### APPENDIX A

#### COMPILATION OF THE STATUS OF DATA USED IN AND GENERATED FROM THE ANALYSES PRESENTED IN THIS CHAPTER

9869180457 - Partz

B0000000-01717-4301-00005 REV00

| Figure    | Description                                                                                                                                                                      | Source                                                                                                                                                                                                                                                   | Associated Files                                                               | Q Status | Data Tracking Number |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-11 | Model prediction of general<br>corrosion rates of CAM in<br>humid-air as a function of<br>relative humidity at $T = 75^{\circ}$ C<br>and different exposure times.               | Humacd2.xls; worksheet<br>XLReg; calculations<br>performed in MathCad and<br>exported to a SigmaPlot<br>graph; Data has been<br>previously submitted - MI:<br>30048-M04-001; Contents of<br>HumidCAM subdirectory <sup>1</sup>                           | MathCad 7.0, SigmaPlot 4.0;<br>fig5.5-6.mcd, fig5.5-6.jnb                      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-12 | Model prediction of general<br>corrosion rates of CAM in<br>humid-air as a function of<br>relative humidity at a 1 year<br>exposure time and different<br>exposure temperatures. | Humacd2.xls; worksheet<br>XLReg; calculations<br>performed in MathCad and<br>exported to a SigmaPlot<br>graph; Data has been<br>previously submitted - MI:<br>30048-M04-001; Contents of<br>HumidCAM subdirectory <sup>1</sup>                           | MathCad 7.0, SigmaPlot 4.0;<br>fig5.5-7.mcd, fig5.5-7.jnb                      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-13 | Model prediction of general<br>corrosion rates of CAM in<br>humid-air as a function of<br>temperature at a relative<br>humidity of 60% and different<br>exposure times.          | Humacd2.xls; worksheet<br>XLReg; calculations<br>performed in MathCad and<br>exported to a SigmaPlot<br>graph; Data has been<br>previously submitted - MI:<br>30048-M04-001; Contents of<br>HumidCAM subdirectory <sup>1</sup>                           | MathCad 7.0, SigmaPlot 4.0;<br>fig5.5-8.mcd, fig5.5-8.jnb                      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-14 | The aqueous CAM<br>roughness factor from the<br>Waste Package Degradation<br>Expert Elicitation (Pendleton,<br>1998).                                                            | Expert elicitations Dm-a.cd,<br>Pa-a.cd, Dm-a.mcd, C-pf-<br>a.scd,<br>Dm-a.scd, Pa-a.scd [TBV-<br>311] <sup>2</sup>                                                                                                                                      | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>fig5.6-1.jnb | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 515  | General corrosion data of<br>CAM in tropical lake water<br>and polluted river water, and<br>the model prediction with the<br>uncertainty.                                        | fig5.6-2.mcd; exported to a<br>SigmaPlot data sheet to be<br>graphed                                                                                                                                                                                     | AQDepth.txt = lines on Fig<br>5.6-2;<br>fig5.6-2.jnb                           | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-15 | · · ·                                                                                                                                                                            | Camaqua.xls; worksheet<br>Aquadata columns A and C;<br>rows 1-37 for lake water and<br>rows 38-64 for river water;<br>exported to a SigmaPlot data<br>sheet to be graphed; Data<br>has been previously<br>submitted - MI: 30048-M04-<br>001 <sup>1</sup> | points on Fig 5.6-2;<br>fig5.6-2.jnb                                           | Non-Q    | MO9807MWDWAPDG.000   |

•

B0000000-0717-4301-00005 REV00

A-2

| Table A-1  | (continued) |   |
|------------|-------------|---|
| Table A-1. | (continuea) | , |

.

.

.

| Figure    | Description                                                                                                                                                                                                                                | Source                                                                                                                                                                                                | Associated Files                                          | Q Status | Data Tracking Number |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------------------|
| Fig. 5-16 | Temperature-dependent<br>general corrosion data of<br>mild steel in distilled water,<br>and the model prediction with<br>the uncertainty.                                                                                                  | fig5.6-3.mcd; exported to a<br>SigmaPlot data sheet to be<br>graphed                                                                                                                                  | 5.6-3.txt = lines on Fig 5.6-3;<br>fig5.6-3.jnb           | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-16 | · .                                                                                                                                                                                                                                        | Camaqua.xis; worksheet<br>Aquadata; columns B and C,<br>rows 65-71; exported to a<br>SigmaPlot data sheet to be<br>graphed; Data has been<br>previously submitted - MI:<br>30048-M04-001 <sup>1</sup> | points on Fig 5.6-3;<br>flg5.6-3.jnb                      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-17 | Model prediction of aqueous<br>general corrosion rates of<br>CAM as a function of<br>exposure temperature for<br>different exposure times.                                                                                                 | Humacd2.xls; worksheet<br>XLReg; calculations<br>performed in MathCad and<br>exported to a SigmaPlot<br>graph; Data has been<br>previously submitted - MI:<br>30048-M04-001                           | MathCad 7.0, SigmaPlot 4.0;<br>fig5.6-4.mcd, fig5.6-4.jnb | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-18 | Model prediction of aqueous<br>general corrosion rates of<br>CAM as a function of<br>exposure time for different<br>exposure temperatures.                                                                                                 | Humacd2.xls; worksheet<br>XLReg; calculations<br>performed in MathCad and<br>exported to a SigmaPlot<br>graph; Data has been<br>previously submitted - MI:<br>30048-M04-001                           | MathCad 7.0, SigmaPlot 4.0;<br>fig5.6-5.mcd, fig5.6-5.jnb | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-19 | Comparison of model<br>prediction of aqueous<br>general corrosion of CAM to<br>0.5 and 1.0 year CAM<br>general corrosion data from<br>the Long-Term Corrosion<br>Testing Facility (LTCTF) at<br>Lawrence Livermore National<br>Laboratory. | fig5.6-6.mcd; exported to a<br>SigmaPlot data sheet to be<br>graphed                                                                                                                                  | 5.6-6.txt = lines on Fig 5.6-6;<br>fig6.6-6.jnb           | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-19 |                                                                                                                                                                                                                                            | Data from Pasupathi, V.<br>1998. Waste package<br>Containment Barrier<br>Materials Corrosion Data<br>(LV.WP.VP.05/98-103)                                                                             | points on Fig 5.6-6;<br>fig5.6-6.jnb                      | Non-Q    | MO9807MWDWAPDG.000   |

B0000000-0717-4301-00005 REV00

A-3

August 1998

.

.

| Figure    | Description                                                                                                                                                                                                                                                                               | Source Associated Files                                                                                                                                                |                                                                                                                                                             | Q Status | Data Tracking Number |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-20 | 20 Cumulative Distribution<br>Function (CDF) of corrosion<br>rate term in high pH CAM<br>localized corrosion model. Expert elicitations Ds-k.cd,<br>Jf-k.cd, Js-k.cd, Pa-k.cd, Js-<br>k.mcd, Pa-k.mcd, C-cam-<br>k.scd, Ds-k.scd, Jf-k.scd, Js-<br>k.scd, Pa-k.scd [TBV-311] <sup>2</sup> |                                                                                                                                                                        | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed;<br>fig5.6-7.jnb                                                                             | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-21 | CDF of corrosion rate term in<br>high pH CAM localized<br>corrosion model.                                                                                                                                                                                                                | Expert eliciations Ds-n.cd,<br>Js-n.cd, Pa-n.cd, Ds-n.mcd,<br>Js-n.mcd, C-cam-n.scd,<br>Ds-n.scd, Jf-n.scd, Js-n.scd,<br>Pa-n.scd [TBV-311] <sup>2</sup>               | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>fig5.6-8.jnb                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-22 | CAM localized corrosion<br>depth versus exposure time<br>for $n = 0.3$ and $0^{ih}$ , $50^{ih}$ , and<br>$100^{ih}$ percentiles of the B<br>distribution.<br>Calculation done in<br>MathCad; fig5.6-9.mcd;<br>the B and n distribution<br>Figs 5.6-7,8.                                   |                                                                                                                                                                        | Text file np3.dat results from<br>fig5.6-9.mcd and is imported<br>to a SigmaPlot 4.0 data sheet<br>to be graphed                                            | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-23 | The CDFs <sup>3</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the absence of<br>dripping from the Waste<br>Package Degradation Expert<br>Elicitation.                                                                                                              | Calculations performed in<br>MathCad (fig5.7-all.mcd) and<br>exported to a SigmaPlot<br>datasheet to be graphed;<br>Data is originally from [TBV-<br>323] <sup>4</sup> | SigmaPlot 4.0;<br>fig5.7-1.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-24 | The CDFs <sup>3</sup> for the general<br>corrosion rate of Alloy C-22<br>at 50°C in the absence of<br>dripping from the Waste<br>Package Degradation Expert<br>Elicitation.                                                                                                               | Calculations performed in<br>MathCad (fig5.7-all.mcd) and<br>exported to a SigmaPlot<br>datasheet to be graphed<br>[TBV-323] <sup>4</sup>                              | SigmaPlot 4.0;<br>fig5.7-2.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-25 | The CDFs <sup>3</sup> for the general<br>corrosion rate of Alloy C-22<br>at 25°C in the absence of<br>dripping from the Waste<br>Package Degradation Expert<br>Elicitation.                                                                                                               | Calculations performed in<br>MathCad (fig5.7-all.mcd) and<br>exported to a SigmaPlot<br>datasheet to be graphed<br>[TBV-323] <sup>4</sup>                              | SigmaPlot 4.0;<br>fig5.7-3.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-26 | 26 The variability CDFs <sup>3</sup> for the general corrosion rate of Alloy C-22 at 25, 50, and 100°C in the absence of dripping utilizing a 75%/25% uncertainty/variability partition ratio and the 50 <sup>th</sup> uncertainty percentile.                                            |                                                                                                                                                                        | Output text file is a CDF and<br>is imported (gnd17550.cdf,<br>gnd27550.cdf, gnd37550.cdl)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.7-4.jnb) | Non-Q    | MO9807MWDWAPDG.000   |

B0000000-0717-4301-00005 REV00

A-4

| Figure    | Description                                                                                                                                                                                                                                                                                                                                       | Source                                                                                                                                                                   | Associated Files                                                                                                                                            | Q Status | Data Tracking Number |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-27 | The variability CDFs <sup>3</sup> for the<br>general corrosion rate of<br>Alloy C-22 at 100°C in the<br>absence of dripping utilizing<br>25%/75%, 50%/50%, and<br>75%/25%<br>uncertainty/variability<br>partition ratios and the 50 <sup>th</sup><br>uncertainty percentile.                                                                      | Calculations performed in<br>MathCad (fig5.7-all.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot datasheet [TBV-<br>323] <sup>4</sup>  | Output text file is a CDF and<br>is imported (gnd32550.cdf,<br>gnd35050.cdf, gnd37550.cdf)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.7-5.jnb) | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-28 | The CDFs <sup>3</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the absence of<br>dripping utilizing a 75%/25%<br>uncertainty/variability<br>partition ratio and the 5 <sup>th</sup> ,<br>50 <sup>th</sup> , and 95 <sup>th</sup> uncertainty<br>percentiles.                                                                | Calculations performed in<br>MathCad (fig5.7-all.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot datasheet [TBV-<br>323] <sup>4</sup>  | Output text file is a CDF and<br>is imported (gnd37505.cdf,<br>gnd37550.cdf, gnd37595.cdf)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.7-6.jnb) | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-29 | Alloy C-22 CRM general<br>corrosion depth variation with<br>time at 100°C in the absence<br>of dripping utilizing a<br>75%/25%<br>uncertainty/variability<br>partition ratio, the 50 <sup>th</sup><br>uncertainty percentile, and<br>the 0 <sup>th</sup> , 50 <sup>th</sup> , and 100 <sup>th</sup><br>variability percentile<br>corrosion rates. | Calculations performed in<br>MathCad (fig5.7-all.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot datasheet [TBV-<br>323] <sup>34</sup> | Output text file is imported<br>(Fig57) into a SigmaPlot 4.0<br>data sheet to be graphed<br>(fig5.7-7.jnb)                                                  | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-30 | The CDFs <sup>5</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the pH = 3 to 10,<br>340mV dripping environment<br>from the Waste Package<br>Degradation Expert<br>Elicitation.                                                                                                                                              | Calculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>sheet to be graphed [TBV-<br>323] <sup>4</sup>                                  | SigmaPlot 4.0;<br>fig5.8-1.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-31 | The CDFs <sup>5</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the pH = 2.5,<br>340mV dripping environment<br>from the Waste Package<br>Degradation Expert<br>Elicitation.                                                                                                                                                  | Calculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>sheet to be graphed [TBV-<br>323] <sup>4</sup>                                  | SigmaPlot 4.0;<br>fig5.8-2.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |

A-5

| Figure    | Description                                                                                                                                                                                                                                                                                            | Source                                                                                                                                                                                                                               | Associated Files                                                                                                                                            | Q Status | Data Tracking Number |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-32 | The CDFs <sup>5</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the pH = 2.5,<br>form the Waste Package<br>Degradation ExpertCalculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>sheet to be graphed [TBV-<br>323] <sup>4</sup> Sigu<br>fig5 |                                                                                                                                                                                                                                      | SigmaPlot 4.0;<br>fig5.8-3.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-33 | The CDFs <sup>5</sup> for the general<br>corrosion rate of aggregate<br>Alloy C-22 at 100°C in all<br>dripping environments and<br>the resultant composite CDF.                                                                                                                                        | Calculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>sheet to be graphed [TBV-<br>3231 <sup>4</sup>                                                                                              |                                                                                                                                                             | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-34 | The CDFs <sup>o</sup> for the general<br>corrosion rate of aggregate<br>Alloy C-22 at 50°C in all<br>dripping environments and<br>the resultant composite CDF.                                                                                                                                         | ° for the general<br>rate of aggregate   Calculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>hvironments and<br>sheet to be graphed [TBV-<br>nt composite CDF.   SigmaPlot 4.0;<br>fig5.8-5.jnb |                                                                                                                                                             | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-35 | The CDFs° for the general<br>corrosion rate of aggregate<br>Alloy C-22 at 25°C in all<br>dripping environments and<br>the resultant composite CDF.                                                                                                                                                     | Calculations performed in<br>MathCad (fig5.8.mcd) and<br>exported to a SigmaPlot data<br>sheet to be graphed [TBV-<br>323] <sup>4</sup>                                                                                              | SigmaPlot 4.0;<br>fig5.8-6.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-36 | Comparison of WPDEE<br>results with Project and<br>literature data on Alloy C-22<br>general corrosion rates in<br>various testing conditions.                                                                                                                                                          | CRM5.8,9.xls, worksheet<br>Composite Data for C-22,<br>exported to a SigmaPlot data<br>sheet to be graphed <sup>6</sup>                                                                                                              | SigmaPlot 4.0;<br>fig5.8-7.jnb                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-37 | The variability CDFs <sup>5</sup> for the<br>general corrosion rate of<br>Alloy C-22 at 25, 50, and<br>100°C in presence of<br>dripping utilizing a 50%/50%<br>uncertainty/variability<br>partition ratio and the 50th<br>uncertainty percentile.                                                      | Calculations performed in<br>MathCad (fig5.8.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet [TBV-<br>323] <sup>4</sup>                                                                 | Output text file is a CDF and<br>is imported (g8415050.cdf,<br>g8425050.cdf, g8435050.cdf)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.8-8.jnb) | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-38 | The CDFs <sup>5</sup> for the general<br>corrosion rate of Alloy C-22<br>at 100°C in the presence of<br>dripping utilizing 25%/75%,<br>50%/50%, and 75%/25%<br>uncertainty/variability<br>partition ratios and the 50th<br>uncertainty percentile.                                                     | Calculations performed in<br>MathCad (fig5.8.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet [TBV-<br>323] <sup>4</sup>                                                                 | Output text file is a CDF and<br>is imported (g8432550.cdf,<br>g8435050.cdf, g8437550.cdf)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.8-9.jnb) | Non-Q    | MO9807MWDWAPDG.000   |

B0000000-0717-4301-00005 REV00

A-6

.

\_ \_ . ....

| Figure    | Description Source Associated Files                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      | Associated Files                                                                                                                                             | Q Status | Data Tracking Number |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-39 | The CDFs <sup>5</sup> for the general<br>corrosion rate of Alioy C-22<br>at 100°C in the presence of<br>dripping utilizing a 50%/50%<br>uncertainty/variability                                                                                                                                                        | Calculations performed in<br>MathCad (fig5.8.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet [TBV-<br>323] <sup>4</sup> | Output text file is a CDF and<br>is imported (g8435005.cdf,<br>g8435050.cdf, g8435095.cdf)<br>into SigmaPlot 4.0 data sheet<br>to be graphed (fig5.8-10.jnb) | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-40 | Alloy C-22 CRM general<br>corrosion depth variation with<br>time up to 10,000 years at<br>100°C in the presence of<br>dripping utilizing a 50%/50%<br>uncertainty/variability<br>partition ratio, the 50th<br>uncertainty percentile, and<br>the 0th, 50th, and 100th<br>variability percentile<br>corrosion rates.    | Calculations performed in<br>MathCad (fig5.8.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet [TBV-<br>323] <sup>4</sup> | Output text file is imported<br>(Fig511) into a SigmaPlot 4.0<br>data sheet to be graphed<br>(fig5.8-11.jnb)                                                 | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-41 | Alloy C-22 CRM general<br>corrosion depth variation with<br>time up to 1,000,000 years at<br>100°C in the presence of<br>dripping utilizing a 50%/50%<br>uncertainty/variability<br>partition ratio, the 50th<br>uncertainty percentile, and<br>the 0th, 50th, and 100th<br>variability percentile<br>corrosion rates. | Calculations performed in<br>MathCad (fig5.8.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet [TBV-<br>323] <sup>4</sup> | Output text file is imported<br>(Fig511) into a SigmaPlot 4.0<br>data sheet to be graphed<br>(fig5.8-11.jnb)                                                 | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-42 | Localized corrosion rate of<br>the inner barrier as a function<br>of temperature predicted by<br>the CRM localized corrosion<br>model at 1,000 year<br>exposure time. The mean of<br>the model and 2 and 3<br>standard deviations of the<br>mean are shown.                                                            | Calculations performed in<br>MathCad (fig5.9.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet                            | Output text file is imported<br>(59rate.dat) into a SigmaPlot<br>4.0 data sheet to be graphed;<br>Columns 1, 2,3,4,5,6<br>(fig5.9-1.jnb)                     | Non-Q    | MO9807MWDWAPDG.000   |

A-7

| Figure    | Description                                                                                                                                                                                                                                                   | Description Source Associate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | Q Status | Data Tracking Number |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-43 | Localized corrosion rate of<br>the inner barrier as a function<br>of temperature predicted by<br>the CRM localized corrosion<br>model at 100,000 year<br>exposure time. The mean of<br>the model and 2 and 3<br>standard deviations of the<br>mean are shown. | Calculations performed in<br>MathCad (fig5.9.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output text file is imported<br>(59rate.dat) into a SigmaPlot<br>4.0 data sheet to be graphed;<br>Columns 1,12,13,14,15,16<br>(fig5.9-2.jnb)                 | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-44 | Localized corrosion depth of<br>the inner barrier as a function<br>of exposure time predicted<br>by the CRM localized<br>corrosion model at 90°C.<br>The mean of the model and<br>2 and 3 standard deviations<br>of the mean are shown.                       | lized corrosion depth of<br>ner barrier as a function<br>posure time predicted<br>le CRM localized<br>sion model at 90°C.<br>mean of the model and<br>d 3 standard deviations<br>e mean are shown<br>Data SigmaPlot data sheet<br>Calculations performed in<br>MathCad (fig5.9.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet<br>SigmaPlot dat |                                                                                                                                                              | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-45 | Localized corrosion depth of<br>the inner barrier as a function<br>of exposure time predicted<br>by the CRM localized<br>corrosion model at 60°C.<br>The mean of the model and<br>2 and 3 standard deviations<br>of the mean are shown.                       | Calculations performed in<br>MathCad (fig5.9.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output text file is imported<br>(LLNLPitR01.dat) into a<br>SigmaPlot 4.0 data sheet to<br>be graphed,;<br>Columns 1,7,8,9,10,11,17,18<br>(fig5.9-4.jnb)      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-46 | Localized corrosion depth of<br>the inner barrier as a function<br>of exposure time predicted<br>by the CRM localized<br>corrosion model at 30°C.<br>The mean of the model and<br>2 and 3 standard deviations<br>of the mean are shown.                       | Calculations performed in<br>MathCad (fig5.9.mcd)<br>producing an output text file<br>which is then exported to a<br>SigmaPlot data sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output text file is imported<br>(LLNLPitR01.dat) into a<br>SigmaPlot 4.0 data sheet to<br>be graphed;<br>Columns<br>1,12,13,14,15,16,17,18<br>(fig5.9-5.jnb) | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-47 | CDF <sup>7</sup> for the temperature<br>threshold for CAM corrosion<br>initiation from the WPDEE <sup>2</sup> .                                                                                                                                               | Expert elicitations Ds.cd,<br>Ds.scd, Jf.cd, Jf.scd, Js.cd,<br>Js.scd, Pa.cd, Pa.scd, T-<br>ns.scd [TBV-323] <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>Lines are the *.scd files and<br>points are the *.cd files;<br>fig5.10-1.inb               | Non-Q    | MO9807MWDWAPDG.000   |

B0000000-0717-4301-00005 REV00

A-8

| Figure         | Description                                                                                                                                                          | Source                                                                                                                                                                                                                                                                                                                                                                                                                              | Associated Files                                                                                                                                                                                              | Q Status | Data Tracking Number |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-48      | CDF <sup>8</sup> for the relative humidity<br>threshold for CAM humid-air<br>corrosion initiation including<br>the effects of salts from the<br>WPDEE <sup>2</sup> . | Expert elicitations Chacrh-<br>s.scd, Dm-s.cd, Dm-s.scd,<br>Ds.cd, Ds.scd, Jf.cd, Jf.scd,<br>Js.cd, Js-comb.scd, Pa.cd,<br>Pa.scd [TBV-323] <sup>4</sup>                                                                                                                                                                                                                                                                            | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>Lines are the *.scd files and<br>points are the *.cd files;<br>fig5.10-2.jnb                                                                | Non-Q    | MO9807MWDWAPDG.000   |
| -<br>Fig. 5-49 | CDF <sup>8</sup> for the relative humidity threshold for CAM humid-air corrosion initiation from the WPDEE <sup>2</sup> .                                            | Expert elicitations C-hac-<br>rh.scd, Dm.cd, Dm.scd,<br>Ds.cd, Ds.scd, Jf.cd, Jf.scd,<br>Js.cd, Js-comb.scd, Pa.cd,<br>Pa.scd [TBV-323] <sup>4</sup>                                                                                                                                                                                                                                                                                | ons C-hac-<br>Dm.scd,<br>Jf.cd, Jf.scd,<br>23] <sup>4</sup><br>Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>Lines are the *.scd files and<br>points are the *.cd files;<br>fid5.10-3.inb |          | MO9807MWDWAPDG.000   |
| Fig. 5-50      | $CDF^{\theta}$ for the relative humidity<br>threshold for CAM aqueous<br>corrosion initiation including<br>the effects of salts from the<br>WPDEE <sup>2</sup>       | CDF <sup>8</sup> for the relative humidity<br>threshold for CAM aqueous<br>corrosion initiation including<br>the effects of salts from the<br>WPDEE <sup>2</sup> Expert elicitations Caqrh-<br>s.scd, Dm-s.cd, Dm-s.scd,<br>Ds.cd, Ds.scd, Jf.cd, Jf.scd,<br>Js.cd, Js.scd, Pa.scd   Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>Lines are the *.scd files and<br>points are the *.cd files;<br>fig5.10-4.inb |                                                                                                                                                                                                               | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-51      | CDF <sup>8</sup> for the relative humidity<br>threshold for CAM aqueous<br>corrosion initiation from the<br>WPDEE <sup>2</sup>                                       | Expert elicitations C-aq-<br>rh.scd, Dm.cd, Dm.scd,<br>Ds.cd, Ds.scd, Jf.cd, Jf.scd,<br>Js.cd, Js.scd, Pa.cd, Pa.scd<br>[TBV-323] <sup>4</sup>                                                                                                                                                                                                                                                                                      | Data is imported to a<br>SigmaPlot data sheet to be<br>graphed<br>Lines are the *.scd files and<br>points are the *.cd files;<br>fig5.10-1.jnb                                                                | Non-Q    | MO9807MWDWAPDG.000   |

<sup>1</sup> WAPDEG 3.07 Software Routine Report, 30048-2999, Rev. 00, Appendix A and B <sup>2</sup> CRWMS M&O. 1997e. *Final Report on Waste Package Degradation Expert Elicitation Project, Rev. 0.* Las Vegas, Nevada: TRW Environmental Safety Systems. MOL.19980218.0231. .3

Cumulative Distribution Functions for No Drip Corrosion Resistant Material General Corrosion Model, B00000000-01717-0210-00012 REV 01 4

Pendleton, M. W. 1998. Waste Package Degradation Expert Elicitation Revised Preliminary Inputs Received by March 31, 1998. CRWMS M&O Interoffice Correspondence, LV.EI.MWP.04/98-017, April 13. 5

Cumulative Distribution Functions for Dripping Corrosion Resistant Material General Corrosion Model, B00000000-01717-0210-00014 REV 01A 6

Pasupathi, V. 1997. CRM Degradation Models-Update. CRWMS M&O (Civilian Radioactive Waste Management System, Management and Operating Contractor) Interoffice Correspondence. LV.WP.VP.12/97-268, December 22. MOY-971231-11. Cumulative Distribution Functions for the Temperature Threshold for the Onset of Carbon Steel Corrosion, B00000000-01717-0210-00015 REV 00

Cumulative Distribution Functions for the Relative Humidity Thresholds for the Onset of Carbon Steel Corrosion. B0000000-01717-0210-00016 REV 00

| Figure                    | Code              | Description                                                                                                                                                                                         | Input File                                                                                                                                                                                                                                                           | Output File                                                                                        | Q Status | Data Tracking Number |
|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-57                 | NA                | Temperature versus time<br>history for waste package<br>groups in the NE region,<br>spent nuclear fuel, long<br>term average, nominal<br>infiltration, α <sub>mean</sub> , and no<br>backfill.      | NEsnf00noBFj2204.hst<br>NEsnf01noBFj2204.hst<br>NEsnf10noBFj2204.hst<br>NEsnf11noBFj2204.hst<br>NEsnf12noBFj2204.hst<br>NEsnf21noBFj2204.hst<br>NEsnf31noBFj2204.hst<br>NEsnf32noBFj2204.hst<br>NEsnf42noBFj2204.hst<br>NEsnf52noBFj2204.hst<br>NEsnf62noBFj2204.hst | Columns 1 and 2<br>fig5.11-1.jnb                                                                   | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-58                 | NA                | Relative humidity versus<br>time history of waste<br>package groups in the NE<br>region, spent nuclear fuel,<br>long term average,<br>nominal infiltration, α <sub>mean</sub> ,<br>and no backfill. | Same as above                                                                                                                                                                                                                                                        | Columns 1 and 3<br>fig5.11-1.jnb                                                                   | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-59<br>through 5-61 | 3.07 <sup>2</sup> | Base case waste package degradation.                                                                                                                                                                | NE1a5set5.inp<br>NE0a5set6.inp                                                                                                                                                                                                                                       | NE1a5set5.out<br>NE0a5set6.out                                                                     | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-62<br>through 5-64 | 3.09 <sup>3</sup> | Waste package<br>degradation for six<br>repository regions (i.e.,<br>CC, NE, NW, SC, SE,<br>SW)                                                                                                     | CC1a5set5.inp<br>NE1a5set5.inp<br>NW1a5set5.inp<br>SC1a5set5.inp<br>SE1a5set5.inp<br>SW1a5set5.inp                                                                                                                                                                   | CC1a5set5.out<br>NE1a5set5.out<br>NW1a5set5.out<br>SC1a5set5.out<br>SE1a5set5.out<br>SW1a5set5.out | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-65<br>through 5-69 | 3.09              | Waste package<br>degradation for different<br>surface fractions of the<br>waste package surface<br>wetted by drips                                                                                  | NE1-1a5set5.inp<br>NE1-10a5set5.inp<br>NE1-100a5set5.inp                                                                                                                                                                                                             | NE1-1a5set5.out<br>NE1-10a5set5.out<br>NE1-100a5set5.out                                           | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-70<br>through 5-74 | 3.09              | Waste package<br>degradation for different<br>patch sizes                                                                                                                                           | NE1a5s5p310.inp<br>NE1a5s5p3100.inp<br>NE1a5s5p31k.inp                                                                                                                                                                                                               | NE1a5s5p310.out<br>NE1a5s5p3100.out<br>NE1a5s5p31k.out                                             | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-75 and 5-76        | 3.09              | Waste package<br>degradation for high<br>aspect-ratio pitting<br>corrosion of the CAM<br>under alkaline dripping                                                                                    | NE1a5s5phcdf.inp                                                                                                                                                                                                                                                     | NE1a5s5phcdf.out                                                                                   | Non-Q    | MO9807MWDWAPDG.000   |

Table A-2 Input and Output Data for the Figures Reporting the Waste Package Degradation Analysis Results.

B0000000-0717-4301-00005 REV00

A-10

| Figure                    | Code | Description                                                                                                                                                                                           | input File                                                                                                                                                                                                               | Output File                                                                                                                                           | Q Status | Data Tracking Number |
|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Fig. 5-77<br>through 5-79 | 3.09 | condition<br>Waste package<br>degradation for enhanced<br>general corrosion rates of<br>the CAM under an<br>assumed condition of<br>sustained<br>microbiologically<br>influenced corrosion            | NE1a5s5mic.inp                                                                                                                                                                                                           | NE1a5s5mic.ouť                                                                                                                                        | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-80<br>through 5-83 | 3.09 | Waste package<br>degradation for alternative<br>allocations for the<br>variability and uncertainty<br>of the CRM general<br>corrosion rate variance<br>under dripping and<br>alternative median rates | NE1a5set1.inp<br>NE1a5set2.inp<br>NE1a5set3.inp<br>NE1a5set4.inp<br>NE1a5set5.inp<br>NE1a5set6.inp<br>NE1a5set7.inp<br>NE1a5set8.inp<br>NE1a5set8.inp                                                                    | NE1a5set1.out<br>NE1a5set2.out<br>NE1a5set3.out<br>NE1a5set4.out<br>NE1a5set5.out<br>NE1a5set6.out<br>NE1a5set7.out<br>NE1a5set8.out<br>NE1a5set9.out | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-84<br>through 5-85 | NA   | Cumulative distribution<br>functions (CDFs) <sup>4</sup> for the<br>composite CRM general<br>corrosion rates                                                                                          | gPA15050.cdf<br>gPA25050.cdf<br>gPA35050.cdf<br>gJF15050.cdf<br>gJF25050.cdf<br>aJF35050.cdf                                                                                                                             | NA                                                                                                                                                    | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-86<br>through 5-88 | 3.09 | Waste package<br>degradation for two end<br>members of the expert<br>elicitation for CRM general<br>corrosion rate distribution<br>under dripping condition                                           | NE1a5s5jf.inp<br>NE1a5s5pa.inp                                                                                                                                                                                           | NE1a5s5jf.out<br>NE1a5s5pa.out                                                                                                                        | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-89 and<br>5-90     | NA   | Temperature and relative<br>humidity histories of<br>different waste package<br>groups in the NE region in<br>the presence of backfill<br>emplaced at 100 years<br>after waste emplacement            | NEsnf00BFj2204.hst<br>NEsnf01BFj2204.hst<br>NEsnf02BFj2204.hst<br>NEsnf11BFj2204.hst<br>NEsnf12BFj2204.hst<br>NEsnf20BFj2204.hst<br>NEsnf21BFj2204.hst<br>NEsnf22BFj2204.hst<br>NEsnf81BFj2204.hst<br>NEsnf82BFj2204.hst | fig5.12-9.jnb<br>Columns 1, 2, and 3                                                                                                                  | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-91<br>through 5-93 | 3.09 | Waste package<br>degradation for different<br>relative humidity and                                                                                                                                   | CC1a5set5bf.inp<br>NE1a5set5bf.inp<br>NW1a5set5bf.inp                                                                                                                                                                    | CC1a5set5bf.out<br>NE1a5set5bf.out<br>NW1a5set5bf.out                                                                                                 | Non-Q    | MO9807MWDWAPDG.000   |

.

Table A-2. (continued).

A-11

| Figure                     | Code   | Description                                                                                                                                                | Input File                                                                                                                       | Output File                                                                                                                      | Q Status | Data Tracking Number |
|----------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
|                            |        | temperature conditions at<br>the waste package<br>surface in the presence of<br>backfill in six different<br>repository regions                            | SC1a5set5bf.inp<br>SE1a5set5bf.inp<br>SW1a5set5bf.inp                                                                            | SC1a5set5bf.out<br>SE1a5set5bf.out<br>SW1a5set5bf.out                                                                            |          |                      |
| Fig. 5-94                  | 3.09 . | Waste package<br>degradation for varying<br>drip shield thickness                                                                                          | NE1a5s5wpds1-1.inp<br>NE1a5s5wpds1-2.inp<br>NE1a5s5wpds1-4.inp<br>NE1a5s5wpds2-1.inp<br>NE1a5s5wpds2-2.inp<br>NE1a5s5wpds2-4.inp | NE1a5s5wpds1-1.out<br>NE1a5s5wpds1-2.out<br>NE1a5s5wpds1-4.out<br>NE1a5s5wpds2-1.out<br>NE1a5s5wpds2-2.out<br>NE1a5s5wpds2-4.out | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-95                  | 3.09   | Waste package<br>degradation for ceramic<br>coating                                                                                                        | NE1a5s5c1aq1.inp<br>NE1a5s5c1aq2.inp                                                                                             | NE1a5s5c1aq1.out<br>NE1a5s5c1aq2.out                                                                                             | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-96<br>through 5-98  | 3.09   | Waste package<br>degradation for varying<br>CAM thickness                                                                                                  | NE1a5set5-10.inp<br>NE1a5set5-15.inp<br>NE1a5set5-30.inp                                                                         | NE1a5set5-10.out<br>NE1a5set5-15.out<br>NE1a5set5-30.out                                                                         | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-99<br>through 5-101 | 3.09   | Waste package<br>degradation for varying<br>CRM thickness                                                                                                  | NE1a5set5-1.inp<br>NE1a5set5-2.inp<br>NE1a5set5-4.inp<br>NE1a5set5-6.inp                                                         | NE1a5set5-1.out<br>NE1a5set5-2.out<br>NE1a5set5-4.out<br>NE1a5set5-6.out                                                         | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-102                 | SATOOL | Scatter plot of first-patch<br>breach times versus CRM<br>corrosion rate under<br>dripping conditions<br>resulting from sensitivity<br>analysis Case WPSA1 | NE1a5s5.inp                                                                                                                      | NE1a5s5.out                                                                                                                      | Non-Q    | MO9807MWDWAPDG.000   |
| Fig. 5-103 and<br>5-104    | SATOOL | Salient input variables<br>resulting from sensitivity<br>study Case WPSA2                                                                                  | NE1a5s5sa3.inp<br>NE1a5s5sa3s.inp                                                                                                | NE1a5s5sa3.out<br>NE1a5s5sa3s.out<br>NE1a5s5sa3t.SAT<br>NE1a5s5sa3t.TBL                                                          | Non-Q    | MO9807MWDWAPDG.000   |

<sup>1</sup> Thermal Hydrology, B0000000-01717-4301-00003 Rev 01, § 3.5.5, DTN - LL980709604242.041
<sup>2</sup> WAPDEG 3.07 Software Routine Report, 30048-2999, Rev. 00
<sup>3</sup> WAPDEG 3.09 Software Routine Report, 30048-2999, Rev. 02
<sup>4</sup> Cumulative Distribution Functions for Dripping Corrosion Resistant Material General Corrosion Model, B0000000-01717-0210-00014 REV 01

| Table     | Description                                                                                                  | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q Status | Data Tracking Number |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--|--|--|
| Table 5-2 | Humid-Air Corrosion Data Used in the Model Development                                                       | Humacd2.xis; worksheet Data; Columns from left<br>to right A,G,B,C,F,H,I,D,J,L,K,M,N; Data has been<br>previously submitted - MI: 30048-M04-001;<br>Contents of HumidCAM subdirectory; discussed in<br>the WAPDEG 3.07 Software Routine Report<br>(App. A)                                                                                                                                                                                            | Non-Q    | MO9807MWDWAPDG.000   |  |  |  |
| Table 5-3 | Humid-Air Corrosion Roughness<br>Factor Data at 16-Year Exposure<br>Time for Different Types of Steels       | Humacd2.xls; worksheet Data (2); Columns from<br>left to right M,H,N,P,N,P; Rows 59,64; 66,71;<br>73,78; 80,85; 87,92; 94,99; 101,106; Data has<br>been previously submitted - Mi: 30048-M04-001;<br>Contents of HumidCAM subdirectory; discussed in<br>the WAPDEG 3.07 Software Routine Report (App.<br>A); Data is originally from Southwell, et al., 1976;<br>Southwell and Bultman, 1982                                                          | Non-Q    | MO9807MWDWAPDG.000   |  |  |  |
| Table 5-4 | Aqueous General Corrosion Data<br>Used in the Model Development                                              | Camaqua.xis; worksheet Aquadata; Columns A,B,<br>and C; Data has been previously submitted - MI:<br>30048-M04-001; Contents of HumidCAM<br>subdirectory; discussed in the WAPDEG 3.07<br>Software Routine Report (App. B)                                                                                                                                                                                                                             | Non-Q    | MO9807MWDWAPDG.000   |  |  |  |
| Table 5-5 | Aqueous Corrosion Roughness<br>Factor Data at 16-Year Exposure<br>Time                                       | Camaqua.xls; worksheet Aquadata (2); Columns<br>from left to right M,N,Q,W,T,AC,Z; Rows 29-33;<br>Data has been previously submitted - MI: 30048-<br>M04-001; Contents of HumidCAM subdirectory;<br>discussed in the WAPDEG 3.07 Software Routine<br>Report (App. B)                                                                                                                                                                                  | Non-Q    | MO9807MWDWAPDG.000   |  |  |  |
| Table 5-6 | Local Corrosion Environment<br>Scenarios on the CRM and the<br>Probabilities of Occurrence from<br>the WPDEE | Data is originally from Pendleton, M. W. 1998.<br>Waste Package Degradation Expert Elicitation<br>Revised Preliminary Inputs Received by March<br>31, 1998. CRWMS M&O Interoffice<br>Correspondence, LV.EI.MWP.04/98-017, April 13.<br>[TBV-323]. The data used for the table is<br>calculated in Cumulative Distribution Functions for<br>Dripping Corrosion Resistant Material General<br>Corrosion Model, B0000000-01717-0210-00014<br>REV 00, 01A | Non-Q    | MO9807MWDWAPDG.000   |  |  |  |

Table A-3 Compilation of the Status of the Data Listed in the Tables of this Report.

A-13

B0000000-0717-4301-00005 REV00

J.

| Table      | Description                                                                                                 | Source                                                                                                                                                                                                                                                                                                                                                      | Q Status | Data Tracking Number |
|------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| Table 5-7  | All the Corrosion Data for Alloy 22<br>Used in the Development of the<br>Correlation of the Corrosion Rate  | CRM5.8,9.xls; worksheet Composite Data for C-<br>22; Columns from left to right F,G,I,J,K,L,M,O,R;<br>Pasupathi, V. 1997. <i>CRM Degradation Models-<br/>Update.</i> CRWMS M&O (Civilian Radioactive<br>Waste Management System, Management and<br>Operating Contractor) Interoffice Correspondence.<br>LV.WP.VP.12/97-268, December 22. MOY-<br>971231-11. | Non-Q    | MO9807MWDWAPDG.000   |
| Table 5-18 | Importance Ranking of Input<br>Variables on First Patch-Breach<br>Output Variable (R <sup>2</sup> = 0.8492) | NE1a5s5sa3.tbl; output from SATOOL,                                                                                                                                                                                                                                                                                                                         | Non-Q    | MO9807MWDWAPDG.000   |

Chapter 5 Figures

•...

¥

÷.

,



Figure 5-1. Cutaway of a drift with three representative waste package types.



Figure 5-2. Information flow in TSPA model.



Figure 5-3. Drawings to illustrate the conceptual representation of waste package degradation by general and localized corrosion under dripping and no-drip conditions.



Figure 5-4. A schematic illustrating the conceptual model for the waste package degradation modeling with the "patches" approach.



Figure 5-5. Logic diagram for the base case waste package degradation model.  $T_{th}$  = temperature threshold for CAM corrosion initiation; HA RH<sub>th</sub> = relative humidity threshold for CAM humid-air corrosion initiation; Aq RH<sub>th</sub> = relative humidity threshold for CAM aqueous corrosion initiation; E<sub>corr</sub> = corrosion potential.

F5-5



Figure 5-6. Weather data and model predictions of the fraction of time for  $RH \ge 70$  percent as a function of average relative humidity.



Figure 5-7. The humid-air CAM roughness factor from the Waste Package Degradation Expert Elicitation (CRWMS M&O 1997e).



Figure 5-8. Humid-air general corrosion data and the model prediction for corrosion allowance materials.



Figure 5-9. Model prediction of general corrosion rates of CAM in humid air as a function of exposure time at  $T = 60^{\circ}$ C and different relative humidities.



Figure 5-10. Model prediction of general corrosion rates of CAM in humid air as a function of exposure  $\frac{1}{2}$  time at T = 90°C and different relative humidities.



Figure 5-11. Model prediction of general corrosion rates of CAM in humid air as a function of relative humidity at  $T = 75^{\circ}$ C and different exposure times.







Figure 5-13. Model prediction of general corrosion rates of CAM in humid air as a function of temperature at a relative humidity of 60 percent and different exposure times.







Figure 5-15. General corrosion data of CAM in tropical lake water and polluted river water, and the model prediction with the uncertainty.



Figure 5-16. Temperature-dependent general corrosion data of mild steel in distilled water, and the model prediction with the uncertainty.



Figure 5-17. Model prediction of aqueous general corrosion rates of CAM as a function of exposure temperature for different exposure times.



Figure 5-18. Model prediction of aqueous general corrosion rates of CAM as a function of exposure time for different exposure temperatures.



Figure 5-19. Comparison of model prediction of aqueous general corrosion of CAM to 0.5 and 1.0 year CAM general corrosion data from the Long-Term Corrosion Testing Facility (LTCTF) at Lawrence Livermore National Laboratory.



Figure 5-20. Cumulative distribution function of corrosion rate term in high pH CAM localized corrosion model.



Figure 5-21. Cumulative distribution function of time exponent term in high pH CAM localized corrosion model.

F5-13



Figure 5-22. CAM localized corrosion depth versus exposure time for n = 0.3 and 0, 50<sup>th</sup>, and 100<sup>th</sup> percentiles of the B distribution.



Figure 5-23. The cumulative distribution functions for the general corrosion rate of Alloy 22 at 100°C in the absence of dripping from the Waste Package Degradation Expert Elicitation (Pendleton 1998).

F5-14



Figure 5-24. The cumulative distribution functions for the general corrosion rate of Alloy 22 at 50°C in the absence of dripping from the Waste Package Degradation Expert Elicitation (Pendleton 1988).



Figure 5-25. The cumulative distribution functions for the general corrosion rate of Alloy 22 at 25°C in the absence of dripping from the Waste Package Degradation Expert Elicitation (Pendleton 1988).







Figure 5-27. The variability cumulative distribution functions for the general corrosion rate of Alloy 22 at  $100^{\circ}$ C in the absence of dripping using 25 percent/75 percent, 50 percent/50 percent, and 75 percent/25 percent uncertainty/variability partition ratios and the  $50^{th}$  uncertainty percentile.

F5-16







Figure 5-29. Alloy 22 CRM general corrosion depth variation with time at 100°C in the absence of dripping using a 75 percent/25 percent uncertainty/variability partition ratio, the 50<sup>th</sup> uncertainty percentile, and the 0, 50<sup>th</sup>, and 100<sup>th</sup> variability percentile corrosion rates.



Figure 5-30. The cumulative distribution functions for the general corrosion rate of Alloy 22 at  $100^{\circ}$ C in the pH = 3 to 10, 340mV SHE dripping environment from the Waste Package Degradation Expert Elicitation (Pendleton 1998).



Figure 5-31. The cumulative distribution functions for the general corrosion rate of Alloy 22 at 100°C in the pH = 2.5, 340mV SHE dripping environment from the Waste Package Degradation Expert Elicitation (Pendleton 1998).



Figure 5-32. The cumulative distribution functions for the general corrosion rate of Alloy 22 at  $100^{\circ}$ C in the pH = 2.5, 640mV SHE dripping environment from the Waste Package Degradation Expert Elicitation (Pendleton 1988).



Figure 5-33. The cumulative distribution functions for the aggregate general corrosion rate of Alloy 22 at 100°C in all dripping environments and the resultant composite CDF. The corrosion potentials are with respect to standard hydrogen electrode (SHE) scale.







Figure 5-35. The cumulative distribution functions for the aggregate general corrosion rate of Alioy 22 at 25°C in all dripping environments and the resultant composite CDF. The corrosion potentials are with respect to standard hydrogen electrode (SHE) scale.

F5-20







Figure 5-37. The variability cumulative distribution functions for the general corrosion rate of Alloy 22 at 25, 50, and 100°C in presence of dripping using a 50 percent/50 percent uncertainty/variability partition ratio and the 50th uncertainty percentile.

F5-21


Figure 5-38. The variability cumulative distribution functions for the general corrosion rate of Alloy 22 at 100°C in the presence of dripping using 25 percent/75 percent, 50 percent/50 percent, and 75 percent/25 percent uncertainty/variability partition ratios and the 50th uncertainty percentile.



Figure 5-39. The variability cumulative distribution functions for the general corrosion rate of Alloy 22 at 100°C in the presence of dripping using a 50 percent/50 percent uncertainty/variability partition ratio and the 5th, 50th, and 95th uncertainty percentiles.







Figure 5-41. Alloy 22 CRM general corrosion depth variation with time up to 1,000,000 years at 100°C in the presence of dripping using a 50 percent/50 percent uncertainty/variability partition ratio, the 50th uncertainty percentile, and the 0, 50th, and 100th variability percentile corrosion rates.



Figure 5-42. Localized corrosion rate of the inner barrier as a function of temperature predicted by the CRM localized corrosion model at 1,000 year exposure time. The mean of the model and 2 and 3 standard deviations of the mean are shown.



Figure 5-43. Localized corrosion rate of the inner barrier as a function of temperature predicted by the CRM localized corrosion model at 100,000 year exposure time. The mean of the model and 2 and 3 standard deviations of the mean are shown.



Figure 5-44. Localized corrosion depth of the inner barrier as a function of exposure time predicted by the CRM localized corrosion model at 90°C. The mean of the model and 2 and 3 standard deviations of the mean are shown.



Figure 5-45. Localized corrosion depth of the inner barrier as a function of exposure time predicted by the CRM localized corrosion model at 60°C. The mean of the model and 2 and 3 standard deviations of the mean are shown.



Figure 5-46. Localized corrosion depth of the inner barrier as a function of exposure time predicted by the CRM localized corrosion model at 30°C. The mean of the model and 2 and 3 standard deviations of the mean are shown.



Figure 5-47. Cumulative Distribution Function for the temperature threshold for CAM corrosion initiation from the WPDEE (CRWMS M&O 1997e).



Figure 5-48. Cumulative Distribution Function for the relative humidity threshold for CAM humid air corrosion initiation including the effects of salts from the WPDEE (CRWMS M&O 1997e).



Figure 5-49. Cumulative Distribution Function for the relative humidity threshold for CAM humid air corrosion initiation from the WPDEE (CRWMS M&O 1997e).



Figure 5-50. Cumulative Distribution Function for the relative humidity threshold for CAM aqueous corrosion initiation including the effects of salts from the WPDEE (CRWMS M&O 1997e).



Figure 5-51. Cumulative Distribution Function for the relative humidity threshold for CAM aqueous corrosion initiation from the WPDEE (CRWMS M&O 1997e).



Figure 5-52. Main flow chart for WAPDEG.



Figure 5-53. Flow chart for CAM General Corrosion Modeling.



Figure 5-54. Flow chart for CAM Corrosion Modeling with roughness factor or high-aspect ratio pit growth law.



Figure 5-55. Flow chart for CRM General Corrosion Modeling.



Figure 5-56. Flow chart for CRM Pitting Corrosion Modeling.



Figure 5-57. Temperature versus time history for waste package groups in the NE region, spent nuclear fuel, long-term average, nominal infiltration,  $\alpha_{mean}$ , and no backfill.



Figure 5-58. Relative humidity versus time history of waste package groups in the NE region, spent nuclear fuel, long-term average, nominal infiltration,  $\alpha_{mean}$ , and no backfill.



Figure 5-59. First breach, first pit-breach, and first patch-breach profiles of waste packages with time for the base case waste package degradation.



Figure 5-60. Number of pit perforations in waste packages at different times for the base case waste package degradation.



Figure 5-61. Number of patch perforations in waste packages for the base case waste package degradation.



Figure 5-62. Sensitivity of the first breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in six different repository regions.



Figure 5-63. Sensitivity of the first pit-breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in six different repository regions.



Figure 5-64. Sensitivity of the first patch-breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in six different repository regions.







Figure 5-66. Sensitivity of the first pit-breach profiles of waste packages with time to different surface fractions of the waste package surface wetted by drips.



Figure 5-67. Sensitivity of the first patch-breach profiles of waste packages with time to different surface fractions of the waste package surface wetted by drips.



Figure 5-68. Sensitivity of the number of patch perforations in waste packages at 50,000 years to different surface fractions of the waste package surface wetted by drips.



Figure 5-69. Sensitivity of the number of patch perforations in waste packages at 100,000 years to different surface fractions of the waste package surface wetted by drips.



Figure 5-70. Sensitivity of the first breach profiles of waste packages with time to different patch sizes.



Figure 5-71. Sensitivity of the first pit-breach profiles of waste packages with time to different patch sizes.



Figure 5-72. Sensitivity of the first patch-breach profiles of waste packages with time to different patch sizes.



Figure 5-73. Sensitivity of the number of patch perforations at 50,000 years in waste packages to different patch sizes.



Figure 5-74. Sensitivity of the number of patch perforations at 100,000 years in waste packages to different patch sizes.



Figure 5-75. Sensitivity of the first breach, first pit-breach, and first patch-breach profiles of waste packages with time to high-aspect ratio pitting corrosion of the CAM under alkaline dripping condition  $(pH\geq10)$  for the first 10,000 years after emplacement.



Figure 5-76. Sensitivity of the first breach, first pit-breach, and first patch-breach profiles of waste packages with time to high-aspect ratio pitting corrosion of the CAM under alkaline dripping condition (pH > 10) for the first 10,000 years after emplacement.



Figure 5-77. Sensitivity of the first breach, first pit-breach, and first patch-breach profiles of waste packages with time to enhanced general corrosion rates of the CAM under an assumed condition of sustained microbiologically influenced corrosion.



Figure 5-78. Sensitivity of the number of pit perforations at different times in waste packages to enhanced general corrosion rates of the CAM under an assumed condition of sustained microbiologically influenced corrosion.



Figure 5-79. Sensitivity of the number of patch perforations at different times in waste packages to enhanced general corrosion rates of the CAM under an assumed condition of sustained microbiologically influenced corrosion.



Figure 5-80. Sensitivity of the first breach profiles of waste packages with time to alternative allocations for the variability and uncertainty of the CRM general corrosion rate variance under dripping and alternative median rates.







Figure 5-82. Sensitivity of the number of patch perforations in waste packages at 10,000 years to alternative allocations for the variability and uncertainty of the CRM general corrosion rate variance under dripping and alternative median rates.











Figure 5-85. Cumulative distribution functions for the composite CRM general corrosion rates with drips at three temperatures, provided by Joseph Farmer.



Figure 5-86. Sensitivity of the first breach profiles of waste packages with time to two end members of the expert elicitation for CRM general corrosion rate distribution under dripping condition.



Figure 5-87. Sensitivity of the first patch-breach profiles of waste packages with time to two end members of the expert elicitation for CRM general corrosion rate distribution under dripping condition.



Figure 5-88. Sensitivity of the number of patch perforations in waste packages to two end members of the expert elicitation for CRM general corrosion rate distribution under dripping condition.







Figure 5-90. Relative humidity profiles of different waste package groups in the NE region in the presence of backfill emplaced at 100 years after waste emplacement.



Figure 5-91. Sensitivity of the first breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in the presence of backfill in six different repository regions.



Figure 5-92. Sensitivity of the first pit-breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in the presence of backfill in six different repository regions.



Figure 5-93. Sensitivity of the first patch-breach profiles of waste packages with time to different relative humidity and temperature conditions at the waste package surface in the presence of backfill in six different repository regions.



Figure 5-94. Sensitivity of the first breach profiles of waste packages with time to the varying drip shield thickness.



Figure 5-95. Profile of waste packages with the ceramic coating breach and the first breach of waste packages with time.



Figure 5-96. Sensitivity of the first breach profiles of waste packages with time to the varying CAM thickness.



Figure 5-97. Sensitivity of the first pit-breach profiles of waste packages with time to the varying CAM thickness.



Figure 5-98. Sensitivity of the first patch-breach profiles of waste packages with time to the varying CAM thickness.



Figure 5-99. Sensitivity of the first breach profiles of waste packages with time to the varying CRM thickness.



Figure 5-100. Sensitivity of the first pit-breach profiles of waste packages with time to the varying CRM thickness.



Figure 5-101. Sensitivity of the first patch-breach profiles of waste packages with time to the varying CRM thickness.



Figure 5-102. Scatter plot of first-patch breach times versus CRM corrosion rate under dripping conditions resulting from sensitivity analysis Case WPSA1.



Figure 5-103. Plot of R<sup>2</sup>-loss versus exposure time for salient input variables resulting from sensitivity study Case WPSA2.



Figure 5-104. Plot of Partial Rank Correlation Coefficient (PRCC) versus exposure time for salient input variables resulting from sensitivity study Case WPSA2.
Chapter 5 Tables

### Table 5-1 Dimensions of Three Representative Waste Package Types (Benton 1997).

| Waste Package Type                                     | Outer<br>Diameter<br>(meter) | Outer Length<br>with Extensions<br>(meter) <sup>*</sup> | Outer Length<br>without Extensions<br>(meter) <sup>a</sup> | Outer Barrier<br>Thickness<br>(meter) | Inner Barrier<br>Thickness<br>(meter) |
|--------------------------------------------------------|------------------------------|---------------------------------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------------|
| 21 Pressurized Water<br>Reactor (PWR) Waste<br>Package | 1.65                         | 5.34                                                    | 4.89                                                       | 0.10                                  | 0.02                                  |
| 44 Boiling Water<br>Reactor (BWR) Waste<br>Package     | 1.60                         | 5.34                                                    | 4.89                                                       | 0.10                                  | 0.02                                  |
| Co-disposal Waste<br>Package <sup>b</sup>              | 1.97                         | 5.30                                                    | 4.85                                                       | 0.10                                  | 0.02                                  |

a. Waste package has the outer barrier extensions for lifting 0.225 meters on each end.

b. Co-disposal waste package includes five defense high-level waste (DHLW) canisters with one DOE spent nuclear fuel (DSNF) canister.

|    | Time<br>(years) | T <sub>avg</sub><br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(μg/m <sup>3</sup> ) | Depth<br>(µm)          | Rate<br>(µm/yr) | f <sub>70</sub> | t <sub>new</sub><br>(years) | T <sub>new</sub><br>(°C) | RH <sub>new</sub><br>(%) | Ratenew<br>(µm/yr) | Remarks                |
|----|-----------------|--------------------------|--------------------------|--------------------------------------------|------------------------|-----------------|-----------------|-----------------------------|--------------------------|--------------------------|--------------------|------------------------|
| 1  | 0.25            | 8                        | 78                       | 71.14                                      | 17.75                  | 71.01           | 0.772           | 0.19                        | 6.60                     | 85.77                    | 91.97              | carbon steel; urban    |
| 2  | 0.50            | 8                        | 78                       | 71.14                                      | 23.67                  | 47.34           | 0.772           | 0.39                        | 6.60                     | 85.77                    | 61.32              | area.                  |
| 3  | 1.00            | 8                        | 78                       | 71.14                                      | 35.51                  | 35.51           | 0.772           | 0.77                        | 6.60                     | 85.77                    | 45.99              | Letnany                |
| 4  | 2.00            | 8                        | 78                       | 71.14                                      | 71.01                  | 35.51           | 0.772           | 1.54                        | 6.60                     | 85.77                    | 45.99              |                        |
| 5  | 5.00            | 8                        | 78                       | 71.14                                      | 118.35                 | 23.67           | 0.772           | 3. <b>8</b> 6               | 6.60                     | 85.77                    | 30.66              |                        |
| 6  | 10.00           | 8                        | 78                       | 71.14                                      | 150.90                 | 15.09           | 0.772           | 7.72                        | 6.60                     | 85.77                    | 19.54              | •                      |
| 7  | 0.50            | 8.                       | 81                       | 89.27                                      | 67.14                  | 134.29          | 0.820           | 0.41                        | 7.05                     | 86.47                    | 163.69             | Carbon steel;<br>urban |
| 8  | 1.00            | 8                        | 81                       | 89.27                                      | <b>8</b> 5. <b>7</b> 1 | 85.71           | 0.820           | 0.82                        | 7.05                     | 86.47                    | 104.48             | area.                  |
| 9  | 2.00            | 8                        | 81                       | 89.27                                      | 107.14                 | 53.57           | 0.820           | 1.64                        | 7.05                     | 86.47                    | 65.30              | Letnany                |
| 10 | 3.00            | 8                        | 81                       | 89.27                                      | 131.43                 | 43.81           | 0.820           | 2.46                        | 7.05                     | 86.47                    | 53.40              |                        |
| 11 | 5.00            | 8                        | 81                       | 89.27                                      | 150.00                 | 30.00           | 0.820           | 4.10                        | 7.05                     | 86.47                    | 36.57              |                        |
| 12 | 10.00           | 8                        | 81                       | 89.27                                      | 190.00                 | 19.00           | 0.820           | 8.20                        | 7.05                     | 86.47                    | 23.16              |                        |
| 13 | 0.50            | 10                       | 76                       | 36.47                                      | 21.43                  | 42.86           | 0.732           | 0.37                        | 8.33                     | 85.11                    | 58.51              | carbon steel; rural    |
| 14 | 1.00            | 10                       | 76                       | 36.47                                      | 42.14                  | 42.14           | 0.732           | 0.73                        | 8.33                     | 85.11                    | 57.54              | area.                  |
| 15 | 2.00            | 10                       | 76                       | 36.47                                      | 58.57                  | 29.29           | 0.732           | 1.46                        | 8.33                     | 85.11                    | 39.98              | Hurbanovo              |
| 16 | 3.00            | 10                       | 76                       | 36.47                                      | 71.43                  | 23.81           | 0.732           | 2.20                        | 8.33                     | 85.11                    | 32.51              |                        |
| 17 | 5.00            | 10                       | 76 .                     | 36.47                                      | 90.00                  | 18.00           | 0.732           | 3.66                        | 8.33                     | 85.11                    | 24.58              |                        |
| 18 | 10.00           | 10                       | 76                       | 36.47                                      | 111.43                 | 11.14           | 0.732           | 7.32                        | 8.33                     | 85.11                    | 15.21              |                        |
| 19 | 1.00            | 18                       | 84                       | 2.06                                       | 19.18                  | 19.18           | 0.849           | 0.85                        | 17.68                    | 86.17                    | 22.60              | carbon steel; rural    |
| 20 | 2.00            | 18                       | 84                       | 2.06                                       | 26.66                  | 13.33           | 0.849           | 1.70                        | 17.68                    | 86.17                    | 15.71              | area.                  |
| 21 | 3.00            | 18                       | 84                       | 2.06                                       | 32.32                  | 10.77           | 0.849           | 2.55                        | 17.68                    | 86.17                    | 12.70              | Dalat ·                |
| 22 | 4.00            | 18                       | 84                       | 2.06                                       | 37.06                  | 9.26            | 0.849           | 3.39                        | 17.68                    | 86.17                    | 10.92              |                        |
| 23 | 5.00            | 18                       | 84                       | 2.06                                       | 41.20                  | 8.24            | 0.849           | 4.24                        | 17.68                    | 86.17                    | 9.71               | •                      |
| 24 | 1.00            | 23                       | 83                       | 2.06                                       | 20.58                  | 20.58           | 0.830           | 0.83                        | 22.61                    | 85.39                    | 24.80              | carbon steel; rural    |
| 25 | 2.00            | 23                       | 83                       | 2.06                                       | 37.33                  | 18.66           | 0.830           | 1.66                        | 22.61                    | 85.39                    | 22.49              | area.                  |
| 26 | 3.00            | 23                       | 83                       | 2.06                                       | 52. <b>8</b> 8         | 17.63           | 0.830           | 2.49                        | 22.61                    | 85.39                    | 21.24              | Vinhphu                |
| 27 | 4.00            | 23                       | 83                       | 2.06                                       | 67.70                  | 16.92           | 0.830           | 3.32                        | 22.61                    | 85.39                    | 20.40              |                        |
| 28 | 5.00            | 23                       | 83                       | 2.06                                       | 82.00                  | 16.40           | 0.830           | 4.15                        | 22.61                    | 85.39                    | 19.76              |                        |
| 29 | 1.00            | 24                       | 82                       | 2.06                                       | 32.31                  | 32.31           | 0.815           | 0.81                        | 23.48                    | 85.03                    | 39.66              | carbon steel; urban    |
| 30 | 2.00            | 24                       | 82                       | 2.06                                       | 56.37                  | 28.19           | 0.815           | 1.63                        | 23.48                    | 85.03                    | 34.59              | area.                  |
| 31 | 3.00            | 24                       | 82                       | 2.06                                       | 78.07                  | 26.02           | 0.815           | 2.44                        | 23.48                    | 85.03                    | 31. <del>9</del> 4 | Hanoi                  |
| 32 | 4.00            | 24                       | 82                       | 2.06                                       | 98.36                  | 24.59           | 0.815           | 3.26                        | 23.48                    | 85.03                    | 30.18              |                        |
| 33 | 5.00            | 24                       | 82                       | 2.06                                       | 117.66                 | 23.53           | 0.815           | 4.07                        | 23.48                    | 85.03                    | 28.88              |                        |

## Table 5-2 Humid-Air Corrosion Data Used in the Model Development.

Table 5-2. (continued).

|      | Time<br>(years) | Tavg<br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(µ <b>g/m</b> <sup>3</sup> ) | Depth<br>(µm) | Rate<br>(µm/yr) | f70   | t <sub>new</sub><br>(years) | T <sub>new</sub><br>(°C) | RH <sub>new</sub><br>(%) | Rate <sub>new</sub><br>(µm/yr) | Remarks              |
|------|-----------------|--------------|--------------------------|----------------------------------------------------|---------------|-----------------|-------|-----------------------------|--------------------------|--------------------------|--------------------------------|----------------------|
| 34   | 1.00            | 27           | 83                       | 3.61                                               | 38.44         | 38.44           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 46.60                          | carbon steel; urban  |
| 35   | 2.00            | 27           | 83                       | 3.61                                               | 61.12         | 30.56           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 37.04                          | area.                |
| 36   | 3.00            | 27           | 83                       | 3.61                                               | 80.17         | 26.72           | 0.825 | 2.48                        | 26.68                    | 84.97                    | 32.39                          | HoChiMinh            |
| 37   | 4.00            | 27           | 83                       | 3.61                                               | 97.18         | 24.30           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 29.45                          |                      |
| 38   | 5.00            | 27           | 83                       | 3.61                                               | 112.83        | 22.57           | 0.825 | 4.13                        | 26.68                    | 84.97                    | 27.35                          |                      |
| 39   | 1.00            | 22           | 81                       | 57.25                                              | 61.41         | 61.41           | 0.803 | 0.80                        | 21.29                    | 85.00                    | 76.50                          | carbon steel; rural- |
| 40   | 2.00            | 22           | 81                       | 57.25                                              | 92.24         | 46.12           | 0.803 | 1.61                        | 21.29                    | 85.00                    | 57.46                          | urban area.          |
| 41   | 3.00            | 22           | 81                       | 57.25                                              | 117.02        | 39.01           | 0.803 | 2.41                        | 21.29                    | 85.00                    | 48.60                          | Tsing-Hua            |
| 42   | 4.00            | 22           | 81                       | 57.25                                              | 138.55        | 34.64           | 0.803 | 3.21                        | 21.29                    | 85.00                    | 43.16                          |                      |
| 43   | 5.00            | 22           | 81                       | 57.25                                              | 157.94        | 31.59           | 0.803 | 4.01                        | 21.29                    | 85.00                    | 39.36                          |                      |
| 44   | 8.00            | 22           | 81                       | 57.25                                              | 208.12        | 26.02           | 0.803 | 6.42                        | 21.29                    | 85.00                    | 32.41                          |                      |
| 45   | 1.00            | 25           | 77                       | 42.44                                              | 42.83         | 42.83           | 0.732 | 0.73                        | 23.74                    | 83.75                    | 58.53                          | carbon steel; rural- |
| 46   | 2.00            | 25           | 77                       | 42.44                                              | 69.05         | 34.52           | 0.732 | 1.46                        | 23.74                    | 83.75                    | 47.18                          | urban area.          |
| 47   | 3.00            | 25           | 77                       | 42.44                                              | 91.30         | 30.43           | 0.732 | 2.20                        | 23.74                    | 83.75                    | 41.59                          | Sun Yat-Sen          |
| 48   | 4.00            | 25           | 77                       | 42.44                                              | 111.32        | 27.83           | 0.732 | 2.93                        | 23.74                    | 83.75                    | 38.03                          |                      |
| 49   | 5.00            | 25           | 77                       | 42.44                                              | 129.82        | 25.96           | 0.732 | 3.66                        | 23.74                    | 83.75                    | 35.48                          |                      |
| 50   | 8.00            | 25           | 77                       | 42.44                                              | 179.46        | 22.43           | 0.732 | 5.85                        | 23.74                    | 83.75                    | 30.65                          |                      |
| 51   | 1.00            | 25           | 77                       | 42.44                                              | 42.78         | 42.78           | 0.732 | 0.73                        | 23.74                    | 83.75                    | 58.46                          | carbon steel; rural- |
| 52   | 2.00            | 25           | 77                       | 42.44                                              | 63.73         | 31.87           | 0.732 | 1.46                        | 23.74                    | 83.75                    | 43.54                          | urban area.          |
| . 53 | 3.00            | 25           | 77                       | 42.44                                              | 80.46         | 26.82           | 0.732 | 2.20                        | 23.74                    | 83.75                    | 36.65                          | Sun Yat-Sen          |
| 54   | 4.00            | 25           | 77                       | 42.44                                              | 94.94         | 23.73           | 0.732 | 2.93                        | 23.74                    | 83.75                    | 32.43                          |                      |
| 55   | 5.00            | 25           | 77                       | 42.44                                              | 107.93        | 21.59           | 0.732 | 3.66                        | 23.74                    | 83.75                    | 29.50                          | · · ·                |
| 56   | 8.00            | 25           | 77                       | 42.44                                              | 141.43        | 17.68           | 0.732 | 5.85                        | 23.74                    | 83.75                    | 24.16                          |                      |
| 57   | 1.00            | 27           | 83                       | 58.7                                               | 45.00         | 45.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 54.54                          | wrought iron;        |
| 58   | 2.00            | 27           | 83                       | 58.7                                               | 81.00         | 40.50           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 49.09                          | tropical area.       |
| 59   | 4.00            | 27           | 83                       | 58.7                                               | 121.00        | 30.25           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 36.67                          | Aston wrought        |
| 60   | 8.00            | 27           | 83                       | 58.7                                               | 175.00        | 21.88           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 26.51                          | Pickled              |
| 61   | 16.00           | 27           | 83                       | 58.7                                               | 310.00        | 19.38           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 23.48                          |                      |
| 62   | 1.00            | 27           | 83                       | 58.7                                               | 42.00         | 42.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 50.91                          | wrought iron;        |
| 63   | 2.00            | 27           | 83                       | 58.7                                               | 80.00         | 40.00           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 48.48                          | tropical area.       |
| 64   | 4.00            | 27           | 83                       | 58.7                                               | 118.00        | 29.50           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 35.76                          | Millscale            |
| 65   | 8.00            | 27           | 83                       | 58.7                                               | 182.00        | 22.70           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 27.58                          |                      |
| 66   | 16.00           | 27           | 83                       | 58.7                                               | 290.00        | 19.00           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 21.97                          |                      |
| 67   | 1.00            | 27           | 83                       | 58.7                                               | 35.00         | 35.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 42.42                          | carbon steel;        |
| 68   | 2.00            | 27           | 83                       | 58.7                                               | 65.00         | 32.50           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 39.39                          | tropical area.       |
| 60   | 4 00            | 27           | 83                       | 58.7                                               | 106.00        | 26.50           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 32.12                          | Pickled              |

Table 5-2. (continued).

|     | Time<br>(years) | T <sub>avg</sub><br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(μg/m³) | Depth<br>(µm) | Rate<br>(µm/yr) | f70   | t <sub>new</sub><br>(years) | T <sub>new</sub><br>(°C) | RH <sub>new</sub><br>(%) | Rate <sub>new</sub><br>(µm/yr) | Remarks             |
|-----|-----------------|--------------------------|--------------------------|-------------------------------|---------------|-----------------|-------|-----------------------------|--------------------------|--------------------------|--------------------------------|---------------------|
| 70  | 8.00            | 27                       | 83                       | 58.7                          | 160.00        | 20.00           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 24.24                          |                     |
| 71  | 16.00           | 27                       | 83                       | 58.7                          | 290.00        | 18.13           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 21.97                          |                     |
| 72  | 1.00            | 27                       | 83                       | 58.7                          | 38.00         | 38.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 46.06                          | carbon steel;       |
| 73  | 2.00            | 27                       | 83                       | 58.7                          | 71.00         | 35.50           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 43.03                          | tropical area.      |
| 74  | 4.00            | 27                       | 83                       | 58.7                          | 105.00        | 26.25           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 31.82                          | Millscale           |
| 75  | 8.00            | 27                       | 83                       | 58.7                          | 163.00        | 20.38           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 24.70                          |                     |
| 76  | 16.00           | 27                       | 83                       | 58.7                          | 304.00        | 19.00           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 23.03                          |                     |
| 77  | 1.00            | 27                       | 83                       | 58.7                          | 35.00         | 35.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 42.42                          | carbon steel;       |
| 78  | 2.00            | 27                       | 83                       | 58.7                          | 57.00         | 28.50           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 34.54                          | tropical area.      |
| 79  | 4.00            | 27                       | 83                       | 58.7                          | 86.00         | 21.50           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 26.06                          | Machined            |
| 80  | 8.00            | 27                       | <b>83</b> ·              | 58.7                          | 128.00        | 16.00           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 19.39                          |                     |
| 81  | 16.00           | 27                       | 83                       | 58.7                          | 218.00        | 13.63           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 16.51                          |                     |
| 82  | 1.00            | 27                       | 83                       | 58.7                          | 31.00         | 31.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 37.57                          | cast iron; tropical |
| 83  | 2.00            | 27                       | 83                       | 58.7                          | 51.00         | 25.50           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 30.91                          | area.               |
| 84  | 4.00            | 27                       | 83                       | 58.7                          | 79.00         | 19.75           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 23.94                          | Machined            |
| 85  | 8.00            | 27                       | 83                       | 58.7                          | 113.00        | 14.13           | 0.825 | 6:60                        | 26.68                    | 84.97                    | 17.12                          |                     |
| 86  | 16.00           | 27                       | 83                       | 58.7                          | 191.00        | 11.94           | 0.825 | 13.20                       | 26.68                    | 84.97                    | 14.47                          | •                   |
| 87  | 1.00            | 27                       | 83                       | 58.7                          | 25.00         | 25.00           | 0.825 | 0.83                        | 26.68                    | 84.97                    | 30.30                          | gray cast iron;     |
| 88  | 2.00            | 27                       | 83                       | 58.7                          | 42.00         | 21.00           | 0.825 | 1.65                        | 26.68                    | 84.97                    | 25.45                          | tropical area.      |
| 89  | 4.00            | 27                       | 83                       | 58.7                          | 69.00         | 17.25           | 0.825 | 3.30                        | 26.68                    | 84.97                    | 20.91                          | Machined            |
| 90  | 8.00            | 27                       | 83                       | 58.7                          | 99.00         | 12.38           | 0.825 | 6.60                        | 26.68                    | 84.97                    | 15. <b>0</b> 0                 |                     |
| 91  | 16.00           | 27                       | 83                       | 58.7                          | 151.00        | 9.44            | 0.825 | 13.20                       | 26.68                    | 84.97                    | 11.44                          |                     |
| 92  | 1.00            | 10                       | 68                       | 20.0                          | 31.82         | 31.82           | 0.554 | 0.55                        | 7.12                     | 83.51                    | 57.47                          | carbon steel; rural |
| 93  | 2.00            | 10                       | 68                       | 20.0                          | 52.28         | 26.14           | 0.554 | 1.11                        | 7.12                     | 83.51                    | 47.21                          | area.               |
| 94  | 4.00            | 10                       | 68                       | 20.0                          | 86.92         | 21.73           | 0.554 | 2.21                        | 7.12                     | 83.51                    | 39.25                          | Saylorsburg, PA     |
| 95  | 8.00            | 10                       | 68                       | 20.0                          | 129.52        | 16.19           | 0.554 | 4.43                        | 7.12                     | 83.51                    | 29.24                          |                     |
| 96  | 1.00            | 13                       | 66                       | 245.0                         | 50.00         | 50.00           | 0.502 | 0.50                        | 9.87                     | 82.84                    | 99.61                          | carbon steel; urban |
| 97  | 2.00            | 13                       | 66                       | 245.0                         | 65.90         | 32.95           | 0.502 | 1.00                        | 9.87                     | 82.84                    | 65.64                          | area.               |
| 98  | 4.00            | 13                       | 66                       | 245.0                         | 81.24         | 20.31           | 0.502 | 2.01                        | 9.87                     | 82.84                    | 40.46                          | Newark, NJ          |
| 99  | 8.00            | 13                       | 66                       | 245.0                         | 101.68        | 12.71           | 0.502 | 4.02                        | 9.87                     | 82.84                    | 25.32                          |                     |
| 100 | 1.50            | 10                       | 68                       | 20.00                         | 44.00         | 29.33           | 0.554 | 0.83                        | 7.12                     | 83.51                    | 52.98                          | carbon steel; semi- |
| 101 | 3.50            | 10                       | 68                       | 20.00                         | 73.00         | 20.86           | 0.554 | 1.94                        | 7.12                     | 83.51                    | 37.67                          | rural area.         |
| 102 | 7.50            | 10                       | 68                       | 20.00                         | 117.00        | 15.60           | 0.554 | 4.15                        | 7.12                     | 83.51                    | 28.17                          | S. Bend, PA         |
| 103 | 15.50           | 10                       | 68                       | 20.00                         | 179.00        | 11.55           | 0.554 | 8.58                        | 7.12                     | 83.51                    | 20.86                          | •                   |
| 104 | 1.50            | 10                       | 71                       | 300.0                         | 56.00         | 37.33           | 0.625 | 0.94                        | 7.58                     | 84.07                    | 59.70                          | carbon steel;       |

Table 5-2. (continued).

|     | Time<br>(years) | T <sub>avg</sub><br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(μg/m <sup>3</sup> ) | Depth<br>(µm)      | Rate<br>(µm/yr) | f70   | t <sub>new</sub><br>(years) | T <sub>new</sub><br>(°C) | RH <sub>new</sub><br>(%) | Rate <sub>new</sub><br>(µm/yr) | Remarks          |
|-----|-----------------|--------------------------|--------------------------|--------------------------------------------|--------------------|-----------------|-------|-----------------------------|--------------------------|--------------------------|--------------------------------|------------------|
| 105 | 3.50            | 10                       | 71                       | 300.0                                      | 93.00              | 26.57           | 0.625 | 2.19                        | 7.58                     | 84.07                    | 42.49                          | semi-industrial  |
| 106 | 7.50            | 10                       | 71                       | 300.0                                      | 130.00             | 17.33           | 0.625 | 4.69                        | 7.58                     | 84.07                    | 27.72                          | area.            |
| 107 | 15.50           | 10                       | 71                       | 300.0                                      | 193.39             | 12.48           | 0.625 | 9.69                        | 7.58                     | 84.07                    | 19.95                          | Monroeville, PA  |
| 108 | 0.50            | 13                       | 66                       | 245.0                                      | 35.00              | 70.00           | 0.502 | 0.25                        | 9.87                     | 82.84                    | 139.46                         | carbon steel;    |
| 109 | 1.50            | 13                       | 66                       | 245.0                                      | 60.00              | 40.00           | 0.502 | 0.75                        | 9.87                     | 82.84                    | 79.69                          | industrial area. |
| 110 | 3.50            | 13                       | 66                       | 245.0                                      | 84.00              | 24.00           | 0.502 | 1.76                        | 9.87                     | 82.84                    | 47.81                          | Newark, NJ       |
| 111 | 7.50            | 13                       | 66                       | 245.0                                      | 104.00             | 13.87           | 0.502 | 3.76                        | 9.87                     | 82.84                    | 27.63                          |                  |
| 112 | 15.50           | 13                       | 66                       | 245.0                                      | 134.00             | 8.65            | 0.502 | 7.78                        | 9.87                     | 82.84                    | 17.22                          |                  |
| 113 | 0.33            | 10                       | 65                       | 406                                        | 19.22              | 58.24           | 0.480 | 0.16                        | 6.67                     | 82.99                    | 121.41                         | urban area.      |
| 114 | 0.67            | 10                       | 65                       | 406                                        | 30.48              | 45.72           | 0.480 | 0.32                        | 6.67                     | 82.99                    | 95.31                          | Chicago          |
| 115 | 1.33            | 10                       | 65                       | 406                                        | 52.8               | 39.60           | 0.480 | 0.64                        | 6.67                     | 82.99                    | 82.55                          |                  |
| 116 | 0.33            | 10                       | 65                       | 406                                        | 18.59              | 56.33           | 0.480 | 0.16                        | 6.67                     | 82.99                    | 117.43                         |                  |
| 117 | 0.67            | 10                       | 65                       | 406                                        | 30.42              | 45.63           | 0.480 | 0.32                        | 6.67                     | 82.99                    | 95.12                          |                  |
| 118 | 1.33            | 10                       | 65                       | 406                                        | 45.64              | 34.23           | 0.480 | 0.64                        | 6.67                     | 82.99                    | 71.36                          |                  |
| 119 | 0.33            | 12                       | 69                       | 79                                         | 14.64              | 44.36           | 0.576 | 0.19                        | 9.31                     | 83.48                    | 77.04                          | urban area.      |
| 120 | 0.67            | 12                       | 69                       | 79                                         | 18.94              | 28.41           | 0.576 | 0.38                        | 9.31                     | 83.48                    | 49.33                          | Cincinnati       |
| 121 | 1.33            | 12                       | 69                       | 79                                         | 23.18              | 17.39           | 0.576 | 0.77                        | 9.31                     | 83.48                    | 30.19                          |                  |
| 122 | 2.67            | 12                       | 69                       | 79                                         | 28.82              | 10.81           | 0.576 | 1.54                        | 9.31                     | 83.48                    | 18.77                          |                  |
| 123 | 5.33            | 12                       | 69 .                     | 79                                         | 37.98              | 7.12            | 0.576 | 3.07                        | 9.31                     | 83.48                    | 12.37                          |                  |
| 124 | 0.33            | 12                       | 69                       | 79                                         | 14.05              | 42.58           | 0.576 | 0.19                        | 9.31                     | 83.48                    | 73.93                          |                  |
| 125 | 0.67            | 12                       | 69                       | 79                                         | 18.13              | 27.19           | 0.576 | 0.38                        | 9.31                     | 83.48                    | 47.22                          |                  |
| 126 | 1.33            | 12                       | 69                       | 79                                         | 22.51              | 16.88           | 0.576 | 0.77                        | 9.31                     | 83.48                    | 29.32                          |                  |
| 127 | 2.67            | 12                       | 69                       | 79                                         | 28.1               | 10.54           | 0.576 | 1.54                        | 9.31                     | 83.48                    | 18.30                          |                  |
| 128 | 5.33            | 12                       | 69                       | 79                                         | 37.34              | 7.00            | 0.576 | 3.07                        | 9.31                     | 83.48                    | 12.16                          |                  |
| 129 | 0.33            | 5                        | 67                       | 118                                        | 12.24              | 37.09           | 0.534 | 0.18                        | 1.89                     | 83.86                    | 69.48                          | urban area.      |
| 130 | 0.67            | 5                        | 67                       | 118                                        | 25.12              | 37.68           | 0.534 | 0.36                        | 1.89                     | 83.86                    | 70.59                          | Detroit          |
| 131 | 1.33            | 5                        | 67                       | 118                                        | 34.19              | 25.64           | 0.534 | 0.71                        | 1.89                     | 83.86                    | 48.04                          |                  |
| 132 | 2.67            | 5                        | 67                       | 118                                        | 49. <del>9</del> 5 | 18.73           | 0.534 | 1.42                        | 1.89                     | 83.86                    | 35.09                          |                  |
| 133 | 5.33            | 5                        | 67 ·                     | 118                                        | 74.13              | 13.90           | 0.534 | 2.85                        | 1.89                     | 83.86                    | 26.04                          |                  |
| 134 | 0.33            | 5                        | 67                       | 118                                        | 16.12              | 48.85           | 0.534 | 0.18                        | 1.89                     | 83.86                    | 91.51                          |                  |
| 135 | 0.67            | 5                        | 67                       | 118                                        | 24.39              | 36.58           | 0.534 | 0.36                        | 1.89                     | 83.86                    | 68.54                          |                  |
| 136 | 1.33            | 5                        | 67                       | 118                                        | 33.64              | 25.23           | 0.534 | 0.71                        | 1.89                     | 83.86                    | 47.26                          |                  |
| 137 | 2.67            | 5                        | 67                       | 118                                        | 50.15              | 18.81           | 0.534 | 1.42                        | 1.89                     | 83.86                    | 35.23                          |                  |
| 138 | 5.33            | 5                        | 67                       | 118                                        | 74.07              | 13.89           | 0.534 | 2.85                        | 1.89                     | 83.86                    | 26.02                          |                  |
| 139 | 0.33            | 16                       | 70                       | 39                                         | 9.72               | 29.45           | 0.595 | 0.20                        | 13.53                    | 83.25                    | 49.48                          | urban area.      |
| 140 | 0.67            | 16                       | 70                       | 39                                         | 11.63              | 17.44           | 0.595 | 0.40                        | 13.53                    | 83.25                    | 29.31                          | Los Angeles      |

B0000000-01717-4301-00005 REV00

Table 5-2. (continued).

|     | Time<br>(years) | T <sub>avg</sub><br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(µg/m³) | Depth<br>(µm)     | Rate<br>(µm/ут) | f70                | t <sub>new</sub><br>(years) | Tnew<br>(°C) | RH <sub>new</sub><br>(%) | Ratenew<br>(µm/yr) | Remarks       |
|-----|-----------------|--------------------------|--------------------------|-------------------------------|-------------------|-----------------|--------------------|-----------------------------|--------------|--------------------------|--------------------|---------------|
| 141 | 1.33            | 16                       | 70                       | 39                            | 15.97             | 11.98           | 0.595              | 0.79                        | 13.53        | 83.25                    | 20.12              |               |
| 142 | 2.67            | 16                       | 70                       | 39                            | 19.57             | 7.34            | 0.595              | 1.59                        | 13.53        | 83.25                    | 12.33              |               |
| 143 | 5.33            | 16                       | 70                       | 39                            | 25.81             | 4.84            | 0.5 <del>9</del> 5 | 3.17                        | 13.53        | 83.25                    | 8.13               |               |
| 144 | 0.33            | 16                       | 70                       | 39                            | 8.98              | 27.21           | 0.595              | 0.20                        | 13.53        | 83.25                    | 45.72              |               |
| 145 | 0.67            | 16                       | 70                       | 39                            | 10.42             | 15.63           | 0.595              | 0.40                        | 13.53        | 83.25                    | 26.26              | •             |
| 146 | 1.33            | 16                       | 70                       | 39                            | 14.82             | 11.12           | 0.595              | 0.79                        | 13.53        | 83.25                    | 18.67              |               |
| 147 | 2.67            | 16                       | 70                       | 39                            | 18.71             | 7.02            | 0.595              | 1.59                        | 13.53        | 83.25                    | 11.79              |               |
| 148 | 5.33            | 16                       | 70                       | 39                            | 24.83             | 4.66            | 0.595              | 3.17                        | 13.53        | 83.25                    | 7.82               |               |
| 149 | 0.33            | 19                       | 77                       | 24                            | 10.12             | 30.67           | 0.739              | 0.24                        | 17.64        | 84.38                    | 41.47              | urban area.   |
| 150 | 0.67            | 19                       | 77                       | 24                            | 16.51             | 24.76           | 0.739              | 0.49                        | 17.64        | 84.38                    | 33.49              | New Orleans   |
| 151 | 1.33            | 19                       | 77                       | 24                            | 24.52             | 18.39           | 0.739              | 0.99                        | 17.64        | 84.38                    | 24.87              |               |
| 152 | 2.67            | 19                       | 77                       | 24                            | 35.38             | 13.27           | 0.739              | 1.97                        | 17.64        | 84.38                    | 17.94              |               |
| 153 | 0.33            | 19                       | 77                       | 24                            | 8.56              | 25.94           | 0.739              | 0.24                        | 17.64        | 84.38                    | 35.08              |               |
| 154 | 0.67            | 19                       | 77                       | 24                            | 14.82             | 22.23           | 0.739              | 0.49                        | 17.64        | 84.38                    | 30.06              |               |
| 155 | 1.33            | 19                       | 77                       | 24                            | 23.48             | 17.61           | 0.739              | 0.99                        | 17.64        | 84.38                    | 23.81              | -             |
| 156 | 2.67            | 19                       | 77                       | 24                            | 34.85             | 13.07           | 0.739              | 1.97                        | 17.64        | 84.38                    | 17.67              |               |
| 157 | 0.33            | 12                       | 66                       | 218                           | 19.5              | 59.09           | 0.503              | 0.17                        | 8.85         | 82.94                    | 117.53             | urban area.   |
| 158 | 0.67            | 12                       | 66                       | 218                           | 24.16             | 36.24           | 0.503              | 0.34                        | 8.85         | 82.94                    | 72.08              | Philadelphia  |
| 159 | 1.33            | 12                       | 66                       | 218                           | 32.0 <del>9</del> | 24.07           | 0.503              | 0.67                        | 8.85         | 82.94                    | 47.87              |               |
| 160 | 2.67            | 12                       | 66                       | 218                           | 41.37             | 15.51           | 0.503              | 1.34                        | 8.85         | 82.94                    | 30.86              |               |
| 161 | 5.33            | 12                       | 66                       | 218                           | 51.5              | 9.66            | 0.503              | 2.68                        | 8.85         | 82.94                    | 19.21              | ч.<br>Т       |
| 162 | 0.33            | 12                       | 66                       | 218                           | 18.09             | 54.82           | 0.503              | 0.17                        | 8.85         | 82.94                    | 109.03             | · .           |
| 163 | 0.67            | 12                       | 66                       | 218                           | 23.16             | 34.74           | 0.503              | 0.34                        | 8.85         | 82.94                    | 69.10              |               |
| 164 | 1.33            | 12                       | 66                       | 218                           | 31.54             | 23.66           | 0.503              | 0.67                        | 8.85         | 82.94                    | 47.05              |               |
| 165 | 2.67            | 12                       | 66                       | 218                           | 40.41             | 15.15           | 0.503              | 1.34                        | 8.85         | 82.94                    | 30.14              | •             |
| 166 | 5.33            | 12                       | 66                       | 218                           | 50.95             | 9.55            | 0.503              | 2.68                        | 8.85         | <u>82.9</u> 4            | 19.00              |               |
| 167 | 0.33            | 13                       | 73                       | 34                            | 10.8              | 32.73           | 0.667              | 0.22                        | 10.93        | 84.16                    | 49.09              | urban area.   |
| 168 | 0.67            | 13                       | 73                       | 34                            | 17.74             | 26.61           | 0.667              | 0.44                        | 10.93        | 84.16                    | 39.92              | San Francisco |
| 169 | 1.33            | 13                       | 73                       | 34                            | 28.61             | 21.46           | 0.667              | 0.89                        | 10.93        | 84.16                    | 32.19              |               |
| 170 | 2.67            | 13                       | 73                       | 34                            | 41.44             | 15.54           | 0.667              | 1.78                        | 10.93        | 84.16                    | 23.31              |               |
| 171 | 5.33            | 13                       | 73                       | 34                            | 57.36             | 10.76           | 0.667              | 3.56                        | 10.93        | 84.16                    | 16.13              |               |
| 172 | 0.33            | 13                       | 73                       | 34                            | 8.57              | 25.97           | 0.667              | 0.22                        | 10.93        | 84.16                    | 38.96              |               |
| 173 | 0.67            | 13                       | 73                       | 34                            | 16.34             | 24.51           | 0.667              | 0.44                        | 10.93        | 84.16                    | 36.77              |               |
| 174 | 1.33            | 13                       | 73                       | 34                            | 27.95             | 20.96           | 0.667              | 0.89                        | 10.93        | 84.16                    | 31.44              |               |
| 175 | 2.67            | 13                       | 73                       | 34                            | 41.18             | 15.44           | 0. <del>6</del> 67 | 1.78                        | 10.93        | 84.16                    | 23.16              |               |
| 176 | 5.33            | 13                       | 73                       | 34                            | 57.94             | 10.86           | 0.667              | 3.56                        | 10.93        | 84.16                    | 16.30              |               |

Table 5-2. (continued).

.

|     | Time<br>(years) | T <sub>avg</sub><br>(°C) | RH <sub>avg</sub><br>(%) | [SO <sub>2</sub> ]<br>(μg/m <sup>3</sup> ) | Depth<br>(µm) | Rate<br>(µm/yr) | f70   | t <sub>new</sub><br>(years) | T <sub>new</sub><br>(°C) | RH <sub>new</sub><br>(%) | Ratenew<br>(µm/yr) | Remarks        |
|-----|-----------------|--------------------------|--------------------------|--------------------------------------------|---------------|-----------------|-------|-----------------------------|--------------------------|--------------------------|--------------------|----------------|
| 177 | 0.33            | 13                       | 63                       | 126                                        | 14.58         | 44.18           | 0.429 | 0.14                        | 9.42                     | 82.35                    | 102.98             | urban area.    |
| 178 | 0.67            | 13                       | 63                       | 126                                        | 20.5          | 30.75           | 0.429 | 0.29                        | 9.42                     | 82.35                    | 71.68              | Washington, DC |
| 179 | 1.33            | 13                       | 63                       | 126                                        | 25.87         | 19.40           | 0.429 | 0.57                        | 9.42                     | 82.35                    | 45.23              |                |
| 180 | 2.67            | 13                       | 63                       | 126                                        | 33.94         | 12.73           | 0.429 | 1.14                        | 9.42                     | 82.35                    | 29.67              |                |
| 181 | 5.33            | 13                       | 63                       | 126                                        | 43.04         | 8.07            | 0.429 | 2.29                        | 9.42                     | 82.35                    | 18.81              |                |
| 182 | 0.33            | 13                       | 63                       | 126                                        | 13.14         | 39.82           | 0.429 | 0.14                        | 9.42                     | 82.35                    | 92.81              |                |
| 183 | 0.67            | 13                       | 63                       | 126                                        | 19.34         | 29.01           | 0.429 | 0.29                        | 9.42                     | 82.35                    | 67.62              |                |
| 184 | 1.33            | 13                       | 63                       | 126                                        | 25.16         | 18.87           | 0.429 | 0.57                        | 9.42                     | 82.35                    | 43.98              |                |
| 185 | 2.67            | 13                       | 63                       | 126                                        | 33.35         | 12.51           | 0.429 | 1.14                        | 9.42                     | 82.35                    | 29.15              |                |
| 186 | 5.33            | 13                       | 63                       | 126                                        | 42.59         | 7.99            | 0.429 | 2.29                        | 9.42                     | 82.35                    | 18.61              |                |

| Material                   | Sample<br>ID * | Avg. depth<br>(μm) | D <del>ee</del> pest Pit<br>(μm) | Avg. of 20<br>Deepest Pits<br>(μm) | Roughness<br>Factor for<br>Deepest Pit | Roughness<br>Factor for 20<br>Deepest Pits |
|----------------------------|----------------|--------------------|----------------------------------|------------------------------------|----------------------------------------|--------------------------------------------|
| Aston Wrought<br>Iron      | 90             | 310                | 940                              | 559                                | 3.03                                   | 1.80                                       |
| Aston Wrought<br>Iron      | 190            | 290                | 1,499                            | 1,016                              | 5.17                                   | 3.50                                       |
| Pickled Carbon<br>Steel    | 35             | 290                | 838                              | 559                                | 2.89                                   | 1.93                                       |
| Millscale<br>Carbon Steel  | 34             | 304                | 1,143                            | 686                                | 3.76                                   | 2.26                                       |
| Machined<br>Carbon Steel   | 36             | .218               | 660                              | 483                                | 3.03                                   | 2.22                                       |
| Machined Cast<br>Steel     | 70             | 191                | 787                              | 457                                | 4.12                                   | 2.39                                       |
| Machined Grey<br>Cast Iron | 78             | 151                | 940                              | 559                                | 5.21                                   | 3.03                                       |

# Table 5- 3 Humid-Air Corrosion Roughness Factor Data at 16-Year Exposure Time for Different Types of Steels.

• Sample identification used in Southwell and Bultman (1982).

|    | Time (years) | Temperature (°C) | Depth (µm) | Comments                   |
|----|--------------|------------------|------------|----------------------------|
| 1  | 1            | 27.78            | 195.58     | Southwell & Alexander 1970 |
| 2  | 2            | 27.78            | 304.80     | Table 2 – Class A          |
| 3  | 4            | 27.78            | 431.80     | carbon steel; lake water   |
| 4  | 8            | 27.78            | 558.80     | Panama                     |
| 5  | 16           | 27.78            | 711.20     |                            |
| 6  | 1            | 27.78            | 190.50     | Southwell & Alexander 1970 |
| 7  | 2            | 27.78            | 304.80     | Table 2 - Class B          |
| 8  | 4            | 27.78            | 406.40     | carbon steel; lake water   |
| 9  | 8            | 27.78            | 508.00     | Panama                     |
| 10 | 16           | 27.78            | 635.00     |                            |
| 11 | 1            | 27.78            | 160.02     | Southwell & Alexander 1970 |
| 12 | 2            | 27.78            | 241.30     | Table 2 – Class C          |
| 13 | 4            | 27.78            | 355.60     | carbon steel; lake water   |
| 14 | 8            | 27.78            | 482.60     | Panama                     |
| 15 | 16           | 27.78            | 635.00     |                            |
| 16 | 1            | 27.78            | 200.66     |                            |
| 17 | 2            | 27.78            | 304.80     | Southwell & Alexander 1970 |
| 18 | 4 ·          | 27.78            | 457.20     | Table 2 – Class D          |
| 19 | 8            | 27.78            | 584.20     | carbon steel; lake water   |
| 20 | 16           | 27.78            | 736.60     | Panama                     |
| 21 | 1            | 27.78            | 208.28     | Southwell & Alexander 1970 |
| 22 | 2            | 27.78            | 304.80     | Table 2 - Class M          |
| 23 | 4            | 27.78            | 355.60     | cast steel; lake water     |
| 24 | 8            | 27.78            | 482.60     | Panama                     |
| 25 | 16           | 27.78            | 660.40     |                            |
| 26 | 1            | 27.78            | 177.80     | Southwell & Alexander 1970 |
| 27 | 2            | 27.78            | 304.80     | Table 2 - Class O          |
| 28 | 4            | 27.78            | 381.00     | cast iron; lake water      |
| 29 | 8            | 27.78            | 584.20     | Panama                     |
| 30 | 16           | 27.78            | 838.20     | ·                          |
| 31 | 1            | 27.78            | 193.04     | Southwell & Alexander 1970 |
| 32 | 2            | 27.78            | 304.80     | Table 2 - Class N          |
| 33 | 4 '          | 27.78            | 406.40     | cast steel; lake water     |
| 34 | 1            | 27.78            | 200.66     | Southwell & Alexander 1970 |
| 35 | 2            | 27.78            | 330.20     | Table 2 - Class P          |

#### Table 5- 4 Aqueous General Corrosion Data Used in the Model Development.

B0000000-01717-4301-00005 REV00

Table 5-4. (continued).

|             | Time (years) | Temperature (°C) | Depth (µm) | Comments                    |
|-------------|--------------|------------------|------------|-----------------------------|
| 36          | 4            | 27.78            | 431.80     | cast iron; lake water       |
| 37          | 1            | 15.00            | 182.90     | Coburn 1978                 |
| 38          | 1            | 15.00            | 161.80     | Figure 4                    |
| 39          | 1            | 15.00            | 135.50     | carbon steel; river water   |
| 40          | 2            | 15.00            | 306.60     | Charleroi, PA               |
| 41          | 2            | 15.00            | 236.80     |                             |
| 42          | 2            | 15.00            | 229.00     |                             |
| 43          | 2            | 15.00            | 223.60     |                             |
| 44          | 2            | 15.00            | 210.60     |                             |
| 45          | 4            | 15.00            | 431.60     |                             |
| 46          | 4            | 15.00            | 410.40     |                             |
| 47          | 4            | 15.00            | 389.60     |                             |
| 48          | 4            | 15.00            | 294.80     |                             |
| 49          | 8            | 15.00            | 863.20     |                             |
| 50          | 8            | 15.00            | 631.20     |                             |
| 51          | 8            | 15.00            | 579.20     |                             |
| 52          | 8            | 15.00            | 442.40     |                             |
| 53          | 8            | 15.00            | 431.20     |                             |
| 54          | 1            | 15.00            | 106.60     | Coburn 1978                 |
| 55          | 1            | 15.00            | 103.90     | Figure 4                    |
| 56          | 1            | 15.00            | 100.00     | carbon steel; river water   |
| 57          | 2            | 15.00            | 189.40     | Kittanning, PA              |
| 58          | 2            | 15.00            | 176.20     |                             |
| 59          | 4            | 15.00            | 278.80     |                             |
| 60          | 4            | 15.00            | 273.60     |                             |
| 61          | 4            | 15.00            | 260.40     |                             |
| 62          | 8            | 15.00            | 484.00     |                             |
| 63          | 8            | 15.00            | 479.20     |                             |
| 64          | 0.27         | 5.00             | 1.76       | Brasher & Mercer 1968       |
| 65          | 0.27         | 25.00            | 9.60       | Mercer et al. 1968          |
| 66          | 0.27         | 40.00            | 20.15      | mild steel; distilled water |
| <u> 57 </u> | 0.27         | 60.00            | 42.73      |                             |
| 58          | 0.27         | 70.00            | 42.26      |                             |
| <u>59</u>   | 0.27         | 80.00            | 18.35      |                             |
| 70          | 0.27         | 90.00            | 13.53      |                             |

B0000000-01717-4301-00005 REV00

| Material                            | Sample<br>ID * | Avg. depth<br>(μm) | Deepest Pit<br>(µm) | Avg. 20<br>Deepest Pits<br>(µm) | Roughness<br>Factor<br>Deepest Pit | Roughness<br>Factor Avg 20<br>Deepest Pits |
|-------------------------------------|----------------|--------------------|---------------------|---------------------------------|------------------------------------|--------------------------------------------|
| Wrought<br>Carbon Steel             | ·A             | 711                | 2,362               | 1,829                           | 3.32                               | 2.57                                       |
| Wrought<br>Carbon Steel             | В              | 635                | 2,388               | 1,651                           | 3.76                               | 2.60                                       |
| Wrought<br>Carbon Steel             | С              | 635                | 2,311               | 1,676                           | . 3.64                             | 2.64                                       |
| Wrought<br>Carbon Steel,<br>0.3% Cu | D              | 737                | 2,261               | 1,626                           | 3.07                               | 2.21                                       |
| Cast Steel                          | м              | 660                | 3,556               | 2,489                           | 5.38                               | 3.77                                       |

Table 5- 5 Aqueous Corrosion Roughness Factor Data at 16-Year Exposure Time.

\* Sample identification used in Southwell and Alexander (1970).

Table 5- 6 Local Corrosion Environment Scenarios on the CRM and the Probabilities of Occurrence from the WPDEE (Pendleton 1998).

|           | Environment             |                        |                        |  |  |  |  |  |  |
|-----------|-------------------------|------------------------|------------------------|--|--|--|--|--|--|
| Expert    | pH = 3-10<br>340 mV SHE | pH = 2.5<br>340 mV SHE | pH = 2.5<br>640 mV SHE |  |  |  |  |  |  |
| Andresen  | 0.99                    | 0.01                   | 10 <sup>-5</sup>       |  |  |  |  |  |  |
| Farmer    | 0.45                    | 0.45                   | 0.10                   |  |  |  |  |  |  |
| McCright  | 0.94                    | 0.05                   | 0.01                   |  |  |  |  |  |  |
| Shoesmith | 0.98                    | 0.01                   | 0.01                   |  |  |  |  |  |  |
| Average   | 0.84                    | 0.13                   | 0.03                   |  |  |  |  |  |  |

|                         |                                 |                        |                | -                   |       |               |                            |                    |
|-------------------------|---------------------------------|------------------------|----------------|---------------------|-------|---------------|----------------------------|--------------------|
| Comments<br>Data Source | Identification<br>S/N Reference | Exposure Time<br>Hours | dp/dt<br>µm/yr | Temperature<br>(°C) | pН    | NaCl<br>wt. % | FeCl <sub>3</sub><br>wt. % | Alr<br>Fract. Sat. |
| Long Term Test - SAW    | DWA 001                         | 4296                   | 2.53E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DWA 003                         | 4296                   | 5.07E-02       | 60                  | 2.7   | 4.616         | 0                          | 11                 |
| Long Term Test - SAW    | DWB 001                         | 4296                   | 1.13E-01       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DWB 002                         | 4296                   | 1.64E-01       | 60                  | 2.7   | 4.616         | 0                          | 11                 |
| Long Term Test - SAW    | DWB 003                         | 4296                   | 6.03E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DWB 005                         | 4296                   | 3.45E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DWB 006                         | 4296                   | 3.47E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Polarization - NaCl     | unknown                         | 1                      | 3.00E-04       | 60                  | 2.69  | 1             | 0                          | 1                  |
| Polarization - NaCl     | 082697c2                        | 1                      | 3.00E-03       | 60                  | 6.53  | 5             | 0                          | 1                  |
| Polarization - NaCl     | 082797c2                        | 1                      | 2.01E-02       | 90                  | 6.53  | 5             | 0                          | 1                  |
| Polarization - NaCl     | 090996c1                        | 1                      | 3.02E-02       | 90                  | 6.83  | 10            | 0                          | 1                  |
| Polarization - NaCl     | 102397c1                        | 1                      | 2.01E-01       | 90                  | 2.69  | 1             | 0                          | 0                  |
| Polarization - NaCl     | 102497c2                        | 1                      | 2.01E-01       | 90                  | 2.67  | 1             | 0                          | 0                  |
| Polarization - NaCl     | 102797c1                        | . 1                    | 2.01E-01       | 90                  | 2.69  | 5             | 0                          | 0                  |
| Long Term Test - SAW    | DCA 001                         | 4296                   | 8.58E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCA 002                         | 4296                   | 1.13E-01       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCA 003                         | 4296                   | 7.70E-02       | 60                  | 2.7   | 4.616         | 0                          | 11                 |
| Long Term Test - SAW    | DCB 001                         | 4296                   | 2.81E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCB 002                         | 4296                   | 1.87E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCB 003                         | 4296                   | 9.31E-03       | 60                  | 2.7   | 4.616         | 0.                         | 1                  |
| Long Term Test - SAW    | DCA 004                         | · 4296                 | 1.04E-01       | 60                  | 2.7 · | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCA 005                         | 4296                   | 8.11E-02       | 60                  | 2.7   | 4.616         | 0                          | 1                  |
| Long Term Test - SAW    | DCA 006                         | 4296                   | 1.17E-01       | 60                  | 2.7   | 4.616         | 0                          | 1                  |

Table 5-7 All the Corrosion Data for Alloy 22 Used in the Development of the Correlation of the Corrosion Rate (Pasupathi 1997).

| Table 5-7. | (continued). | • |
|------------|--------------|---|
|------------|--------------|---|

.

| Comments<br>Data Source          | Identification<br>S/N Reference | Exposure Time<br>Hours | dp/dt<br>µm/yr | Temperature<br>(°C) | pH   | NaCl<br>wt. % | FeCl₃<br>wt. % | Air<br>Fract. Sat. |
|----------------------------------|---------------------------------|------------------------|----------------|---------------------|------|---------------|----------------|--------------------|
| Long Term Test - SAW             | DCB 004                         | 4296                   | 6.56E-02       | 60                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCB 005                         | 4296                   | 6.61E-02       | 60                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCB 006                         | 4296                   | 4.71E-02       | 60                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCA 034                         | 4344                   | 2.45E-01       | 90                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCA 035                         | 4344                   | 7.31E-01       | 90                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCA 036                         | 4344                   | 1.76E-01       | 90                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCB 035                         | 4344                   | 4.16E-02       | 90                  | 2.7  | 4.616         | 0              | 1                  |
| Long Term Test - SAW             | DCB 036                         | 4344                   | 1.07E-01       | 90                  | 2.7  | 4.616         | 0              | 1                  |
| Polarization - FeCl <sub>3</sub> | 110497c2                        | 4344                   | 3.00E-03       | 90                  | 2.14 | 0             | 0.61           | 0                  |
| Polarization - FeCl <sub>3</sub> | 110397c1                        | 4344                   | 6.00E-03       | 90                  | 2.16 | 0             | 0.61           | 0                  |
| Polarization - FeCl <sub>3</sub> | 103097c1                        | 4344                   | 2.01E-01       | 90                  | 1.72 | 0             | 3.05           | 0                  |
| Polarization - FeCl <sub>3</sub> | 103197c2                        | 4344                   | 2.01E+00       | 90                  | 1.72 | 0             | 3.05           | 0                  |
| Asphahani - Hanes Intl.          | Gdowski UCRL                    | 100                    | 2.50E+00       | 25                  | 1    | O             | 10             | 1                  |
| Asphahani - Hanes Inti.          | Gdowski UCRL                    | 100                    | 2.50E+00       | 50                  | 1    | 0             | 10             | 1                  |
| Asphahani - Hanes Intl.          | Gdowski UCRL                    | 100                    | 1.27E+01       | 75                  | 1    | 0             | 10             | 1                  |

.

.

•

| Distribution   | Parameters                                           |
|----------------|------------------------------------------------------|
| Fixed          | Single value                                         |
| Normal         | Mean and standard deviation                          |
| Bounded Normal | Mean, standard deviation, and upper and lower bounds |
| Lognormal      | Mean and standard deviation of underlying normal     |
| Uniform        | Minimum and maximum                                  |
| Loguniform     | Minimum and maximum                                  |

Table 5-8 Theoretical Distributions Offered by WAPDEG.

Table 5-9 Summary of WAPDEG Output Files.

| File Extension | Description                             |
|----------------|-----------------------------------------|
| OUT            | Echo file input, package summary output |
| AUX            | Warning messages, package properties    |
| CAM            | CAM thickness versus time by package    |
| CRM            | CRM thickness versus time by package    |
| PAT            | Patch failures versus time by package   |
| BIN            | Pit penetrations versus time by package |

5T-14

Table 5- 10 Corrosion Models and Parameters Used in the TSPA-VA Base Case Waste Package Degradation Analysis.

| Model Parameter                                           | Description                                                                                                                                                                                            | Value/Distribution                                                                                                                                                                                                                                                                                                                                                       | Source                                     |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| T threshold for corrosion initiation                      | A temperature threshold below which<br>corrosion of waste package induced by<br>electrochemical processes could occur.                                                                                 | CDF: 95 - 150°C                                                                                                                                                                                                                                                                                                                                                          | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |
| RH threshold for CAM<br>humid-air corrosion<br>initiation | A relative humidity threshold above which the<br>carbon steel outer barrier is subject to<br>corrosion in humid-air condition                                                                          | CDF: 0 - 91.02%                                                                                                                                                                                                                                                                                                                                                          | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |
| RH threshold for CAM<br>aqueous corrosion<br>initiation   | A relative humidity threshold above which the carbon steel outer barrier is subject to corrosion in aqueous condition.                                                                                 | CDF: 80 - 100%                                                                                                                                                                                                                                                                                                                                                           | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |
| CAM humid-air general<br>corrosion model                  | A model to calculate general corrosion depth<br>of the carbon steel outer barrier as a function<br>of time, T and RH. The model currently has<br>five parameters with their associated<br>uncertainty. | $a_{0} = 17.185$ $a_{1} = -623.46$ $a_{2} = -974.46$ $a_{3} = 0.62270$ covariance matrix $V = \begin{bmatrix} 6.9934 & -231.79 & -523.80 & -2.4608 \cdot 10^{-2} \\ -231.79 & 104703 & -10892 & 2.5731 \\ -523.80 & -10892 & 47470 & 1.3009 \\ -2.4608 \cdot 10^{-2} & 2.5731 & 1.3009 & 6.9319 \cdot 10^{-4} \end{bmatrix}$ error variance mean = 0, $\sigma = 0.12757$ | CRWMS M&O<br>(1998c)                       |
| Localization factor for<br>CAM in humid-air<br>condition  | A factor employed to estimate localized<br>variations of the outer barrier corrosion depth<br>in humid-air condition. The factor is used as<br>a multiplier to the general corrosion depth             | Bounded normal<br>1.5, 0.25, 1.0, 1.0e6 IMean, σ, Minimum , Maximum                                                                                                                                                                                                                                                                                                      | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |

T5-15

## Table 5-10. (continued).

| Model Parameter                                                                 | Description                                                                                                                                                                                                                                   | Value/Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source                                     |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| CAM aqueous general corrosion model                                             | A model to calculate general corrosion depth<br>of the carbon steel outer barrier as a function<br>of time and T. The model currently has five<br>parameters with their associated uncertainty.                                               | $\begin{split} b_{0} &= 111.53 \\ b_{1} &= 0.53199 \\ b_{2} &= -23291 \\ b_{3} &= -3.1918 \times 10^{-4} \\ \hline covaraiance matrix \\ V &= \begin{bmatrix} 116.63 & -9.4226 \cdot 10^{-4} & -24761 & -3.7926 \cdot 10^{-4} \\ -9.4226 \cdot 10^{-4} & 7.4149 \cdot 10^{-4} & 1.7704 \cdot 10^{-11} & 2.7491 \cdot 10^{-19} \\ -24761 & 1.1689 \cdot 10^{-11} & 5.2627 \cdot 10^{6} & 8.0311 \cdot 10^{-2} \\ -3.7926 \cdot 10^{-4} & 1.8355 \cdot 10^{-19} & 8.0311 \cdot 10^{-2} & 1.2410 \cdot 10^{-9} \end{bmatrix} \\ error variance mean = 0, \sigma = 0.0362 \end{split}$ | CRWMS M&O<br>(1998c)                       |
| Localization factor for<br>CAM in aqueous<br>condition                          | A factor employed to estimate localized<br>variations of the outer barrier corrosion depth<br>in aqueous condition. The factor is used as a<br>multiplier to the general corrosion depth.                                                     | Bounded normal<br>1.5, 0.25, 1.0, 1.0e6 IMean, σ, Minimum , Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |
| Pitting corrosion model<br>for CAM under drips<br>with elevated pH<br>condition | Pit growth law model for a high aspect-ratio<br>pitting corrosion of the outer barrier in alkaline<br>pH conditions (pH >= 10). The model is<br>expressed as a function of time, and has two<br>parameters with their associated uncertainty. | D = B t <sup>n</sup> model<br>B is CDF: .0.1 - 1.84e6 μm/yr <sup>n</sup><br>n is CDF: 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CRWMS M&O<br>(1997e), MOL<br>19980218.0231 |
| CRM general corrosion<br>rate with no drips-CDF<br>tables                       | CDF tables at 25, 50 and 100°C expressing a potential range of constant general corrosion rates of the Alloy 22 inner barrier in the absence of dripping on waste package.                                                                    | 25°C CDF: 5.62e-10 - 3.00e-5 mm/yr<br>50°C CDF: 2.39e-9 - 5.00e-5 mm/yr<br>100°C CDF: 2.39e-8 - 2.00e-4 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pendleton<br>(1998), MOL<br>19980615.0089  |

T5-16

•

### Table 5-10. (continued).

| Model Parameter                                                                              | Description                                                                                                                                                                                                                                  | Value/Distribution                                                                                           | Source                                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Uncertainty/variability<br>allocation of no-drip<br>CRM general corrosion<br>rate-CDF tables | A fractional split of the total variance of the<br>no-drip Alloy 22 general corrosion rate to<br>represent associated uncertainty of the rate<br>and spatial variability of the rate among waste<br>packages and for a single waste package. | $\begin{array}{r llllllllllllllllllllllllllllllllllll$                                                       | Pendleton<br>(1998), MOL<br>19980615.0089 |
| Variability allocation of<br>no-drip CRM general<br>corrosion rate-CDF<br>tables             | A fractional split of the total variability of the<br>no-drip Alloy 22 general corrosion rate to<br>represent spatial variability of the rate among<br>waste packages and for regions in a single<br>waste package.                          | 50% waste package to waste package<br>50% region to region (patch to patch)                                  | Pendleton<br>(1998), MOL<br>19980615.0089 |
| CRM general corrosion<br>rate with drips-CDF<br>tables                                       | CDF tables at 25, 50 and 100°C expressing a potential range of constant general corrosion rates of the Alloy 22 inner barrier in the presence of dripping on waste package.                                                                  | 25°C CDF: 2.06e-8 - 9.00e-3 mm/yr<br>50°C CDF: 9.99e-8 - 1.25e-2 mm/yr<br>100°C CDF: 1.00e-7 - 2.00e-2 mm/yr | Pendleton<br>(1998), MOL<br>19980615.0089 |
| Uncertainty/variability<br>allocation of drip CRM<br>general corrosion rate-<br>CDF tables   | A fractional split of the total variance of the<br>drip Alloy 22 general corrosion rate to<br>represent associated uncertainty of the rate<br>and spatial variability of the rate among waste<br>packages and for a single waste package.    | $\begin{array}{r llllllllllllllllllllllllllllllllllll$                                                       | Pendleton<br>(1998), MOL<br>19980615.0089 |
| Variability allocation of<br>drip CRM general<br>corrosion rate-CDF<br>tables                | A fractional split of the total variability of the<br>drip Alloy 22 general corrosion rate to<br>represent spatial variability of the rate among<br>waste packages and for regions in a single<br>waste package.                             | 35% waste package to waste package<br>65% region to region (patch to patch)                                  | Pendleton<br>(1998), MOL<br>19980615.0089 |

B0000000-01717-4301-00005 REV00

**T**5-17

#### Table 5-10. (continued).

| Model Parameter                  | Description                                                                                                                                                                                                                          | Value/Distribution                                                                                  | Source                                    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|
| CRM general corrosion<br>model   | A model expressing the general corrosion<br>rate of the Alloy 22 Inner barrier as a function<br>of temperature. The model uses the drip or<br>no drip CDFs discussed above.                                                          | D = Rate × time<br>Rate is sampled from the drip or no drip CDFs discussed above<br>as appropriate. | Pendleton<br>(1998), MOL<br>19980615.0089 |
| CRM localized corrosion<br>model | A model expressing localized corrosion rate<br>of the Alloy 22 inner barrier as a function of<br>time and temperature. The model currently<br>has four parameters with their associated<br>uncertainty.                              | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                | CRWMS M&O<br>(1998c)                      |
| Localized corrosion<br>threshold | A threshold to initiate localized corrosion in<br>the Alloy 22 inner barrier. It is currently<br>expressed as a function of temperature. No<br>localized corrosion initiates at temperatures<br>less than the threshold temperature. | Uniform distribution between 80 and 100°C.                                                          | Pendleton<br>(1998), MOL<br>19980615.0089 |

CDF = cumulative distribution function

.

 $\sigma =$ one standard deviation

B0000000-01717-4301-00005 REV00

**T5-18** 

| Input Parameter                                                          | Description                                                                                                                                                                                                                                                | Value/Distribution                                               | Source                                                                           |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|
| T history at the waste                                                   | A history of temperature at the surface of waste packages in the NE region.                                                                                                                                                                                | 12 waste package groups used; vary with time between ~20 - 200°C | CRWMS M&O<br>19981                                                               |
| RH history at the waste package surface                                  | A history of relative humidity at the surface of waste packages in the NE region.                                                                                                                                                                          | 12 waste package groups used; vary with time between ~10 - 100%. | CRWMS M&O<br>19981                                                               |
| Thickness of CAM                                                         | A thickness of the carbon steel outer barrier.                                                                                                                                                                                                             | 10 cm                                                            | Benton (1997),                                                                   |
| Thickness of CRM                                                         | A thickness of the Alloy 22 inner barrier.                                                                                                                                                                                                                 | 2 cm                                                             | Benton (1997),                                                                   |
| Number of waste                                                          | A total number of waste packages considered in a simulation.                                                                                                                                                                                               | 400 (occasionally 800)                                           | Section 5.11.1<br>of this chapter                                                |
| Number of patches per<br>waste package                                   | A total number of patches per waste package. A patch is defined as a minimum local area having a uniform general corrosion depth over an entire simulation period.                                                                                         | 964                                                              | Section 5.11.1<br>of this chapter                                                |
| Fraction for waste                                                       | A fraction of the waste package surface to be considered in the simulation as the top of the waste package.                                                                                                                                                | 180°                                                             | Section 5.11.1<br>of this chapter                                                |
| Fraction for waste package bottom                                        | A fraction of the waste package surface to be considered in<br>the simulation as the bottom of the waste package. The<br>remaining fraction of the waste package surface (after<br>subtracting the top and bottom fractions) is considered as the<br>side. | 180°                                                             | Section 5.11.1<br>of this chapter                                                |
| Fraction of the waste<br>package top surface<br>wetted under dripping    | A fraction of the waste package top surface wetted in the presence of dripping.                                                                                                                                                                            | 100%                                                             | Section 5.11.1<br>of this chapter                                                |
| Fraction of the waste<br>package bottom surface<br>wetted under dripping | A fraction of the waste package bottom surface wetted in the presence of dripping.                                                                                                                                                                         | 100%                                                             | Section 5.11.1<br>of this chapter                                                |
| Pit density of CAM                                                       | Number of pits per unit area that form in the outer barrier undergoing corrosion.                                                                                                                                                                          | 10 pits/cm <sup>2</sup>                                          | CRWMS M&O<br>(1997e); MOL<br>19980218.0231;<br>Section 5.11.1<br>of this chapter |

Table 5- 11 Inputs to the TSPA-VA Base Case Waste Package Degradation Analysis.

T5-19

August 1998

٠

## Table 5-11. (continued).

| Input Parameter      | Description                                                                                 | Value/Distribution      | Source                                                                           |
|----------------------|---------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|
| Pit density of CRM   | Number of pits per unit area that form in the inner barrier undergoing localized corrosion. | 10 pits/cm <sup>2</sup> | CRWMS M&O<br>(1997e); MOL<br>19980218.0231;<br>Section 5.11.1<br>of this chapter |
| Drip initiation time | Time for the initiation of drips on waste package.                                          | 0 years                 | Section 5.11.1<br>of this chapter                                                |
| Drip stop time       | Time for the cessation of drips on waste package.                                           | 10 <sup>6</sup> years   | Section 5.11.1<br>of this chapter                                                |

B0000000-01717-4301-00005 REV00

| Class                                                            | Sensitivity Case                                                                                                             | Description                                                                                                                                                                                                                      |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Repository Regions                                                                                                           | Sensitivity of waste package degradation to different thermal-hydrologic environment (in terms of temperature and relative humidity profiles at the waste package surface) in six regions of repository.                         |
| Repository Condition<br>Parameters                               | Fraction of Waste Package Surface<br>Wetted by Drips                                                                         | Sensitivity of waste package degradation to different surface fractions of the waste package surface wetted by drips.                                                                                                            |
|                                                                  | Patch Size in Waste Package<br>Degradation Modeling                                                                          | Sensitivity of waste package degradation to different patch sizes used in waste package degradation (WAPDEG) simulation.                                                                                                         |
| CAM Corrosion<br>Parameters                                      | Alkaline pH Dripping                                                                                                         | Sensitivity of waste package degradation to high aspect-ratio pitting corrosion of the CAM under alkaline dripping condition (pH≥10) for the first 10,000 years after emplacement.                                               |
|                                                                  | Microbiologically Influenced Corrosion                                                                                       | Sensitivity of waste package degradation to enhanced general corrosion rates of the CAM under an assumed condition of sustained microbiologically influenced corrosion.                                                          |
| CRM Corrosion<br>Parameters                                      | Alternative Allocations of Variability and<br>Uncertainty of CRM General Corrosion<br>Rate Variance under Dripping Condition | Sensitivity of waste package degradation to alternative allocations for the variability and<br>uncertainty of the CRM general corrosion rate variance under dripping and alternative<br>median rates of the uncertainty variance |
|                                                                  | Two End Members of Expert Elicitation for<br>CRM General Corrosion Rate under<br>Dripping                                    | Sensitivity of waste package degradation to two end members (most conservative and most optimistic) of the expert elicitation for CRM general corrosion rate distribution under dripping condition.                              |
|                                                                  | Backfill                                                                                                                     | Sensitivity of waste package degradation to different relative humidity and temperature conditions at the waste package surface in the presence of backfill in six different repository regions.                                 |
| Waste Package and<br>Engineered Barrier<br>System Design Options | Drip Shield                                                                                                                  | Sensitivity of waste package degradation to the varying drip shield thickness in the presence of backfill.                                                                                                                       |
|                                                                  | Ceramic Coating                                                                                                              | Sensitivity of waste package degradation to the ceramic coating on the CAM surface in the presence of backfill.                                                                                                                  |
| •                                                                | CAM Thickness                                                                                                                | Sensitivity of waste package degradation to varying CAM thickness.                                                                                                                                                               |
|                                                                  | CRM Thickness                                                                                                                | Sensitivity of waste package degradation to varying CRM thickness.                                                                                                                                                               |

Table 5- 12 A List of One-Off Sensitivity Cases Studied in This Report.

# Table 5- 13 Three Alternative Allocations for the Uncertainty and Variability of the CRM General Corrosion Rate Under Dripping Conditions and Three Alternative Median Rates.

|                                                           | Allocation for Uncertainty/Variability (Percent) |                                     |                                     |
|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------|
|                                                           | 25/75                                            | 50/50                               | 75/25                               |
| Median Corrosion Rate<br>from the Uncertainty<br>Variance | 5 <sup>th</sup> percentile (Set 1)               | 5 <sup>th</sup> percentile (Set 2)  | 5 <sup>th</sup> percentile (Set 3)  |
|                                                           | 50 <sup>th</sup> percentile (Set 4)              | 50 <sup>th</sup> percentile (Set 5) | 50 <sup>th</sup> percentile (Set 6) |
|                                                           | 95 <sup>th</sup> percentile (Set 7)              | 95 <sup>th</sup> percentile (Set 8) | 95 <sup>th</sup> percentile (Set 9) |

• The base case model is based on the 50%/50% split for the uncertainty and variability allocation and the median rate sampled at the 50<sup>th</sup> percentile of the uncertainty variance (indicated with a shade).

• Designation for each of the 9 cases (Set 1 to Set 9) for the result discussion is indicated in the table.

 

 Table 5- 14 Distribution of the CAM General Corrosion Rate Reduction Factor in Aqueous Condition Used in the Ceramic Coating Design Option Sensitivity Analysis.

| Percentile | Reduction Factor in Aqueous Condition |
|------------|---------------------------------------|
| 0          | 0                                     |
| 1          | 1.7E-6                                |
| 5          | 5.0E-6                                |
| 50         | 5.7E-5                                |
| 95         | 6.5E-4                                |
| 100        | 1.9E-3                                |

Critical threshold CAM general corrosion depth = 0.095 cm

Source: Pasupathi (1998)

| Input Parameter                                                               | Distribution                                   | Source          |
|-------------------------------------------------------------------------------|------------------------------------------------|-----------------|
| Temperature threshold for CAM corrosion initiation for patches without drips  | TThresh.cdf                                    | CRWMS M&O 1998i |
| RH threshold for CAM humid-air corrosion initiation for patches without drips | HARH.cdf                                       | Section 5.5-5   |
| CAM humid-air general corrosion coefficient ao (intercept coefficient)        | Joint Normal(ao, a1, a3)                       | Section 5.5-3   |
| CAM humid-air general corrosion coefficient a1 (temperature coefficient)      | Joint Normal(ao,a1,a3)                         | Section 5.5-3   |
| CAM humid-air general corrosion coefficient a3 (time coefficient)             | Joint Normal( $a_0, a_1, a_3$ )                | Section 5.5-3   |
| No drip CRM general corrosion rate at 50°C                                    | Gnd27550.cdf                                   | CRWMS M&O 1998f |
| Temperature threshold for CAM corrosion initiation for patches with drips     | TThresh.cdf                                    | CRWMS M&O 1998i |
| RH threshold for CAM humid-air corrosion initiation for patches with drips    | HARH.cdf                                       | Section 5.5-6   |
| Temperature threshold for CRM localized corrosion initiation                  | Uniform(80, 100)                               | Section 5.9-6   |
| CAM aqueous general corrosion coefficient $b_0$ (intercept coefficient)       | Joint Normal(b <sub>0</sub> ,b <sub>1</sub> )  | Section 5.6-3   |
| CAM aqueous general corrosion coefficient $b_1$ (time coefficient)            | Joint Normal(b <sub>0</sub> , b <sub>1</sub> ) | Section 5.6-3   |
| CRM general corrosion rate with drips at 50°C                                 | g8435050.cdf                                   | CRWMS M&O 1998g |
| CLC term in CRM localized corrosion model                                     | Normal(4.367, 2.4495)                          | Section 5.9-4   |

Table 5- 15 Input Parameters Considered in the Regression-Based Sensitivity Analysis Case WPSA1.

Table 5- 16 Input Parameters Considered in the Regression-Based Sensitivity Analysis Case WPSA2.

| Input Parameter                                                                                                                               | Distribution                                                  | Source          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|
| The number of patches on waste package                                                                                                        | Uniform(96, 9640)                                             | N/A             |
| Temperature threshold for CAM corrosion initiation for patches without drips                                                                  | TThresh.cdf                                                   | CRWMS M&O 1998i |
| RH threshold for CAM humid-air corrosion initiation for patches without drips                                                                 | HARH.cdf                                                      | Section 5.5.6   |
| CAM general corrosion variance split for waste package-to-waste package and patch-to-patch variability                                        | Uniform(0, 1)                                                 | N/A             |
| CAM humid-air general corrosion coefficient a <sub>0</sub> (intercept coefficient)                                                            | Joint Normal(a0,a1,a3)                                        | Section 5.5.3   |
| CAM humid-air general corrosion coefficient a1 (temperature coefficient)                                                                      | Joint Normal(a <sub>0</sub> ,a <sub>1</sub> ,a <sub>3</sub> ) | Section 5.5.3   |
| CAM humid-air general corrosion coefficient a <sub>3</sub> (time coefficient)                                                                 | Joint Normal(a <sub>0</sub> ,a <sub>1</sub> ,a <sub>3</sub> ) | Section 5.5.3   |
| No drip CRM general corrosion rate variance split for waste package-to-waste package and patch-to-patch variability                           | Uniform(0, 1)                                                 | N/A             |
| No drip CRM general corrosion rate at 50°C                                                                                                    | gnd27550.cdf                                                  | CRWMS M&O 1998f |
| Top fraction of waste package seeing dripping conditions                                                                                      | Uniform(0, 1)                                                 |                 |
| Temperature threshold for CAM corrosion initiation for patches with drips                                                                     | TThresh.cdf                                                   | CRWMS M&O 1998i |
| RH threshold for CAM humid-air corrosion initiation for patches with drips                                                                    | HARH.cdf                                                      | Section 5.5.6   |
| Temperature threshold for CRM localized corrosion initiation                                                                                  | Uniform(80, 100)                                              | Section 5.9.2   |
| CRM localized corrosion initiation temperature threshold variance split for waste package-to-<br>waste package and patch-to-patch variability | Uniform(0, 1)                                                 | N/A             |
| CAM aqueous general corrosion variance split for waste package-to-waste package and patch-<br>to-patch variability                            | Uniform(0, 1)                                                 | N/A             |
| CAM aqueous general corrosion coefficient b0 (intercept coefficient)                                                                          | Joint Normal(b <sub>0</sub> , b <sub>1</sub> )                | Section 5.6.3   |
| CAM aqueous general corrosion coefficient b1 (time coefficient)                                                                               | Joint Normal(b <sub>0</sub> , b <sub>1</sub> )                | Section 5.6.3   |
| Drip CRM general corrosion rate variance split for waste package-to-waste package and patch-<br>to-patch variability                          | Uniform(0, 1)                                                 | N/A             |
| Drip CRM general corrosion rate at 50°C                                                                                                       | g8435050.cdf                                                  | CRWMS M&O 1998g |
| C <sub>LC</sub> of CRM localized corrosion model                                                                                              | Normal(4.367, 2.4495)                                         | Section 5.9.4   |
| Time exponent of CBM localized corrosion model                                                                                                | B-Normal(0.5.0, 125.0.0, 1.0)                                 | Section 5.9.4   |

B0000000-01717-4301-00005 REV00

**T**5-24

Table 5- 17 Output Parameters Studied in Regression-Based Sensitivity Analysis for Cases WPSA1 and WPSA2.

| Output Parameter                |                 |  |  |
|---------------------------------|-----------------|--|--|
| First waste package breach time |                 |  |  |
| First pit-breach time           |                 |  |  |
| First patch-breach time         | ·               |  |  |
| Fraction of failed patches at   | 10,000 years    |  |  |
| Fraction of failed patches at   | 50,000 years    |  |  |
| Fraction of failed patches at   | 100,000 years   |  |  |
| Fraction of failed patches at   | 500,000 years   |  |  |
| Fraction of failed patches at   | 1,000,000 years |  |  |

Table 5- 18 Importance Ranking of Input Variables on First Patch-BreachOutput Variable ( $R^2 = 0.8492$ ).

| Rank | Description                                                        | SRRC*               | R <sup>2</sup> Loss <sup>b</sup> | PRCC <sup>c</sup> |
|------|--------------------------------------------------------------------|---------------------|----------------------------------|-------------------|
| 1    | Variance share of CRM general corrosion rate with drips            | 0.702               | 0.4910                           | 0.875             |
| 2    | CRM general corrosion rate with drips                              | -0.563              | 0.3158                           | -0.823            |
| 3    | Fraction of top waste package surface seeing<br>dripping condition | -0.153 <sup>·</sup> | 0.0233                           | -0.366            |
| 4    | Number of patches                                                  | -0.143              | 0.0204                           | -0.345            |
| 5    | Variance share for CRM localized corrosion rate                    | 0.0271              | 0.0007                           | 0.069             |
| 6    | CRM general corrosion rate without drips                           | 0.0270              | 0.0007                           | 0.069             |

a. SRRC (Standardized Rank Regression Coefficients) is the coefficients in the rank regression model after the input variables have been standardized.

b. R<sup>2</sup> Loss is the reduction in R<sup>2</sup> if the input variable is dropped from the regression model.

c. PRCC (Partial Rank Correlation Coefficients) indicates the strength of a linear correlation between the input variable (rank) and the output variable (rank), after eliminating the correlation of all other input variables.