+00 2.754E-02 4.896E-01 1.128E+00 1.429E-02 4.783E-01 9.761E-01 7.443E-03 4.668E-01 8.568E-01 3.697E-03 4.554E-01 7.557E-01 1.107E-03 4.334E-01 5.918E-01 3.549E-04 4.130E-01 4.657E-01 1.497E-03 3.943E-01 3.673E-01 9.166E-05 3.620E-01 2.295E-01
5.749E-05 2.998E-01 1.302E-01 5.442E-05 2.902E-01 1.031E-01	100.0 110.0	6.165E-05 3.351E-01 1.437E-01 5.841E-05 3.234E-01 1.137E-01

Value /Impact Statement

A Value/Impact Statement was published with Regulatory Guide 3.54 when it was issued in September 1994. No changes are necessary, so a separate value/impact statement for this proposed Revision 1 has not been prepared. A copy of the value/impact statement is available for inspection or copying for a fee in the Commission's Public Document Room at 2120 L Street NW., Washington, DC, under Regulatory Guide 3.54. The PDR's mailing address is the Mail Stop LL-6, Washington, DC 20555; telephone (202) 634-3273; fax (202) 634-3343.

1 01 m

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

FIRST CLASS MAIL POSTAGE AND FEES PAID USNRC PERMIT NO. G-67