<u>INDEX</u>

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

LIMITING	CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS	
<u>SECTION</u>		PAGE
REACTOR C	COOLANT SYSTEM (Continued)	
3/4.4.9	RESIDUAL HEAT REMOVAL	
	Hot Shutdown	3/4 4-25
	Cold Shutdown	3/4 4-26
<u>3/4.5 EM</u>	ERGENCY CORE COOLING SYSTEMS	
3/4.5.1	ECCS - OPERATING	3/4 5-1
3/4.5.2	ECCS – SHUTDOWN	3/4 5-6
3/4.5.3	SUPPRESSION CHAMBER	3/4 5-8
<u>3/4.6 CO</u>	NTAINMENT SYSTEMS	
3/4.6.1	PRIMARY CONTAINMENT	
	Primary Containment Integrity	3/4 6-1
	Primary Containment Leakage	3/4 6-2
	Primary Containment Air Lock	3/4 6-5
	MSIV Leakage Alternate Drain Pathway	3/4 6-7
•	Primary Containment Structural Integrity	3/4 6-8
-	Drywell and Suppression Chamber Internal Pressure	3/4 6-9
-	Drywell Average Air Temperature	3/4 6-10
	Drywell and Suppression Chamber Purge System	3/4 6-11
3/4.6.2	DEPRESSURIZATION SYSTEMS	
	Suppression Chamber	3/4 6-12
	Suppression Pool Spray	3/4 6-15
	Suppression Pool Cooling	3/4 6-16
3/4.6.3	PRIMARY CONTAINMENT ISOLATION VALVES	3/4 6-17

LIMERICK - UNIT 1

DEFINITIONS

OPERATIONAL CONDITION - CONDITION

1.26 An OPERATIONAL CONDITION, i.e., CONDITION, shall be any one inclusive combination of mode switch position and average reactor coolant temperature as specified in Table 1.2.

PHYSICS TESTS

1.27 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and (1) described in Chapter 14 of the FSAR, (2) authorized under the provisions of 10 CFR 50.59, or (3) otherwise approved by the Commission.

PRESSURE BOUNDARY LEAKAGE

1.28 PRESSURE BOUNDARY LEAKAGE shall be leakage through a nonisolable fault in a reactor coolant system component body, pipe wall or vessel wall.

PRIMARY CONTAINMENT INTEGRITY

- **1.29 PRIMARY CONTAINMENT INTEGRITY shall exist when:**
 - a. All primary containment penetrations required to be closed during accident conditions are either:
 - 1. Capable of being closed by an OPERABLE primary containment automatic isolation system, or
 - 2. Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except for valves that are opened under administrative control as permitted by Specification 3.6.3.
 - b. All primary containment equipment hatches are closed and sealed.
 - c. The primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
 - d. The primary containment leakage rates are within the limits of Specification 3.6.1.2.
 - e. The suppression chamber is in compliance with the requirements of Specification 3.6.2.1.
 - f. The sealing mechanism associated with each primary containment penetration; e.g., welds, bellows, or O-rings, is OPERABLE.

PROCESS CONTROL PROGRAM

1.30 The PROCESS CONTROL PROGRAM (PCP) shall contain the provisions to assure that the solidification or dewatering and packaging of radioactive wastes results in a waste package with properties that meet the minimum and stability requirements of 10 CFR Part 61 and other requirements for transportation to the disposal site and receipt at the disposal site. With solidification or dewatering, the PCP shall identify the process parameters influencing solidification or dewatering, based on laboratory scale and full scale testing or experience.

Amendment No. 48, 66, 146

LIMERICK - UNIT 1

TABLE 3.3.2-1 (Continued) ISOLATION ACTUATION INSTRUMENTATION ACTION STATEMENTS

- ACTION 20 Be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 21 Be in at least STARTUP with the associated isolation valves closed within 6 hours or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 22 Be in at least STARTUP within 6 hours.
- ACTION 23 In OPERATIONAL CONDITION 1 or 2, verify the affected system isolation valves are closed within 1 hour and declare the affected system inoperable. In OPERATIONAL CONDITION 3, be in at least COLD SHUTDOWN within 12 hours.
- ACTION 24 Restore the manual initiation function to OPERABLE status within 8 hours or close the affected system isolation valves within the next hour and declare the affected system inoperable or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 25 Establish SECONDARY CONTAINMENT INTEGRITY with the standby gas treatment system operating within 1 hour.
- ACTION 26 Close the affected system isolation valves within 1 hour.

TABLE NOTATIONS

- * Required when (1) handling irradiated fuel in the refueling area secondary containment, or (2) during CORE ALTERATIONS, or (3) during operations with a potential for draining the reactor vessel with the vessel head removed and fuel in the vessel.
- ** May be bypassed under administrative control, with all turbine stop valves closed.
- # During operation of the associated Unit 1 or Unit 2 ventilation exhaust system.
- (a) DELETED
- (b) A channel may be placed in an inoperable status for up to 6 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter. Trip functions common to RPS Actuation Instrumentation are shown in Table 4.3.2.1-1. In addition, for the HPCI system and RCIC system isolation, provided that the redundant isolation valve, inboard or outboard, as applicable, in each line is OPERABLE and all required actuation instrumentation for that valve is OPERABLE, one channel may be placed in an inoperable status for up to 8 hours for required surveillance without placing the channel or trip system in the tripped condition.

3/4 3-16

Amendment No. 23, 40, 53, 69, 146

TABLE 3.3.2-1 (Continued)

TABLE NOTATIONS

- (c) Actuates secondary containment isolation valves. Signals B, H, S, and R also start the standby gas treatment system.
- (d) RWCU system inlet outboard isolation valve closes on SLCS "B" initiation. RWCU system inlet inboard isolation valve closes on SLCS "A" or SLCS "C" initiation.
- (e) Manual initiation isolates the steam supply line outboard isolation valve and only following manual or automatic initiation of the system.
- (f) In the event of a loss of ventilation the temperature high setpoint may be raised by 50°F for a period not to exceed 30 minutes to permit restoration of the ventilation flow without a spurious trip. During the 30 minute period, an operator, or other qualified member of the technical staff, shall observe the temperature indications continuously, so that, in the event of rapid increases in temperature, the main steam lines shall be manually isolated.
- (g) Wide range accident monitor per Specification 3.3.7.5.

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTIONRESPONSE TIME (Seconds)#f.Deletedg.Reactor Enclosure Manual
Initiationh.Refueling Area Manual InitiationN.A.

TABLE NOTATIONS

- (a) DELETED
- (b) DELETED
- * Isolation system instrumentation response time for MSIV only. No diesel generator delays assumed for MSIVs.
- ** DELETED
- # Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to the isolation time for the valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.
- ## With 45 second time delay.
- ### Sensor is eliminated from response time testing for the MSIV actuation logic circuits. Response time testing and conformance to the administrative limits for the remaining channel including trip unit and relay logic are required.

Amendment No. 6, 89, 112, 122, 146

LIMERICK - UNIT 1

3/4 3-26

3/4.6 CONTAINMENT SYSTEMS

3/4.6.1 PRIMARY CONTAINMENT

PRIMARY CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be maintained.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2*, and 3.

ACTION:

Without PRIMARY CONTAINMENT INTEGRITY, restore PRIMARY CONTAINMENT INTEGRITY within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be demonstrated:

- a. After each closing of each penetration subject to Type B testing, except the primary containment air locks, if opened following Type A or B test, by leak rate testing in accordance with the Primary Containment Leakage Rate Testing Program.
- b. At least once per 31 days by verifying that all primary containment penetrations** not capable of being closed by OPERABLE containment automatic isolation valves and required to be closed during accident conditions are closed by valves, blind flanges, or deactivated automatic valves secured in position, except for valves that are opened under administrative control as permitted by Specification 3.6.3.
- c. By verifying the primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
- d. By verifying the suppression chamber is in compliance with the requirements of Specification 3.6.2.1.

* See Special Test Exception 3.10.1

^{**}Except valves, blind flanges, and deactivated automatic valves which are located inside the containment, and are locked, sealed, or otherwise secured in the closed position. These penetrations shall be verified closed during each COLD SHUTDOWN except such verification need not be performed when the primary containment has not been deinerted since the last verification or more often than once per 92 days.

PRIMARY CONTAINMENT LEAKAGE

LIMITING CONDITION FOR OPERATION

- 3.6.1.2 Primary containment leakage rates shall be limited to:
 - a. An overall integrated leakage rate (Type A Test) in accordance with the Primary Containment Leakage Rate Testing Program.
 - b. A combined leakage rate in accordance with the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted.
 - c. *Less than or equal to 100 scf per hour through any one main steam isolation value not to exceed 200 scf per hour for all four main steam lines, when tested at P_t , 22.0 psig.
 - d. A combined leakage rate of less than or equal to 1 gpm times the total number of containment isolation values in hydrostatically tested lines which penetrate the primary containment, when tested at $1.10 P_a$, 48.4 psig.

<u>APPLICABILITY</u>: When PRIMARY CONTAINMENT INTEGRITY is required per Specification 3.6.1.1.

ACTION:

With:

- a. The measured overall integrated primary containment leakage rate (Type A Test) exceeding the leakage rate specified in the Primary Containment Leakage Rate Testing Program, or
- b. The measured combined leakage rate exceeding the leakage rate specified in the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted, or
- c. The measured leakage rate exceeding 100 scf per hour through any one main steam isolation valve, or exceeding 200 scf per hour for all four main steam lines, or
- d. The measured combined leakage rate for all containment isolation valves in hydrostatically tested lines which penetrate the primary containment exceeding 1 gpm times the total number of such valves,

restore:

a. The overall integrated leakage rate(s) (Type A Test) to be in accordance with the Primary Containment Leakage Rate Testing Program, and

*Exemption to Appendix J of 10 CFR Part 50.

Amendment No. 107, 118, 146

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- b. The combined leakage rate to be in accordance with the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted, and
- c. The leakage rate to ≤ 11.5 scf per hour for any main steam isolation value that exceeds 100 scf per hour, and restore the combined maximum pathway leakage to ≤ 200 scf per hour, and
- d. The combined leakage rate for all containment isolation valves in hydrostatically tested lines which penetrate the primary containment to less than or equal to 1 gpm times the total number of such valves,

prior to increasing the reactor coolant system temperature above 200°F.

SURVEILLANCE REQUIREMENTS

- 4.6.1.2 The primary containment leakage rates shall be demonstrated to be in accordance with the Primary Containment Leakage Rate Testing Program, or approved exemptions, for the following:
 - a. Type A Test
 - b. Type B and C Tests (including air locks)
 - c. Main Steam Line Isolation Valves
 - d. Hydrostatically tested Containment Isolation Valves

Amendment No. 107, 118,146

^{*} Exemption to Appendix "J" to 10 CFR Part 50.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6.3 Each primary containment isolation valve and each instrumentation line excess flow check valve shall be OPERABLE.

<u>APPLICABILITY</u>: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one or more of the primary containment isolation valves inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and within 4 hours either:
 - 1. Restore the inoperable valve(s) to OPERABLE status, or
 - 2. Isolate each affected penetration by use of at least one deactivated automatic valve secured in the isolated position,* or
 - 3. Isolate each affected penetration by use of at least one closed manual valve or blind flange.*
 - 4. The provisions of Specification 3.0.4 are not applicable provided that within 4 hours the affected penetration is isolated in accordance with ACTION a.2. or a.3. above, and provided that the associated system, if applicable, is declared inoperable and the appropriate ACTION statements for that system are performed.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

- b. With one or more of the instrumentation line excess flow check valves inoperable, operation may continue and the provisions of Specifications 3.0.3 and 3.0.4 are not applicable provided that within 4 hours either:
 - 1. The inoperable valve is returned to OPERABLE status, or
 - 2. The instrument line is isolated and the associated instrument is declared inoperable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

Amendment No. 29,146

LIMERICK - UNIT 1

^{*}Isolation valves closed to satisfy these requirements may be reopened on an intermittent basis under administrative control.

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shall be demonstrated OPERABLE at least once per 24 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 Each reactor instrumentation line excess flow check valve shall be demonstrated OPERABLE at least once per 24 months by verifying that the valve checks flow.*

4.6.3.5 Each traversing in-core probe system explosive isolation valve shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 24 months by removing the explosive squib from the explosive valve, such that each explosive squib in each explosive valve will be tested at least once per 120 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufactured batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life and/or operating life, as applicable.

*The reactor vessel head seal leak detection line (penetration 29A) excess flow check valve is not required to be tested pursuant to this requirement.

LIMERICK - UNIT 1

3/4 6-18

Amendment No. 1,-29, 33, 71,146

THE INFORMATION FROM THIS TECHNICAL SPECIFICATION SECTION HAS BEEN RELOCATED TO THE TECHNICAL REQUIREMENTS MANUAL (TRM), PCIV SECTION.

TECHNICAL SPECIFICATION PAGES 3/4 6-19 THROUGH 3/4 6-43a HAVE BEEN INTENTIONALLY OMITTED.

> Amendment No. 2, 33,89, 146 107,

INSTRUMENTATION

BASES

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

This specification ensures the effectiveness of the instrumentation used to mitigate the consequences of accidents by prescribing the OPERABILITY trip setpoints and response times for isolation of the reactor systems. When necessary, one channel may be inoperable for brief intervals to conduct required surveillance.

Specified surveillance intervals and maintenance outage times have been determined in accordance with NEDC-30851P, Supplement 2, "Technical Specification Improvement Analysis for BWR Instrumentation Common to RPS and ECCS Instrumentation" as approved by the NRC and documented in the NRC Safety Evaluation Report (SER) (letter to D.N. Grace from C.E. Rossi dated January 6, 1989) and NEDC-31677P-A, "Technical Specification Improvement Analysis for BWR Isolation Actuation Instrumentation," as approved by the NRC and documented in the NRC SER (letter to S.D. Floyd from C.E. Rossi dated June 18, 1990).

Automatic closure of the MSIVs upon receipt of a high-high radiation signal from the Main Steam Line Radiation Monitoring System was removed as the result of an analysis performed by General Electric in NEDO-31400A. The NRC approved the results of this analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15, 1991).

Some of the trip settings may have tolerances explicitly stated where both the high and low values are critical and may have a substantial effect on safety. The setpoints of other instrumentation, where only the high or low end of the setting have a direct bearing on safety, are established at a level away from the normal operating range to prevent inadvertent actuation of the systems involved.

Except for the MSIVs, the safety analysis does not address individual sensor response times or the response times of the logic systems to which the sensors are connected. For D.C. operated valves, a 3 second delay is assumed before the valve starts to move. For A.C. operated valves, it is assumed that the A.C. power supply is lost and is restored by startup of the emergency diesel generators. In this event, a time of 13 seconds is assumed before the valve starts to move. In addition to the pipe break, the failure of the D.C. operated valve is assumed; thus the signal delay (sensor response) is concurrent with the 10-second diesel startup and the 3 second load center loading delay. The safety analysis considers an allowable inventory loss in each case which in turn determines the valve speed in conjunction with the 13-second delay. It follows that checking the valve speeds and the 13-second time for emergency power establishment will establish the response time for the isolation functions.

Response time testing for sensors are not required based on the analysis in NEDO-32291-A. Response time testing of the remaining channel components is required as noted in Table 3.3.2-3.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses. Primary containment isolation valves that are actuated by the isolation signals specified in Technical Specification Table 3.3.2-1 are identified in Technical Requirements Manual Table 3.6.3-1.

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

The emergency core cooling system actuation instrumentation is provided to initiate actions to mitigate the consequences of accidents that are beyond the ability of the operator to control. This specification provides the OPERABILITY requirements, trip setpoints and response times that will ensure effectiveness of the systems to provide the design protection. Although the instruments are listed by system, in some cases the same instrument may be used to send the actuation signal to more than one system at the same time.

LIMERICK - UNIT 1

B 3/4 3-2 Amendment No. 33,53,69,89,132,146

BASES

DEPRESSURIZATION SYSTEMS (Continued)

The drywell-to-suppression chamber bypass test at a differential pressure of at least 4.0 psi verifies the overall bypass leakage area for simulated LOCA conditions is less than the specified limit. For those outages where the drywell-to-suppression chamber bypass leakage test in not conducted, the VB leakage test verifies that the VB leakage area is less than the bypass limit, with a 76% margin to the bypass limit to accommodate the remaining potential leakage area through the passive structural components. Previous drywell-to-suppression chamber bypass test data indicates that the bypass leakage through the passive structural components will be much less than the 76% margin. The VB leakage limit, combined with the negligible passive structural leakage area, ensures that the drywell-to-suppression chamber bypass leakage limit is met for those outages for which the drywell-to-suppression chamber bypass test is not scheduled.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation valves ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR Part 50. Containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

The opening of a containment isolation valve that was locked or sealed closed to satisfy Technical Specification 3.6.3 Action statements, may be reopened on an intermittent basis under administrative controls. These controls consist of stationing a dedicated individual at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated.

Primary containment isolation valves governed by this Technical Specification are identified in Table 3.6.3-1 of the TRM.

3/4.6.4 VACUUM RELIEF

Vacuum relief valves are provided to equalize the pressure between the suppression chamber and drywell. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. Two pairs of valves are required to protect containment structural integrity. There are four pairs of valves (three to provide minimum redundancy) so that operation may continue for up to 72 hours with no more than two pairs of vacuum breakers inoperable in the closed position.

Each vacuum breaker valve's position indication system is of great enough sensitivity to ensure that the maximum steam bypass leakage coefficient of

$$A_{\rm V} = 0.05 \, {\rm ft}^2$$

for the vacuum relief system (assuming one valve fully open) will not be exceeded.

LIMERICK - UNIT 1

Amendment No. 46, 68, 146

INDEX

LIMITING CONDITIONS	FOR OPERATION	AND SURVEILLANCE	REQUIREMENTS

REACTOR COOLANT SYSTEM (Continued) 3/4.4.9 RESIDUAL HEAT REMOVAL Hot Shutdown	5
	5
Hot Shutdown	5
Cold Shutdown	ŝ
3/4.5 EMERGENCY CORE COOLING SYSTEMS	
3/4.5.1 ECCS - OPERATING	1
3/4.5.2 ECCS - SHUTDOWN	5
3/4.5.3 SUPPRESSION CHAMBER	3
3/4.6 CONTAINMENT SYSTEMS	
3/4.6.1 PRIMARY CONTAINMENT	
Primary Containment Integrity	1
Primary Containment Leakage	2
Primary Containment Air Lock	5
MSIV Leakage Alternate Drain Pathway 3/4 6-3	7
Primary Containment Structural Integrity	8
Drywell and Suppression Chamber Internal Pressure 3/4 6-	9
Drywell Average Air Temperature	0
Drywell and Suppression Chamber Purge System 3/4 6-1	1
3/4.6.2 DEPRESSURIZATION SYSTEMS	
Suppression Chamber	2
Suppression Pool Spray	15
Suppression Pool Cooling	16
3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES	17

DEFINITIONS

<u>OPERATIONAL CONDITION - CONDITION</u>

1.26 An OPERATIONAL CONDITION, i.e., CONDITION, shall be any one inclusive combination of mode switch position and average reactor coolant temperature as specified in Table 1.2.

PHYSICS TESTS

1.27 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and (1) described in Chapter 14 of the FSAR, (2) authorized under the provisions of 10 CFR 50.59, or (3) otherwise approved by the Commission.

PRESSURE BOUNDARY LEAKAGE

1.28 PRESSURE BOUNDARY LEAKAGE shall be leakage through a nonisolable fault in a reactor coolant system component body, pipe wall or vessel wall.

PRIMARY CONTAINMENT INTEGRITY

1.29 PRIMARY CONTAINMENT INTEGRITY shall exist when:

- a. All primary containment penetrations required to be closed during accident conditions are either:
 - 1. Capable of being closed by an OPERABLE primary containment automatic isolation system, or
 - 2. Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except for valves that are opened under administrative control as permitted by Specification 3.6.3.
- b. All primary containment equipment hatches are closed and sealed.
- c. The primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
- d. The primary containment leakage rates are within the limits of Specification 3.6.1.2.
- e. The suppression chamber is in compliance with the requirements of Specification 3.6.2.1.
- f. The sealing mechanism associated with each primary containment penetration; e.g., welds, bellows, or O-rings, is OPERABLE.

PROCESS CONTROL PROGRAM

1.30 The PROCESS CONTROL PROGRAM (PCP) shall contain the provisions to assure that the solidification or dewatering and packaging of radioactive wastes results in a waste package with properties that meet the minimum and stability requirements of 10 CFR Part 61 and other requirements for transportation to the disposal site and receipt at the disposal site. With SOLIDIFICATION or dewatering, the PCP shall identify the process parameters influencing solidification or dewatering, based on laboratory scale and full scale testing or experience.

LIMERICK - UNIT 2

Amendment No. 11, 48, 107

TABLE 3.3.2-1 (Continued) ISOLATION ACTUATION INSTRUMENTATION ACTION STATEMENTS

- ACTION 20 Be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 21 Be in at least STARTUP with the associated isolation valves closed within 6 hours or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 22 Be in at least STARTUP within 6 hours.
- ACTION 23 In OPERATIONAL CONDITION 1 or 2, verify the affected system isolation valves are closed within 1 hour and declare the affected system inoperable. In OPERATIONAL CONDITION 3, be in at least COLD SHUTDOWN within 12 hours.
- ACTION 24 Restore the manual initiation function to OPERABLE status within 8 hours or close the affected system isolation valves within the next hour and declare the affected system inoperable or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 25 Establish SECONDARY CONTAINMENT INTEGRITY with the standby gas treatment system operating within 1 hour.
- ACTION 26 Close the affected system isolation valves within 1 hour.

TABLE NOTATIONS

- * Required when (1) handling irradiated fuel in the refueling area secondary containment, or (2) during CORE ALTERATIONS, or (3) during operations with a potential for draining the reactor vessel with the vessel head removed and fuel in the vessel.
- ** May be bypassed under administrative control, with all turbine stop valves closed.
- # During operation of the associated Unit 1 or Unit 2 ventilation exhaust system.
- (a) DELETED
- (b) A channel may be placed in an inoperable status for up to 6 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter. Trip functions common to RPS Actuation Instrumentation are shown in Table 4.3.2.1-1. In addition, for the HPCI system and RCIC system isolation, provided that the redundant isolation valve, inboard or outboard, as applicable, in each line is OPERABLE and all required actuation instrumentation for that valve is OPERABLE, one channel may be placed in an inoperable status for up to 8 hours for required surveillance without placing the channel or trip system in the tripped condition.

TABLE 3.3.2-1 (Continued)

TABLE NOTATIONS

- (c) Actuates secondary containment isolation valves. Signal B, H, S, and R also start the standby gas treatment system.
- (d) RWCU system inlet outboard isolation valve closes on SLCS "B" initiation. RWCU system inlet inboard isolation valve closes on SLCS "A" or SLCS "C" initiation.
- (e) Manual initiation isolates the steam supply line outboard isolation value and only following manual or automatic initiation of the system.
- (f) In the event of a loss of ventilation the temperature high setpoint may be raised by 50°F for a period not to exceed 30 minutes to permit restoration of the ventilation flow without a spurious trip. During the 30 minute period, an operator, or other qualified member of the technical staff, shall observe the temperature indications continuously, so that, in the event of rapid increases in temperature, the main steam lines shall be manually isolated.
- (g) Wide range accident monitor per Specification 3.3.7.5.

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTIONRESPONSE TIME (Seconds)#f.Deletedg.Reactor Enclosure ManualInitiationN.A.h.Refueling Area Manual InitiationN.A.

TABLE NOTATIONS

(a) DELETED

- (b) DELETED
- * Isolation system instrumentation response time for MSIV only. No diesel generator delays assumed for MSIVs.
- ** DELETED
- # Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to the isolation time for the valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.

With 45 second time delay.

Sensor is eliminated from response time testing for the MSIV actuation logic circuits. Response time testing and conformance to the administrative limits for the remaining channel including trip unit and relay logic are required.

3/4.6 CONTAINMENT SYSTEMS

3/4.6.1 PRIMARY CONTAINMENT

PRIMARY CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be maintained.

<u>APPLICABILITY</u>: OPERATIONAL CONDITIONS 1, 2*, and 3.

ACTION:

Without PRIMARY CONTAINMENT INTEGRITY, restore PRIMARY CONTAINMENT INTEGRITY within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be demonstrated:

- a. After each closing of each penetration subject to Type B testing, except the primary containment air locks, if opened following Type A or B test, by leak rate testing in accordance with the Primary Containment Leakage Rate Testing Program.
- b. At least once per 31 days by verifying that all primary containment penetrations** not capable of being closed by OPERABLE containment automatic isolation valves and required to be closed during accident conditions are closed by valves, blind flanges, or deactivated automatic valves secured in position, except for valves that are opened under administrative control as permitted by Specification 3.6.3.
- c. By verifying the primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
- d. By verifying the suppression chamber is in compliance with the requirements of Specification 3.6.2.1.

* See Special Test Exception 3.10.1

^{**}Except valves, blind flanges, and deactivated automatic valves which are located inside the containment, and are locked, sealed, or otherwise secured in the closed position. These penetrations shall be verified closed during each COLD SHUTDOWN except such verification need not be performed when the primary containment has not been deinerted since the last verification or more often than once per 92 days.

PRIMARY CONTAINMENT LEAKAGE

LIMITING CONDITION FOR OPERATION

- 3.6.1.2 Primary containment leakage rates shall be limited to:
 - a. An overall integrated leakage rate (Type A Test) in accordance with the Primary Containment Leakage Rate Testing Program.
 - b. A combined leakage rate in accordance with the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted.
 - c. *Less than or equal to 100 scf per hour through any one main steam isolation value not to exceed 200 scf per hour for all four main steam lines, when tested at P_{\star} , 22.0 psig.
 - d. A combined leakage rate of less than or equal to 1 gpm times the total number of containment isolation valves in hydrostatically tested lines which penetrate the primary containment, when tested at 1.10 P_a , 48.4 psig.

<u>APPLICABILITY</u>: When PRIMARY CONTAINMENT INTEGRITY is required per Specification 3.6.1.1.

ACTION:

With:

- a. The measured overall integrated primary containment leakage rate (Type A Test) exceeding the leakage rate specified in the Primary Containment Leakage Rate Testing Program, or
- b. The measured combined leakage rate exceeding the leakage rate specified in the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted, or
- c. The measured leakage rate exceeding 100 scf per hour through any one main steam isolation valve, or exceeding 200 scf per hour for all four main steam lines, or
- d. The measured combined leakage rate for all containment isolation valves in hydrostatically tested lines which penetrate the primary containment exceeding 1 gpm times the total number of such valves,

restore:

a. The overall integrated leakage rate(s) (Type A Test) to be in accordance with the Primary Containment Leakage Rate Testing Program, and

*Exemption to Appendix J of 10 CFR Part 50. Amendment No. 53, 81, 107

LIMERICK - UNIT 2

3/4 6-2

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- b. The combined leakage rate to be in accordance with the Primary Containment Leakage Rate Testing Program for all primary containment penetrations and all primary containment isolation valves that are subject to Type B and C tests, except for: main steam line isolation valves*, valves which are hydrostatically tested, and those valves where an exemption to Appendix J of 10 CFR 50 has been granted, and
- c. The leakage rate to ≤ 11.5 scf per hour for any main steam isolation value that exceeds 100 scf per hour, and restore the combined maximum pathway leakage to ≤ 200 scf per hour, and
- d. The combined leakage rate for all containment isolation valves in hydrostatically tested lines which penetrate the primary containment to less than or equal to 1 gpm times the total number of such valves,

prior to increasing reactor coolant system temperature above 200°F.

SURVEILLANCE REQUIREMENTS

- 4.6.1.2 The primary containment leakage rates shall be demonstrated to be in accordance with the Primary Containment Leakage Rate Testing Program, or approved exemptions, for the following:
 - a. Type A Test
 - b. Type B and C Tests (including air locks)
 - c. Main Steam Line Isolation Valves
 - d. Hydrostatically tested Containment Isolation Valves

*Exemption to Appendix "J" to 10 CFR Part 50.

Amendment No. 53, 71, 81, 107

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6.3 Each primary containment isolation valve and each instrumentation line excess flow check valve shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one or more of the primary containment isolation valves inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and within 4 hours either:
 - 1. Restore the inoperable valve(s) to OPERABLE status, or
 - 2. Isolate each affected penetration by use of at least one deactivated automatic valve secured in the isolated position,* or
 - 3. Isolate each affected penetration by use of at least one closed manual valve or blind flange.*
 - 4. The provisions of Specification 3.0.4 are not applicable provided that within 4 hours the affected penetration is isolated in accordance with ACTION a.2. or a.3. above, and provided that the associated system, if applicable, is declared inoperable and the appropriate ACTION statements for that system are performed.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

- b. With one or more of the instrumentation line excess flow check valves inoperable, operation may continue and the provisions of Specifications 3.0.3 and 3.0.4 are not applicable provided that within 4 hours either:
 - 1. The inoperable valve is returned to OPERABLE status, or
 - 2. The instrument line is isolated and the associated instrument is declared inoperable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

^{*}Isolation valves closed to satisfy these requirements may be reopened on an intermittent basis under administrative control.

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shall be demonstrated OPERABLE at least once per 24 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 Each instrumentation line excess flow check valve shall be demonstrated OPERABLE at least once per 24 months by verifying that the valve checks flow.*

4.6.3.5 Each traversing in-core probe system explosive isolation valve shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 24 months by removing the explosive squib from the explosive valve, such that each explosive squib in each explosive valve will be tested at least once per 120 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufactured batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life and/or operating life, as applicable.

*The reactor vessel head seal leak detection line (penetration 29A) excess flow check valve is not required to be tested pursuant to this requirement.

LIMERICK - UNIT 2

3/4 6-18 Amendment No. 34, 107

THE INFORMATION FROM THIS TECHNICAL SPECIFICATION SECTION HAS BEEN RELOCATED TO THE TECHNICAL REQUIREMENTS MANUAL (TRM), PCIV SECTION.

TECHNICAL SPECIFICATION PAGES 3/4 6-19 THROUGH 3/4 6-43a HAVE BEEN INTENTIONALLY OMITTED.

Amendment No. 52, 53, 107

LIMERICK - UNIT 2

INSTRUMENTATION

BASES

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

This specification ensures the effectiveness of the instrumentation used to mitigate the consequences of accidents by prescribing the OPERABILITY trip setpoints and response times for isolation of the reactor systems. When necessary, one channel may be inoperable for brief intervals to conduct required surveillance.

Specified surveillance intervals and maintenance outage times have been determined in accordance with NEDC-30851P, Supplement 2, "Technical Specification Improvement Analysis for BWR Instrumentation Common to RPS and ECCS Instrumentation" as approved by the NRC and documented in the NRC Safety Evaluation Report (SER) (letter to D.N. Grace from C.E. Rossi dated January 6, 1989) and NEDC-31677P-A, "Technical Specification Improvement Analysis for BWR Isolation Actuation Instrumentation," as approved by the NRC and documented in the NRC SER (letter to S.D. Floyd from C.E. Rossi dated June 18, 1990).

Automatic closure of the MSIVs upon receipt of a high-high radiation signal from the Main Steam Line Radiation Monitoring System was removed as the result of an analysis performed by General Electric in NEDO-31400A. The NRC approved the results of this analysis as documented in the SER (letter to George J. Beck, BWR Owner's Group from A.C. Thadani, NRC, dated May 15, 1991).

Some of the trip settings may have tolerances explicitly stated where both the high and low values are critical and may have a substantial effect on safety. The setpoints of other instrumentation, where only the high or low end of the setting have a direct bearing on safety, are established at a level away from the normal operating range to prevent inadvertent actuation of the systems involved.

Except for the MSIVs, the safety analysis does not address individual sensor response times or the response times of the logic systems to which the sensors are connected. For D.C. operated valves, a 3 second delay is assumed before the valve starts to move. For A.C. operated valves, it is assumed that the A.C. power supply is lost and is restored by startup of the emergency diesel generators. In this event, a time of 13 seconds is assumed before the valve starts to move. In addition to the pipe break, the failure of the D.C. operated valve is assumed; thus the signal delay (sensor response) is concurrent with the 10-second diesel startup and the 3 second load center loading delay. The safety analysis considers an allowable inventory loss in each case which in turn determines the valve speed in conjunction with the 13-second delay. It follows that checking the valve speeds and the 13-second time for emergency power establishment will establish the response time for the isolation functions.

Response time testing for sensors are not required based on the analysis in NEDO-32291-A. Response time testing of the remaining channel components is required as noted in Table 3.3.2-3.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses. Primary containment isolation valves that are actuated by the isolation signals specified in Technical Specification Table 3.3.2-1 are identified in Technical Requirements Manual Table 3.6.3-1.

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

The emergency core cooling system actuation instrumentation is provided to initiate actions to mitigate the consequences of accidents that are beyond the ability of the operator to control. This specification provides the OPERABILITY requirements, trip setpoints and response times that will ensure effectiveness of the systems to provide the design protection. Although the instruments are listed by system, in some cases the same instrument may be used to send the actuation signal to more than one system at the same time. LIMERICK - UNIT 2 B 3/4 3-2

BASES

DEPRESSURIZATION SYSTEMS (Continued)

The drywell-to-suppression chamber bypass test at a differential pressure of at least 4.0 psi verifies the overall bypass leakage area for simulated LOCA conditions is less than the specified limit. For those outages where the drywell-to-suppression chamber bypass leakage test in not conducted, the VB leakage test verifies that the VB leakage area is less than the bypass limit, with a 76% margin to the bypass limit to accommodate the remaining potential leakage area through the passive structural components. Previous drywell-to-suppression chamber bypass test data indicates that the bypass leakage through the passive structural components will be much less than the 76% margin. The VB leakage limit, combined with the negligible passive structural leakage area, ensures that the drywell-tosuppression chamber bypass leakage limit is met for those outages for which the drywell-to-suppression chamber bypass test is not scheduled.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation valves ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR Part 50. Containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

The opening of a containment isolation valve that was locked or sealed closed to satisfy Technical Specification 3.6.3 Action statements, may be reopened on an intermittent basis under administrative controls. These controls consist of stationing a dedicated individual at the controls of the valve, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for primary containment isolation is indicated.

Primary containment isolation valves governed by this Technical Specification are identified in Table 3.6.3-1 of the TRM.

3/4.6.4 VACUUM RELIEF

Vacuum relief valves are provided to equalize the pressure between the suppression chamber and drywell. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. Two pairs of valves are required to protect containment structural integrity. There are four pairs of valves (three to provide minimum redundancy) so that operation may continue for up to 72 hours with no more than two pairs of vacuum breakers inoperable in the closed position.

Each vacuum breaker valve's position indication system is of great enough sensitivity to ensure that the maximum steam bypass leakage coefficient of

 $\frac{A}{V}k = 0.05 \text{ ft}^2$

for the vacuum relief system (assuming one valve fully open) will not be exceeded.

Amendment No. 9, -31, 107

LIMERICK - UNIT 2

B 3/4 6-4