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1.0 Introduction

This report describes a numerical study of the proposed nuclear waste repository at the
Nevada Test Site. The objective of the study is to evaluate the temperatures and stresses at the
Exploratory Shaft locations and in the vicinity of the Exploratory Shaft Facility area over a
10,000 year time span. The stresses change over time as a result of heat wansfer from the waste
to the surrounding rock mass. Of particular interest are the thermally-induced stresses in the
vicinity of two shafts, the main drift, two mid-panel drifts, two breakout horizons, and the
repository level exploratory test area. The swesses, strains, and temperatures for these eight
stuctures have been computed with the STRES3D code (St. John and Christianson, 1680). The
results are presented in graphical form for 10 different dmes: 10, 35, 50, 100, 300, 500, 1,000,
2,000, 5,000, and 10,000 years after waste emplacement has begun. The stresses and strains
presented in this report are due solely to thermal loads. The influence of the shaft excavation and
room excavation process upon the state of stress has not been considered: it is subject for another

study.

2.0 Repository Geometry

The locatons of the two shafts of interest are given in Figures 1 and 2. Exploratory
Shaft 1 (ES-1) extends from the ground surface to a depth of 1450 ft, while Exploratory Shaft 2
(ES-2) extends from the ground surface to a depth of 1200 feet.

ES-1 intercepts all three rooms of concern: the Exploratory Shaft Facility, the Calico
Hills Drill Room, and the Upper Demonstration Breakout Room. The geomewy of these
excavated areas is shown in Figures 2 through 4.

The Tuff Main Drift and Drift CE are part of the perimeter of the Exploratory Shaft
Facility, while Drift F'G’ intersects the perimeter. The locations of these drifts are given in

Figure 2.

The repository contains 17 panels which will house the waste canisters (refer to Figures
S and 6). Figure 6 shows a typical panel layout for a vertical emplacement scheme. The
geometry for a horizontal emplacement scheme differs, but for this study, details of the
emplacement geometry are not important so long as the average areal power density remains the
same. The final emplacement scheme is yet to be chosen. In this study, all panels were

September 16, 1988 1
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modeled as rectangular panels representing the heated area of each panel. The heated area is
approximately 67 percent of the area shown in Figure 5. The reduction in area accounts for the
standoff distance between the emplaced waste and the panel access drifts. The heated panels are
cach located at different depths relative to the surface, and have waste emplaced at different
umes. Figure 7 shows an isometric view and profile of the waste emplacement panels, Figure 8
the plan view of the panels, shafts and drifts, and Figure 9 the outline of the Exploratory Shaft
Facility relative to the waste emplacement panel. Figure 10 shows the elevation of each panel.

3.0 Heat Generation From the Repository

At the time of emplacement, the average areal power density will be approximately 57
kw/acre over each of the 17 waste panels. If the standoff area between the drifts and the waste is
taken into consideradon, then the areal power density is approximately 85.0 kw/acre. The power
generation will decay exponentially with time. The normalized coefficients describing the power
decay are summarized in Table 1, and are those given by Mansure (1985) and the Reference
Information Base. The waste emplacement will take place over a 25 year period. The
emplacement schedule used in this study is that given in Figure 11. This schedule was taken
from the Site Characterization Plan Conceptual Design Report (SCP/CDR), MacDougall et al.
(1987) and Harig (1988).

4.0 Thermal and Mechanical Properties of the Repository

The temperatures and stresses due to the heat generation from the canisters depend on
the thermal and mechanical properties of the repository. For the purposes of this study, the
repository is assumed to be situated in a homogeneous, isotropic rock mass although the shaft
penetrates eight different thermomechanical units. The thermal and mechanical properties
assigned to the rock mass were specified in PDM 75-13 (Ehgartner, 1988), and are those given in
Table 2; they are compatible with The Nevada Nuclear Waste Isolation Project Reference
Information Base (RIB) values (Schelling, 1987). These correspond to the properties for the unit
containing the Exploratory Shaft Facility. This unit is the non-lithophysae zone (the TWS2 unit)
of the Topopah Springs Member.

2 September 16, 1988
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5.0 Thermomechanical Analysis of the Repository

The heat transfer in the repository and the subsequent thermally-induced stresses were
analyzed with the STRES3D code. The major assumptions inherent in the analyses are described
in the following subsection of the STRES3D code.

5.1 STRES3D Code

STRES3D is a thermoelastic code for heat sources in a semi-infinite rock mass. The
heat sources may have a constant strength or they decay exponentially. The heat sources may be
point sources, line sources, and/or plate sources.

The STRES3D code is a semi-analytic model which was originally developed at the
University of Minnesota (St. John and Christianson, 1980). The code was modified especially
for the study described in this report. The major modifications are the inclusion of line and plate
heat sources. Previously, only point heat sources were considered. The modifications are
described in'a lerter report to Sandia National Laboratories (Asgian, 1988).

The STRES3D code utilizes the principle of superposition when computing the
temperature distribution and state of stress. At a given time and location, the temperature is
equal to the initial temperature plus the change in temperature caused by the heat sources.
Similarly, the state of stress at a given time and location is equal to the inital state of stress plus
the stress change induced by thermal expansion.

Input parameters include a description of the heat sources (source types, geometries,
emplacement times, and decay coefficients) and the thermal and linear elastic properties of the
rock mass. The locaton and size of special surface elements also must be specified. These
clements ensure that there are no shear stresses on the ground surface.

Qurtput parameters of STRES3D are the temperatures, displacements, and stresses at
specified times and locations in the rock mass.

September 16, 1988 3
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5.2  Initial and Boundary Conditions

The inital state of swress, which is assumed to exist in the repository, is that described in
Table 3a. Inidally, the major principal stress is vertical; the minor principal stresses are equal to
0.5 and 0.6 times the vertical stress. The ground surface is free of shear and normal stresses at
all ames.

The initial temperatures, which exist in the repository, are those given in Table 3b.
Several temperature gradients exist; they reflect the differing thermal conductivities of the
various rock layers. Although some differences in thermal conductivity exist, the conducdvity is
assumed to be homogeneous and isotropic for analysis purposes (refer to Section 4.0).

5.3  Numerical Discretization of the Repository

Each waste panel was presented by one or more plate heat sources in the STRES3D

model. The effects of each plate source were computed using the third order Gauss-Legendre -

numerical integration procedure. This type of procedure makes use of 16 integration points per
plate source. Thus, the number of integration points - and, in general, the accuracy of the
solution - increases with the number of plates which represent each waste panel. However, the
run time also increases linearly with the number of panels.

The panel discretization used to compute the influence on the waste of the shafts, the
drifts, and the breakout areas is shown in Figure 12. A total of 130 plate elements were analyzed
with 2080 integration points. In order to ensure that the ground surface was free of shear smess
at all imes, special surface elements were utilized. Without these elements, some of the surface
shears would have approached 2.0 MPa. A rectangular grid of 80 by 120 surface elements was
used; each element had a width of 200 feet. The centroid of these elements was located at the
approximate centroid of the waste panels (x=764,000 ft, y=561,000 ft). Those surface elements
lying above the Exploratory Shaft Facility were subdivided to provide more accurate results for
the shafts and the ESF. The 44 by 44 fine surface elements are 50 ft wide and are centered about
the point (x=765,900 ft, y=563,500 f1): refer to Figure 13. The relatively coarse panel
discretization, shown in Figure 14, was used when computing the influence of the waste panels
at the surface clements. This dual discretization scheme reduced the computational effort
considerably from that required by just the fine discretization scheme.

4 September 10, 1988
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5.4  Description of Thermomechanical Analyses

The thermally-induced stresses along the shafts, drifts, and excavations were analyzed
for 10, 35, 50, 100, 300, 500, 1,000, 2,000, 5,000, and 10,000 years after waste emplacement
begins. The initial and boundary conditions for the analyses are those described in the previous
subsecdon. The properties assigned to the repository are given in Section 4.0. In the analyses, it
was assumed that each panel has a uniform elevation and that the waste emplacement within
cach panel\sub-panel would take place instantaneously at the beginning of a year according to
the schedule given in Figure 10.

3.5  Results of the Thermomechanical Analyses

The results of the thermomechanical analyses for the shafts, breakout areas, and drifts
are discussed in this secton. Detailed graphs and contour plots of temperatures, induced
sresses, and induced strains are contained in the Appendices.

Exploratory Shaft 1 (ES-1) -- The influence of the heat sources on ES-1 is summarized

in Tables 4 and 5, and in Appendix A. Figures A-1 through A-13 contain profiles of
temperature, stress, and strain for the ten times of interest. The peak values of each of these
parameters are given in Tables 4 and 5. The peak changes all occur after closure of the
repository, i.e., after 100 years.

At the time the repository closes, the local maximum values of all three induced shear

stresses, AG,,, AT, and AG,,, are approximately one-half to two-thirds of the absolute maximum
values. The absolute maximum values for these three shear stress are anained berween 200 and
1900 years after the repository is scheduled to close. The resultant of two of the induced shear

swesses, AC, and AG,,, is important for estimating stresses in the shaft liner. The maximum
values of each time analyzed of this resultant stress are given in Table 5. At 100 years
(repository closure), the maximum value of this resultant stress is 70 percent of the peak value
for all imes (0.43 MPa).

The induced axial normal stress, A @, peaks at the same time as does the resultant shear
stress, i.e., 300 years. At 300 years, Ao, _is 2.2 MPa tension. At closure (100 years), the local
maximum value of A@,, is 1.7 MPa tension, which equals 77 percent of the peak value.

September 16, 1988 5
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While the induced axial normal stresses on ES-1 are tensile at all times, the induced

horizontal normal stresses, AC, and AQ,,, are compressive at all times for elevatons less than
3500 feet. Both these induced normal stresses peak at 2000 years at approximately the same

value: Ao, __is 1.8 MPaand Ag,, _is 1.9 MPa.

The wends for the induced strains are approximately the same as the trends for the
corresponding induced stresses. The profiles of strain generally have the same shape as do their
counterparts in stress, i.e., the local maxima and minima generally occur at the same times and
same elevations. The peak induced strains all occur between 300 and 2000 years. The

maximum induced shear strain is 3.7 x 10~ while the maximum induced axial normal strain is
1.8x107. The induced normal strains, Ae,andAg,, attain maximum values of
1.0x 10~ and 1.3 x 10, respectively. The maximum curvature (second derivative of horizontal

displacement with respect to depth) at any time imzu -,
L&Y 107

Exploratory Shaft 2 (ES-2) -- The results of the analyses for ES-2 are given in Tables 6

and 7 and in Figures A-14 through A-26. The temperatures and three of the six components of

induced stress (AQ,, AG,,and AC,) anain their maximum values at approximately the same
times and same elevations as those for ES-1.

The peak values of all induced stresses except Ag,, occur between 300 and 2000 years.

* The peak value of Ac,, occurs when the repository is scheduled to close (100 years). At 100
years, the local maximum values of normal stress are between 36 and 97 percent of their absolute
maximum values. The profiles of induced shear stress change shape considerably in the first
hundred years. At very early tmes, the shear stess changes are due to the heat from
Emplacement Panel 1, which is very close by; this is evident by the local maxima/minima for

swesses AG,, and AG,,, which occur above and below the elevation of Panel 1.

Although ES-2 is closer to Panel 1 than is ES-1, only half of the peak values of induced

stess arc more for ES-2 than for ES-1. The peak values of Ag,, Ag,,and Ag,, for ES-2 are
110, 159, and 139 percent, respectively, of that for ES-1.

6 September 16, 1988
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The profiles of induced shear and normal stain are very similar to the profiles of
induced shear and normal stress, although the maximum strains do not necessarily occur at
exactly the same time as the counterparts of maximum stress. All of the peak strains occur at or

after 100 years (repository closure). The maximum curvation at any time is M’Z -
Layio”

Exploratory Shaft Facility (ESF) -- The ESF undergoes substantial changes in tempera-

ture and stress because of its close proximity to the waste panels. The peak changes in
temperature and stress are summarized in Table 8. Contour plots of these parameters are
presented in Appendix B for all ten times of interest.

At repository closure (100 years), the maximum temperature is 35.8°C in the faciliry. A
maximum temperature of 51.1°C, occurs at 500 years. At this time, there is a temperature
difference of 26°C between the southern and northern portions of the facility.

The peak value of induced horizontal normal stress, AGC, occurs at the same tme as
does the peak temperature (500 years), while the other horizontal normal stress, Ag,,, peaks

carlier at 300 years. The induced vertical normal stress A0y, attains a maximum tensile value of
3.0 MPa at a much earlier time, 50 years after waste emplacement begins.

The maximum induced shear stresses all occur at 50 years. At this tume, | Ac, | equals
1.32MPa,| A, |, equals 1.00, and | Ao, | equals 0.71. These peak stresses occur in the drifts
at the perimeter of the facility, and they equal one and one-half to four times the peak induced
shear sresses in the two shafts ES-1 and ES-2.

Calico Hills Drill Room (CA) -- Because the Calico Hills Drill Room is located further

from the heat sources than is the Exploratory Shaft Facility, it undergoes much less change in
temperarure and swress. The temperature increases by at most 14°C to a maximum value of
33.5°C at 2000 years. For all the times under consideration, the temperature never varies by
more than 1.2°C from one end of the facility to the other (refer to Figures C-1 through C-70).

The variation in stress over the facility is also very minor; the maximum difference in
each component of stress is not more than 0.4 MPa at any given time.

~)
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The changes in normal stress, AG,, AC,, and AC,, all peak at 2000 years at values of
1.8, 1.8, and -1.9 MPa, respectively. The three components of induced shear stress,

Ac,,Ac,and AG,,, all peak at 300 and 500 years to values of 0.5, 0.5, and 0.] MPa,
respectively. At repository closure (100 years) the induced stresses are 71 percent or less of their
peak values (refer to Tables 9 and 10).

Upper Demonstration Breakout Room (BR) -- The changes in temperature and stress in

the Upper Demonstration Breakout Room, in general, are similar to those in the Calico Hills
Drill Room, and they are considerably less than those in the Exploratory Shaft Facility. The
maximum changes are summarized in Table 11. Contour plots of these parameters are presented
in Figures C-1 through C-70.

The stresses and temperatures in the room are fairly uniform at all imes. At any instant
in tme, the maximum difference in temperature in the room is at most 1.8°C, while the
maximum difference in a given component of stress is 0.6 MPa.

The peak changes in both temperature and stress occur at times of 300 years or greater.
When the repository is due to close (100 years), the induced stresses are 82 percent or less of
their maximum values (refer to Tables 11 and 12).

Drifts - Mid-panel drifts, CE and F'G’, and the Tuff Main Drift are in relatdvely close
proximity to the heat sources and, consequently, undergo much larger changes in stress than do
shafts ES-1 and ES-2. Profile plots of temperature and induced swess for the three drifts are
given in Appendix D. The maximum values of the temperatures and of each component of stress
are given in Tables 13 through 15.

The maximum changes in temperature and stress all occur at relatively early times, 500
years or less. For each of the three drifts, the maximum vertical normal stress and the maximum

shear stress A G,,,, occur prior to or just at repository closure (100 years). The large changes in
vertical normal stress (-2.6 MPa or greater in tension) in combination with the large changes (6
MPa or greater in compression) in horizontal stress acting on the drifts’ springlines can cause
considerable bending moinents in the drift liners.

A detailed study of the influence of the heat sources on the drift stability is the subject
of future work to be done for Sandia National Laboratories under PDM 75-15.

8 September 16, 1988



Draft SLTR - PDM75-13 Rev ]
6.0 Conclusions and Recommendations

The temperatures and stresses induced by emplacement of the heat-generating waste in
the proposed nuclear waste repository at Yucca Mountain have been analyzed with the
STRES3D code. Maximum changes in temperature, stress, and strain for two shafts, Exploratory
Shaft 1 (ES-1) and Exploratory Shaft 2 (ES-2), have been presented in tabular and graphical
form. The axial stresses in the shafts are reduced by at most 2.2 MPa, whereas the horizontal

normal stresses, O, and 0, acting on the shafts are increased by as much as 2.1 MPa. The
shear stresses acting on horizontal cross sections of the shafts are increased by as much as 0.65
MPa. Some portions of the Exploratory Shaft Facility are subjected to even greater chan ges in
stress because of their close proximity to the waste. The other two breakout areas, the Calico
Hills Drill Room and the Upper Demonstration Breakout Room, undergo much less severe
changes in stress because they are located further from the heat sources. Although the complex
three- dimensional nature of the heat sources has been taken into consideration, the results can
only be taken as approximate because the variaton in thermal and mechanical propertes with
depth was not considered. The results are more accurate in those horizons with characterisdcs
similar to those utilized in the STRES3D model, i.e., they are most accurate in the central porton
of the horizon containing the Exploratory Shaft Facility. The predicted results are least accurate
at the interfaces between different thermomechanical units, and in the central porton of units
where the values of the product of the thermal expansion coefficient and the elastic modulus
differ substantially from those assumed in the model. It is recommended that the variation in
thermomechanical properties on the induced thermal stresses be investigated in a future study.

September 16, 1988 9
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Table 1a

Heat Generation from Waste Canisters*
0-500 Years after Emplacement

| ———————————— 1
Proportion of
Waste Normalized Strength Time Exponent
Component (dimensionless) (years)
a, b,
1 0.031162 0.0013539
2 0.13925 0.019142
3 0.046911 0.051888
4 0.78267 0.43768
\ ]
* Average Power Density APD = 57 kw/acre

Power Intensifier** Pl=1.49
. ~,(1+8.55)

Power at time t (years) after emplacement is given by P = APD *PI 2 ae

im}

b Power Intensifier = [Panel Area/(Panel Area - Standoff Area - Mid-panel Pillar Area -
Mid-panel Drift Area)]

September 16, 1988 11
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Table 1b

Heat Generation from Waste Canisters*
500-10,000 Years after Emplacement

\
Proportion of
Waste Normalized Strength Time Exponent
Component (dimensionless) (years)
3 b,
Eﬁ
1 0.0019287 0.000028283
2 0.0028953 0.00012949
3 0.026765 0.0017590
4 0.14517 0.019999
5 0.038510 0.062594
6 0.78473 0.44460
I“QQJ
* Average Power Density APD = 57 kw/acre

Power Intensifier** PI=1.49
4 -, (148.55)

Power at time t (years) after emplacement is given by P = APD *PI 2 ae

im}]

.- Power Intensifier = [Panel Area/(Panel Area - Standoff Area - Mid-panel Pillar Area -
Mid-panel Drift Area)]
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Table 2a

Thermal Properties of Repository Site

I Saturated thermal capacitance (J/m-C) 2.16E+6
l Sarurated thermal conductivity (W/m-C) 1.84

Table 2b

Mechanical Properties of Repository Site

Young’s modulus (GPa) 15.2
Poisson’s rado 0.22
Coefficient of thermal expansion in the range of 25-200°C 8.8E-6
(m/m°C)

- h
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Table 3a
Initial Stress State

In-situ vertical stress at 1000 ft (MPa) 7.0
Rato of minimum horizontal to vertical stress .5
Ratio of maximum horizontal to vertical stress .6
Bearing of minimum horizontal stre. N57°W
Bearing ¢ " maximum horizontal stress N33°E

Table 3b

Initial Temperatures

| Surface temperature (°C) 12.7 "
Temperature at 76.2 m (°C) 20.3
In-situ thermal gradient 76.2 - 152.4 m (°C/m) 0.0197
In-situ thermal gradient 152.4 - 304.8 m (°C/m) 0.0164
In-situ thermal gradient 304.8 - 457.2 m (°C/m) 0.0205
In-situ thermal gradient 457.2 - 609.6 m (°C/m) 0.0295
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Table 4

Peak Values of Temperature, Stress, and Strain for Exploratory Shaft 1 (ES-1)

Parameter Peak Value Elevation Time of Occurrence |
(ft) (yrs)
Temperature 33.5°C 2550 5000
Ao, +1.78 MPa 2975 2000
Ac, +1.89 MPa 2975 2000
Ac, -2.22 MPa 3075 300
lac, | 0.57 MPa 3150 300
lac, | 0.41 MPa 3000 300
lac, | 0.23 MPa 3475 2000
Ae, 9.99x 107 2975 2000
Ag, 1.34x10™ 3125 500
Ag, -1.79x10™ 3075 500
le,, | 9.19x 107 3150 300
le, | 6.62x 10 3000 300
le, | 3.66x10™ 3475 2000

September 16, 1988 15
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Table §

Exploratory Shaft 1: Maximum Shear Stress Acting on a
Horizontal Plane*

Time M;'mrum Shear Stress ]
(MPa)
10
11 35 0.16
50 0.19
100 0.30
300 | 0.43
500 0.41
1,000 0.32
2,000 0.30
5,000 0.31
10,000 L 0.26 _J.
* Resultantof AG and Ag,,
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Table 6

Peak Values of Temperature, Stress, and Strain for Exploratory Shaft 2 (ES-2)

Parameter Peak Value Elevation Time of Occurrence
(ft) (yrs)
32.4°C 5000
Ac, 1.65 MPa 2975 2000
Ao, 2.08 MPa 3050 500
Ao, 1.61 MPa 3050 300
lag, | 0.34 MPa 3175 300
lac, | 0.65 MPa 3275 100
lac, | 0.32 MPa 3525 500
Ag, 9.12x10™ 3025 500
Ag, 1.36x10™ 3050 500
3075
Ag, -1.50x 107 3050 300
le, | 552x10°° 2925 300
le, | 1.04 x 107 3275 100
le. | 5.10x 10'; 3525 500
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Table 7

Rev 1

Exploratory Shaft 2: Maximum Shear Stress Acting on a

Horizontal Plane

Time Maximum Shear Stress
(MPa)

10 0.13 |
35 0.40
50 0.50
100 0.65
300 0.63
500 0.54
1,000 0.32
2,000 0.31
5,000 0.24
10,000 0.30

September 16, 1988
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Table 8

Peak Values of Temperature and Stress for the Exploratory Shaft Facility

e ————————————————— -
Parameter Value Time of Occurrence
(yrs)
Temperature S1.1°C 500
Ac_ 4.63 MPa 500
Ac, 5.37 MPa 300
Ac, -3.03 MPa S0
lac, | 1.32 MPa 50
lac, | 1.00 MPa 50
lac, | 0.71 MPa 50
e ——————————————————————————————
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Table 9

Peak Values of Temperature and Stress for the Calico Hills Drill Room

Parameter Value Time of Occurrence
(yrs)
Temperature 33.54°C 2000
Ao, 1.79 MPa 2000
Ao, 1.79 MPa . 2000
Ac, -1.94 MPa 300
lac, | 0.46 MPa 300, 500
las, | 0.52 MPa 300, 500, 1000
lao, | 0.14 MPa 300, 500
— e ————————————————————————e|
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Table 10

Maximum Values of Temperatures and Stress in the Calico Hills
Drill Room at 100 Years (Repository Closure)

Parameters Maximum Value at 100 Years
H Ao, 0.20 MPa
Ag, 0.53 MPa
Ac, -1.35 MPa
lac, | 0.29 MPa
lac,| 0.32 MPa
lac, | 0.10 MPa
— ———————————————————————————

to
——
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Table 11

Peak Values of Temperature and Stress for the Upper Demonstration Breakout Room

Parameter Value Time of Occurrence
(yrs)
Temperature 27.05°C 2000
Ao_ 1.71 MPa 2000
Ao, 1.29 MPa 500
Ao, -1.47 MPa 300
lac, | 0.52 MPa 300
| Ao, | 0.38 MPa 300
lao,| 0.26 MPa 500, 2000
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Table 12

Maximum Values of Temperatures and Stress in the Upper
Demonstration Breakout Room at 100 Years (Repository Closure)

Parameters Maximum Value at 100 Years
L Temperature 15.66°C

Ac, 0.08 MPa

Ac, 0.41 MPa

Ao, -1.08 MPa

lag, | 0.38 MPa

| Ac, | 0.31 MPa

lac, | 0.15 MPa
| S— —

September 16, 1988
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Table 13

Peak Values of Temperature and Induced Stress for the Tuff Main Drift

Parameter Value Time of Occurrence
(yrs)
Temperature 50.33°C 500
Ac, .* 6.14 MPa 500
Ao, 4.26 MPa 500
Ao,, -3.52 MPa 100
Ao, 121 MPa 100
*‘-—_‘
- Refer 10 Figure D-16 for Local Coordinate System X, y', 2 and for Stress Sign
Convenrions
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Table 14

Peak Values of Temperature and Induced Stress for Drift CE

Parameter Value Time of Occurrence
(yrs)
58.89°C 300
ﬁ Ac,.* 8.70 MPa 100
Ag,.. 443 MPa 300
Ag,, -2.64 MPa 35
lae,, | 0.96 MPa 50
e ——————————
* Refer to Figure D-16 for Local Coordinate System x/, ¥, 2" and for Stress Sign

Conventions

September 16, 1988 25
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Table 15

Peak Values of Temperature and Induced Stress for Drift F'G’

Parameter Value Time of Occurrence
h (yrs)
Temperature 75.67°C 300
Ag,.,.* 10.37 MPa 100
Agc,. . 7.82 MPa 300
Ac,, -3.62 MPa 50
lae,, | 0.85 MPa 50
e ———————————————————————
. Refer 1o Figure D-16 for Local Coordinate System X, y', 2 and Sor Stress Sign
Conventions
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APPENDIX A

Temperatures and Induced Stresses (Ac,,, AT, Ac,, Ag,,AC,, AC,) and Induced Strains
(8&.. A, AL, AL, Ae,, Ate,) for 10 to 10,000 Years After Waste Emplacement Begins
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Figure A-13.  Exploratory Shaft 1: Changes in Shear Strain g, for 10 to 10,000 Years After
Waste Emplacement Begins —
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Figure A-14. Exploratory Shaft 2: Temperature Histories for 10 to 10,000 Years After Waste
Emplacement Begins
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Figure A-20. Exploratory Shaft2: Changes in Shear Stress &, for 10 to 10,000 Years After
Waste Emplacement Begins
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Figure A-22. Exploratory Shaft2: Changes in Normal Strain E,, for 10 to 10,000 Years After
Waste Emplacement Begins

A-22



ELEVATION (FT.)

3400. -+

2700, —

2800. -+

1000

X<NAPOEX+ PO

2500.

r .
4
-
1
1
ﬁ
1
-1
1

-0.00020 =0.00043 =0.00040 =0.00005 0.00000 0.00005

Figure A-23.

CHANGE IN NORMAL STRAIN ZZ

Exploratory Shaft 2: Changes in Normal Strain &, for 10 to 10,000 Years After
Waste Emplacement Begins

A-23

ey



4200,
-9 :
4100, -+ A .
\h \
4000. -+ th '
A ’
3800. —+ B ’
i ’
3800. -+ . ’ © {0 YEARS
G ! a 33 YEARS
3700, (3 y + 50 YEARS
d o X 400 YEARS
_ 3800. -+ ; & 300 YEARS
: + 500 YEARS
T as00. <+ X 1000 YEARS
= Z 2000 YEARS
= 3400. Y 5000 YEARS
o X 10000 YEARS
— 3300. -+
=
L 3200, +
—J
o
3100. =+
3000. -+
2900, —-
2800. -+
2700. —+
2800, —+
200, +——t—t—t+——+—t+——t——t—p———————t—|
-0.00040 -0.00005 0.00000 0.00008
CHANGE IN SHEAR STRAIN XY
Figure A-24.  Exploratory Shaft 2: Changes in Shear Strain €,, for 10 to 10,000 Years After

Waste Emplacement Begins

A-24



ELEVATION (FT.)

T

s

K<NM+O*X+DPO
gggB88s ek

:

e 3 i dn 3 L Il & 3

L 4 - 1 i 3 & ot 3 3 -
1 1 4 ¥ 13 L 1 T T L] LA |

~0.00003 0.00000 0.00005 0.00040 0.00045

Figure A-25.

CHANGE IN SHEAR STRAIN YZ

Exploratory Shaft 2: Changes in Shear Strain €, for 10 to 10,000 Years After
Waste Emplacement Begins

A-25



G55EREEEES

XANMNIP»EX+P»0
§ggseses

ELEVATION (FT.)

=0.00008 -0.00004 -0.00002 0.00000  0.00002  0.00004  0.00008
CHANGE IN SHEAR STRAIN ZX
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esfi0.con '
eax. value = 17.84 0. 200.
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—_————
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Figure B-1.  Exploratory Shaft Facility: Temperatures (°C) 10 Years After Waste
Emplacement Begins
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esf35.con
max. value = 22.04 0. 200.
sin. value = i7.78
Feet
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788700. 765200,
—
584300. —T — 584300.
T T e
- -
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p——t—t
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Figure B-2.  Exploratory Shaft Facility: Temperatures (°C) 35 Years After Waste
Emplacement Begins
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Figure B-3.  Exploratory Shaft Facility: Temperatures (°C) 50 Years After Waste
Emplacement Begins
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Figure B-4.  Exploratory Shaft Facility: Temperatures (°C) 100 Years After Waste
Emplacement Begins
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sax. value = 48.28 0. 200,
min. value = 24,27

Feet
ESF Temperatures (C) at 300 years
788700. 785200.
l 1 1 i L ] il $ 1 '8 - Il 3 2 L l

584300, - T 564300
[ )

" i‘
ssze00, f 582800.
Pttt
768700. 765200,

Figure B-5.  Exploratory Shaft Facility: Temperatures (°C) 300 Years After Waste
Emplacement Begins
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Figure B-6.

Exploratory Shaft Facility: Temperatures (°C) 500 Years After Waste
Emplacement Begins

B-6



esf1000.con
max. valus = 44.94 0. 200.
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Figure B-7.  Exploratory Shaft Facility: Temperatures (°C) 1,000 Years After Waste
Emplacement Begins
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max. value = 43.47 0. 200.
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Figure B-8.  Exploratory Shaft Facility: Temperatures (°C) 2,000 Years After Waste
Emplacement Begins
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Figure B-9.  Exploratory Shaft Facility: Temperatures (°C) 5,000 Years After Waste
Emplacement Begins
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esfi10g.con
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Figure B-10. Exploratory Shaft Facility: Temperatures (°C) 10,000 Years After Waste
Emplacement Begins
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Figure B-11. Exploratory Shaft Facility: Changes in Normal Stress o 10 Years After Waste
Emplacement Begins



esf35.con
sax, value = 2.07 0. 200.
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Figure B-12.  Exploratory Shaft Facility: Changes in Normal Stress ¢ 35 Years After Waste
Emplacement Begins '
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esf50.con
sax. value = 2.89 0. 200.
sin. value = -0.18
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—tt
584300. T T 584300,
582800. —- - 582800,
————t—
788700. 785200

Figure B-13.  Exploratory Shaft Facility: Changes in Normal Stress o, 50 Years After Waste
Emplacement Begins
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esf{00.con
sax. value = 3.85 0. 200.
ain. value = -0.45
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ESF Induced Stress SIGXX (MPa) at 100 years
788700. 765200.
——t ]
584300. —T T 584300,
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——ttt—
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Figure B-14. Exploratory Shaft Facility: Changes in Normal Stress 6 100 Years After

Waste Emplacement Begins
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esf300.con
B8X. value = 4.45 0. 200,
Bin. value = 0.50

Fest
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788700. 765200.
—_———

584300. — T 584300
582800. L L 582800,
. -
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Figure B-15.  Exploratory Shaft Facility: Changes in Normal Stress O 300 Years After

Waste Emplacement Begins
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sax. value = 4.83 0. 200,
ain. value = 0.89
Feet
ESF Induced Stress SIGXX (MPa) at 500 years
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Figure B-16.  Exploratory Shaft Facility: Changes in Normal Stress O 500 Years After
Waste Emplacement Begins
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esf1000.con
sax. value = 3.82 0. 200,
ain. value = (.48

Feet
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788700. 7685200,
—_—
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+ Y5 4
582800. —- J- 582800.
—t——
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Figure B-17.  Exploratory Shaft Facility: Changes in Normal Stress 6, 1,000 Years After

Waste Emplacement Begins
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Figure B-18.
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Exploratory Shaft Facility: Changes in Normal Stress o, 2,000 Years After
Waste Emplacement Begins
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es£5000.con
sax. value = 2.4 0. 200,
ain. valus = {.42
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. S S S R . e T S S——
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Figure B-19.  Exploratory Shaft Facility: Changes in Normal Stress g 5,000 Years After
Waste Emplacement Begins
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esfi0g.con

max. value = 4.48 0. 200.
ain. value = 0.78
Feet
ESF Induced Stress SIGXX (MPa) at 10000 years
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———————t— ]
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J- -
T T o
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F——t——t—t—
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Figure B-20.  Exploratory Shaft Facility: Changes in Normal Stress 6_, 10,000 Years After
Waste Emplacement Begins
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esfi0.con
max. value = 0.53 0. 200.
sin. value = -0.¢5

Feet
ESF Induced Stress SIGYY (MPa) at 10 years
768700. 765200.
—_—
564300, — 564300.
T g.0
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- A ', b ad
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[+ s
582800. 1 L sgesoo.
-
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Figure B-21.  Exploratory Shaft Facility: Changes in Normal Stress O,, 10 Years After Waste
Emplacement Begins
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esf35.con
pax. value = 2.45 0. 200.
ain. vaslue = -0.34 —_—
Feet
ESF Induced Stress SIGYY (MPa) at 35 years
786700. 785200.
— ettt

584300. - -E- 564300.
T T ~—
1 4
562800. —~ - 582800.
Pt et
788700. 765200.
Figure B-22.  Exploratory Shaft Facility: Changes in Normal Stress 6,, 35 Years After Waste

Emplacement Begins
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esf50.con

max. value = 2.94 0. 200.
sin. valye = -0.1S5 ———
Feet
ESF Induced Stress SIGYY (MPa) at 50 years
766700. 765200.
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Figure B-23.  Exploratory Shaft Facility: Changes in Normal §
Erpiaceomin: Bt g orm wess o, 50 Years After Waste
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esf100.con
pax. value = 4,53 0. 200.
ain. value = 0.34

Feet
ESF Induced Stress SIGYY (MPa) at 4100 years
768700. 765200,
——tt
564300. — — 564300,
<+ + L
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p———t—
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Figure B-24.  Exploratory Shaft Facility: Changes in Normal Stress o,, 100 Years After
Waste Emplacement Begins
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esf300.con
Bax. value = 5,37 0. 200,

ain. value = 4.28 —_—
Feet
ESF Induced Stress SIGYY (MPa) at 300 years
768700. 765200.
—_—

584300. 7 T 564300.
ss2800. L L ss2800.
Pt
768700. 78%5200.

Figure B-25. Exploratory Shaft Facility: Changes in Normal Stress O,, 300 Years After

Y

Waste Emplacement Begins
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esf500.con

pax. value = 5.32 0. 200.
min, value = (.78
Feet
ESF Induced Stress SIGYY (MPa) at 500 years
768700. 785200.
—_——

564300. - — 564300.
582800. —- L sg2800.
p——t—tt ]

786700. 785200.

Figure B-26.  Exploratory Shaft Facility: Changes in Normal Stress G,, 500 Years After
Waste Emplacement Begins

B-26



esf1000.con
Bax. value = 3.98 0. 200.
8in. value = (.72

Feet
ESF  Induced Stress SIGYY (MPa) at 1000 years
788700. 765200.
l 1 L d L H d 4 1 ] d d s d L l
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Figure B-27.  Exploratory Shaft Facility: Changes in Normal Stress O,, 1,000 Years After
Waste Emplacement Begins
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esf2g.con
max. value = 3.32 0. 200.
ain. valus = 31.77

Feet
ESF Induced Stress SIGYY (MPa) at 2000 years
768700. 765200,
——
564300, —T T 584300
]
o .00 -+
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p.28
T L T e’
562800. -J L sg2s00.
p—t— ]
788700. 785200.

Figure B-28.  Exploratory Shaft Facility: Changes in Normal Stress o,, 2,000 Years After
Waste Emplacement Begins
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esf5000.con
max. valus = 2.24 0. 200.
ain. value = 1.30

Feet
ESF Induced Stress SIGYY (MPa) at 5000 years
768700. 765200.
-ttt
584300. —  564300.
- » z
- .a b
sg2800. <L 562800.
p——t—tt ]
788700. 785200.

Figure B-29. Exploratory Shaft Facility: Changes in Normal Stress Oy, 5,000 Years After
Waste Emplacement Begins
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esfi0g.con

max. value = {.55 0. 200.
ain. value = 0.892
Feet
ESF Induced Stress SIGYY (MPa) at 10000 years
766700. 785200,
——t—
564300. —T — 564300.
4 4 e’
582800, —- L ss2800.
et —t——t—|
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Figure B-30. Exploratory Shaft Facility: Changes in Normal Stress C,, 10,000 Years After
Waste Emplacement Begins
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ESF10.CON
max. value = -0.07 0. 200.
ain. value = -0.74

Feet
ESF Induced Stress SIGZZ (MPa) at 10 years
768700. 765200.
——t
584300. -1 T 564300,
4 s +
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Figure B-31.  Exploratory Shaft Facility: Changes in Normal Stress O, 10 Years After Waste
Emplacement Begins
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esf35.con
sax. value = -0.83 0. 200,
ain. value = -2.72
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788700. 765200.
——
584300. —T +— 564300.
- - g’
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!

Figure B-32.  Exploratory Shaft Facility: Changes in Normal Stress O, 35 Years After Waste
Emplacement Begins
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esf50.con
sax. value = -0.88 0. 200.
sin. value = -3.03

Feet
ESF Induced Stress SIGZZ (MPa) at 50 years
788700. 765200,
——t—t—
584300. - T 584300.
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1 1.0 44 AR NI
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582800. - - 582800.
f———t— ]
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Figure B-33.  Exploratory Shaft Facility: Changes in Normal Swess o, 50 Years After Waste
Emplacement Begins
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esf100.con
sax. value = -1.30 0. 200.
ain. valus = -2.95

Feet
ESF Induced Stress SIGZZ (MPa) at 100 years
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—_—— ]
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Figure B-34.  Exploratory Shaft Facility: Changes in Normal Stress G, 100 Years After
Waste Emplacement Begins
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es£300.con
sax. value = -0.48 0. 200.

sin. value = -2.689 S —
Feet
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Figure B-35. Exploratory Shaft Faciliry: Changes in Normal Stress O, 300 Years After

Waste Emplacement Begins

B-35



esf500.con
pax. value = -0.35 0. 200,
ain. value = -2.37 | ' |
Feet
ESF Induced Stress SIGZZ (MPa) at 500 years
768700. 7685200.
ettt p——p—p—t—
584300. T + 584300.
- ‘ .
- -1. -
-4.8 Ny
- .
-2.0
' .0
-2.2
+ -1.8 1
- - v
- -~
- </ -
562800, —- 4. sg2800.
p———t—
768700. 785200.

Figure B-36. Exploratory Shaft Facility: Changes in Normal Stress ¢, 500 Years After
Waste Emplacement Begins
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Exploratory Shaft Facility: Changes in Normal Stress O, 1,000 Years After
Waste Emplacement Begins
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Figure B-38. Exploratory Shaft Facility: Changes in Normal Stress O 2,000 Years After
Waste Emplacement Begins ’
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Figure B-39. Exploratory Shaft Facility: Changes in Normal Stress O, 5,000 Years After
Waste Emplacement Begins
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Figure B-40.  Exploratory Shaft Facility: Changes in Normal Stress o, 10,000 Years After
Waste Emplacement Begins
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Figure B-41. Exploratory Shaft Facility: Changes in Shear Swess O, 10 Years After Waste
Emplacement Begins
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Figure B-42.  Exploratory Shaft Facility: Changes in Shear Stress O, 35 Years After Waste
Emplacement Begins
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Figure B-43.  Exploratory Shaft Facility: Changes in Shear Smess O, 50 Years After Waste
Emplacement Begins
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Figure B-44.  Exploratory Shaft Facility: Changes in Shear Stress G, 100 Years After Waste
Emplacement Begins
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Figure B-45. Exploratory Shaft Facility: Changes in Shear Stress g, 300 Years After Waste
Emplacement Begins 7
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Figure B-46. Exploratory Shaft Facility: Changes in Shear Stress ¢, S00 Years After Waste
Emplacement Begins
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Figure B-47.  Exploratory Shaft Facility: Changes in Shear Stress C,, 1,000 Years After

Waste Emplacement Begins
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Figure B-48.  Exploratory Shaft Facility: Changes in Shear Stress Oy, 2,000 Years After
Waste Emplacement Begins
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Figure B-49.  Exploratory Shaft Facility: Changes in Shear Stress g,, 5,000 Years After
Waste Emplacement Begins
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Figure B-50. Exploratory Shaft Facility: Changes in Shear Stress G, 10,000 Years After
Waste Emplacement Begins
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Figure B-51.  Exploratory Shaft Facility: Changes in Shear Stress G, 10 Years After Waste
Emplacement Begins
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Figure B-52. Exploratory Shaft Facility: Changes in Shear Stress O,, 35 Years After Waste
Emplacement Begins
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Figure B-54. Exploratory Shaft Facility: Changes in Shear Stress 6,, 100 Years After Waste
Emplacement Begins
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Figure B-55.  Exploratory Shaft Facility: Changes in Shear Stress O, 300 Years After Waste
Emplacement Begins
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Figure B-56.  Exploratory Shaft Facility: Changes in Shear Stress O,, 500 Years After Waste
Emplacement Begins
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Figure B-57. Exploratory Shaft Facility: Changes in Shear Stress O, 1,000 Years After

Waste Emplacement Begins
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Figure B-58. Exploratory Shaft Facility: Changes in Shear Stress 6,, 2,000 Years After
Waste Emplacement Begins
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Figure B-59.  Exploratory Shaft Facility: Changes in Shear Swess ©,, 5,000 Years After
Waste Emplacement Begins
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Figure B-60. Exploratory Shaft Facility: Changes in Shear Stress o,, 10,000 Years After
Waste Emplacement Begins

B-60



esfi0.con
sax. valye = 0.07 0. 200.
ain. value = -0.28

Feest
ESF Induced Stress SIGZX (MPa) at 10 years
788700. 765200,
——t—— ]

584300. T T 584300.
582800. — L sgzg00.
p—t—t—t—t—

788700. 785200,

Figure B-61.  Exploratory Shaft Facility: Changes in Shear Stress ¢, 10 Years After Waste

Emplacement Begins
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Figure B-62. Exploratory Shaft Facility: Changes in Shear Stress o, 35 Years After Waste
Emplacement Begins
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Exploratory Shaft Facility: Changes in Shear Stress O, 50 Years After Waste
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Figure B-64.  Exploratory Shaft Facility: Changes in Shear Stress 6, 100 Years After Was'
Emplacement Begins .
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Exploratory Shaft Facility: Changes in Shear Stress o, 300 Years After Waste
Emplacement Begins
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Figure B-66. Exploratory Shaft Facility: Changes in Shear Stress G,, 500 Years After Waste
Emplacement Begins
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Figure B-68. Exploratory Shaft Facility: Changes in Shear Stress G, 2,000 Years After
Waste Emplacement Begins
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Figure B-70. Exploratory Shaft Facility: Changes in Shear Stress 6, 10,000 Years After
Waste Emplacement Begins
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Figure C-1.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 10 Years After Waste Emplacement Begins
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Figure C-2.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 35 Years After Waste Emplacement Begins
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Figure C-3.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 50 Years After Waste Emplacement Begins



br400.con
pax. value = 45.88 0. 20.

min. value = 45.53 ——
Feet

BR Temp.(C) - 400 years

cai00.con '
K max. value = 20,00 0. <20.
<:> min. value = 19.89 | |
Feet
-5 CA Temps.(C) - 100 years

SN\

Figure C-4.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 100 Years After Waste Emplacement Begins
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Figure C-5.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 300 Years After Waste Emplacement Begins
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Figure C-6.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 500 Yrars After Waste Emplacement Begins
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Figure C-7.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 1,000 Years After Waste Emplacement Begins
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Figure C-8.
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Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 2,000 Years After Waste Emplacement Begins
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Figure C-9.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 5,000 Years After Waste Emplacement Begins
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Figure C-10. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Temperatures at 10,000 Years After Waste Emplacement Begins
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Figure C-11. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA'): Changes in Normal Swress g, at 10 Years After Waste Emplacement
egins
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Figure C-12.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Normal Stress o at 35 Years After Waste Emplacement
egins
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Figure C-13.
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Upper Demonstraton Breakout Room (BR) and the Calico Hills Drill Room

(CA): Changes in Normal Stress o, at 50 Years After Waste Emplacement

Begins
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Figure C-14. ‘ Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal 3tress g, at 100 Years After Waste Emplacement

Begins
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Figure C-15. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress 0, at 300 Years After Waste Emplacement

Begins
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Figure C-16.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
§3CA) Changes in Normal Stress o, at 500 Years After Waste Emplacement
egins —
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Figure C-17.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
gCA_): Changes in Normal Stress o, at 1,000 Years After Waste Emplacement
egins
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Figure C-18.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA) Changes in Normal Stress o, at 2,000 Years After Waste Emplacement
egins
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Figure C-19.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
%EA.): Changes in Normal Stress g, at 5,000 Years After Waste Emplacement
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Figure C-20. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
ges in Normal Stress o, at 10,000 Years After Waste Emplacement
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Figure C-21.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress C,, at 10 Years After Waste Emplacement
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Figure C-22. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BEA): Changes in Normal Stress g, at 35 Years After Waste Emplacement
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Figure C-23. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA’): Changes in Normal Stress g, at 50 Years After Waste Emplacement
egins
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Figure C-24. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA'): Changes in Normal Stess o,, at 100 Years After Waste Emplacement
egins o
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Figure C-25. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress G,, at 300 Years After Waste Emplacement
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Figure C-26. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA) Changes in Normal Stress ¢, at 500 Years After Waste Emplacement
egins —_
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Figure C-27.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Normal Stress o, at 1,000 Years After Waste Emplacement
egins
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Figure C-28. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Swess g, at 2,000 Years After Waste Emplacement
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Figure C-29. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
gCA): Changes in Normal Stress G, at 5,000 Years After Waste Emplacement
egins
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Figure C-30. Upper Demonstraton Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress 0, at 10,000 Years After Waste Emplacement
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Figure C-31. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Normal Stress o, at 10 Years After Waste Emplacement
egins
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Figure C-32.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
ECA-): Changes in Normal Stress o, at 35 Years After Waste Emplacement
egins
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Figure C-33.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress G, at 50 Years After Waste Emplacement
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Figure C-34. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Normal Stress 6, at 100 Years After Waste Emplacement
egins
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Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress G, at 300 Years After Waste Emplacement
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Figure C-36. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Normal Stress o, at 500 Years After Waste Emplacement
egins .
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Figure C-37.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Stress o, at 1,000 Years After Waste Emplacement
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Figure C-38. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
%CA) Changes in Normal Stress o, at 2,000 Years After Waste Emplacement
egins )
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Figure C-39. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Normal Saess o,, at 5,000 Years After Waste Emplacement
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Figure C-40.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
l(BCA_): Changes in Normal Stress g, at 10,000 Years After Waste Emplacement
egins —
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Figure C-41. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress g, at 10 Years After Waste Emplacement Begins

C-41



dbras5.con
pax. value = -0.04 0. 20.

min. valye = -0.08 |.__,_|
Feet

BR SIGXY(MPa) - 35 years

ca35.con
nax. value = -0.06 0. 20.

min. value = -0.08 |——|
Feet

CA SIGXY (MPa) - 35 years

Figure C-42. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 35 Years After Waste Emplacement Begins
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Figure C-43. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress g,, at 50 Years After Waste Emplacement Begins
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Figure C-44. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 100 Years After Waste Emplacement
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Figure C-45. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress ©,, at 300 Years After Waste Emplacement
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Figure C-46. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 500 Years After Waste Emplacement
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Figure C-47. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA): Changes in Shear Stress Oy, at 1,000 Years After Waste Emplacement
egins
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Figure C-48. Upper Demonstradon Breakout Room (BR) and the Calico Hills Drill Room
gCA) Changes in Shear Stress ©,, at 2,000 Years After Waste Emplacement
egins .
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Figure C-49.  Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress g, at 5,000 Years After Waste Emplacement
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Figure C-50. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Shear Stress G,, at 10,000 Years After Waste Emplacement
egins
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Figure C-51. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress Oy at 10 Years After Waste Emplacement Begins
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Figure C-52. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress Oy, at 35 Years After Waste Emplacement Begins
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Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress G, at 50 Years After Waste Emplacement Begins
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Figure C-55. Upper Demonstration Breakout Room (BR) and the Calico Hill: Dril] Room
(BCA_): Changes in Shear Stress Oy at 300 Years After Waste Emplacement
egins
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Figure C-56. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
§3CA) Changes in Shear Stress G, at 500 Years After Waste Emplacement
egins
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Figure C-57. Upper Demonstraton Breakout Room
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Figure C-58.
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Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
%CA) Changes in Shear Stress 0,, at 2,000 Years After Waste Emplacement
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Figure C-59. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress G,, at 5,000 Years After Waste Emplacement
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Figure C-60. Upper Demonstratdon Breakout Room (BR) and the Calico Hills Drill Room
(BCA): Changes in Shear Stress o, at 10,000 Years After Waste Emplacement
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Figure C-62. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Smress o, at 35 Years After Waste Emplacement Begins
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Figure C-63. Upper Demonstraton Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 50 Years After Waste Emplacement Begins
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Figure C-64. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
%CA_): Changes in Shear Stress 0, at 100 Years After Waste Emplacement
egins _
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Figure C-65. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(BCA_): Changes in Shear Stress O, at 300 Years After Waste Emplacement
egins
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Figure C-66. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
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Figure C-67. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 1,000 Years After Waste Emplacement
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Figure C-68. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 2,000 Years After Waste Emplacement
Begins -
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Figure C-69. Upper Demonstration Breakout Room (BR) and the Calico Hills Drill Room
(CA): Changes in Shear Stress o, at 5,000 Years After Waste Emplacement
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APPENDIX D

Temperature and Induced Stresses (AG,,. Ag,,.AG,,,Aq,.,) for the Tuff Main Drift, and

Drifts CE and F'G’ (Local Coordinate System x" - y’ - z” and Sign Conventions for Stresses
are given in Figure D-16)
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@RE/SPEC Inc.

Technical Letter Memorandum RSI(ALO)-0037

To: Dr. E. S. Hertel, Jr.
Division 6314
Sandia National Laboratories
Albuquerque, NM 87185

cc: Brian L. Ehgartner
RSI135TR3.2.1

From: David K. Parrish 4. asot

Terje Brandshaug

Date: November 30, 1988

Subject: Estimates of Expected Values and Ranges of Temperature. Stress. and
Strain Along the Exploratory Shaft at the Yucca Mountain Project.

1 Introduction

1.1 Background

Two exploratory shafts (ES-1 and ES-2) are planned for the Exploratory Shaft
Facility (ESF) at the proposed nuclear waste repository at Yucca Mountain, Nevada.
The shafts will have a two-stage service life. First, they will provide access. ventila-
tion, utility support, and emergency egress from the underground test areas during
site characterization. Second, pending results of site characterization. the shafts
will be converted to support repository operations until repository closure. Conse-
quently. the shafts must be designed for the thermal/mechanical changes near the
repository during the operational period of the repository.

A data base of expected responses of the repository region was developed by
Sandia National Laboratories {Brandshaug, in prep., for the purpose of estimating
the average response of the repository region. The study also developed estimates
of the uncertainties in calculating the average response. The uncertainties were
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reported as ranges of expected responses. The data base contains the values and
ranges of the parameters of interest in a region extending several kilometers around
the repository.

1.2 Objective

The objective of this study was to provide estimates of the expected values
and expected variations of the dependent variables (temperature. stress. and strain
states) in the vicinity of ES-1 during the first 100 years of the operation of a reposi-
tory. The baseline case assumed an initial areal power density (APD) of 57 kW . acre.
Results were to be extracted from vertical profiles through the vertical cross section
used by Brandshaug in prep.|. Data from elevations of particular interest. that
is. the upper demonstration breakout room. the main test level. and a lower level.
were tabulated. Brandshaug’s thermal mechanical calculations provide tempera-
ture. stress. and strain magnitudes over the entire repositoryv region. and at several
discrete times selected between the time of emplacement of heat-generating waste
and 50.000 vears after the beginning of heat generation. Two times of particular
interest to the design of the ESF were extracted for this report. Those times were
prior to the emplacement of heat-generating was initial conditions} and 100 vears
after heat generation begins.

1.3 Scope

The data presented in this report were taken from a data base developed during
a sensitivity study Brandshaug. in prep. of the thermomechanical response of
the repository region. The sensitivity study used a two-dimensional (piane strain|
elastic model of the repository region. In that studv. several - nermal and mechanica,
parameters (the independent variables such as thermal conductivitv and Young s
Modulus) were varied one at a time in a series of independent calculations.

Average values for each of the independent variables were provided bv Sandia
National Laboratories 'MacDougall. 1987". Ranges for each of the independent
variables were expressed as a percent variation from each of the average values
(Table 1). The percentages were based on engineering judgment in concurrence with
Sandia National Laboratories :Mansure. 1986 . Engineering judgment was also used
to determine whether to vary the magnitudes in a positive (increase) or negative
(decrease) sense for the purposes of studying the sensitivity. In most cases. values
were chosen to produce either an increase in the temperatures or an increase in the
compressive stress magnitudes. The dependent variables (temperature. stress and
strain) were calculated and compared with a baseline case to assess the sensitivity
of these variables to changes in the independent variabies. The sensitivity to in situ
stress was also analyzed. The results of those analvses are discussed in Section 3.1.

The baseline case for the sensitivity study assumed the initial APD was &0
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Table 1

Average Values and Ranges of Thermal/Mechanical Parameters

Parameter Average Value Range
Thermal Conductivity avg — 20 percent
Heat Capacity : avg — 10 percent
Thermal Expansion avg — 20 percent
Elastic Constants

Young's Modulus avg — 30 percent
Poisson’s Ratio avg -~ 30 percent
Mass Density avg - 5 percent

" Average values are specified for each thermal mechanical unit in the far-
field model used in the sensitivity studv. The paramerter value of each
unit was changed simultaneously by the zame percentage to Jdetermine the
sensitivity to each varied parameter

kW acre of repository area. Since the objective of this study was to determine the
expected values and ranges for the case when the APD was 57 kW . acre. the values
calculated in the sensitivity study were modified to obtain a revised baseline case.

The planned location of ES-1 is approximately 300 m from the representa-
tive cross section (C-C' in Figure 1) used by Brandshaug in prep. for the ther-
mai mechanical analvses. The shaft location is 180 m from the nearest waste djs-
posal panel (Figure 1). Two profiles within cross section CC' were selected 1o pro-
vide an understanding of the environment near ES-1. One profile is along tne pro-
jection of ES-1 onto section CC' (Figure 2). The values along this profile are likeiv
to be much higher than those at the actual shaft location. because the projection
of the exploratory shaft onto the plane of the thermomechanical analyvsis neglects
the thermal insulation provided by the 180 m between the shaft and the nearest
waste disposal panel. The stress field is also likelv to be perturbed less at a distance
of 180 m from the heat-generating region. Consequentlv. a second profile, located
180 m from the east edge of the heat-generating region in the two-dimensional model
was selected to provide a better understanding of the environment away from the
heated region.

Neither profile from a two-dimensional representation of the repository includes
the three-dimensional effects that should be expected near the ESF configuration.
Comparison of the calculated values along these profiles also neglects the differences
in topography and stratigraphy at the two locations.

The mean vaiues and ranges presented in this report represent only the vari-
ations in the calculated dependent variables that are caused by variations in the
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independent variables considered in Brandshaug's :in prep. sensitivity study. Ad-
ditional uncertainty in the expected vaiues of temperature. stress. and strain may
result from factors that were not considered in the sensitivity study.

2 Statistical Approach

2.1 Approximate Mean and Variance

The objective of this study was to determine the expected values for each of the
dependent variables. as well as the expected variations. Standard approaches are
available for determining the approximate mean and variance of calculated func-
tions. The formulation that follows is taken from Ang and Tang 1975 .

Each quantity of interest is considered to be a function of several random
variables:

Y =g (.\'1..’(2....){'“) s (1)
where
Y = temperature. stress or strain (dependent variables)
X, = thermal conductivity. specific heat capacity.

Poisson's ratio, Young's modulus. etc. (independent variables)

Assuming the parameters. X, are uncorrelated. first-order approximations of the
mean value. E'}Y . and variance. Var'}" . of the dependent variable. Y. in terms of
the mean values. uy,. and the variances. Var X, . of the parameters. X,. are given:

E'Y ~g (ux, px.....ux, ) . (2)

"

, - . [ dg \~
Var} =~ Z\"ariX,‘ (%)

(&S]

1=1

If the function ¢g(X,) (Equation 1) is approximately linear for the entire range
of X,. Equations 2 and 3 are good approximations of the exact mean and variance
Ang and Tang. 1975 . If the variances of X, are small. the approximation is good
even if the function is nonlinear.
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2.2 Analogous Expressions

The calculated temperatures. stresses. and strains near the center of the heat-
generating region in the sensitivity study Brandshaug, in prep. changed in ap-
proximately direct proportion to changes in the independentiy varied parameters.
Therefore. the approximate expressions (Equations 2 and 3) provide good estimates
for the mean values and variances of the temperatures. stresses and strains calcu-
lated in the sensitivity study. The average values in Table 1 provide good estimates
of the mean values. px . required for Equation 2. However. the relationship between
the ranges in Table 1 and the variances Var X, required for Equation 3 were not
established at the time of the sensitivity study. Hence the functional relationships
presented by Ang and Tang 1975 (Equations 2 and 3) were adapted to obtain ex-
pressions analogous to the mean. variance. and standard deviation. The analogous
parameters defined for this study are:

Statistical Parameter Analogous Parameter

Mean Value. u Expected Value. £
Variance. Var ‘ Dispersion. Disp
Standard Deviation. Expected Deviation,

o =\ Var ; EDev

Expected Value. The variables Y (Equation 1) were the temperatures. stresses.
and strains that were calculated using the finite element method as a part of the
<ensitivity studv. The average values (Table 1) were the expected values of the
independentiv varied parameters. .\,. The expected vaiue, E'}" . for each dependent
variable was obtained from the calculation that used

e the average values £ X, for the independently varied parameters. and

e 57 kW acre as the APD.

The expected value determined in this manner is given by Equation 2 written in
condensed form:

EY =g¢(E'X,)). (4)

Dispersion and Expected Deviation. Equation 3 was adapted for this study in
order to provide a measure of the uncertainty that is analogous to the variance in the
parameters Y. The adaptation was required because. at the time of the sensitivity
study. the variances in .\, that are required in Equation 3 were not available. The
ranges in the independent variables. X,. were based on engineering judgement. and
the following assumptions and rationale were used to adapt Equation 3 for this
study.
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Assume each of the independent variables. \,. has a certain distribution. and
the distributions are characterized by the mean values # x,and some standard devi-
ation oy,. The ranges of the dependent values. R X, . used in the sensitivity study
represent some multiple, k. of the standard deviation in X,:

R‘PX,‘ = ICO’X. . (5)

Expressing the variance of X, as a function of R X, leads to a definition of the
dispersion that is analogous to the variance:

VarlX, = (RiX, k)" = Disp X, /k".

In other words. the dispersion is a multiple of the variance:

Disp X, = k*Var X, . (6)

Assuming the multiple. k, is the same for all parameters .\X,. the variance of
the dependent variable, Y. can be written as:

Bl

| " . (ad
Var'Y = Yvar X, -—) . 7
ar'y” g ar (a)&x (7
" Disp X, ( 9g \° ‘
= =) )

i

This assumption seems reasonabie because usual engineering judgment leads to the
exclusion of extreme values in the sample data. It is likelv that the judgment used
to determine the bounds to be used in the sensitivity studyv would result in similar
variations about the average value for each parameter.

The dispersion of the dependent variables. } . is defined in the same form as
the dispersion of independent variable X, (Equation 6). i.e:

Disp'Y = k*Vary (9)

"

n ) a -
N Disp X, | — ) . 10
_Dlsp Y, (d-\’z) (10)

i

=1

The term Ezpected Deviation (EDev Y ) will be used for the square root of Equa-
tion 10:
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N

. = : " dg |~

EDevY = Z Disp X, (——q—) . (11)
o \1:1 » ' \a‘\'

EDev Y is the expected range of the variable Y due to the variations in all the

independent variables. X,.

2.3 Scaling for Areal Power Density

The design of the ESF requires estimates of the expected values. £’} . of the
three thermalsmechanical variables of interest—temperature. stress and strain—
using a baseline case of 57 kW ‘acre APD. The baseline APD used in the sensitivity
study Brandshaug, in prep. was 80 kW acre. The effect of the independently
varied parameters on a baseline case using 37 kW acre as the APD was obtained
by scaling the results of the 80 kW, acre case. This scaling was justified because
the heat transfer calculations were based on linear heat transfer phenomena. None
of the independentiy varied parameters used in the sensitivity study were assumed
to be functionally dependent on the temperature. stress. or strain. All boundary
conditions. except one, were held constant. Only the convective boundaryv condition
at the ground surface of the heat transfer model might have affected the validity
of scaling the results. The influence of the convective boundarv is principally to
maintain a constant temperature at the ground surface. Consequently. the temper-
atures at the surface of the model were very weakly dependent on temperature in
the modeled region. The mechanical responses of interest. stress and strain. also
varied linearly with the APD because a linear elastic constitutive model was used.
Since the dependent variables of interest were nearlv linear functions of the APD.
the expected value and expected range were also linear functions of the APD. Con-
sequently. a scale factor. S F. was based on the ratio of the changes in the dependent
variablies for the two APDs:

(E'X,.t) = Y3 (E'X,).0)
(E'X,..t) - Yso (E, X,..0)

Y
SF = — (12)
80

where Y (E X, .t) represents the value of a dependent variable (e.g.. temperature.
stress. or straimn) calculated at time. t. using the mean values of the independently
varied parameters in the sensitivity analysis. The subscripts 57 and 80 indicate the
APD (57 kW, acre or 80 kW ‘acre) used in the calculation. The initial values of the
dependent variable. Y. do not varv with the APD. that is. Yae(E X, .0) is equal
to }37(E£ X,..0). Because the temperature. stress. and strain varied with space and
time. the scale factor. SF. varied with location in the modeled region and with time
in the heating history.
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2.4 Expected Value and Expected Deviation of Thermal/Mechanical
Parameters

Bounding values. B'X, . were used to represent the extreme variation of each
of the independent variables. X,. BIX,| can be expressed in terms of the range.
R X, . as follows:

BX,/=EX -RX . (13)

Discrete values of the dependent and independent variables can be used to
approximate the partial derivative of the function ¥ = ¢(X,) in Equation 10 when
the scale factor. SF. is applied. The dispersion of each dependent variable can be
expressed as:

5 1 : .,'(. I_-, ) - "g.’. .",..t :
Disp Y:7 (X,.t) =~ (SF)" Z Yo (B A, 1)2\.}. (£ X )) Disp X, . (14)

where B/ X, indicates the bounding value used for the :'" parameter in the sensi-
tivity study. and R X, is the range of each of the parameters (Table 1).

The expected deviation of each parameter, Y . is the square root of Equation 14.
After expanding Disp X, and simplifying:

S {Ya(BX,.t) - Yo (EX,.0)). (15

\ 5

The initial conditions (Y (B \,..0)) in the mechanical models differed by small
magnitudes from Y (E(X,).0) in cases where the elastic moduli or density were
varied in the sensitivity studyv. The differences result from the fact that different
elastic moduli and densities lead to slightly different equilibrium stress states as the
starting point for each calculation. The effect of these differing initial conditions
can be examined by rewriting the dispersion (Equation 14) as

EDev }'_37( .\-,.t)j =~ (SF)

n

S (Yo (BX, .t) - Yeo (B X,1.0) = Yoo (B X, .0)}
=1

(SF)’

O
»n
el
gt
w
<
]
1¢

— {Ya(E X, ) = Yao (E X, .0) ~ Yea (E'X,.0)} % . (16)

1

(SFYS"{AYw (B X, 1) - AYw (EN, .t)
=1

- Y. (BX,.0) - Y. (EX, .00} . (17)
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where AYy. (.\,.7) denotes the change in }" that is attributable only to the repository
heating after time. t. If the initial conditions resulting from initializing the finite ele-
ment calculation using parameters B X,. and E X, are identical. then Y3, (B X, .0)
and Yy (£ X, .0) are equal, and the dispersion of Y’ is attributable only to the pa-
rameter change from E{X, to B X,. When Y3 (B/X,1,0) and Y (E' X, .0) are
unequal the difference in initial conditions is incorporated in the dispersion. as
shown in Equation 17.

3 Results

Section 3.1 discusses the effects of varving the in situ stress state. A comparison
1s made of the ranges obtained by varving the in situ stress state and the ranges
obtained by varving the material parameters.

The results are presented in two tables showing the expected values of tem-
peratures. stress components. and strain components. as well as estimates of the
expected deviations (Equation 13) in these variables above and below the expected
values: Table 2 presents the results along projections of the Exploratory Shaft onto
the section of the analysis. The values in this table are likely to be much higher
than those at the actual shaft location because the projection of the exploratory
shaft on the plane of the thermomechanical analysis models a shaft very close to the
waste storage rooms. In this position. the shaft would be subject to maximum tem-
peratures. In fact. the exploratory shaft will be approximately 180 m (600 ft) from
the nearest waste panel. An estimate of the effects of waste panels at a distance of
10 m was obtained by calculating the values and ranges at a location 180 m from
the east edge of the repository in the two-dimensional model (Table 3).

Data aiong the entire length of each profile are provided in graphical form in
Figures 4 through 29. Each figure shows the expected value as a solid line. The
expected ranges (E'Y = EDevi} ) are shown as dashed curves on either side of
the solid curve representing the expected value.

3.1 In Situ Stress

Two initial stress states were used by Brandshaug 'in prep. to studyv the
sensitivity of the dependent variables. stress and strain. to the initial stress state.
In the baseline case. the stress was initialized by simply calculating the stress at
every point in the modeled region resulting from the weight of the overburden. The
bounding case was initialized so that the horizontal stress was approximately equal
to the vertical stress throughout the model. The idealization was onlv approximate
because some deviations from the idealization were required to establish the initial
equilibrium stress state near the irregular free surface at the top of the modeled
region and near discontinuous changes in material properties within the modeled
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region. The variation in horizontal stress resulting from this range in initial stress
conditions (Figure 3) illustrates the conclusion drawn by Brandshaug in prep. that
the influence of the in situ stress state is greater than the combined the influences of
all the other parameters. For example. the variation in initial stress caused a factor
of two increase in the horizontal stress at the repository elevation. The variations
resulting from the other parameters were insignificant compared to the variations
resulting from variations in initial in-situ stress.

In order to illustrate the effects of the other parameters in Table 1. the effects
of in situ stress were excluded from the statistical calculations discussed in Section
2. The following discussion applies only to parameter variations using the baseline
calculation in which the initial stress state resulted from gravitational loading.

3.2 Profile Along ES-1 Projection

At a time 100 vears after the beginning of heat generation. the maximum tem-
peratures along the projection of ES-1 were at the main level (Table 2). The thermal
expansion associated with these high temperatures resulted in correspondingly high
horizontal stresses at the main level. The horizontal stresses parallel (z component]
and perpendicular (z component) to the plane of analysis increased by nearly one
order of magnitude. The vertical stresses (y component) near the heat-generating
region changed insignificantly. The thermal strains in the heat-generating region
indicate expansion (positive strains) on the order of 0.1 percent in the vertical direc-
tion and 0.02 percent in the horizontal {z direction). Plane strain analvses restrict
all deformation perpendicular to the plane of analysis. so the z-component of strains
in Table 2 are zero.

The expected deviations in all dependent variables increased as the expected
values increased. The greatest perturbation in temperature was at the main level.
and the expected deviation at that level was plus or minus 10 percent of the expected
value. At the upper and lower levels. where smaller perturbations were calculated.
the expected deviations were plus or minus 4 percent. The large perturbation in the
stress field near the main level was accompanied by larger deviations in the stress
ievel. The expected deviations in the horizontal stress at the main level were plus
or minus 40 to 50 percent of the expected value.

3.3 Profile Along Location 180 m From Heat-Generating Region

Temperature and stress changes are much lower at a location 180 m from the
repository edge. In fact. the temperatures are hardly perturbed in the 100 vear
period under consideration. The most significant effect of repository heating at
this location is a doubling of the horizontal stress at the main level. The expected
deviation in the horizontal stress was plus or minus 30 percent. The vertical stress
changed insignificantly at the 100-vear calculation time. Compressive horizontal
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strains of approximately 0.02 percent were calcuiated at the 180-m distance. This
ts in contrast to extensile strains of approximately the same magnitude along the
projection of ES-1. Vertical strains at the 180-m distance were extensile. but reduced
in magnitude relative to the location interior to the heat-generating region.

4 Conclusions

The objective of this studyv was to provide estimates of the expected values and
variations of temperature. stress. and strain states in the vicinitv of the ES-1 during
the first 100 years of the operation of a repository filled with radioactive waste at
an initial areal power density (APD) of 37 kW acre. Results were extracted from
vertical profiles through the vertical cross section used by Brandshaug in prep .

The expected value and expected deviation were calculated using expressions
analogous to expressions for the mean and standard deviations. The first-order
approximations for the mean and variance are obtained from Ang and Tang 1975 .

The baseline case in the sensitivity study Brandshaug. in prep. used &0
kW acre as the initial APD. Since the design of the ESF required the expected
values and deviations of the dependent variables for an APD of 57 kW ‘acre. a
technique for scaling the results of the sensitivity study was developed. The scaling
is justified because the calculations were based on linear heat transfer and linear
elastic constitutive relations.

Resuits from two profiies are presented. One profile is simpiyv the projection of
E=-1 onto the cross section used for thermal mechanical anaivses in the sensitivity
study. A second profile. located 180 m from the edge of the heat-generating region in
tne analysis cross section. was selected to obtain an estimate of the effects of waste
panels at a distance of 180 m. Both profiles neglect three dimensional effects that
snould be expected near a shaft located within the repository area and 180 m from
the nearest waste storage panel. Nevertheless. these profiles provide the best basis
for estimating the environment near ES-1 based on the two-dimensional responses
that were available. Temperatures. stresses. and strains calculated along a projec-
tion of ES-1 are likely to be greater than should be expected at a location 180 m
from the nearest waste storage panel. The profile located 180 m from the heat-
generating region in the two-dimensional model is likely to be more representative
of conditions near ES-1.

Calculations of the temperatures after 100 vears of heat generation indicate
that the temperatures 180 m from the edge of the heat-generating region are hardiv
perturbed. The most significant effect of repository heating at the 180-m location
is a doubling of the horizontal stress on the main level. The expected deviation in
tne horizontal stress on the main levei is plus or minus 30 percent.
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Table 2

Expected Values (Expected Deviations. see Equation 15) of Parameters
at the Projection of ES-1 on Section CC'

Upper Level Main Level Lower Level Units
" Elev. = 1076 m Elev. = 950 m Elev. = 843 m
Value Value Value
(= Deviation) (= Deviation) (= Deviation)

Temperature

Initial 22.74 (= 0) 25.56 (= 0) 27.63 (= 0) ¢

100 vr 31.38 (= 3.6) 118.90 (= 11.7) 10.93 (= 4.1) :C
Horizontal Stress!

Ininal ~ 128 (= 0.2) - 244 (= 0.4) - 234(= 0.5 MPa

100 vr - 06l (= 0.3) - 17.84 (= 7.6) - 238 (= 0.6) MPa
\'ertiqal Stress! .

Initial - 478(=02) - 738(z04) - 990(=053) MPa

100 vr = 491 (= 0.2) - 7.89 (= 0.2) - 1009 (= 0.4) MPa
Out-of-Plane Stress!

Intial - 097 (= 0.2) - 201(=0.35) - 227 (= 0.5) MPa

- 100 vr - 162{(=0.7) - 20.08 (= 9.0) - 383 (=0.7) MPa

Shear Stress

Initiai 0.12 (= 0)* 0.32 (= 0)° 0.27 {= 0)° MPa

100 vr - 0.02(=0.1) 1.66 (= 0.7) 0.56 (= 0.1)  MPa
Horizontal Strain

[nitial® 0{=0) 0{=0) 0(=0) 1E-6

100 vr 201.28 (= 111.2) 21290 (= 116.4) 383.71 (= 121.9) 1E-6
Vertical Strain

Imitial® , 0 (= 0) 0(=0) 0(=0) 1E-6

100 yr 7844 (= 88.1) 1412.00 (= 702.7) 311.40 (= 133.4) 1E-6
Out-of-Plane Strain*

Initial® 0 (= 0) 0({zx 0) 0(=0) 1E-6

100 yr 0(=0) 0 (= 0) 0 (% 0) 1E-6
Shear Strain

Initial® 0 (= 0) 0(=0 0(=0 1E-6

100 vr - 40.18 (= 16.9) 213.10 (= 106.4) 92.65 (= 50.9) 1E-6

! Compressive stress is negative !
- Less than = 0.005 MPa
" Reference Strain = 0

Plane 2train Conditions
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Table 3

Expected Values (Expected Deviations. see Equation 15) of Parameters
at 180-m Distance From Heat-Generating Region in Section CC'

Upper Level ' Main Level Lower Level Units
Elev. =976 m  Elev. = 875 m Elev. = 760 m
Value Value Value |
(x Deviation) | (£ Deviation) (= Deviation)
Temperature ,
Initial 23.61 (= 0) 26.60 (= 0) 2918 (z0)  °C
100 vr 23.60 (= 0.1) 27.02 (= 0.1) 2920 (= 0.0) ' °C
Horizontal Stress! ‘
Initial - 116(=03) - 262(=06) - 213(=05)  MPa
100 yr - 242(=0.38) - 342 (= 1.7) - 230 (= 0.4) MPa

Vertical Stress!

Tnitial - 5.09 (=02 - 749 (= 0.4) - 10.02 {= 0.5) MPa
Dyvr - 4232(=04) - 6.79 (= 0.4) - 974(=04) ' MPa
-of-Plane Stress!

Initial - 1.00 (= 0.3) - 2.02(= 0.6) - 207 (=053 ' MPa

100 vr - 1.09(=0.2) - 2532 (= 0.86) - 208(=03) ' MPa

Shear Stress
Initial 0.27 (= 0.0)° 057 (= 0.0)" 032 (=00)° MPa
100 vr - 017 (= 0.2) 1.00 (= 0.3) 1.16 (= 0.3) MPa
Horizontal Strain
Initial® 0.00 (= 0.0) 0.00 (= 0.0) 0.00 (= 0.0) 1E-6
100 vr -179.16 (= 102.4) -183.35 (= 99.0) -118.00 (= 59.7) 1E-6
Vertical Strain |
Initial® 0.00 (= 0.0) 0.00 {= 0.0) 0.00 (= 0.0) 1E-6
100 yr 130.96 (= 76.8) 94.61 (= 51.5) , 100.20 (= 49.7) 1E-6
Out-of-Plane Strain? i
Initial® ‘ 0.00 (= 0.0) 0.00 (= 0.0) . 0.00 (= 0.0) 1E-6
100 vr 0.00 (= 0.0) 0.00 (= 0.0) 0.00 (= 0.0) 1E-6
Shear Strain : |
Initial® 0.00 (= 0.0) 0.00 (= 0.0) 0.00 (= 0.0) 1E-6
100 vr + —135.00 (= 69.1) . 68.81 (= 44.1) 422.20 (= 232.8) 1E-6

! Compressive stress is negative
- Less than = 0.005 MPa
" Reference Strain = 0

* Plane Strain Conditions
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Figure 20. Initial Horizontal (Z) Stress (Solid Line) and Expected Deviations
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of the Heat-Generating Region (Time = 0)
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Figure 21. Expected Horizontal (Z) Stress (Solid Line) and Expected Deviations
(Dotted Lines. Equation 15) at 180-m Distance from the East Edge of
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Figure 22. Initial Shear Stress (Solid Line) and Expected Deviations (Dotted
Lines. Equation 15) at 180-m Distance from the East Edge of the
Heat-Generating Region in Section CC’ (Time = 0)
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Figure 23. Expected Shear Stress (Solid Line} and Expected Deviations (Dotted
Lines. Equation 15) at 180-m Distance from the East Edge of the Heat-
Generating Region in Section CC' (Time = 100 vears)
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Figure 24. Expected Horizontal Strain (Solid Line) and Expected Deviations
(Dotted Lines. Equation 15) at Projection of ES-1 on Section CC'
(Time = 100 vears)
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Figure 25. Expected Horizontal Strain (Solid Line) and Expected Deviations
(Dotted Lines. Equation 15) at 180-m Distance from the East Edge
of the Heat-Generating Region in Section CC' (Time = 100 vears)
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Figure 27. Expected Vertical Strain (Solid Line) and Expected Deviations (Dotted
Lines, Equation 15) at 180-m Distance from the East Edge of the Heat-
Generating Region in Section CC' (Time = 100 vears)
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ABSTRACT

Excavaton stability in an underground nuclear waste repository is required during construction,
emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to
prevent development of potential pathways for radionuclide migration in the post-closure period.
Stable excavations are developed by appropriate excavation procedures, design of the room shape,
design and installation of rock support reinforcement systems, and implementation of appropriate |
monitoring and maintenance programs. In addition to the loads imposed by the in situ sgress field,
the repository drifts will be impacted by thermal loads developed after waste emplacement and,
periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events.
A priori evaluation of stability is required for design of the ground support system, to confirm that
the thermal loads are reasonable, and to support the license applicaton process. In this report, a
design methodology for assessing drift stability is presented. This is based on site conditions,
together with empirical and analytical methods. Analytical numerical methods are emphasized at
this ime because empirical data are unavailable for excavatdons in welded tuff either at elevated
temperatures or under seismic loads. The analytical methodology incorporates analysis of rock
masses that are systematically jointed, randomly jointed, and sparsely jointed. In siru thermal and
seismic loads are considered. Methods of evaluating the analytical results and estimadng ground
support requirements for the full range of expected ground conditions are outlined. The results of
a preliminary application of the methodology using the limited available data are presented. This
methodology is expected to evolve as excavation observaton at the Exploratory Shaft Facility
demonstrates the controlling deformation mechanisms and allows site-specific evaluaton of in situ
properties. As more experience is gained at the site, design based on empirical and observational
methods will emerge for application during constructon of the repository.
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This report was prepared at Quality Assurance Level I and pertains to WBS Element 124232, The
preliminary application of the methodology presented in Chapter 12 and the scoping analyses
completed to support that preliminary application were non-quality related activides.
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PREFACE

The drift design methodology outlines procedures for drift design for a potential repository
in welded tuff at the Yucca Mountain Site, but does not discuss who will be responsible for
implementing these procedures. Until this date, the repository design has been the responsibility
of Sandia National Laboratories with architect engineering (A/E) support.

Implementation of the drift design procedures includes interpretation of data from laboratory,
field and prototype tests; compliance with regulatory requirements, numerical analysis, and tradeoff
studies; integration with other aspects of the repository layout and operations; consideration of
licensing strategies; postclosure performance constraints; and development of specific procedures
suitable to meet Quality Assurance requirements. It is anticipated that most of this work will be
completed by the repository designer with input and review from other departments. Once
underground excavation begins, procedures for data collection from exposed rock surfaces and
feedback to the drift design team must be developed.

It is recommended a drift design review team be established by the Project Office during the
prelicensing phases of repository design to advise an implementation of the drift design methodology
and to review proposed drift designs, including the ground support/reinforcement details. This
review team should include representatives with expertise in the geological sciences, laboratory
testing, computation mechanics, construction, waste handling, repository design and performance
assessment.
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1.0 INTRODUCTION

Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Charac-
terization Project (YMP), is investigating the feasibility of locating a high-level nuclear waste
repository at Yucca Mountain, Nevada. The conceptual design of the repository includes shafts
and ramps as accesses to the repository horizon, which are 200 to 300 m below the surface within
the densely welded section of the Topopah Spring Member of the Paintbrush tuff formation. At
the repository level, main access and emplacement drifts will be excavated to allow disposal of the
waste in either horizontally or vertically oriented boreholes. These drifts must provide safe access
for waste emplacement, inspection, and maintenance following emplacement, closure, and possibly,
waste retrieval. The design methodology presented in this report defines the steps for repository
drift design to ensure that the drifts meet stability and other regulatory requirements through
repository decommissioning.

1.1  Purpose

The purpose of this report is to define, for the underground excavations of a repository in
tuff, a design methodology, establish a design criteria, and demonstrate the application of the
methodology to the Yucca Mountain Site. For the purposes of this document, the design of
underground excavations consists of two components: (1) the drift dimensions and shape, and (2)
the ground support/rock reinforcement. Repository drift size and shape depends primarily on
functional requirements, whereas the ground support/rock reinforcement depends on local geologic -
conditions and loadings. The ground support/rock reinforcement design can, at this stage, consist
of only multiple design possibilities to be selected after local ground conditons have been estab-

lished.

Not included in the drift design, but considered in the methodology, is the design of the
mining, ventlation, utility, backfill, and sealing systems. The design of the emplacement borehole
(borehole, liner, and plug), repository panels (layout, drift spacing, and standoff), and shafts
is outside the scope of this document, although the interaction and effect on drift design are
considered where appropriate. Forexample, density of emplaced waste [areal powerdensity (APD)]
and standoff to the waste are parameters of panel design that may require adjustment if thermal
loads on the drift become excessive.

1.2 rt Oreani

The report is structured to follow the applicaton of the proposed design methodology.
Chapter 2 provides a synopsis of the methodology. This is followed by chapters which describe in
detail major elements of the methodology. These are:

Chapter 3—Design Requirements and Goals
Chapter 4—Drrift Design Criteria

Chapter 5—Design Basis

Chapter 6—Analysis of Unsupported Drifts
Chapter 7—Drift Evaluatons

Chapter &—Ground Support Design

Chapter 9—Final Drift Evaluations and Design

I-1



A summary of the methodology is presented in Chapter 10. Chapter 11 briefly outlines how data
developed from the Exploratory Shaft Facility (ESF) program will be used to enhance the design
methodology. To illustrate the use of the methodology, it has been applied using the available
site-specific data and the current reference repository layout. The results of this preliminary
application are presented in Chapter 12.

Appendixes A and B provide example analytical results for two of the analytical models:
the elasto-plastic continuum and compliant joint models (CJM). Appendix C provides examples
of coupled analysis of the interaction between the rock and ground support system. These appendixes
support the design study documented in Chapter 12.
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INTRODUCTION

This study presents the recommendations for the Life Safety Systems
at the Exploratory Shaft Facility (ESF), an integral part of the
Nevada Nuclear Waste Storage Investigations (NNWSI) Project.

Fire protection, alarm warning, and communications systems, and an
evacuation plan will be developed. From these developments,
evaluations of each system will be made. Recommendations based on
these evaluations will be provided in this study.

SCOPE

This study evaluaﬁes the alternatives for life safety systems
during subsurface ‘shaft sinking, excavation, operations, and
decommissioning throughout all subsurface areas of the ESF.
Alternatives will be evaluated against the requirements of the
applicable codes, standards, and regulations (reference Section
4.0, page 2) for the life safety system which is defined as
including fire protection, alarm warning, evacuation planning, and
communications. Interfaces with the Department of Energy

(DOE) /safety & Health Division (DOE/SHD) ; Reynolds Electrical &
Engineering Co., Inc. (REECo), Occupational Safety & Fire Pro-
tection; Fenix & Scisson, Inc. (F&S); Los Alamos National
Laboratories (Los Alamos); Centel Communications Systems (CCS); and
Holmes & Narver, Inc. (H&N) /Safety Programs in the appropriate
areas will provide relevant information to better define the life
safety alternatives. The recommendations in this study will be
based on the life safety requirements derived from the interfaces;
the review of the applicable codes, standards, and requlations; the
understanding of the hazards in the current ESF design; and on the
programmatic and design requirements outlined in the Subsystem
Design Requirements Document (SDRD) .

AUTHORITY AND HISTORICAL BACKGROUND

Special Study 6 was originally authorized by verbal request from
the Technology Development and Engineering Branch of DOE/Waste
Management Project Office (DOE/WMPO) , and later confirmed by a
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Department of Energy
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P. O Box 98518
Las Vegas, NV 89193-8518

MAR 3 1 1988

Joseph C. Calovini

Technical Project Officer
for NNVSI

Holmes & Narver, Inc.

Sujite 860

101 Convention Center Drive

Las Vegas, NV 89109

WASTE MANAGEMENT PROJECT OFFICE (WMPO) REVIEW AND COMMENTS ON HOLMES & NARVER,
INC. (H&N) SPECIAL STUDY NUMBER 6B, NEVADA NUCLEAR VWASTE STORAGE INVESTIGATIONS
(NNVSI) PROJECT/EXPLORATORY SHAFT FACILITY COMMUNICATIONS SYSTEMS STUDY

The WMPO has completed the reviewv of the subject study. Enclosed are the
collective comments which resulted from a comment formalization meeting held on
February 22, 1988.

The VHMPO considers this study to be important for the basis of the NNVSI
Project. As such, WMPO requests H&N to reviev, resolve, incorporate the
comments, and reyise the report. In addition, a copy of all of the comments
including the respective resolutions, shall be placed into the front of the
report. Each page of the study shall be marked, in the upper right hand corner
vith the study number, the date, and the revision number (initial issue,
Revision 0). The revised report shall then be submitted to WHPO for final
approval. Any data that may be used from this study in future design phases
must be from the WMPO approved version.

If you have any questions regarding this matter, please call Dennis H. Irby at

295-8937.
@( P. Skousen, Chief
Technology Development &
Engineering Branch
VMPO:DHI-1645 Vaste Management Project Office
Enclosure:

H&N Communications System
Study 6B comments
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1.0 INTRODUCTION

This study was commissioned to review, develop, and recommend communication
systems to support the Exploratory Shaft Facility (ESF), an integral par:
of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. This
was accomplished by reviewing with the users the requirements and the
system needs as described in the ESF Subsystem Design Requirements Documen=
(SDRD) , Revision 1, December 1987; the Integrated Data System (IDS)

Title I Preliminary Design, March 1988; the IDS Preliminary Hardware Design
Document, November 1987:; the Reynolds Electrical and Engineering Company,
Inc. (REECo), Safety and Health Program Plan, March 1983; and revisions to
these documents. .

2.0 SCOPE

Special Study 6B analyzes and summarizes the communications’ requirements
during construction and operation of the ESF. It also provides a summary
cf user defined requirements that comply with the codes, standards, and
regulations for communications. These requirements include: &) Department
cf Energy, Nevada Operations Office (DOE/NV) telephone system to provide
local, long distance, and FTS voice and data communications for users of
the ESF; B) Mine Plant Intercom System to provide voice/paging for mining
personnel at the collar and all subsurface facilities; C) Experimenters’
Intercom System to provide voice communications between subsurface
experimenters and other organizational operations in both subsurface and
external facilities; D) Closed Circuit Television System (CCTV) to provide
visual surveillance of the critical locations to ensure safe operation by
the hoist operators.
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2.0 INTROCUCTION

, as revised in 1987

The Nuclear Waste Pc Azt ¢f 1982 (NWPA {
cr suitabie locatlcrs £
o} n

) Th
“he selection ¢ cr

lizy
2ct) establishes the process £ z :he
drsposal c¢f spent nuciear fuel and high-level radicactive waste withi
ge010Ggic repesitories.
The exploratory studies facility (ESF) will be a research facility +that
SUDDCITS TesSTing reguirements Ior the site characterization c¢f Yucca Mcunta:n
as the potentlial site £or a high-level radicactive waste repository. The EST

4

w..l be constructed tc comply with a 10 CFR Part 60 requirement t¢ perform a
crogram cZ .n situ exploration and testing at the depths at which wastes
would be emplaced pricr to submiztal for a construction authorizatiosn for 2
rapository. The Yucca Mountain site is located on U.S. Government land in
scuthern Nevada, about 90 mi (145 km) northwest cf Las Vegas. The locatizn
and characteristics of the proposed site are described in detail in the Yucca
Mcuntain Project Site Characterization Plan (SCP) (DCE, 1988).

The purpese of this Preliminary Safety Analysis Report (PSAR) is to

cdocument the results of the safety analysis evaluation cf the ESF Title
aesign at 100 percent completion. It is intended for use by management =
suppcrT autherizaticn t¢ construct the ESF. It will document the evaluations
necessarv tC show that adequate measures are incliuded in the design for
Z. Protecticn c¢f the health and safety ¢f the public and the ESF
work fcrce
2. Proteczion ¢f the environment.

(1)

Completaon ¢f Project mission objectives without unreasonable delays
cr data losses caused by mishap or failure to observe applicarle
zodes, guides, and standards.

This PSAR was prepared in accordance with U.S. Department of Enerdy

1 Orzder 3481.1B, Safety Analysis and Review System, as a safety review <:
ne trocess Icr design and constructicn cf the subsurface facilities, and
tnterface I the testing program. The objectives of the safety analysis ar

Systematically identify potential hazards.

Analyze potential consequences of these hazards.

Identify measures taken to eliminate, control, or mitigate hazards.
Analyze and evaluate potential accidents and associated risks.
Assess risks.

€1 o () Y}

These opjectives were accomplished by performing a risk assessment that
crovided a systematic analysis of the ESF safety during operation activities
arnd data acquisition. In as much as the ESF activities suppert the testing
requirements for the characterization of the Yucca Mountain site; the loss of

cata and/or the loss of ability to collect data to support the
characterization effort are considered to have significant adverse effects t:
the Project. The hazards which could lead to these events have been
icentified, analvzed, and categorized similar to the traditional risks to
-2z, property, and the environment.
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The repcr: provides a descr:

z 1cn ¢f the site and design basis even:s,
and a ra-;;itl-s and process des tion for the ESF. The safety and
reliapility analysis includes an overview of the metncdoliogy used in the
analysis. All ESF subsurface structures, systems, and components nhave peen
analyvzed,

N
-
~
-

The analysis covers the modified design ccncept No. 30 ESF surfaze and
sudsurface facilities and utilizies, and the compressed air plant. Iz also
covecss ns::u--':n activities such as underground deve lopment and operazion,
and expe:;men:ax ivi:ies The PSAR documents how mitigation methods are
implemented in the SF design during constructicn and experimental

ctivities.

This repor:t does not address the designm, ﬂonst'uc:ion Cr cperatzicn cf
the repository, which will be licensed and operated in accordance wizr the
rndLL*emen's of the U.S. Nuclear Regulatory Commission (NRC) except where
ES eguipment or ‘ea’ures are intended for use in the repositcry. The DOE

cca Mountain Site Characterization Project Office (Project 0Office) :is
--spon siblie for the aeszgn, comstruction, and operaticn c¢f the ESF to provide
access Zor detailaed study of the potential host rock, as we.l as the
overlying geclcgic strata. The general obiectives £ the ESF at Yucca
fountain are to acqulire access to underground tuff herizons and T2 obtain
necessary techrnical data regaralng the unsaturatec zone. These activities
will assist in aete'mlnlng the suitability of the Yucca Mountain tuff media
Zcr the construction of an underground high-level civilian nuclear waste
repesitory.

(=Y
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ESF TITLE I
ASSUMPTIONS AND OTHER DATA

8/19/91

The following assumptions and other estimating data are based on Title I
dravings and spec available on June 30, 1991.

Assumptions
REECo cost adders will actually be put into effect.

The permanent underground utilities and roadbed will be installed concurrently
with excavation.

There will be no delays due to poor ground conditions.
Shielded TBM’s will not be required.

Rockbolts and screen will be the only required ground support with bolts on
4-foot centers.

The shaft will be blind bored and lined 25 foot in diameter.

Steel sets will not be required for ground support on the Calico Hills level.
No major water inflows will occur.

That test alcoves for RBT & Fault properties will be mined and constructed
during drift excavation and will delay same; drift mapping will cause delays at
the rate of 1 day for each 7 construction days.

A second generation Mobile Miner will be effective excavating on the TS level.
That TBM's will function effectively on negative grades.

That power will be available for 4 TBM’s running concurrently.

That water tank construction and road paving will be subcontracted.

That underground excavation and construction will be done by a subcontractor to
REECo.

That concrete aggregate will be available from the Forty Mile Wash Area.
That major surface construction equipment will be leased or rented.

Underground construction equipment and materials will be supplied to the
subcontractor.



Mining requirements will dictate the location of tests alcoves.
Temporary Construction site/trailers are required.
Only FY’92 is cost constrained to $1,700,000 Site Construction dollars.

Site Preparation, access road and pad construction to the North site will start
6/30/92.

Alcove excavation will be done using controlled blasting.

It will be necessary to remove all utilities as vell as the belt conveyor in the
ramp or drift for a distance of about 60 feet on each side of the alcove during
alcove construction.

The underground excavations will have to be supported with the rockbolts and
vire mesh.

Total mobilization and demobilization of ramp/main drift utilities and alcove
construction time is based on drill and blast method. If by any reason the
constructor will have to apply a hydraulic splitter, the total time for alcove
excavation could be much greater. ’

All surface construction is done on day shift working a 5-day week and all
underground construction will be done on 3 shifts vorking a 7-day week.

Excavation rates are:

Mobile Miner 30’ /day, setup time 45 days

Roadheader - slopes < 8% 35'/day, setup time 45 days
slopes > 8% 22'/day

TBM - slopes < 8% 55'/day, setup time 90 days
slopes > 8% 35’/day

Excavation rates provided in the SNL report "EXCAVATOR PERFORMANCE PREDICTIONS"
as are cutter cost are correct.

All underground equipment will be sized to be moved through any ramp and/or
drift without the removal of permanent utilities.

All excavation rates assume that permanent mechanical, electrical and roadbed
utilities will be installed concurrently with the excavation.

Pricing
Price sources are Western Mine Engineering - Mining Cost Service, Westinghouse,
Data Quest - Rental Rate Blue Book, Various Means "Cost Data" manuals,

Richardsons, Keithly Industrial Systems .... etc.

Vage rates and cost adders were provided by REECo and are current as of June 1,
1991.



The subcontractor cost adder is calculated at 103% of labor cost. A small tool
replacement adder (6%) is now included in REECo cost.

Roads and Pads

There are three classes of road construction:

o Improved Graded-Design for ten (10) inches of select material used for
subbase, compaction of 95% and six (6) inches Type II for base course and
compaction of 95%.

o Asphalt pavement-Design for eight (8) inches of Type II for base course,
compacted at 95%, and (3 inches) of asphalt paving.

0 Minimum improvements-Design for clearing, bladed and compacted for muck
conveyor maintenance roads.

Several access roads require 36-inch diameter corrugated metal pipe sixty-six
lineal feet long across the road for drainage at several locations.

The Muck Storage Pad is located for use of one common area for "TS North" and
"TS South Portals" and Optional Shaft. The size is approximately 44 acres.
Drainage pipe 6 inches, 7,880 LF and 1,980 LF of 8-inch drainage line is
required and also an underliner with 40 mil cover over entire area. The pad
vill be utilized for all Underground Muck Excavation Storage.

The Top Soil Pad is located for use of one common area for "TS North" and "TS
South Portals" and "Optional Shaft." The size is approximately 15 acres. The
pad will be utilized for storing top soil removed from all surface excavation of
site and road work and utility.

The Explosives Storage Pad will be located in one common area for "TS North" and
"TS South Portals" and "Optional Shaft." The size is approximately 1.2 acres.
The pad will be utilized for storing all explosives to be used for the
Exploratory Studies Facilities (ESF) project.

The TS North Portal Pad size is approximately 500 x 900 square feet (10.3)
acres. Drill and blasting volume is approximately 68,600 cubic yards and 17,200
cubic yards will be ripped with dozer. Total cubic yards of fill to construct
the TS North Portal is approximately 89,800 cubic yards, including 82,100 cubic
yards of Type II fill transported from borrow pit area. Drill and blasting
estimates are 80% and dozer ripping are 20% based on preliminary studies
conducted by the U. S. Bureau of Reclamation.

The TS South Portal Pad size is approximately 530 x 605 square feet (7.4) acres.
Drill and blasting volume is approximately 160,800 cubic yards and 40,200 cubic
yards will be ripped with dozer. Total cubic yards of fill to construct the TS
South Portal is approximately 201,000 cubic yards, including 61,100 cubic yards
of Type II fill transported from borrow pit area. Drill and blasting estimates
are 80% and dozer ripping are 20% based on preliminary studies conducted by the
U. S. Bureau of Reclamation.



The Optional Shaft Pad size is approximately 200 x 400 square feet (1.8) acres.
Drill and blasting volume is approximately 73,625 cubic yards and 18,405 cubic
yards will be ripped with dozer. Total cubic yards of fill to construct the
Optional Shaft Pad is approximately 143,921 cubic yards, including 16,000 cubic
yards of Type II fill transported from borrow pit area. Drill and blasting
estimates are 80% and dozer ripping are 20% based on preliminary studies
conducted by the U. S. Bureau of Reclamation.

Water Utilities

"TS North Portal,” "TS South Portal," and "Optional Shaft" will be provided with
wvater from Well J-13. It is assumed that all three sites will have their own
booster pumping stations and buildings located at the existing subdock area.

All three (ESF) sites will be provided with a forebay tank, chlorination system,
50,000 gallon water storage tank for potable water and 200,000 gallon water
storage tank for fire protection and construction water.

Batch Plant

One concrete batch plant, complete with aggregate crusher and screening plant,
will be set up at existing subdock area and will be equipped with one 20,000
gallon forebay tank to provide concrete for all three (ESF) construction sites.
(TS North, TS South Portals and Optional Shaft). An existing 69KV underbilt
line is across from the Subdock. New pover lines and transformers need to be
constructed for the new Batch Plant.

Vaste Water and Sevage

One (1) lined Mine Waste Water Evaporative pond will be constructed and located
in one common area for all three (ESF) construction sites. (TS North, TS South
Portals and Optional Shaft).

Existing subdock construction trailers will be provided with one (1) 4,000
gallon septic tank system for all office trailers.

Buildings

All buildings on the TS North, TS South Portals and Optional Shaft pad will be
protected by a wet fire sprinkler system.

All buildings will be set on reinforced concrete foundations, based on seismic
zone 3.

All building insulation for ceilings will be rated 32R and walls will be rated
19R.

Trailers
One (1) trailer will bel located on the Optional Shaft pad.
Eighteen trailers will be located at subdock location. Power, water and sewage

systems are provided.
4



All power, water, and sewage septic tanks will have to be provided and
constructed at Subdock for all new facilities.

Power

This estimate includes the costs of secondary site and downhole power; the
primary power upgrade (1.2.7.3) is not included.

A nev 138KV power line will be provided and constructed from Jackass Flat
substation. Three nev separate primary pole lines will be constructed for all
the sites along with newv substations and switchgear equipment. This work will

be constructed under WBS 1.2.7  All secondary power from sites and shaft sites
will be constructed under WBS 1.2.6.



ESF TITLE I

ACCOUNT S8UMMARY

W.B.B. 1.2.6

8/23/91 11:13

1TEM we.s. | F.1.E. | cApITAL EQuIP. | COMSTRUCTION | CONTINGENCY  PERCENT TOTAL COST

YUCCA 1. EXPLORATORY FACILITY 26 | 7 [ ve e [ wwnms e | seus2zm ] o $765, 703001
MR T TNTEGRATION T3 T A A $135.050,500 A NA $135,05.., 500
MANAGEMENT, PLANNING, & TECHNICAL | 1.2.6.1.1 | WA NA $84,880,500 NA NA $84,880,500
QUALITY ASSURANCE 1.2.6.1.2 NA NA $9,263,500 NA NA $9,263,500

SAFETY ANALYSIS 1.2.6.1.3 NA NA $3,862,500 NA NA $3,862,500

TITLE 111 ENGINEERING 1.2.6.1.4 | WA NA $21,370,500 NA NA $21,370,500
TECHNICAL ENGINEERING MANAGEMENT 1.2.6.1.5 NA NA $5,439,000 NA NA $5,439,000
TEST MANAGEMENT 1.2.6.1.6 NA NA $10,234,500 NA NA $10,234,500

SITE PREPARATION 1.2.6.2 | 179 | $13,978.542 | $39,000,843 $9.011,736 17X 61,991,122

DESIGN 1.2.6.2.0 | WA NA $1,822,000 NA NA $1,822,000

ROADS AND PADS 1.2.6.2.1 | 103 $22,747,663 $3,639,626 16% $26,387,290

SURFACE UTILITIES & COMMUNICATIONS | 1.2.6.2.2 [ 76 $13,978,562 | $14,431,180 $5,372,110 19% $33,781,832
SURFACE FACILITIES 1.2.63 | 2 %%, 266,668 $9,206,458 $2,506_ 791 % $15.979.916

DESIGN 1.2.63.0 | WA NA $1,392,000 NA NA $1,392,000

BUILDINGS 1.2.63.1 | 4 $4,266,668 $7,814,458 $2,506, 791 21% $14,587,916

NORTH ACCESS T.2.6.4 | 149 | $39.128.466 | $28.698,718 | $12 858,162 % $80_635, 344

DESIGN 1.2.6.4.0 | NA NA $4,020,000 NA NA $4,020, 000

PORTAL & PLANT SETUP 1.2.66.1] S $2,110,282 $1,860,950 $921,642 23% $4,892,873

TSL EXCAVATION, UTILITIES & EQUIPMENT | 1.2.6.6.2 | 66 $20,739,916 | $12,118,801 36,525,779 20% $39,384,495
CHL EXCAVATION, UTILITIES & EQUIPMENT | 1.2.6.4.3 | 57 $16,278,267 $8,780,251 $4,931,062 20% $29,989,581
CONSTRUCTION TEST SUPPORT 1.2.6.4.6 | 21 $1,918,716 $479,679 25% $2,398,395

1740 %




ESF TITLE I

ACCOUNT BSUMMARY

W.B.8. 1.2.6 8/23/91 11:13

1TEM W.B.S. F.T.E. | CAPITAL EQUIP. | CONSTRUCTION | CONTINGENCY & PERCENT TOTAL COST

SOUTH ACCESS 1.2.6.5 172 $40,246,242 $32,256,982 $13 861,568 19X $86,364 793

DESIGN 1.2.6.5.0 NA NA $3,884,000 NA NA $3,884,000

PORTAL & PLANT SETUP 1.2.6.5.1 10 $1,883,392 $2,672,261 $1,059,117 3% $5,614,770

TSL EXCAVATION, UTILITIES & EQUIPMENT | 1.2.6.5.2 76 $21,975,579 $13,802,444 $7,194,988 20% $42,973,011
CHL EXCAVATION, UTILITIES & EQUIPMENT | 1.2.6.5.3 73 $16,387,271 $10,721,409 $5,313,247 20% $32,421,926
CONSTRUCTION TEST SUPPORT 1.2.6.5.4 12 $1,176,868 $294,217 25X $1,471,085
SUBSURFACE EXCAVATIONS 1.2.6.6 503 $31 536,285 $79,852,205 $24 446,427 22% $135 834,917

DESIGN 1.2.6.6.0 NA NA $4,356,000 NA NA $4,356,000

TOPOPAH SPRINGS LEVEL 1.2.6.6.1 347 $22,813,788 $46,786,866 $15,821,666 23X $85,422,319

TSL CONSTRUCTION TEST SUPPORT 1.2.6.6.1.3 39 $3,418,485 $854,621 25% $4,273,106
CALICO HILLS LEVEL 1.2.6.6.2 156 $8,722,497 $25,075,286 $7,705,470 3% $41,503,253

CHL CONSTRUCTION TEST SUPPORT 1.2.6.6.2.2 2 $215,568 $64,670 30% $280,238
OPTIONAL ACCESS 1.2.6.7 115 $15,365,186 $24,499,614 $5,802,324 15% $45 667,124

DESIGN 1.2.6.7.0 NA NA 8,596,000 NA NA 8,596,000

ACCESS COLLAR & PLANT SETUP 1.2.6.7.1 10 $5,581,340 $2,907,811 $1,697,830 20% $10, 186,982
ACCESS EXCAVATION, UTILITIES & EQUIPMENT| 1.2.6.7.2 64 $9,783,846 9,539,495 83,413,232 18% $22,736,573
ACCESS CONSTRUCTION & TEST SUPPORT 1.2.6.7.3 4 $3,456,308 $691,262 20X $4,147,569
OPERAT IONS 1.2.6.8 16 $18,545 497 $181,918,522 $3,665,266 X 3204 129,285

SITE & EQUIPMENT MAINTENENCE 1.2.6.8.1 NA NA $34,846,000 NA NA $34,846,000
PROJECT OPERATIONS 1.2.6.8.2 NA NA $48, 186,500 NA NA $48, 186,500
ENVIRONMENTAL, HEALTH & SAFETY TRAINING| 1.2.6.8.3 NA NA $4,989,000 NA NA $4,989,000
INTEGRATED DATA SYSTEM 1.2.6.8.4 16 $18,545,497 $56,820,022 3,665,266 5% $79,030,785
INTEGRATED DATA SYSTEMS OPERATIONS 1.2.6.8.5 NA NA 33710771000 NA NA $37,077,000

T\




ESF TITLE I
CONTINGENCY ANALYSIS 8/23/91

THE FOLLOWING CONTINGENCIES ARE INTENDED TO COVER MATERIAL, EQUIPMENT PHYSICAL CONDITION
OVERSIGHTS AS WELL AS RISK SITUATIONS AND DESIGN SHORT COMINGS. THESE ITEMS ARE NOT ALLOWED
FOR ELSE WHERE IN THE ESTIMATE DUE TO UNCERTAINTY OF THIER EXSISTENCE, NATURE, LIKELY HOOD
OF OCCURENCE OR MAGNITUDE OF EFFECT.

THESE CONTINGENCIES DO NOT COVER ANY ADDITIONS TO THE SCOPE OF WORK, COST ESCALATION,
CHANGES IN PAY RATES OR REVISIONS TO COST ADDERS.

THE CONTINGENCY PERCENTAGES ARE BASED ON THE ESTIMATORS FIRST HAND KNOWLEDGE OF THE CURRENT
DESIGN LIMITATIONS, THE LACK OF FIELD DATA/SURVEYS, KNOWLEDGE OF DRILL CORE SAMPLES AND
PROPOSED SIZE, METHOD OF AND LOCATIONS OF CERTIAN EXCAVATIONS.

ITEM W.B.B. PERCENT CONTINGENCY TOTAL COST
YUCCA MT. EXPLORATORY FACILITY 1.2.6 10% $72,152,274 $765,703,001
MANAGEMENT & INTEGRATION 1.2.6.1 0% §0 $135,050,500

NO CONTINGENCY HAS BEEN PROVIDED FOR IN M&I AND/OR ANY CORPORATE BUDGETS.

S8ITE PREPARATION 1.2.6.2 17% $9,011,736 $61,991,122

10% IS DUE TO THE CURRENT STATE OF DESIGN, 7% ACCOUNTS FOR POSSIBLE UNFORESEEN BACKFILL
REQUIREMENTS OR ROCK EXCAVATION.

S8URFACE FACILITIES 1.2.6.3 19% §2,506,791 $15,979,916

10% IS DUE TO THE CURRENT STATE OF DESIGN, 3% ACCOUNTS FOR POSSIBLE UNFORESEEN
ROCK EXCAVATION AND 1% FOR INTERIOR FURNISHINGS NOT DETAILED. FIVE PERCENT [5%] ALLOWS FOR
THE EXPANSION OF THE CHANGEHOUSE AND SHOP FACILITIES AT THE RAMP SITES ONLY.

Page 1/CONTIN




NORTH ACCESS 1.2.6.4 19% $12,858,162 $80,685,344

10% IS DUE TO THE CURRENT STATE OF DESIGN, 2% FOR POSSIBLIE INCREASES IN PROCUREMENT COST
CAUSED BY Q.A. REQUIREMENTS, 4% FOR UNFORESEEN GROUND SUPPORT REQUIREMENTS, 1% FOR UTILITY
OMISSIONS, 2% FOR TESTING SUPPORT AND ASSOCIATED DELAYS.

SBOUTH ACCESS 1.2.6.5 19% $13,861,568 $86,364,793

10% IS DUE TO THE CURRENT STATE OF DESIGN, 2% FOR POSSIBLIE INCREASES IN PROCUREMENT COST
CAUSED BY Q.A. REQUIREMENTS, 4% FOR UNFORESEEN GROUND SUPPORT REQUIREMENTS, 1% FOR UTILITY
OMISSIONS, 2% FOR TESTING SUPPORT AND ASSOCIATED DELAYS.

SUBSURFACE EXCAVATIONS 1.2.6.6 22% $24,446,427 $135,834,917

10% IS DUE TO THE CURRENT STATE OF DESIGN, 2% FOR POSSIBLE INCREASES IN PROCUREMENT COST
CAUSED BY Q.A. REQUIREMENTS, 4% FOR UNFORESEEN GROUND SUPPORT REQUIREMENTS, 3% FOR POOR
EQUIPMENT PERFORMANCE, 1% FOR UTILITY OMISSIONS, 2% FOR TESTING SUPPORT.

OPTIONAL ACCESS 1.2.6.7 15% $5,802,324 $45,667,124

15% IS DUE TO THE CURRENT STATE OF THE SHAFT DESIGN ... THIS IS A PLANNING LEVEL ESTIMATE
FOR A 25’ SHAFT WHICH WILL POSSIBELY BE ONLY 16’ IN THE FINAL DESIGN.

OPERATIONS 1.2.6.8 2% $3,665,266 $204,129,285

2% IS DUE TO THE CURRENT STATE OF DESIGN OF THE INTEGRATED DATA SYSTEM [I.D.S.] AND THIS

CONTINGENCY ONLY APPLIES ONLY TO THE I.D.S., W.B.S. 1.2.6.8.4.. 1.5% IS TO COVER INCREASED
LABOR INSTALLATION COST AND 0.5% FOR POSSIBLE INCREASES IN PROCUREMENT COST CAUSED BY Q.A.
REQUIREMENTS.

Page 2/CONTIN




ESF TITLE I
RECONCILIATION SUMMARY
8/23/91

The estimate summary following is a comparison between the
Independent Cost Estimate [ICE] and the Title I cost estimate
contained in this report. Prior years expenditures are not
included in this estimate and the ICE figures have also been
reduced by the FY’91 WAS values and the time span is to the
end of construction

1.2.6 ESF TOTAL CONSTRUCTION COST
ICE = $667,074,432 TITLE I = $765,703,001
[FY’92-FY’99] [FY’92-FY’00]
1.2.6.1 MANAGEMENT & ENGINEERING
ICE = $123,198,000 TITLE I = $135,050,500
DURATION OF THE [TEBTING AND CONSTRUCTION] BSBCHEDULE
I8 THE CAUSBE OF COBT INCREASE.

1.2.6.2 SITE PREPARATION

ICE = $67,725,983 TITLE I = $61,991,122

1.2.6.3 SURFACE FACILITIES

ICE = $15,462,037 TITLE I = $15,979,916
CRUSHING PLANT ADDED TO CONCRETE BATCH PLANT SETUP.
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1.2.6.4 NORTH ACCESS

ICE = $68,584,168 TITLE I = $80,685,344
LENGTHENED EXCAVATION DURATIONS, CAPITAL EQUIPMENT
REQUIREMENTS & TEST BUPPORT COS8T ACCOUNT FOR THE
INCREASE.
1.2.6.5 SOUTH ACCESS

ICE = $69,033,088 TITLE I = $86,364,793
LENGTHENED EXCAVATION DURATIONS, CAPITAL EQUIPMENT
REQUIREMENTS & TEST SUPPORT COST ACCOUNT FOR THE
INCREASE.
1.2.6.6 SUBSURFACE EXCAVATIONS

ICE = $112,671,271 TITLE I = $135,834,917
INCREASE I8 DUE TO TEST ALCOVE EXCAVATION QUANITIES,
CAPITAL EQUIPMENT REQUIREMENTS & TEST SUPPORT COST.

1.2.6.7 OPTIONAL ACCESS
ICE = $42,309,038 TITLE I = $45,667,124

INCREASE 18 CAUSED BY COMBINED EFFECTS8 OF COST ADDER
REVISBIONS, SMALL TOOLS-6%, BALES TAX-1%, HANDLING-1%.
1.2.6.8 OPERATIONS - INTEGRATED DATA SYSTEM

ICE = $168,090,847 TITLE I = $204,129,285
DURATION OF THE [TES8TING AND CONSTRUCTION] SCHEDULE
I8 THE CAUSE OF COST INCREASE. REFINEMENT OF THE IDS
ESTIMATE PLAYS A SECONDARY ROLL.
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