

INTERNATIONAL URANIUM (USA) CORPORATION

Independence Plaza, Suite 950 • 1050 Seventeenth Street • Denver, CO 80265 • 303 628 7798 (main) • 303 389 4125 (fax)

September 15, 2000

VIA OVERNIGHT EXPRESS

Mr. William J. Sinclair Director, Division of Radiation Control Utah Department of Environmental Quality P.O. Box 144850 168 North 1950 West Salt Lake City, UT 84114-4850

Re: Submittal of Summary of Groundwater Background Water Quality and other Water Quality Studies for the White Mesa Mill

Dear Mr. Sinclair:

In accordance with our letter to you of December 22, 1999 regarding the November 30, 1999 draft Groundwater Discharge Permit (the "GWDP") for the White Mesa Mill (the "Mill"), and the updated submittal schedule of August 22, 2000, this letter transmits IUSA's report entitled <u>Summary of Background Water Quality and other Water Quality Studies for the White Mesa Mill</u>.

The enclosed summary report describes the forms of data that were used to generate historic water quality data and ongoing monitoring data for the Mill. In some cases, the report describes some of the details we have discussed in past meetings with UDEQ such as laboratory reports, Quality Assurance ("QA"), analytical methods, detection limits and whether or not the laboratory was certified at the time.

However, as we discussed, we do not enclose any raw data with this report. Although the age of such data may prevent location of all of the original raw data, IUSA has a significant amount of such data at the Mill. As Michelle Rehmann has discussed with Loren Morton, rather than having IUSA copy and transmit all of these raw data together with this report, IUSA will make such data available for Loren to review during his upcoming visit to the Mill set for September 26, 2000, to determine which data UDEQ would like to have copied for UDEQ records.

MMSSOIPUBLIC

Mr. William J. Sinclair September 15, 2000 Page 2 of 2

ĩ

Also, IUSA understands that UDEQ will review all such readily available supporting reports or facts before determining if it is necessary for IUSA to also contact outside sources, such as laboratories, and searching NRC records, to provide any additional available supporting data.

As always, I can be reached at (303) 389-4130.

Yours truly. C. Frydenlund Vice President and General Counsel

DCF:smc

Enclosure

cc/att: Larry Mize, UDEQ Division of Water Quality Loren Morton, UDEQ Division of Radiation Control Bill von Till, NRC

cc w/out att: Dianne Nielson, UDEQ Dave Arrioti, S.E. Utah Health Department

Summary of Groundwater Background Water Quality And Other Water Quality Studies For the White Mesa Mill

September 15, 2000

Submitted by International Uranium (USA) Corporation to Utah Division of Radiation Control

Prepared by International Uranium (USA) Corporation 1050 17th Street, Suite 950 Denver, CO 80265 In accordance with letters from International Uranium (USA) Corporation (IUSA) dated December 22, 1999, and January 6, 2000, regarding the November 30, 1999 draft Groundwater Discharge Permit (the GWDP) for the White Mesa Mill (the Mill), this report summarizes the readily-available water quality data and data reports for groundwater beneath the Mill. This report is submitted as per the revised schedule for GWDP submittals dated August 22, 2000.

UDEQ and IUSA have agreed that in situations, such as where there may be a question as to the veracity and interpretation of background groundwater quality data, where the NRC has performed a similar regulatory function to what the State of Utah (State) itself would have done, it would be presumed that, subject to UDEQ review, the NRC's regulatory work product should generally be acceptable. In the specific case of historic groundwater data, it was agreed that the existing historic data found in reports provided to UDEQ should generally be acceptable, especially if independent laboratories (as opposed to on-site laboratories) had provided the analyses. As summarized below in this report, independent laboratories have provided nearly all of the analyses used to generate background water quality data, as well as ongoing monitoring data.

This summary report describes readily available groundwater data, including reports, Quality Assurance ("QA"), analytical methods, detection limits and whether or not the laboratory was certified at the time. IUSA and UDEQ have recognized that, while much of this information is described in reports such as the Mill's initial Environmental Report and Environmental Assessment, the age of such data has tended to prevent location of all of the original ("raw") data. UDEQ has agreed to review all such readily available supporting reports or facts before determining if it is necessary for IUSA to also contact outside sources, such as laboratories, and searching NRC records, to provide any additional available supporting data.

Pre-operational Background Samples and Original License

Pre-operational groundwater sampling began in July 1977. Analysis was performed by the Utah State Division of Environmental Health Analysis Lab No. 77061. One sample was split for duplicate analysis by Hazen research for selected water quality parameters. One replicate was analyzed for QA on radioactivity. Results available at the time of publication of the 1978 Environmental Report ("ER") were published in Table 2.6-6, and are provided in Attachment 1 (Dames & Moore, 1978). It should be noted that:

- The EPA laboratory certification was not in effect at this time.
- Detection limits were not reported with the analytical results."

Supplemental discussion of the pre-operational groundwater quality was published in the Final Environmental Statement ("ES") for the White Mesa Uranium Project (U.S.NRC, May 1979). Groundwater quality discussion from this document is provided in

Attachment 2. As described in the ES, groundwater data collected from January 1977 to May 1977, prior to operation, indicated that:

- Samples G1, G3, G4, and G5 were taken from springs within Cottonwood Creek, originating in the perched water zone. G2 was collected from a well completed in the Navajo Sandstone, and exceeded public drinking water standards for selenium, sulfate, iron and arsenic.
- Other wells completed in the Navajo Sandstone exceeded U.S.EPA recommendations for iron.
- Wells G6, G7 completed in the Dakota Sandstone exceeded public drinking water standards for iron, sulfate, lead and arsenic.

The original, 1979 license is provided in Attachment 3. Condition #37 does not state the location or frequency of groundwater well sampling, but specifies an effluent and environmental monitoring program in accordance with 10 CFR Part 40, Section 40.65.

The D'Appolonia Assessment of Groundwater Quality (September 9, 1981) evaluated temporal trends in sulfate, chloride, TDS, sodium, pH, Radium-226, bicarbonate, and calcium, comparing both pre-operational (Jan. 1979 to May 1980) and operational phase (June 1980 to Feb. 1981) data on the same plots. A copy is provided in Attachment 4. The evaluation was based on analyses reported by WAMCO Lab. Some limits of detection are inferred from the use of "less thans" in the data tables (also in Attachment 4).

Early Operational Sampling

The earliest semi-annual report that presented background groundwater data was issued around 1980. It should be noted that:

- The analyses were done by WAMCO Lab. The EPA laboratory certification program was not in effect at that time.
- Although detection limits were not specified with the analytical results, results reported as "less than" imply a detection limit.

Hard copies of the portions of the semiannual data from CORE Labs and WAMCO Lab covering sampling from April 1982 through October 1983 are included in Attachment 5.

1985 License

The 1985 license (Attachment 6) required that groundwater wells 1, 2, 3, 4, 5, 11, 12, 13, and the culinary water well have water levels measured and be analyzed for arsenic,

selenium, sodium, Ra-226, Th-230, and Pb-210. It refers to the environmental monitoring program proposed in Section 5.5 of Umetco's renewal application (Attachment 7). The 1985 EA (provided in Attachment 8) also describes the groundwater quality monitoring program by referring to Section 5.5 of the 1985 Application.

1991 License

A portion of the 1991 License Amendment Application is provided in Attachment 9 (Titan, July 1994). Section 5.5.6.2 describes the groundwater monitoring program. Table 5.5-2 lists the parameters measured for wells 1, 2, 3, 4, 5, 11, 12, 14, 15. It does not state detection limits. The limits are available for review in raw data stored at the Mill, and will be presented to UDEQ during a site visit.

Titan Hydrogeologic Evaluation of White Mesa Mill

Sections of the 1994 Hydrogeologic Evaluation of White Mesa Mill are provided in Attachment 10 (Titan, September 1994). It reiterates that the water in the perched zone is poor quality, with no discernable temporal trends in quality (p23), that dissolving minerals from the Brushy Basin Member are the natural source forming sulfate dominated waters (p29), and adds that use of a single well to establish background may not be appropriate (p29). It introduces the idea of intra-well water quality comparisons "on a well-by-well basis" (p29).

The statistical "t-tests" on selected parameters on pre-operational sample populations (1980-1981) and operational sample populations (1990-92) in 4 wells around the Mill tailing cells showed inconsistency among trends from well to well. These t-tests were performed on a combination of the same WAMCO 1980-81 pre-operational data used by D'Appolonia, and later quarterly sampling data from CORE labs.

The t-test on WMMW-1, an upgradient well, indicated that chloride concentration had decreased significantly, while sulfate increased. The t-test on WMMW-3, a downgradient well, showed no change in chloride, and increase in sulfates. The t-test on WMMW-5, a well downgradient of Cell 3, showed chloride decreasing. The t-tests on other wells constructed later WMMW-12, 14, and 15, show decreasing chloride and inconsistency among the wells.

As a result, Titan reported that the water chemistry in the Brushy Basin Member was highly variable (p34), and there was no impact from operations (p34). Accordingly, the recommendation was made that background should be determined from a number of wells (p34), or on a well-specific basis.

Titan Point of Compliance Report

Sections of the Titan Point of Compliance Report ("POC Report") are provided in Attachment 11. A complete copy of this report has been sent to UDEQ previously. The POC Report recommended use of existing monitoring wells 5, 11, 12, 14 and 15, and possible addition of a new well adjacent to Cell 4. The POC locations utilized by IUC and approved by the NRC, which ultimately added existing well 17, were selected in accordance with EPA's RCRA Ground-Water Monitoring: Draft Technical Guidance (EPA 1992). Chloride, potassium and nickel were chosen as indicator parameters, with uranium added to the list based on agreement between the licensee and the NRC. Trace metals such as sodium, magnesium, calcium and arsenic were not selected as indicator parameters, because the presence of calcareous stringers and zones beneath the site would retard the movement of these metals making them an unreliable indicator of water quality. The same calcareous materials would also react with low pH solutions from potential tailing cell liner leaks, making pH an unreliable indicator.

This report introduced use of the combined Shewhart-CUSUM control chart method for evaluating the quarterly groundwater data. The Shewhart-CUSUM method involves plotting standardized constituent concentration data versus time, and comparison of the data for each parameter against a predefined upper bound (based on standard deviations) rather than against a static background mean concentration. All of the charts presented in this report were constructed with a starting sampling date of March 24, 1994, so they would cover the same time period. The mean and standard deviation were calculated using all water quality data collected before March 24, 1994. The data points used included the earliest samples dated October 31, 1979, and quarterly samples every period thereafter up to March 1994.

1997 EA and License

Sections of the 1997 NRC EA are provide in Attachment 12. The NRC recommended groundwater monitoring in accordance with the POC approach in the September 1994 Titan POC Report. This sampling has been performed, and data are transmitted to NRC, with copies sent to UDEQ, in semi-annual effluent reports.

Table 1 White Mesa Mill Groundwater Laboratory Contractors

A summary of the laboratories providing analyses pertinent to groundwater background or groundwater monitoring is as follows:

Years	Laboratory	EPA Region 8 Certified	Utah Certified			
1977-1978	Utah State Division of Environmental Health					
1978	CDM/Acculabs					
1979-Nov 1981	WAMCO					
Jan 1982-October 1983	CORE Labs					
June 1984	U.C.C. Metals Division Development Laboratory					
Dec 1985 -Sept 1986	EDA Instruments					
May 1987-March 1994	Barringer Labs	•				
Арргох. 1994	Start of EPA Lab Certification Program for Groundwater					
1994-1997	Barringer Labs					
1997-present	Energy Labs	Since 1995	In progress			

S:\MRR\groundwater_discharge_permit\QWDATAsummary091500.doc

Utah Groundwat Standa	Samples from Perched Zone	
Parameter	mg/liter ¹	mg/liter
Arsenic	0.05	<0.001-0.003
Barium	2.0	0.01-0.46
Cadmium	0.005	<0.001-0.007
Chromium	0.1	0.001-0.051
Соррег	1.3	<0.01-0.03
Lead	0.015	<0.01
Mercury	0.002	< 0.0005
Selenium	0.05	<0.001-0.039
Silver	0.1	0.001-0.01
Zinc	5.0	<0.01-0.82
Ammonia as N	30.0	<0.01-2.6
Chloride	250.0	2.5-47
Fluoride	4.0	0.19-0.56
Nitrate (as N)	10.0	<0.1-0.1
Nitrate +Nitrite	10.0	
Sulfate	500.0	220-2100
pH	6.5-8.5	6.5-8.6
TDS Class IA	<500	627-3254
Radium-226	5 pCi/l	0.0±0.4
		to
		1.9±1.0
Uranium	30 pCi/l	(gross alpha)
		0.0±0.4
		to
		27±6

Table 2Comparison of Mill Pre-Operational Groundwater Quality to Utah GroundwaterProtection Standards

1. Unless other units are specifically noted.

ATTACHMENT 1

ENVIRONMENTAL REPORT WHITE MESA URANIUM PROJECT SAN JUAN COUNTY, UTAH

FOR

ENERGY FUELS NUCLEAR, INC.

Prepared By DAMES & MOORE

January 30, 1978

09973-015-14

statistical frequency analysis was performed on the meteorological data, but this 4.5 in (114 mm) rainfall was certainly an extremely unusual event, most probably generated by a general-type storm system, since high runoff occurred for several days both before and after the peak flow event.

The PMF hydrograph shown on Plate 2.6-9 is the result of the thunderstorm PMP, i.e. 7 in (178 mm) of rainfall in 1 hour. Although the PMP associated with a general-type storm produces more rainfall, 9.8 in (249 mm), the intensity is much less since the duration is much longer at 48 hours. The PMF hydrograph from such a rainfall would result in more volume of runoff than the PMF thunderstorm but the peak discharge would be less, therefore being less critical as far as flooding potential is concerned. Also, since the flood of record on Cottonwood Wash occurred in August, no snowmelt baseflow was added to the above PMF estimate. If the snowmelt component were included it would produce a negligible change in the peak flood flows shown.

2.6.3 Water Quality

Water quality determinations are being made of surface and ground waters in and around the proposed mill site to evaluate and describe the existing conditions and to be able to make predictions of possible future impacts on the water quality as a result of the planned action.

Sampling stations are located to provide baseline water quality conditions up gradient and down gradient from the site for both subsurface and surface waters. These locations were chosen to be as representative of specific conditions as possible and the frequency of sampling was selected to provide a statistically valid sampling.

The water quality parameters chosen for analysis represent the major chemical, physical and radiological properties that would be important for possible intended uses of the water and would be appropriate to monitor during the life of the project to detect possible changes in water quality.

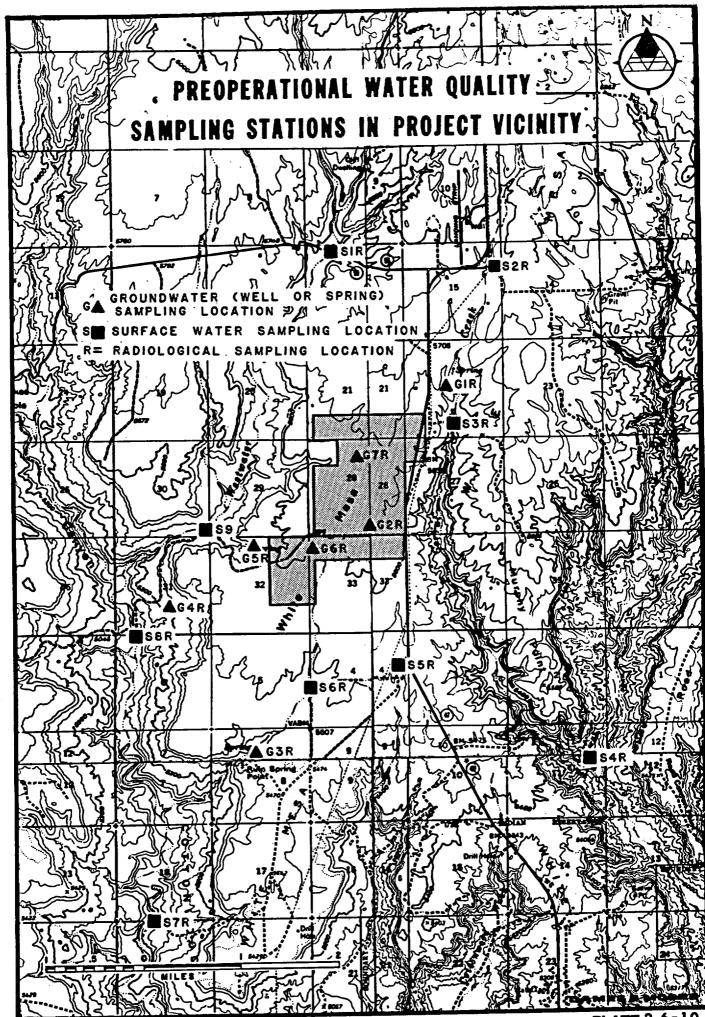


PLATE 2.6-10

TABLE 2.6-6

WATER QUALITY OF GROUND WATERS AND SPRINGS IN PROJECT VICINITY'

[

1

,

ocation Spring in Corral Ck		Corral Ck	Blanding Mill Site Woll in Navajo Sandstone G2R				
Station No.	GIR						
Collection Date	7/25/77	11/10/77	1/27/771	5/4/772	7/25/77	12/05/77	12/05/773
Field Specific Conductivity (umhos/cm)	·• · · · · · · · · · · · · · · · · · ·				400		
lield pH Dissolved Oxygen			••		6.9		
emperature (°C)					22.2		
stimated Plow, gpm			• -	- - .	20		
etermination (mg/l)		· .					
H BS (418080)			8.0	7.9	7.7		•
DS (@180°C) edox Potential			244	245	1110 220		
lkalinity (as CaCO ₃)			189	180	224		
ardness, votal (as CaCO3)			196	••	208		
arbonate (as CO3)	SPRING	SPRING	• •		•	AN A	A A A A A A A A A A A A A A A A A A A
luminum, dissolved	RI	R	0.0	••	0 <0.01	85	ac
mmonia (as N)	SP	S	0.0		<0.1	E S	E S
rsenic, total	in)	۲Щ (Line)	0.014	• • ¹	<0.01	100	
arium, tolal	LOCATE	LOCATE	<0.0		0.13	ANALYSIS NOT YET COMPLETED BY Commercial testing laboratory	ANALYSIS NOT YET COMPLETED BY COMMERCIAL TESTING LABORATORY
loron, total	ğ	ğ	0.040		<0.1	ជត្ថ	ŭy
admium, total			0.040		0.004		
alcium, dissolved	NOT	02	51	49	51	N N N	E R.K
hloride		Â	0.0	501	<1	54	нн С
odium, dissolved	11		8,0		5.3	×₹	Ϋ́́Υ
ilver, dissolved	COULD	COULD NOT	0.0	••	<0.002	IS	CI
ulfate, dissolved (as SOA)		2	24	17	17	YS ER	T S S S S S S S S S S S S S S S S S S S
anadium, dissolved	FLOW	FLOW	••		<0.002	I A	M
anganese, dissolved		<u>ft.</u>	0.020		0.03	2S	2 8
hromium, total	LOW	LOW	0.0		0.02		
Copper, total	1	-	0.0		0.005		
luoride, dissolved			0.17	0.1	0.22		
ron, total			0.54		0.61		
ron, dissolved ead, total			0.0		0.57 0.02		
and creat			. 0.0		0.02		
lagnesium, dissolved			17	19	18		
ercury, total	-		0.0	00	0.002		
lolybdonum, dissolved litrate (as N)			0.05	0.12	<0.01 <0.05		
Phosphorus, total (as P)			0.03	· U.14	<u.v3< td=""><td></td><td></td></u.v3<>		

¹Utah State Division of Health Analysis, Lab No. 77061 ²Partial analysis by Hazen Research, Inc., Sample No. HRI-11503 ³Replicate sample analyzed for Quality Assurance on radioactivity

			:								M178-682-B		UN	rc_
	MAR	1 0 7999) [[]				AL WATER WW		. [Γ.	[[[·•
*				WELL NO. 1			WELL NO. 2			WELL NO. 3	I		WELL NO. 4	. •
			lst	2nd	3rd	lat	2nd	Jrd	let	2nd	3rd	lst	2nd	Jrd
WATER QUALITY PARAMETER		UNITS	QUARTER OCT. 1979	QUARTER JAN. 1980	OUARTER APR. 1980	QUARTER OCT. 1979	QUARTER JAN. 1980	QUARTER APR. 1980	QUARTER OCT. 1979	QUARTER JAN, 1980	QUARTER APR. 1980	QUARTER OCT. 1979	QUARTER JAN. 1980	QUARTE
FIELD VALUES			-					•						
Temperature		*c	13.5	10	12	15.0	10	· 13	16.5	9.5	12	13.5	10.5	11
рĦ		S.U.	8.6	7.4	6.8	7.2	7.2	6.9	7.3	6, B <2	6.5 <2	7.1 <2	7.1 (2	6.8 <2
Acidity	_	wg/1 CaCOj	<2	<2 · 230	<2 262	<2 256	<2 296	<2 364	<2 228	292	340	340	374	388
Total Alkalinity Specific Conduct		unhos/cm @ 25	160 5°C -	1520	1480	-	1620	2390	-	3000	4020	-	3130	3850
LABORATORY VALU	28	•				•	:							
Specific Conduct		ywhos/cm	948	1300	-	1270	1590	-	3260	3160	-	3360	3470	
Bicarbonete		mg/1 HCO3	195	281	320	312	361	444	276	356	415	415	456	473
Carbonate		mg/1 CO3	0	0	0	0	0	0	0	· 0 25	· 30	20.1	34	47
Chloride		-s/1	2.5	14	13 0.24	5.0 0.30	18 0.33	13 0.23	12. 6 0.36	0.42	0.25	0.25	0,29	0.19
Fluoride Ammonia		=g/1 =g/1 ₩43-₩	0.56 <0.05	0.34	0.24 <0.01	<0.05	1.4	<0.23	0.06	2.6	0.36	<0.05	1.4	<0.01
Nitrate	u	mg/1 H03-H	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Total Phosphate	-	WR/1 PO4-P	0.02	0.09	0.10	0.01	0.15	0.13	0.04	0.18	0.17	0.02	0.12	0.12
Sulfate		.=g/1	220	520	520	240	630	650	930	2100	1900	1220	1700	210 315
Total Dissolved		mg/1 @ 180°C		882	1219	855	1060	1828	2102	2530 168	3254 225	2984 8/A	2830 167	315
Total Suspended	Solide	mg/1 @ 105°C		344	981	N/A	240 451	183 663	· N/A 946	100	1460	1502	1610	157
Total Mardness		wg/1 CaCOj	250 43	566 17	522 40	311	13	50	- 42	24	50	10	<1	3
Chemical Oxygen Total Organic C		mg/1	11	6	6	6	4	· 2	ij	8	,	· 4	2	
METALS (DISSOLV	TED)													
Alusiaum		= 5/1	.<0.1	<0.1	<0.1	<0.1	0.1	<0:1	<0.1	<0.1	<0,1	<0.1	0.1	• <0.
Arsenic		mg/1	<0.001	0.001	0.002	0.003	0.003	0.003	<0.001	0.001	0.003	<0.001	<0.001 <0.01	0.00 0.0
Berium		Hg/1	0.41	0.12	0.05	0.46	0.02	0.04	0.40	<0.01 2.4	0.04 2.8	0.34	2.6	2.
Boron		mg/1	0.6	1.1	1.3	1.1 0.003	1.1 <0.001	2.1 <0.001	1.5 0.006	<0.001	<0.001	0.007	<0.001	<0.00
Cadmium Calcium		ण्डू/l ण्डु/l	0.002	<0.001 110	<0.001 130	96	110	165	243	365	410	352	395	39
Chroniun-Nexava	al est	eg/1	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.01	<0.01	0.01	<0.01	<0.01	0.1
Chronium-Total		mg/1	0.015	0.006	0.002	0.023	0.017	0,002	0.047	0.043	0.002	0.029	0.051	<0.0
Copper		mg/l	<0.01	· <0.01	0.02	<0.01	<0.01	0.03	<0.01	<0.01	0.03	<0.01	<0.01	0.0
Iron		mg/l	0.04	0.29	0.51	<0.01	0.06	0.09	<0.01	1.26	3.50	0.29	1.77	0.0 5.1
lros - Total		=g/1	NA	2.27	3.57	MA	1.46	0.75	14A	3.47 <0.01	4.60 <0.01	MA <0.01	6.4 <0.01	<0.
Land		mg/1	<0.01	<0.01	<0.01	<0.01	<0.01 36	<0.01 57	<0.01 73	91	110	164	150	1
Megnesium		mg/1	16 0.03	39 0.16	49 0,21	· 20 0.50	0.18	0.30	0.05	1.20.	1.79	0.85	1.00	0.
Manganese Manganese – To	tal	mg/1 mg/1	MA	0.18	0.21	NA	0.24	0.26	MA	1.16	1.61	MA	0.98	· 0.
Mercury		mg/1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.005	<0.0005	<0.0005	<0.0005	<0.00
Holybdenum		-g/1	<0.01	<0.01	0.19	<0.01	<0.01	0.10	<0.01	<0.01	0.09	<0.01	<0.01	0.
Potessium		mg/1;	6.9	8.5	. 7.8	7.4	10	10 <0.001	16.7 0.004	16 <0.001	18 <0.001	0.001	11 <0.001	<0.0
Selenium		=g/1'	0.003 8.4	0.001 <1.0	<0.001 2.7	0.039 12	0.017 <1.0	4.2	16	<1.0	5.7	13	<1.0	4
Silicon Silver		mg/1 mg/1	0.002	0.003	0.003	0.003	0.005	0.005	0.004	<0.001	0.005	0.007	0,010	0.0
Sodium		mg/1	106	130	160	154	215	285	282	345	405	342	285	3
Strontim		mg/1	3.7	6.7	7.6	6.0	9.0	9.3	5.5	5.8	7.1	14	15	11
Uranium (U)		mg/1	0.002	0.0396	0.0043	0.004	0.0123	-0067	0.014	0.0197	0.0219	0.004	0.0044	0.0 <0
Yanad ium		mg/1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 0.06	<0.1 0.13	<0.1 0.38	0.
Zinc		mg/1	<0.01	0.21	0.12	0.07	0.53	0.26	0.82	0.05 41.1	47.6	46.2	44.7	45
Cations		meq/l ·	9.3	14.6	17.7	13.3 10.3	18.1 19.5	23.6	198.2	50.2	47.2	32.8	43.8	52
Anions		meq/l	7.8	15.8	16.4									-1
<u>Cations-Anions</u> Cations+Anions	× 100	I	8.7	-4.1	3.6	13.0	-3.9	9.4	-73.0	-10.0	0.4	17.0	1.0	-1
RADIONUCLIDES	(DISSOLVE	:D)											<u> </u>	
Red ium-226		PCi/1	0.5+0.4	0.0+0.4	1.9+1.0			1.8+0.9	0.6+0.4	0.4+0.5		0.6+0.4		
Thorium-230		pCi/l	0.3-0.5	10 <u>+</u> 8	0.0+2.3			0.0+3.5		0.0+3.1	2.673.6			0.0
Lend-210		PCI/1	0.070.6		0.0+3.			0.0+4.3	0.0+0.6		0.0+3.8			0.4+0
Polonium-210		pCi/1	0.640.6		0.0+0.			0.6 - 0.6 7.1 - 4.3	0.7 1 0.7 4.9 1 4.4		21+10	0.0+6.4		
Gross Alpha		pCi/l	2.2.1.7		27 <u>+6</u> 42+12	7.6∓3.0 17∓11	5 2.2+3.3 0.0+31	0+21	0+22	0.0+33	0+41	0740	0.0732	27+4
Gross Bets		pCi/l	í 1 <u>∓</u> 10	0.0+27	74212	1/211	0.077							-

.

TABLE 2.6-6 (Continued)

[

Location	Spring in Cottonwood Creek G3R		Cottonw	Spring in Cottonwood Creek G4R		ng in <u>er Creek</u>	Abandoned Stock Well G6R	
Station No.			G			15R		
Collection Date	7/25/77	11/10/77	7/25/77	11/10/77	· 7/25/77	11/10/77	7/25/77	11/10/77
Field Specific Conductivity (umhos/cm)		950 7.4	2400 6.4	760 6.7				
Field pH Dissolved Oxygen		/.4						
Temperature (°C) Estimated flow, gpm		13.5	24 10	70 2				
Determination (mg/l)								
pH	647	7.8	7.0	8.1				
TDS (0180°C)	SAMPLE	975	1270	780				
Redox Potential	3	260	240 643	260 252				
Alkalinity (as CaCO3) Hardness, total (as CaCO3)		187 477	232	264				
nardnood, total (ab baboj)	ADQUATELY	477						
Carbonate (as CO ₃)	8	0	0	0				
Aluminum, dissolved	.Yo	<0.1	0.06	0.4	щ	μı		
Ammonia (as N)	ğ	<0.1	0.13 <0.01	<0.1	i i i	1	<u>н</u>	E
Arsenic, total Barlum, total		<0.2	0,25	<0.2	SAMPLE	SAMPLE	SAMPLE	SAMPLE
	10						SA	SA
Boron, total	e.	0.2	0.3	0.1	10	5	10	10
Cadmium, total	巴	0.004	0.004	0.002				
Calcium, dissolved	WATER	375	58	135	E	E	E	Щ
Chloride Sodium, dissolved	4	25	1 400	71 115	WATER	WATER	ABI	A B
odium, dissorred	ENOUGH	200		115	L ON	L ON	UNABLE	UNABLE
Silver, dissolved	ğ	••	0.004	••	ž	ž	-	-
Sulfate, dissolved (as SO ₄)	Ē	472	333	243				
Vanadium, dissolved	E E	<0.01	0.006	<0.01				
Manganese, dissolved	NOT	<0.005	1.1	0.060				
Chromium, total	-	0.1	0,02	<0.01				
Copper, total		<0.005	0.005	<0.005				
Fluoride, dissolved		0.6	1.0	0.5				
Iron, total		0.05	0.34	0.16				
Iron, dissolved		0.02	0.32	0.11				
Lead, total		<0.05	0.03	<0.05				
Magnesium, dissolved		265	19	28				
Mercury, total		<0.005	0.002	0.001				
Molybdenum, dissolved			<0.01					
Nitrate (as N)		2.77	0.06	0.26				
Phosphorus, total (as P)		0.06	0.07	0.02				

- P

•••

TABLE 2.6-6 (Continued)

Location	Abandoned	Stock Well			
Station No.	G7	R			
Collection Date	7/25/77	11/10/77	Future date	Future date	Future date
n al a la antinity (umbos/cm)		· · · ·			
Field Specific Conductivity (umhos/cm) Field pH					
Dissolved Oxygen Temperature (°C)					
Estimated flow, gpm					
Determination (mg/1)					
рН					
TDS (0180°C) Redox Potential					
Alkalinity (as CaCO ₃)					
Hardness, total (as CaCO3)					
Carbonate (as CO3) Aluminum, dissolved	P <u>1</u>	tri tri			
Ammónia (as N)	SAMPLE	SAMPLE	•		
Arsenic, total Barium, total					
	5	2 2			
Boron, total Cadmium, total	LE	ILE			
Calcium, dissolved Chloride	UNABLE	UNABLE			
Sodium, dissolved	5	Ð			
Silver, dissolved					
Sulfate, dissolved (as SO4)					
Vanadium, dissolved Manganese, dissolved					
Chromium, total					
Copper, total					
Fluoride, dissolved Iron, total					
Iron, dissolved					
Lead, total					
Magnesium, dissolved					
Mercury, total Molybdenum, dissolved					
Nitrate (as N) Phosphorus, total (as P)					

r

More information will be gathered regarding the quality of shallow ground water at the mill site and tailing retention site. These data will be submitted in the Supplemental Report.

The water quality analysis of ground water from the mill site well drilled into the Navajo sandstone is included in Table 2.6-6 for reference and comparison with other ground waters. However, it must be recognized that the ground water in the Navajo sandstone beneath the mill site is isolated from the shallow ground water regime of the Dakota-Morrison rock formations by several hundred feet of less permeable geologic formations. Therefore, because these geologic formations are of different character and physical composition, it is understandable that the ground water compositions are entirely different in each formation.

Specifically, based on analyses of water from the Blanding mill site well (Station No. G2R), the ground water in the Navajo sandstone is a calcium-bicarbonate type water with low total dissolved solids, and a very slightly alkaline pH. The dissolved iron content of 0.57 mg/l, however, would require treatment in order to meet U.S. Public Health Service (1962) recommended standards of 0.3 mg/l for drinking water.

2.6.3.2 Surface Water Quality in Project Vicinity

Surface water samples have been collected at several locations around the project site and analysed as part of the baseline field studies. The locations of these preoperational surface water quality sampling stations are shown on Plate 2.6-10 and the results of the analyses are presented in Table 2.6-7.

Two sets of surface water samples have been collected from the Blanding site area; one in July 1977, another in November 1977. Samples were collected from Westwater Creek, Cottonwood Creek and Corral Creek, intermittent streams which drain the mill site area; and, from a surface stock pond just southeast of the proposed mill site. Attempts have been made to sample Recapture Creek at Station No. S4R and a small wash south

TABLE	2.6	-7 ((Continu	ued)
				_

.

1

· Г

...

[

r

. • .

	Westwater	Creek	Corral Creek S2R		Corral Creek S3R		Corral/Recapture Creeks Junction S4R	
	SI							
•					7/25/77	11/10/77	7/25/77	11/10/77
Date	7/25/77	11/10/77	7/25/77	11/10/77				
ion (mg/1)			·				(1)	ш
dissolved	•	2.8	5	ę	13 0.16	4.8	SAMPLE	SAMPLE
dissolved	5				10	2	2	AN
solved (as SiO ₂)	ጃ	0.44	MA	NA .	1.9	2.2		
dissolved	22	0.006	문민	묎ㅋ	0.005	0.028	5	5 2
otal (as U)	I STREAM SAMPLE		STREAM AMPLE	ANPLE		A A 3 A '		
issolved (as U)	్టోన	0.002		N	0.002	0.028 0.02	STREAM	STREAM
olved	Ĩ,	0.09	NN N	H~	0.06	11	LA C	TR
nic Carbon	a H	6 23	ងដ	E B B B B B B B B B B B B B B B B B B B		79 ·	N	
Dxygen Demand	AT	1	<u>ee</u>	ĘĘ		1	NI	NI
rease	¥ D	ī2	20	× 5		-9		
pended Solids	щ		HH	жĕ			E E	E
tion (nCi/1)	N		D N N	No No			N.	WATER
<u>, 1011 (1-017-17</u>	ĨŎ.		NO.	N	15+2			
na+Precision ¹	Ē	•			180720		NC	0N
a+Precision ¹	5	•	ы	5	0.070.3	5		
U+Precision	ž		Z	Z	3.176.5			
/30+Prec1sion	•				1.4 + 2.1			
<pre>/rrecl5108* [710+Drecision]</pre>					0.0 <u>+</u> 0.3	5		
tion (pCi/1) ha+Precision ¹ a+Precision ¹ 20+Precision ¹ 230+Precision ¹ +Precision ¹ -210 <u>+</u> Precision ¹	NOT ENOUGH WATER IN ADEQUATELY		NOT ENOUGH WATER ADEQUATELY	NOT ENOUGH WATER ADEQUATELY	$ \begin{array}{r} 15+2\\ 180+20\\ 0.0+0.3\\ 3.1+6.5\\ 1.4+2.1\\ 0.0+0.3\end{array} $		NO WATER	

¹Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.96g.

Since the half-life of polonium-210 is 138 days, it will be in equilibrium with lead-210 in approximately 1380 days or 3.8 years. There will be equal activities of polonium-210 and lead-210 when in equilibrium.

TABLE 2.6-7 (Continued)

1

Г

1-----

[....

ſ____

F

. . .

Location	Surface Pond		Unnamed Wash		Cottonwo	ood Creek	Cottonwood Creek		
Station No.	SS	S5R		S6R		S7		S8R	
Collection Date	7/25/77	11/10/77	7/25/77	11/10/77	7/25/77	11/10/77	7/25/77	11/10/77	
Determination (mg/1)		<u></u>							
Potassium, dissolved Selenium, dissolved Silica dissolved (as SiO ₂) Strontium, dissolved Uranium, total (as U)		14 2 0.10 0.004	SAMPLE	SAMPLE	щ	њі	6.9 0.08 10 0.64 0.027	3.2 8 0.60 0.004	
Uranium, dissolved (as U) Zinc, dissolved Total Organic Carbon Chemical Oxygen Demand Oil and Grease Total Suspended Solids	NOT SAMPLED	0.003 0.02 15 71 2 268	WATER TO SAM	WATER TO SAM	UNABLE TO SAMPLE	UNABLE TO SAMPLE	0.015 0.06	0.004 0.05 7 61 2 146	
Determination (pCi/1) Gross Alpha+Precision ¹ Gross Beta+Precision ¹ Radium-226+Precision ¹ Thorium-230+Precision ¹ Lead-210+Precision ¹ Polonium-210+Precision ¹		·	ON N	ON	nn,	7ND .	16+372+170.6+1.30.9+0.00.8+1.90.0+0.3	• •	

¹Variability of the radioactive disintegration process (counting erros) at the 95% confidence level, 1.96s.

Since the half-life of polonium-210 is 138 days, it will be in equilibrium with lead-210 in approximately 1380 days or 3.8 years. There will be equal activities of polonium-210 and lead-210 when in equilibrium.

••

[____

TABLE 2.6-7 (Concluded)

[-----

ſ-----

[

1

٠.,

ſ.....

[____

[-----

[----

۲.

[----

2-164

Location	Westwa	ter Creek		·
Station No.	S	9		
Collection date	7/25/77	11/10/77	Future dates	Future dates
Determination (mg/1)			<u> </u>	
Potassium, dissolved Selenium, dissolved Silica, dissolved (as SiO ₂) Strontium, dissolved Uranium, total	A TO SAMPLE	I TO SAMPLE		
Uranium, dissolved (as U) Zinc, dissolved Total Organic Carbon Chemical Oxygen Demand Oil and Grease Total Suspended Solids	R IN STREAM	R IN STREAM		
Determination (pCi/1) Gross Alpha+Precision ¹ Gross Beta+Precision ¹ Radium-226+Precision ¹ Thorium-230+Precision ¹ Lead-210+Precision ¹ Polonium-210+Precision ¹	NO WATER	NO WATER	• ,	•

Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.96g.

Since the half-life of polonium-210 is 138 days, it will be in equilibrium with lead-210 in approximately 1380 days or 3.8 years. There will be equal activities of polonium-210 and lead-210 when in equilibrium.

TABLE 2.6-8

F -----

WATER QUALITY OF GROUND WATER AND SURFACE WATER IN VICINITY OF HANKSVILLE ORE-BUYING STATION, HANKSVILLE, UTAH

[

2-166

Location	Ore-Buying	s Station We			
Station No.		H	Ģ1R	,	
Collection Date	12/21/761	7/25/77	12/5/77	12/5/772	Future date
Field Specific Conductivity (umhos/cm)		7400	COMMERCIAL TESTING LABORATORY	LABORATORY	
Field pli		6.6	Ĕ	Ĕ	
Dissolved Oxygen		19.5	22	S.	
Temperature (°C)		20	ğ	Ē.	
Estimated flow, gpm			. ב .		
Determination (mg/1)			DN NG	TESTING	
	8.3	. 6.9	11	IL .	
pH TDS (@180°C)	7230	6020	SE	и Ц	
Redox Potential	-	240	H		
Alkalinity (as CaCO ₃)	62	60	AL	Z	
Hardness, total (as CaCO3)	1350	1080	IJ	COMMERICAL	
Contracto (us COs)	0.0	0	E	E1	
Carbonate (as CO ₃) Aluminum, dissolved	-	<0.01	- E	ġ.	
Ammonia (as N)	1.2	0.53	8	8	
Arsenic, total	0.002	<0.01	YE	ЪУ	
Barium, total	0.0	0.05			
Press total	1.06	1.2	COMPLETED	COMPLETED	
Boron, total Cadmium, total	0.0	0.008	E S	Ę	
Calcium, dissolved	352	345	14	E	
Chloride	132	94	ð	ő	
Sodium, dissolved	2020	1790			
Cilwan dissolved	0.070	0.004	YET	YET	
Silver, dissolved Sulfate, dissolved (as SO4)	4720	3920	24		
Vanadium, dissolved	-	<0.002	NOT	5	
Manganese, dissolved	0.160	0.06	Z	~	
Chromium, total	0.0	0.03	SI	51:	
Copper, total	0.085	0.03	SISATANA	ANALYSIS NOT	
Fluoride, dissolved	0.40	0.47	3		
Iron, total	1.28	2.2	2	2	
Iron, dissolved	•	1.3			
Lead, total	0.0	0.11			
Magnesium, dissolved	114	115			
Mercury, total	0.0	0.002			
Molybdenum, dissolved	•	0.01			
Nitrate (as N)	0.0	<0.05			
Phosphorus, total (as P) (ortho)	0.5	0.02			

1

. • .

· [

.

¹Utah Division of Health, Lab. No. 761461 ²Replicate sample analysis for Quality Assurance on radioactivity.

2.6.3.4 Surface Water Quality in Vicinity of Hanksville Ore-Buying Station

The Hanksville ore-buying station is located in an area of very low precipitation (see Section 2.7.3). Consequently, there are no perennial streams near the site. Only small ill-defined channels drain the site area during short-duration storm events. Nevertheless, two surface water sampling stations on Halfway Wash (Plate 2.6-11) have been selected in the vicinity of the Hanksville ore-buying station to determine water quality during the few times a year when surface runoff may occur.

However, it has not been possible, from the period of July 1977 to December 1977, to collect water samples in the vicinity as there has been no collectable surface runoff. ÷

2.7 METEOROLOGY AND AIR QUALITY

2.7.1 Regional Climatology

The climate of southeastern Utah is classified as dry to arid continental. Of main importantance in the determination of the climatology of this area are its location between major mountain ranges, its distance from major moisture sources and its proximity relative to major storm tracks. The region including the Blanding vicinity, is typified by warm summer and cold winter temperatures, precipitation averaging less than 35 centimeters (13.8 in) annually, low humidity, clear skies and large annual and diurnal temperature variations.

Total annual precipitation in the region is low as moisture from the Pacific and Gulf of Mexico is largely removed as it passes over the Sierra Nevada and Rocky Mountain chains. The Blanding vicinity, which averages nearly 30 centimeters (11.8 cm) annually, receives considerably more precipitation than areas to the west and northwest. Precipitation occurs throughout the year at Blanding but over one third of annual precipitation occurs in the three-month period of August through October. With the absence of local sources of moisture, thunderstorms (which usually comprise a major portion of the annual precipitation in most areas) are not abundant in this area; this accounts for the relatively

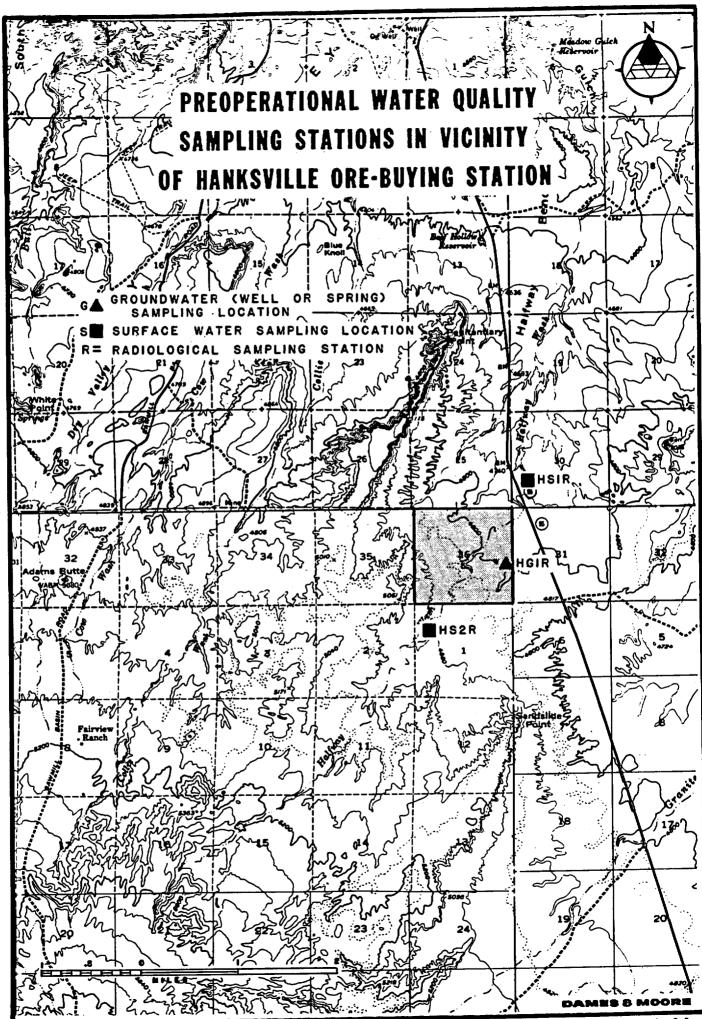


PLATE 2.6-1

sampling was performed by Dames & Moore personnel using the "scintillation flask method" (see Section 6.1.5.6).

2.9.1.3 Ground Water

Quarterly sampling of ground water and radiometric analysis of composite samples was begun in July 1977 as part of the water quality monitoring program described in Section 2.6.3.1. The results of analyses to date are presented in Table 2.6-6.

2.9.1.4 Surface Water

Collection of composite surface water samples from the environs of the project site was begun in July 1977 and is on-going (see Section 2.6.3.2). The results of radiometric analyses of samples collected to date are presented in Table 2.6-7.

2.9.1.5 Soils

Collection of soil samples from the environs of the project site was initiated in June 1977 and will be repeated, on a quarterly basis, for a period of one year. The results of radiometric analyses will be presented in the Supplemental Report.

2.9.1.6 Vegetation

Composite terrestrial vegetation samples were collected May 17, 1977 at two locations on the project site. The results of the radiometric analyses of these samples are presented in Table 2.9-3.

The higher concentration of lead-210 relative to the other nuclides is attributed to the foliar deposition of lead-210 as a result of the decay of atmospheric radon-222. This concentration is normal for radionuclide measurements in vegetation.

2.9.1.7 Wildlife

Collection of terrestrial mammals, primarily <u>Dipodomys</u> ordi, in the vicinity of the project site was begun during May 1977. Samples were composited by station prior to analysis. The results of the

ATTACHMENT 2

NUREG-0556

environmental statement

related to operation of WHITE MESA URANIUM PROJECT ENERGY FUELS NUCLEAR, INC.

MAY 1979

Docket No. 40-8681

U. S. Nuclear Regulatory Commission

Office of Nuclear Material Safety and Safeguards

NUREG-0556

FINAL ENVIRONMENTAL STATEMENT

.

related to the Energy Fuels Nuclear, Inc.,

WHITE MESA URANIUM PROJECT (San Juan County, Utah)

Docket No. 40-8681

May 1979

prepared by the U.S. Nuclear Regulatory Commission Washington, D.C. 20555

2.6.2 Groundwater

A generalized section of the stratigraphic and water-bearing units in southeastern Utah is shown in Fig. 2.6. Recharge of these aquifers occurs from seasonally variable rainfall infiltrating along the flanks of the Abajo, Henry, and La Sal mountains and along the flanks of folds. Recharge water also originates from precipitation on the flat-lying beds where it percolates into the groundwater region along joints.

In the White Mesa area, 39 groundwater appropriations (applications for water wells) are on file with the Utah State Engineers Office for wells lying within an 8-km (5-mile) radius of the project site. All but one of these wells produce from the Dakota and Morrison formations. Thirty-five of these are for wells which are actually constructed (ER, Table 2.6-1). Most of these wells produce less than 55 m³/day (10 gpm) and are used for domestic, irrigation, and stock-watering purposes. The remaining well, which was drilled to a depth of 548 m (1800 ft) by Energy Fuels Nuclear, withdraws water from the Navajo Sandstone. The majority (31) are hydrologically upgradient or cross gradient with respect to the project site. The remaining four wells (three onsite and one offsite, south) are on land owned by the applicant. Two of the onsite wells are located in the area of the proposed tailings impoundment and will be completely plugged with bentonite and/or another suitable clay. 9,6 The well which is offsite and south will be capped or used for monitoring purposes.

As is the case throughout most of the Four Corners region, the Blanding area depends largely on groundwater for its water supply. A porous soil, underlain by the Dakota Sandstone on top of a regional aquiclude (the Brushy Basin Member of the Morrison Formation), provides the Blanding area with a near-surface source of groundwater. This situation is somewhat uncommon in the highly dissected south-central portion of the Colorado Plateau.

The Dakota sandstone on White Mesa has been completely isolated by erosion; consequently, all recharge to this formation comes from precipitation and irrigation on the mesa. No irrigation occurs close to the mill site, and normal precipitation is only 30 cm (12 in.) per year, most of which reenters the atmosphere as evapotranspiration (i.e., it does not penetrate the soils over the Dakota). The Dakota is the underlying bedrock under the proposed tailings impoundment and has a permeability coefficient from 1.5 to 3 m (5 to 10 ft) per year (ER, Sect. 4.2.4.1 and Appendix H). Jointing occurs in the formation but is probably not fully penetrating. An aquiclude, the Brushy Basin member of the Morrison Formation, underlies the Dakota.

In the immediate vicinity, only the Dakota Sandstone and the Salt Wash Member (including the Westwater Member) are significant aquifers. The Entrada and Navajo formations contain larger quantities of water, but their depth prohibits common exploitation, in use for domestic water supplies.

Comb Ridge and the Abajo Mountains are significant areas of recharge of the Salt Wash and deeper aquifers. General gradients of groundwater movement in these aquifers follow the regional structure, and the water discharges ultimately in the vicinity of the San Juan River.

Because the Brushy Basin Nember acts as an aquiclude to the Salt Wash Member in the uplands, the primary recharge areas for this aquifer are Brushy Basin Wash to the northwest of Blanding, Cottonwood Creek to the west and southwest of the town, and the upper reaches of Montezuma Creek, especially along Dodge and Long canyons.

Several permeability tests were conducted at the mill and tailings retention sites. The results of these tests show a hydraulic conductivity of 1.5 to 3 m (5 to 10 ft) per year (see Fig. 2.7). The shallow groundwater movement at the mill site is estimated to be about 0.3 to 0.6 cm (0.01 to 0.02 ft) per year toward the south-southwest and the shallow groundwater movement at the tailings site is about 0.08 to 0.3 cm (0.0025 to 0.01 ft) per year in the same direction. The values were derived using the following formula based on Darcy's Law:

 $V = Ki/\Theta$.

where

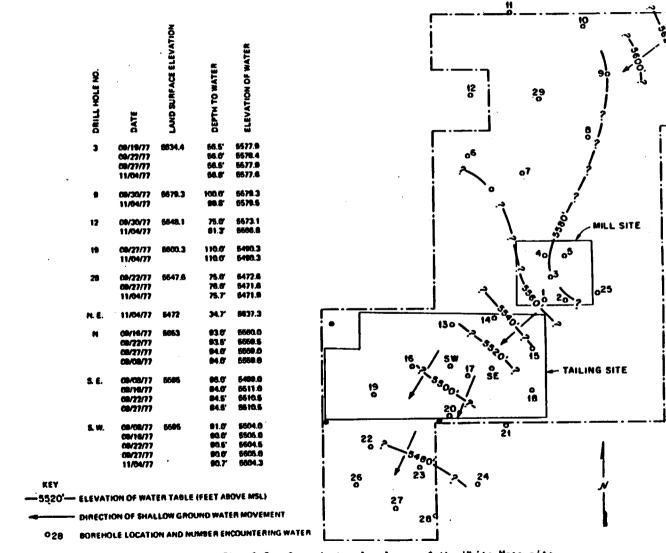


Fig. 2.7. Groundwater-level map of the White Mesa site. Source: ER, Plate 2.6-2.

.

15-4586

6

Table 4.4.	Effects of	mitial	constructio	on stages
------------	------------	--------	-------------	-----------

	Area		Yearly sediment production to local		Yearly net change		Yearly change	
Location	ha	acres	streams		MT/ha	tons/acre	MT	tons
			MT/ha	tons/acre				
Borrow area	15	36	0	0	-22	-10	-330	-360
Topsoil stockpile slopes	0.2	0.5	1120	500	1098	+490	220	245
Overburden stockpile slopes	0.4	- 1	1120	500	1098	+490	439	490
Topsoil central stockpile	3.6	9	0	0	-22	-10	-79	-90
Overburden central stockpile	6	15	0	0	-22	-10	-132	-150
Evaporation cells I and E	40	9 8	0	0	-22	-10	-880	-980
Tailing cells 2 and 3	50	124	0	0	-22	-10	-1100	-1240
Mill site dramage	24	60	0	0	-22	-10	-528	-600
Net						٠	-2390	-2685

Source: Energy Fuels Nuclear, Inc., "Transmittal of Conceptual Review Construction Drawing Set and Synopsis, Tailings Management System, White Mesa Uranium Project, Blanding, Utah," Apr. 2, 1979.

There will be no discharge of mill effluents to local surface waters. In addition, sanitary wastes generated by mill operation will be retained in a sanitary drainage field (Sect. 3.2.3.2) and should not affect surface-water quality.

The construction and operation of the proposed uranium mill should not affect local surface waters to any significant extent.

4.3.2 Groundwater

ns:

OD

4.3.2.1 Water usage

The applicant has obtained a permit to utilize up to $1.0 \times 10^6 \text{ m}^3$ (811 acre-ft) although the mill will only use about 5.9 x 10^5 m^3 (480 acre-ft) of water per year, which will be withdrawn from the Navajo sandstone aquifer. All other wells within 8 km (5 miles) produce from other formations. This usage will have no effect on other users.

4.3.2.2 Potential degradation of groundwater

The mill will discharge about $1.12 \text{ m}^3/\text{min}$ (310 gpm) of liquid to the proposed tailings impoundment (Fig. 3.4). The chemical and radiological composition of this waste liquid is given in Table 3.1.

The applicant has proposed to line the evaporation cells (1-I and 1-E) and tailings cell 2 with a multicomponent liner (of synthetic and onsite clayey-silt materials) and to line the remaining tailings cells with a 2 foot layer of compacted clay (permeability approximately $3x10^{-8}$ cm/sec) to essentially eliminate seepage into the underlying Dakota formation; therefore, the possibility of groundwater degradation caused by seepage of tailings liquids is considered to be remote. After reclamation, when deterioration of the liner may have occurred, the staff expects essentially no seepage into the Dakota formation because of the high net evaporation rate in the area. Preoperational and operational monitoring of the groundwater is required (Sect. 6.3), and mitigating measures will be taken if unexpected groundwater contamination is observed.

Туре		Table 6.1. P	responstional monitoring p	rogan		
of		Sample collection		Sample measurement		
sample	Number	Location	Type and frequency	Test frequency	Type of measurement	
Air				••••••		
Particulate	3	Locations onsite at or near site boundaries	Continuous; weekly	Quarterly composites of samples	Natural uranium, Ra 226, Th 230,	
Particulate	1	Locations offsite including nearest residences	Continuous; weekly	Quarterly composites of samples	and Pb 210 Natural uranium, Ra 226, Th 230,	
Particulate	1	Background location remote from site	Continuous; weekly	Quarterly composites of samples	and Pb 210 Natural uranium, Ra 226, Th 230,	
Radon gas	5	At same locations where particulates are sampled	Continuous (one week per month; same period each month); samples collected for 4B-hr intervals	Each 48-hr sample	ənd Pb 210 Rn-222	
Water						
Groundwater	3	Wells located around tailings disposal area (one downgradient	Grab; quarterly	Ouarterly	Dissolved natural uranium, Ra 226,	
		and two crossgredient; deep)		Semiannually	Th-230, and chemicals ⁴ Dissolved Pb-210 and Po-210	
	1 {from each well}	Wells within 2 km of tailings disposal areas (could be used for potable	Grab; quarterly	Quarterly	Total and dissolved natural uranium, R#226, Th-230, and chemicals ⁴	
		water or irrigation)		Semiannually	Total and dissolved Pb-210 and	
	1	Well located up gradient from disposal area for background	Grab; quarterly	Quarterly	Po-210 Dissolved and natural urawum, Ra 226, Th-230, and chemicals*	
Surface water	1	Onsite or offsite streams (Westweter	Grab; quarterly	Semiennuelly	Dissolved Pb-210 and Po-210	
	(from each body of water)	Creek, Corral Creek, Cottonwood Wash, etc.) which may be potentially	criso, quarteny	Quarterly	Suspended and dissolved natural uranium, Ra 226, Th 230	
Manager 10		contaminated by direct surface drain- age or tailings impoundment failure	Grab; semiennually	Semiannually	Suspended and dissolved Pb 210 and Po 210	
Vegetation (forage)	3	Grazing areas near the mill site in different sectors having the highest predicted particulate concentrations during milling operations	Grab; three times during grazing seeson	Three times	Natural uranium, Ra 226, Th 230, Pb 210, and Po 210	
Food (crops, livestock)	3 (of each type)	Within 5 km of mill site	Grab; three times during harvest or slaughter	One time	Natural uranium, Ra 226, Th 230, Pb 210, and Po 210	
Fish	Each body of water	Collection of game fish (if any) from streams in the site environs which mey be contaminated by surface runoff or tailings im- poundment failure	Grati; semiannually	Two times	Natural uranium, Ra 226, Th 230, Pb-210, and Po 210	

. 1 1 1

Ţ

1

1.1.1

Ţ

1

1

1

a second second

•

2-33

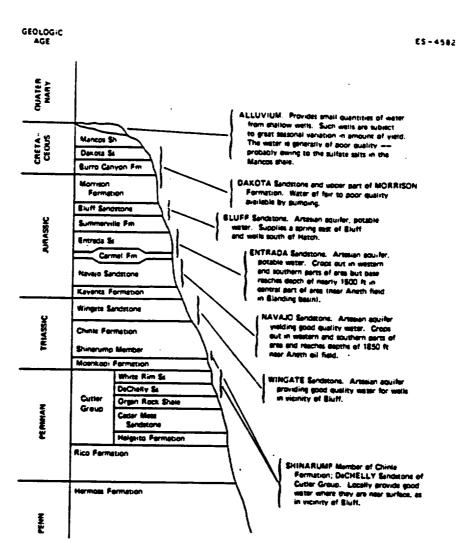


Fig. 2.6. Generalized stratigraphic section showing freshwater-bearing units in southeastern Utah. <u>Source</u>: ER, Plate 2.6-1.

V = the rate of movement of groundwater through the formation,

- x = the hydraulic conductivity of formation 1.5 to 3 m/year (5 to 10 ft/year),
- i = gradient (calculated as 0.03 at mill site and 0.01 at tailings site),
- θ = porosity of formation (assumed as 20%).

Table 2.25 is a tabulation of groundwater quality of the Navajo Sandstone aquifer. The TDS range from 244 to 1110 mg/liter in three samples taken over a period from January 27, 1977, to May 4, 1977. Kigh from (0.57 mg/liter) concentrations are found in the Navajo Sandstone. The U.S. Environmental Protection Agency recommends 0.3 mg of dissolved from per liter for drinking water.¹³ Feltis¹⁴ noted that the total dissolved solids in the alluvium and at shallow depths in the Dakota Sandstone, the Burro Canyon Formation, and the Morrison Formation range from 300 to 2000 mg/liter.

The applicant has sampled groundwater from local springs and wells at locations shown in Fig. 2.5. Total dissolved solids ranged from about 700 to 3300 mg/liter. Standards for public drinking water were frequently exceeded for sulfate, selenium, iron, and arsenic. The waters are suitable for stock and wildlife use.

"	
ar in the p	detection limit
if groundwarts	0 10 20
	10.01 are
later quality	Zero values 10.01 are below de
225. 4	24
Tebie	

J

]

Strimer -	Blanding mill site atil in Navajo Sandstone, G2R	
Zero values (0.0) are below detection limits		

•

____]

Promote -	đ	inding mith su	Blanding mill site well in Nevejo Sandstore, G2R	o Sendstone.	12A
	1.27 770	5.4.77	7'25/77	12,05,77	3/22/6
Feid specific conductivity, Jumbol. cm			8		310
Feld ph			8.9		1.6
Disolved Brygen					ł
Temperature TC			1001 001		#
					8
	Desminer	rion. mj/iter			
Ha		2.8	1.1	7.8	6.6
TOS (m 160°C)	Z	245	0111	3	216
Redox potintial	Į	ł	R i	8	211
20	<u>s</u> 1		š I	<u>1</u>	
Nardness, total (ds CECU3)				<u>e</u> :	2 3
Carbonan Las (0)			0.0	3 (8
Alumnum, gissolved	00		59	į	; =
	004		ē	ā	000
Barwin, total	8		0.13	â	0.15
foren. Intel	0.040		ą	0.11	Ę.
Cudmum, total	00		100	89	<u>8</u>
Calcium, discolved	5	5	5	65	112
Chicride	00	윩	⊽ :	~	•
Sodium, Sissohed	2		2	8	5
Silver, discived	00		683	0.010	600
Sulfate, dissolved (as SO ₄)	z	17	17	8	
Venedium, dissolved			88 8 8 1		
Mangmen, dimoved			88		38
	3				
Copper, total		į			200
rigerou, esecond lene intel	3	i	j	13	12
tron, dissolved			0.57	2	า
Lead, total	3		200	8 0 8	8: 8: 8:
Magnesium, dissolved	11	9	=	15	5
Merary, total	3	0.0	0.002	8000	0.0002
Molybdenum, dissolved	200				
Nutra (M. N.) Prostoru, trist (M. P.	89	-]]	8 8 7 7	39
	06		12	86	
Seinnum, dissonad	13		199	100	9
Silica, simolwed (as SiO ₂)	2	3	12		•
Strentium, disolved			5	5	89.6
Cranium, Genored Lift UI Viet Almoniak	00				
Tetai erginic arton	•			=	9
Canical erryon demand				⊽ 3	8
				2.	2
				•	ł
	During	in teams	_		
Grae stehs 2 matrices		•	10.2 ± 2.6	C.1 ± 0.1	1.5 2.1.4
Groe bits 2 procision		Ø	71:19		9 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
R+234 s protein			0.1 ± 0.3		
			1.5 = 7.1		

- ··

]

•

⁴The grang a Carral Cruck, Suroon No. G1A, was renad on July 25, 1977, and again on N 1977, Because of the four Aom, the going could not be focured. ⁹The Astron Dismance of Markin Analysis (July MDR).

¹ Utari Sura Gimuan et Natita Analysis. Lab No. 77081. Pertisi ensiysis by Nation Reserch, Inc., Semple No. HR1-11803.

Berne: Addred from ER, Table 244, ond "Guestmontel Faser, Bastine West Que Environmentel Rason, White Mass Untriven Project." June 29, 1971.

.

]

1

1

1

•

ĝ

ъ

•

]

____]

____]

J.

ł

The staff feels that the applicant's revegetation procedures and monitoring programs are adequate to ensure successful reclamation. Sufficient records must be maintained by the applicant to furnish evidence of compliance with all monitoring. The applicant will file a performance bond with the State of Utah to ensure performance of land reclamation.

6.3 WATER

6.3.1 Surface water

Quarterly monitoring of surface-water quality will continue throughout the life of the project. Sample locations are described in Table 2.21 and Fig. 2.5, and the chemical and physical parameters to be measured are given in Table 2.20. Because of the temporary nature of many of the watercourses in the site vicinity, it is recommended that the applicant take advantage of seasonal rainfall and snowmelt in scheduling the collection of water samples.

6.3.2 Groundwater

The applicant has supplied chemical constituent data for samples from each of two abandoned stock wells on the project site. Water from these wells (G6R and G7R on Fig. 2.5), completed in the Dakota Sandstone, is of poor quality. Total dissolved solids are in excess of 2000 ppm, which would have adverse effects on many crops. Total sulfate is in excess of 1300 ppm compared with an acceptable value of 250 ppm; dissolved iron is in excess of 3 ppm compared with an acceptable value of 0.05 ppm; and lead is in excess of 0.12 ppm compared with an acceptable value of 0.05 ppm.⁵ Data from local springs indicate that the water is suitable for stock and wildlife use only.

Additional sampling in accordance with Table 6.1 will be required. During operation, the applicant will be required to monitor the groundwater from wells installed and located as specified in the Source Material License to detect potential groundwater contamination (as discussed in Sect. 4.3.2.2) until reclamation is completed. The applicant is also required to submit a plan to mitigate such contamination if observed.

6.4 SOILS

During September 1977, an existing soil survey of the site was field-verified by a retired USDA Soil Conservation Service scientist, and a soil scientist for the applicant's consultant (ER, Sect. 6.1.4.1). At least one soil profile for each mapping unit was located and sampled. Soil analyses for potential uses in reclamation operations included contents and characteristics such as texture, water-holding capacity, saturation percentage, pH, lime percentage, gypsum, electrical conductivity, exchangeable sodium percentage, sodium adsorption ratio, organic carbon, cation exchange capacity, boron, selenium and available phosphates, potassium, and nitrate/nitrogen (ER, Sect. 6.1.4.1).

6.5 BIOTA

6.5.1 Terrestrial

Plant communities at the project site were mapped by aerial photographs and field verification (ER, Sect. 6.1.4.3). Vegetation on the site was surveyed during the spring and summer of 1977 (Fig. 6.1). Five 1.0-m^2 quadrats were placed every 10 m along 100-m transects. The number of transects varied depending upon the size and homogeneity of the community. The larger and more diverse communities had the greatest number of transects. Species collected were tentatively identified in the field and later verified at the Rocky Mountain Herbarium of the University of Wyoming. The density of each species was determined by counting the number of individual plants in each quadrat. The percentage of cover for each community. Production studies were also conducted during the 1977 growing season (April through September) and expressed as kilograms per hectare (pounds per acre). The number of 1.0-m^2 samples taken in each community.

Туре		Sample collection		Sample measurement		
at semple	Number	Location	Type and frequency	Test frequency	Type of measurement	
Site survey					•••	
Gamma dose rate	80	150 m intervals to a distance of 1500 m in each of eight directions from a point equidistance between the milling area and tailings pond	Gamma dose rate; once prior to construction	One time	Pressurized ionization chamber or property calibrated purtable survey instrument	
	10	150-m intervals in both horizontal and vertical transverses across the milling areas	Gemma dase rate; once following preperation of milling site	One time	Pressurized ionization chamber or property calibrated portable survey instrument	
	5	At same locations as used for col- fection of particulate samples	Gemma dose rate; querterly	Quarterly	Pressurized ionization chamber or property calibrated portable survey instrument	
Surface soil	40	300-m intervals to a distance of 1600 m in each of eight directions from a point equidistance from mill and tailings pond sites	Grab; once prior to site construction	One time	All samples for Ra-226, 10% of samples for natural uranium, Th 230, and Pb 210	
	6	300-m intervals in both a horizontal and vertical transverse across the milting area	Grab; once following site preparation	One time	Alt samples for Ra-226, one sample to netural uranium, Th 230, and Pb-210	
	5	At same locations as used for col- lection of air particulate samples	Grab, once prior to site construction	One time	Natural uranium, Ra 226, Th 230, and Pb-210	
Subsurface soil profile	5	750-m intervets in sech of four directions from a point equi- distance from the mill and tailings pond sites	Grab; once prior to site construction	One time	All samples for Ra 226, one set of samples for natural uranium, Th 230 and Pb-210	
	1	At center of mill building area	Grab; once following site proparation	One time	Natural uranium, Ra-226, Th 230, and Pb-210	
Sediment	2 (from each stream)	Upstream and downstream of waters that may receive surface water run- off from potentially contaminated areas or thet could be affected by teilings impoundment failure	Grab; once following spring runoff and once in late summer following period of extended low flow	Two times	Natural uranium, Ra 226, Th-230, and Pb-210	
Radon-222 flux	10	At center of mill site and at 750 and 1500 m in each of four directions from the site	Two- to three-day period, one sample during each of three months (normal weather)	Each sample	Rn-222 flux	

Table 6.1. (continued)

"Nonradiological chemical parameters listed in Table 2.25.

:

Source: "Branch Polition for Preoperational Radiological Environmental Monitoring Program for Uranium Mills," U.S. Nuclear Regulatory Commission, Memorandum from L. C. House, Chief of Fuel Processing and Fabrication Branch, Jan. 9, 1978.

. 8

р. Т

ATTACHMENT 3

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

AUG 9 7 1979

Docket No. 40-8681

Energy Fuels Nuclear, Inc. ATTN: Mr. R. W. Adams Chairman of the Board Three Park Central, Suite 900 1515 Arapahoe Denver, Colorado 80202

Gentlemen:

Enclosed is Source Material License No. SUA-1358. This license is being issued subsequent to the notice of availability by the Environmental Protection Agency on May 25, 1979, of the Nuclear Regulatory Commission's Final Environmental Statement (FES) related to the operation of your uranium mill. This license does not presently authorize construction of the embankments proposed for the tailings impoundment nor does it authorize construction of tailings impoundment liner system. NRC approval shall be incorporated into this license by amendment and shall be obtained prior to construction of either of these tailings impoundment system components. Please note that this license is conditioned to require that the licensee shall, at least three months prior to the initiation of mill operations, submit the surety arrangements as well as supporting documentation showing a breakdown of the costs associated with mill decommissioning and mill site and tailings area reclamation to the NRC and shall receive approval of the surety arrangements from NRC prior to the initiation of mill operations.

At least ninety (90) days prior to the anticipated start-up of milling operations, you must notify the NRC of such in writing in order that the Commission's staff can conduct an on-site inspection of both the mill and tailings impoundment prior to mill start-up. Please note that all administrative and operating procedures and monitoring programs must be developed and implemented at least 30 days prior to mill start-up. In addition, all staffing and employee training must be completed at least one week prior to mill start-up.

Please note that this license contains conditions which were discussed and agreed upon in conversations between your Mr. C. E. Baker and Mr. E. A. Trager of my staff. Energy Fuels Nuclear, Inc. 2

As you are aware, the Commission is preparing a Generic Environmental Impact Statement (GEIS) on uranium milling. Please be advised that the conclusions of this GEIS, and any related rule making, may result in new requirements concerning your mill waste generating processes and tailings management practices.

FOR THE NUCLEAR REGULATORY COMMISSION

Ross A. Scarano, Chief relani

Ross A. Scarano, Chief Uranium Recovery Licensing Branch Division of Waste Management

Enclosure: Source Material License No. SUA-1358 m NAC-374

U. S. NUCLEAR REGULATORY COMMISSION MATERIALS LICENSE

K <u>Characteristics</u>

Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and itle 10, Code of Federal Regulations, Chapter 1, Parts 30, 31, 32, 33, 34, 35, 36, 40 and 70, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the lace(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations f the applicable Part(s); and to import such byproduct and source material. This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regula-"ons and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below.

	Licensee						
_L. 2.	Energy Fuels Nuclear, Inc Three Park Central, Suite		3. License number	SUA-1358			
6 .	1515 Arapahoe Denver, Colorado 80202	900	4. Expiration date	August 31, 1984			
	Denver, Colorado OUZUZ		5. Docket or Reference No.	40-8681			
	duct, source, and/or 7 nuclear material	. Chemical and form		8. Maximum amount that licensee may possess at any one time under this license			
	Natural Uranium	Any		Unlimited			
- 9.	The licensee is hereby authorized to possess byproduct material in the form of uranium waste tailings generated by the licensee's milling operations authorized under SUA-1358.						
10.	Authorized place of use: The licensee's uranium ore buying and milling facilities located in San Juan County, near Blanding, Utah.						
11.	For use in accordance with statements, representations, and conditions contained in Subsection 2.1.1 and Plates 2.1-1 and 2.1-2, Subsections 3.2 and 3.5 through 3.7 and Plates 3.1-1 through 3.1-5, Section 4 and Tables 4.1-1 and 4.1-2, Section 5 (and tables), Subsection 6.3, and Section 7 of the licensee's application dated February 6, 1978, and revisions dated September 26, 1978, and July 6 and 16, 1979 and a supplement dated August 3, 1979. Whenever the word "will," "would" or "should" is used in the above, it shall denote a requirement.						
12.	The maximum mill throughp per day, averaged over a		t exceed 4700 pou	unds of barreled U ₃ 0 ₈			

. . .

FORM NRC-374A (5-76)

U. S. NUCLEAR REGULATORY COMMISSION

Page 2 of 9 Page

MATERIALS LICENSE

Supplementary Sheet

License Number SUA-1358 Docket or 40-8681

Docket or Reference No.

13. The licensee is hereby exempted from the requirements of Section 20.203(e)(2) of 10 CFR Part 20 for areas within the mill, provided that all entrances to the mill are conspicuously posted in accordance with Section 20.203(e)(2) and with words, "Any area within this mill may contain radioactive material."

- 14. Any changes in the mill circuit or effluent collection systems, as illustrated and described in Subsections 3.2 and 3.5, Plates 3.1-1, 3.1-2, 3.1-3 and 3.1-5, Section 4, and Tables 4.1-1 and 4.1-2, of the licensee's application, shall require approval by the NRC in the form of a license amendment.
- 15. Operations shall be immediately suspended in the affected areas of the ore buying station or the mill if any of the emission control equipment, for the ore crushing or feed areas or the yellowcake drying or drumming areas specified in Table 4.1-1 of the licensee's application, is inoperative.
- 16. The results of sampling, analyses, surveys and monitoring, the results of calibration of equipment, reports on audits and inspections, and all meetings and training courses, committed to in Sections 4.5 and 7 and Subsections 3.2 and 3.5 through 3.7 and 6.3 of the licensee's application and supplements and in the additional conditions to this license, as well as any subsequent reviews, investigations, and corrective actions, shall be documented. Unless otherwise specified in NRC regulations, all such documentation shall be maintained for a period of at least 5 years.
- 17. The licensee shall maintain a management control program which shall include written operating procedures, reviewed and approved by the Radiation Safety Officer, for all aspects of mill operations, including the radiation safety program and the environmental monitoring and control program. Approval by the RSO will be indicated by the signature of the RSO on the procedure.
- 18. A formal report of the quarterly review/audit of all audits and inspections as well as employee exposures (including bioassay data), effluent release data, and environmental data shall be prepared by the Internal Audit Committee and along with conclusions and recommendations submitted to the Vice President of Uranium Operations to determine (1) if there are any upward trends developing in personnel exposures for identifiable categories of workers or types of operations or effluent

FORM NRC-374A (5-76)

U. S. NUCLEAR REGULATORY COMMISSION

Page 3 of 9 Page

MATERIALS LICENSE

Supplementary Sheet

License Number SUA-1358

Docket or Reference No. 40-8681

releases, (2) if exposures and effluents might be lowered under the concept of as low as reasonably achievable, and (3) if equipment for effluent and exposure control is being properly used, maintained, and inspected. This review shall include a review of the radiation safety and environmental monitoring programs data collected during the three previous quarters.

- 19. Eating and/or smoking shall only be allowed in control rooms, offices, or enclosed lunch areas.
- 20. In-plant airborne monitoring, committed to in Section 5 of the licensee's application and supplements, shall be performed under conditions typical of employee exposures. Along with results of airborne radioactivity, a record of the state of operation of both process and effluent control equipment and ventilation conditions shall be kept.
- Release of equipment or packages from the restricted area shall be in accordance with Annex C, "Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for Byproduct, Source, or Special Nuclear Material," dated November 1976 (enclosed).
- 22. The licensee shall conduct at least-biweekly surface contamination surveys (both smear and total contamination) in all eating areas, change rooms, control rooms, and mill administrative offices. Decontamination of these areas shall be in accordance with Annex C, "Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for Byproduct, Source, or Special Nuclear Material," dated November 1976 (enclosed).
- 23. The licensee shall implement a program to minimize dispersal of dust from the ore piles by water sprinkling or other dust suppression techniques, unless a documented weekly inspection indicates that the moisture content of the ore and/or weather conditions are controlling dusting. This program shall include the use of written operating procedures that specify the use of specific control methods for all conditions.
- 24. The licensee shall construct the tailings disposal facility to incorporate the features described in Alternative 1 of Section 10.3.2 and Section 3.2.4.7 of NUREG-0556, dated May 1979, subject to revisions based on the conclusions of the final Generic Environmental Impact Statement on Uranium Milling and any related rulemaking.

U. S. NUCLEAR REGULATORY COMMISSION

Page 4 of 9 Pages

MATERIALS LICENSE

Supplementary Sheet

License Number <u>SUA-1358</u>

Docket or Reference No. 40-8681

- 25. Construction of any of the tailings embankments shall not begin until the system design has been reviewed and approved by the NRC in accordance with Regulatory Guide 3.11. NRC approval shall be incorporated into this license by amendment and shall be required prior to embankment construction. Required freeboard and other operating requirements shall be determined during the review.
- 26. The licensee shall construct the liner system for the tailings area only after the final liner and liner system specifications and the program for installation maintenance and inspection of the liner system have been reviewed and approved by the NRC staff. NRC approval shall be incorporated into this license by amendment and shall be required prior to liner construction.
- 27. The licensee shall provide for stabilization and reclamation of the mill site and tailings disposal areas and mill decommissioning as described in Alternative 1 of Section 10.3 and in Section 3.3 of NUREG-0556, dated May 1979, subject to revisions based on the conclusions of the Final Generic Environmental Impact Statement on Uranium Milling and any related rulemaking. Decontamination shall be in accordance with Annex C, "Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestrict Use or Termination of Licenses for Byproduct, Source, or Special Nuclear Material," dated November 1976 (enclosed). In addition, surety arrangements shall be provided prior to the initiation of mill operations and maintained in order to ensure completion of the mill site and tailings area stabilization, reclamation, and decommissioning plans.
- 28. Prior to the initiation of mill activities and the associated generation of tailings, the licensee shall submit to the Uranium Recovery Licensing Branch, U.S. Nuclear Regulatory Commission, Washington, DC 20555, documentation that ownership of lands to be used for tailings disposal has been acquired as described in the licensee's application and supplements.
- 29. At least three months prior to the initiation of mill operations and the associated generation of tailings, the licensee shall submit the proposed suret arrangements as well as supporting documentation showing a breakdown of the costs associated with mill decommissioning and mill site and tailings area reclamation to the Uranium Recovery Licensing Branch, U.S. Nuclear Regulatory Commission, Washington, DC 20555. The licensee is required to receive approval of the surety arrangement held with the Utah Department of Natural Resources, Division of Oil, Gas and Mining, from NRC prior to

U. S. NUCLEAR REGULATORY COMMISSION

Page 5 of 9 Page

MATERIALS LICENSE

Supplementary Sheet

License Number SUA-1358

Docket or Reference No. 40-8681

the initiation of mill activities and the associated generation of tailings. Within 30 days of each revision thereafter, the licensee shall submit to the Uranium Recovery Licensing Branch a copy of the proposed revision of the surety arrangements covering mill decommissioning and mill site and tailings area reclamation as well as supporting documentation showing a breakdown of the costs associated with these actions and to obtain approval of the NRC.

The NRC will not terminate the license until final reclamation meets applicable NRC regulations..

- 30. The licensee shall implement an interim stabilization program that minimizes to the maximum extent reasonably achievable dispersal of blowing tailings. This program shall include the use of written operating procedures that specify the use of specific control methods for all conditions. The effectiveness of the control methods used shall be evaluated weekly by means of a documented tailings area inspection.
- 31. The licensee shall conduct and document at least one inspection of the tailings embankment per day and shall immediately notify Region IV, U.S. Nuclear Regulatory Commission, Office of Inspection and Enforcement, Arlington, TX, by telephone and telegraph of any failure in the dam retention system or tailings discharge system which results in a release of radioactive material and/or of any of any unusual conditions which if not corrected could lead to such a failure. This requirement is in addition to the requirements of 10 CFR Part 20.
- 32. The licensee shall monitor the use of the tailings impoundment by wildlife in conjunction with the program to conduct and document an inspection of the tailings discharge system once per shift.
- 33. The licensee shall consult and coordinate with the Utah Division of Wildlife Resources regarding the extent of fencing and other ways to mitigate any adverse impacts that may occur to deer and shall document the results of these actions.
- 34. Before engaging in any activity not previously assessed by the NRC, the licensee shall prepare and record an environmental evaluation of such activity. When the evaluation indicates that such activity may result in a significant adverse environmental impact that was not assessed, or that is greater than that assessed in the Final Environmental Statement (NUREG-0556), the licensee shall provide a written evaluation of such activities and obtain prior approval of the NRC for the activity.

FORM NRC-374A

U. S. NUCLEAR REGULATORY COMMISSION

Page 6 of 9 Page:

MATERIALS LICENSE

Supplementary Sheet

License Number ____ SUA-1358

Docket or 40-8681 Reference No.

- If unexpected harmful effects or evidence of irreversible damage not 35. otherwise identified in NUREG-0556 dated May 1979 are detected during construction or operations, the licensee shall provide to the NRC an acceptable analysis of the problem and a plan of action to eliminate or significantly reduce the harmful effects or damage.
- Mill tailings other than samples for research shall not be transferred from 36. the site without specific prior approval of the NRC obtained through application for amendment of this license. The licensee shall maintain a permanent record of all transfers made under the provisions of this condition.
- The results of the effluent and environmental monitoring program required 37. by this license shall be reported in accordance with 10 CFR Part 40, Section 40.65. In addition, a copy of the report shall be sent directly to the Uranium Recovery Licensing Branch, U.S. Nuclear Regulatory Commission, Washington, DC 20555.
- In addition to conducting the environmental monitoring program summarized 38. in Appendix G of the application, the licensee shall perform air particulate monitoring as described in Appendix G of the application for "ore crusher stack" for all stacks from areas or process circuits in which ore, yellowcake or tailings are handled. Also, the licensee shall conduct a monitoring program to collect onsite meteorological data, e.g., wind speed and direction at 1-hour intervals and to annually reduce this data to a joint frequency distribution by wind speed, direction, and stability class. The results of these additional effluent and meteorological monitoring requirements shall be included in the licensee's semiannual environmental monitoring report to the NRC.
- The licensee shall conduct an annual survey of land use (grazing, residences, 39. wells, etc.) in the area within five miles of the mill and submit a report of this survey annually to the Uranium Recovery Licensing Branch, U.S. Nuclear Regulatory Commission, Washington, DC 20555. This report shall indicate any differences in land use from that described in the licensee's Environmental Report (January 1978) and supplements or the previous annual report. The first annual report shall be submitted by August 1, 1980, and by August 1 each year thereafter.

(5-76)

U. S. NUCLEAR REGULATORY COMMISSION

Page 7 of 9 Page:

MATERIALS LICENSE

FORM NRC-374A (5-76)

Supplementary Sheet

License Number <u>SUA-1358</u>

Docket or Reference No. 40-8681

- 40. The licensee shall avoid by project design where feasible the archeological sites designated "Eligible" in the attached Table A, below. Sites that will ultimately be located within 100 feet of the perimeter of the reclaimed tailings impoundment area are considered unavoidable and shall be recovered through archeological excavation.
- 41. The licensee shall conduct testing as required and shall report the results of the testing to enable the Commission to determine if those archeological sites designated "Undetermined" in Table A are of significance warranting their redesignation as "Eligible." This action by the licensee shall be completed by January 1, 1981. In all cases such testing and a review of the testing results by the Commission shall be completed before any aspect of the undertaking affects a site.
- 42. The licensee shall conduct archeological and historic surveys and testing on the NEI/4 of Section 33, T37S, R22E to identify such additional sites asmay be located there and to enable the Commission to evaluate their significance. The results of surveys and testing shall be reported to the Commission no later than December 1, 1979. The licensee shall avoid any site within this area until the Commission has reviewed the licensee's report and has advised the licensee of its determinations. If the Commission, upon review, amends Table A to include additional sites, the licensee shall take such action with respect to such additional sites as may be required for the sites that have initially been designated.
- 43. Condition 42, above, will apply to lands associated with the undertaking, but which have not currently been identified, e.g., to borrow areas outside the current project boundaries, with the exception that the results of surveys and testing may be reported to the Commission after December 31, 1979.
- 44. The licensee shall avoid any archeological site designated "Undetermined" in Table A.
- 45. When it is not feasible to avoid an archeological site designated "Eligible" in Table A, the licensee shall institute a data recovery program with respect to the site which the Commission determines will satisfactorily mitigate any adverse effect.

FORMINRC-374A (5-76)

U. S. NUCLEAR REGULATORY COMMISSION

Page 8 of 9 Page

MATERIALS LICENSE

Supplementary Sheet

License Number SUA-1358

Docket or Reference No. 40-8681

- The licensee must cooperate with the Commission in the development and implementation of a monitoring program with respect to the preservation of cultural resources. The licensee shall have obtained the written approval of the Commission with respect to this program before initiation of grounddisturbing activities. The plan shall, among other things, include provision for (1) the presence during specified operations of an archeological contractor satisfactory to the Commission, and (2) appropriate action, including notice to the Commission and the SHPO and suspension of ground disturbing activities, upon discovery of previously unidentified cultural resources. An archeological contractor acceptable to the SHPO and meeting the minimum standards for a principal investigator as specified by the Secretary of the Interior will be considered satisfactory to the Commission.
- 47. The licensee shall recover through archeological excavation all "Eligible" archeological sites listed in Table A which are located in borrow areas, stockpile storage areas and construction areas. Recovery of all sites will be completed no later than December 31, 1982, with sites in the area of the first three tailings impoundment cells (the two evaporation cells and the first tailings cell) being recovered first.
- 48. The licensee shall have the archeological contractor approve the plan for the layout of haul roads, i.e., to best avoid sites, and shall obtain the written approval of the Commission for this plan prior to earth moving activities.
- 49. The licensee shall provide the additional documentation required to obtain a determination of eligibility for the "Earth Dam," "Range War Site," "Kunen Jones Home," "Posey War Sites," and "White Mesa Community" cultural sites prior to October 1, 1979. If the Earthen Dam is determined to be "Eligible," the licensee shall ensure that the Earthen Dam is recorded prior to its demolition or alteration so that there will be a permanent record of its existence. Energy Fuels Nuclear, Inc., will first contact the Historic American Engineering Record (HAER), Heritage Conservation and Recreation Service (Department of the Interior, Washington, DC 20243; telephone 202-343-4256) to determine the level of documentation required. All documentation must be accepted by the HAER prior to demolition or excavation. Copies of all documentation found acceptable to the HAER shall be provided to the Commission within one month of acceptance by the HAER.

46.

FORM NRC-374A (5-76)

r

.....

Date.

U. S. NUCLEAR REGULATORY COMMISSION

Page 9 of 3 Pages

MATERIALS LICENSE

Supplementary Sheet

License Number SUA-1358

Docket or Reference No. 40-8681

IABLE A

Archeological Sites Related to the White Mesa Project

Eligible Sites			Undetermined Sites			Non-Eligible Sites			
42Sa	6379 6385 6387 6388 6392 6393 6394 6395 6395 6403 6403 6405 6403 6405 6408 6427 6429 6430 6432 6435 5439 5441 6443 6443 6443	6399 6739 6740 7653 7655 7656 7657 7659 7659 7660 7661 7665 7668 7675 7684 7637 7689 7690 7691 7693 7693 7693 7700	42Sa	3766 5381 6382 6383 6389 6390 6391 6398 6399 6400 6401 6402 6406 6401 6402 6406 6407 6419 6420 6421 6422 6423 6424 6425 6423 6424 6425 6423 6423 6431	5436 5437 6438 6440 6442 6445 5686 6697 6752 6753 6757 7652 7663 7669 7670 7671 7672 7670 7671 7672 7673 7574 7676 7679 7680 7631 7682 7683	7685 7686 7688 7692 7694 7695 7696 7699 7750 7751 7752 7753 7754 7875 7876	42Sa	6380 5384 6386 6397 6404 6684 6685 6754 7658	
7	Total: 4	4	T(otal: 67	,		Total	: 10	

For the U.S. Nuclear Regulatory Commissio

0 by. Division of Fuel Cycle and

Division of Fuel Cycle and Material Safety Washington, D.C. 20555

ATTACHMENT 4

BKR

DAPPOLONIA

CONSULTING ENGINEERS, INC.

September 9, 1981

Project No. RM78-682-B

Dr. C.E. Baker Energy Fuels Nuclear, Inc. Suite 900 Three Park Central 1515 Arapahoe Denver, CO 80202 RECEIVED SEP 1 4 1981

XC'MDV GWG DRR

Letter Report Assessment of Groundwater Quality White Mesa Project Blanding, Utah

Dear Dr. Baker:

INTRODUCTION

In response to your request of June 4, 1981, D'Appolonia has reviewed the water quality data from monitor wells installed around the tailings retention area. The purpose of this review and evaluation is to determine if the data indicate any degradation of the groundwater quality which could be attributed to a leak from the tailings facility or any other mill-related operation. Pre-operational baseline data and operational data have been included in the review process. The data have been evaluated with regard to trends in select parameters and general overall water quality variation with time.

This report is divided into two main sections as follows:

- Evaluation of Groundwater Quality: Potential Degradation of Sources - This section contains the water quality evaluation of the existing local groundwater. Data from the pre-operational and operational wells were utilized.
- Evaluation of Well 7-2 Water Source This section evaluates the possible sources for the water detected in Well 7-2. Data from the pre-operational and operational phase wells and surface water supplies were utilized.

7400 SOUTH ALTON COURT, ENGLEWOOD, CO 80112 BECKLEY, WV CHESTERTON, IN CHICAGO 1464 TELEX: 45-4565

LAGUNA NIGUEL, CA

September 9, 1981

Dr. C.E. Baker

EVALUATION OF GROUNDWATER QUALITY: POTENTIAL DEGRADATION AND SOURCES

Data Reviewed

Available data reviewed and evaluated consisted of pre-operational water quality analyses from Wells 1, 2, 3, and 4 for October, 1979, and January and April, 1980, and monthly operational phase analyses from May 1980, through February, 1981. The pre-operational sampling and laboratory analyses were performed by D'Appolonia except for the radionuclide parameters which were performed by CDM Acculabs, Denver, Colorado (October, 1979), and Hazen Research, Golden, Colorado (January, April, 1980).

Monthly operational water quality data from May 1980 through February 1981 was provided by Energy Fuels. Wells sampled during this period were deep groundwater monitoring Wells 1, 2, 3, 4, 5, and intermediate depth leak detection Well 7-2. Samples for this period were taken by Energy Fuels personnel and the analyses performed by WAMCO Labs, Casper, Wyoming. During September, 1980, select samples were also analyzed by D'Appolonia for comparison purposes.

Indicator Parameters Selected for Evaluation

The water quality data was reviewed by selecting several parameters and plotting the values for each well against time. The parameters selected for evaluation with explanations of the rational for their selection follow:

- Sulfate, SO₄²⁻: Sulfate is highly concentrated in the tailings water (35,000 mg/l) and tends to move relatively rapidly and freely through the subsurface at approximately the same rate as the groundwater. As the sulfate from tailings water reacts with calcareous soil, gypsum (CaSO₄ · 2H₂O) will precipitate, removing some of the sulfate from the tailings water. However, the increase in sulfate concentration will still be substantially above background levels, thus indicating the probability of a leak.
- Chloride, Cl⁻: Chloride is concentrated in the tailings water (2,200 mg/l) and moves through the subsurface at approximately the same rate as the groundwater. Chloride is usually considered a conservative species; that is, it does not react with the soil or groundwater. Thus, elevated chloride levels usually indicate a leak of tailings water. However, the increase over background levels is not as dramatic as observed with sulfate.

- Total Dissolved Solids, TDS: This parameter is an indicator of gross water quality and elevated values indicate an increase in dissolved ions in the water. Typically, 60 percent of the dissolved species in the tailings water are due to sulfate; therefore, an increase observed in TDS should indicate a corresponding increase in sulfate.
- Sodium, Na⁺: Substantial concentrations of sodium exist in the tailings water (6,400 mg/l). As sodium is not very reactive in the subsoil environment, increased concentrations of sodium in the groundwater may indicate a leaking tailings cell.
- o pH: This parameter is an indicator of the possible change in water quality because of acid tailings seepage. As tailings water reacts with calcareous soils, the pH is neutralized. During the neutralization process, many of the radionuclides (thorium, lead uranium, etc.) and the heavy metals are co-precipitated with iron oxyhydroxides. Therefore, decreases in pH indicate severe leakage and increased concentrations of radionuclides and heavy metals. The acid front is substantially attenuated relative to the movement of the groundwater; therefore, increases in sulfate and chloride will be observed much earlier than decreases in pH.
- Radium-226, Ra-226: This parameter is the most mobile radionuclide and therefore is an indicator of quality change. The movement of this element in the subsurface environment is probably controlled by the solubility of radium sulfate.
- Bicarbonate, HCO3: Due to the low pH of the tailings water, no bicarbonate/carbonate ions are present. However, as the acid in the tailings water reacts with the calcareous soil, carbon dioxide and bicarbonate ions are generated. Therefore, elevated concentrations of bicarbonate may indicate acid leakage. Increases depend upon the amount of calcite that reacts; therefore, increases may be difficult to observe.
- o Calcium, Ca²⁺: Like bicarbonate, calcium ions result from reaction of the acid in the tailings water with the calcite in the soil. Some calcium is present already in the tailings water.

HAGH HOHDAN ANNTH A

Calcium is also removed by the precipitate of gypsum. Overall, trends associated with calcium concentrations are difficult to interpret due to the variety of mechanisms occurring.

In summary, elevated concentrations of sulfate, chloride and TDS in the groundwater are probably the best indicators to evaluate a change in groundwater quality from an acid-type uranium mill and tailings facility.

Evaluation of Indicator Parameters

Values for each of the above parameters were plotted against time for each well as shown in Figures 1 through 8. In general, the data plotted on these figures indicates a change from pre-operational to operational phase values. The trend of this change is almost always an increase in value. This increase may not reflect an actual change in groundwater quality, rather it may be due to the differences in sampling procedures and laboratory techniques.

Specific items of importance observed for each of the indicator parameters are:

- Sulfate, SO₄²⁻, Figure 1 The data for this parameter are relatively constant except for Well 3 which shows a gradual, but erratic increasing trend. Wells 2 and 4 also appear to have slighly increasing concentrations. Well 1 consistently has the lowest values for the deep wells. However, Well 7-2 has lower values than Well 1.
- Chloride, Cl⁻, Figure 2 The data for this parameter are relatively variable with no particular trend, except again for Well 3. The chloride concentrations measured in Well 3 show a gradually increasing trend with time. Well 4 also appears to have slightly increasing values. Wells 1 and 2 have similar concentrations which are the lowest observed. Well 7-2 has substantially higher values than the other wells.
- Total dissolved solids, TDS, Figure 3 This parameter indicates trends similar to that shown for sulfate. Concentrations in Well 3 are gradually increasing with time; concentrations in Well 1 are low, with Well 7-2 having similar, but slightly lower values.
- Sodium, Na⁺, Figure 7 The values for this parameter are constant with a very slight increasing trend noted in Wells 2 and 3. Well 7-2 has the lowest values and Well 1 the next lowest.

- pH, Figure 5 This parameter is quite variable for all wells but typically fall within a range of pH = 6.5 to 7.75. A slightly decreasing trend was observed from September 1980 through February 1981, with Well 3 having the lowest value by a slight amount.
- Radium-226, Ra-226, Figure 6 This parameter is variable, but no trends are observed. One very high value for Well 7-2 in July 1980 was reported. However, the concentrations returned to a more typical level the next month; therefore, the July 1980 value is considered erroneous.
- Bicarbonate, HCO3, Figure 7 This parameter indicates no particular trend with Well 7-2 having the lowest values; Well 1, the next lowest, and the other wells grouped together with higher but similar values. A high value was reported for Wells 2, 3 and 5 in September 1980, but the values went back down in the subsequent months' analysis.
- Calcium, Ca²⁺, Figure 8 This parameter shows an increasing trend for Wells 2 and 3. A relatively wide variation in values is observed, with Wells 3 and 4 having the highest concentrations.

The data plotted on the figures for several wells indicate increasing trends for certain parameters. To determine whether the increase was statistically significant, Student's 't' test was used. The hypothesis that the mean of the pre-operational concentrations is equal to the mean of the operational concentrations was tested at the 99 percent level. This level of significance means that the confidence needed to state there was indication of degradation must be high. Such a level is justified because it should help screen out extraneous variability due to sampling methods or fluctuations in other variables. The methodology used is in accordance with the monitoring and evaluation techniques required by the Resource Conservation and Recovery Act (RCRA)(40 C.F.R. 265.9).

The sulfate, chloride and TDS concentrations in Well 1, 2, 3 and 4 were evaluated. In all cases, the means of pre-operational and operational concentrations were <u>not</u> statistically different at the 99 percent confidence level. However, at the 95 percent confidence level, the means of TDS and chloride in Well 3 were statistically different. In fact, chloride concentrations in Well 3 were almost different at the 99 percent level. The main reason the means are not different is due to the large variance (standard deviation) in the means. For example, in Well 4, the sulfate concentrations were as follows:

September 9, 1981

Dr. C.E. Baker

0	Pre-operational	1,673 <u>+</u> 441 mg/1
0	Operational	$1,921 \pm 102 \text{ mg}/1$

These values yielded a 't' of 1.0 while the criteria 't' at 99 percent is 9.9. Therefore, the hypothesis that the means are equal is rejected. In other words, the large variability in the analyses makes it difficult to conclude that the means of the two populations are different. If the variability (as measured by the standard deviation) was smaller, differences in the means between the pre-operational and operational data would be easier to detect.

If the increasing trend is due to tailings water leakage, it should not be observed in the upgradient Well 1. However, the mean of the operational sulfate concentrations in Well 1 increases 47 percent over the mean of the pre-operational concentrations. The mean of the sulfate concentration in Well 3 increased 70 percent. Therefore, most of the apparent increase observed in Well 3 can be attributed to natural increases in background. The increase in Well 3 appears to be more dramatic because the pre-operational concentrations are significantly higher than those in Well 1. However, as shown, the percentage increase is similar in the two wells. In fact, the concentration of such species as calcium and sulfate increased substantially during pre-operational sampling. If this increase was projected into the operational period, the actual values measured during operational sampling would actually be less than or similar to the trend predicted from the pre-operational data. Furthermore, in most instances, the constant increase is no longer observed and concentrations have fairly well stabilized over the past 6 to 8 months. This observation is significant and indicates that the waters in the wells are now in equilibrium with their surrounding rock.

Conclusions

Conclusions from the available data and analyses discussed above are:

No trends are present which would indicate

 a failure of the liner system in Cell 2. The
 water quality values shown on Figures 1 through 8
 do not indicate any contamination occurring from
 the operation of the tailings cell.

The changes and trends which have been noted and discussed above are not considered significant enough to indicate a leak from the tailings cell.

 Statistical analyses also indicates that there are no differences in the means between the operational and pre-operational data. However, the mean of the chloride concentrations in Well 3 during operations may be slightly higher than the preoperational mean (at the 95 percent confidence

level). If increased levels of chloride occur in Well 3, increases in chloride concentrations should also be noted at Well 7-2 and 5. Wells 7-2 and 5 both have higher chloride concentrations than the other wells indicating the possiblity of degradation from some source. However, if the source was Cell 2, increased sulfate concentrations should be observed in Wells 7-2, 5 and 3. As previously stated, the sulfate increase in Well 3 is not statistically significant and Wells 5 and 7-2 have low sulfate concentrations. This indicates that Cell 2 is probably not leaking to any detectable degree and that the increased levels of chloride observed are probably from another source. Possiblities for this source are discussed later.

Well 3 is reflecting some change in groundwater quality which is not being reflected by the upgradient baseline Well 1. The groundwater quality change in Well 3 could be the result of several causes other than an actual change in the water quality. One of these causes is reflected in the fact that when Well 3 was drilled and completed in September, 1979 it was dry and required several days before a water level was detected. This is indicative of a low permeability material with low productivity. Lower permeable aquifers typically contain elevated concentrations of dissolved species due to the longer contact time and more surface area of aquifer materials. Water quality parameters could also be increasing in this well if water is being concentrated and formation water is not being introduced. Well 3 could also be reflecting the effect of the different water source detected in Well 7-2; however, the increasing sulfate values in Well 3 are inconsistent with the low sulfate values in Well 7-2. Also, Well 5 (down gradient from Well 7-2) does not reflect a change in water quality with time. Therefore, it is concluded that the water quality parameters being detected in Well 3 may be unrepresentative of the actual groundwater quality and that remedial work on Well 3 should be performed.

o Defective samples or analyses were probably obtained for the September 1980 period.

The possibility of a different contaminant source detected in Well 7-2 is discussed in detail in the following section.

September 9, 1981

Dr. C.E. Baker

EVALUATION OF WELL 7-2 WATER SOURCE

Potential Water Sources

Water was reported by Energy Fuels in Well 7-2 in June 1980. Well 7-2 is one of five intermediate depth wells completed at a depth of 50 to 60 feet (30 to 40 feet above the local water table). The purpose of the intermediate depth wells is detection of a leak from the tailings cell. Water should not be detected in these wells unless a change in the groundwater model for the site occurs or a new source of water is developed. To determine if the water detected in Well 7-2 was related to the tailings cell or mill operations, an assessment of the possible sources of this water was made. The results of this assessment are discussed in the following sections.

Two categories of potential water sources for the water were evaluated as follows:

- Natural Groundwater
 Local groundwater system
 - New source of groundwater recharge, i.e., irrigation water or construction water ponded on-site
- o Mill or Tailings Related Facilities
 - Tailings Cell 2
 - Mill sedimentation pond (Baker's Lake)
 - Mill process circuit

Natural Groundwater Source Evaluation

The natural groundwater source was evaluated by comparing the measured water level in Well 7-2 with the level predicted in the local groundwater model (discussed in Engineer's Report, Tailings Management System, June 1979). The prediction indicates that the local water table is about 40 feet below the level of water in Well 7-2. Forty feet is greater than a normal fluctuation in the level of the water table due to seasonal variations in precipitation. Therefore, this physical interpretation indicates that the water in Well 7-2 is from another source. A new potential groundwater source is unlikely because of the long-term existence of the water (8 months) which is not consistent with seasonal (irrigation) or intermittent (construction-related) sources. No other new sources were identified.

Water quality comparisons between Well 7-2 and baseline, Well 1, were also made as discussed under the previous section. This comparison indicates that the water in Well 7-2 is different than the local groundwater. In general, the local groundwater has greater concentrations of the major ions (bicarbonate, sulfate, magnesium, sodium and total dissolved solids). However, the concentrations of chloride, nitrate and uranium are greater in Well 7-2.

A comparison of water from Well 7-2 was made with Well 5 which is closest to Well 7-2 geographically and located downgradient from Well 7-2 with respect to the flow of groundwater. This comparison is shown in Table 1 and is based upon calculating the mean value for a population of values from several analyses. The value is reported as the mean with a standard deviation of 2 sigma. This type of statistical evaluation is used to emphasize differences between populations rather than precision of analyses. Although a large value of standard deviation relative to a mean may represent lack of analytical precision, it also reflects variation in the concentration of a parameter with respect to time. Lack of overlap in the range defined by the standard deviations. This hypothesis can be tested using Student's "t" test as previously described. However, the general conclusions can be made without the test.

In Table 1, it is observed that the concentrations of sodium, sulfate, bicarbonate, fluoride, alkalinity, and total dissolved solids, as well as the specific conductance, are greater in Well 5 than in Well 7-2. The concentrations of chloride, fluoride, nitrate, and uranium are greater in Well 7-2. Concentrations of other parameters, such as pH, calcium, potassium, and magnesium are essentially the same in the two wells. Additionally, the concentration of radium-226 was substantially greater in Well 7-2 in July; however, in subsequent analyses, the concentration decreased to background levels.

The differences in concentrations of major constituents from the statistical analysis between Wells 7-2 and 7-5, however, are large enough to suggest that the water in Well 7-2 is from a source other than regional groundwater.

Mill Tailings Related Source Evaluation

The potential of a local source from the tailings or within the mill site was also considered. The potential sources evaluated included tailings Cell 2, the mill sedimentation pond (Baker's Lake), and other mill circuit sources. Determination of the most likely source was made by comparing the water in Well 7-2 with waters from Cell 2 and from the mill sedimentation pond.

Water was collected from Cell 2, the sedimentation pond, and Well 7-2 by Energy Fuels in September 1980 and samples sent to D'Appolonia for analysis. Splits from the sedimentation pond and Well 7-2 samples were also sent to WAMCO by Energy Fuels for analysis. The results of these analyses are presented in Table 2. A discussion of the comparison between the results from the two laboratories is presented later.

The most obvious aspect in the comparison of the water quality from the three sources is that concentrations of most components in Well 7-2 are considerably lower, by one to two orders of magnitude, than corresponding parameters in either Cell 2 or the sedimentation pond.

The water in tailings Cell 2 is a characteristically acidic solution containing very high levels of sulfate from the sulfuric acid used in the leaching process. It contains high levels of sodium and chloride which are derived from sodium chlorate (NaClO₄) and sodium chloride (NaCl) in the acid leach process. Nitrate is present in tailings Cell 2 in relatively moderate amounts; however, the source of this nitrate is not readily apparent. Some acid leach processes use ammonium nitrate (NH₄NO₃) in the solvent extraction circuit. Another source for nitrate may be in the oxidation of the ammonium ion during the drying of the yellowcake and subsequent collection in the fly ash. The presence of nitrogen oxidizing bacteria in the tailings cell could produce nitrates, but such a species would need to be extremely tolerant to highly acidic, saline solutions. It is not likely that ammonia can oxidize readily in the tailings cell at the given conditions of pH and Eh.

The mill sedimentation pond (Baker Lake) is an unlined collection pond located in the southwest corner of the mill and facilities area and immediately north of tailings Cell 2. The purpose of this pond is to collect and retain sediment and runoff water from the facilities area. The pond should be dry except after a precipitation event while evaporation of the runoff occurs. Water has been reported in the sedimentation pond since June, 1980. The source of this water is reported to be from runoff, mill processes, and start-up-type operations.

Concentrations of parameters in the sedimentation pond are generally an order of magnitude lower than in tailings Cell 2. The water is basically sulfate-rich with moderate concentrations of chloride, sodium, calcium, and magnesium. (Nitrate concentrations are not elevated above values which are generally considered harmful to plants and animals.) The solution is acidic, although not to the same degree as tailings Cell 2. Neither the sedimentation pond nor tailings Cell 2 contain detectable amounts of bicarbonate ion, and consequently, the waters have no measurable alkalinity.

In evaluating either one of these surface waters as the source of water in Well 7-2, it is apparent that the concentrations of the major components are considerably different so that identification of the likely source should be possible. However, water in Well 7-2 is not as concentrated as either Cell 2 or the sedimentation pond source with respect to some parameters (sulfate, chloride, sodium, magnesium, potassium, ammonia, radionuclides, acidity), and is more concentrated with respect to others (bicarbonate, calcium, nitrate, alkalinity).

As previously discussed, the natural buffering capacity of the soils, which is due to calcium carbonate, can neutralize acid in the leachate and elevate the pH. This neutralization reaction causes an increase in the concentrations of calcium and bicarbonate in the groundwater and a decrease in heavy metal and radionuclide concentrations.

Because Well 7-2 is near both tailings Cell 2 and the sedimentation pond, it was expected that the concentrations of major constituents should be very similar to those in the source. Chemical reactions, such as precipitation and adsorption, act to alter the chemistry of a water as it moves through soil or bedrock, and such a mechanism will influence the differences in compositions between the well and the surface ponds. However, one notable exception to these processes is chloride which forms easily soluble salts. Hence, it is not removed from groundwater by precipitation or adsorbed by most geological materials. Chloride ions are considered to move at the same rate as the groundwater, and therefore, are considered to be a good tracer. Although sulfate is not strongly adsorbed by soils either, it is preferred over chloride in some cases of adsorption, and it can be precipitated as gypsum when the solubility product is exceeded.

Chloride concentrations in Well 7-2 remained relatively constant, varying from 83 to 99 mg/l from July, 1980 through February 1981 (Figure 2). The chloride concentrations in the sedimentation pond and tailings Cell 2 were recorded as 250 mg/l and 2,200 mg/l resepctively (Table 2). Allowing for some dilution, the concentration of chloride in Well 7-2 best reflects that found in the sedimentation pond. Concentrations of all other constituents in Well 7-2 are likewise more similar to the sedimentation pond than tailings Cell 2. If water was seeping from a leak in the tailings cell, greater concentrations would be expected in the well.

Comparison of Laboratories

As previously mentioned, splits of samples from Well 7-2 and the sedimentation pond were taken in September, 1980, and analyzed by D'Appolonia's water quality lab and WAMCO Labs. Table 2 presents the results from D'Appolonia and WAMCO laboratories for Well 7-2 and the mill sedimentation pond for comparison. Overall, the results from the two laboratories are very similar with the following exceptions:

- o Ammonia measured by WAMCO in the sedimentation pond is extremely high.
- o Concentrations of radionuclides measured by D'Appolonia were substantially higher than the values measured by WAMCO.

These high values reported by the respective laboratories are probably in error and are being checked by the laboratories. Besides these few parameters, the agreement is typically excellent. Therefore, the increasing trend observed between pre-operational and operational data probably cannot be attributed to differences in laboratories. Some differences may be attributed to changes in sampling techniques and personnel. However, these are also probably small.

IDMA DIDADI ADNIA

Other Considerations

Dilution of the groundwater has been mentioned as a reason for lower concentrations in the well. One possible source for mixing of waters could be water from the septic leach field. Other possibilities are water from irrigation of sod at the facilities, and construction-related sources. Both conditions could cause water to intercept the water from the sedimentation pond at a point upgradient from Well 7-2; however, such occurrences are speculative and would be difficult to verify.

One item which has been investigated closely is the trend of nitrate in the well from July to September, 1980. The source of the elevated concentration of nitrate (100 mg/1) in July, 1980, has been difficult to identify because no waters which could be sources were found to contain comparable levels of nitrate. In a conversation with Jim Gallagher of WAMCO Labs in Casper, Wyoming, reasonable doubt was raised concerning the validity of this analysis. Mr. Gallagher suggested that a sample may have been collected for nitrate analysis with a bottle previously acidified with nitric acid. Other possible sources of nitrate could be from septic sludge or fertilizer. However, the existence of such sources is not known.

Conclusions

Based on the preceding discussion, the most likely source of water in Well 7-2 is the sedimentation pond. This conclusion is supported by the following facts:

- o Water in Well 7-2 is not similar to local groundwater quality or elevation.
- o Water in Well 7-2 is closer in chemical composition to water from the sedimentation pond than to water in tailings Cell 2.
- o Chemical concentrations of some key components, such as chloride, should be similar in both
 Well 7-2 and its source. The concentration of chloride and sulfate is far too small in the well for tailings Cell 2 to be the source.
- o The sedimentaion pond is directly upgradient from Well 7-2. The tailings cell lies between the well and the pond, and it is lined with an impermeable seal. The sedimentation pond is not lined and water can percolate into the subsurface where it could flow beneath the impermeable seal of the tailings and intercept Well 7-2 at depth.
- o Changes in chemical composition between the sedimentation pond and the well water are attributed to chemical interactions between the groundwater and the geological material through which it

TO A IDIDA DI ADNIA

o Changes in chemical composition between the sedimentation pond and the well water are attributed to chemical interactions between the groundwater and the geological material through which it flows. Dilution may change the levels of concentrations by mixing of two waters, but another source of water in the immediate subsurface has not been verified.

OVERALL SUMMARY AND CONCLUSIONS

Groundwater water quality data from pre-operational and operational (through February 1981) phases have been reviewed. No indication of local groundwater degradation attributable to the mill or tailings operation is evident from these data. Indications of a change in water quality in Well 3 are considered to possibly be the result of poor water supply to Well 3. However, the consistency of the concentrations measured recently may indicate that static conditions have been achieved.

The possible sources of water in Well 7-2 were also evaluated. Results of the evaluation indicates that the most likely source is the sedimentation pond (Baker Lake). The basis for this conclusion is the comparison of water quality data and the elimination of other known possible sources. The water quality comparison for Well 7-2 and the sedimentation pond as detector and source, respectively, is not exact and other unknown sources may be contributing or causing the detection occurrence of water in Well 7-2.

If you have any questions or wish to discuss any of these items, please contact us.

Very truly yours,

Corwin E. Oldweiler Project Engineer

Olsen Oal

Roger L. Olsen Project Geochemist

CEO:RLO:klg

cc: H.R. Roberts, Energy Fuels D.K. Sparling, Energy Fuels

TABLE 1

WATER QUALITY PARAMETER COMPARISON WELL 7-2 and WELL 5(1)

·		WELL 7-2(2)	WELL 5(3)
PARAMETER	UNITS	JULY 1980 - SEPT 1980	MAY 1980 - SEPT 1980
pH	Standard Units	7.54 [±] .17	7.60 [±] .14
	micromhos/cm@25°C	1389 [±] 137	2480±126 376±114
Alkalinity — Hardness	mg/l as CaCO3 mg/l as CaCO3	168±33 600±63	601 [±] 48
Total Dissolved Solids Solids	mg/l	1112 [±] 139	2228 [±] 126
Major Ions	· · ·		
Sodium	mg/1 ·	99±8	468 [±] 24
Calcium.	mg/l	160 [±] 7	162±17
Potassium	mg/l	10 [±] 4	18±4
Magnesium	mg/1	49 [±] 11	48 [±] 5
Chloride	mg/l	89 [±] 5	57±4
Sulfate	mg/1	502 [±] 48	1140 [±] 120
Bicarbonate	mg/1	205±40	460 [±] 140
Carbonate	mg/l	0±0	0±0
Fluoride	mg/1	0.51 [±] .21	0.29 [±] .08
Nitrate	mg/1	39±53	.07 ⁽⁴⁾
Uranium	μ _g /1	24 [±] 19	8.5 [±] 1.0 ⁽⁵⁾

(1) Analyses were performed by WAMCO Lab of Casper, Wyoming.

(2)Values are statistical means with standard deviations for a population of three data sets.

(3)Values are statistical means with standard deviations for a population of five data sets.

(4)_{Average} of two values.

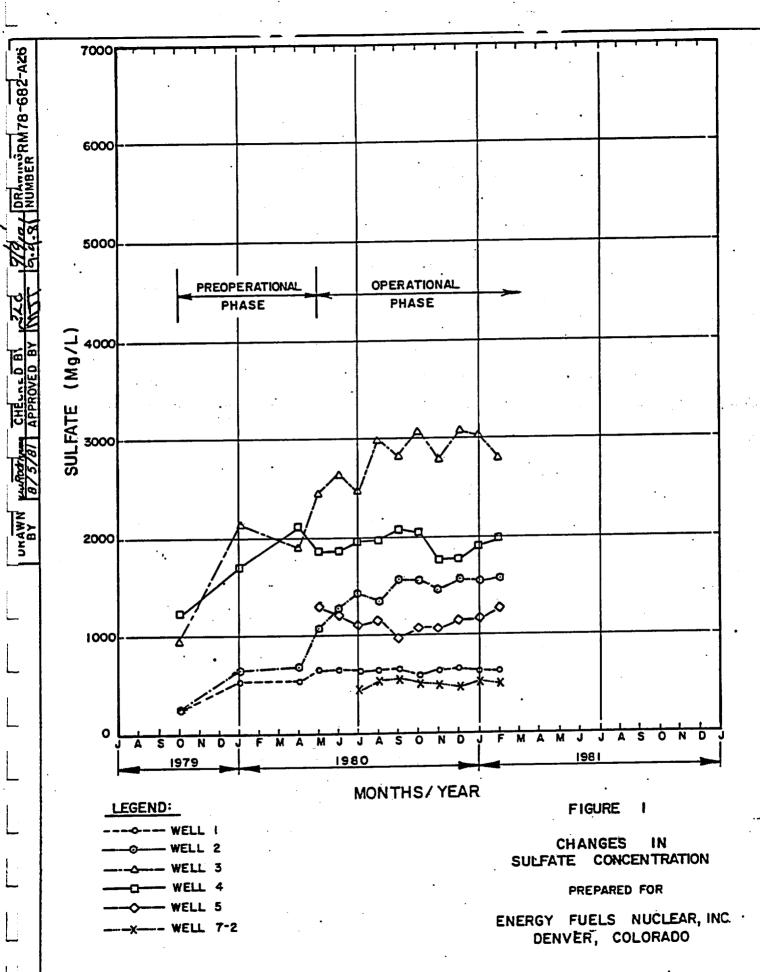
(5)_{Mean} determined for four values.

TABLE 2

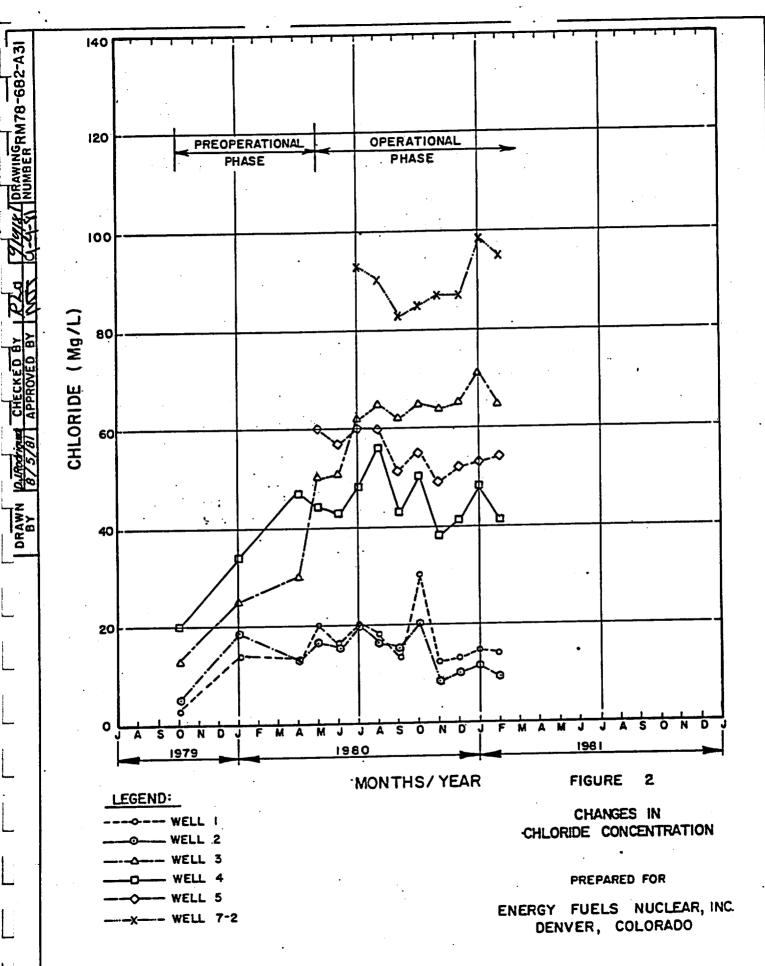
WATER QUALITY PARAMETER COMPARISON(1)

		WELL 7-2		MILL SITE SEDIMENTATION POND (BAKER'S LAKE)		TAILINGS CELL 2(3)
PARAMETER	UNITS	_A (2)	_B (3)	A(2)	B(3)	
рĦ	S.U.	7.56	6.60	4.46	4.00	1.10
Specific Conductance	umhos/cm	1454	1400	2650	3700	87000
Acidity	mg/1 CaCO ₃		<2		38	3800
Total Alkalinity	mg/1 CaCO ₃	190	175	14	0	0
Bicarbonate	mg/1 HCO3	232	214	17	0.	0
Carbonate	mg/1 CO3	0	0	0	0.	0
Chloride	mg/1	83	77	270	250	2200
Nitrate	mg/1 NO3-N	8	12	2	3.5	24
Ammonia	mg/1 NH ₃ -N	ND	2.2	116	0.16	3.0
Total Phosphate	mg/1 PO4-P	3.7	5.75	0.72	0.56	160
Sulfate	mg/1	538	250	1108	1300	35000
Total Dissolved Solids		1218	1150	2281	2140 ·	58100
Metals		(4		0.000(4)		25.0
Arsenic	mg/1) 0.026	0.002 ⁽⁴⁾		35.8
Calcium	mg/1	164	155	212	145	90
Magnesium	mg/l	59	44	100	72	1800
Potassium	mg/1	9	4	33	17	405
Sodium	mg/1	101	94	250	190	1400
Uranium	mg/l	20	28	49	18	87
Radionuclides	- • •		/		1 700	114 000
Gross alpha	pCi/l	3.4	57.4	22.0	1,700	114,000
Gross beta	pCi/l	1.8	7.4	55.0	444.0	74.0
Ra-226	pCi/l	0.2	0.23	3.6	2.1	180
Calculated Values		17.65	15.54	30.52	21.85	223.7
Cations	meq/1	17.85	11.07	30.94	34.15	790.4
Anions	meq/1	17.33	11.07	JU 1 74	∀₹ । È <i>¥</i>	
<u>Cations-Anions</u> x 100 Cations+Anions	Percent	0.91	-16.8	-0.68	21.9	55.9

ND = Not Detected

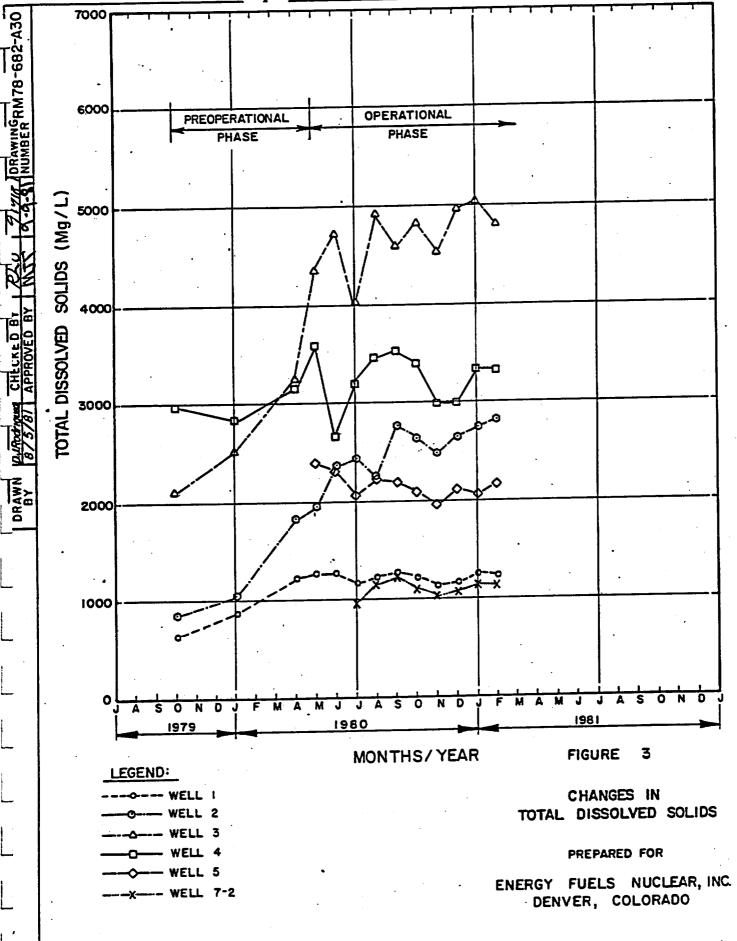

(1)Analysis for samples taken on September 19, 1980; all parameters are dissolved unless otherwise indicated.

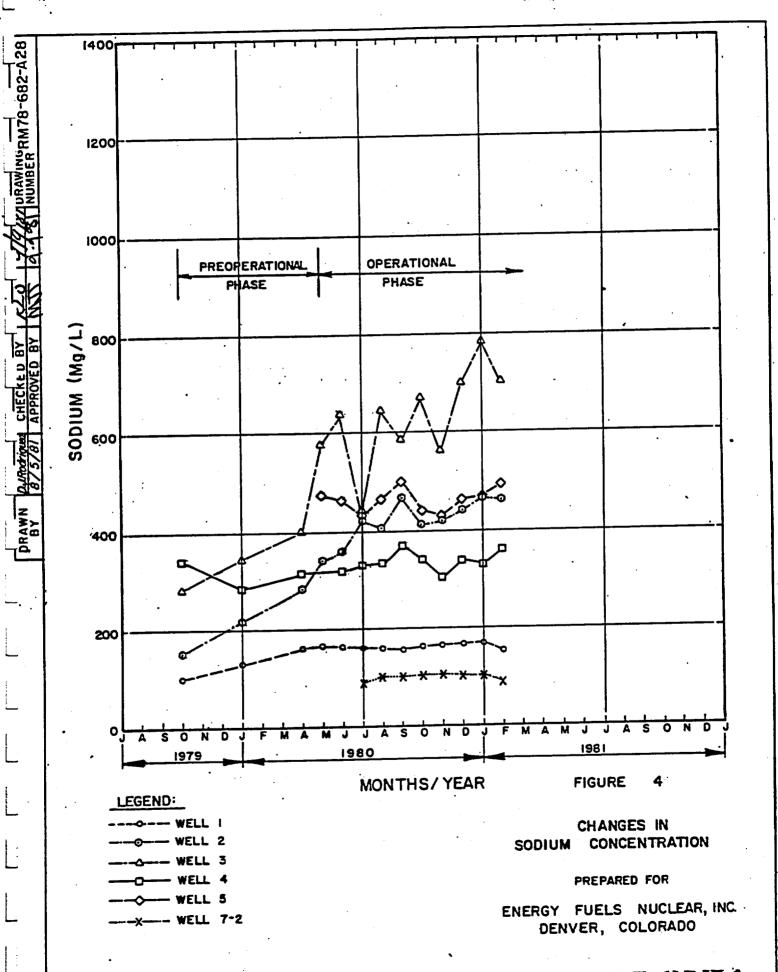
(2)Analyses performed by WAMCO Labs; Well 7-2 dated October 21, 1981, WAMCO No. 1903; Baker Lake, dated October 13, 1980, WAMCO No. 1907.

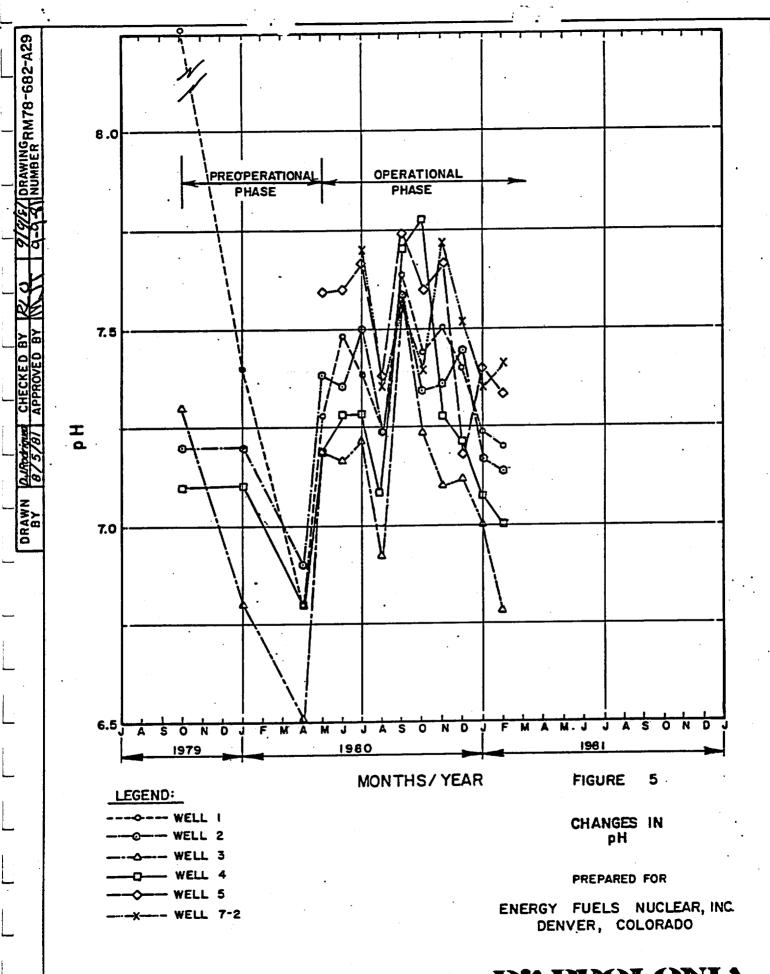

(3) Analyses performed by D'Appolonia water laboratory.

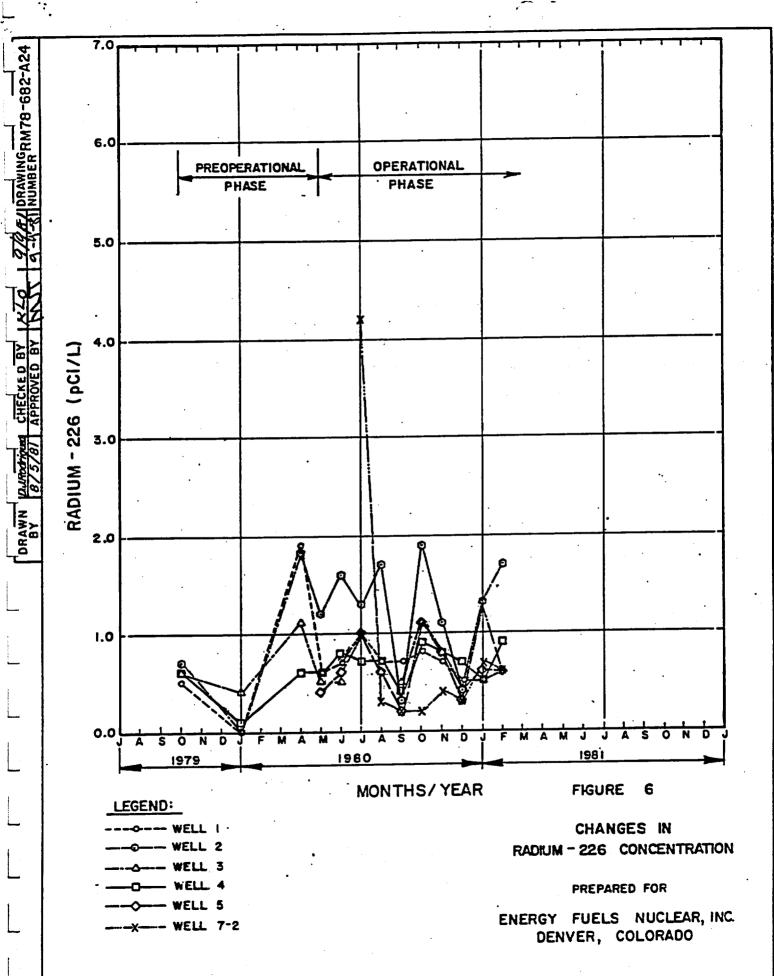
(4)_{Total analysis.}

DAPPOLONIA



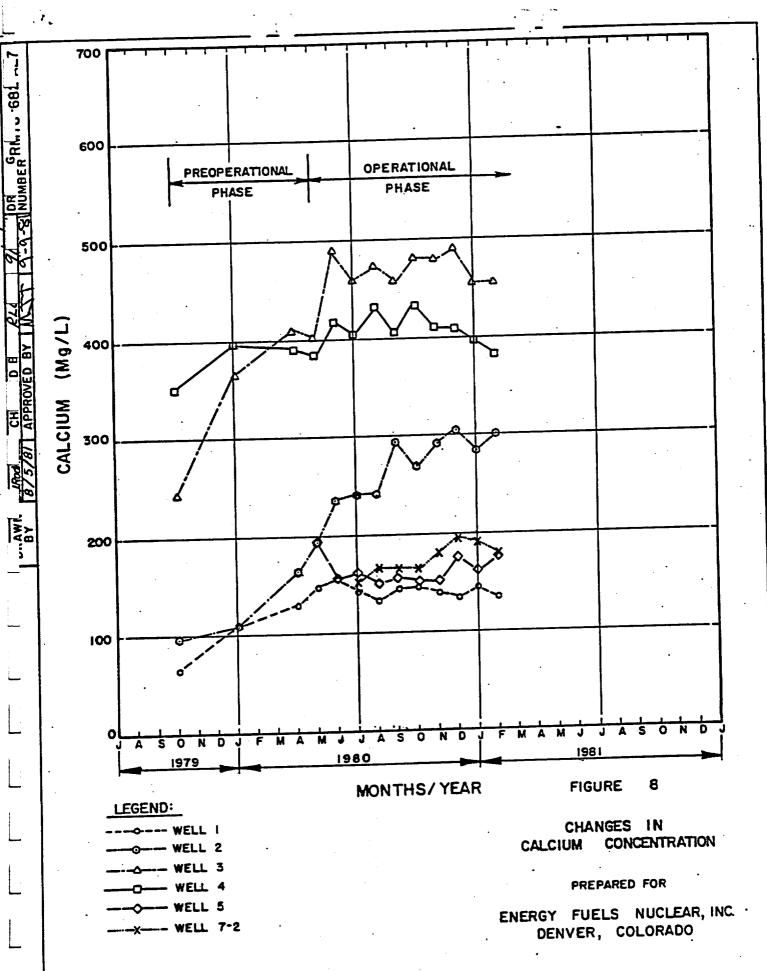

ID: MPACIADNLA


D'MPOLONLA



DIMPROTADNLA

ID:APPOIADNLA


.

ID MPMMANLA

DIMPADIADNLA

DIMPROFADILA

ATTACHMENT 5

ANALYTICAL REPORT

27-0CT-82

ENVIROLOGIC SYSTEMS, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

• •

	W82289 - 1 WELL ‡1	W82289 - 2 WELL ‡2	W82289 - 3 WELL ‡3	W82289 - 4 WELL ‡4	WB2289 - 5 WELL #5	W82289-6 Added Well Sample
DATE/TIME SAMPLED DATE/TIME RECEIVED	08-31-82/ 850 08-31-82/1400 09-01-82/ 900	08-31-82/1125 08-31-82/1400 07-01-82/ 900	08-31-82/ 950 08-31-82/1400 09-01-82/ 900	08-31-82/ 945 08-31-82/1400 09-01-82/ 900	08-31-82/1025 08-31-82/1400 09-01-82/ 900	10/21/82/850 10/21/82/130
LOCATION: AURORA, CO		на страна 1. 1.	•	· · · · · · · · · · · · · · · · · · ·		
*FIELD TEMPERATURE (DEG. C) *FIELD PH LAB PH (Q 25 DEG. C) *FIELD COND. (UMHOS Q 25 DEG. LAB COND. (UMHOS Q 25 DEG. C)	20.5 7.8 8.05 C) 140 610	23.0 8.4 8.05 130 383	17.5 8.6 8.30 130 419	26.5 8.1 8.00 130 405	24.0 8.8 8.30 140 401	15.0 4.5 4.60 3900 4450

* VALUES SUPPLIED TO CORE LABORATORIES BY SAMPLE COLLECTION AGENT --ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any bil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

27-0CT-82

RESULTS OF WATER QUALITY ANALYSIS

ANIALYTICAL REPORT

ſ....

1

ENVIROLOGIC SYSTEMS, INC.

		ON SAMPLES COL	LECTED AT LOCATION			
JOB NO. 6307- Sample ID: Sample Remarks:	W82289 - 1 WELL ‡1	W82289 - 2 WELL ‡ 2	W82289 - 3 WELL ‡3	W82289 - 4 WELL ‡4	W82289 - 5 WELL ‡5	W82289-6 Added Well Sample
GENERAL PARAMETERS						
TOTAL DISSOLVED SOLIDS (CALC. BICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) SULFATE (SO4) CHLORIDE (C1) TOTAL ALKALINITY (AS CaCO3) PHOSPHATE-TOTAL (PO4-P) NITROGEN-KJELDAHL (TOTAL) NITRATE (NO3-N) NITRITE (NO2-N) SULFIDE (S)) 530 (254 303 <1 <0.5 97.1 8.01 263 <0.01 <0.5 <0.1 0.002 <0.1) 180 (134 225 <1 <0.5 22.6 0.74 172 <0.01 <0.5 0.1 0.003 <0.1) 280 (173) 206 <1 <0.5 63.8 7.06 181 <0.01 1.5 0.3 0.004 0.7	250 (151) 239 <1 <0.5 32.9 1.06 203 <0.01 <0.5 <0.1 0.002 <0.1	252 (148) 234 <1 <0.5 30.5 3.15 201 0.02 <0.5 0.1 0.005 <0.1	4890 (3421) 6.14 <1 <0.5 3185 213 22 1.1 20.4 0.027
ORGANIC CARBON, TOTAL (TOC) Inorganic Carbon, Total (Phosphate-Total (PO4-P),T	<1 TIC) 63.8	<1 48.5 0.01	16 38.3 0.02	2 48.8 0.01	<1 47.4 0.02	<0.01

*All data reported on a TOTAL basis unless noted otherwise

4- - -

· .

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, or to the productivity, proper operations, or profitableness of any all, gas, coal or other mineral, property, well or sond in connection with which such report is used or relied upon.

27-0CT-82

AN__YTIC___RE__RT

ENVIROLOGIC SYSTEMS, INC.

[]

Γ

[

RESULTS OF	WATER QUAL	ITY.	ANALYSIS
ON; SAMPLES	COLLECTED	AT I	DCATION:

JOB ND. 6307- Sample ID: Sample Remarks:	W82289 - 1 WELL ‡1	W82289 - 2 WELL ‡2	W82289 - 3 WELL ‡3	.W82287 - 4 WELL ‡4	W82289 - 5 WELL † 5	W82289-6 Added Well Sample
TOTAL METALS						
TOTAL /CALCIUM (Ca) TOTAL COPPER (Cu) TOTAL IRON (Fe) TOTAL MAGNESIUM (Mg) TOTAL MANGANESE (Mn) TOTAL POTASSIUM (K)	<0.01 0.58 28.0 <0.01 7.0	49.0 <0.01 0.35 20.0 <0.01 `3.4	33.0 0.02 7.80 22.0 0.14 3.3	45.0 0.06 0.56 18.0 <0.01 3.5	<0.01 1.6	520 <0.01 2.38 480 3.90 4.5
TOTAL SELENIUM (Se) Total Sodium (Na) Total Vanadium (V)	<0.01 69.0 <0.5	<0.01 7.2 <0.5	<0.01 33.0 <0.5	<0.01 24.0 <0.5	<0.01 82.0 <0.5	170
TOTAL ZINC (Zn)	0.01	0.06	0.79	0.04	0.03	2.00

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any all, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

27-0CT-82

ANALYTICAL REPORT

ENVIROLOGIC SYSTEMS, INC.

RESULTS OF	WATER QUALITY	ANALYSIS
ON SAMPLES	COLLECTED AT	LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W82289 - 1 WELL ‡1	W82289 - 2 WELL #2	W82289 - 3 WELL 1 3	W82289 - 4 WELL ‡4	W82289 - 5 WELL 1 5
RADIOCHEMISTRY	·	· •			
>Gross Alpha (pCi/1)	1.6 ± 1.4	5.3 ± 2.2	2.0 ± 1.3	3.7 ± 1.9	3.3 ± 1.8
>Gross Beta (pCi/1)	6.2 ± 1.8	3.3 ± 1.7	3.2 ± 1.6	5.1 ± 1.7	1.9 ± 1.6

>--Denotes Parameter Analyzed on a total basis

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and far whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted): but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, cool or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

CLIENT IDENTIFICATION

JOB NO.:6307-W83484 COMPANY: ENERGY FUELS NUCLEAR, INC. JOB/GROUP REMARKS:

- IDENTIFICATION
- 1) MONITORING Well 1
- 3) MONITORING WELL 3
- 5) MONITORING WELL 5

CREEK

7) MONITORING WELL 12 9) MONITORING duplicate sample of WELL 20 11) S. COTTONHOOD Well # 3

- IDENTIFICATION
- 2) MONITORING WELL 2
- 4) MONITORING Well 4
- 6) MONITORING Well 11
- 8) MONITORING WELL 13
- 10) CULINARY WELL

12) RUIN SPRINGS

RECT E NAL

JAN 3

.0

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and far whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

29-DEC-83

CORF ABORATORIES INC

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR, INC.

L____

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307- SAMPLE ID: SAMPLE REMARKS: DATE/TIME SAMPLED DATE/TIME RECEIVED DATE/TIME ANALYZED CHEMIST: RIF/DRH LOCATION: AURORA, CO	W83484 - 1 MDNITORING WELL 1 10-26-83/ 11-01-83/1000 11-02-83/ 800	W83484 - 2 MONITORING WELL 2 10-27-83/ 11-01-83/1000 11-02-83/ 800	W83484 - 3 MONITORING WELL 3 10-26-83/ 11-01-83/1000 11-02-83/ 800	W83484 - 4 MONITORING WELL 4 10-26-83/ 11-01-83/1000 11-02-83/ 800	W83484 - 5 MONITORING WELL 5 10-27-83/ 11-01-83/1000 11-02-83/ 800	W83484 - 6 MONITORING WELL 11 10-26-83/ 11-01-83/1000 11-02-83/ 800
LAB PH (0 25 des. C) LAB COND. (as umbos/cm 0 25C) ALL VALUES REPORTED ON A DI	7.89 1680 (SSOLVED BASIS (7.72 3560 Mg./l.) unless I	7.49 5550 NDICATED OTHERWISE	7.71 3700	7.96 2840	8,21 2600

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

27-DEC-83

OR LAPARATORIC, INC.

ANALYTICAL REPORT

Г

ENERGY FUELS NUCLEAR, INC.

1

r-----

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	H83484 – 1 Monitoring WELL 1	W83484 - 2 Monitoring Well 2	W83484 – 3 Honitoring Well 3	W83484 - 4 Monitoring Well 4	W83484 - 5 Monitoring Well 5	W83484 - 6 Monitoring Well 11
MAJOR CATIONS						
CALCIUM (Ca) MAGNESIUM (Ms) SODIUM (Na) POTASSIUM (K) SUM OF MAJOR CATIONS (me/1) SUM OF TOTAL CATIONS (me/1)	140 (6.9 54 (4.4 170 (7.3 6.1 (0.1 (18.9 (18.9	4) 92 (7,57) 7) 500 (21,75) 6) 6,5 (0,17) 7) (44,96)	210 (17.28) 800 (34.80) 21 (0.54) (75.08)	430 (21.46) 160 (13.17) 320 (13.92) 9.0 (0.23) (48.78) (48.78)	150 (7,48) 41 (3,37) 480 (20,88) 7,0 (0,18) (31,91) (31,91)	28 (1.40) 6.7 (0.55) 540 (23.49) 5.0 (0.13) (25.57) (25.57)
MAJOR ANIONS						
BICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) SULFATE (SO4) CHLORIDE (C1) SUM OF MAJOR ANIONS (me/1)	334.0 (5.4 <1 (0.0 <0.5 (0.0 675 (14.0 12.7 (0.3 (19.8	0) <1 (0.00) 0) <0.5 (0.00) 5) 1818 (37.85) 6) 5.1 (0.14)	<pre>> <1 (0.00) <0.5 (0.00) 3226 (67.17) 56.6 (1.60)</pre>	464.0 (7.60) <1 (0.00) <0.5 (0.00) 2034 (42.35) 35.8 (1.01) (50.96)	<1 (0.00) <0.5 (0.00) 1183 (24.63) 46.8 (1.32)	402.0 (6.59) <1 (0.00) <0.5 (0.00) 922 (19.20) 26.0 (0.73) (26.52)
SUN OF TOTAL ANIONS (me/1)	(19,8	8) (45.38)) (77,36)	(50.96)	(32.44)	(26.52)

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

29-DEC-83

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307-	H83484 - 1	W83484 – 2	W83484 - 3	W83484 - 4	W83484 - 5	W83484 - 6
Sample ID:	Monitoring	Monitoring	Monitoring	Monitoring	Honitoring	Monitoring
Sample Remarks:	Well 1 .	Well 2	Well 3	Well 4	Well 5	Well 11
GENERAL PARAMETERS						
TOTAL DISSOLVED SOLIDS (CALC.)	1225 (1225)	2972 (2957)	5127 (5026)	3300 (3221)	2093 (2106)	1697 (1729)
*TOTAL ALK. (PH 3.7 as CaCO3)	289	389	457	401	339	353

***--FILTERABLE**

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and amissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

29-DEC-83

CORF APORATORIES INC

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR, INC.

[_____

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W83484 - 1 Honitoring Well 1	WB3484 - 2 Monitoring Well 2	W83484 - 3 Monitoring Well 3	W83484 - 4 Monitoring Well 4	W83484 - 5 Monitoring Well 5	W83484 - 6 Monitoring Well 11
DISSOLVED METALS						
URANIUM (U30B)	0.003 2.0, x.o.? .u.i/n	0.009 607× 10-7	0.042 2.52'0 ⁻⁸	0.001 6 77,40 ⁻¹⁰	0.001 6.77× 10-14	0.001 6.774/0 ^{.10}

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

29-DEC-83

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND, 6307- Sample ID: Sample Remarks:	W83484 – 1 Monitoring Well 1	W83484 - 2 Monitoring Well 2	W83484 - 3 Monitoring Well 3	W83484 - 4 Monitoring Well 4	W83484 - 5 Monitoring Well 5	W83484 - 6 Monitoring Well 11
DISSOLVED RADIOCHEMISTRY						
GROSS ALPHA (PCi/L)	14 ± 6	0.0 ± 5.2	43 ± 9	2.1 ± 4.7	0.2 ± 3.0	0.0 ± 2.5

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

29-DEC-83

CORL'ABORATORIES INC.

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W83484 - 7	W83484 - 8	W83484 - 9	W83484 -10
SAMPLE ID:	MONITORING	MONITORING	MONITORING	CULINARY
SAMPLE REMARKS:	WELL 12	WELL 13	WELL 20	WELL
DATE/TIME SAMPLED	10-27-83/	10-27-83/	10-27-83/	10-26-83/
DATE/TIME RECEIVED	11-01-83/1000	11-01-83/1000	11-01-83/1000	11-01-83/1000
DATE/TIME ANALYZED	11-02-83/ 800	11-02-83/ 800	11-02-83/ 800	11-02-83/ 800
CHEMIST: RIF/DRH			A. 1' B	
LOCATION: AURORA, CO			amplicate	
			sample fr	hom
به به بند به به به به عند به ان و و و و و و ه ه ه به به به به به . به به بند به به به به عند به ان و و و و و و و ه ه به به به به به .			4200 # 3	
LAB pH (0 25 deg. C)	7.47	7,87	7.78	8,20
LAB COND. (as unhos/cm @	250) 4000	4380	5770	470
ALL VALUES REPORTED ON		MG./L.) UNLESS I	NDICATED OTHERWISE	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the praductivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

29-DEC-83

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:		3484 - 7 W83484 - 8 NITORING MONITORING LL 12 WELL 13		W8348 Monit Well	ORING	₩83484 -10 CULINARY ₩ELL		
MAJOR CATIONS								
CALCIUM (Ca)	530	(26,45)	350	(17,47)	520	(25,95)	46	(2.30)
MAGNESIUM (MS)	210	(17.28)	100	(8,23)	210	(17.28)	19	(1.56)
SODIUM (Na) Potassium (K)	290 13	(12.61)	640	(27.84)	790 21	(34.36)	17	(0.74) (0.09)
SUM OF MAJOR CATIONS (me/1)	13	(0.33) (56.68)	9.9	(0,25) (53,79)	_ 21	(0.54) (78.13)	3.4	(4.69)
SUM OF TOTAL CATIONS (me/1)		(56.68)		(53,79)		(78.13)		(4+69)
MAJOR ANIONS								
BICARBONATE (HCO3)	529.0	(8,67)	430.0	(7,05)	532.0	(8,72)	255.0	(4,18)
CARBONATE (CO3)	<1	(0.00)	<1	(0.00)	<1	(0.00)	<1	(0.00)
HYDROXIDE (OH)	<0.5	(0.00)	<0.5	(0.00)	<0.5	(0.00)	<0.5	(0.00)
SULFATE (SO4)	2338	(48,68)	2265	(47.16)	3250	(67.67)	64	(1.33)
CHLORIDE (C1)	53.9	(1.52)	41.2	(1.16)	58.3	(1.64)	0.6	(0.02)
SUM OF MAJOR ANIONS (me/1)		(58,87)		(55.37)		(78,03)		(5.53)
SUM OF TOTAL ANIONS (me/1)		(58,87)		(55.37)		(78,03)		(5.53)

These analyses, opinions or interpretations are based an observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

29-DEC-83

ENERGY FUELS NUCLEAR, INC.

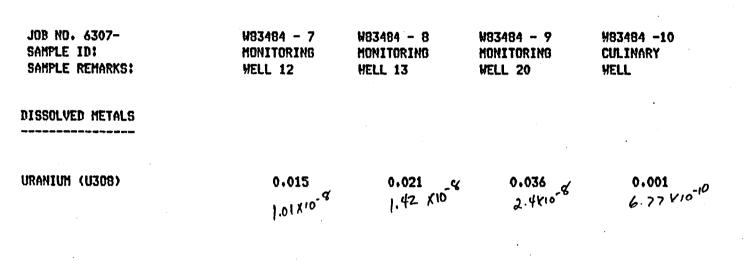
RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W83484 - 7	W83484 - 8	W83484 - 9	W83484 -10
SAMPLE ID:	MONITORING	MONITORING	MONITORING	CULINARY
SAMPLE REMARKS:	WELL 12	WELL 13	WELL 20	WELL

GENERAL PARAMETERS

TOTAL DISSOLVED SOLIDS (CALC.)	3922 (3699)	3689 (3621)	5156 (5115)	293 (278)
*TOTAL ALK. (PH 3.7 as CaCO3)	453	371	461	221

*--FILTERABLE


These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

27-DEC-83

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and amissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

27-DEC-83

CORFIAPORATORIES

ANALYTICAL REPORT

INC

ENERGY FUELS NUCLEAR, INC.

REBULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	MON	484 - ITORI L 12	ING	MON	484 - IITORI .L 13		MON	484 - Itori L 20		W834 Culi Well	NARY		
DISSOLVED RADIOCHEMISTRY					·			2					
GROSS ALPHA (PCI/L)	10	Ŧ	5	11	Ŧ	5	34	ŧ	8	0.0	±.	0+B	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

Rocewed

5/17/82

CORE LABORAIORIES, INC. ANALYTICAL REPORT

MAR 1 0 1999 .

CLIENT IDENTIFICATION

JOB NO.:6307-W82096 Company: Energy fuels Nuclear, Inc. Job/Group Remarks:

 $\sum_{i=1}^{n}$

IDENTIFICATION

- 1) WELL NO. 1 CULINARY
- 3) WELL NO. 4 MONITORING

IDENTIFICATION

2) WELL NO. 2 Monitoring

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no worranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORA IORIES, INC. ANALYTICAL REPORT

26-APR-82

ENERGY FUELS NUCLEAR, INC.

·[

· [

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	₩82096 - 1	W82096 - 2	W82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING
DATE/TIME SAMPLED	04-07-82/	04-02-82/	04-07-82/
'E/TIME RECEIVED	04-09-82/1045	04-09-82/1045	04-09-82/1045
DATE/TIME ANALYZED	04-13-82/1050	04-13-82/1050	04-13-82/1050
CHEMIST: RIF/DRH			
LOCATION: AURORA, CO			

LAB PH (@ 25 DEG, C)	7.70	7.50	7.36
LAB COND. (UMHOS @ 25 DEG.	C) 459	3402	3630
ALL VALUES REPORTED ON A	DISSOLVED BASIS	(MG./L.) UNLESS	INDICATED OTHERWISE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. ANALYTICAL REPORT

26-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82096 - 1	W82096 - 2	₩82096 - 3
SAMPLE ID:	WELL NO. 1	WELL ND. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

MAJOR CATIONS

CALCIUM (Ca)	43.0 (2.15)	310 (15,47)	420 (20,96)
HAGNESIUM (Mg)	22.0 (1.81)	88.0 (7.24)	160 (13,16)
SODIUM (Na)	22.0 (0.96)	460 (20.01)	330 (14.36)
SUH OF MAJOR CATIONS (mea)	(4,92)	(42,72)	(48,48)
SUM OF TOTAL CATIONS (mea)	(4.92)	(42,72)	(48,48)

MAJOR ANIONS

L_LARBONATE (HCO3)	249 (4,08)	451 (7.39)	451 (7,39)
CARBONATE (CO3)	<1 (0.00)	<1 (0.00)	<1 (0.00)
HYDROXIDE (OH)	<0.5 (0.00)	<0.5 (0.00)	
SULFATE (SO4)	40.7 (0.85)	1766 (36,77)	2056 (42,81)
CHLORIDE (C1)	2.46(0.07)	6.94(0.20)	39.7 (1.12)
SUM OF MAJOR ANIONS (mea)	(5,00)	(44,36)	(51.32)
SUM OF TOTAL ANIONS (mea)	(5.00)	(44.36)	(51.32)

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity: proper operations, or or or opinions. or opinions of any oil, ago, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORAIORIES, INC. ANALYTICAL REPORT

26-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	₩82096 - 1	₩82096 - 2	W82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

IERAL PARAMETERS

·

TOTAL DISSOLVED SOLIDS (CALC.)	390	(252)	2860	(2852)	3260	(3227)
TOTAL ALKALINITY (AS CaCO3)	222		404			404		

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. ANALYTICAL REPORT

26-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82096 - 1	W82096 - 2	W82096 - 3
SAMPLE ID:	WELL NO. 1	WELL ND. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

JIOCHEMISTRY

LEAD 210 (PCi/)	**	京京
POLONIUM 210 (PCi/L)	3.9 ± 2.4	0.6 ± 0.7
RADIUM 226 (PCi/L)	** .	**
THORIUM 230 (PCi/L)	**	**
URANIUM (U308)-(ug/L)	7	2

****--PRELIMINARY REPORT, RESULTS TO FOLLOW**

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and omissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

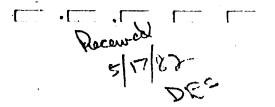
CORE LABORAIORIES, INC. ANALYTICAL REPORT

26-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307-	W82096 - 1	W82096 - 2	₩82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING


"AL RADIOCHEMISTRY

٠ſ

TOTAL LEAD 210 (PCi/L)	* *	
TOTAL POLONIUM 210 (PCi/L)	0.5 ±	0.5
TOTAL RADIUM 226 (PCI/L)	家家 .	
TOTAL THORIUM 230 (PCi/L)	**	
TOTAL URANIUM (U308)-(us/L)	<1	

****--PRELIMINARY REPORT, RESULTS TO FOLLOW**

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

COKE LABORAIOKIES, INC. ANALYTICAL REPORT

CLIENT IDENTIFICATION

JOB NO.:6307-W82094 Company: Energy fuels Nuclear, Inc. Job/Group Remarks:

IDENTIFICATION

1) WELL NO. 7-2

3) WESTWATER

IDENTIFICATION

2) SOUTH COTTONWOOD

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORAIORIES, INC. ANALYTICAL REPORT

22-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307-	W82094 - 1	W82094 - 2	₩82094 - 3
SAMPLE ID:	WELL ND. 7-2	SOUTH	WESTWATER
SAMPLE REMARKS:		COTTONWOOD	
DATE/TIME SAMPLED	04-01-82/	04-01-82/	04-01-2 /
E/TIME RECEIVED	04-07-82/1100	04-07-82/1100	04-07-2 /1100
DATE/TIME ANALYZED	04-08-82/1030	04-08-82/1030	04-08-2 /1030
CHEMIST: RIF/DRH			
LOCATION: AURORA, CO			

LAB pH (@ 25 DEG.C)	7,50	8.35	8.20
LAB COND. (UMHOS @ 25 DEG.	C) 1352	686	1155
ALL VALUES REPORTED ON A	DISSOLVED BASIS	(MG./L.) UNLESS	INDICATED OTHERWISE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the bast judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORAIORIES, INC. **ANALYTICAL REPORT**

22-APR-82

ENERGY FUELS INC. NUCLEAR,

				TER QUALITY ANALYSIS LLECTED AT LOCATION:
JOB NO. 6307- Sample ID: Sample Remarks:	W82094 - WELL ND.	-	W82094 – 2 South Cottonwood	W82094 - 3 Westwater
IERAL PARAMETERS				
TOTAL DISSOLVED SOLIDS (CALC.) TOTAL SUSPENDED SOLIDS BICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) SULFATE (SO4) CHLORIDE (C1) TOTAL ALKALINITY (AS CaCO3)) 850 235 <1 <0.5 380 86.1 210	(875	<pre>> 410 (413</pre>	> 710 (758) 5 348 <1 <0.5 258 67.7 303

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

COKE LABORAIORIES, INC. ANALYTICAL REPORT

22-APR-82

ENERGY FUELS NUCLEAR, INC.

			TER QUALITY ANALYSIS LLECTED AT LOCATION:	
JOB ND. 6307- Sample ID: Sample Remarks:	W82094 - 1 Well ND, 7-2	W82094 – 2 South Cottonwood	W82094 - 3 Westwater	
ALS				
CALCIUM (Ca) Magnesium (Ma) Sodium (Na)	160 40.0 93.0	55.0 36.0 44.0	88.0 24.0 150	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the bast judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORAIORIES, INC. ANALYTICAL REPORT

22-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307-	W82094 - 1	₩82094 - 2	W82094 - 3
SAMPLE ID:	WELL NO. 7-2	SOUTH	WESTWATER
SAMPLE REMARKS:		COTTONWOOD	

IOCHEMISTRY

LEAD 210 (pCi/) ** POLONIUM 210 (pCi/L) ** RADIUM 226 (pCi/L) ** THORIUM 230 (pCi/L) ** URANIUM (U308)-(ug/L) 25

****--PRELIMINARY REPORT, RESULTS TO FOLLOW**

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORAIORIES, INC. ANALYTICAL REPORT

-22-APR-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W82094 - 1 WELL ND. 7-2	H82094 - 2 South Cottonwood	WESTWATER	
TAL RADIOCHEMISTRY	•			
TOTAL LEAD 210 (PCi/L)		**	**	
TOTAL POLONIUM 210 (PCi/L)		**	**	
TOTAL RADIUM 226 (PCi/L)		**	**	
TOTAL THORIUM 230 (PCI/L)		**	**	
TOTAL URANIUM (U308)-(us/L)		18	2	

**--PRELIMINARY REPORT, RESULTS TO FOLLOW

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the bast judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sond in connection with which such report is used or relied upon.

WANCO LAB

, i

P. O. Box 2953 - Casper, WY - S2602

ANALYSIS REPORT

	OMPANY: Energy Fuels Nuc	DATE:	March 30	1982		
	ample type Water			W. O.	No. 3028	}
•	Analysis in Millignams per Liter except where Noted					
<u> </u>	SERPTO No. (Well No.)	1	2		4	5.
	Total Dissolved Solids	1199	2769	4990	3228	2273
	Sodium (NE)		483	757	340	490
_	Potassium (K)	: 4	26	58	32	22
	Calcium (Ca)	:42	325	481	417	200
	Magnesium (Mg)		244	229	177	83
·			1590	2100	1920	1260
	Chloride (Cl)	13	8	64	42	51
	Carbonate (CC3)	Ø	0	Ø	Ø	Ø
L		325	447	464	433	354
	Hydroxide (OH)					
1	pH, Units	7.25	7.17	6.73	7.07	7.32
	Conductivity uMhos/cm 25 C	1450	3450	5100	370+	3050
<u> </u>	•					·
	Major Cations, Milliequiv.	19.37	42.07	76.79	50.97	
	Major Anions, Milliequiv.	19.12	42.71	(3.27	47.76	
L.	Absolute Value: Charged Bal.	0.65	75	0.80	0.99	0.96
	Ammonia (NH3 as N)		<.10			
	Nitrate (NOS as N)	<.05	0.43	0.20		
	Nitrite (NO2 as N)	<.001			<.001	
	Floride (F)	0.51	0.40	0.57	0.45	Ø.74
	Total Alkalinity as CaCO3	Ż67	367	382	354	290 718
l	Total Hardness as CaCO3	581	1628	2141	1768	120
	Boron (B)	0.25	0.25	0.12	6.29	0.11
_	Aluminum (A))				<.10	
Ŧ	Arsetic (As)		<.001	<.001		
	Barium (Ba)	<.13		<.10	<.10	<.30
<u> </u>	Cadminer (Cor.				<.002	<.002
	Chromium (Cr)	<.01	<,Ø1	<.01	<.21	<. 81
	Copper (Cu)	<.01	<.01		<.01	<.01
	Iron (Fe)	1.67	0.22	C. 04	0.07	<. 01
	Leed (FD)	<.05	<.05	25	<.05	<.05
ł	Manganese (Mn)	S. 22	2.16	2.07	0.83	0.29
	Nercuti (Ps)		:	<. 00 022	. 0002	
	Nithel (Nith	<. 62				
i	Selecium (Se)	. ce :	5.007	536.5	6303	<.603
1	Jine (Zr)	0.02C		8.058		
	రావారా (కారు) వ్యక్తరాజాబులు (కోళు)	<.:0		<.18	<.10	
	Unenium (U308) PPB	<1	2	6	2	1
	Venscium (N205)	1 2	4.15日	<. 10	<.10	<. 10

WAMCC LAE

P. C. Box 2953 - Casper, WY 82602

AHALYSIS REPORT

;;	OMPANY :	Evence Fleis Noc	laar: Isa		DATE:	Merch 31	1982
_:4	emple type	No. † 🛥 🔨	*		W. O. I	ve. 3028	
		Arelysis in Mil	lishans pe	n Liter i	acest she	ne Noted	
	Sample No.	(well No.)	1		Ţ	<u>4</u>	5
	Tota: Orga Chemical C Oil and Gr	s as P (Sr) 308),Dissolved nic Carbon (TOC) xygen Demand BOD	143 <.01 4.40 10.7 1 .1 .1 .1 .36	21.20 3 3 5		126 <.01 6.00 11.90 1 3 03. 25	127 <.01 4.90 11.70 <1 3 7 01. 53
		a pCi/L +- Prec pCi/L +- Prec	1.5+-1.5 6.3+-3.1	3.0+-2.3 14+-3.5	4.5+-2.5 22+-3.9	1.5+-1.5 5.4+-3.1	7.5+-2.3
	Thorium-23 Lead 210	PCi/L +- Prec © PCi/L +- Prec PCi/L +- Prec 10 PCi/L +- Prec	0.8+5 1.3+-1.2	C.9+6 1.2+-1.1	1.5+9	0.8+5	1.0+-1.1
	Sample Des	cristion:				•	

3028-1	#1	1-28-82
3028-2	#2	1-28-82
3028-3	#3	1-27-92
3628-4	# 4	1-26-82
3028-5	#5	2-24-82

WAMCO LAE

P. O. Box 2953 - Casper, WY 82602

ANALYEIS REPORT

COMPANY: Energy Fuels Nuclears Inc.

DATE: Manch 30, 1982

Lample type Rater

W. C. No. 3028

Analysis in Millignams per Liter except where Noted

_	Bample Nc. (Well No.)	Ł (7-2)
	Tote) Dissolved Solids Sodium (Na)	951 97
	Potessium (K)	11
1	Calcium (Ce)	160
	Megnesium (Mg)	39
	Sulfate (SO4)	435 92
1	Chloride (Cl)	72 Ø
	Carbonate (CO3)	232
	Bicarbonate (HCO3)	يە تەرى ب
	Hydroxide (OH)	7.39
ļ	pHy Units	
<u> </u>	Conductivity uMhos/cm 25 C	المعالم المعالم الم
,	Marine Cotions, Milliquiv.	15.69
:	Major Cations, Milliequiv. Major Anions, Milliequiv.	15.44
	Absolute Value: Charged Bal.	
	MDS0/die Verder Ond: Set Dirt	•
	Ammonia (NH3 as N)	<.10
	Nitrate (NO3 es N)	<.05
	Nitrite (NO2 as N)	<.001
	Floride (F)	0.51
L		
	Total Alkalinity as CaCO3	190
1	Total Handness as CaCC2	559
		a
	Baron (B)	9.28 / / 8
1	Aluminum (A])	<.10 <.001
	Ansenic (Az)	<.10
	Barium (Ba)	<.382
	Cadminn (Cd)	0.61
	Chriomium (Cr)	<.01
L	Copper (Cu) Inor (Fe)	<.81
	Lead (P5)	<.25
1	Nengenese (No)	< 01
L	Neverse (Ha) (<. 0002
	NERRES (FL)	2.2
1	eauses cons Belesius (Belo	<. 881
	Zipc AZn/	E. 817
-	McJydenum (Mo)	<. 10
ł	Uranium (USOE) PPS	<u>t.</u>
	Vanadium (V205)	<. 1. 提。
<u> </u>	Redium-Z26 p01/1 vr Pres	

WAMCO LAB

P. O. Box 2953 - Caspern WY - 22602

ANALYSIS REPORT

COMPANY: Energy Fuels Nuclear: Inc.

-smple type Water

W. O. No. 3028

DATE: Narch 31: 1982

•

Analysis in Millignems per Liter except where Noted

L_	Sample No.	خ (٦-٦)
_	Redox Potential Phopsphorus as P Silica (SiO2) Strontium (Sr) Uranium (U3O8),Dissolved Total Organic Carbon (TOC) Chemical Cygen Demant BOD Oil and Grease Total Suspended Solids	127 <.01 6.40 2.62 5 6 9 02. 16
	Gross Alpha pCi/L. +- Prec Gross Beta pCi/L +- Prec Radium-226 pCi/L +- Prec Thorium-230 pCi/L +- Prec Lead-210 pCi/L +- Prec Polonium 210 pCi/L +- Prec	1.5+-1.5 3.6+-3.0 0.5+4 0.9+6 1.2+-1.1 0.6+5

Sample Description:

3028-6 #7 1-27-82

	Received April 71982 WAMCO LAB DES P. O. BOX 2953 - Casper, WY							
·	Received April	WAMCO	LAB					
	DES P. O. BOX	2953 - Ca	Asper, WY	82602				
	•	ANALYSIS	REPORT					
 	MPANY: Energy Fuels Nucl	ear, Inc.		DATE:	March 30	, 1982		
•	ample type Water			w. c.	No. 3028			
	Analysis in Mill	igrams P	er Liter e	except whe	re Noted			
	Strong	in ver		3	4	5		
L	Sample No.	0 1	2	<u>ں</u>	**	'		
1	Total Dissolved Solids	1199	2769	4990	3228	2273		
1	Sodium (Na)	170	483	757	340	490		
-	Potassium (K)	14	26	58	32	22		
	Calcium (Ca)	142	325	481	417	200		
	Magnesium (Mg)	55	244	229	177	83		
		613	1590	3100	1920	1260		
	Chloride (Cl)	13	8	64	42	51		
1	Carbonate (CO3)	Ø	Ø	Ø	Ø	Ø		
	Bicarbonate (HCO3)	325	447	464	433	354		
	Hydroxide (OH)							
	pH, Units	7.25	7.17	6.73	7.07	7.32		
1	Conductivity uMhes/cm 25 C	1450	3450	5100	370÷	3050		
_					•			
	Major Cations, Milliequiv.	19.37		76.79	50.97	35.15		
-	Major Anions, Milliequiv.	19.12	42.71	75.57	49.97	34.48		
-	Absolute Value, Charged Bal.	0.65	75	0.80	0.99	0.96		
į	Ammonia (NH3 es N)	0.45	<.10	1.16	0.92	<.10		
-	Nitrate (NO3 as N)	<.05	0.43	0.20	0.22	0.93		
•	Nitrite (NO2 as N)	<.001	<.001	<.001	<.001	0.05		
:	Floride (F)	0.51	0.40	0.57	0.45	0.74		
1								
÷	Total Alkalinity as CaCO3		367	382		290		
1	Total Hardness as CaCO3	581	1028	2141	1.768	716		
	Boron (B)	0.25	0.25	Ø.12	0.28	0.11		
-	Aluminum (Al)	<.10			<.10	<.10		
ł		<.001				<.001		
	Arsenic (As) Barium (Ba)	<.10	<.10	<.10	<.10	<.10		
نسا	Cednium (Cd)	<.002	<.002	0.004				
	Chromium (Cr)	<.01		<.01	<.01	<.21		
		<.01			<.01	<.01		
	Copper (Cu) Iron (Fe)	1.67	0.02	0.04	0.07			
	Lead (Pb)	<.05		<.05				
	Manganese (Mn)		Ø.16					
	Mercury (Hs)		2 <.0822		<.0002			
	Nickel (Ni)	<.32						
r .			0.009					
	Zinc (Zn)		0.087					
<u> </u>	Molydenum (Ne)	<.10	<.iØ		<.10			
	Uranium (U308) PPB	<1				1		
	Vanadion (V205)	<.10	<.10	<.10	<.10	<.10		
					•			

WAMCO LAB

P. O. Box 2953 - Casper, WY 82602

Energy Fuels Nuclears Inc.

ANALYSIS REPORT

COMPANY:

DATE: March 31, 1982

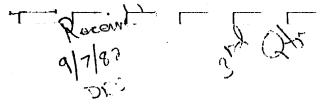
Sample type Water

3028 W. O. No.

Analysis in Milligrams per Liter except where Noted

Sample No.	1	2	3	. Հ ;	5
Redox Potential	143	140	126	126	127
Phopsphorus as P	<.01	<.Ø1	<.Ø1	<.01	<.01
	4.40	6.10	5.90	6.00	4.90
	10.7	21.20	8.60	11.90	11.70
	1	3	4 .	i	<1
	1	З	4	1	3
	<1	5	1	З	7
	. 1	0.2	Ø.1	03.	Ø1.
	36	42	30	25	53
		Redox Potential143Phopsphorus as P<.01	Redox Potential143140Phopsphorus as P<.01	Redox Potential 143 140 126 Phopsphorus as P <.01	Redox Potential 143 140 126 126 Phopsphorus as P <.01

1.5+-1.5 3.0+-2.3 4.5+-2.5 1.5+-1.5 7.5+-2.3 Gross Alpha pCi/L +- Prec Gross Beta pCi/L +- Prec Radium-226 pCi/L +- Prec Thorium-230 pCi/L +- Prec Lead 210 pCi/L +- Prec


6.3+-3.1 14+-3.5 22+-3.9 5.4+-3.1 12+-3.4 1.1+-.5 1.0+-.5 0.9+-.5 0.8+-.5 1.6+-.6 0.8+-.5 0.9+-.6 1.5+-.9 0.8+-.5 1.7+-.9 1.3+-1.2 1.2+-1.1 1.8+-1.3 0.9+-1.1 1.0+-1.1

0.9+-.7 1.1+-.8 1.3+-.8 0.8+-.6 1.3+-.6

Sample Description:

Polonium 210 pCi/L +- Prec

-	3028-1	#1	1-28-82
	3028-2	#2	1-28-82
	3028-3	#3	1-27-82
-	3028-4	#4	1-26-82
	3028-5	#5	1-26-82

COKE LABORAIOKIES, INC. ANALYTICAL REPORT

CLIENT IDENTIFICATION

JOB NO.:6307-W82268 Company: Energy Fuels Nuclear, INC. Job/group Remarks:

IDENTIFICATION

- 1) MONITORING UELL #1
- 3) MONITORING WELL #3
- 5) MONITORIAG WELL #5

IDENTIFICATION

- 2) MONITORING WELL #2
- 4) MONITORING WELL #4
- 6) MONITORING WELL SOUTH

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any ail, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. ANALYTICAL REPORT

03-SEP-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JUB NO. 6307-	W82268 - 1	W82268 - 2	W82268 - 3	W82268 - 4	W82268 - 5	W82268 - 6
SAMPLE ID: PAMPLE REMARKS! JTEZTINE SAMPLED	MONITORING WELL #1 08-04-82/	HUNITORING WELL #2 08-03-82/	MONITORING WELL #3 08-05-82/	MONITORING WELL #4 08-05-82/	MONITORING WELL #5 08-03-82/	MONIFORING WELL SOUTH 08-05-827
DATE/TIME RECEIVED	08-09-82/1000	08-09-82/1000	08-10-82/1000	08-10-82/1000	08-09-82/1000	08-10-82/1000
DATE/TIME ANALYZED CHEMIST: RIF/DRH LOCATION: AURURA, CO	08-10-82/1000	08-10-82/1000	08-10-82/1900	08-10-82/1000	08-10-82/1000	08-10-82/1000

LAB PH (0 25 DEG, C)	7.82	7,70	7,50	7.80	8,01	7.30
LAB COND. (UMHOS @ 25 DEG.	C) 1570	3340	5170	3380	2790	5190
ALL VALUES REPORTED ON A	DISSOLVED BASIS	(MG./L.) UNLESS	INDICATED OTHERWISE			

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and amissions excepted); but Care Laboratories, Inc. and its afficers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sond in connection with which such report is used or relied upon.

03-SEP-82

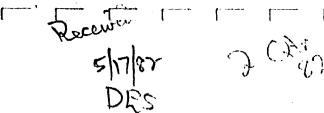
ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION: JOB NO. 6307-N82268 - 1 ₩82268 - 2 ₩82268 - 3 ₩82268 - 4 W82268 - 5 W82268 - 6 SAMPLE ID: NON1TORING MONITORING MONITORING MONITORING KONI TORIHG MONITORING SAMPLE REMARKS! VELL #1 WELL #2 WELL #3 WELL #4 WELL: 15 **WELL SOUTH** BAJOR CATIONS CALCIUM (Ca) 130 (6.49)320 (15.97)480 (23.95)420 (20.96)170 (8.48) (23.95)480 MAGNESIUN (Me) 51.0 (4.20) 91.0 (7.49) 210 (17.27)170 (13.98)48.0 (3.95) 210(17.27) SODIUM (Na) 160 (6,96) 470 (20.45)750 (32.63)340 (14.79)470 (20.45) 780 (32+63) SUM OF MAJOR CATIONS (meg) (17.65)(43.91)(73.85)(49.73)(32,88) (73.85)SUM OF TOTAL CANTONS (men) (17.35) (43.91)(73.85)(49.73)(32.88)(73,85) JOR ANTONS ------BICARBONATE (HCO3) 319 (5.23)450 (7.38)426 (6,98) 450 (7.38)372 (5.10)426 (6.98) CARBONATE (CO3) <1 (0.00)<1 (0.00)<1 (0,00) $\langle 1 \rangle$ (0.00)<1(0,00)1 (0.00)HYBROXIDE (0H) <0.5 (0.00) <0.5 (0.00) <0.5 (0.00) <0.5 (0.00) <0.5 (0.00) <0.5 (0.00) SULFATE (SO4) 662 (13.78) 1788 (37, 22)(66.31) 3185 2047 (42.62)1295 (26.97)3185 (36.31)CHLORIDE (C1) 12.4 (0.35) 6.27(-0.18) 66.7 (1.88) 43.1 (1.22) 55.0 (1.55) 55.3 (1.87) SUM OF MAJOR ANYONS (mea) (19.36)(44.78)(75.17)(51.22)(75.13)(34.62) SUN OF TOTAL GNIOHS (mea) (17.36)(44.78)(75.17)(51, 22)(34.62)(75.16)

03-SEP-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:


JOB NO. 6307- Sample III: Pample Remarks:	WB2268 MONITORI WELL #1			8 - 2 ORING #2			8 - 3 ORING \$3			68 - 4 TORING ‡4		HON	268 - 5 ITORINO L \$ 5		МО	2268 - NITORIN LL SOUT	16
GENERAL PARAMETERS																	
TOTAL DISSOLVED SOLIDS (CALC TOTAL ALKALINITY (AS CaCO3)	1238276	(1171) 2998 389)	5388 371	(4900)	3546 389	(3241)	2264 324	(2221)	5276 376	(4900)

03-SEF-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Gample Remarks:	W82268 - 1 HONITORING ₩ELL ‡1	W82268 - 2 MONITORING WELL ‡2	W82268 - 3 MONITORING WELL #3	W82268 - 4 MONIFORING WELL #4	W82268 - 5 MONITORING WELL ∳5	W82268 - 6 NONITORING WELL SOUTH
RADIOCHENISTRY						
LEAD 210 (PCi/) POLONIUM 210 (FCi/L) RAUIUM 226 (PCi/L) THORIUM 230 (PCi/L) URANIUM (U308)-(ug/L)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

CLIENT IDENTIFICATION

JOB NO.:6307-W82096 COMPANY: ENERGY FUELS NUCLEAR, INC. JOB/GROUP REMARKS:

IDENTIFICATION

IDENTIFICATION

1) WELL NO. 1 CULINARY

3) WELL NO, 4 MONITORING 2) WELL NO. 2 Monitoring

7-MAY-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82096 - 1	W82096 - 2	₩82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO, 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING
DATE/TIME SAMPLED	04-07-82/	04-02-82/	04-07-82/
TE/TIME RECEIVED	04-09-82/1045	04-09-82/1045	04-09-82/1045
DATE/TIME ANALYZED	04-13-82/1050	04-13-82/1050	04-13-82/1050
CHEMIST: RIF/DRH			

LOCATION: AURORA, CO

LAB #H (0 25 DEG, C)	7.70	7,50	7.36
LAB COND. (UMHOS @ 25 DEG.	C) 459	3402	3630
ALL VALUES REPORTED ON A	DISSOLVED RASTS	(MG./L.) HNLESS	INDICATED OTHERWISE

7-MAY-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82095 - 1	W82096 - 2	W82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO, 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

...JOR CATIONS

CALCIUN (Ca)	43.0 (2.15)	310 (15.47)	420 (20,96)
MAGNESIUM (Mg)	22.0 (1.81)	88.0 (7.24)	160 (13.16)
SODIUM (Na)	22,0 (0,96)	460 (20,01)	330 (14.36)
SUM OF MAJOR CATIONS (mea)	(4,92)	(42.72)	(48,48)
SUH OF TOTAL CATIONS (mea)	(4.92)	(42,72)	(48,48)

MAJOR ANIONS

ARBONATE (HCO3)	249 (4.08)	451 (7.39)	451 (7,39)
CARBONATE (CO3)	<1 (0.00)	<1 (0.00)	<1 (0.00)
HYDROXIDE (OH)	<0.5 (0.00)	<0.5 (0,00)	<0.5 (0.00)
SULFATE (SO4)	40.7 (0.85)	1766 (36.77)	2056 (42.81)
CHLORIDE (C1)	2.46(0.07)	6.94(0.20)	39.7 (1.12)
SUM OF MAJOR ANIONS (mea)	(5,00)	(44.36)	(51.32)
SUN OF TOTAL ANIONS (mea)	(5,00)	(44.36)	(51,32)

7-MAY-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82096 - 1	W82096 - 2	W82096 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

IERAL PARAMETERS

TOTAL DISSOLVED SOLIDS (CALC.) 390 (252) 2860 (2852) 3260 (3227) TOTAL ALKALINITY (AS CaCO3) 222 404 404

7-MAY-82

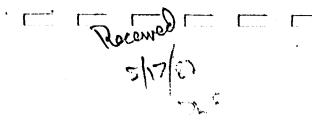
ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO, 6307- Sample ID:	₩82096 - 1 WELL NO. 1	W82096 - 2 WELL NO, 2	₩82096 — 3 ₩ELL NO, 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING
DIOCHEMISTRY			
alari mur den den alak kale alak kan gan dan dan dan dan dan dan dan dan dan d			
LEAD 210 (PCi/)		0.5 ± 1.2	0.9 ± 1.0
POLONIUM 210 (PCi/L)		2.0 ± 1.0	0.6 ± 0.7
RADIUM 226 (PCi/L)		0.6 ± 0.2	1.0 ± 0.2
THORIUM 230 (PCi/L)		0.0 ± 0.5	0.0 ± 0.3
URANIUM (U308)-(ug/L)		7	2

7-MAY-82

ENERGY FUELS NUCLEAR, INC.


RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO, 6307-	W82096 - 1	₩82096 - 2	₩82096 - 3
SAMPLE ID:	WELL ND. 1	WELL NO. 2	WELL NO. 4
SAMPLE REMARKS:	CULINARY	MONITORING	MONITORING

AL RADIOCHEMISTRY

4

TOTAL LEAD 210 (PCi/L)	1.0 ±	1.0
TOTAL POLONIUM 210 (pCi/L)	0.5 ±	0.5
TOTAL RADIUM 226 (PCi/L)	0.2 ±	0.2
TOTAL THORIUM 230 (PCi/L)	0.6 ±	1,4
TOTAL URANIUM (U308)-(us/L)	<1	

CLIENT IDENTIFICATION

JOB NO.:6307-W82100 COMPANY: ENERGY FUELS NUCLEAR, INC. JOB/GROUP REMARKS: MONITORING WELLS

IDENTIFICATION

IDENTIFICATION

1) WELL NO. 1

2) WELL NO. 3

3) WELL NO. 5

6-MAY-82

ENERGY FUELS NUCLEAR, INC. MONITORING WELLS

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82100 - 1	W82100 - 2	W82100 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 3	WELL NO. 5
SAMPLE REMARKS:			
TITE/TIME SAMPLED	04-13-82/	04-13-82/	04-13-82/
(E/TIME RECEIVED	04-16-82/1100	04-16-82/1100	04-16-82/1100
DATE/TIME ANALYZED	04-19-82/ 900	04-19-82/ 900	04-19-82/ 900
CHEMIST: RIF/DRH			
LOCATION: AURORA, CO			

.....

LAB pH (0 25 DEG, C)	7,70	7.20	7.80
LAB COND. (UNHOS @ 25 DEG.	C) 1635	5489	3275
ALL VALUES REPORTED ON A	DISSOLVED BASIS	(MG./L.) UNLESS	INDICATED OTHERWISE

6-MAY-82

ENERGY FUELS NUCLEAR, INC.

۰.

MONITORING WELLS

	• • • •		R QUALITY ANALYSIS ECTED AT LOCATION:
JOB NO. 6307- Sample ID: Sample Remarks:	₩82100 - 1 ₩ELL NO. 1	W82100 - 2 WELL NO, 3	W82100 - 3 WELL ND. 5
HAJOR CATIONS			
CALCIUM (Ca)	140 (6,99) 470 (23 . 45)	220 (10.98)
MAGNESIUM (Mg)	50.0 (4.1)	L) 250 (20.56)	55.0 (4.52)
SODIUM (Na)	190 (8.2	5) 790 (34.36)	510 (22.19)
SUM OF MAJOR CATIONS (mea)	(19.3	5) (78.37)	(37.69)
SUM OF TOTAL CATIONS (mea)	(19.3	5) (78.37)	(37.69)

MAJOR ANIONS

··----

BICARBONATE (HCO3)	325 (5	5.33) 472	(7,74)	358 (5.87)
CARBONATE (CO3)	<1 (0),00) <1	(0,00)	<1 (0.00)
HYDROXIDE (OH)	<0.5 ((0.00) <0.5	(0.00)	<0.5 (0.00)
SULFATE (SO4)	697 (14	4,51) 3239	(67,44)	1518 (31.60)
CHLORIDE (C1)	11.7 ((0.33) 64.3	(1.81)	50.0 (1.41)
SUM OF MAJOR ANIONS (mea)	(2(0,17)	(76,99)	(38,88)
	(0)	A 471	(76,99)	(38,88)
SUM OF TOTAL ANIONS (mea)	(20	0,17)	(/0+77)	1201001

6-MAY-82

ENERGY FUELS NUCLEAR, INC. MONITORING WELLS

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82100 - 1	W82100 - 2	W82100 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 3	WELL NO. 5
SAMPLE REMARKS:			·.

L-MERAL PARAMETERS

TOTAL DISSOLVED SOLIDS (CALC.)	1269	(1248)	5193	(5045)	2575	(2528)	>
TOTAL ALKALINITY (AS CaCO3)	286			416			323		

6-MAY-82

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82100 - 1	W82100 - 2	W82100 - 3
SAMPLE ID:	WELL NO. 1	WELL NO. 3	WELL NO, 5
SAMPLE REMARKS:			

....JIOCHEMISTRY

LEAD 210 (PCi/)	0.0 ±	1.1	1.3 ±	1.2	0.0 ±	1.1
POLONIUM 210 (pCi/L)	0.2 ±	0.6	0.8 ±	.1.0	0.4 ±	0.7
RADIUM 226 (PCi/L)	0.3 ±	0.1	0.5 ±	0.1	0.3 ±	0.1
THORIUM 230 (PCi/L)	0.2 ±	1.0	0.0 ±	0.2	0.0 ±	0.4
URANIUM (U308)-(ug/L)	2		35		4	

JOB NO.:6307-W82438 COMPANY: ENERGY FUELS NUCLEAR INC. JOB/GROUF REMARKS:

IDENTIFICATION

1) MONITORING WELL #4

. . .

IDENTIFICATION

2) MONITORING WELL \$5

01-17-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82438 - 1	₩82438 - 2
SAMPLE ID:	MONITORING	MONITORING
SAMPLE REMARKS:	WELL #4	WELL #5
DATE/TIME SAMPLED	12-10-82/	12-13-82/
DATE/TIME RECEIVED	12-16-82/1427	12-16-82/1427
DATE/TIME ANALYZED	12-17-82/ 830	12-17-82/ 830
CHEMIST: RIF/DRH		
LOCATION: AURORA, CO		

_AB pH (@ 25 des. C)7.608.02_AB COND. (as umhos/cm @ 25C)33202610--ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

ANALYTICAL REPORT

CORF

ABORATORIES INC.

[______

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	WB2430 MONITO WELL	3 – 1 DRING ‡4		DRING
MAJOR CATIONS				· · · ·
CALCIUM (Ca)	420	(20,96)	143	(7,14)
		(15.64)		
SODIUM (Na) Potassium (K)	9.2	(14.53) (0,24) (51.37)	7.4	(0.19)
SUM OF MAJOR CATIONS (me/1)		(51.37)		(29+37)
SUK OF TOTAL CATIONS (me/1)		(51,37)		(29.37)
MAJOR ANIONS				
BICARBONATE (HCO3)	453.0	· (7,42)	377.0	(6.18)
		(0.00)		
		(0.00)		
SHI FATE (SOA)		(41.20)		
CHLORIDE (C1)		(1.02)		
SUM OF MAJOR ANIONS (me/1)		(49.64)		(32.12)
SUM OF TOTAL ANIONS (me/1)		(49,64)		(32.12)

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

.4

ANALYTICAL REPORT

CORE ABORATORIES INC.

- `

INERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82438 - 1	₩82438 - 2
SAMPLE ID:	MONITORING	MONITORING
SAMPLE REMARKS:	WELL #4	WELL #5

ENERAL PARAMETERS

OTAL DISSOLVED SOLIDS (CALC.)	3470 (3195)	2180 (2039)
TOTAL ALK. (pH 3.7 as CaCO3)	389	323

--FILTERABLE

re

-ABARATARIES-INC-

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-W82438 - 1W82438 - 2SAMPLE ID:MONITORINGMONITORINGSAMPLE REMARKS:WELL #4WELL #5

ISSOLVED METALS

RANIUM (U308)

<0.001

<0,001

GORE LABOPATOPIES INC

ANALYTICAL REPORT

NERGY FUELS NUCLEAR INC.

ſ----

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

OB NO. 6307-	W82438 - 1	W82438 - 2
AMPLE ID:	MONITORING	MONITORING
AMPLE REMARKS:	WELL #4	WELL #5

SSOLVED RADIOCHEMISTRY

NOSS ALPHA (PCi/L) 0.3 ± 1.5 2.2 ± 1.5

CLIENT IDENTIFICATION

CORE ' ABOPATOPIES INC

DB NO.:6307-W82436 OMPANY: ENERGY FUEL NUCLEAR INC. OB/GROUP REMARKS:

IDENTIFICATION

1) MONITORING WELL #1 IDENTIFICATION

2) MONITORING WELL #2

CORE ABORATORIES INC

ANALYTICAL REPORT

[

ſ

INERGY FUEL NUCLEAR INC.

ſ____

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82436 - 1	W82436 - 2
SAMPLE ID:	MONITORING	MONITORING
SAMPLE REMARKS:	WELL #1	WELL #2
DATE/TIME SAMPLED	12-10-82/	12-10-82/
DATE/TIME RECEIVED	12-14-82/1000	12-14-82/1000
DATE/TIME ANALYZED	12-14-82/1300	12-14-82/1300
CHEMIST: RIF/DRH		

LOCATION: AURORA, CO

AB pH (@ 25 des, C) 7.80 7.71 AB COND. (as umhos/cm @ 25C) 1525 3190 --ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

ANALYTICAL REPORT

CORE

ABOPATORIES INC

INERGY FUEL NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W82437 Monito Well (W82436 - 1 MONITORING WELL #1		5 - 2 DRING \$2
AJOR CATIONS				
ALCIUM (Ca) AGNESIUM (Mg) ODIUM (Na) OTASSIUM (K) UM OF MAJOR CATIONS (m AUM OF TOTAL CATIONS (m	6.4 e/l)	(4.20) (7.39) (0.16) (18.90)	90 480 10.2	(7,41) (20,88) (0,26) (43,52)
AJOR ANIONS		. •		
ICARBONATE (HCO3) ARBONATE (CO3) IYDROXIDE (OH) ULFATE (SO4) HLORIDE (C1) UH OF MAJOR ANIONS (me	326.0 <1 <0.5 653 10.9	(0.00) (0.00) (13.60)	<1 <0.5 1749 5.5	(0.00) (0.00) (36.41) (0.16)
IUM OF TOTAL ANIONS (me	/1)	(19,25)		(43.96)

ANALYTICAL REPORT

16

INERGY FUEL NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO+ 6307-	W82436 - 1	W82436 - 2
SAMPLE ID:	MONITORING	MONITORING
SAMPLE REMARKS:	WELL #1	WELL #2

ENERAL PARAMETERS

OTAL DISSOLVED SOLIDS (CALC.)		3056 (2860)
TOTAL ALK. (PH 3.7 as CaCO3)	277	388

--FILTERABLE

ANALYTICAL REPORT

01-17-83

INERGY FUEL NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-JAMPLE ID: JAMPLE REMARKS: W82436 - 1 W82436 - 2 MONITORING MONITORING WELL #1 WELL #2

ISSOLVED METALS

RANIUM (U308)

<0.001

<0.001

CRE '- ABCCATCRIEC-INC-ANALYTICAL REPORT

.....

01-17-83

NERGY FUEL NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

IOB NO. 6307-	W82436 - 1	₩82436 - 2
AMPLE ID:	MONITORING	MONITORING
AMPLE REMARKS:	WELL #1	WELL #2

SSOLVED RADIOCHEMISTRY

ROSS ALPHA (PCi/L)

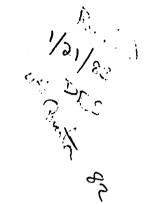
 $37.3 \pm 11.1 \quad 1.6 \pm 1.6$

ANALYTICAL REPORT

ORT ABARATARITA IN

CLIENT IDENTIFICATION

OB NO.:6307-W82451 OMPANY: ENERGY FUELS NUCLEAR, INC. OB/GROUP REMARKS:


IDENTIFICATION

1) MONITOR WELL #3

3) MONITOR WELL #12 IDENTIFICATION

2) MONITOR WELL #11

4) MONITOR WELL #13

17-JAN-83

DRr

RATORIC-

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR, INC.

5450

--ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

C

_AB COND. (as umhos/cm @ 25C)

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

3840

4200

JOB NO. 6307- SAMPLE ID: SAMPLE REMARKS: DATE/TIME SAMPLED DATE/TIME RECEIVED DATE/TIME ANALYZED CHEMIST: RIF/DRH LOCATION: AURORA, CO	W82451 - 1 MONITOR WELL #3 12-13-82/ 12-21-82/1000 12-21-82/1300	W82451 - 2 MONITOR WELL #11 12-16-82/ 12-21-82/1000 12-21-82/1300	W82451 - 3 MONITOR WELL #12 12-17-82/ 12-21-82/1000 12-21-82/1300	W82451 - 4 MONITOR WELL #13 12-17-82/ 12-21-82/1000 12-21-82/1300
-AB pH (@ 25 des. C)	7,55	8.19	7.8	7.85

2600

17-JAN-83

ANALYTICAL REPORT

CORF

APORATORIES INC

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307- Sample ID: Sample Remarks:		1 - 1 DR WELL	W8245 MONIT ‡11	1 - 2 OR WELL	W8245 MONIT ‡12	1 - 3 DR WELL	W8245 Monit ‡13	1 - 4 DR WELL
AJOR CATIONS								
CALCIUM (Ca) AGNESIUM (Mg) BODIUM (Na) POTASSIUM (K) BUM OF MAJOR CATIONS (me/1) BUM OF TOTAL CATIONS (me/1)	480 185 810 16	(23.95) (15.22) (35.24) (0.41) (74.82) (74.82)	36 8+8 550 5+7	(1.80) (0.72) (23.92) (0.15) (26.60) (26.60)	500 214 310 16	(24.95) (17.61) (13.48) (0.41) (56.46) (56.46)	390 109 630 8,1	(19.46) (8.97) (27.40) (0.21) (56.05) (56.05)
1AJOR ANIONS								
BICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) BULFATE (SO4) CHLORIDE (C1) BUM OF MAJOR ANIONS (me/1)	463.0 <1 <0.5 3259 53.0	(7.58) (0.00) (0.00) (67.85) (1.50) (76.93)	399 <1 <0.5 926 24.4	(6.53) (0.00) (0.00) (19.28) (0.69) (26.50)	416.0 <1 <0.5 2395 57.4	(6.82) (0.00) (0.00) (47.86) (1.62) (58.30)	419.0 <1 <0.5 2288 40.5	(6.87) (0.00) (0.00) (47.64) (1.14) (55.65)
3UM OF TOTAL ANIONS (me/1)		(76.93)		(26,50)		(58.30)		(55.65)

CORT APORATORIES INC.

17-JAN-83

ENERGY FUELS NUCLEAR, INC.

r

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W82451 - 1	W82451 - 2	W82451 - 3	W82451 - 4
Sample ID:	Monitor Well	MONITOR WELL	Monitor Well	Monitor Well
Sample Remarks:	‡3	‡11	#12	#13
JENERAL PARAMETERS				
TOTAL DISSOLVED SOLIDS (CALC,)	5366 (5034)	1812 (1750)	4116 (3700)	3780 (3675)
TOTAL ALK, (PH 3.7 as CaCO3)	399	340	366	360

X--FILTERABLE

.

Г

CORF----ABORATORIFS-- INC-ANALYTICAL REPORT

17-JAN-83

ENERGY FUELS NUCLEAR, INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307- Sample ID: Sample Remarks:	W82451 - 1 Monitor Well ‡3	W82451 - 2 Monitor Well ‡11	WB2451 - 3 Monitor Well ‡12	₩82451 - 4 Monitor Well ‡13
ISSOLVED METALS				
IRANIUM (U308)	0.037	<0.001	0.024	0.033

17-JAN-83

CORE ' ABORATORIES INC

4.

ANALYTICAL REPORT

INERGY FUELS NUCLEAR, INC.

[-----

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W82451 - 1 Honitor Well ‡3	W82451 - 2 Monitor Well ‡11	W82451 - 3 Monitor Well \$12	W82451 - 4 Monitor Well #13
ISSOLVED RADIOCHEMISTRY			· · · ·	
ROSS ALPHA (PCi/L)	12.0 ± 22.5	33.2 ± 18.1	33.2 ± 22.6	10.7 ± 17.1

CLIENT IDENTIFICATION

CORF ABORATORIES ANALYTICAL REPORT

JOB NO.:6307-W83176 Company: Energy fuels Nuclear Inc. Job/Group Remarks:

IDE	TIFICATION	
1) WEL	\$4	
3) WEL		
5) WEL	DIKE 4 september (12 maples)	
7) WEL	#2	

IDENTIFICATION

2) WELL #5

4) WELL #12

6) WELL #13

ANALYTICAL REPORT

1

41-

26-JULY-83

ENERGY FUELS NUCLEAR INC.

r-----

[-----

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND. 6307-	W83176 - 1	W83176 - 2	W83176 - 3	WB3176 - 4	W83176 - 5	W83176 - 6
SAMPLE ID:	WELL #4	WELL #5	WELL #11	WELL #12	HELL DIKE 4	WELL #13
SAMPLE REMARKS:						
DATE/TIME SAMPLED	05-25-83/	05-24-83/	05-24-83/	05-04-83/	05-04-83/	05-26-83/
DATE/TIME RECEIVED	05-27-83/1000	05-27-83/1000	05-27-83/ 100	05-27-83/1000	05-27-83/1000	05-27-83/1000
DATE/TIME ANALYZED	05-27-83/1300	05-27-83/1300	05-27-83/1300	05-27-83/1300	05-27-83/1300	05-27-83/1300
CHEMIST: RIF/DRH						• .
LOCATION: AURORA, CO						
						. : :
LAR PH (0 25 des. C)	7.82	8,11	8.09	7.39	7.96	8.02
LAB COND. (as umhos/cm @ 25C)	3580	2730	2500	3700	4200	4100
ALL VALUES REPORTED ON A D	ISSOLVED BASIS (MG./L.) UNLESS IN	IDICATED OTHERWISE			

26-JULY-83

ANALYTICAL REPORT

ABORATORIES INC

.

[

CORF

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	WB3176 - 1 WELL #4		WD3176 - 2 WELL #5		W83176 - 3 WELL #11		W83176 - 4 WELL #12		W83176 - 5 Well DIKE 4		WB3176 - 6 WELL 1 13	
HAJOR CATIONS			•									
CALCIUM (Ca) MAGNESIUM (Mg) SODIUM (Na) POTASSIUM (K) SUM OF MAJOR CATIONS (me/1)	420 190 330 8.0	(20.96) (15.64) (14.35) (0.20) (51.16)	150 42 460 6+5	(7.48) (3.46) (20.01) (0.17) (31.12)	31 7.7 530 4.7	(1.55) (0.63) (23.05) (0.12) (25.35)	530 270 310 12	(26.45) (22.22) (13.48) (0.31) (62.47)	360 94 640 8.5	(17.96) (7.74) (27.84) (0.22) (53.76)	360 94 640 8•5	(17,96) (7,74) (27,84) (0,22) (53,76)
SUH OF TOTAL CATIONS (me/l)		(51,71)		(31.37)		(25,46)		(62.59)		(54.24)		(54,24)
MAJOR ANIONS												
BICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) SULFATE (SO4) CHLORIDE (C1) SUM OF MAJOR ANIONS (me/1)	430.0 <1 <0.5 2109 37.3	(7.05) (0.00) (0.00) (43.91) (1.05) (52.01)	372.0 <1 <0.5 1228 48.1	(6.10) (0.00) (0.00) (25.57) (1.36) (33.03)	363.0 <1 <0.5 943 26.8	(5.95) (0.00) (0.00) (19.63) (0.76) (26.34)	507.0 <1 <0.5 2420 80.5	(8.31) (0.00) (0.00) (50.38) (2.27) (60.96)	411.0 <1 <0.5 2315 42.2	(6.74) (0.00) (0.00) (48.20) (1.19) (56.13)	396.0 <1 <0.5 2324 43.8	(6.49) (0.00) (0.00) (48.39) (1.24) (56.12)
SUN OF TOTAL ANIONS (me/1)		(52.03)		(33.08)		(26.37)		(60.98)		(56.15)		(56.14

CORF-LABORATORIES INC. ANALYTICAL REPORT

· · · · · ·

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W83176 - 1 WELL ‡4	W83176 - 2 WELL \$ 5	WB3176 - 3 WELL #11	₩83176 - 4 ₩ELL ‡12	₩83176 - 5 Hell Dike 4	WB3176 - 6 WELL #13
GENERAL PARAMETERS						
TOTAL DISSOLVED SOLIDS (CALC.) TOTAL SUSPENDED SOLIDS OIL & GREASE, TOTAL	3532 (3340) 8 <5	2236 (2140) 92 <5	1728(1739) 6 <5	4026 (3879) 93 <5	3824 (3694) 10 <5	3808 (3697) 14 <5
*PHOSPHATE, TOTAL (PO4-P)	<0.01	<0.01	<0.01	<0.01	0.02	<0.01
*NITROGEN, AMMONIA (NH3-N)	0,58	0.39	0.48	0.81	0.97	0,94
*NITROGEN; NITRATE (NO3-N)	0.2	0.6	<0.1		0.2	0.2
*FLUORIDE (F)	0.3	0.8	0.5	0.3	0.3	0.3
ORGANIC CARBON, TOTAL (TOC)	<2	<2	4	5	3	2
*REDOX POTENTIAL; eH (mV)	193	182	200	180	182	181
OXYGEN DENAND, CHEMICAL (COD)	<5	6	<5	106	16	17

*--FILTERABLE

ANALYTICAL REPORT

1-----

{`_____

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB ND, 6307- Sample ID: Sample Remarks:	WB3176 - 1 WELL #4	W83176 - 2 WELL † 5	W83176 - 3 WELL #11	W83176 - 4 WELL ‡12	₩83176 - 5 ₩ELL DIKE 4	W83176 - 6 WELL 1 13
DISSOLVED METALS						
ALUMINUM (A1)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
IRON (Fe)	4.15	0.91	0.85		2.42	2.44
MANGANESE (Nn)	1,22	0.29	0.04	2.03	3.1	3.1
MOLYBDENUM (Mo)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
SELENIUM (Se)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SILICA (SiO2)	13	9	11		14	14
SILVER (As)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
STRONTIUM (Sr)	11 .	7,5	1.79		8.0	7.9
URANIUM (U)	<0.001	<0,001	<0.001	0.003	0.006	0.006
VANADIUH (V)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ZINC (Zn)	<0.01	<0.01	<0.01	0+04	<0.01	<0.01

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is mode. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its afficers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any ail, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO, 6307- Sample ID: Sample Renarks:	HB3176 - 1 Well ‡4	W83176 - 2 WELL #5	WB3176 - 3 Well #11	W83176 - 4 WELL \$12	₩83176 - 5 Well Dike 4	WB3176 - 6 WELL ‡13
TOTAL HETALS						
ARSENIC (As), total	<0.01	<0.01	<0.01		<0.01	<0.01
BARIUN (Ba), total	<0.1	<0.1	<0.1		<0.1	<0.1
BORDN (B), total	0.28	0.28	0,28		0.24	0.23
CADHIUN (Cd), total	<0.01	<0.01	<0,01		<0.01	<0.01
CHRONIUM (Cr), total	<0.01	<0.01	<0.01		<0.01	<0.01
COPPER (Cu), total	<0.01	<0.01	<0.01		<0.01	<0.01
IRON (Fe), total	4.18	1.51	1.09		2.47	2.45
LEAD (Pb), total	<0.01	<0.01	0.02		<0.01	<0.01
MERCURY (Hs), total	<.0003	<.0003	<.0003		<.0003	<.0003

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and omissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any ail, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:						
JOB NO. 6307- Sample ID: Sample Renarks:	₩83176 - 1 ₩ELL ‡4	₩83176 - 2 ₩ELL \$ 5	W83176 - 3 Well #11	W83176 - 4 WELL \$ 12	W83176 - 5 Well DIKE 4	₩83176 - 6 Well ‡13
DISSOLVED RADIOCHEMISTRY						
GROSS ALPHA (PCi/L) GROSS BETA (PCi/L) LEAD 210 (PCi/L) POLONIUM 210 (PCi/L) RADIUM 226 (PCi/L) THORIUM 230 (PCi/L)	0.0 ± 10.9 1.5 ± 28.9 0.0 ± 0.8 0.0 ± 0.6 1.0 ± 0.2 0.1 ± 0.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 ± 20.7 0.0 ± 28.9 0.0 ± 0.8 0.0 ± 0.7 0.7 ± 0.2 0.1 ± 0.3	0.0 ± 18.7 0.0 ± 27.7 0.0 ± 0.8 0.0 ± 1.0 0.6 ± 0.2 0.1 ± 0.6

28

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

1

26-JULY-83

ENERGY FUELS NUCLEAR INC.

[_____

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	W83176 - 7
SAMPLE ID:	WELL #2
SAMPLE REMARKS:	· · ·
DATE/TIME SAMPLED	05-04-83/
DATE/TIME RECEIVED	05-27-83/1000
DATE/TINE ANALYZED	05-27-83/1300
CHEMIST: RIF/DRH	
LOCATION: AURORA, CO	

و و ج ج ج ج ب پر د ن پنج نه نه نه نه نه نه که ۵ ۵ ۵ ۳ ۳

LAB pH (0 25 des. C) 7.80 LAB COND. (as umhos/cm 0 25C) 3170 --ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORF ' APORATORIES IN'S ANALYTICAL REPORT

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W8317 WELL	- ·	
NAJOR CATIONS			
CALCIUM (Ca)	320	(15,97)	
HAGNESIUM (Ms)		(7.16)	
SODIUM (Na)		(20,44)	
POTASSIUN (K)	9.5	(0.24)	
SUN OF MAJOR CATIONS (me/1)		(43.82)	
SUH OF TOTAL CATIONS (me/1)		(43.84)	
MAJOR ANIONS			
BICARBUNATE (HCO3)	AA7.0	(7.24)	
CARBONATE (CO3)		(0,00)	
HYDROXIDE (OH)		(0.00)	
SULFATE (SO4)		(37.50)	
CHLORIDE (C1)		(0.71)	
SUM OF MAJOR ANIONS (me/1)		(45.45)	
SUM OF TOTAL ANIONS (me/1)		(45.47)	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

26-JULY-83

ENERGY FUELS NUCLEAR INC,

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307-	₩83176 - 7
SAMPLE ID:	WELL #2
SAMPLE REMARKS:	

GENERAL PARAMETERS

 	 	 -

TOTAL DISSOLVED SOLIDS (CALC.)	2820 (2934)
TOTAL SUSPENDED SOLIDS	. 26
OIL & GREASE, TOTAL	<5
*PHOSPHATE, TOTAL (PO4-P)	<0.01
*NITROGEN, AMMONIA (NH3-N)	0.14
*FLUORIDE (F)	0.3
ORGANIC CARBON, TOTAL (TOC)	4
*REDOX POTENTIAL, eH (mV)	231
OXYGEN DEMAND, CHEMICAL (COD)	<5

***--FILTERABLE**

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

26-JULY-83

COR

ſ----

APORATORIEC

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	₩83176 - 7 ₩ELL #2	
DISSOLVED METALS		
نه به نو نه هه به به به نه به به م ه ه خ	•	
ALUNINUM (A1)	<0.1	
CHROMIUM (Cr)	<0.01	
MANGANESE (Mn)	0.22	
MOLYBDENUH (Mo)	<0.1	
SELENIUM (Se)	0.01	
SILVER (As)	<0.01	
URANIUM (U)	0.005	
VANADIUM (V)	<0.1	
ZINC (Zn)	0+08	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and omissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

26-JULY-83

ENERGY FUELS NUCLEAR INC.

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	₩83176 - 7 WELL ‡2
DISSOLVED RADIOCHEMISTRY	
GROSS ALPHA (PC1/L)	0.0 ± 13.1
GROSS BETA (PC1/L)	0.0 ± 28.3
LEAD 210 (PCI/L)	0.0 ± 0.8
POLONIUM 210 (PCi/L)	0.0 ± 1.0
RADIUM 226 (PCi/L)	1.7 ± 0.2
THORIUM 230 (PCi/L)	0.4 ± 0.6

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CLIENT IDENTIFICATION

ANALYTICAL REPORT

CORF I ABORATORIES

JOB NO.:4307-W83121 COMPANY: ENERGY FUELS NUCLEAR JOB/GROUP REMARKS:

IDENTIFICATION

1) CULLINARY WELL

- 3) WEST WATER SURFACE WATER
- 5) WELL #3 TAILINGS MONITOR

IDENTIFICATION

INC

DES

- 2) SO, COTTONWOOD SURFACE WATER
- 4) WELL #1 TAILINGS MONITOR

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

SAMPLE IN: SAMPLE REMARKS: DATE/TIME SAMPLED DATE/TIME RECEIVED	W83121 + 1 CULLINGRY MEL 04-19-83/ 04-22-83/1000 04-23-83/1300	W83121 - 2 SO. COTTONWOO SURFACE WATER 04-19-83/ 04-22-83/1000 04-23-83/1300	W83121 - 3 WEST WATER SURFACE WATER 04-19-83/ 04-22-83/1000 04-23-83/1300	WB3121 - 4 WELL #1 TAILINGS HONI 04-22-83/ 04-26-83/1000 04-27-83/1300	W83121 - 5 WELL #3 TAILINGS HONI 04-21-83/ 04-26-83/1000 04-27-83/1300
LAD pH (0 25 des. C)	7.83	7•89	8.10	7,75	7.52
LAD pH (0 25 des. C)	478	435	1300		4900

--- ALL VALUES REPORTED ON A DISSOLVED BASIS (MG./L.) UNLESS INDICATED OTHERWISE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, os to the productivity, proper operations, or profitableness of any oil, gas, coal or other minerol, property, well or sand in connection with which such report is used or relied upon.

CORF ABORATORIES INC

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- SAMPLE ID: SOMPLE REMARKS:	W83121 - 1 Cullinary Wel	W83121 - 2 SO, COTTONWOO SURFACE WATER	W83121 - 3 Mest Water Surface Water	W83121 - 4 MELL #1 TAILINGS MONI	W83121 - 5 WELL #3 TAILINGS MONI
MAJOR CATTONS					· · ·
CALCIUM (Ca) MAGNESIUM (Ms) SODTUM (Na) POTASSIUM (K) SUM OF MAJOR CATIONS (me/1) SUM OF TOTAL CATIONS (me/1) MAJOR AMIONS	44 (2,20) 20 (1.65) 27 (1.17) 4.2 (0.11) (5.13) (5.14)	$\begin{array}{ccccccc} 43 & (& 2.15) \\ 17 & (& 1.40) \\ 23 & (& 1.00) \\ 2.5 & (& 0.06) \\ & (& 4.61) \\ & (& 4.61) \end{array}$	100 (4.99) 25 (2.06) 170 (7.39) 2.3 (0.06) (14.51) (14.51)	150 (7.48) 51 (4.20) 170 (7.39) 6.0 (0.15) (19.23) (19.27)	470 (23,45) 260 (21,40) 770 (33,49) 22 (0,56) (78,91) (79,04)
MICARBONATE (HCO3) CARBONATE (CO3) HYDROXIDE (OH) SULFATE (SO4) CHLORIDE (C1) SUH OF HAJOR ANIONS (me/1) SUH OF TOTAL ANIONS (me/1)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	201.0 (3.29) <1 (0.00) <0.5 (0.00) 18 (1.00) 7.7 (0.22) (4.51) (4.51)	352.0 (5.77) <1 (0.00) <0.5 (0.00) 305 (6.35) 86.0 (2.43) (14.55) (14.55)	322.0 (5.28) <1 (0.00) <0.5 (0.00) 658 (13.70) 16.5 (0.47) (19.45)	<1 (0.00) <0.5 (0.00) 3226 (67.17) 66.5 (1.88) (76.33)

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its afficers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

CORT APORATORIES INC

ANALYTICAL REPORT

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS UN SAMPLES COLLECTED AT LOCATION:

JUB NO, 6307- SAMPLE ID: SAMPLE REMARKS:	WB3121 - 1 CULLINARY HEL	WB3121 - 2 SO. COTTONYOO SURFACE WATER	W83121 - 3 West Mater Surface Water	W83121 - 4 WELL ‡1 TAILINGS MONI	W83121 - 5 WELL #3 TAILINGS HONI
GENERAL PARAMETERS			· · · ·		
TUTAL DISSOLVED SOLIDS (CALC.) TUTAL SUSPENDED SOLIDS	278 (265) <4	266 (* 242) 2758	790 (864) 14	1160 (1213)	4880 (5040)
#10TAL ALK. (PH 3.7 85 CBC03)	219	177	307	283	393
*P-ALK+ (pH 8+3 as CaCO3)	<1	<1	1 <1	<1	<1
*PHOSPHATE, TOTAL (PO4-P)	<0.01	0.01	0.01	<0.01	<0.01
±NJTROGEN, AMMONIA (NH3-N)	0.15	0.09	<0.05	0.53	0.57

#---FJL/FERABLE

•

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sond in connection with which such report is used or relied upon.

1

ORT AETRATORIC INT

ANALYTICAL REPORT

[....

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Samplf Remarks:	W83121 - 1 CULLINARY MEL	W83121 - 2 SO. COTTONWOO SURFACE WATER	W83121 - 3 WEST WATER SURFACE WATER	W83121 - 4 MELL #1 TAILINGS MONI	W83121 - 5 WELL ‡3 TAILINGS MONI
DISSOLVED HETALS		· ·	•		
ALUMIRUM (AL)	<0.1	<0.1	<0.1	<0,1	<0.1
ARSENIC (As)	<0.01	<0.01	<0.01	<0.01	<0.01
LADHIUN (Cd)	<0.01	<0.01	<0.01	<0.01	<0.01
CHROMIUM (Cr)	<0.01	<0.01	<0.01	<0.01	<0.01
(OPPER (Cu)	<0.01	<0.01	<0.01	<0.01	<0.01
LEAD (Pb)	<0.01	<0.01	<0.01	<0.01	<0.01
MANGANESE (Mn)	0.01	<0.01	0.08	0.24	2.57
MERCURY (Hs)	<.0003	<.0003	<.0003	<.0003	<.0003
MOLYBDENUM (Ho)	<0.1	<0.1	<0.1	<0.1	<0.1
SELENIUH (Se)	<0.01	<0.01	<0.01	<0.01	0.01
URANIUM (U308)		• •	•	<0.001	0.030
VANADIUM (V)	<0.1	<0.1	<0.1	<0.1	<0.1
ZINC (Zn)	<0.01	<0.01	0.01	<0.01	0.10

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Care Laboratories, Inc. (all errors and amissions excepted); but Care Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ABORATORIES INC.

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W83121 - 1 CULLINARY WEL	WB3121 - 2 SO. COTTONWOO SURFACE WATER	W83121 - 3 WEST WATER SURFACE WATER	W83121 - 4 WELL #1 TAILINGS MONI	W83121 - 5 WELL #3 TAILINGS MONI
			•		

0.005

CORE

TOTAL HETALS

URANIUM (U308), total

<0.001

<0.001

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

28-JUNE-83

ENERGY FUELS NUCLEAR

RESULTS OF WATER QUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- Sample ID: Sample Remarks:	W83121 - 1 CULLINARY WEL	W83121 - 2 SO. COTTONHOO SURFACE WATER	W83121 - 3 WEST WATER SURFACE WATER	N83121 - 4 WELL 1 1 TAILINGS MONI	W83121 - 5 WELL #3 TAILINGS MONI
DISSOLVED RADIOCHEMISTRY					

GROSS ALPHA (PCi/L) GROSS BETA (PCi/L) LEAD 210 (PCi/L) FOLONIUM 210 (PCi/L) RADIUM 226 (PCi/L) THORIUM 230 (PCi/L) 7.9 ± 10.2 27.0 ± 29.3 9.3 Ŧ 9.8 Ŧ 133 41.5 0.0 Ŧ 0.7 0.5 Ŧ 0.7 0.1 ± 0.0 Ŧ 0.7 0.8 1.4 ± 0.2 0.4 Ŧ 0.1 0.5 ± 0.0 Ŧ 0.5 1.0

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and amissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or prolitableness of any ail, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon.

ANALYTICAL REPORT

AB

DATARIES INC

ENERGY FUELS NUCLEAR

RESULTS OF WATER RUALITY ANALYSIS ON SAMPLES COLLECTED AT LOCATION:

JOB NO. 6307- SAMPLE ID: SAMPLE REMARKS:	W83121 - 1 Cullinary		W83121 - 2 SO. COTTONN SURFACE WAT		W83121 Nest Ma Surface	TER	W83121 - 4 WELL ‡1 TAILINGS MONI	W83121 - 5 WELL #3 TAILINGS HONI
TOTAL RADIOCHEMISTRY								
GROSS ALPHA (pCi/L), total	0.2 ± 2.	-	43.9 ± 19.0	-	0.0 ±	4.4		
GROSS BETA (pCi/L), total	18.2 ± 5.	-	31.7 ± 23.4	•	0.0 ±	8.4		
LEAD 210 (PCi/L), total	0.0 ± 0.	•7	3.9 ± 1.0	0	0.0 ±	0.7		
POLONJUH 210 (pCi/L), total	0.0 ± 0.	1	3.1 ± 1.1	8	0.0 ±	0.1		
RADIUM 226 (pCi/L), total	0.4 ± 0.	1	1.7 ± 0.3	3	0.1 ±	0.1		
THORIUM 230 (PCi/L), total	0.0 ± 0.	5	2.1 ± 0.1	8	0.0 ±	0.6		

CRE

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sond in connection with which such report is used or relied upon.

ATTACHMENT 6

20000		
NR/)	Form 374 D.S. NUCLEAR REGU	LATORY COMMISSION PAGEOFOFO
j	MATERIAI	LS LICENSE
Co her sou del lice sub	suant to the Atomic Energy Act of 1954, as amended, the Ener de of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, etofore made by the licensee, a license is hereby issued authoriz rce, and special nuclear material designated below; to use such iver or transfer such material to persons authorized to receive nse shall be deemed to contain the conditions specified in Se	gy Reorganization Act of 1974 (Public Law $93-438$), and Title 10, , 35, 40 and 70, and in reliance on statements and representations ting the licensee to receive, acquire, possess, and transfer byproduct, material for the purpose(s) and at the place(s) designated below; to it in accordance with the regulations of the applicable Part(s). This ection 183 of the Atomic Energy Act of 1954, as amended, and is lear Regulatory Commission now or hereafter in effect and to any
	Licensee	
1.0	Imetco Minerals Corporation	3. License number
2	Post Office Box 787	SUA-1358, as renewed
	Manding, Utah 84511	4. Expiration date September 23, 1991
		5. Docket or Reference No. 40-8681
	Byproduct, source, and/or 7. Chemical and form form	/or physical
N	atural Uranium	Unlimited
9.	Authorized place of use: The licensee's Juan County, Utah.	uranium milling facilities located in San
10.	The licensee is hereby authorized to pos- uranium waste tailings and other uranium licensee's milling operations authorized	byproduct waste generated by the
11.	Jections 3.0.0, 3.1, 5.2, 5.3, 5.4, 6.2	epresentations and conditions contained in and 6.3 and Appendix E, Section 5, of the /, 1985 as revised May, 1985, except where
	Whenever the word "will" is used in the a a requirement.	above referenced sections, it shall denote
12.	The mill production per calendar year sha	all not exceed 4,380 tons of $U_2 O_8$.
13.		trated and described in Plate 3.1-3 of the
14.	with Attachment No. 1 to SUA-1358. "Guide	lines for Decontamination of Facilities cricted Use or Termination of Licenses for
15.	The licensee shall avoid by project desig designated "contributing" in Attachment N	n, where feasible, the archeological sites lo. 2 to SUA-1358. When it is not feasible

·

NW.

Ί

میں ایک	1001014020202020	N. Yo' Yo' Yo' Yo' Yo' Yo' Yo' Yo' Yo	THE SHI LEE, MILLER STREAM STREAM				<u>acaca</u>	0-0-0-0
A	Form 374A	U.S. NUCLE	EAR REGULATORY CON		PAGE 2	OF	10	PAGES
(5-84))			License number				
		MATERIALS LICI	ENSE		SUA-1358	, as re	newed	1
		SUPPLEMENTARY S		Docket or Refere				
					40-8681			
	to avoid a	i site designated	d "contributina"	' in Attachment No	. 2. the 1	icensee	sha'	11
	institute	a data recovery	program for the	at site based on t	he researc	h desig	n	•••
	submitted	by letter from (C. E. Baker of E	Energy Fuels Nucle	ar to Mr.	•		
	Melvin T.	Smith, Utah Staf	te Historic Pres	servation Officer,	dated Apr	il 13,	1981	•
1	The 1800-0			9				
				ological excavatio re located in or w				
				re located in or w as, or the perimet				row
	tailings i	impoundment Nat	ta recovery fiel	ldwork at each sit	er of the	reciaim those c	ea wite	nia
	shall be c	completed prior 1	to the start of	any project relat	e meeting ed disturh	ance wi	thin	116
	100 feet o	f the site, but	analysis and re	eport preparation	need not b	e compl	ete.	
	Additional	ly, the licensed	eshall conduct	such testing as i	ș required	to ena	ble	the
	Commission	ı to determine il	f)those sites de	esignated as "Unde	termined"	in Atta	chme	nt
	NO. Z and	located within,	LUU Teet of pres	sent or known futu	re constru	ction a	reas	are
				lesignation as "co				• • • •
	a site.	in testing shall	De completed De	fore any aspect o	T LUG UNGE	rtaking	att	ects
	a site.	4. L.	A A		0			
16.	Archeologi	cal contractors	shall be approv	ved in writing by	the Commis	sion.	The	ć
	Commission	will consult wi	ith the SHPO rec	arding the qualif	ications o	fall		
•	archeologi	cal contractors	and the quality	of the laborator	y faciTiti	es they	wil	1
1	use. The	Commission will	approve an arch	neological contrac	tor who me	ets the	min	imum
				et forth in 36 CFR	Part 66,	Appendi	хC,	and
	whose qual	ifications are 1	found acceptable	by the SHPO.				
17.	The licens	باسيدة conduct conduct		vey of land use (p	·····	*		
17.	arazing ar	eas private an	t an annuai suiv d public potable	e water and agricu	ltural wal	luences	• 9 	
				the area within fi				v
	portion of	the restricted	area boundary a	and submit a repor	t of this	survev	tot	he
	USNRC, Ura	nium Recovery Fi	ield Office. Th	and submit a reportions report shall i	ndicate an	y diffe	renc	es
	in land us	e from that desc	cribed in the la	ast report.		-		
1						· · · -		
18.				ental monitoring r				
	shall be r	eported in accol	Puance WITN IU U	CFR 40, Section 40	.03 WITh C Monitoria	opies C	ד לח ה-וי	e
	renorted i	n the format che	oranium Recover own in the Attar	ry Field Office. chment No. 3 to SU	-1250 "C	udiđ § ample C	ing I I Come	ve t
		ing Monitoring [n 1990, 'S	ampier	orma	~
19.	Before ena	aging in any act	tivity not previ	iously assessed by	the USNRC	, the 1	icen	see
	shall prep	are and record a	an environmental	evaluation of su	ch activit	y. Whe	en th	
	evaluation	indicates that	such activity m	may result in a si	gnificant	adverse	•	
	environmen	tal impact that	was not previou	isly assessed or t	hat is gre	ater th	ian t	hat
ł				provide a written			:h	
ł			or approval of t	the USNRC in the f	orm of a 1	ıcense		
l	amendment.							
1			•					
			·					

1

SI.					1.1001007	x x x x x x x x x x
Ê	NRC Form 374 (5-84)	A U.S. NUCLEAR REGULATORY COMMISSION	PAGE	<u>3 oř</u>	10	PAGES
N. N	(0.04)		License number		- d	
		MATERIALS LICENSE	SUA-1358, Docket or Reference number	as renew	<u>-u</u>	
ġ,		SUPPLEMENTARY SHEET	40-8681			
M						
						<u> </u>
and the second						
	20. The	licensee shall maintain a USNRC approved su	rety arrangement ad	lequate to	cove	r
	tail	ings stabilization and reclamation, mill de	commissioning, mill	site	_	
	recl	amation, long term maintenance and monitori	ng, and ground wate	r restora	tion	as
	revi	anted. The licensee shall submit for USNRC sion to the surety arrangement within six (
ŝ	revi	sed tailings area reclamation plan or appro-	val of or revision	to any gr	ound	
	wate	r protection program. The revised surety s	hall be in effect w	/ithin thr	ee (3	3)
	mont	hs of written USNRC approval. Furthermore,				
	mont	ew any proposed revision or update to the s hs prior to the proposed effective date. A				
	upda	te and at least annually, the licensee shal	f submit documentat	ion showi	nga	
	brea	kdown of the costs and the cost basis for t	ailings stabilizati	ion and	-	
d	recl	amation, mill decommissioning, mill site re toring, and ground water restoration as war	clamation, long ter	rm mainten	ance	and ~
	inon i	corring, and ground water rescoration as war				
ŝ	If t	he licensee chooses to retain a corporate g	uarantee .as the sur	rety arran	igemer	nt,
	the	licensee shall provide for USNRC review and	approval in the fo	orm of a l	icens	ie .
		dment the financial data listed in Items (a 1358, NRC Self-Bonding Criteria, within fou) - (d) of Attachme r (A) months of the	ent No. 4	t0 thic	
	lice	nse and annually thereafter.		e uace vi		•
					•	
		r to termination of this license, the licen	see shall provide 1	for transf	er of	f ,
Ě	LICIO land	e to byproduct material and land, including owned by the United States or the State of	any interests then litah) which is us	rein (otne ad for th	r tha	IN
AND AN AN AN AN ANY AN	disp	osal of such byproduct material or is essen	tial to ensure the	long term	1	
È.	stab	ility of such disposal site to the United S	tates or the State	of Ūtah,	at th	ne
	Stat	e's option.				•
101 102 101 101	22. The	licensee shall not make any changes to the	<i>∞ ≫1</i> present tailings re	etention s	vster	n
Ş	with	out specific prior approval of the USNRC, U	ranium Recovery Fie	eld Office	:, in	the
	form	of a license amendment.				
	23. The	license shall implement an interim stabiliz	. (ation program for a	a]].tailir	nas n	ot.
	cove	red by standing water. This program shall				
	and	shall minimize dispersal of blowing tailing	s. The effectivene	ess of the	e cont	
	meth	od used shall be evaluated weekly by means				
	insp anor	ection. The operating procedure shall be s oval within three (3) months of the issuanc		review al	iu	
	- abbi		: -::- :: - -:: - -:: - -::-			
	24. The	licensee shall implement the effluent and e				
SI	spec	ified in Section 5.5 of the renewal applica fications or additions:	tion as revised wit	th the fol	lowi	ng
NY N	l DOM	I ICALIVIIS UT AUUTLIUNS:				
ŝ	Α.	Stack sampling shall include a determinati	on of flow rate.			
ŝ	Β.	TLD chips used for radon monitoring shall	be exchanged and re	ead quarte	eriy.	
اور	l					
N.A.	•		•			
			·			
N ZZ		ν.				
222						
2						

	Form 374		PAGE 4 OF 10 PAGE
(5-84))		License number
			SUA-1358, as renewed
		MATERIALS LICENSE	Docket or Reference number
		SUPPLEMENTARY SHEET	40-8681
			40-0001
		•	
	C.	Surface water samples shall also be analyze	ed semiannually for total and
		dissolved U-nat, Ra-226, and Th-230.	ca semilarity for cocar and
	D.	Ground water samples from Monitor Wells 1,	2. 3. 4. 5. 11 12 13 and the
		culinary water well shall be analyzed quart	terly for pH specific conductance
		chlorides, sulfates, TDS, and U-nat. Quart	erly water level measurements chall
		also be made. Ground water samples shall b	he analyzed comismonsally for
		arsenic, selenium, sodium, Ra-226, Th-230,	and Ph-210
		the second s	
	Ε.	Data for the quarterly ground water paramet	ers shall be maintained in
		graphical form and copies of the graphs-inc	Anded with the environmental
		monitoring reports submitted in accordance	with IN.CED AN CE
			TICH, 1010FK 40.03.
	F.	The licensee shall utilize lower limits of	detection in neardance with
	••	Section 5 of Regulatory Guide 4.14, Revisio	detection in accordance with
		of effluent and environmental samples.	m I dated April 1980, for analysis
		or enricence and environmental samples.	A May
25.	The	licenses shall submit to the USUDC Unandum	
	1096	licensee shall submit to the USNRC, Uranium	Recovery Field Uffice, by March 15,
	recl	for review and approval in the form of a li	cense amendment a detailed
	foll	amation plan for the authorized tailings dis	posal area which includes the
	1011		
	٨		
	A.	A post operations interim stabilization pla	in which details methods to prevent
		wind and water erosion and recharge of the	tailings area.
	Β.	A plan to determine the best methodology to	edewater and/or consolidate the
		tailings cells prior to placement of the fi	nal reclamation cover.
		V UMAND	1998 - ED
	C.	Plan and cross-sectional views of a final r	eclamation cover which details the
		location and elevation of tailings. The pl	an shall include details on cover
		inickness, physical characteristics of cove	r materials, proposed testing of
		cover materials (specifications and QA), th	e estimated volumes of cover
		materials and their availability and locati	ол.
	_	-	
	D.	Detailed plans for placement of rock or veg	etative cover on the final
		reclaimed tailings pile and mill site area.	
	Ε.	A proposed implementation schedule for item	s A through D shove which defines
		the sequence of events and expected time ra	
		t	
	F.	An analysis to show that the proposed type	and thickness of soil cover is
		adequate to provide attenuation of radon an	d te sdogusto to secure lose tou-
		stability as well as an analysis and manage	a is adequate to assure long term
		stability as well as an analysis and propos	at on methodology and time required
		to restore ground water in conformance to r	eguiatory requirements.
	G.	The licenses shall include a detail in	
		The licensee shall include a detailed cost	analysis of each phase of the
		reclamation plan to include contractor cost	s, projected costs of inflation
			•

.....

Si A	00000		
UNLUNI	NRC (5-84)	Form 374A U.S. NUCLEAR REGULATORY COMMISSION	PAGE J OF IU PAGES
g			License number
9		MATERIALS LICENSE	SUA-1358, as renewed
Ŕ		SUPPLEMENTARY SHEET	Docket or Reference number
			40-8681
B			
			· · ·
		based upon the schedule proposed in item E	a proposed contingency cost and
		the costs of long term maintenance and mon	itoping
V. V.V. V.V.			i coi ing.
	26.	The licensee shall conduct a tailings retention	system and lines increation program
31		in accordance with Section 5.5.7 and Appendix D	Section 3.0 of the personal
Ś		application. Notwithstanding any statements to	the contramy changes in increation
9		frequency shall require the approval of the USN	RC in the form of a license
AVANA CHICA		amendment. Further, copies of the report docum	enting the annual technical
		- evaluation shall be submitted to the Uranium Po	CONOMY FIGTA OFFICE UCUDO
121.121		one month of completion of the reports 🙃 💳 🚽	
g		one month of completion of the report REG	ilı.
	27.	The ficensee is nereby exempted strom the reduird	ements of Section 20,203(e)(2) of
		IU CFK 20 TOP areas within the mill, provided th	hat all entrances to the mill are
ā		conspicuously posted in accordance with Section	20.203(e)(2) and with the words
		"Any area within this mill may contain radioact	ive material."
Ś			
3	28.	The results of sampling, analyses, surveys and m	monitoring, the results of
۶I		Calibration of equipment, reports on audits and	inspections all meetings and
TAX INC.		training courses required by this license and an	ny subsequent reviews
		investigations, and corrective actions, shall be	e documented. Unless otherwise
		specified in the USNRC regulations all such doci	umentation shall be maintained for a
-		period of at least five (5) years.	
2	29.	Standard operating procedures (SOPs) shall be es	
	23.	Standard operating procedures. (SOPS) shall be es	stablished for all operational
		process activities involving radioactive materia	als that are handled, processed, or
INVINI		stored. Standard operating procedures for opera	ational activities shall enumerate
		pertinent radiation safety practices to be follo	owed. Additionally, written
		procedures shall be established for nonoperation	hal activities to include in-plant
ž		and environmental monitoring, bioassay analyses,	, and instrument calibrations. An
		up-to-date copy of each written procedure shall it applies.	be kept in the mill area to which
		in apprica.	
		All written procedures for both operational and	nononational activities shall be
ğ		reviewed and approved in writing by the RPO befo	nonoperational delivities shall be
Į,		change in procedure is proposed to ensure that p	ne implementation and whenever a
ŝ		principles are being applied. In addition, the	RPA chall perform a documented
ğ		review of all existing operating procedures at 1	eact annually
9		and an and a second shares and a	united ig.
	30.	The Radiation Protection Officer (RPO) shall have	e the following education training
â		and experience:	e and retreating carefolding or a filling
3			
g		A. Education: A bachelor's degree in the phys	ical sciences, industrial hvoience.
		or engineering from an accredited college o	or university or an equivalent
		combination of training and relevant experi	ence in uranium mill radiation
CALLER OF		protection. Two (2) years of relevant expe	rience are generally considered
a,		equivalent to one (1) year of academic stud	ly.
			-
2			:

NOT OF TOTAL

TO TO TO TO	IN TAXION				017090Y	0-0-0		
NRC (5-84)	Form 374	U.S. NUCLEAR REGULATORY COMMISSION		PAGE	6	OF	10	PAGES
(3-34)			License number	C114	1250			
		MATERIALS LICENSE	Docket or Referen		-1358	<u>, as</u>	rene	wea
		SUPPLEMENTARY SHEET	Dockel of Keleien	•• •• •• ••	0601			
				40-8	1001			
			· ·					
	8.	Health physics experience: At least 1 yea	n of work or	nonione			+ +-	
	υ.	uranium mill operation in applied health p	hvsics radi	ation n	roter	evan tion	L LU	
		industrial hygience, or similar work. This	s experience	should	invo	lve) actua	11v
		working with radiation detection and measu	rement equip	ment. n	ot st	rict	lv	
		administrative or "desk" work.	• • •					
	-	• • • • • • • • • • • • • • • • •						
	C.	Specialized training: At least 4 weeks of	specialized	classr	oom t	rain	ing i	n
		health physics specifically applicable to	uranium mill	ing. I	n ado	litio	n, th	e
		RSO should attend refresher training on ur		lealth p	nysic	s ev	ery t	WO
		(2) years.	27.					
	D.	Specialized knowledge: A thorough knowledge	III # To of the re	0000	nlia	+tan	hee	
	υ.	of all health physics equipment used in the	a mill `the	chemica	land	L IVII	anu 1vtiz	່ມວະ
		procedures used for radiological sampling	and monitori	na met	bodol	n ana	6 1166	al d
		to calculate personnel exposure to uranium	and its day	ng, met inhtere	and	a th	s use nrour	iu ih
		understanding of the uranium milling proces	ss and equip	ment us	ed ir	the	mill	
		and how the hazards are generated and cont	rolled durin	g the m	illir	a pr	ocess	i.
			1216					
31.	The	license shall be required to use a Radiation	n Work Permi	t (RWP)	for	a11 :	work	or
	nonr	outine maintenance jobs where the potential	for signifi	cant ex	posur	e to		
	radi	oactive material exists and for which no st	andard writt	en oper	ating	j pro	cedur	`e
	alre	ady exists. The RWP shall be issued by the	RPO or his	designa	te, c	uali	fied	by
	way	of specialized radiation protection training	g, and shall	at lea	st de	escri	be th	e
	TOII	owing:		~				
				Street .				
	<u>A.</u>	The scope of the work to be performed.		63	•			
	В.	Any precautions necessary to reduce exposu	to unaniu	ر مر m and i	te de	waht	0.0C	
	υ.			m ana i S	ts uc	uynt	ers.	
	C.	The supplemental radiological monitoring an	nd sampling	necessa	ry n	ior	to.	
	•••	during, and following completion of the wor	rk.				,	
32. 33.	In ac	ddition, the RPO's review of all non-routing	e activities	, commi	tted	to i	n	
	Sect	ion 5.3.1 of the renewal application, shall	be document	ed.				
20	The	line and the second shall be at the part of						
32.		licensee shall assure that both the RPO and					_ +	
		gnees during their absence, perform weekly						
		rve general radiation control practices and						
	prote ous14	ection staff perform the daily walkthrough if it is a supervisory personnel performing the v	INSPECTION O	UTING W	eekaa	ıys, ' ⊺∽	WITN	
	addii	tion, the RPO shall prepare a monthly report	t which incl	udec =	rovie	10 10	dail	v
	and	weekly inspections, and a summary of all more	itoring and	AUCJ Q	re da	ita f	or th	י <i>ז</i> ופ
		h. A copy of the monthly report shall be su						
33.		by of the semiannual ALARA report described						1
	appli	ication shall be submitted to the Uranium Re	covery Fiel					
	March	n 1 and October 1, 1986, and every year the	reafter.					
							•	
				•				
							;	
							b -	
		· · · ·					- '	
							-,	

	Fcrm 374A U.S. NUCLEAR REGULATORY COMM	
(5-84)		PAGE / OF IU PAGE
		License number
	MATERIALS LICENSE	
	SUPPLEMENTARY SHEET	Docket or Reference number
	SUPPLEMENTART SHEET	40-8681
34.	The licensee shall maintain effluent contro the licensee's renewal application with the	ol systems as specified in Table 4.1-1 of following additions:
	A. Operations shall be immediately suspen any of the emission control equipment areas is not operating within specific	nded in the affected area of the mill if for the yellowcake drying or packaging cations for design performance.
	that the scrubber is operating within for water flow and air pressure differ performance. This shall be accomplish documenting checks of water-flow and a every four hours during operation or (signal an audible alarm if either wate	ned by either (1) performing and air pressure differential approximately (2) installing instrumentation which will er flow or air pressure differential fall levels. If any audible alarm is used.
	read and the readings documented once	
35.	Sample volume and analysis for all in-plant achieve an LLD of 10% of the MPC listed in	Table 1, Appendix B of 10 CFR 20.
36.	The licensee shall utilize the results of l exposures when the lapel samplers are used.	apel sampling in calculating employee
37.	Occupational exposure calculations shall be week of the end of each regulatory complian 10 CFR 20.103(a)(2) and 10 CFR 20.103(b)(2) yellowcake samples shall be analyzed in a calculations to be performed in accordance dust and yellowcake samples shall be analyzed within two working days after sample collect	nce period as specified in . ³ Routine airborne ore dust and timely manner to allow exposure with this condition. Non-routine ore ted and the results reviewed by the RSO
38.	The licensee shall conduct a bicassay program the renewal application with the following	ram in accordance with Section 5.4.2.4 of addition:
	A. A urinalysis program shall be conducte Section 1.4.1 of the "Radiation Protec 1985.	ed for mill personnel as specified in tion procedures Manual" as revised June,
	B. In-vivo counting of mill personnel sha years.	11 be conducted at least once every two
	C. Laboratory surfaces used for bioassay than 25 dpm alpha (removable)/100 cm ²	analyses shall be decontaminated to less prior to analysis of samples.

Y YOY YOY Y		U.S. NUCLEAR REGULATORY COMMISSION			-				
NRC F (5-84)	form 374/	U.S. NUCLEAR REGULATOR & COMMISSION	License number	PAGE	8	OF	10	PAGES	
11		•		1.1 1.2 F	2		have		
		MATERIALS LICENSE	Docket or Reference	SUA -1358), a:	s rel	eweu	· · ·	
		SUPPLEMENTARY SHEET							
				10-8681					
						<u> </u>			
	D.	Anytime an action level of 15 ug/l uranium	for urinaly	is or 9	a nCi	ura	กามก	or	
		an in-vivo measurement is reached or exceed	ded. the lice	ensee sl	hall	Drov	ide	••	
		documentation to the USNRC, Uranium Recover							
		corrective actions have been performed to a						•	
		Regulatory Guide 8.22. This documentation					tted		
		with th semiannual 10 CFR 40.65 report.							
		•							
	Ε.	Anytime an action level of 30 ug/l uranium						or	
		130 ug/l uranium for one specimen for uring							
		in-vivo measurement is reached or exceeded.							
		documentation within 30 days to the USNRC,	Uranium Reco	overy F	ield	Offi	ce,		
		indicating what corrective actions have be	en performed	to sat	isfy	the			
		requirements of Regulatory Guide 8.22.	12		-				
	~		· · · · · · · · · · · · · · · · · · ·	N	• • •	•			
39.		eys for fixed and removable alpha contaminat							
		dance with Section 2.3.2.2 of the "Radiation of the section 2.3.2.2 of the section 2.3.2.2 of the section of th							
		ed June, 1985. Action levels shall be as	specified in	Sectio	n 2.3	5.4 C	of the	2	
	proce	edures manual.	183	, 1 94			•		
40	C-134			5. J 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	11 L.			•	
40.		pration of in-plant air and radiation monit	oring equipme	ent , sna hunder H	II De	e as 111	,• 	Lacal	
		ified in Section 3.0 of the "Radiation Proto						sed	
	calik	, 1985, with the exception that in-plant air prated at least quarterly. Air sampling equ	uinmont chall	taihmeu.	L SNA	111 C 4 mm4	12 'an +-		
	parh	use and the checke documented in the set			ELKE	a hui	UP L	,	
	Cacil	use, and the checks documented.	Con (19) (** yr Vel Art	2					
41.		icensee shall submit a detailed decommission		a the II	SNRC	at 1	pact		
	twelv	ve (12) months prior to planned final shutd	own of mill a	perati					
				r)					
42.	Withi	in six (6) months of issuance of this licen	se, the lice	nsee sh	a]] 4	submi	t to	the	
	Urani	um Recovery Field Office a detailed proposi	al for the d	isposal	of	conta	minat	ted	
	mater	ial and equipment generated at the mill sim	te. The prop	oosal s	ha11	incl	ude a	A	
	descr	iption of the materials to be disposed of,	location(s)	of dis	posa	1, me	thod	(s)	
	of di	sposal, estimated annual volumes of materia	als, and an o	estimat	e of	the	impa	ct	
	of th	ne disposal on the tailings management plan	•				-		
43. 44. 45.				-	-				
43.		tailings other than samples for research s							
		without specific prior approval of the USN							
		ment. The licensee shall maintain a perman	nent record o	DT AII	tran	sters	s mad	2	
	under	the provisions of this condition.							
A A	י ווא	jouid offluonte from mill masses building	e		~~ ~	f			
44.		iquid effluents from mill process building						y	
		es, shall be returned to the mill circuit of	r uischarged	to the	Lai	ings	•		
	Tillhon	Indment.		•					
45	A daa	contamination and current program for home	c containin-	vol1	ngba	e ha '	1 60		
7J.	n uec	contamination and survey program for barrels		96110W	UCKE HUA	5116 4+[e	Dhue	ice	
		conducted in accordance with Section 1.8 of Regulatory Guide 8.30, "Health Physics Programs in Uranium Mills," prior to shipment.							
	rroyr	and in oralitum mills, prior to shipment.							
				•					

NRC Form 3 (5-84)	74A U.S. NUCLEAR REGULATORY COMMISSION	PAGE 9 OF 10 PAGES
		License number
• •	MATERIALS LICENSE	SUA-1358, as renewed
1	SUPPLEMENTARY SHEET	Docket or Reference number
		40-8681
sto eff	licensee shall implement a program to minimickpile area(s). This program shall include we ectiveness of the control method used shall but umented inspection. The operating procedure	vritten operating procedures. The
and	approval within three (3) months of the issu	uance of this license.
47. The	licensee shall, by January 1, 1986, submit t	to the Uranium Recovery Field
Off	ice, USNRC, for review and approval in the fo	orm of a license amendment a nlan
for	instrumentation which shall detect ruptures	of the tailings discharge and
sol	ution return lines when these lines are being	utilized Indications of a
pos	\$1Die rupture of these lines shall~result-in-	activation of an alarm in an
000	upled area of the mill The instrumentation	shall be tested daily, and testing
doc	umented, to ensure proper operation. The ins	trumentation shall be operational
wit	hin sixty (60) days of USNRC approval.	and the second s
	<u>~</u>	$\mathbf{v}_{\mathbf{v}}$
48. The	licensee shall implement a ground water dete	ction monitoring program to ensure
COM	pliance to 40 CFR 192.32(a)(2) which includes	the following elements:
		1481
Α.	The licensee shall monitor at the point of the following indicator parameters: Arseni shall utilize analytical techniques capable	c, Selenium and pH. The licensee
_	Measurements of pH shall be reported to the	arsenic and selenium, respectively. e nearest 1/10 standard unit.
B.	Ine determination of compliance shall be ba	sed on sampling Well Nos. 2 and 3.
C.	The determination of background levels for subsection (A) shall be defined by sampling	the parameters specified in Well No. 1.
D.	The licensee shall sample for those paramet above at those wells designated in subsecti for a period of one (1) year and at least t first monthly sample shall be taken within All semiannual samples shall be taken at le	ons (B) and (C) on a monthly basis wice annually thereafter. The 30 days of the date of this Order
Ε.	The licensee shall, within 60 days of colle monthly samples, propose for USNRC review a license amendment background levels for ind procedure for identifying significant chang data from the wells specified in subsection	nd approval in the form of a icator parameters and a statistical es (95% confidence level) between
F.	The licensee shall report the data required along with those data required by License C the reporting format, Attachment No. 5 to S Reporting Detection Monitoring Data." These addition to the requirements specified in L	ondition No. 18 in accordance to UA-1358, "Sample Format for e monitoring requirements are in

4

715 715 725

NRC Form 374	U.S. NUCLEAR REGULATORY COMMISSION	PAG	e 10	OF	10	PAGE
(5-84)		License number		-		
	MATERIALS LICENSE	Docket or Reference num	SUA-1358	3, as	ren	ewed
	SUPPLEMENTARY SHEET					
			10-8681			
G.	The licenses shall menent at least annually	. In concuderes .				
u .	The licensee shall report at least annually requirements specified in subsection (F) to	y in accordance he rate and dire	co repoi	rting	und	
	water flow under the tailings impoundment.			gio	anu	
	FOR THE NUCLEAR RI	EGULATURT CUMMIS	SIUN			
5	At the second plan (ALL A				
ate <u>au</u>	KUMBUR ZG, 1488 BY BOULARD	+ Nowke	in_			
•	Dotte Dale-Smith	1,# Ulrector '				
	Tember 26, 1985 BY Odlubrd Jose Date Smith Uranium Recov Region IV		e			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	to the	No The				
		180 -	L			
		192 6	2			
			5			i -
	< El hum					
	5		2			
			4			
			•			
	W-y-					
	in the second	NOIS				
•		· .0'				
		in i	6			
	22 LAND	-X				
	イスス	1				
		•				
			•			
		•				

## ATTACHMENT 7

## APPLICATION FOR SOURCE MATERIAL LICENSE RENEWAL

## JANUARY 1985

(Revision 1 - May 1985)

## UMETCO MINERALS CORPORATION

Revised May 1985

. .....

#### 5.0 OPERATIONS (continued)

## 5.4.3 Contamination Control Program

#### 5.4.3.1 Personnel

All personnel working within the mill area are provided with change room, shower, and laundry facilities. Employees working in the yellow cake product areas or performing maintenance on equipment from these areas are provided coveralls and are required to change and shower prior to leaving the mill. All employees are also required to monitor themselves with an alpha survey meter prior to leaving the mill. Alpha contamination on skin or clothes greater than 1,000 dpm/l00 cm² shall be cause for additional showering or decontamination and an investigation by radiation protection staff. Spot checks with a survey meter also are made at least quarterly. Coveralls and contaminated clothing are laundered on site. A respiratory protection program includes written procedures and personnel training in the use, care and selection of respirators as outlined in ANSI-Z88.2-1980.

111:01

## 5.5 Environmental Surveillance Program

The environmental monitoring program is designed to assess the effect of mill process and disposal operations on the unrestricted environment. Delination of specific equipment and procedures is presented in the Environmental Surveillance Procedure Manual, Appendix D.

### 5.5.1 Ambient Air Monitoring

#### 5.5.1.1 Ambient Particulate

Radionuclide particulate sampling will continue at the five locations currently monitored. The present sampling system is to be replaced. The proposed system consists of high volume particulate samplers utilizing mass flow controllers to maintain an air flow rate of forty standard cubic feet per minute. Samplers will be operated continuously with an expected on-stream operating period exceeding ninety percent. Filter rotation will be weekly with quarterly site composition for particulate radionuclide analysis. Analysis will be done for U-natural, Thorium-230, Radium-226, and Lead-210.

1.001

### 5.0 OPERATIONS (continued)

## 5.5.1.2 Ambient Radon

Radon-222 monitoring will continue at the five air particulate monitoring locations currently utilized. System quality assurance will be determined by placing a duplicate monitor at one site continuously. Monitoring methodology consists of a Passive TLD monitoring system. Integration duration is continuous for one month with monthly exchange of TLD chips for analysis.

## 5.5.2 <u>External</u> Radiation

TLD badges, as supplied by Eberline, Inc., or equivalent, will be utilized at the five existing ambient particulate monitoring sites to determine ambient external gamma exposures. Exchange of TLD badges will be on a quarterly basis. Badges consist of a minimum of five TLD chips.

111:01

## 5.5.3 Soil and Vegetation

## 5.5.3.1 Ambient Soil Monitoring

Soil samples from the top one centimeter of surface soils are collected annually at each air particulate monitoring site. A minimum of two kilograms of soil is collected per site and analyzed for U-natural and Radium-226.

## 5.5.3.2 Ambient Vegetation Monitoring

Forage vegetation samples are collected three times per year from animal grazing areas near the mill site which have the highest predicted concentrations of emissions from the mill. The samples are collected near air particulate station one: by the meteorological station, to the immediate west of this site, and by air particulate station four. Samples are obtained during the grazing season, in the late fall, early spring, and in late spring. One to two kilograms of grass are submitted from each site for analysis of Radium-226 and Lead-210.

## 5.5.4 <u>Meteorological</u>

Meteorological monitoring will continue at the current site near air particulate sampling station one. The

Revised May 1985

## 5.0 OPERATIONS (continued)

sensor and recording equipment will be replaced with sensors to monitor wind velocity and direction along with stability classification. Data integration duration is one-hour with hourly recording of mean speed, total wind run, mean wind direction, and mean wind stability (as degrees sigma theta). The recording system will consist of a backup power supply, a backup paper tape printout and a primary ASCII tape recording system.

Monitoring for precipitation consists of a daily log of precipitation using a standard NOAA rain gauge installed near the administrative office, consistent with NOAA specifications.

Windrose data will be summarized in a format compatible with MILDOS and UDAD specifications for 40 CFR 190 compliance.

## 5.5.5 Point Emission

Stack emission monitoring from yellow cake facilities follow EPA Method 5 procedure and occur on a quarterly basis, during operating of the facility: Particulate sampling is analyzed for Uranium-natural on a quarterly basis and for Thorium-230, Radium-226, and Lead-210 on a semi-annual basis. Ore stack emission monitoring follows EPA Method 5 procedure on a semi-annual basis, during operation of the facility. Particulate samples are analyzed for Uranium-natural, Thorium-230, Radium-226, and Lead-210. Monitored data includes ventilation system operation levels, process fed levels, particulate emission concentrations, isoKinetic conditions, and radionuclide emission concentrations.

5.5.6 Water

#### 5.5.6.1 Surface Water Monitoring

Stream monitoring of Westwater and Cottonwood Creeks is on a quarterly basis at locations hydrologically above and below the White Mesa Mill and tailing disposal site. Field monitored parameters include pH, specific conductivity, and temperature. Laboratory monitored parameters include total dissolved solids, total suspended solids, and gross alpha concentrations.

#### ID:01

Revised May 1985

## 5.0 OPERATIONS (continued)

### 5.5.6.2 Groundwater Monitoring

Groundwater monitoring of the existing monitor and culinary water wells at the White Mesa facility is on a quarterly basis. Wells are pumped and monitored prior to sample recovery. Well water quality is monitored for pH, specific conductance and temperature during pumping with sample recovery occurring when these parameters stabilize.

Sample analysis, for dissolved constituents, occurs on the schedule and for the parameters listed in Table 5.5-1.

## 5.5.7 Solid Waste

The tailing management system monitoring plan will follow the guidelines developed in the report:

> "Initial Phase-Tailings Management System; Monitoring Plan" February 1982, D'Appolonia

The monitoring program includes daily, monthly, quarterly and annual inspection criteria. The site inspector will be the Environmental Coordinator. UMETCO MINERALS CORPORATION policy on tailing management includes an external consultant review of the site program on a five-year interval to insure stability and integrity of the tailing site.

## 6.0 MILL ACCIDENTS

## 6.1 Spectrum of Potential Mill Accidents

j

A spectrum of potential mill accidents ranging from trivial to serious has been established by classes of occurrence and each class of accident evaluated (Table 6.1-1). Emergency plans for coping with the accidents are also described.

The severity of accidents is based on their potential impact on the environment and is not a measure of dollar loss or employee injury. The categories in Table 6.1-1 are:

Insignificant - no impact. Corrective action taken

- 1 Trivial no impact. Necessary repairs made
- 2

-80-

## APPLICATION FOR SOURCE MATERIAL LICENSE RENEWAL

JANUARY 1985

## UMETCO MINERALS CORPORATION

## 5.0 OPERATIONS (continued)

product areas or performing maintenance on equipment from these areas are provided coveralls and are required to change and shower prior to leaving the mill. All employees are also required to monitor themselves with an alpha survey meter prior to leaving the mill. Alpha contamination on skin or clothes greater than 1,000 dpm/100  $cm^2$  shall be cause for additional showering or decontamination and an investigation by radiation protection staff. Spot checks with a survey meter also are made at least quarterly. Coveralls and contaminated clothing are laundered on site. A respiratory protection program includes written procedures and personnel training in the use, care and selection of respirators as outlined in ANSI-Z88.2-1980.

## 5.5 Environmental Surveillance Program

The environmental monitoring program is designed to assess the effect of mill process and disposal operations on the unrestricted environment. Delination of specific equipment and procedures is presented in the Environmental Surveillance Procedure Manual, Appendix D.

## 5.5.1 <u>Ambient Air Monitoring</u>

## 5.5.1.1 Ambient Particulate

Radionuclide particulate sampling will continue at the five locations currently monitored. The present sampling system is to be replaced. The proposed system consists of high volume particulate samplers utilizing mass flow controllers to maintain an air flow rate of forty standard cubic feet per minute. Samplers will be operated continuously with an expected on-stream operating period exceeding ninety percent. Filter rotation will be weekly with quarterly site composition for particulate radionuclide analysis. Analysis will be done for U-natural, Thorium-230, Radium-226, and Lead-210.

## 5.5.1.2 Ambient Radon

Radon-222 monitoring will continue at the five air particulate monitoring locations currently utilized. System quality assurance will be determined by placing a duplicate monitor at one site continuously. Monitoring methodology consists of a Passive TLD monitoring system. Integration duration is continuous for one month with monthly exchange of TLD chips for analysis.

## 5.0 OPERATIONS (continued)

## 5.5.2 External Radiation

TLD badges, as supplied by Eberline, Inc., or equivalent, will be utilized at the five existing ambient particulate monitoring sites to determine ambient external gamma exposures. Exchange of TLD badges will be on a quarterly basis. Badges consist of a minimum of five TLD chips.

## 5.5.3 Soil and Vegetation

## 5.5.3.1 Ambient Soil Monitoring

Soil samples from the top one centimeter of surface soils are collected annually at each air particulate monitoring site. A minimum of two kilograms of soil is collected per site and analyzed for U-natural and Radium-226.

## 5.5.3.2 Ambient Vegetation Monitoring

Forage vegetation samples are collected three times per year from animal grazing areas near the mill site which have the highest predicted concentrations of emissions from the mill. The samples are collected near air particulate station one: by the meteorological station, to the immediate west of this site, and by air particulate station four. Samples are obtained during the grazing season, in the late fall, early spring, and in late spring. One to two kilograms of grass are submitted from each site for analysis of Radium-226 and Lead-210.

## 5.5.4 Meteorological

Meteorological monitoring will continue at the current site near air particulate sampling station one. The sensor and recording equipment will be replaced with sensors to monitor wind velocity and direction along with stability classification. Data integration duration is one-hour with hourly recording of mean speed, total wind run, mean wind direction, and mean wind stability (as degrees sigma theta). The recording system will consist of a backup power supply, a backup paper tape printout and a primary ASCII tape recording system.

Monitoring for precipitation consists of a daily log of precipitation using a standard NOAA rain gauge installed near the administrative office, consistent with NOAA specifications.

#### 5.0 OPERATIONS (continued)

Windrose data will be summarized in a format compatible with MILDOS and UDAD specifications for 40 CFR 190 compliance.

#### 5.5.5 Point Emission

Stack emission monitoring from yellow cake facilities follow EPA Method 5 procedure and occur on a quarterly basis, during operating of the facility. Particulate sampling is analyzed for Uranium-natural on a quarterly basis and for Thorium-230, Radium-226, and Lead-210 on a semi-annual basis. Ore stack emission monitoring follows EPA Method 5 procedure on a semi-annual basis, during operation of the facility. Particulate samples are analyzed for Uranium-natural, Thorium-230, Radium-226, and Lead-210. Monitored data includes ventilation system operation levels, process fed levels, particulate emission concentrations, isoKinetic conditions, and radionuclide emission concentrations.

#### 5.5.6 Water

## 5.5.6.1 <u>Surface Water Monitoring</u>

Stream monitoring of Westwater and Cottonwood Creeks is on a quarterly basis at locations hydrologically above and below the White Mesa Mill and tailing disposal site. Field monitored parameters include pH, specific conductivity, and temperature. Laboratory monitored parameters include total dissolved solids, total suspended solids, and gross alpha concentrations.

### 5.5.6.2 Groundwater Monitoring

Groundwater monitoring of the existing monitor and culinary water wells at the White Mesa facility is on a quarterly basis. Wells are pumped and monitored prior to sample recovery. Well water quality is monitored for pH, specific conductance and temperature during pumping with sample recovery occurring when these parameters stabilize.

Sample analysis, for dissolved constituents, occurs on the schedule and for the parameters listed in Table 5.5-1.

#### 5.0 OPERATIONS (continued)

5.5.7 Solid Waste

The tailing management system monitoring plan will follow the guidelines developed in the report:

"Initial Phase-Tailings Management System; Monitoring Plan" February 1982, D'Appolonia

The monitoring program includes daily, monthly, quarterly and annual inspection criteria. The site inspector will be the Environmental Coordinator. UMETCO MINERALS CORPORATION policy on tailing management includes an external consultant review of the site program on a five-year interval to insure stability and integrity of the tailing site.

#### 6.0 MILL ACCIDENTS

## 6.1 Spectrum of Potential Mill Accidents

A spectrum of potential mill accidents ranging from trivial to serious has been established by classes of occurrence and each class of accident evaluated (Table 6.1-1). Emergency plans for coping with the accidents are also described.

The severity of accidents is based on their potential impact on the environment and is not a measure of dollar loss or employee injury. The categories in Table 6.1-1 are:

- 1 Trivial no impact. Necessary repairs made
- 2 Insignificant no impact. Corrective action taken
- 3 Significant Slight impact. Corrective action taken
- 4 Serious Corrective action necessary. Major local and/or regional impact
- 5 Very Serious Corrective action necessary. Major local and/or regional impact

The probability categories in Table 6.1-1 are defined as follows:

- 1 Probably expected to occur during operating life of plant
- 2 Improbable possible one or two of these events can be expected to occur during the life of the plant
- 3 Highly Improbable not expected to occur during the life of the project.

#### TABLE 5.5-1

#### CHEMICAL PARAMETER MONITORING SCHEDULE

#### OPERATIONAL PHASE GROUNDWATER PROGRAM

Second Quarter. Fourth Quarter, Third Quarter, First Ouarter. Quarterly Sampling Semi-Annual Sampling Annual Sampling pH (F) **Indicator Parameters** pH (F, L) Specific Conductance (F) Specific Conductance (F. L) Temperature (F) pH (F, L) Temperature (F) Chloride (L) Specific Conductance (F, L) Total DIssolved Solids (L) Uranium (L) Temperature (F) Alkalinity (F, L) Sulfate (L) Sulfate (L) Chloride (L) Chloride (L) Gross Alpha (L) Ammonia (L) Uranium (L) Phosphate (L) Aluminum (L) Arsenic (L) Accuracy Assessment Parameters Cadmium (L) Calcium (L) Calcium (L) Magnesium (L) Chromium (L) Potassium (L) Copper (L) Alkalinity (F, L) Lead (L) Magnesium (L) Sodium (L) Total Dissolved Solids (L) Manganese (L) Mercury (L) Molybdenum (L) Potassium (L) Selenium (L) Sodium (L) Vanadium (L) Zinc (L) Gross Alpha (L) Gross Beta (L) Uranium (L) Radium-226 (L) Thorium-230 (L) Lead-210 (L) Polonium-210 (L)

Note:

F = Parameter measured in field

L = Parameter measured in laboratory

All radionuclides, metals, cations, anions are analyzed for dissolved concentrations only.

### **ATTACHMENT 8**

# UNITED STATES NUCLEAR REGULATORY COMMISSION ENVIRONMENTAL ASSESSMENT PREPARED BY THE URANIUM RECOVERY FIELD OFFICE IN CONSIDERATION OF THE RENEWAL OF SOURCE MATERIAL LICENSE SUA-1358

FOR

£.

THE UMETCO MINERALS CORPORATION WHITE MESA URANIUM MILL

SEP 2 6 1985

Dated:

#### 2.2.2 Stack Effluent Sampling

Stack sampling has been performed at least semiannually since the mill began operation. The FES (Section 3.2) predicted a product loss from the yellowcake drying and packaging stack of 115 kg per year of which 104 kg would be  $U_2O_8$ . This resulted in a calculated release rate of 0.029 Ci/y for U-238. Actual stack sampling measurements performed in 1982 indicated releases of 97.5 kg of U-nat from the yellowcake stack, which corresponds to 0.027 Ci of U-238. The measured values compare favorably with the release values predicted in the FES.

The FES also estimated that 0.0016 Ci/y of Th-230, 6.2E-5 Ci/y of Ra-226, and 6.2E-5 Ci/y of Pb-210 would be released. Based on effluent monitoring data, the average releases during 1982 were 3.2E-5 Ci/qtr of Th-230 (1.3E-4 Ci/y), 1.0E-5 Ci/qtr of Ra-226 (4.1E-5 Ci/y), and 7.9E-5 Ci/qtr of Pb-210 (3.17E-4 Ci/y). All of the measured values were less than the predicted releases except for Pb-210. The calculated concentration of Pb-210 in the yellowcake stack, when flow rate was considered, did not exceed 17.5% of the maximum permissible concentration (MPC) for restricted areas in any quarter.

ŧ

#### 2.2.3 Radon Gas Monitoring

Radon gas monitoring was performed one week each month at the five stations utilized to collect airborne particulate samples. During 1982, measured radon gas concentrations did not exceed 11% of the MPC for unrestricted areas. The background during this same collection period measured 7.3% of the MPC.

#### 2.2.4 Ground Water and Surface Water Sampling

Umetco previously performed quarterly sampling of nine monitoring wells, one control well upgradient of the tailings system, one drinking water well and two surface water sources. Samples were analyzed for five radionuclides and various chemical and physical parameters.

A staff review of the ground water quality indicated that downgradient monitor wells Nos. 2, 3, 4, 5, 11, 12 and 13 show a higher concentration of dissolved constituents than does the background well (No. 1). Because this has been observed since the time of the preoperational monitoring program, it probably represents normal variance in the ground water. Based on 1982 ground water monitoring data, the highest radionuclide concentrations measured were 0.08, 10, 0.09, 1.8 and 0.3 percent of the applicable MPC for U-nat, Ra-226, Th-230, Pb-210 and Po-210, respectively. No ground water anomalies have been observed. This situation is not unusual since the tailings retention system consists of synthetically lined cells. Surface water radionuclide concentrations have not varied appreciably. The U-nat concentrations are higher than any other radionuclide and did not exceed 1.1E-8 uCi/ml (0.004 % of the MPC for unrestricted areas).

#### 2.2.5 Direct Gamma Exposure

Direct radiation exposure measurements were made quarterly at the five air particulate monitoring stations. The highest exposure rate measured during 1982 was 37.3 mR/qtr including background and 11.7 mR/qtr above background.

#### 2.3 Radiological Assessment

#### 2.3.1 Introduction

This assessment addresses the radiological impacts from milling operations at the White Mesa site. The licensee desires to process 2000 tons/day of ore with an average ore grade of 0.6%, for a yellowcake production rate of 4,380 tons/year. This assessment presents a state-of-the-art evaluation of impacts from the White Mesa mill at a production rate of 4,380 tons of yellowcake per year.

Components of the radiological analysis presented in this section include estimates of the following: (1) annual releases of radioactive materials from the mill and tailings retention system, (2) resulting dose commitments to nearby individuals and the population within 80 km (50 miles) of the site, and (3) concentrations of radionuclides at the restricted area boundary. The calculated results are compared to measured background radiation and applicable regulatory limits. Tables and figures referenced in the text are provided in Appendix A.

#### 2.3.2 Estimated Releases

A summary of the information and data assumptions used to calculate the annual releases of radioactive materials from the mill and tailings retention system is presented in Table 1. The estimated annual releases are presented in Table 2. More detailed descriptions of release estimates from the tailings cells and ore pad as well as descriptions of the models and assumptions used by the staff to perform the radiological impact assessment are provided in Appendix B. Release rates from the tailings retention system are based on the tailings management plan discussed in Section 4.0. with each reading. The staff will therefore require that the TLDs be exchanged and read quarterly.

TLD badges supplied by Eberline, Inc., or equivalent, will be utilized at the five existing ambient particulate monitoring sites to determine ambient external gamma exposures. Each badge consists of a minimum of five TLD chips. Exchange of TLD badges will be on a quarterly basis.

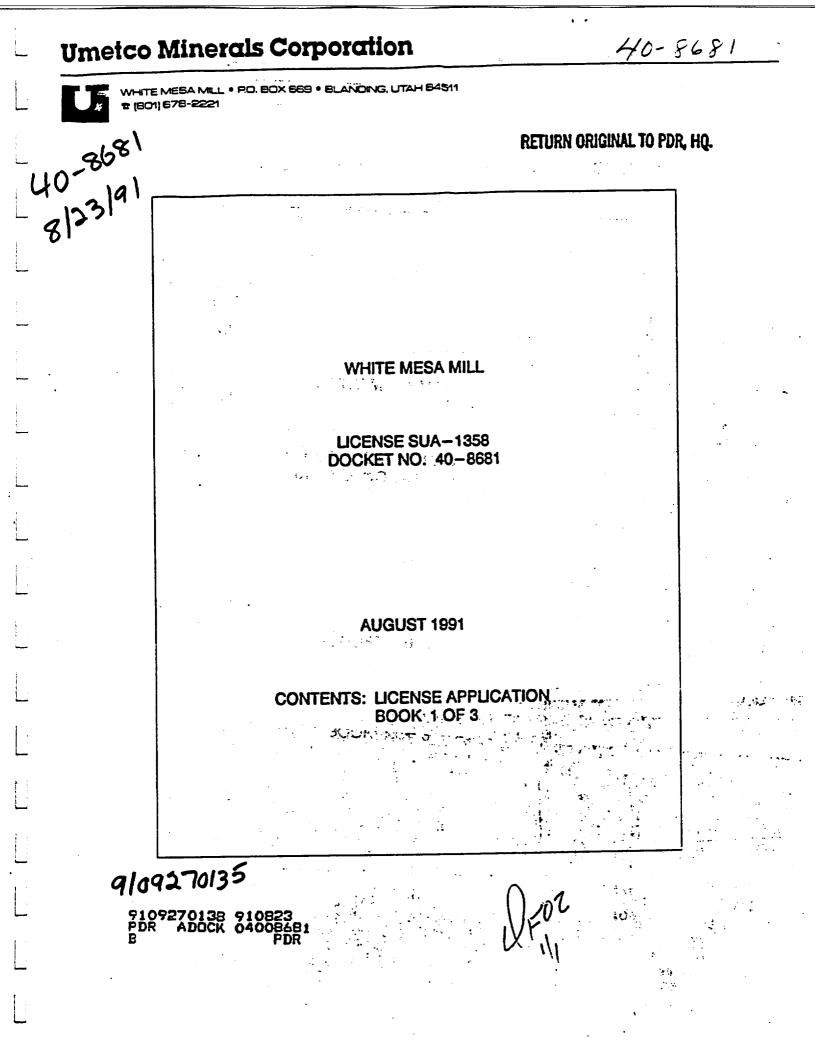
#### 3.4. Soil and Vegetation Sampling

Umetco's proposed programs for vegetation and soil sampling are discussed below. Forage vegetation samples will be collected three times per year from animal grazing areas near the mill site. The samples will be collected near the meteorological station, to the immediate west of this site, and by the south tailings area in the late fall, early spring and late spring. One to two kilograms of grass are to be collected from each site and analyzed for Ra-226 and Pb-210.

Soil Samples from the top one centimeter of surface soils will be collected annually at each airborne particulate monitoring site. A minimum of two kilograms of soil is to be collected per site and analyzed for U-nat and Ra-226.

#### 3.5 Ground Water and Surface Water Sampling

#### 3.5.1 Surface Water


Umetco proposes to sample Westwater and Cottonwood Creeks on a quarterly basis at locations upstream and downstream of the White Mesa Mill and tailings disposal site. Field monitored parameters include pH, specific conductivity and temperature. Laboratory monitored parameters include total dissolved solids, total suspended solids, and gross alpha concentrations.

In addition to the surface water monitoring program proposed by the licensee, the staff will require by license condition that analyses be performed semiannually on surface water samples for total and dissolved concentrations of U-nat, Th-230, and Ra-226.

#### 3.5.2 Ground Water

Umetco proposes that ground water sampling of Monitor Wells 1, 2, 3, 4, 5, 11, 12, 13 and the culinary water well at the White Mesa facility continue on a quarterly basis. Wells will be pumped and the water quality monitored for pH, specific conductance and temperature during

## ATTACHMENT 9



#### 5.0 ADMINISTRATION (continued)

#### 5.5.5 Point Emission

Stack emission monitoring from yellow cake facilities follow EPA Method 5 procedure and occur on a quarterly basis, during operating of the facility. Particulate sampling is analyzed for Uranium-natural on a quarterly basis and for Thorium-230, Radium-226, and Lead-210 on a semi-annual basis. Demister and ore stack emission monitoring follows EPA Method 5 procedure on a semi-annual basis, during operation of the facility. Particulate samples are analyzed for Uranium-natural, Thorium-230, Radium-226, and Lead-210. Monitored data includes scrubber system operation levels, process feed levels, particulate emission concentrations, isokinetic conditions, and radionuclide emission concentrations. For further procedure information see Section 1.4 of Appendix E in White Mesa Mill Procedures Manual.

#### 5.5.6 <u>Water</u>

### 5.5.6.1 <u>Surface Water Monitoring</u>

Surface water monitoring is conducted at two locations adjacent to the White Mesa Mill facility known as Westwater Canyon and Cottonwood Creek. Samples are obtained annually from Westwater and quarterly from Cottonwood using grab sampling. Field monitored parameters and laboratory monitored parameters are listed in Table 5.5-1. For further procedure information see Section 2.1 of Appendix E in the White Mesa Mill Procedures Manual.

#### 5.5.6.2 Groundwater Monitoring

Groundwater monitoring of the culinary water and monitor wells are obtained on a quarterly basis by pumping a minimum of two casing volumes, five gallons, or until three successive samples show stabilized readings on pH to  $\pm$  0.50, temperature to  $\pm$  2°C, and conductivity to  $\pm$  500 umhos at °C.

Upon return to the office, samples are stored in a refrigerator at 4°C until transferred to the Analytical Laboratory.

Field monitored parameters and laboratory monitored parameters are listed in Table 5.5-2. For further procedure information see Section 2.2 of Appendix E in the White Mesa Mill Procedures Manual.

#### Table 5.5-1

## Operational Phase Surface Water Monitoring Program

#### Monitoring Sites Westwater and Cottonwood Creeks.

#### Field Requirements

1. temperature C;

2. Specific Condictivity umhos at 25 C;

3. pH at 25 C;

4. Sample date;

5. Sample ID. Code;

Vendor Laboratory Requirements

#### Semiannual*

#### <u>Quarterly</u>

One gallon Unfiltered and Raw. One gallon Unfiltered, Raw and preserved to pH <2 with HNO₂. One gallon Unfiltered and Raw. One Filtered and Preserved to pH < 2 with  $HNO_3$ .

Total dissolved solids Total suspended solids

Total dissolved solids Total suspended solids Gross Alpha Suspended U-nat Dissolved U-nat Suspended Ra-226 Dissolved Ra-226 Suspended Th-230 Dissolved Th-230

* Semiannual sample must be taken four months apart. ** Annual Westwater Creek sample is done with semi-annual parameters. Radionuclides and LLDs reported in uCi/ml

### <u>Table 5.5-2</u>

## OPERATIONAL PHASE GROUND WATER MONITORING PROGRAM

Monitor Sites

#1, 2, 3, 4, 5, 11, 12, 14, 15, culinary, 2 duplicates

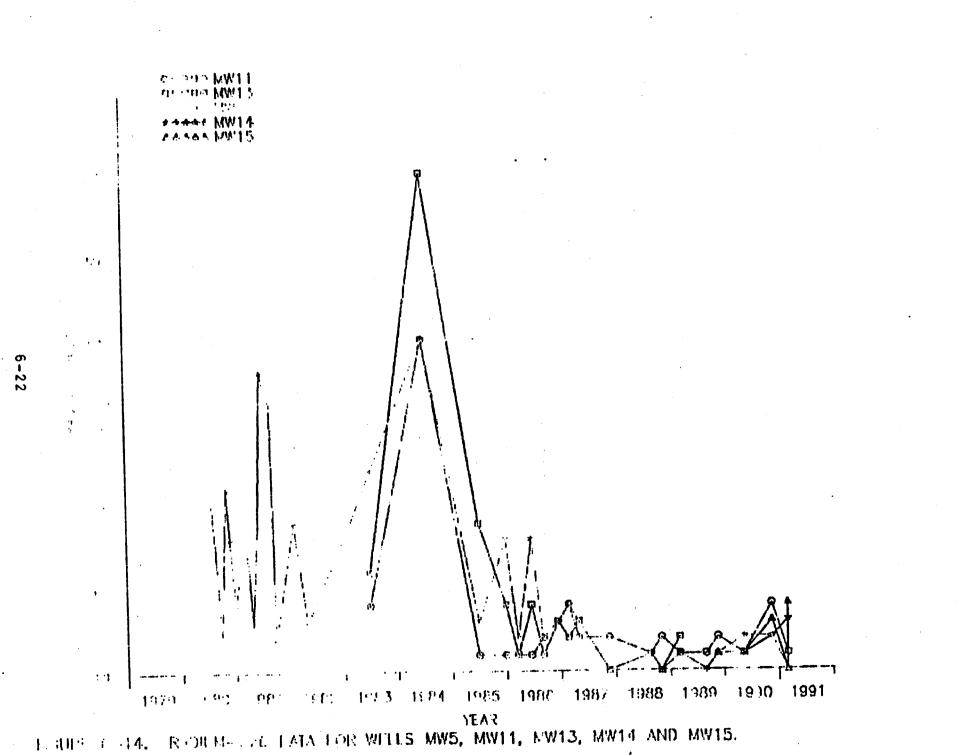
#### FIELD REQUIREMENTS

Depth of well in feet to nearest half inch. Temperature in degrees celcius C. pH to two decimal places. Specific conductance in umhos @ temp.

#### VENDOR LAB REQUIREMENTS

#### <u>Semiannual</u>

*	Beryllium (mg/l)
*	Cadmium (mg/l)
* 1	Molybdenum (mg/l)
*	Nickel (mg/l)
*	TDS mg/1
*	Chlorides (mg/l)
*	Sulfates (mg/l)
**	Selenium (mg/l)
**	Arsenic (mg/l)
**	Ra-226 (uC1/m1)
	Ra-226 LLD(uCi/ml)
<b></b>	Ra-228 ( $uC1/m1$ )
~ =	Ra-228 LLD (uCi/ml)
**	
* *	Th-230 (uCi/ml)
	Th-230 LLD(uCi/ml)
**	Pb-210 (uCi/ml)
	Pb-210 LLD(uCi/ml)
**	U-nat (uCi/ml)
	U-nat LLD(uCi/ml)
**	Gross Alpha (mg/l)


- * 1 liter unfiltered, raw,4°C
- ** 1 gal. filtered, preserved
  with HNO₂ to pH < 2.</pre>

#### <u>Quarterly</u>

- * TDS (mg/1)
- * Chlorides (mg/l)
- * Sulfates (mg/l)
- ** U-nat (uCi/ml) U-nat LLD(uCi/ml)
- * Sodium (mg/l)

- * 1 liter unfiltered, raw, cool 4°C.
- ** 1 liter filtered preserved
  with HNO₂ to pH < 2.</pre>

5-26



. • .

∴ - [

TABLE 6-1.	GROUND-WATER	QUALITY FOR	THE WHITE	nesa dello.
------------	--------------	-------------	-----------	-------------

NELL	DATE	Na	Cl	504	TDS	COND	pH	Âs	Se	U	Ra226	P5218	Th238	
MW 1	••			••	••						••			
AIM T	791838	186	2.5	228	625	948	8.6							
	888138	148	14.8	528	878		7.4		••			**		
	BBB538	165	28	635	1258	1588	7.3							
	889638	166	16.8	632	1250	1367	7.5							
	888731	168	28	618	1182	1469	7.4	0.001	8.881		1.8	3.8	8.48	
	898831	158	18.6	612	1228	1565	7.2	0.084	8.682		8.78	3.8	8,48	
	888938	156	13.8	648	1285	1547	7.6	8.882	8.881		. 1.78	- 3.8	8.86	
	801031	162	38	578	1228	1578	7.4	0.0B1	6.801	••	8.88	3.8	€.50	
	681138	166	12.0	613	1166	1589	7.5	<b>E.88</b> 2	8.881	-	8.79	3.6	6.68	
	881231	168	13.8	628	1194	1568	7.4	6.681	8.691		8.58	5.8	8.58	
	616131	178	15.8	638	1273	1682	7.2	8.881	6.681		0.58	3.8	<b>t.</b> 58	
	616228	148	14.8	688	1254	1723	7.2	8.881	8.881		9.68	4.8	8.58	
	610331	175	14.8	658	1317	1472	7.5	8.891	8.681		2.8	4.8	E.88	
	819430	161	13.8	628	1330	1425	7.5	6.681	8.081		2.2	4.8	0.58	
	616538	168	14.8	658	1386	1543	7.8	6.881	8.681		3.5	4.8	1.1	
	818639	162	12.0	626	1188	1303	7.3	6.681	6.651		1.5	3.8	1.7	
	810814					1716	••		••					
	810831	161	14.8	63 <del>8</del>	1197		7.4	6.681	8.891		8.88	2.8	0.78	
	618938										6.48			
	811231	178	15.0		1199		7.5							
	828127				-	1458								
	820131	178	13.8	613	1200		7.3	6.001	6.881		6.88	6.69	1.1	
	828487					1635								
	828438	198	12.8	697	1288		7.7				0.38	1.3	E.88	
	620787					1578								
	828831	168	12.8	662	1288		7.8				**	8.8	E.28	
	621218					1328								
	E21231	178	18.9	653	1326		7.8		**			••		
	838125		16.8			1318						••		
	838331						7.6							-
	638438					1328								
	E38629	:78	16.5	658	1150		7.8		••		8.42	8.88	6.66	
	<b>63898</b> 6					1398			••				**	
	831825				••	1682		**			-		••	
	631231	178	13.8	665	1200		7.6							
	848226			637									-	
	84832B				••	1200		••				•••		
	848331		14.3				7.7							
	648614	**		••	••	1200					•••			
	84863E	178	12.6	688	1488		7.è		6.825		5.1			
	848938		15.4		••		7.5						-	

NELL	DATE	Na	C1	504	TDS	COND	pH	As	Se	U	Ra226	Pb218	Th238	
	1841285					1189	•=	••	••					
114	841231	182	14.2	637	693	••	7.7		••	••				
	858221					1389								
	658331		14.8			••	7.8				••		••	
	858585			••				E.681	8.881	••		<b></b> ,	••	
	858625					1188	••			••			-	
	656628							6.881	6.001					
	859638	19.9	17.8	816	1569		7.6				1.6	2.7	i.2	
	658723				••			8.881	8.84					
	859386							6.681	0.001	-			••	
	858938		18.0			158B	6.8	8.881	8.881					
	851839					**		8.861	0.001					
	851127							6.681	8.881					
	851215					3888		6.691	8.681	••			•	
	851231	328	53	1885	486B		7.3				6.58	6.8B	6.16	
	869124							<b>C.8</b> 81	0.661					
	869228							8.881	8.881					•
	868321	••									8.58	8.88	6.18	
	868327				••	1358		8.681	6.8B1			**		
	868331						7.8							
	861418							0.881	8.681		**			
	868582		<b>~~</b>					6.681	0.681		•••			
	868619	262	25	783	1288						6.58	6.08	6.18	
	869626					1988							**	
	669638		25	691	1338		7.5							
	861984	175	2.0	787	1258	1888	7.3	6.811	8.681		1.5	8.38	8.48	
	861218	218	8.8	688	1278	2208	7.7	8.6B1	6.682		0.4B	2.2	8.8	
	878228	116	11.0	657	1278	1888	7.3	0.001	6.001		6.28	2.2	t.22	
	878429	134	12.1	664	1270	1880	7.6	6.682	8.881		8.68	3.1	e.16	
	878618		11.0	691	1269	1588	7.6							
	671119	212	9.3	697	1330	168D	7.8	6.883			6.36	6.78	6.83	
	889126	185	18.6	698	1318	1300	8.6	<b>e.</b> 0e3	8.885	••	6.68	6.65	0.1E	•
	868681		9.9	651	1250	1358 .								
	680623	157	13.2	648	1228		7.6				8.58	6.65	6.98	•
	BE1183	172	11.8	688	1258		7.5				6.16	6.68	E.78	
	878389	169	12.8	694	1288		7.4			••	6.10			
	878621		11.3	718	1268		8.6				••	••		
	898522		**	••	**							 8 610		
	878781	163	16.6	352	1210		7.3			••	6.888		8.000	
	891115	194	11.0	697	1288		7.5							
	891120	••								8.28			¢.66	
	988216		••							2,4				

WELL	DATE	Na	C1	S04	TDS	COND	pH	As	Se	U	Ra226	Pb218	Th238	
MW 1	988228		11.6	692	1268	1695	7.6	 6.882	 .881	 6.76	 8.28	8.48	 8.18	
	98858B		12.8	684	1168	1694		0.601 	6.681		U.2U 			
	788589	168			••		7 4							
	988887		11.8	685	1218	1667	7.4			8.47		••		
	988816						7.9	6.681	6.661	£.54	8.28	8.78	8.28	
	981113	165	12.0	687	1178	1848 1789		<b>e.8</b> 81	8.882	1.22	8.18	6.68	23.8	
	918227	171	12.8	662	1272	1/84	1.1	¢.481						
<b>KW2</b>	2	••			••		••	••						
	791838	154	5.0	248	798	1270	7.2			••				
	888138	213	18.8	638	1685		7.2			**				
	818538	346	18.8	1075	1958	2413	7.4				**			
	888638	361	15.8	129	238B	3831	7.4							
	889731	418	28	1488	2449	2568	7.5	1.12	8.83		1.3	3.8	8.38	
	889831	418	16.0		2278	2712	7.2	8.684	6.63		1.7	3.8	6.48	
	888938	468	15.0	1558	2769	2791	7.6	8.882	8.81		6.39	3.0	0.58	
	881831	415	28	1535	2652	293 <b>8</b>		6.HI	8.82	••	1.9	3.1	8.98	
	881138	419	8.0	1425	2492	2668	7.4	6.884	0.01		1.1	2.8	8.68	
	891231	442	16.8	1528	2648	2738	7.4	6.681	6.001		6.48	3.8	6.48	
	819131	467	11.0	1538	2768	3198	7.2	8.001	1.12		1.3	3.0	1.3	
	818228	462	9.8	1558	2835	<b>38</b> 89	7.1	0.0B1	<b>t.00</b> 1	-	1.7	5.8	8.88	
	<b>B10</b> 331	478	16.0			••	7.2	8.091			1.6		8.48	
	818438	476	11.8	1668	3828	3897	7.2	6.881	8.881		1.3		8.68	
	810530	472	13.0	1730	2998	2985	7.6	8.681	8.682		2.3		6.78	
	818638	458	18.0	1698	2983	2886	7.2	0.001	8.618	**	2.8		1.1	
	818814	é•				3782						7.0	1.2	
	81 <b>8</b> 631	468	7.0	1750	2932		7.4	6.681	6.884		7.5			
	816938			-										
	B11231	465			2981		7.7				•			
	528127	••				3450		0.881	8.889				8.8	
	828131	483		1598	2888		7.2	0.001	0.007					
	828487				**				••				99.9	
	828438	468		1766			7.5			-				
	828787	**					••					6.58	<b>8.6</b> 9	
	828631	470		1788			7.7							
	821218													
	621231	482		1749			7.7							
	838125						7.5			-				
	838331													
	838430						7.7			••	- 6.1	7 0.88	8.48	
	<b>838</b> 529	476	25	1881	3508	) ==	·•/							

				•••	**	••		5818					986928	<u> </u>
								8187					036188	784
			**	••	••			2298			••	••	821852	•
							9°L		2958	8281	0.8	208	821521	
					••					1822 *			822878	
								<b>328</b> 8				**	848238	
		••					0°L				1.2	••	848221	
							••	2489		••			\$198¥8	
	9.1	B*5	8'9		19.8		2.7	-+	2588	8861	<b>8.</b> 7	386	848938	
							1.7				6 <b>1</b> 81		848628	
	••	••	••		••		••	5222		••			502118	
		••					1.7		6271	1822	1.7	442	841521	
	••							<b>286</b> 0	••		••		122858	
							9°L				12*8		828221	
				••	110-0	199.8					••		SUSUSU	
				••				2992		••	**		828932	
	85.8	 5.3	 7		189.9							••	829858	
		 c·a	1.3		103 8		9°L		2128	968T	8.T	815	829858	
					199.0								828132	
				••	148.9	158.8		8836 					988858	
			••	**	198.9 188.9	199.8	1.7	3288			9.71		820320	
				••		100.0							821828	
	- <del>-</del> -				129 <b>.</b> 3	199.9		50C1 					LZ1158	
		3.1	87.3	••	 19319	188.8		2568			••		812128	
		••			160.0	168.8	 2"2		2100	8721	14	867	821521	
					189.8	199.0	••						\$21879	
	• •	0.1	8.I				••						BZZB79	
	••				198.9	158.5	••	3592					121078	
•							<b>9.</b> 7						898221	
•				••	299.3	199.9	 81/			••			878783 876221	
-		••			199.9	199.9							205075 881898	
. 2	9.8	3.1	34.B	••			**		2586	2018	12.6	242	619898 Z85898	
•				••			••	2885	**	 8187		~~~	929898 410808	
-	••						<b>3.</b> 7		2528	5848	0.71		878926	
1	97 <b>.</b> 9	<u> 33.3</u>	59 <b>.1</b>		198.9	100.9	519	2100	2548	5858	5'5	757	¥86878	
g	9.9	3.8	8S.9		28 <b>9.9</b>	6.683	2.0	2588	2148	3991	2.7	226	812198	
â	<b>i</b> i i	212	92.0		159.3	288.8	ľ•.	2266	2226	9141	9.9	222	922078	
3			860.9		189.3	238.8	<u>7.</u> 6	2696	2185	8251	ĽĽ	295	621028	
							<u>1.6</u>	2286	2168	2000	<b>9.</b> 3		912029	
9	10°B - 1	39.9	9Z.J		6.02	299.9	<b>1.</b> 7	2486	2398	3646	9.1	319	611128	
3	1.3	89.9	82.5		313.3	153.9	7*	2992	9/72	1626	112	792 7	921989	
-							214	2882	5148	1685	8.4	•-	199988	

.(bound-water guality FOR THE WHITE REEN WELLS(continued).

97-9

i

W	ELL	DATE	Na	Cl	504	TDS	COND	pH	As	Se	U	Ra226	P6218	Th230	
	893	688823	495	6.4	1978	3888	3488	7.1	E.82	8.65	1.1	6.28	6.48	e.6ĉ	
	1184	881183	468	6.6	1988	3150	2858		6.684	e.02	4.9	6.20	6.68	0.28	
		898389	454	7.6	1998	3148	2888	7.1	6.83	<b>C.8</b> 2	6.E	6.28	8.88	6.99	
		678621	••	6.4	2848	3218	3668	7.1		••	6.8		**		
		878622							6.61	6.692			••		
		698981	466	6.8	2888	3848	3678	7.4	6.685	6.6B1	8.8	6.58	6.18	· 8.06	
		871115	515	5.0	1998	3868	3628	7.8	8.008	6.81		6.20			
		871128									9.5		1.3	e.t	
		789216			••				••		7.4				
		988228		5.8	2828	3198	3638	7.5			••				
		988588		7.8	2829	3858	3638	7.1	8.601	0.001	8.8	8.38	<b>8.6</b> 8	6.68	
		788587	584												
		98887		6.8	1978	3888	3568	7.6							
		988816									5.9				
		981113	478	6.8	1988	3158	2858	7.5	6.691	8.684	7.2	6.48	1.3	6.18	
		918227	477	18.8	1849	3154	3728	7.5	-6.621	-6.652	3.5	6.38	8.48	8.68	
						•									
	KH:	5 3				••								••	
		791038	282	12.6	938	2188	3268	7.3				**			
		888138	334	25	2168	2458		6.6		••	••		**		
		888538	575	58	2438	448B	3915	7.2	••						
		888538	642	51	2625	4758	4276	7.2		••					
		888731	442	62	2458	4824	4386	7.2	6.81	e.081					
		689831	653	65	2975	4988	4537	6.9	6.081	0.885					
		888738	586	62	2668	4593	4768	7.6	8.882	E.881					
		881031	677	65	385 <del>8</del>	4828	4846	7.2	6.681	8.891					
		601130	567	64	2758	4522	4782	7.1	C.884	e.883					
		881231	699	65	3669	4982	4828	7.1	0.001	6.661	-				
		<b>8161</b> 31	756	71	3612	5853	5398	7.8	8.681	6.001					
		818229	784	65	2788	4884	5854	6.8	E.881	6.681					
		816331	745	60	3158	5122	5153	7.8	E.681						
		81 <b>6</b> 438	783	66	3636	5138	4893	7.1	C.881		••				
		e1853e	716	118	3188	519B	4918			E.881					
		S10530	685	69	3848	5367	4433-	6.6							
		818514	••				5632				-				
		816831	<b>68</b> 5	67	3858	5124		6.9			-				
		618736									-				
		811231	738	ðċ		5167	••	7.3			•				
		620127	••				5100		••						
		828131	757	<u>64</u>		4958			e.ee:		•	•••			
	·	628487					548°				•				

14228	81293	8225	n	as	zA	Hq	CND	SQI	105	[]	БЙ	3140 312	N
 <b>č.</b> I	8.1	95.9	••		••	<b>2</b> •2		2152	2528	¥9 	964	HR2 858428	
••			••				0/1S					£92929	
9.9	8.1			**		S.7	•••	2299	2182	L9	ØSL	828821	
		**		••		••	4268					812128	
••		••				<b>S.</b> 7		2299	2326	22	819	. 851521	
							8923			14		820152	
						<b>Z'</b> L						828221	
47 8		••	•••				9287	••				828428	
92.9 	95' <b>9</b>			**	•• .	<b>S'</b> L		8867	2559	99	811	829956	
					••		8677					828689	
						••	2228					821622	
						*'L		8515	2568	63	888	821521	
••									2522			822818	
						a 7 	8827		••			848258	
			••			8.8				<u>[</u> 9		848221	
8.1	<b>9.</b> 7	9.3		 20.9		¥ L	4298					\$19858	
		 a:a		 ca's		<b>*</b> *L		2288	2299	£9	887	848928	
	••					9°9	2707			LS		818328	
	••	••					5265	2226	2202			841582	
			<b></b>	••		 B*9		5122	2522	<u></u>	687	841321	
		•• .					2087		••			122858	
				160.9	160.0	 5"9				89		828221	
					**		8821					525059	
	<b>e</b> =			199.9	168.8	**						527858	
32.B	2'1	9.1				9.6				 22		829858	
	••			160.8	169.8					22	96L	829858	
			••	199.8	138.5			••				52655	
				190.0	168.9	1.4	888S		**	54		686 <b>8</b> 28	
	**		<b></b>	169.9	199.3			•••	•••	 9/		826328	
				166.3	128.3							821158	
	••		••	190.9	188.3		. 8974			••		821518 221158	
97.8	32.3	215			••	3.4		3885	. 3/92	22	992	821521 821512	
	••			169.3	199.9					**		898134	
				158.9	150.8	••						8Z2898	
97.8	91.9	38.9				••	••					8°8331	
		**		190.3	160.5		9684	••				172898	
	••		••			3.6		•• ·		••		898227	
	**			138.8	:59.5	••		••				687898	
				199.9	180.9							285898	
	32.3	215						895 <u>5</u>	2428	341	126	517998	
-	**						9962					62484B	

.(bound-warea guality FOR THE WHITE REEA Continued).

92-9

9995

929898

••

ł

i

14238	8129J	K#539	n	əs	54	Hq	COND	SQ1 .	204	10	БЙ	<b>JTA</b> D	٦
••	••			` <b>~~</b>		7.4		2268	2488	871		898926	210
89.9	69.9	89.3	••	188.5	158.8	T.6	8889	2356	2410	¥9	9¥L	186899	
9, 9	8.3	1.1		208.8	500°0	5'9	8895	2298	2920	89	192	912198	
9.9	3.1	1.1		289.0	289.8	5'9	0875	2228	8792	<b>99</b>	212	876228	
92.0	0S.0	8.38		158.8	198.8	<b>č.</b> 6	8895	2469	2568	59	218	629029	
					••	9.9	2499	2258	2488	59		818849	
89.9	6 <b>0.</b> D	<b>6*2</b> 6.		19.3	78 <b>8° 0</b>	2.7	2899	2258	225B	£9	926	511129	
85.8	89.8	88 <b>.8</b>	••	28.3	6.683	8.4	4209	eets	2856	49	911	021558	
						7.6	4288	2548	2298	9 <b>9</b>		197889	
97.9	68.9	97.0		79.9	£ <b>3.3</b>	T.0	1290	2226	2228	99	<u>891</u>	889832	
8.38	8 <b>9. 3</b>	8.38		18.8	10.0	L.8	8877	2428	2418	89	659	881182	
80.1	91 * 9	8.36		6.83	20.5	<b>[.</b> å	882¥	2228	2418	49	112	682868	
••			52	**		<b>7.</b> ð	8995	8575	2200	L9	••	878621	
<b></b> .				0.883	28.3					••		868933	
88.9	69.3	82°8	22	<u> </u>	98 <b>9°</b> 8	6.8	BSSS	862S	2208	59	712	19686B	
	**	84.8		28.3	019.0	5.6	8655	85ZS	9762.	99	921	STITLB	
9.0I	1.2		0.21				•• '					821168	
**			8.AL	-•					•• `	••	••	912886	
••						8.5	8555	2266	2228	59		922896	
91.9	9.1	84.3	52	183.3	288.9	9.6	8595	8795	2488	L9 .		885 <b>18</b> 6	
						••					9SL	685886	
						8'7	8875	822S	2488	59		<b>L0810</b> 6	
<b></b>			7.81			••						718886	
89.9	87.9	92.3	12"6	8.683	198.9	<b>å.</b> å	8181	8625	2498	89	869	681112	
91.0	91.0	82°9	9.8	20 <b>0.8-</b>	188.8-	9*9	2228	8925	2112	89	6 <b>9</b> 7	152019	

.(beuniinoile A23M BTIHN BHT FOR THE WHITE MELLE(continued).

62-9

2292

2261

2238

2422

7522

5821

2398

1622

2222

1972

9612

2582

--

--

2298

2216

2256

2225

2226

3668

3692

2465

2252

2488

2138

8852

3968

899Z

8562

--

1889

3931

8961

1668

9971

9871

2620

5675

8861

8861

8581

8981

8821

1550

--

17

37

11

81

1¥

28

85

12

95

87

12

**

22

38

--

216

328

28t

322

822

**36**2

192

211

227

222

225

249

12

245

---

616426

122918

972919

121918

122188

887126

881821

888326

889821

122088

899928

8888228

889128

791838

7

\$X1

18818 18818 ST2

18010 18018 212

199.9 199.9 9.7

12919 19919 212

168.8 188.3 9.7

999'9

--

--

--

--

19919 19913

239.3 289.9

199.8

117

1.3

11

1.7

\$*2

2*2

2.7

11

1.7

--

160.9

100.3

--

--

--

--

--

928 61881

32.9

96,8

99.3

85.8

37.3

88'8

99.9

81.8

31.3

DZ*0

--

--

--

--

----

--

---

--

--

--

--

--

--

--

--

••

--

--

---

8S'1

38.3

37.3

92°9

86'8

36.3

39.3

32.3

¥. 3

37'3

--

--

--

--

3.8

9'2

310

12

9'+

8'5

312

910

8'3

**2'E** 

--

--

--

--

----

ì

-

TABLE 6-1. GROUND-	WATER QUALITY	FOR THE	, WHITE NESA	WELLS(continued).
--------------------	---------------	---------	--------------	-------------------

WELL	DATE	Na	Cl	504	TDS	COND	pK	As	Se	U	Ra226	P5218	Th238
 MU.S.	818538	358	41	1918	3296	-3864	o.8	<b>E.0</b> 01	6.681	••	1.3	3.8	1.2
143	816638	351	43	2878	3688	3108	7.3	6.881	8.981		1.2	3.6	1.3
	810814	••				3963					••		
	616831	323	32	1918	3337		7.2	8.881	<b>e.8</b> 81		1.1	5.8	1.4
	616736									••	8.88		
	811231	338	41		3377	••	7.7		**	2.8		-	**
	828127					3378						••	
	820131	348	42	1928	3299		7.1	8.881	8.883		1.8	E.8	1.6
	828331				••				-	6.69			
	828487					3638	**						••
	828438	338	48	2856	3288		7.3				1.8	£.98	E.80
	829638							••	••	1.3			
	828787					338B							· ••
	828831	348	43	2847	3588		7.8					6.98	6.65
	828738									6.68	••		
	821218					2626							
	821231	334	36	1979	3478	-	7.6			E.67			
	839125		46		**	2918							
	E38331						7.3			5.5			
	836438					3428							••
	838629	338	37	2189	3588		7.7		**	8.68	1.6	8.8	6.18
	638986	••				2970				••			
	638929									2.3			
	831825			•• •		3788			**	••	••		
	831231	328	36	2875	3250		7.6			<b>8.</b> 67		••	
	849228			2856									
	84832E	· •••				2348						**	
	84833:		43				7.8	+-		1.4			
	848614					258B				**		••	
	848638	316	43	2675	3588	••	7.8		6.664	2.7			
	848938		45				7.8		• • ••	e.41			
	641285					2325							
	841231	348	42	2856	1591		ė.8			6.61			
	858221					2788				••			••
	858331		40	•••			7.1			4.2			
	858525			-		2888						•••	
	<b>850</b> o26			••									
	858538	378	42	204 <b>0</b>	Joit		c.7			2.96			
	ə58938		47		. ••	2309	o.3			1.4			
	851215				••	2006	••			•			
	851231	348	53	2628	4088		c.5			1.6			
	868321									-	- 0.ėl	e.26	2 0.10

TABLE 6-1. GROUND-WATE	R QUALITY FOR	THE WHITE	MESA	WELLS(continued).
------------------------	---------------	-----------	------	-------------------

WELL	DATE	Na	CI	504	TDS	COND	pH	As	Se	U	Ra226	Pb218	Th238	
M114	858327					2888		<b>e.e</b> 81	6.081			••		
	868331		**				6.9			2.2				
	868619	326	98	2128	3458					<b>4</b> 9	8.98	8.28	6.19	
	868626	••	••			3680		••		••				
	868638		95	2158	3610		6.9		••	1.8			••	
	868984	289	42	2168	3458	4188	6.8	0.881	6.681	1.	8.68	8.68	2.4	
	861218	335	45	2868	3538	3489	7.8			8.19	8.78	8.88	8.58	
	876220	289	44	2638	348B	3200	7 <b>.E</b>	6.882	6.681	<b>E.</b> 19	6.58	1.5	8.8	
	878429	232	42	1938	3348	2600	6.9	6.0B1	6.881	1.3	6.48	6.6	8.68	
	87881E		46	2130	3538	3888	7.8			1.5				
	871119	395	45	2178	3578	3760	7.2	8.882	8.418	6.98	6.18	1.7	8.16	
	686125									1.6				
	888126		45	2069	3468				••					
	888681		45	2120	3430	2850	. 7.1	•••		1.4			'	
	686823	286	48	2100	3328	3188	6.8	0.62	8.085	8.54	£.38	6.08	8.68	
	881183	289	48	2120	3458	••	•••	6.881	0.005	E.684	8.18	£.68	6.42	
	898389	275	45	2878	3538	2788	7.3	8.83	6.62	1.4	8.18	6.89	8.18	
	898621	••	46	2180	3588	3698	6.9			1.2		••		
	898622				••			E.02	8.003		 0 10		8.68	
	878781	287	46	2148	343E	3678	7.8	8.003	6.683	2.6	0.28	6.58	e.es	
	891115	278	45	2158	3378	3648	6.8	<b>E.8</b> 82	0.61		8.28	6.18	6.18	
	871128								••	8.98		C.10		
	928216									1.6				
	988228		47	2148	3548	3630	7.E		 8 891	1.6	0.48	6.48	8.89	
	988588	••	48	2088	3248	3658	7.8	<b>e.e</b> 01	8.881	1.0	U170	¥:76 -4		
	988589	291	••				••							
	768827		48	2688	3320	3550	7.7			1.3				
	988816								E.891	1.2		E.98	8.18	
	981113	285	58	2130	3288	2070	7.7 7.7		-6.662	1.3		1.6	8.8	
	918227	264	56	1946	3424	3738	7.1	6.001	-6.001	110				
NW	5 888538	478	68	1298	2388	266C	7.6	••						
	888538	462	57	1266	2268	2372	7.6						**	
	802731	435	ćĈ	1160	2969	2371	7.7		<b>e.6</b> E1		•••			
	898631	465	96	1158	2218	2448	- 7.4							
	888738	582	51	968	2182	2559	7.7							
	881831	443	55	1862	2896	2479	7.6			••				
	80113e	426	49	1658	1968	2568	7.7							
	881231	462	52	1158	2185	-2412	7.2				••••			
	810131	467	53	1148	2072	2252	7.4							
	616228	467	54	1268	2152	2268	7.3	<b>e.e</b> ?	8. <b>8</b> 81		- t.6t	5.0	£.58	

WELL	DATE	Na	C1	S04	TDS	COND	pH	Âş	Se	U	Ra226	Pb210	Th238	
				<u> </u>	·= :									
NN5	618331	473	55	1218	2256	2638	7.7	8.881	E.881		8.70	5.8	8.58	
	818438	467	53	1220	2389	2589	7.5	6.891	Q.881	••	6.30	5.0	8.98	
	818538	459	53	1198	2297	2422	7.2	8.681	6.021		8.88	4.6	8.88	
	818630	437	53	1105	2114	2699	7.3	6.681	6.691	**	1.8	5.8	8.78	
	816814					3877	••							
	616831	426	52	1115	2119	**	7.8	8.681	8.081		1.6	3.1	8.98	
	618938					••				13.5	8.28			
	811231	468	20		2198		7.7			3.0	••			
	828127					3858								
	826131	478	51	1268	2258		7.3	<b>2.0</b> 21	6.881		6.98	6.8	2.9	
	828331			**			••			0.68				
	828487		••			3275								
	828438	518	58	1518	2588		7.8				6,30	1.1	1.7	
	828638									2.7				
	628787					2798								
	826831	478	43	1295	2258		9.3			••		6.8	6.0	
	828738		-					**		8.67				
	821218					2228	••							
	621231	431	47	1162	2188	••	8.8			8.67				
	838125		57			2158								
	838331						8.1			8.68		**		
	838438		••			2478	••						 0 70	
	£38629	458	48	1228	2288		8.1			8.67	1.2	t.t	e.2e	
	838986					2138	**				••			
	638929		**				**			5.6		••		
	631025					2848			-					•
	631231	488	54	1288	2168		7.7			6.68				
	848228			1175				••						
	848328					2158			-					
	848331		58				7.9	••	••	1.4				
	848514				**	2388			E.685	2.7			6.16	
	848638	476	54	1288	2200		7.8		E.EDJ 	6.41			•••	
	848738		57				7.5			8171			••	
	841285				.785	2088	 7 E						**	
	641231	428	53	1175	1368	2168	7.6			••				
	858221			••	••	2100	7.5			6.61				
	856331		55							0.01				
	858625				••	2200		e.801						
	25802E .					**		C.001	E.001	6.66				
	858638	548	53	1218	2288		7.9			U.05 3.4				
	858938		62	••		2885	7.8			۹.۴ 				
	851215				••	2208		<b>E.0</b> 81	C.061					

WELL	DATE	Na	Cl	S04	TDS	COND	pH	As	Se	U	R2226	Pb218	Th238
 NKS	851231	538	71	7628	6688		8.1	••	••	8.58	8.88	6.36	6.18
	866321						-		••		6.28	6.36	8.16
	868327		••			2388	••	<b>e.6</b> 81	6.881				
	868331					**	7.E			1.1			**
•	868619	514	130	1248	2138	••		**			8.88	6.30	0.16
	868626					3888	-					••	
	868630		138	1898	3218		7.5		**	5.0		••	••
	868784	436	53	1230	2848	3258	7.6	<b>6.8</b> 81	<b>E.8</b> 81	0.70	8.28	3.6	1.8
	861218	581	54	1148	2188	2488	7.1		••	1.6	0.38	8.88	8.18
	878228	387	54	1128	2055	2888	7.6	8.682	0.001	6.19	8.48	2.7	8.98
	870429	368	54	1318	2388	3788	7.6	6.001	6.001	8.98	6.38	2.4	E.36
	878318		54	1148	1998	278B	7.4	**		2.1			•• .
	871119	564	53	1128	1978	2688	8.0	0.001	8.82	. 8.38	6.81	8.68	8.88
	688125									1.6		••	••
	889126		54	1138	2838	1988	7.7	••					••
	882621		53	. 1838	1678	2168	-7.6		••	8.98			· •••
	888823	432	54	1858	1936	2282	7.8	6.62	<b>8.8</b> 6	6.12	6.19	6.68	8.48
	881183	418	55	1878	1898	2000	7.5	6.681	£.63	1.1	1.1	8.8	8.6
	878387	321	53	1188	2010	2189	7.6	8.62	0.885	1.5	0.18	8.18	6.68
	878621		55	1168	2828	2718	7.4			£.65			
	898622							6.018	0.084				
	678781	411	54	1148	1948	274B	7.7	C.001	••	1.1	8.6	8.8	8.18
	891115	588	54	1180	2898	2758	7.6	6.007	E.EBó	**	6.18		
	871128					**				8.48		1.8	e.8
	988214							••	••	£.78			
	98222		55	1218	2118	2788	5.8			••			
	988588		56	1188	1950	2758	7.6	<b>E.80</b> 1	<b>e.0</b> 81	6.76	<b>t.</b> 28	1.1	e.e
	988589	. 456											
	988887		53	1148	1978	2668	7.7						
	988816	••								6.68			
	981113	418	54	1169	1880	2888	7,9			E.34			
	916227	438	58	1628	1858	2648		-6.881		£.27			6.65
	910227	427	58	958	1888			-8.881	-6.682	8.34			
MW1	1 621218					2162			••	••	,	• •-	
	621231	558	24	926	1812		8.2		**	••			
	838125		70			1638							
	838331						7.4	••		6.34		• ••	
	638438					2330				••			
	838629	488	27	943	1658		6.8	-		6.6	e.48	6.00	8.65
	838786					2260				-			

ł

.

WEL	L	ATE	Na	C1	SD4	TDS	COND	pH	As	Se	U	Ra226	Pb210	Th238	
	11 831									•••	6.5		••		
		1825					2688								
		1231	548	32	988	1558		7.2	**		8.69				
		1228			937										
		8328					1588			••					
		8331		31		••	••	7.8			7.4		**		
		6614					1880	••							
		8638	538	32	928	1788		7.2		6.885	2.7	2.6	1.0	2.8	
		8936		54				7.9			<b>e.</b> 41				
		1285					1988				••	**		••	
		1231	446	32	937	•• .		7.9			1.8		**	••	
		221				**	1988	••			••				
		68331		34				7.9	••		8.27		••	<b></b> .	
		625					1850							• ••	
		58628							6.681	e.881					
		58638	610	31	707	1788		9.8			6.30	0.16	6.88	1.2	
		58938		38			2358	7.9			8.8				٠
		51215					3168		6.681	8.681		••			
		51231	558	71	79	5188		7.1			6.58	8.18	6.98	8.16	
		68321	**								••	8.18	6.98	8.10	
		68327	-				1988		6.691	8.681		**			
		68331						7.8	à.		1.7				
		68619	588	77	943	1788	**					6.16	€.98	e.18	
		58626					3488		-	••					
		68638		76	949	1768	••	7.9			1.5				
		68984	477	32	956	1716	278E	7.9	8.891	<b>C.8</b> 91	6.48	8.28	e.16		
		61210	258	33	911	1718	1588	7.9			8.19	E.38	6.88		
		78228	366	32	895	1718	3488	7.8	6.681	<b>e.e</b> e3	e.19	6.48			
		78429	378	43	1828	1888	3250	7.8	6.882	8.681	8.38	8.28	4.8		
		78818		33	951	1698	2888	7.4			0.70				
		71119	768	32	961	1728	238B	7.8	E.881	8.82	£.58	ę.28			
		88125						**			E.19				
		868126	••	31	919	1648	1690	7.B							
		358681		32	947	1996	2088	7.9	••		e.5e				
		988523	535	34	915	1628	1886	7.7	<b>e.e</b> 2	8.67	6.85				
		681103	486	35	974	1718	1950	6.E		E.83	¢.27				
		698389	375	32	975	1738	2888	7.9	6.61	8.882	e.98				
		698521		74	1828	1750	2528	7.8			e.8			•	
		898622							6.885	6.884					
		898981	489	34	1020	1768	256€	7.6			1.6				
		891115		34	993	1858		7.8	<b>C.0</b> 82	6.62	••				
		871120						· ••			€.6	- 5	- 8.1	E 6.02	

WELL	DATE	Na	Cl	504	TDS	COND	pH	As	Se	U	Ra226	P6218	Th238	
	988216									8.78				
<b>UMII</b>	<b>988226</b>		33	1018	1789	2758	8.1		••					
	988588		33	1010	1662	2558	7.8	6.081	6.661	8.88	£.18	8.78	6.68	
	488589	517			1005				••				**	
	988567		33	973	1788	2538	7.4			••	••		••	
	788816			- 7/9 . 			•••	-		8.47				
	786616 981113	475	34	975	1728	1878	8.8	8.081	6.081	8.61	6.48	1.1	8.28	
	910227	522	31	967	1686	2688	6.8		-8.882	-8.28	6.18	8.65	6.68	
	110121	222		107	1000	1000			••••					
WW12	821218				••	3280							••	
	821231	318	57	2395	4116		7.8							
	838125		78		'	3139	-	**		••	***			
	638331		••			**	6.7			5.0		••		
	838438		•=			3489	••							
	838629	31 <b>e</b>	88	2428	4858		7.4			2.6	8.68	6.68	6.18	
	836786					3250								
	832929									11.8		••	**	
	831825					4888			**					
	831231	298	65	2338	3958		7.2			18.8	••		••	
	841228	••		2488		••							••	
	848328					3858			••					
	846331		64				7.2		**	29	**	·	••	
	848614	**				3208			 340 A			8.8	8.8	
	848638	328	65	2499	4100		7.6		0.005	18.3 8.41	6.E	G.D 		
	848938	**	65		••		6.8			0.91				
	841285					3888				1.6				
	B41231	328	67	2488	2888	4898	6.7							
	850221	**		••	••	7880	7.1			ŧ.47				
	858331		67 			3300	/ • k 							
	858625 858628						••	8.801	<b>C.88</b> 1	**				
	858628	338	62	2448	4388		6.8			6.6	1.1	e.8	6.68	
	858538		71		996F 	3888	£.9			3.4				
	851215					2688			e.681					
	851231	386	53	7822	5188		7.7			6.6	8.78	6.18	<b>e.</b> 5e	
	868321													
	668327		••			3188			6.681					
	868331			••			6.7			5.6	-			
	868619	438	176	258B	4148					••		E.1	£.58	
	86862a					5488		-		••				
	868638		158	2529	4216		6.7	-		ş.c	,			

•

TABLE 6-1. GROUND-WATER QUALITY FOR THE WHITE MESA WELLS(continued).

FW12       568       2476       4848       5588       6.6       6.881       6.881       9.8       8.78       8.78       8.88       6.88         S70228       197       63       2188       4128       5588       6.9       8.882       6.881       9.1       8.78       8.78       2.1       8.88       6.88         G70215       235       63       2388       4128       5588       6.9       8.883       6.881       16.5       8.68       5.4         G70215	WELL	DATE	Na	Cl	SD4	TDS	COND	pH	As	Se	U	Ra226	Pb218	Th238	
Billie         324         64         2376         4118         3388         7.1           12.9         8.78         8.78         2.1         8.48         8.48         8.48         8.78         2.1         8.48         8.78         2.1         8.48         8.48         8.48         8.48         9.48         9.16         7.7         9.78         8.78         2.1         8.48         8.48         5.4           878126          -1         -1         -7.3         8.89         7.8           9.8	8112	548984	296	58	2478	4848	5588	6.6	6.881	6.681	9.8	6.98	E.38	8.88	
B78228       197       63       2188       4128       5588       6.9       8.82       8.81       9.1       8.78       2.1       8.8         B78239       255       63       2388       3799       338       5999       3588       5.8       6.9       8.85       8.85       8.88       18.5       8.68       8.88       7.3       8.887       8.88       9.8       7.3       8.887       8.88       9.8       8.88       2.3       8.88       2.3       8.88       8.88       7.3       8.887       8.88       7.4       8.38       2.3       8.8       8.88       2.3       8.8       8.8       7.3       8.887       8.88       7.4       8.38       2.3       8.8       8.8       7.3       8.887       8.88       7.4       8.38       2.3       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.88       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8       8.8	114 4 6									••	12.9	8.78	8.98	1.18	
67827       255       63       2388       4128       4488       6.9       8.683       6.681       18.5       8.68       6.68       6.88       5.4         67816									8.882	6.681	9.1	6.76	2.1	6.8	
878818									6.083	8.001	18.5	8.68	6.88	5.4	
871119       334       61       2568       4138       3984       7.3       8.887       9.4       8.38       2.3       8.8         888125									-		9.6			**	
BB125									0.687	8.894	9.4	0.30	2.3	8.0	
688126											8.9		••		
BB8681        64       2428       4868       3258       7.1         12.3            BB8023       244       65       2259       3818       3468       6.7       6.82       6.81       1.8       6.52       6.88       8.88       6.6       6.81       1.86       8.28       6.88       6.88       6.81       8.83       8.88       6.6       6.81       8.83       8.88       6.6       8.81       8.82       8.28       8.88       8.82       8.88       8.82       8.88       8.82       8.88       8.82       8.88       8.82       8.88       8.82       8.88       8.82       11.8				<b>61</b>	2388	3968	3888	7.1					••	•-	
0000023       244       65       2290       3610       3488       6.7       8.82       0.81       1.8       0.58       0.86       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       <											12.3		••		
000000       268       65       2588       4646       3888       6.6       6.881       6.883       128       6.78       6.88       6.28         898389       186       62       2538       3968       3288       6.9       6.44       6.42       18.6       6.28       6.33       6.28         89821									6.62	0.01	1.8	6.58	6.68	8.88	
808387       186       62       2233       3766       3286       6.9       6.84       8.82       18.6       8.28       6.38       6.28         698621        61       2588       4638       4888       6.8         11.8                                                                                             <										0.083	128	6.78	88.3	6.50	
B78621        61       2588       4838       4888       6.8         11.8											18.6	8.28	6.38	€.28	
878622          8.62       8.68											11.8				
678781       269       59       2258       3632       4818       6.8       8.883									8.82	8.091					
871115       321       63       2258       3768       4828       7.1       8.683       6.62        6.18          6.18          6.18          6.18          6.18          6.18           6.18           6.18           6.18            6.18 <t< td=""><td></td><td></td><td></td><td></td><td>2258</td><td>3638</td><td>4818</td><td>6.8</td><td></td><td></td><td>11.8</td><td>8.58</td><td>8.85</td><td>8.42</td><td></td></t<>					2258	3638	4818	6.8			11.8	8.58	8.85	8.42	
871120          5.6        8.26       8.8         98216           8.8            98228        63       2468       4888       6.6       8.881       8.88										8.62		0.10		••	
988216											5.6		8.28	E.68	
Y00100												**			
Person							398B	7.2							
70500 $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$									8.881	6.081	18.8	€.48	8.38	8.88	
986887 $43$ $2458$ $3758$ $3898$ $7.8$														••	
Y88516					2458	3758	3888	7.E							
YBB113       277       63       2468       3768       3888       7.5       6.821       6.821       6.18       6.32       6.22         918227       213       61       1858       3268       4126       7.5       6.801       -8.822       8.8       6.32       6.32       6.32       8.88       8.88         MN13       821231       638       48       2268       3786 </td <td></td> <td>18.7</td> <td></td> <td></td> <td></td> <td></td>											18.7				
Multiplication       277       213       61       1858       3268       4128       7.5       8.881       -8.82       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.32       8.33       8.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33       9.33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3888</td> <td>7.5</td> <td>6.621</td> <td>E.821</td> <td></td> <td>E.18</td> <td>6.36</td> <td>6.20</td> <td></td>							3888	7.5	6.621	E.821		E.18	6.36	6.20	
AW13       821218											6.8	6.38	6.36	<b>e.8</b> P	
821231 $638$ $48$ $2288$ $3786$ $$ $7.8$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	KW1	3 821216					3360			••	•				
636125 $53$ $5298$ $4.1$ $4.1$ $4.1$ $4.1$ $4.1$ $4.1$ $4.1$ $4.2$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$ $8.06$		821231	638	48	2268	3786		7.8							
638631 $3976$ $4.8$ $6.68$ $6.86$ $6.18$ $838629$ $648$ $44$ $2324$ $3858$ $6.8$ $4.8$ $6.68$ $6.86$ $6.18$ $838629$ $648$ $44$ $2324$ $3858$ $6.6$ $$ $$ $638976$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		836125		53			3298			••					
6386438 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		838331						7.4							
838996         3168         6.6           638996          3168         6.6           638996           6.6            631825          4388         14.6           831231       648        2256       3758        7.6        14.6           848226         3268         14.6           648328         3268         5.2           648331        56         5.2            648614          3286         5.2		838438					3970								
8389966 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		838629	648	44	2324	3858		ê. <b>t</b>			4.8	6.61			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		838986					316 <b>8</b>		**				-		
831825 $4382$ $14.6$ $14.6$ $14.6$ $14.6$		830729		••					. •••						
848226       2258		831825	••				4388								
848226         2258         1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-       1-		831231	048		2265	3758		7.é			14.6			-	
648326 5.2		848228			2258			••				• •			
848331 50 7.0 5.2 648614 3280				••			3288								
648614 J286 J				58				7.8		••	5.2	-			
							3286								
			65£	45	2288	1780		7.5		6.862	16.3	5 7.1	e 1.2	5.6	

1

-

WELL	DATE	Na	נו	S04	TDS	COND	pH	As	Se	U	Ra226	Pb218	Th238
Nii 13	64893E		51			••	7. <b>E</b>		••	8.41	••	••	
	641265	••				3858				••		••	••
	841231	459	58	2259	2833		7.1			1.5		**	
	658221	••				3288		•=					
	856331	**	58				7.4			2.3			
	858625		•-			315 <b>8</b>	••			**			
	858628					-		0.001	8.001				
	85 <b>8</b> £38	668	46	2388	3988		7.2			2.5	8.98	6.28	E.58
	858938		47			3886	6.5			2.8	**		**
	851215					3688		0.691	6.681	••		••	••
	851231	689	71	2128	6868	**	. 7.1	••		13.5	8.48	8.28	6.16
	666321				•••						8.18	8.28	8.18
	868327	••				3666		0.002	6.691				
	868331						6.9			14.8			
	868619	659	129	2428	387 <b>0</b>		**			••	0.48	8.28	8.10
	868626				-	4488			••				
	868638		108	2428	3850		6.9			11.9			
	868784	541	48	2488	3778	5988	7.8	0.881	C.601	11.7	0.10	6.68	8.58
	86121C	562	58	2248	3829	3688	7.1			11.7	6.39	6.68	6.08
	878228	368	48	1998	3788	4488	7.0	6.002	8.887	7.8	0.28	1.1	1.1
	878429	389	49	2270	3815	3988	7.8	8.982	8.081	9.5	6.30	1.8	4.3
	676816	**	51	2388	3759	4288	7.1			12.0			
	871119	677	49	2458	384 <b>8</b>	4888	7.4	8.668	6.63	12.0	<b>e.e</b>	1.2	e.1e
	888125									12.8		••	
	888126		48	2388	3748	3028	7.1			-			••
	868681		58	2378	3720	3488	7.3			14.3			
	888823	445	51	2339	3728	3358	6.9	6.02	6.86	1.2		8.08	6.66
	881123	516	52	2248	3678	330e	7.0	<b>B.8</b> 83	£.23	123	8	8	E.5E
	898389	564	49	2488	3788	3158	6.8	8.83	8.83		0.26	8.88	6.26
KK1	4 898981					366 <b>8</b>				••	•••		••
	891115	71	25	2238	343e	3882	6.9	6.083	6.01		e.18		
	891128	**								27		1.0	f.t
	988216						••			32			
	988220		28	2250	3718	383E	0.9						
	988582		23	1166	3682	3888	6.8	0.021	6.601	33	6.18	E.78	6.00
	988589	388					**				-		
	988887		21	2249	3588	3712	6.9						•••
	988E16		••							53			••
	981113	346		2238	3448	2082	6.5	6.661	8.891	33	6.26		<b>8.8</b> 0
	918217	265	- 13	1512	2684	3968			-2.882	24		E.68	5.62

ċ

WE		DATE	Na	C1	S04	TDS	COND	pK	As	Se	U	Ra226	P6218	Th238	
													••		
1	KW15	898981		••			4568		8.895	6.02	••	6.18	••		
		891115	73	49	2568	3998	4459		8.850	0.01	44		đ	4.7	
		891120		••		••					30				
		986216						7.5							
		986228		44	2498	3978	4388 4368	7.1	8.892	8.001	38	8.18	1.3	8.8	
		986588	••	44	1261	3748	4308	/•1	0.004	5.051			•••		
		988589	566			 1770	4248	7.2					••		
		988987		44	2445	3778	9290	/ 1 £			25	••			
		988816					3030	7.1	8.881	8.684	24	0.30	£.18	6.28	
		981113	548	44	2478	3780	3036 4368		-	-8.602	28	8	8.78	¢.10	
		918227	466	41	1876	3356	4900	/ • 1	-0.001	-91044		8.48	6.68	8.98	
		918227		••									••••		
_											8.69			••	
L	UL IN	L 818938									6.69				
		811231									8.69			**	
		828331					459				••				
		828497									6.78				
		828638			••	••	573								
		829787	••								4.5				
		828938					536				••				
		821216	67		39	334					8.66				
		821231	0/ ++	4.6 6.4	37 +=		439				••				
		838125		0,9 			458								
		838438	27	2.8	41							8.48	£.68	53.3	
		838529	<u> </u>	2.0	71	••	412	**				-			
		838900			••		478								
		831825	•••		64										
		831231 642228			77										
		646226 848328					312						•. ••	••	
		848331		2.4	**			7.6		••	32	-			
		848614		617 ee			37€				**			,	
		848638	5.6	5.6	32	286		8.2		£.685	2.7	7.1	E E.E	5 2.8	
		848738	315	1.5				7.8			E.41				
		641285		447			238				••				
		641263 641231	7.2	5.5		139		٤.3			1.4		-		
		858221	***	5.5 			36B								
				16.8				€.8			6.2				
		858331		16.6			386				•				
		- 856625 058170		••						6.681	-				
		858628			17.7	221		7.8			1.	5 2.	e 1.	6.38 B	
		850238	7.3	1.6	1/1/	441			•						

WELL	DATE	Na	CI	S04	TDS	COND	pH	45	Se	U	Ra226	P6218	Th238
CIU 1M	858938		47		•••	470	7.3		<b></b> .	1.7	••		
LULIN	851215						••	8.8B1	8.681				
	851231	5.5	62	79	•=		••			2.2	6.55	6.28	8.85
	869321									••	8.48	6.28	8.85
	868327					588		8.881	8.891			**	
	868331						7.E		••			•=	
	868619	24	7.7	45	277						8.85	6.28	8.85
	868626					788				••			
	868638		9.1	43	292					1.8			
	868984	38	8.1	49	263	558	7.8	6.891	<b>8.8</b> 81	2.8	1.3	8.6	e.5e
	861216	68	3.3	77	483	888	7.6			2.2	6.36	6.66	6.62
	678228	54	32	62	311	468	8.5	8.6B1	8.821	8.19	6.38	1.3	e.16
	878429	7.0	1.7	22	249	508	7.6	8.01		8.78	8.58	8.98	1.2
	878818	••	8.48	26	234	588	7.4		••	8.58	-		••
	871119	11.6	6.69	25	236	688	7.4	8.81	6.881	<b>e.</b> 38	8.68	E.98	6.68
	888125				••	••				6.30		**	
	888126		8.98	22	22	265	7.7						·
•	888681		8.89	25	25	348	8.1			6.88		••	
	888823	15.2	8.98	7.8	207	318	7.8	<b>8.8</b> 87	0.001	<b>t.2</b> 2	6.58	6.68	6.48
	881183	17.4	2.7	34	170		7.8	<b>8.0</b> 81	8.001	1.6	0.58	6.68	E.28
	878387	22	5.7	41		••	••	0.867	6.691	1.9	6.98	6.98	6.08
	878621		5.2	65	316	558	7.7			6.68			**
	898622						**	8.61	6.881				 F #3
	898981		8.6	68	295	575	7.7	<b>E.08</b> 6	189.3	6.98		e.30	6.68
	891115	78	7.E	185	544	693	7.6	6.81	8.881		6.10		
	871128											1.2	
	988216			**			••			8.38			
	98822B		4.8	98	282	684	8.0						
	988588		6.0	51	338	782	7.8	6.01	6.001	0.38		E.68	8.66
	988589	71			••								
	986867		7.8	88	344	686	7.8			 8.48			
	986816												
	961113	49	4.8	89	368	558	6.2			<b>£.4</b> 7			
	918227	19.0	-1.8	45	252	449	6.2	6.61	-6.882	-0.28	) <b>t</b> .jt		6.35

#### NOTES:

"-" sign before a value indicates that the value is less than the detection limit. Value shown is lower detection limit.

NOTES: (continued) All values are in MG/L except as otherwise noted and the following: COND = conductivity, in micromhos/cm @ 25 DEG C. pH = pH, in standard units. Ra226 = Radium-226, in pCi/l. Th230 = Thorium-230, in pCi/l. Pb210 = Lead-210, in pCi/l.

258.8	••	824	299.3	91.3	••			təttəb finn
••	••	**			•••	••		WNT2 821161
					9.2	19	212	222015
	22 <b>8</b> ,3	962			7 3 			21986
758.3		216	288.3	5 <b>819</b>	••			812158
<89.9		234	750.3	81.3			••	861156
299.3		245	58 <b>9.9</b>	91.9		**		TOTTOO ZINN
298.3	••	249	78 <b>9.8</b>	92.8	<b></b>			
					8.4	L.8	22	122316
	288.8	281		95.9			-	721985
78 <b>8.3</b>		206	689.8	39.8				\$15168
73 <b>0. b</b>		264	689.9	39' 3				821168
6.685		281	690.0					101158 ITAN
258.8	••	219	4 <b>88.8</b>	84.8				
·		· • •			S.7	24	119	122016
**	6,683	58Ż			¥"L	2¢	811	LZZ816
••	28 <b>9.9</b>	282	6 <b>68.8</b>	85.8				421386
280.8		298	629.9	97.9	**			STZ168
209.9		214	7 <b>59.9</b>	97.8				321168
288.9		233	9 <b>80.0</b>	97.8				191168 SAN
599.8		239	028 8	<u>44</u> 0				
	F00.0	284			9.9t	521	<u>515</u>	10227
 	199.8	242	680.0	97.8				021168 JAN
~ 259.8		[#L					l	
					SZ	524	<u> 287</u>	LZZ915
	· 989*B	182		688.8				WR2 811158
208.0	••	112	6 <b>88.9</b>					
					8.11	16	862	122815
-	799.9	248	58 <b>8.</b> 9	<b>788.8</b>				921169 ZHW
288.8	••	244	000 0	99 <b>8</b> 9				
	160.0	1/2			9.4	25	122	122816
		892	99 <b>8.8</b>	85°9				821168 TNN
589.8		876	459 4					
		ALK	CANAD	HH2	 X	ĎW	<b>?</b> ]	MELL DATE
PD	9 <b>2</b>	N IA	RAUNAS,	2				

7

TABLE 4-1. GROUND-WATER QUALITY FOR THE WHITE NESA WELLS.

17-9

. ]-

-----

_

.

i

ł

WELL	DATE	Ca	Kg	K.	NH3	CNNAD	ALK	Be	Cđ	
	891128		••		6.089	8.087	379	••	6.685	
N#14	891215		••		8.18	6.689	392		8.885	
					6.89	6.689	382		8.885	
	988124 918227	366	41	7.9	••	•-	361	8.683		
					6.10	6.889	374	••	6.685	
W#13	871101				8.28	8.889	353		6.685	
	871128				6.18	6.889	355		6.685	
	891215					<b>8.8</b> 89	353		6.085	
	988124				6.69		356	6.004		
	918227	365	128	9.4			926	9.007		
CULTN	i 691181	••			••	· ••	8.682			-
	871128				8.28	6.887	242		8.885	
	918227	38	28	4.8	**	••	281	-8.891		

.

•

Ì

50	5'7	55	6"7	5"7	87	39	£8 <b>6.3</b>	821126
50 56	617	ċ.	6"7	6'7	27	22	2 <b>30.0</b>	191159 YTMN
20					-			
					••			NN12 861161
	••							
					72	54		122816
	••		••		5Z	g*91	58919	721006
6°3	5"*	5*5	5'7	5°7	5C 77	29	689.3	SIZ168
5"6	6 <b>.</b> *	6*5	6*7	6*7			9 <b>58.8</b>	861138
66	5°¥	56	5.4	6'7	24	22		191169 ZIAN
66	6'7	66	6 <b>.</b> 4	5.3	28	L7	7 <b>98.8</b>	191109 CIAN
					8.3	a.71		LZZ015
••	••				0.81	999.0	6 <b>60.0</b>	121885
6'6	513	5"5	5'7	6'7	8*91	12.8	7 <b>85.8</b>	SIZI68
<b>5'</b> 5	6'7	6*6	6"7	5.4	8.7	8.71	75 <b>0.9</b>	821168
66	5"7	66	6*3	5**			<b>789.0</b>	IGII68 TIAN
66	5*7	56	5.1	6 <b>.</b> ‡	12	45	689 <b>4</b>	3 <b>2</b> 1300 1308
					<b>6.</b> 3	8"SI		122016
	**		6"7	5"7	12.6	888.9	5 <b>00°0</b>	121889
6.9	5'7	5"5	6.1	5.2	<b>B.</b> 21	<b>B.</b> 7	689.9	S12168
6*6	· 6* ¥	5*5			9°81	1.8	680.0	821168
66	6'7	66	5"7	6'7	9.21	8.7	500.0	TOTTOD SAN
65	2.3	66	5.2	9.2	U ÇI	• •		
	••				9.21	8.31		122916
		66	5' ¥	5'7	9.21	9.1	48 <b>9.</b> 9	BZT168 1MM
66	9 <b>.</b> 4	20	0 ¥	<b>U</b> 7		•		
					27		••	LZZ815
66	5'7	66	5"2	5.4	29	59	f88.8	HN2 861158
98			••					
					12	8.1		LZZ016
55	5*3	66	2.2	2.2	21	26	669.3	WKS 841158
						-		
	••				1.7	8		L22815
66	6.1	66	<b>5*</b> ¥	6'7	0.11	2.8	69 <b>8.8</b>	BSII68 INN
		<u> </u>						MELL DATE
2-801	S20	NT30A	RTHCL	CHLEN	81138	AH9JA	1)	AELL DATE

ŀ

# .(baunifoo) MELLE READ STIRN ENT FOR THE WHITE REER WELLS(continued).

6-43

[

.

1

.

į

.

~

1

•

WELL	DATE	Cr	Alpha	BETA	CHLFN	NTHCL	ACETN	C25	2-BUT
NUA A	691215	6.889	67		4.9	4.9	9.9	4.9	9.9
11214		0.687	48	37	4.9	4.9	9.9	4.9	9.9
	988124 918227	8.907 	48	25	••	•=			••
MH 15	671101	0.009	69	55	4.9	4.9	99	4.9	99
11411	671126	8.687	- 81	29	4.9	4.9	99	4.9	57
	891215	6.689	98	51	4.9	4.9	9.9	4.9	9.9
	988124	6.687	66	41	4.9	4.9	9.9	4,9	5.9
	910124 910227		19.8	18.8	••				
	918227		0.0	5.7	••				<b>**</b> '
Cir th	891128	8.889	1.9	6.7	4.9	130	- 99	· 4.9	99 -
LULIN	918227	0.007	6.18	3.7	••				

#### NOTES:

"-" sign before a value indicates that the value is less than the detection limit. Value shown is lower detection limit.

ALK = Alkalinity, in mg/l of CaCO3.

CNWAD = Cyanide WAD, in mg/l.

.METHCL = Methylene Chloride, in ug/1.

C2S = Carbon Disulfide, in ug/l.

ACETN = Acetone, in ug/1.

CHLFM = Chloroform, in ug/1.

2-BUT = 2-Butanone, in ug/l.

All values are in MG/L except as otherwise noted and the following: ALPHA = Gross Alpha, in pCi/l. BETA = Gross Beta, in pCi/l.

WELL	DATE	Ca	Ng	K	Na	HC03	C03	Cl	TDS	TSS	NH3	N02	NO3	
477	918417	18.7	3.2	2.6	372	346	8.8	15.8	1020	13.0	1.58	6.10	-8.18	
83/	918417	18.7	3.2	2.4		336	12.8	15.8	1838	8.8	6.48	-8.18	6.18	
									<i></i>					
136	918416	453	523	5.6	167	241	12.0	286	2588	5.8	3.0	6.10	2.3	
	918416	443	589	5.3	162	234	12.8	219	2518	-4.6	3.1	0.10	2.1	
	•					990	17.6	85	2588	C A	-8.18	<b>e</b> .10	8.28	
839	910416	588	187	5.4	96	228	12.0				-0.18	8.29	8.18	
	918416	528	113	5.7	182	237	12.8	84	2658	J.8	-0.10	0.19	0.19	
	918416	215	224	11.7	48	192	12.8	24	2149	53	1.29	8.10	0.5B	
41		229	238	12.3	43	189	12.6	22	2878	98	8.38	6.18	6.58	
	910416	227	230	1213	79	107								

TABLE 6-2. GROUND-WATER QUALITY FOR THE REGIONAL WELLS.

1

ł

WELL	DATE	CN	P04	A1	As	Ba	8	Be	Cd	Cr	Co	Cu	Cu	
\$37	918417	6.82	-6.16	-6.85	-8.881	-8.618	8.51	-8.818	-8.885	-8.001	-8.818	-8.618	-8.85	
	918417		-8.18				8.58	-6.010	-0.685	-8.818	-0.010	-8.818	-6.85	
138	918416	8.82	-8.818	53	-8.681	€.62	8.23	8.85		-6.618		-8.818		
	916416	6.62	-0.16	52	-8.891	8.818	8.22	6.85	6.63	-8.818	8.41	-6.616	8.88	
439	918416	6.62	-8.18	-8.65	-8.881	-8.818						-8.618		
	918416	6.62	-8.10	-8.85	-9.681	-6.810	6.83	-8.610	-6.005	-0.010	-8.618	-8.618	-8.85	
#1	918416											-6.618		
	910416	-8.82	-0.10	-8.85	-8.881	0.85	0.69	-8.616	2.686	-6.815	-0.010	-0.010	8.88	

TABLE 6-2. GROUND-WATER QUALITY FOR THE REGIONAL WELLS(continued).

WELL	DATE	Fe	Pb	Li	<b>N</b> n	Hạ	No	Ni	Ni	Se	Se	Se	TI	
<b>\$3</b> 7	918417	-8.818	-8.82		8.84-8		8.62	-8.818	-8.003			-0.005		
	918417	8.818	-8.82	8.28	8.84	8.84	6.62	-0.018	-6.693	8.882	0.57	-8.685	-0.018	
870	G18214	<b>e</b> .93	<b>6.6</b> 4	1.9	7.7-8	.0002	-8.818	8.41	-8.883	8.85	8.9	-8.885	-6.610	
170	910416		8.84	1.9			-8.818		-0.083		8.6	-6.885	-6.810	
					- <i>1</i> -4	6007		-8 418	_0 807	-8 617	2.7	-8.685	-8.818	
839	918416 918416	•••	-8.82 -8.82	0.10 0.10						-8.082 -8.082		-6.685		
										_8 683	* 7	-8.085	-9.918	
61	918416 918416		-0.02	6.18 8.18						-0.002 -0.002			-8.618	

TABLE 6-2. GROUND-WATER QUALITY FOR THE REGIONAL WELLS(continued).

WELL	DATE	<b>T</b> 1	Âç	v	In	U	Ra226	Ra228	R26+8	Th238	Alpha	BETA	
875	7 518417	-8.85	-8.818	-8.818	6.81	3.8	8.38	6.48	8.78	6.16	2.6	7.2	
	918417		-8.010		8.68à	2.7	8.78	8.78	1.4	6.8	8.8	7.4	
			_0 #16		2.2	7.7	6.9	17.6	26	ŧ	288	168	
63	5 918416 918416		-8.816 -8.818	8.818 6.010	2.1	7.8	6.9	15.8	22	9	89	50	
	9 918416	-8.85	-8.618	6.816	8.37	33	1.3	1.2	2.5	8.8	38	26	
43	910416		-0.018	8.618	0.38	32	1.6	1.8	2.6	6.8	84	26	
			8 A16	8.62	8.18	4.5	6.70	1.6	2.3	6.8	16.8	18.0	
1	1 918416 918416		-6.618 -6.818	e.ez	6.085	4.9	6.76	1.7	2.4	5.8	11.0	21	

## TABLE 6-2. GROUND-WATER QUALITY FOR THE REGIONAL WELLS(continued).

#### NOTES:

"-" sign before a value indicates that the value is less than the detection limit. Value shown is lower detection limit.

RA228 = Radium-228, in pCi/l.

RA6+8 = Radium-226 + Radium-228, in pCi/l.

All values are in MG/L except as otherwise noted and the following: Ra226 = Radium-226, in pCi/l. Th230 = Thorium-230, in pCi/l. ALPHA = Gross Alpha, in pCi/l. BETA = Gross Beta, in pCi/l.

## 7.Ø BACKGROUND CONCENTRATIONS

Table 7-1 presents the latest water-quality data from each of the upgradient wells (MW1. #1, #38 and #39) and sidegradient wells (MW2. MW4 and MW37). Maximum natural concentrations that were recently measured at this site are 0.002. 0.05. 0.03. 0.02. 0.38. 0.05. 31.8. 2.6. 22. 6.8 and 89 for arsenic. beryllium. cadmium. molybdenum. nickel. selenium. uranium. lead-210. radium 226+228. thorium-230 and gross alpha. respectively. All the units are mg/l. except for the radionuclides (U-nat. Pb 210. Ra 226+228. Th 230 and gross alpha), which are in pCi/l.

# TABLE 7-1. BACKGROUND CONCENTRATIONS OF HAZARDOUS CONSTITUENTS.

			WELLS				
	MW1	MW2	MW4	1	37	38	39
CONSTITUENT		میں میں این کی کی کی کر ا		د ا ها در از با برد برد برد از د		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	و به وی می می می می می می
ARSENIC BERYLLIUM CADMIUM MOLYHDENUM NICKEL SELENIUM	Ø.ØØ1 Ø.ØØ1 Ø.Ø25 Ø.Ø1 Ø.Ø2 Ø.Ø22	<.001 0.004 0.025 0.02 0.02 0.06 <.002	0.022 0.024 0.025 0.02 0.07 <.022	<.001 <.01 Ø.006 <.01 <.01 <.022	<.001 <.01 <.025 Ø.02 <.01 Ø.022	<.001 Ø.05 Ø.03 <.01 Ø.38 Ø.05	<.001 <.01 <.025 Ø.01 <.01 <.022
U-NAT LEAD-21Ø RADIUM 226+228 THORIUM-23Ø GROSS ALPHA	Ø.22 Ø 1.8 Ø	3.5 Ø.4 2.8 Ø 4	1.3 2.6 2.4 Ø 1Ø	4.9  2.4 Ø 11	2.7 1.4 6.8 Ø	7.8  22 Ø 89	31.8 2.6 Ø 84

#### 6.Ø REFERENCES

Dames and Moore, 1978, Environmental Report, White Mesa Uranium Project, San Juan County Utah, Consulting Report for Energy Fuels Nuclear, Inc.

Haynes, D.D., J.D. Vogel and D.G. Wyant, 1972, Geology, Structure and Uranium Deposits of the Cortez Quadrangle, Colorado and Utah. U.S. Geological Survey, Miscellaneous Investigation Series, May I-629.

## **ATTACHMENT 10**

# Hydrogeologic Evaluation of White Mesa Uranium Mill

## **Prepared For:**

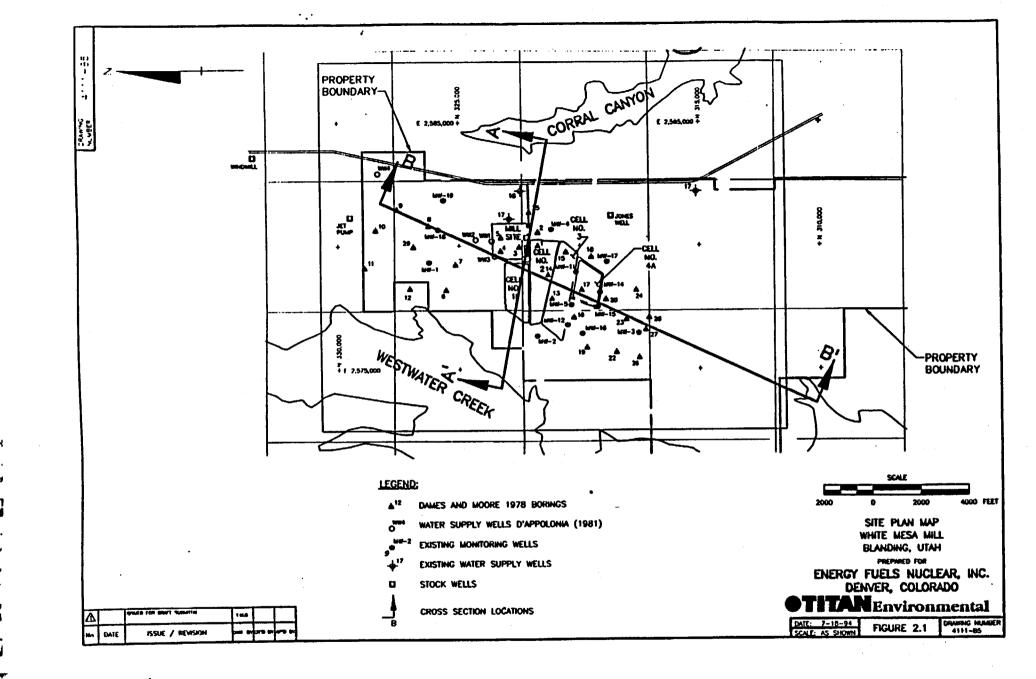
Energy Fuels Nuclear, Inc. One Tabor Center, Suite 2500 1200 Seventeenth Street Denver, CO 80202

**July 1994** 

By:

TITAN Environmental Corporation 5690 DTC Boulevard, Suite 260 Englewood, CO 80111

Revision 0 July 27, 1994 Page 21

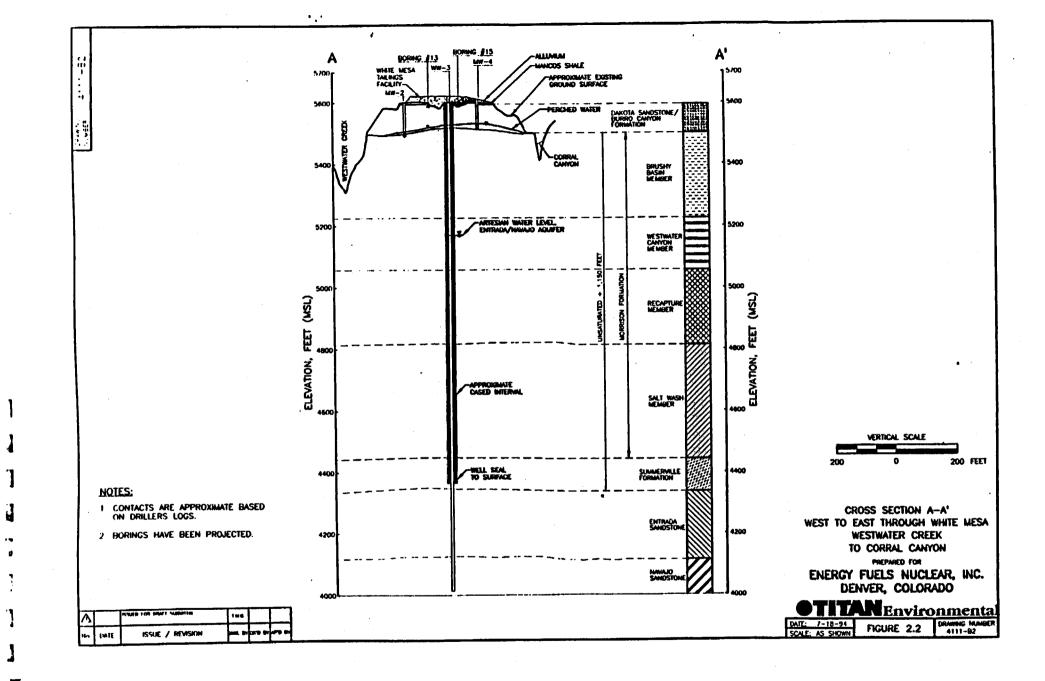

of 900 feet of water or 390 pounds per square inch (psi) within the Entrada/Navajo Aquifer. The positioning of this aquifer and its hydraulic head versus other strata is shown on Figures 2.2 and 2.3. In-situ hydraulic pressure of ground water in the Entrada/Navajo Aquifer is strong evidence of the "aquitard" properties of the overlying sedimentary section. Due to the presence of significant artesian pressure in this aquifer, any future hydraulic communication between perched water in the Burro Canyon Formation and the Entrada/Navajo Aquifer is unlikely.

## 2.2 Perched Ground Water Characteristics

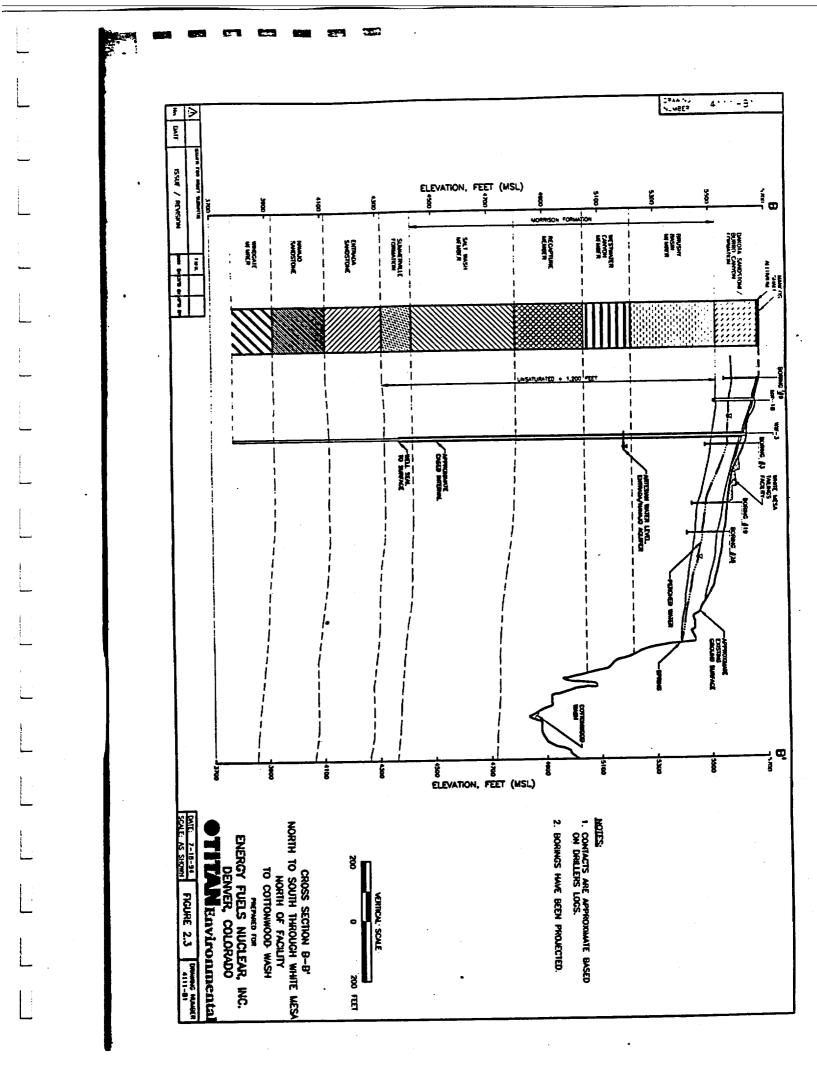
The perched water in the Burro Canyon Formation originates in the areas north of the site as shown by the direction of ground water flow from north to south (see Figure 2.4). The thickness of saturation is greatest in the northern and central sections of the site and reduces toward the south. The configuration of the perched water table and map of saturated thicknesses are provided on Figures 2.4 and 2.5, respectively. The topography of the Brushy Basin Member which defines the bottom of the perched water is shown on Figure 2.6.

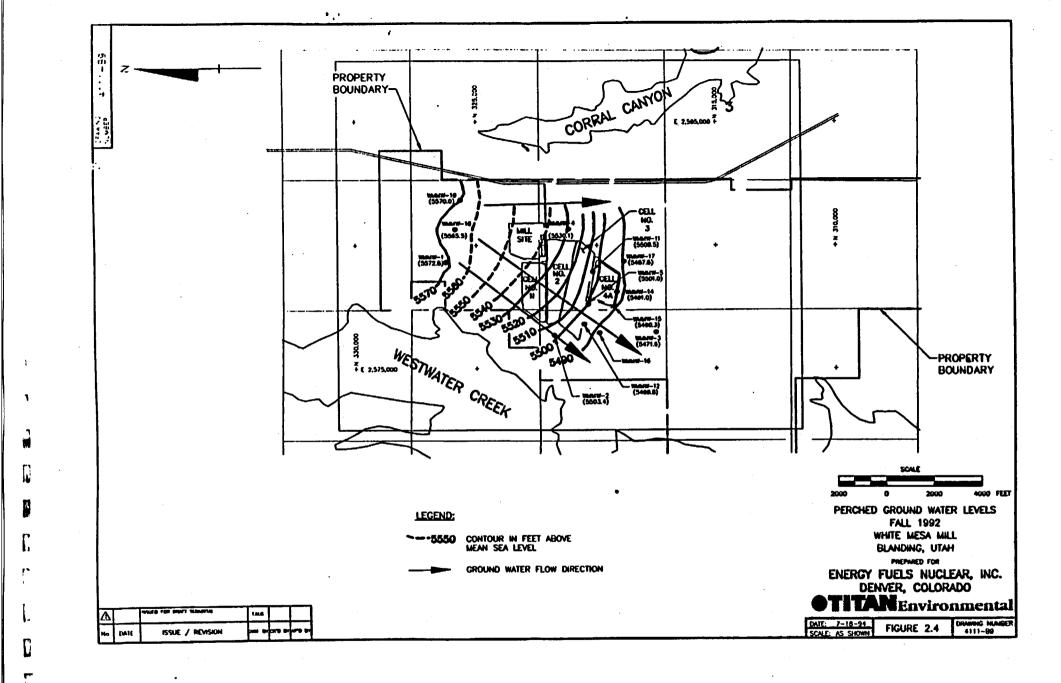
The ground water from the Burro Canyon Formation discharges into the adjacent canyons (Westwater Creek and Corral Canyon) as evidenced by springs and productive vegetation patterns. Some part of the ground water flow may enter the Brushy Basin Member via relief fractures which occur in close proximity to the canyons. The location of the canyons which bound the White Mesa on the west, east and south are shown on Figure 2.1.

The geometric mean of the hydraulic conductivity of the saturated part of Burro Canyon Formation is 1.0E-05 cm/sec. The water yield per well is very low, as documented by 9 pumping tests, and is typically below 0.5 gpm. In contrast to the very low pumping rates observed in 8 wells, Well WMMW-11 produced a higher yield on the order of 2 gpm. This higher yield may be attributable to the presence of localized high-permeability material, such as a lense of coarser material acting as a drainage gallery. Localized fracturing could also cause a similar effect, but few fractures have been documented during drilling of this or other wells (Umetco, 1992; Dames & Moore, 1978).




_____

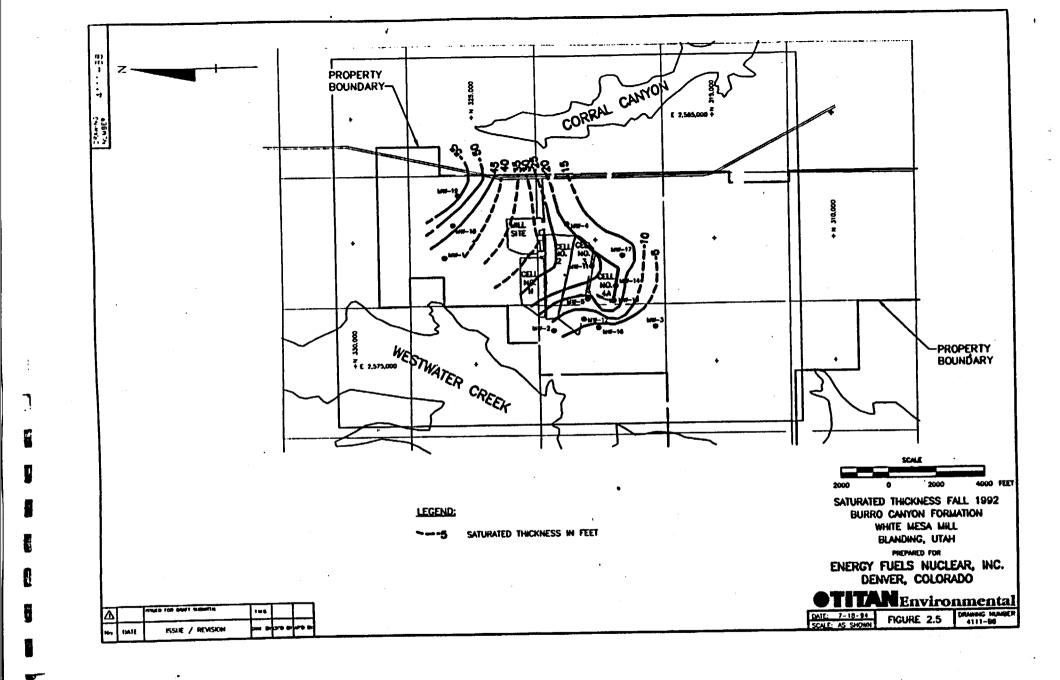

____]


. .

**,** - -



· · 1






## ....


_____

1



. . . . .

··· 1



Revision 0 July 27, 1994 Page 23

## 2.2.1 Perched Water Quality

Ground water monitoring of the Burro Canyon Formation saturated zone has been conducted at the White Mesa facility since 1979. Table 2.3 provides a list of wells that have been constructed for monitoring purposes at the facility. Figure 2.1 indicates the locations of these wells. The water quality data obtained from these wells are provided both in tabular and graphical form in Appendix B.

Examination of the spatial distribution and temporal trends (or lack thereof) in concentrations of analyzed constituents provides three significant conclusions:

- 1. The quality of perched water throughout the site shows no discernible pattern in variation,
- 2. The water quality is generally of poor quality [moderately high values of chloride, sulfate, and totally dissolved solids (TDS)], and
- 3. Analytical results show that operations at the White Mesa Uranium Mill have not impacted the quality of the perched water of the Burro Canyon Formation.

To arrive a these conclusions, comparisons of the water chemistries from the various wells were analyzed by graphical techniques. The purpose of the comparisons was to determine if trends in chloride, which would be associated with water from the tailings ponds, were increasing in the perched water of the Burro Canyon Formation. The trilinear plot and the Stiff diagram were used to conduct a preliminary evaluation of differences or similarities in water quality data between wells.

## 2.2.1.1 Temporal and Spatial Variations

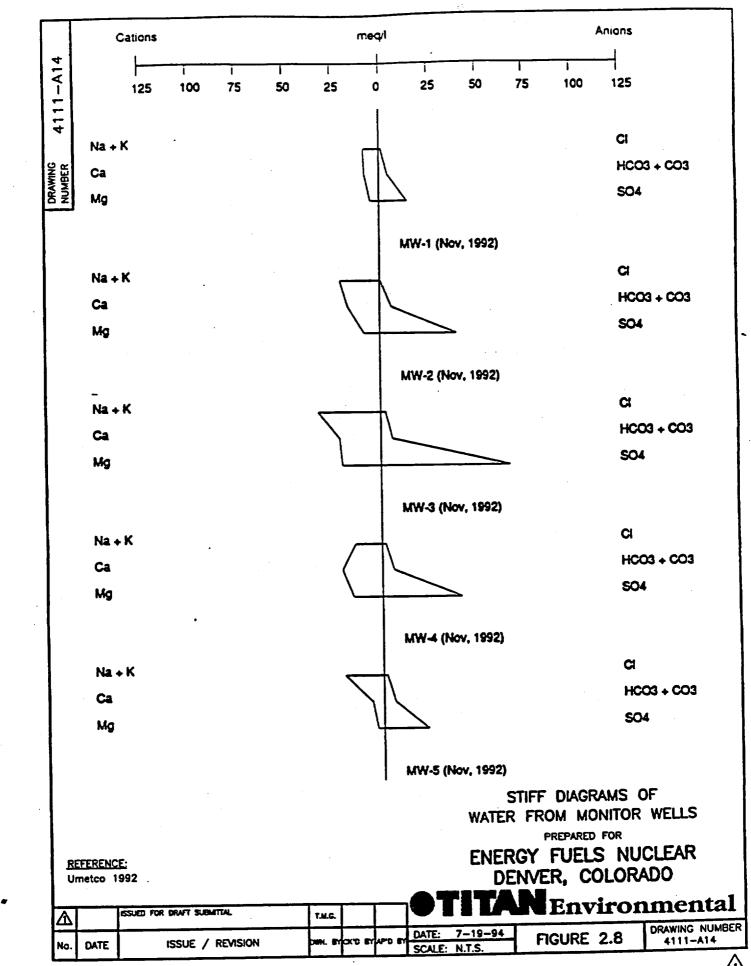
Figure 2.7 is a trilinear plot for the water sampled in wells in the immediate vicinity of the Mill site during the fall of 1992. Figures 2.8 through 2.10 are Stiff diagrams presenting the same data. These plots show that the water from all wells is of the sulfate (anion) type. The cation

**TTAN** Environmental

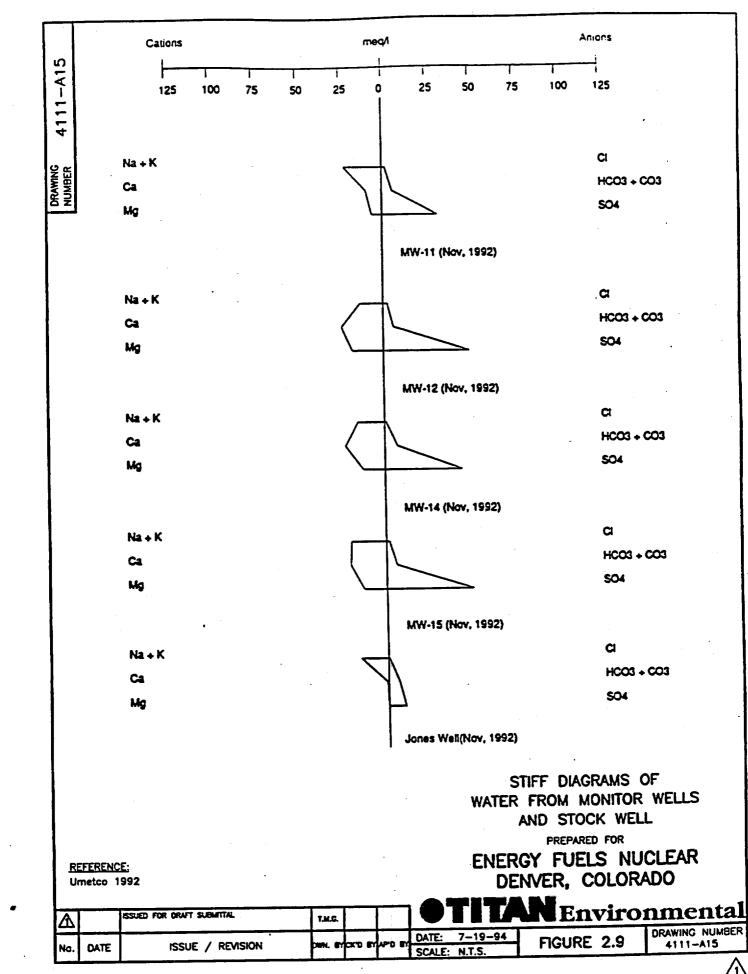
## Table 2.3

					Water Lev	Measuring Point		
Well Name	Date Installed	Total Depth	Perforations	Date	Depth (ft)	Elevation (ft-MSL)	Above LDS (ft)	Elevation (ft-MSL)
WMMW-I	Sep-79	117'	92'-112'	11/19/92	75.45	5572.77	2.0	5648.22
WMMW-2	Sep-79	128.8'	85'-125'	11/19/92	110.06	5503.43	1.8	5613.49
WMMW-3	Sep-79	98'	67'-87'	11/19/92	83.74	5471.58	2.0	5555.32
WMMW-4	Sep-79	123.6'	92'-12'	11/19/92	92.42	5530.15	1.6	5622.57
WMMW-5	May-80	136'	95.5'-133-5'	11/19/92	108.32		0.6	5609.33
WMMW-6	May-80	This well v	vas destroyed in N	farch 1993 d	uring constr	uction of Cell	3.	
WMMW-7	May-80	This well v	vas destroyed in N	farch 1993 d	uring constr	uction of Cell	3.	
WMMW-8	May-80	This well v	vas destroyed in N	larch 1993 d	uring const	uction of Cell	3.	
WMMW-11	Oct-82	135'	90.7-130.4'	11/19/92	102.53	5508.55	2.4	5611.08
WMMW-12	Oct-82	130.3*	84'-124'	11/19/92	109.68	5499.77	0.9	5609.45
WMMW-13	Oct-82	118.5'	This well was o	lestroyed dur	ing constru	ction of Cell 4	A	
WMMW-14	Sep-89	129.1	90'-120'	11/19/92	105.34	5491.05	0.0	5596.39
WMMW-15	Sep-89	138'	99'-129'	11/19/92	108.28	5490.34	0.8	5598.62
WMMW-16	Dec-92	91.5"	78.5'-88.5'	7/12/92	Dry		1.5	
WMMW-17	Dec-92	110'	90'-100'	11/30/92	87.56		1.5	
WMMW-18	Dec-92	148.5*	103.5'-133.5'	11/30/92	92.11		1.5	
WMMW-19	Dec-92	149'	101'-131'	10/12/92	85.00		1.5	
<b>#9-1</b>	May-80	33.5*	10'-30'	3/4/91	Dry		1.8	5622.83
<b>#9-2</b>	May-80	62.7'	39.7"-59.7"	3/4/91	Dry		2	5622.58
#10-2	May-80	33.5'	11.3'-31.3'	3/4/91	Dry		2	5633.58
#10-2	May-80	62.2'	39.2'-59.2'	3/4/91	Dry		2.1	5633.39

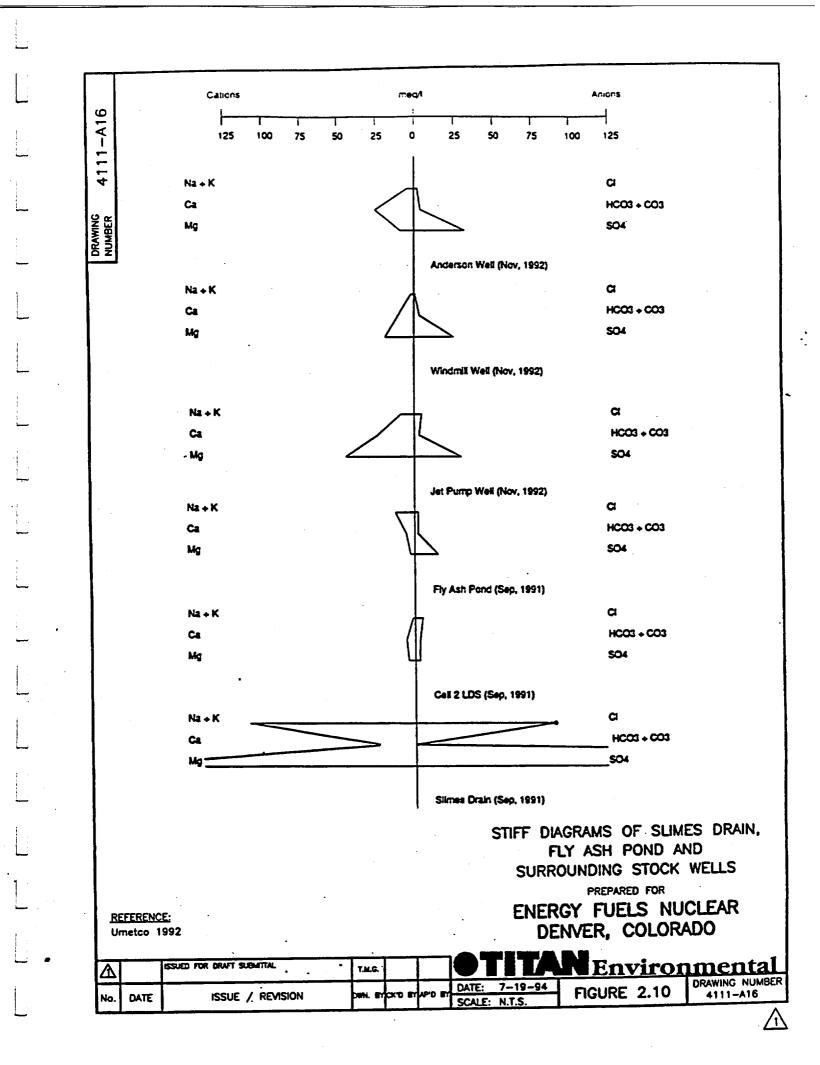

## Monitoring Well and Ground Water Elevation Data White Mesa Uranium Mill


Notes:

1. Well locations provided on Figure 2.1.


2. LDS = leak detection system

3. ft-MSL = feet - mean sea level






 $\Delta$ 



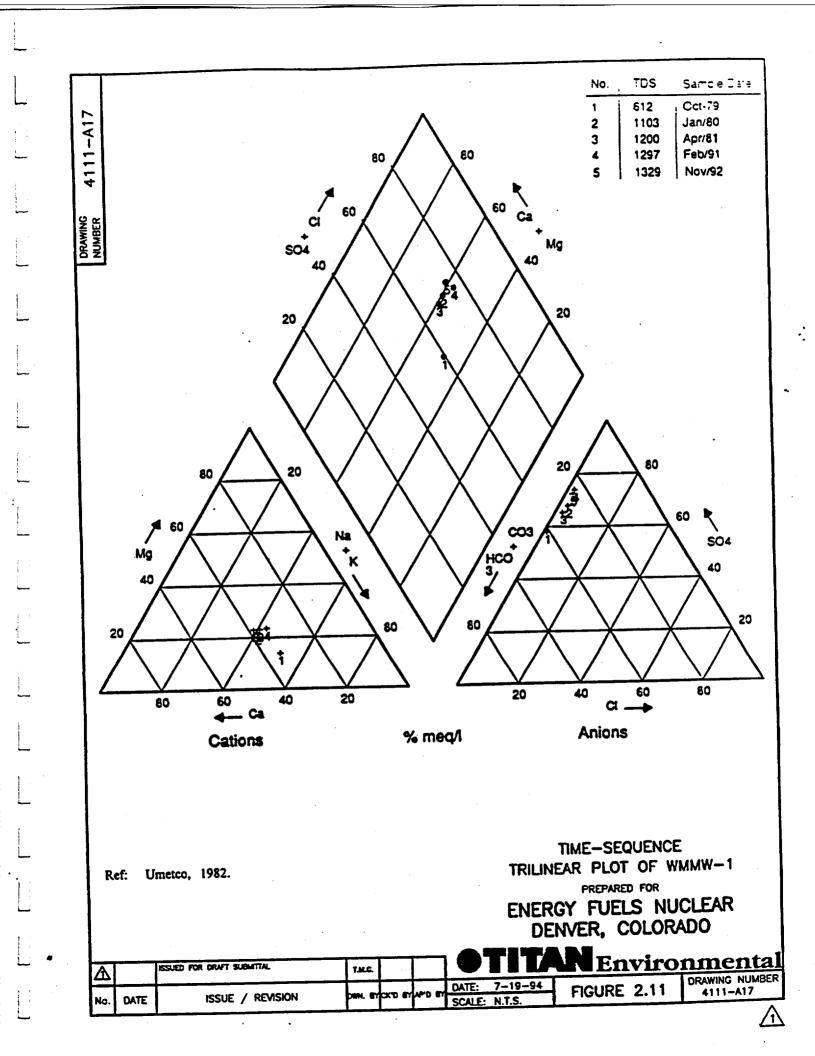
/1\

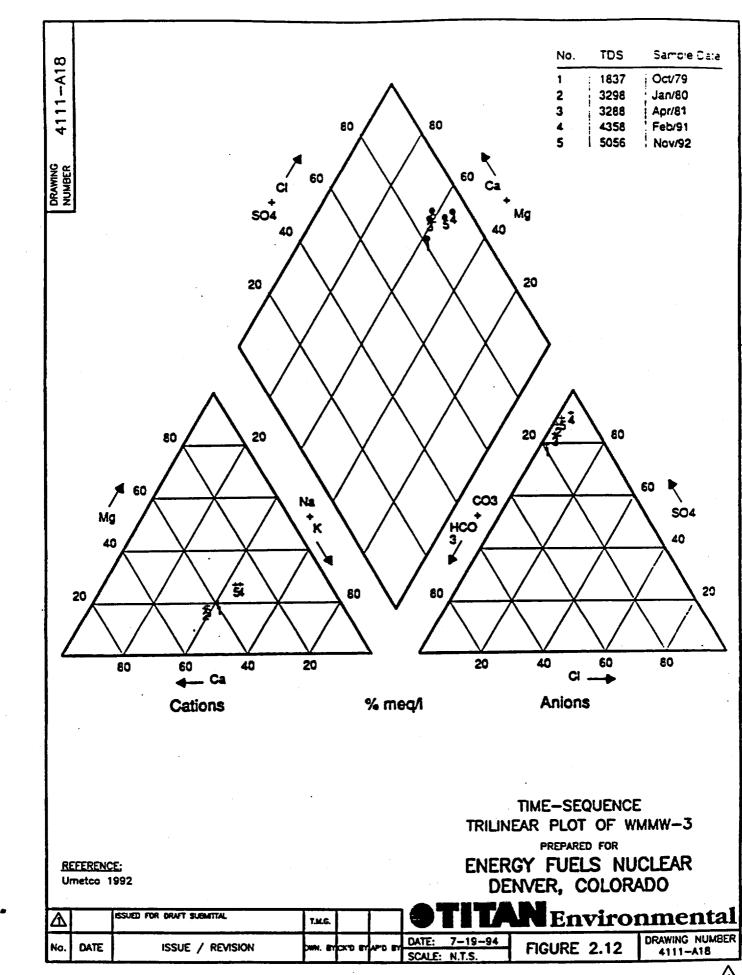


Revision 0 July 27, 1994 Page 29

definition of the water type is variable. Of the 13 wells analyzed for water chemistry, 4 fall in the calcium-sulfate type category, 4 fall in the (sodium plus potassium)-sulfate type, 2 samples classify as the magnesium-sulfate type. Five samples have no dominant cation type. However, these 5 samples tend to classify more closely to the (sodium plus potassium)-sulfate and calcium-sulfate types.

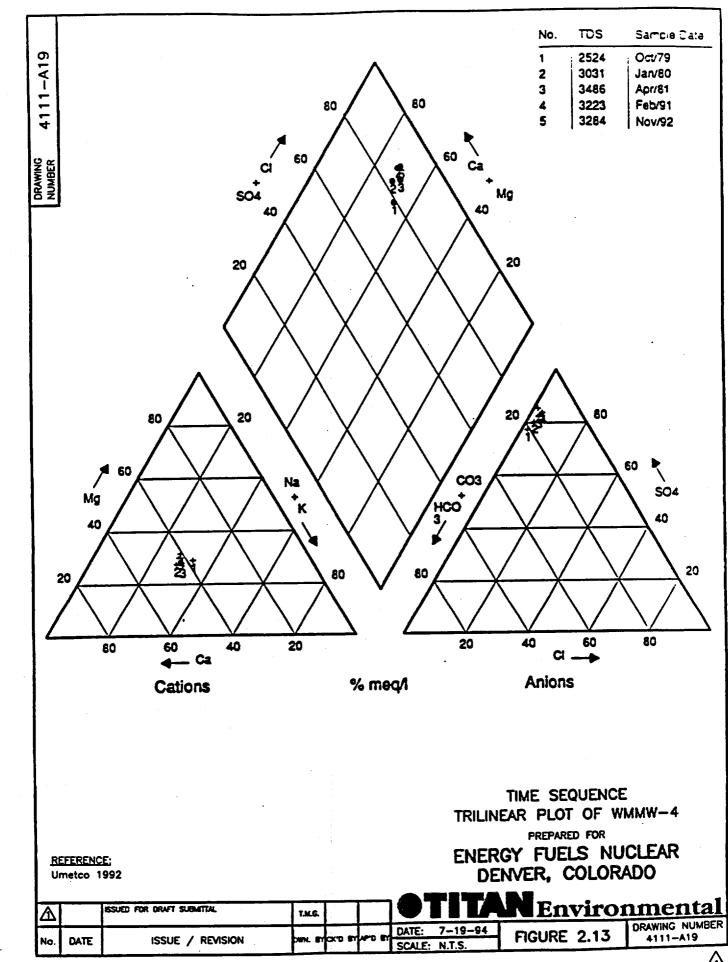
A temporal change of water chemistries may be suggested from four sampling periods for wells WMMW-1, WMMW-3 and WMMW-4 using the trilinear plotting technique shown on Figures 2.11 through 2.13. These figures suggest changes in water chemistries from October, 1979 through February 1991.


The spatial variability of water quality data within the Burro Canyon Formation is illustrated on Figures 2.7 through 2.13 and the data presented in Appendix B. Upgradient Monitoring Wells WMMW-1, WMMW-18, and WMMW-19 varied in sulfate concentrations from 676 to 1736 milligrams per liter (mg/l). Likewise, chloride concentrations in these wells varied from 12 to 92 mg/l. Across the site, sulfate and chloride concentrations vary with no discernible pattern to the variations. Details regarding chemistry of the Burro Canyon Formation water can be found in Appendix B, including the results of 1993 sampling for Wells WMMW-17, 18 and 19.


Variability of water within the Burro Canyon Formation is the result of slow moving to nearly stagnant ground water flow beneath the site. These conditions are likely leading to dissolution of minerals from the Brushy Basin Member and the formation of sulfate-dominated waters.

#### 2.2.1.2 Statistical Analysis

Because of the variable ground water chemistry in the Burro Canyon Formation baseline data, comparison of individual well ground water chemistries to a single background ground water well may not be an appropriate method of monitoring potential disposal cell leakage or ground water impacts. Water quality baseline and comparisons to that baseline established on a well-by-well basis may be required to provide a meaningful representation of changes in ground water chemistry. Using this concept, the statistical "t" test was performed on samples from chloride


CRTSUBDIRECTORYVELENAME.REV (7/27/94)





 $\Lambda$ 

-



 $\triangle$ 

Revision 0 July 27, 1994 Page 33

populations within specific wells over time (see Appendix B). Because chlorides are a conservative species and are concentrated in the tailings solutions, this or other similar mobile constituents may be selected as an initial method of detecting impacts to the ground water.

Disposal Cell No. 2 leak detection system (LDS) water chemistry provides a useful picture of the water chemistry directly below Disposal Cell No. 2. The water analyzed in the Disposal Cell No. 2 LDS contains the lowest TDS content (756 mg/l) of any water sampled in the area (Appendix B) with the exception of the Jones well. The Jones well also contains the highest percentage of carbonate and bicarbonate when compared to the other monitoring wells. The slimes drain contains a TDS value of 47,115 mg/l and no carbonates due to its extremely low pH (typically 1.5 to 3). Any significant leakage of tailings solution into the LDS would react with the carbonates and raise the TDS levels. This has not occurred to date.

Well WMMW-1 (installed September 1979) was originally considered as a potential background well for the site. Chlorides in this well have been relatively low (varying from 11 to 53.2 mg/l) since 1980. A "t" test was performed on sample populations from 1980-81 and 1990-92 for Well WMMW-1. The test indicates that there is a significant difference in the mean of the populations at the 0.05 level of significance. The analysis indicates chloride levels decreased significantly. Tests performed on a sulfate population from the period 1980-81 to a population from 1990-92 show the sulfates in this well have increased significantly. Such changes in water chemistry in this potential background well suggest that water chemistry in the Brushy Basin Member is variable.

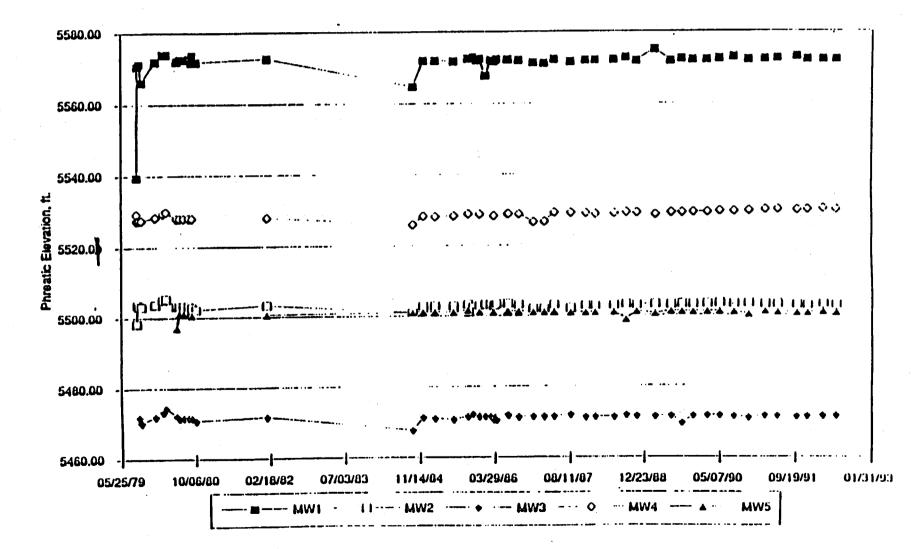
Well WMMW-3 (installed September 1979) was originally constructed to serve as the point of compliance well. Statistical testing ("t" test) on a chloride population from 1980-81 compared to a chloride population from 1990-92 shows that there is no significant difference in the two chloride populations. Sulfate samples taken 1980-81 compared to samples taken 1988-91 show there is a significant increase in sulfates.

For Well WMMW-5 (installed May 1980), the statistical "t" test performed on a sample from the chloride population of 1981-83 to a sample from a chloride population of 1990-92 shows there

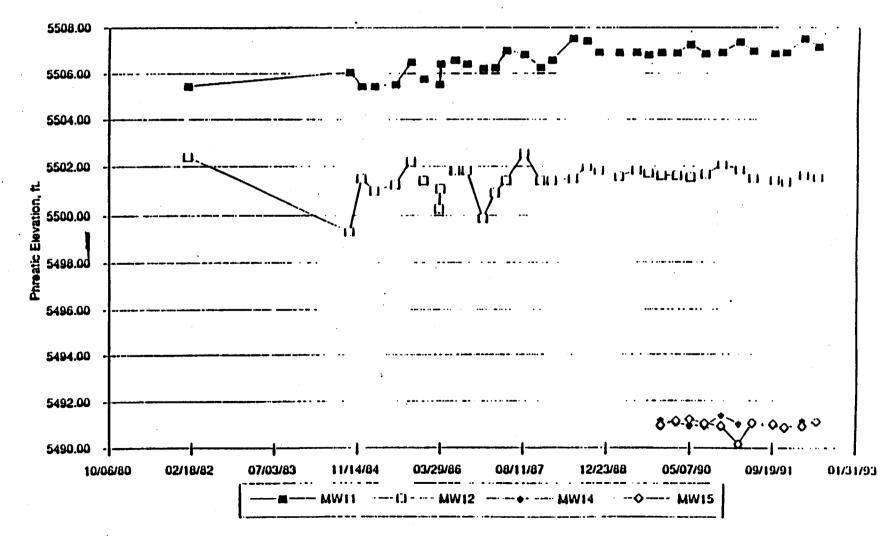
CRTSUBDIRECTORYFELENAME.REV [7/27/94]

Revision 0 July 27, 1994 Page 34

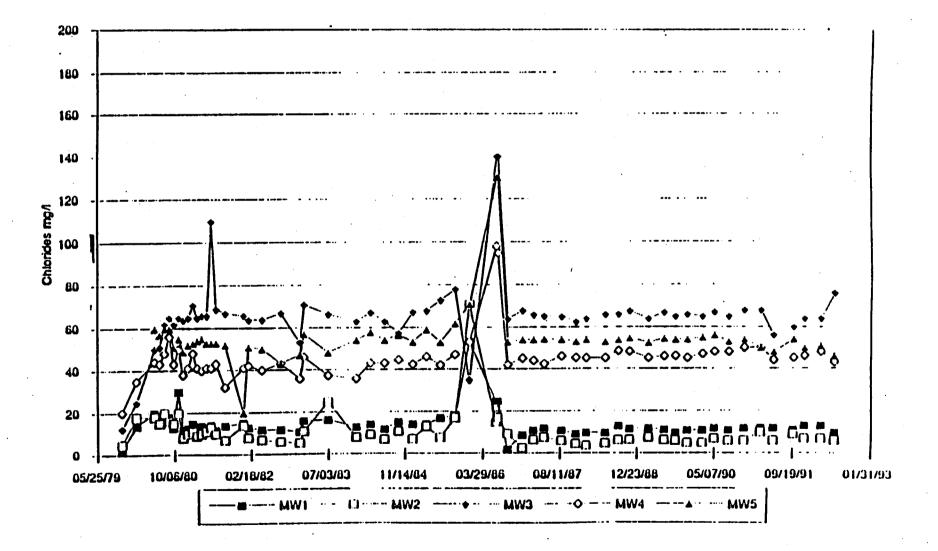
is a significant difference in the means of the chloride populations and that the chloride content has decreased.

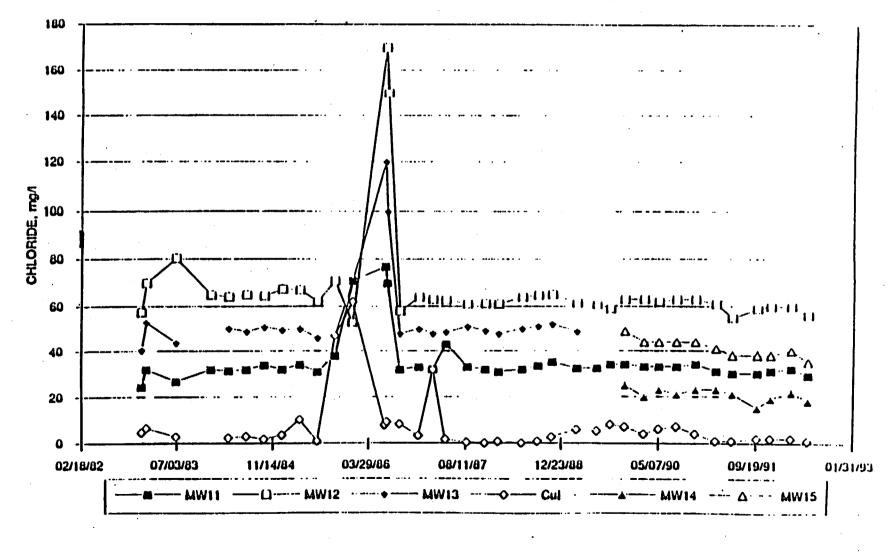

For Well WMMW-12 (installed October 1982), the statistical "t" test performed on a sample from the chloride population from 1982-85 compared to the chloride population from 1990-91 shows there is a significant difference in the means of the chloride populations of these two sampling periods and that the chloride content has decreased.

Wells WMMW-14 and 15 (installed September 1989) were installed in the south embankment of Disposal Cell No. 4A in 1989. Wells WMMW-14 and 15 have a similar water chemistry to Monitor Well WMMW-12 which was installed in 1982. A statistical "t" test chloride value indicates the mean chloride value in Well WMMW-15 is significantly higher than Well WMMW-14. Statistical tests also show that the chloride values are decreasing in both wells. Similar testing on Well WMMW-12 likewise shows a decrease in chlorides. Any contamination from the tailings solution would probably show an increase in the chloride values in these wells over time, which has not happened.


Considering the apparent variability of chemical composition of perched water and the absence of any impact from operations, it may be appropriate to determine background concentrations for a number of selected wells.

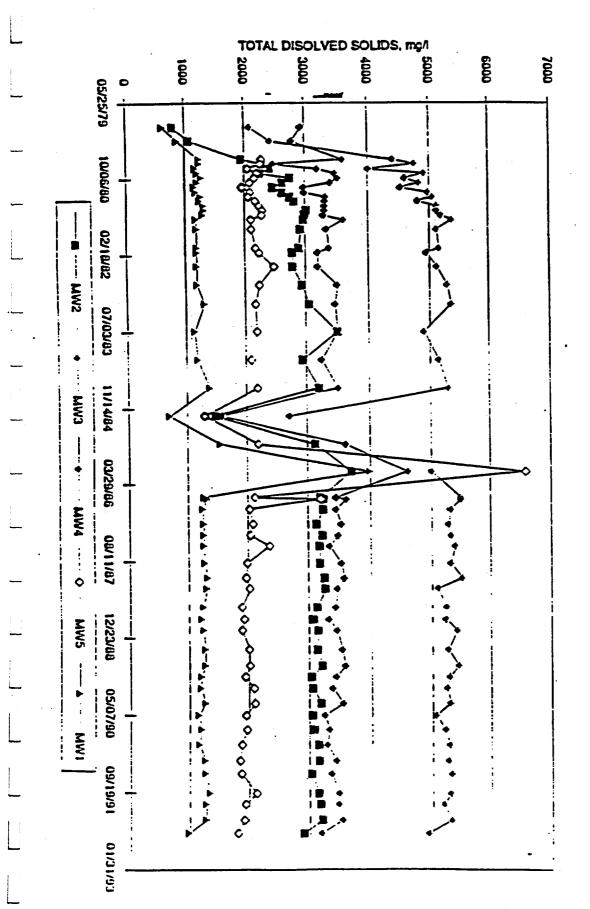
**TIAN** Environmental

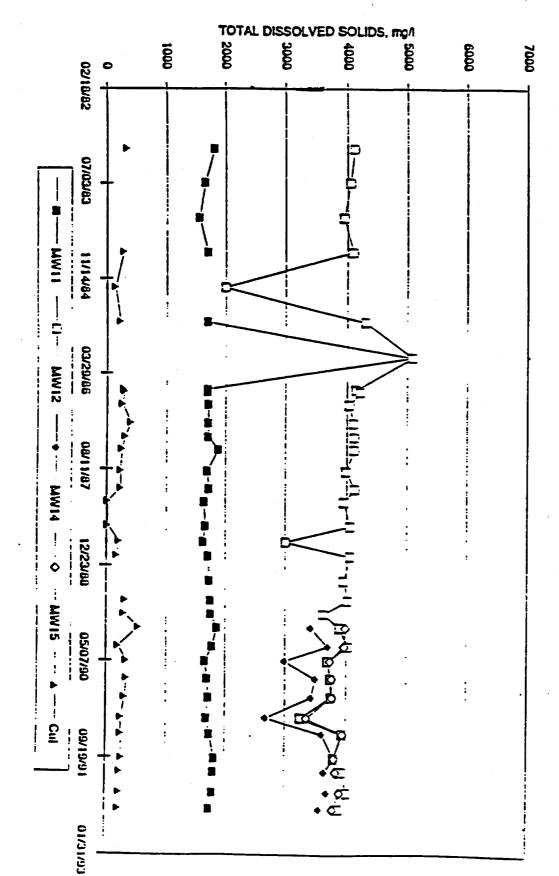

CRTSUBDILECTORYVELENAME.REV [7/27/94]

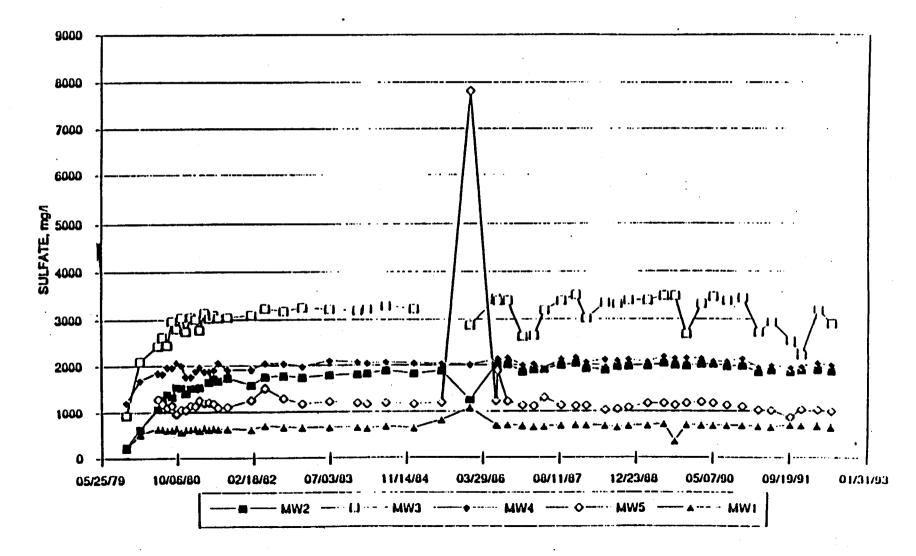



UMETCO MINERALS CORPORATION While Mesa Mill



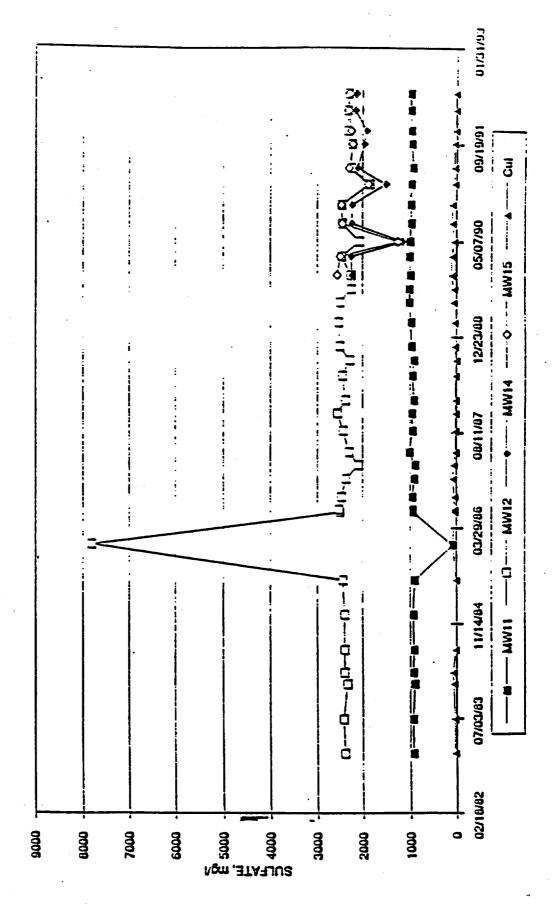

## UMETCO MINERALS CORPORATION While Mesa Mill



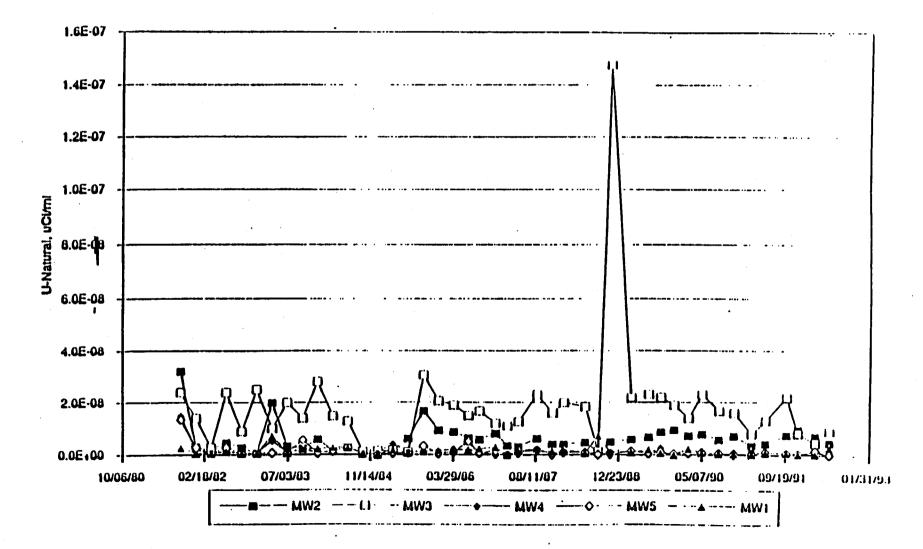

## UMETCO MINERALS CORPORATION Wile Mesa Mill

]

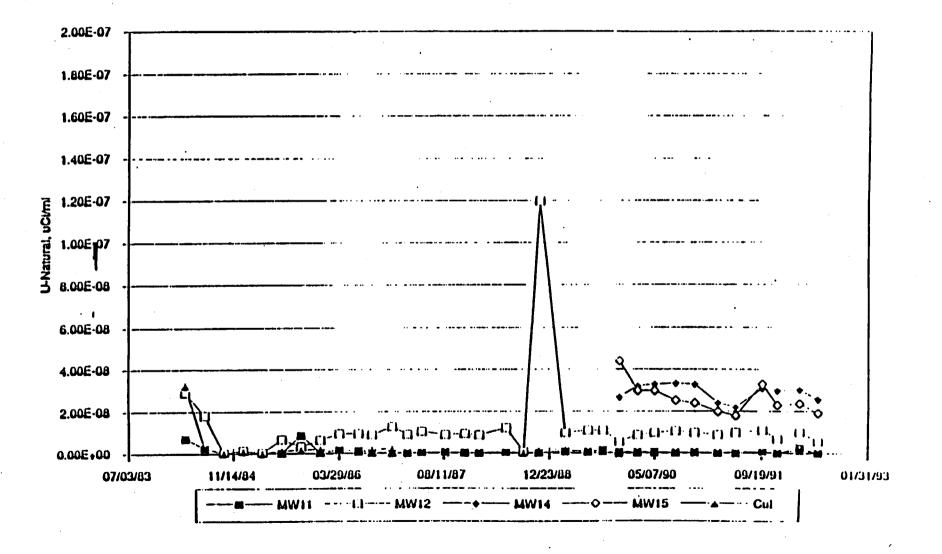


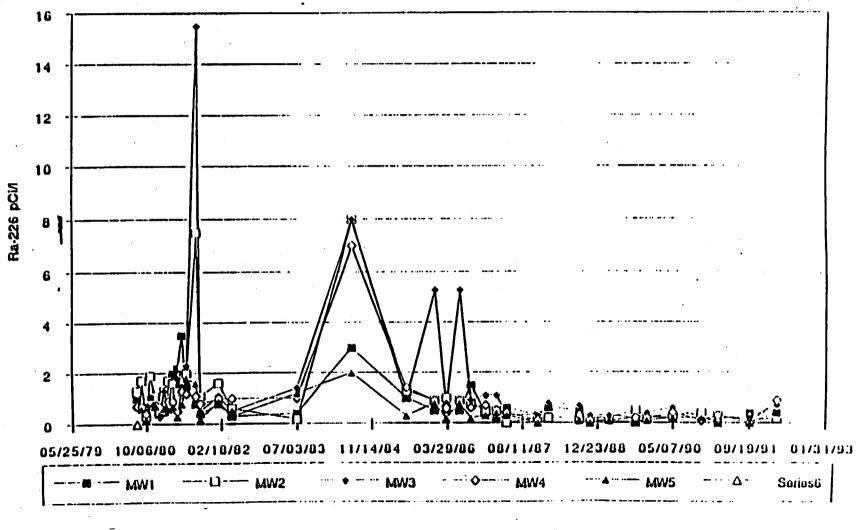




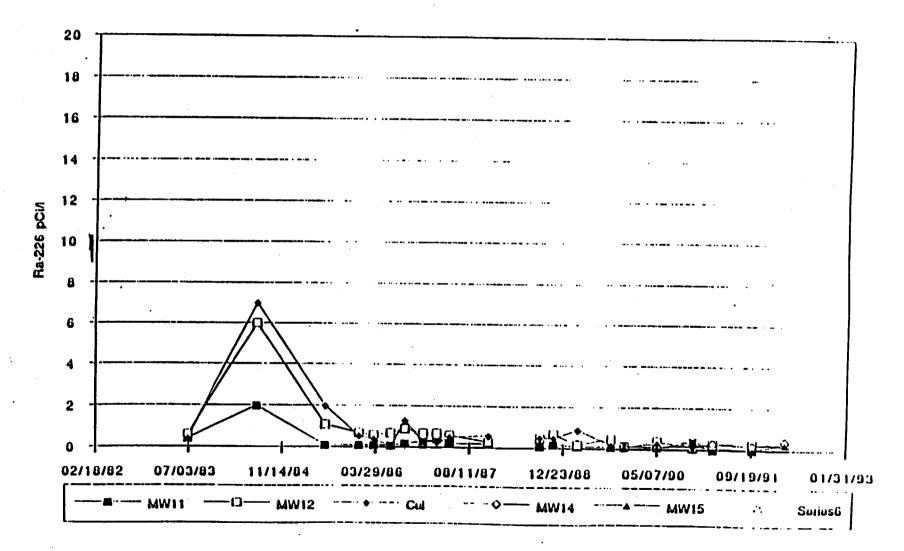


.] ]·

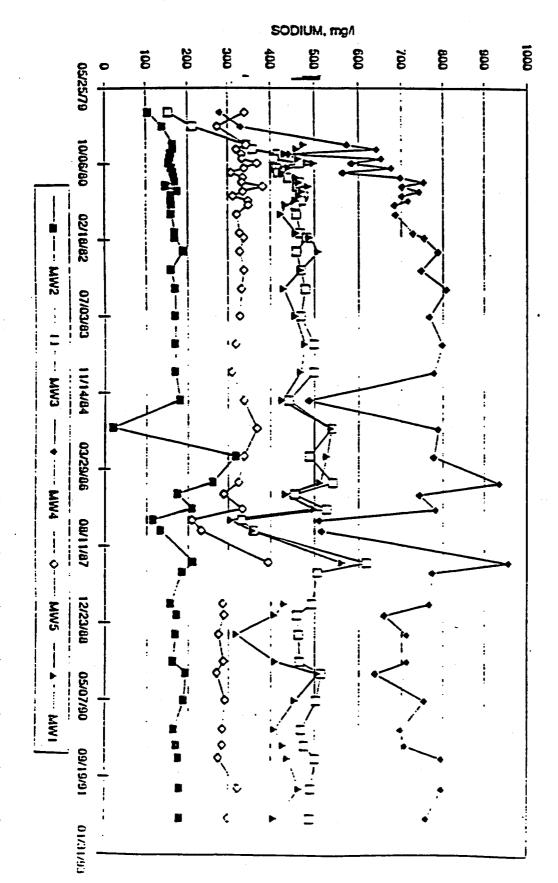


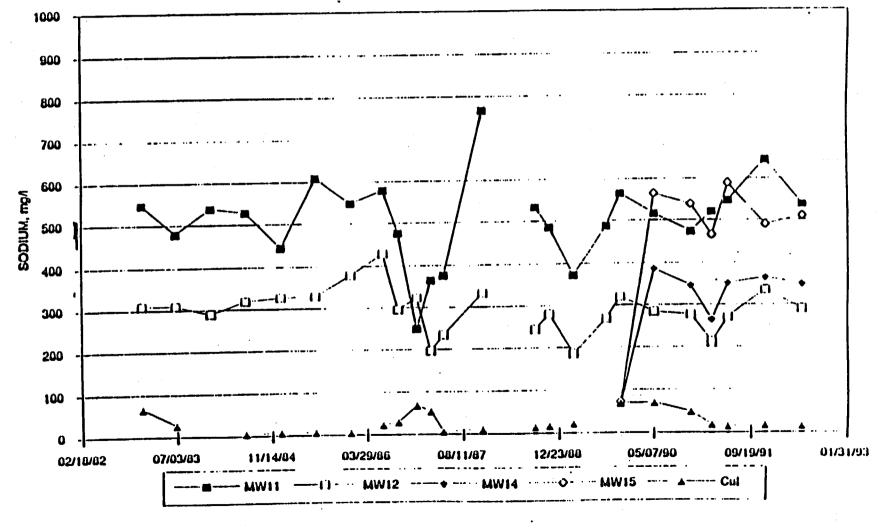




_____

Π

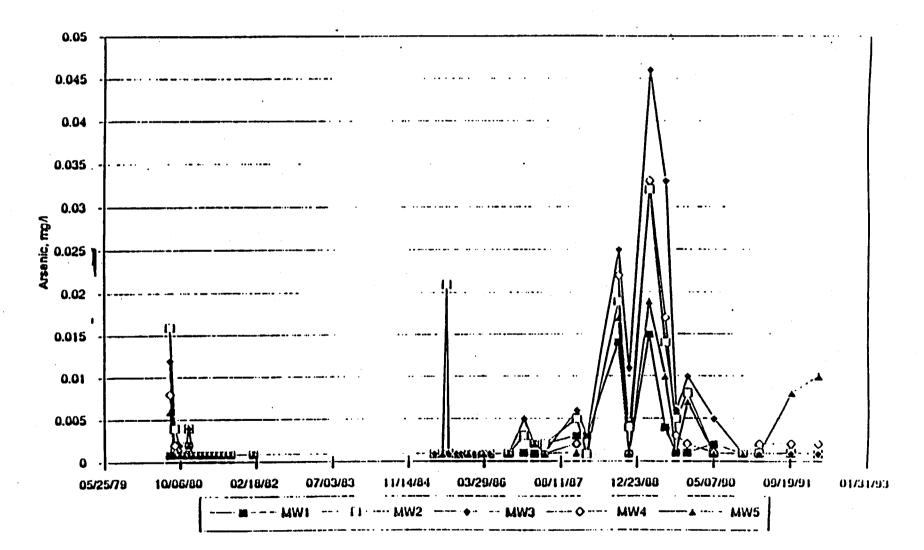




·. .






1 --

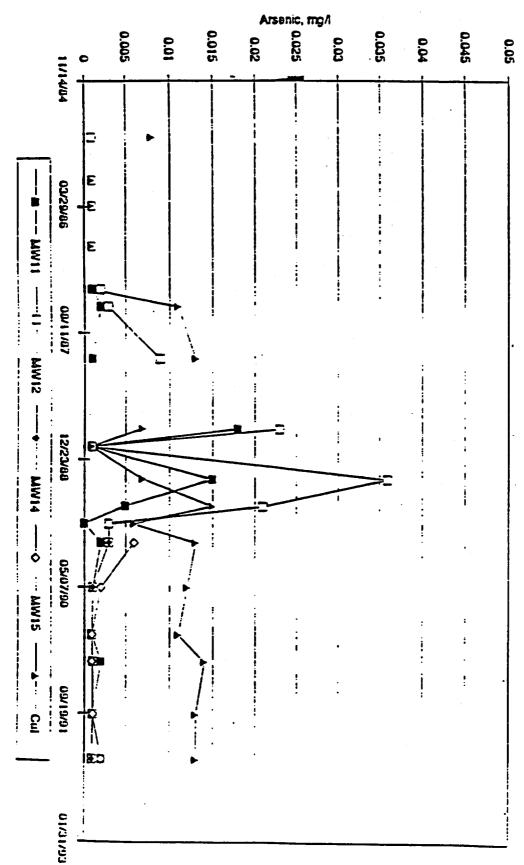




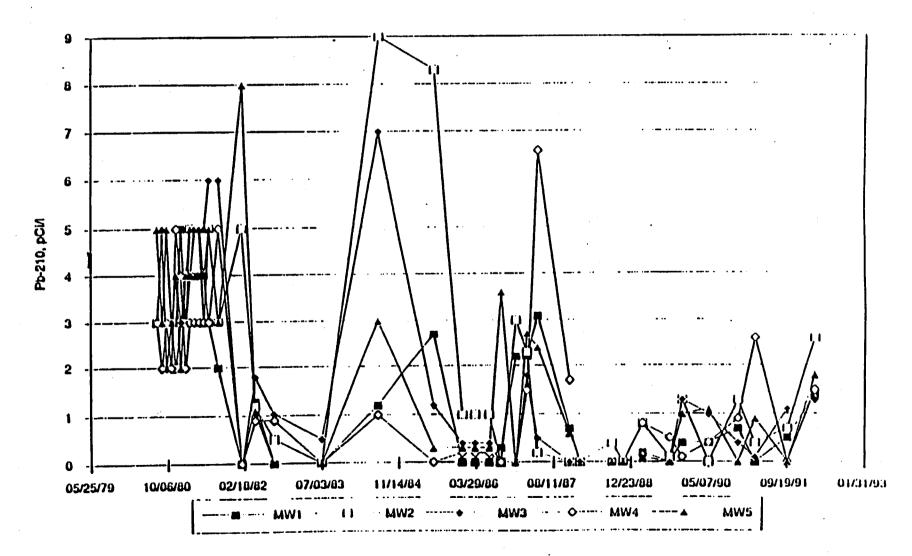


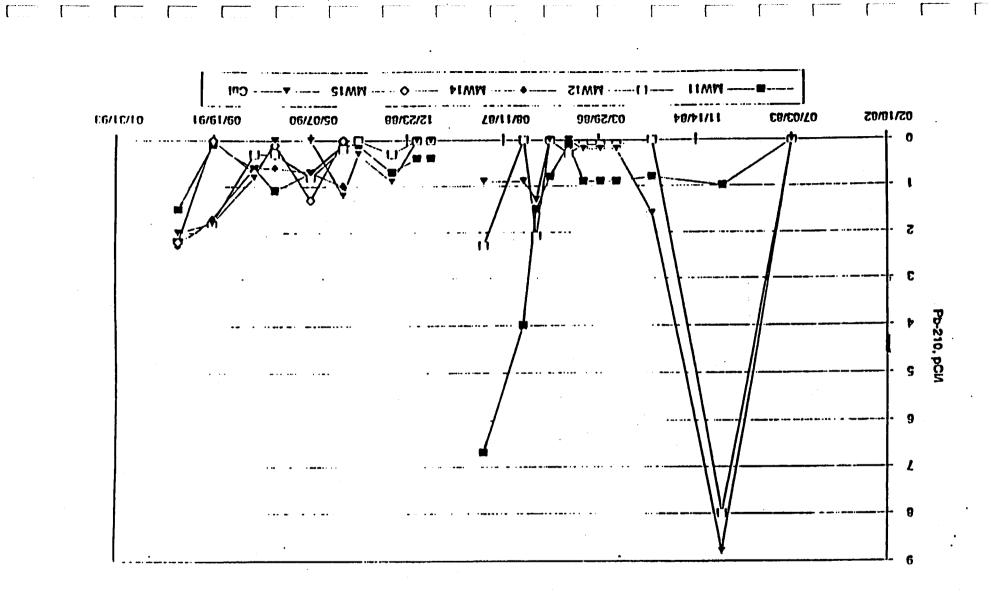

_____

. . . **I** . . .




UMETCO MINERALS CORPORATION While Mesa Mill


.

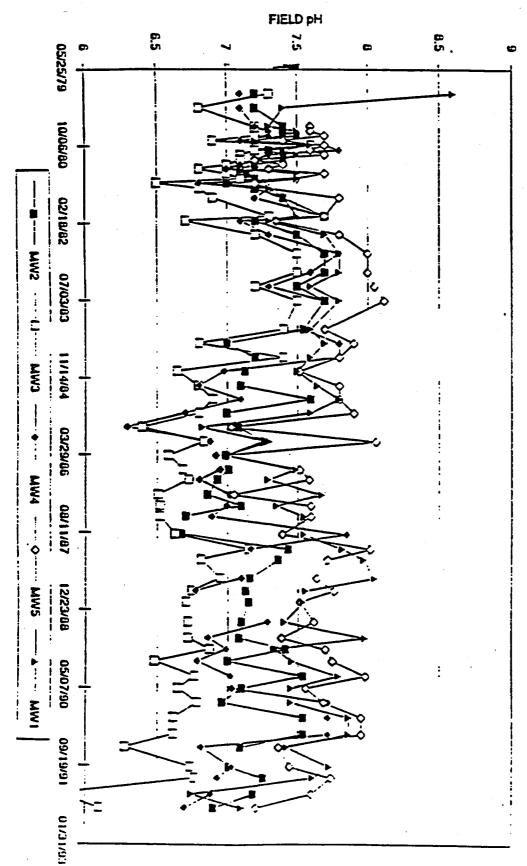

Barana Barana Y





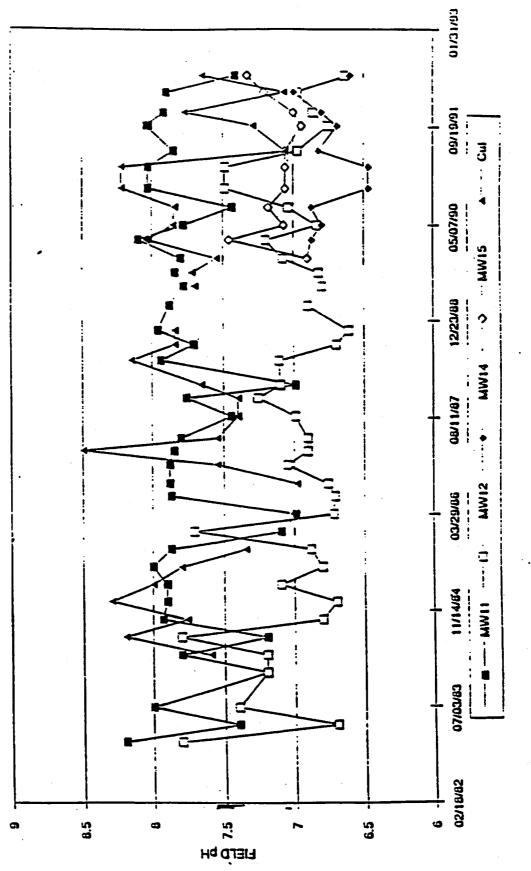
UMETCO MINERALS CORPORATION While Mesa Mill

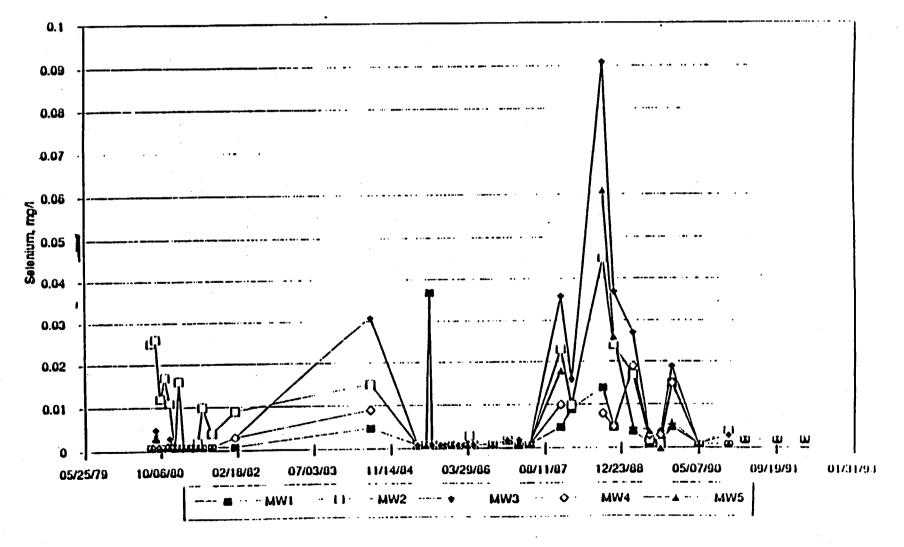





T f f

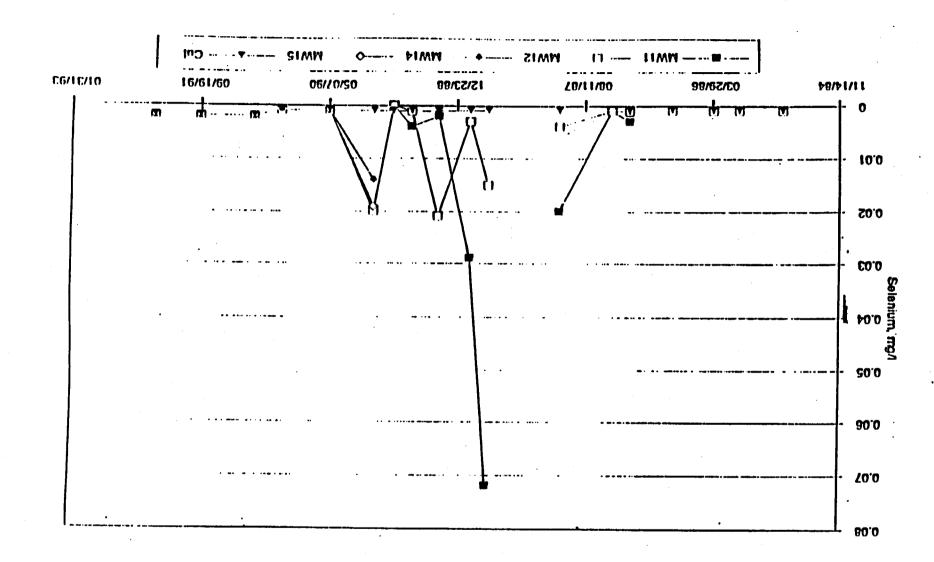
**[** 


1


WHILE WERE WITH UMETCO MINERALS CORPORATION



ł

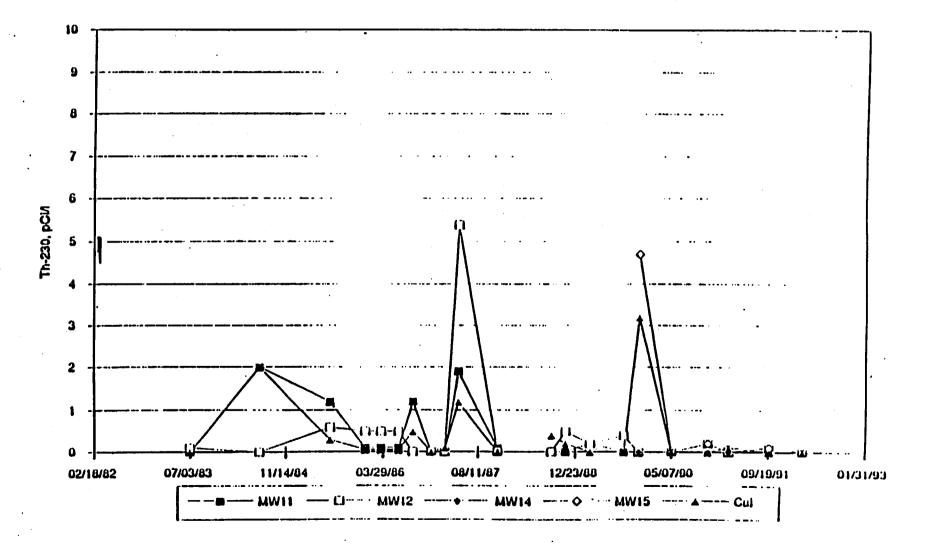




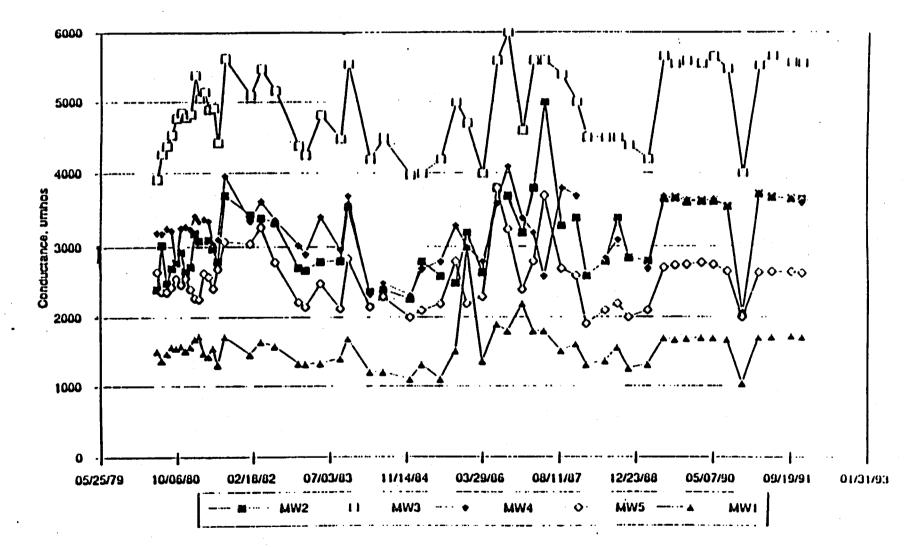


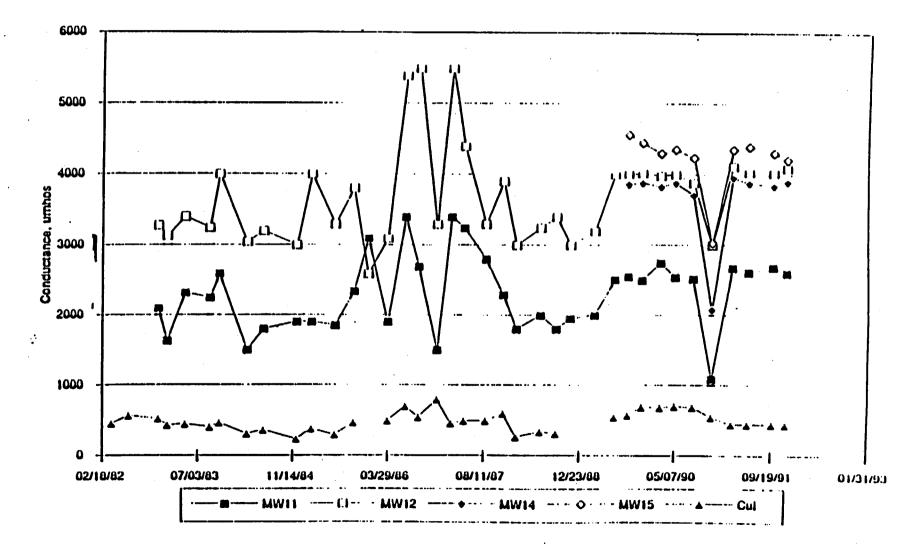

1

----




1


Th-230, рСИ 5 05/25/79 0 N ω Ch. Ø 6 œ .... 10/06/00 į 02/18/82 : ļ --- MW1 --- (J----- MW2 EU/CO/70 . 1 11/14/04 ..... -..... : ----• ···· MW3 ----- 0 ····· MW4 03/29/06 1 ÷ • 0111/87 ... 12/23/88 : : • • Ì : ŧ ..... : r D i : 05/07/90 1 \$---- £. MW5 16/61/60 E 01/31/93


UMETCO MINERALS CORPORATION WHITE MESA MILL

-



____





# ATTACHMENT 11

# **TITAN** Environmental

# Points of Compliance White Mesa Uranium Mill

# **Prepared For:**

Energy Fuels Nuclear, Inc. One Tabor Center, Suite 2500 1200 Seventeenth Street Denver, CO 80202

September 1994

By:

TITAN Environmental Corporation 5690 DTC Boulevard, Suite 260 Englewood, CO 80111

# **1.0 INTRODUCTION**

This report presents the rationale for location, and compliance criteria for ground water Points of Compliance (POCs) for the Energy Fuels Nuclear Inc. (EFNI) White Mesa Uranium Mill. The purpose of the POCs is to provide timely detection of potential leakage from the tailings disposal cells at the mill site, and to assure protection of the underlying Entrada/Navajo Aquifer.

The POCs for the mill site are existing monitoring wells WMMW-5, WMMW-11, WMMW-12, WMMW-14, and WMMW-15. In addition, a proposed POC monitoring well will be located adjacent to tailings cell No. 4A. The POC monitoring wells are located hydraulically downgradient of tailings disposal cells No. 3 and No. 4A and screened in the ground water perched zone of the Burro Canyon Formation. These wells will be monitored quarterly for the indicator constituents chloride, potassium, and nickel. Approved statistical methods, as per the Environmental Protection Agency (EPA, 1989), will be employed to evaluate whether the perched ground water zone has been affected by cell leakage.

# 2.0 CURRENT SITE CONDITIONS

This section presents a summary of the current site hydrogeologic conditions as they pertain to POC issues.

# 2.1 Site Hydrogeology

Ground water occurrence within the proximity of the White Mesa Uranium Mill has been documented in three strata: the Dakota Sandstone, the Burro Canyon Formation, and the Entrada/Navajo Sandstones. An evaluation of the occurrence of ground water at the mill site is presented by EFNI (1994a).

#### Dakota Sandstone and Burro Canyon Formation

The ground water occurrence within Dakota Sandstone and Burro Canyon Formation in proximity of the mill site is in the form of a single perched ground water zone. The ground water is perched above the Brushy Basin Member of the Morrison Formation which consists of

**TIAN** Environmental

C:/WPWD//TEC/DOC/WMM/W.POC [OM1694]

bentonitic mudstones and claystones. The saturated thickness of the perched ground water zone varies from 55 feet north of the site and thins to less than 5 feet to the south where it discharges into the adjacent canyons as evidenced by springs and productive vegetation patterns.

Downgradient of the mill, (i.e. between the mill and dissecting canyons) the ground water in the perched zone cannot be used for irrigation or domestic consumption because of the natural poor quality of the water (Section 2.2) and low yield rates of the perched zone. Documented pumping rates from on-site wells completed in the Burro Canyon Formation are less than 0.5 gallons-per-minute (gpm). Even at these low rates, the wells are typically pumped dry within a couple of hours.

At the mill site, the tailings disposal cells are sited within the unsaturated, Dakota Sandstone. If cell leakage were to occur from the tailings cells, tailings-related constituents would have to migrate through approximately 110 feet of unsaturated material before reaching the perched ground water zone. The travel time for constituents to reach the perched ground water zone has been estimated to range from 50 to 150 years (EFNI, 1994a).

In terms of compliance monitoring, the perched ground water zone provides the earliest horizon for detection of tailings cell leakage because it is closest to the potential release point. Although the perched ground water zone cannot be classified as a useable aquifer, it would be considered a pathway for constituents (EPA, 1992), and under 40 CFR § 264.97 can be used for POC monitoring.

#### Entrada/Navajo Sandstone Aquifer

The ground water present within the Entrada/Navajo Sandstones is the first useable aquifer of significance documented within the mill area. The Entrada/Navajo Sandstone aquifer (Entrada/Navajo Aquifer) is an artesian aquifer and is used regionally for irrigation and domestic consumption.

At the mill site, the Entrada/Navajo Aquifer is separated from the perched ground water zone within the Dakota Sandstone and Burro Canyon Formation by more than 1,200 feet of unsaturated, low permeability formations. The combination of low permeability, thick unsaturated strata and the artesian pressure within the aquifer provides a positive natural physical and hydraulic barrier that will protect the Entrada/Navajo Aquifer from being impacted by potential tailings cell leakage.

In terms of compliance monitoring, the Entrada/Navajo Aquifer would not be included in POC monitoring for the following reasons:

**TTAN** Environmental

CIWPWINTECIDOCIWIAMW.POC [DV1694]

- Timely detection of tailings cell leakage and protection of the Entrada/Navajo Aquifer can be accomplished by monitoring the overlying perched ground water zone within the Dakota Sandstone and Burro Canyon Formation; and
- Timely detection of tailings cell leakage cannot be accomplished by monitoring the Entrada/Navajo Aquifer because it is separated from the tailings cells by more than 1,200 feet of low permeability, unsaturated strata.

### 2.2 Perched Water Quality

Water quality data has been collected at the White Mesa facility since 1979 and is presented in Appendix A of this report. Evaluation of the data indicates that in the perched zone:

- Water quality is poor and variable, and
- Operations at the White Mesa Uranium Mill have not impacted water quality.

Figure 1, which presents Stiff diagrams for wells upgradient of the tailings facility, demonstrate that water quality at the White Mesa Mill is variable in the perched ground water zone. Examination of the Stiff diagrams indicates that sulfate is the dominant anion but the dominant cation varies for the wells. At the Windmill and Jet Pump Well, magnesium is the dominant cation; at well WMMW-18, calcium is the dominant cation; at well WMMW-19, sodium is the dominant cation; and at well WMMW-1, calcium and sodium are present in approximately equal (milliequivalent) proportions. Figures 2 and 3 show that the cation variability continues throughout the mill site.

Water quality variability is likely the result of several factors, including:

- Slow ground water velocities that allow water to equilibrate with local mineralogy.
- Mineralogic variability within the Burro Canyon Formation,
- Partial penetration of some wells into the top of the underlying Brushy Basin Member, and

**OTITAN** Environmental

• The decrease in saturated thickness of the perched zone south of the site.

C:WPWENTEC\DOC\WMMW.POC [09/1694]

As discussed below, the interaction of these factors leads to variability of water type (dominant cation) and also variability of other constituents.

A discussion of the water velocity within the perched ground water zone is presented by EFNI (1994a). Water velocity is expected to decrease as the saturated perched zone thickness decreases south of the site. Along the edges of the saturated zone, ground water likely becomes stagnant. Large calcium, alkalinity and sulfate concentrations at wells located at the edge of the perched zone indicate that the perched water probably is saturated with calcite, and possibly with gypsum, which is a result of stagnant or very slow movement of water in the perched zone.

The mudstones of the Brushy Basin Member are expected to be a source of minor concentrations of trace metals. In general, large concentrations of trace metals such as arsenic, molybdenum and selenium, are found in shales, as compared to sandstones (Parker, 1967). According to boring and well completion logs (EFNI, 1994a), several wells were screened across the Burro Canyon Formation/Brushy Basin Member contact, including WMMW-2, WMMW-3, WMMW-4, WMMW-5, WMMW-11, WMMW-12, and WMMW-15. Small concentrations of arsenic, molybdenum, and selenium are occasionally detected in these wells.

Thinning of saturated thickness and related slow ground water velocities also account for the generally poor quality of the water. For example, the average total dissolved solids (TDS) concentrations for site wells in the perched water zone range from 1271 to 5052 milligrams-perliter (mg/l) and average sulfate concentrations range from 656 to 2956 mg/l. These ranges of concentrations also have been documented in sandstone and shale units in other semi-arid regions (Hem, 1989) with natural poor water quality. According to Utah Administrative Code, R448-6, ground water with TDS of 3,000 to 10,000 mg/l is classified as Class III - Limited Use. A number of upgradient, transgradient and downgradient wells, including wells WMMW-3, WMMW-4, WMMW-12, WMMW-14, WMMW-15, WMMW-17 and WMMW-19, would fall into this classification, indicating the poor quality of the perched water. Because of the poor quality of the water and low well yield of the water within the Burro Canyon Formation, its expect future uses are minimal.

# **3.0 POINTS OF COMPLIANCE**

This section presents the compliance monitoring program, including location and rationale for the POCs, indicator constituents, and data evaluation protocol.

**TTAN**Environmental

C:/WPWENTEC/DOC/WHORW.POC [09/1694]

# **3.1 Location and Rationale of POCs**

#### Lateral POC Location

The POCs for the White Mesa Uranium Mill are the existing monitoring wells WMMW-5, WMMW-11, WMMW-12, WMMW-14, and WMMW-15. In addition, a proposed monitoring well will be located adjacent to tailings cell No. 4A. The locations of the POC wells are shown in Figure 4.

The POC locations were chosen based on the guidance set forth in the document entitled "RCRA Ground-Water Monitoring: Draft Technical Guidance" (EPA, 1992)." The POC monitoring wells are located hydraulically downgradient of and adjacent to tailings disposal cells No. 3 and No. 4A, and are screened in the perched ground water zone. The ground water levels and flow directions present in the perched water zone are also shown in Figure 4.

Cross-gradient, the lateral spacing between the POC monitoring wells ranges from approximately 500 to 700 feet. This spacing will be adequate for POC monitoring because naturally occurring hydraulic, physical, and kinetic mechanisms are present that will result in lateral spreading of constituents should cell leakage occur. The lateral spreading of constituents will facilitate cell leakage detection at the POCs.

The mechanisms causing lateral spreading include:

- Potential leakage from a tailings disposal cell will first enter the unsaturated Dakota Sandstone where it will spread laterally as well as vertically aided by the presence of low permeability layers (stringers) and capillary suction; and
- The flow regime within the perched water zone of the Burro Canyon Formation is one of flow through a porous media. As such, constituents entering the ground water will be subject to transport processes of advection, dispersion, and diffusion. While advection (ground water flow) will transport constituents downgradient, both dispersion and diffusion mechanisms will cause lateral spreading of constituents in the ground water. Diffusion will cause lateral spreading set up by constituent concentration gradients within the ground water. Hydraulic dispersion will cause lateral spreading due to flow through pore channels. The magnitude of dispersion spreading is scale dependent and may range several orders of magnitude for various geologic media (Neuman, 1990).

**TTAN** Environmental

C:/WPWINTEC/DOC/WALMW.POC [09/16/94]

Lateral spreading of constituents by naturally occurring mechanisms will increase the likelihood of detection at the POCs. Therefore, the POCs monitoring wells will provide timely detection of leakage from the tailings disposal cell.

#### Vertical POC Location

The POC monitoring wells are completed in the perched ground water zone of the Burro Canyon Formation. POC monitoring wells are not proposed for the Entrada/Navajo Aquifer because more than 1,200 feet of unsaturated, low permeability formations isolates the aquifer from the tailings cells, and because this aquifer is not the first occurrence of ground water to be affected should leakage from the tailings cells occur.

As presented in Section 2.1, the perched ground water zone is considered a potential constituent pathway, and it is located closest to the tailings cells. Therefore, monitoring of the Burro Canyon Formation perched ground water zone will provide timely detection of tailings cell leakage, if it occurs, and will be protective of the water quality of the Entrada/Navajo Aquifer.

# Detection

# 3.2 Compliance Monitoring Program

detection

The compliance monitoring program will consist of quarterly sampling of the POC monitoring wells. Each sampling event will consist of ground water sampling and ground water elevation determination. Ground water sampling will be conducted using the procedures set forth in the Ground Water Monitoring Plan (EFNI, 1994c) and the Quality Assurance Project Plan (EFNI, 1994b).

#### Indicator Constituents

Potential leakage from the tailings cells will be evaluated by analyzing the perched zone ground water for indicator constituents present in the tailings. For the purpose of POC monitoring, the slimes drain water is considered representative of liquids associated with the tailings. Water quality indicator constituents were chosen based on the following criteria:

- High concentrations in tailings slimes drain water,
- Low concentrations in site ground water,
- Conservative chemical characteristics, and
- Representation of chemical classes; that is, a cation, an anion, and a trace metal.

**TTAN** Environmental

C:WPWDITEC\DOC\WILDIW.POC [09/1694]

Constituents that meet these criteria are chloride, potassium and nickel. Table 1 lists average concentrations of chloride, potassium and nickel for the POC wells, in addition to concentrations in tailings cell No. 2 slimes drain water. As shown in Table 1, the concentrations in slimes drain water of chloride (3191 to 2573 mg/l), potassium (251 to 286 mg/l) and nickel (7.2 to 12 mg/l) are one to three orders of magnitude larger than concentrations in the POC wells.

In addition to the high concentrations in the slimes drain water, chloride, potassium and nickel were chosen as indicator constituents for the following reasons:

- Chloride has been used as a conservative tracer for a number of years (Davis and others, 1985) and has been shown to travel at the same rate as water (Kaufman and Orlob, 1956). Conservative tracers, such as chloride, do not readily adsorb onto soil materials or precipitate unless present in very large concentrations. Evidence of the conservative nature of chloride is that chloride is the dominant anion in ocean water.
- Potassium is somewhat conservative, depending on the presence of clays. Potassium is subject to adsorption by illite clay and to cation exchange by most clays. Potassium has been used as a tracer when it is a component of leachate (Davis and others, 1985) and to determine transport properties (Leonhart and others, 1985). The tailings cells are underlain by sandstone, so potassium retardation due to reaction with clays should be minor.
- Nickel was selected as an indicator constituent as representative of trace metals in the slimes drain water. Nickel is not considered to be conservative; however, it is less readily adsorbed and therefore, travels more readily in solution than other metals, such as lead, copper and zinc (Kinniburgh and Jackson, 1981). Nickel adsorption by clay is decreased by the presence of sulfate (Bansal, 1985), and sulfate is plentiful in slimes drain water and perched ground water. Hence, adsorption of nickel should be minor.

Other constituents, such as pH, sodium, magnesium, calcium, sulfate and arsenic, were not included as water quality indicators for a number of reasons. For example, pH is affected by soil constituents, such as calcareous materials. Calcareous materials react with low pH solutions, resulting in pH increase. Boring logs (EFNI, 1994a) indicated the presence of calcareous stringers and zones underlying the site. The presence of these materials in the unsaturated zone provides a protective geochemical barrier to potential movement of trace metals from the tailings cells. However, potential movement of solutions from the tailings cells would be recognized sooner by monitoring chloride, which is less affected by reactions with soil materials.

**T TAN** Environmental

C:/WPWENTEC/DOC/WILD/W.POC (0%16/H)

In addition to potassium and chloride, slimes drain water contains other major cations and anions, including sodium, magnesium, calcium and sulfate. These parameters were not chosen as potential tracers because they also are major constituents in the perched ground water, as discussed in Section 2.2.

Arsenic occurs as an anion in solution and, therefore, has different chemical behavior than most metals. For example, arsenic adsorbs readily at a pH of about 4.5 but desorbs at higher pH values, whereas most metals do not adsorb until the pH is much higher than 4.5. The slimes drain water pH typically is in the range of 1.5 to 3. If this water were to percolate into the underlying materials, the pH would gradually increase as suggested above. The result would be that arsenic in percolating water would tend to adsorb well before other metals, such as nickel. Therefore, arsenic is not considered to be useful as an indicator parameter.

#### 3.3 Statistical Analysis of Monitoring Data

Statistical methods will be employed to analyze the ground water monitoring data at the POCs and to evaluate compliance. The statistical analysis will be conducted using recommended EPA intra-well comparison techniques for RCRA facilities (EPA, 1989). Intra-well comparison techniques will be employed because, as discussed in Section 2.2, the spatial variability of the ground water quality precludes definition of background ground water quality over the large areal extent of the mill site.

The intra-well comparison technique used will be a control chart based method. Control chart methods are widely used as a statistical tool in industry because they are relatively simple to use and they provide a visual tool for detecting trends and abrupt changes in concentration levels.

#### 3.3.1 Compliance Evaluation

The control chart method used for evaluating compliance will be the combined Shewhart-CUSUM control chart method. The combined Shewhart-CUSUM control chart method consists of plotting standardized constituent concentration data versus time. Compliance is then evaluated by comparing the standardized concentrations against predefined upper bounds which are based on standard deviations. Combined Shewhart-CUSUM control charts for the POC monitoring wells and the indicator constituents are presented in Appendix B. The calculations used to develop these charts are presented in Appendix C. The control charts presented in Appendix B were constructed using the water quality data presented in Appendix A. All of the charts were constructed with a starting sampling date of March 24, 1994 so that each chart would

**TAR**Environmental

C:/WPWENTEC/DOC/WIGHW.POC [DW1694]

cover the same time period. Water quality data collected prior to March 24, 1994 were used to calculate the population mean and standard deviation used in control chart construction.

To construct a combined Shewhart-CUSUM control chart, the constituent concentration data must first be standardized. The constituent concentration data is standardized using the following equation:

$$Z_i = (\overline{X_i} - \mu) \frac{\sqrt{n_i}}{\sigma}$$

where:

 $Z_i$  = standardized mean,  $X_i$  = average concentration of sample event,  $\mu$  = mean population concentration,  $\sigma$  = population standard deviation, and  $n_i$  = number of measurements during sample event.

In addition to the standardized mean, the cumulative sum for the standardized data must also be calculated. The cumulative sum is equal to:

$$S_{i} = \max[0, (Z_{i} - k) + S_{i-1}]$$

where:

 $S_i$  = present cumulative sum,  $S_{i-1}$  = previous cumulative sum,  $Z_i$  = standardized mean, and k = reference value = 1 (EPA, 1989)

Once the concentration data is standardized, the data is plotted versus time. Two upper bounds are also plotted with the data, h and SCL. The upper bound h is a statistical upper bound for the cumulative sum data, while SCL is an upper bound for the standardized mean data. EPA (1989) recommends setting h equal to 5 and SCL equal to 4.5 for ground water monitoring.

Compliance is evaluated by comparing the cumulative sum data to the upper bound h, and the standardized mean data to the SCL upper bound. If the cumulative sum data exceeds the h upper bound or the standardized mean data exceeds the SCL upper bound, this would indicate a

• TIAN Environmental

CHWPWINTEC\DOC\WARKW.POC [DM1694]

statistically significant increase in constituent concentration. For the White Mesa Uranium Mill, this would indicate potential cell leakage.

The control charts presented in Appendix B show that based on water quality data taken after March 24,1994 the POC monitoring wells do not show impact from mill operations. As future quarterly water quality data is collected, the control charts in Appendix B will be updated and compliance evaluated. If sampling of a POC monitoring well indicates exceedance of the h upper bound or the SCL upper bound using the combined Shewhart-CUSUM control charts, a confirmatory sampling program will be initiated. The confirmatory sampling program will consist of monthly sampling of the affected well for a minimum period of six months. The minimum sampling period of six months was chosen to provide a statistically significant population for evaluating outliers and seasonality.

After the confirmatory sampling program is complete, the POC ground water quality data will be analyzed using an Analysis of Variance (ANOVA) as per EPA (1989) guidance. The ANOVA would be used to determine if the water quality data collected during the confirmatory sampling program are statistically different from the water quality data collected before the confirmatory sampling program. If the data are significantly different, a corrective action plan will be prepared. monteri pogrami wie be

Water Quality Data Adjustments

During the water quality monitoring period, the control charts for each POC well will be updated after each sampling round. However, before the control charts are updated, the water quality data may need to be adjusted to account for seasonal trends and non-detection values. Although the site water quality data does not exhibit a consistent trend of seasonality, methods to adjust the water quality data for seasonality and the presence of non-detect values are presented by the EPA (1989), and will be used, if appropriate, for the POC control charts at the mill site.

## **4.0 CONCLUSIONS**

The POCs for the White Mesa Uranium Mill are existing monitoring wells WMMW-5, WMMW-11, WMMW-12 WMMW-14, and WMMW-15. In addition, a proposed POC monitoring well will be located adjacent to the southeast corner of tailings cell No. 4A. The POC monitoring wells are located along the southern (downgradient) edge of tailings disposal cells No. 3 and No. 4A, and are screened in the perched ground water zone within the Burro

**TTAN** Environmental

C:WPWENTEC\DOC\WMMW.POC [091694]

Canyon Formation. The perched ground water zone cannot be classified as a useable aquifer, however, monitoring of the perched ground water zone will be protective of the Entrada/Navajo Aquifer because it will allow timely detection of tailings cell leakage, should it occur.

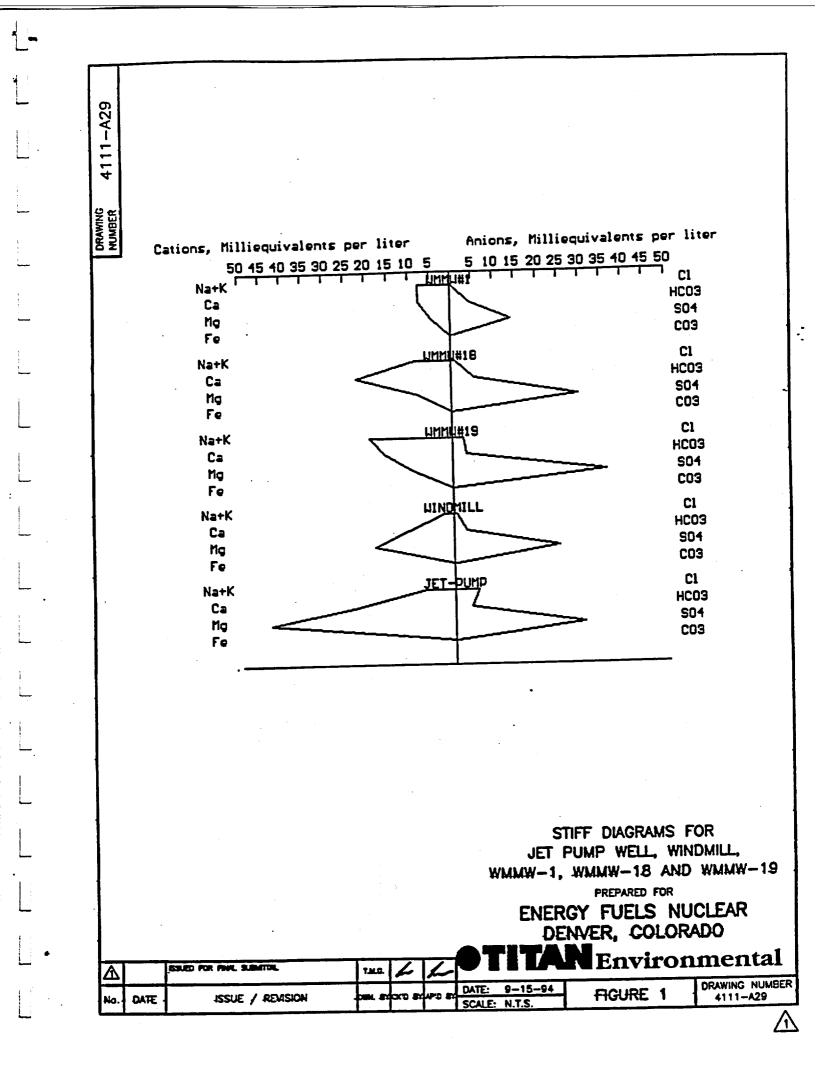
The POC monitoring program will employ approved EPA statistical methods to evaluate whether the perched ground water zone has been affected by tailings cell leakage. The statistical methods used will be based on intra-well methods because the natural spatial variability of the site ground water quality precludes definition of a background water quality.

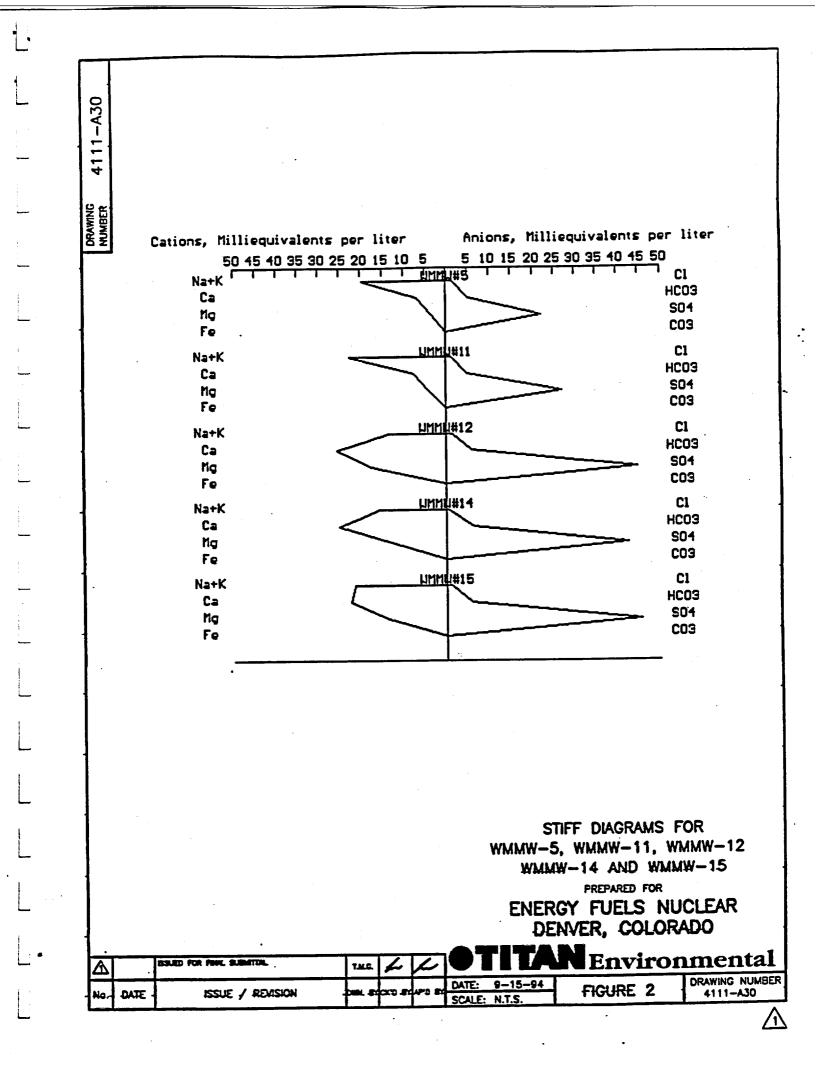
The intra-well statistical method will be based on combined Shewhart-CUSUM control charts. Control charts have been constructed for three indicator constituents, chloride, potassium, and nickel for the site. Selection of these indicator constituents was based on constituent concentrations present in the tailings cell No. 2 slimes drain water.

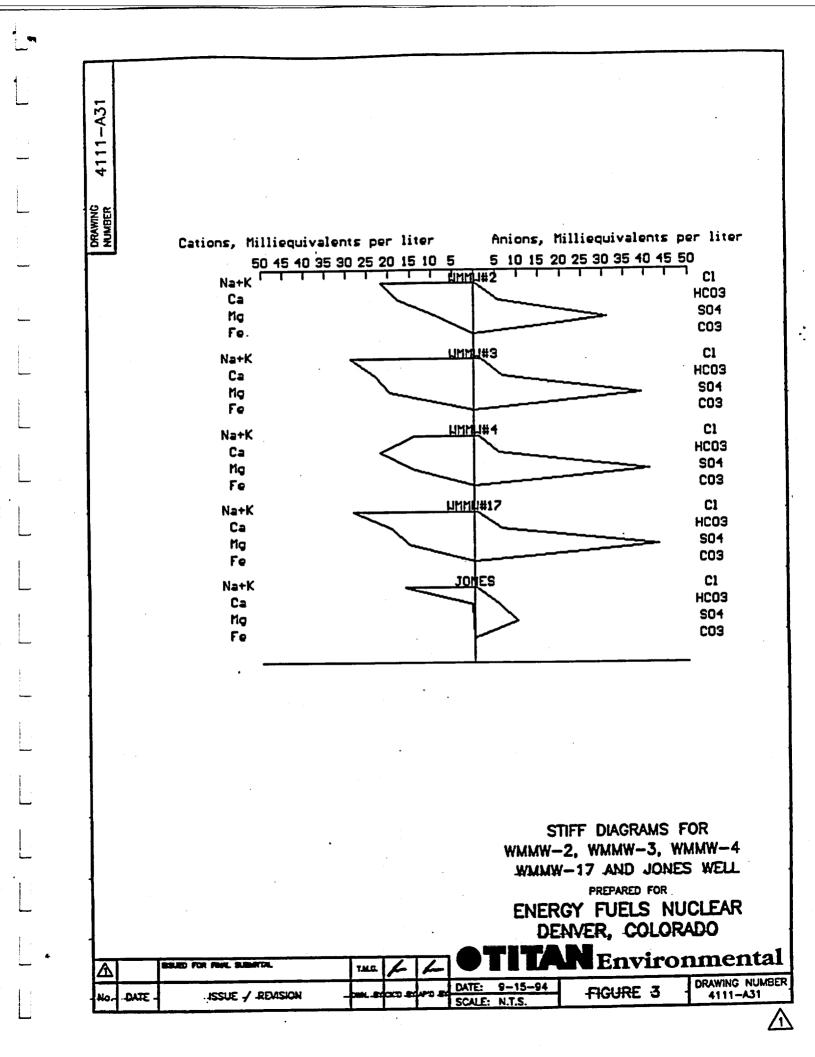
Compliance within the perched ground water zone will be evaluated quarterly by plotting standardized concentration data on the control charts and comparing the data to upper bounds as defined by the method. If sampling of a POC monitoring well indicates exceedance of an upper bound using the Shewhart-CUSUM control charts, this would trigger a 6-month confirmatory sampling program to determine if the data are statistically significant. If the data are significantly different, a corrective action plan will be prepared.

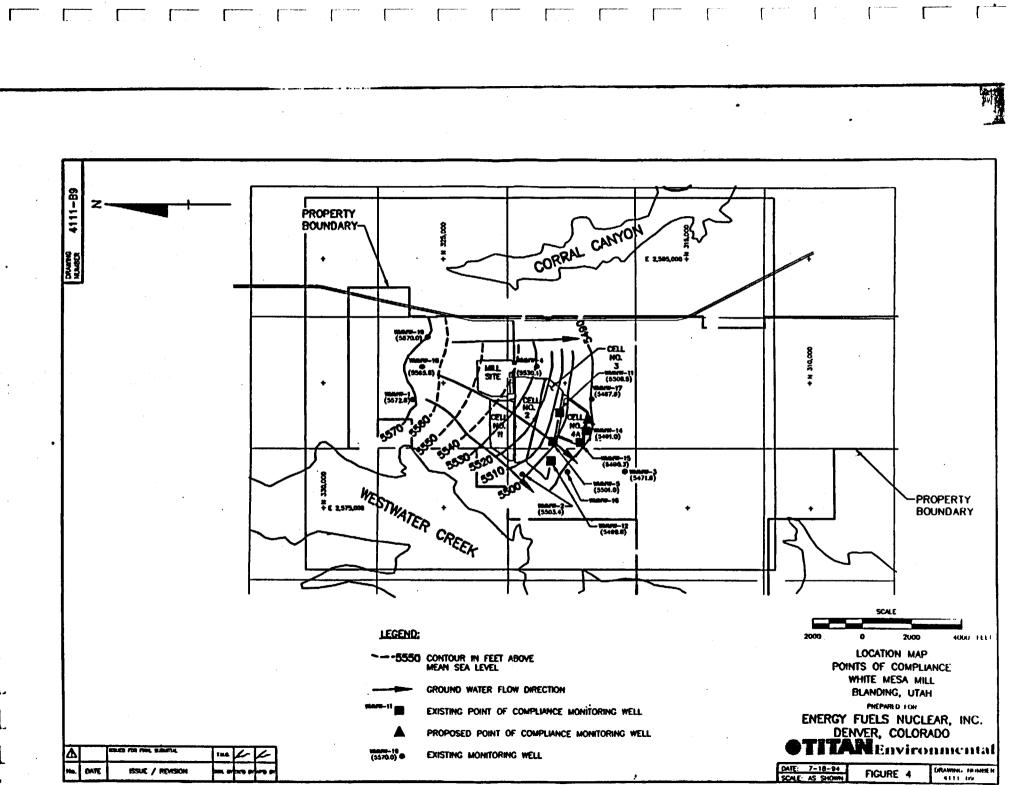
**TITAN** Environmental

C:WPWPNTBC\DOCWNDAW.POC [DW1694]


TABLE 1			
AVERAGE CONCENTRATIONS OF INDICATOR PARAMETERS			
(milligrams per liter)			


Location	Chloride	Potassium	Nickel
Cell No. 2 Slimes Drain Water (May, 1991)	3191	251	7.2
Cell No. 2 Slimes Drain Water (Sept., 1991)	2573	286	12.0
WMMW-5	55	9	0.007
WMMW-11	35	9	0.008
WMMW-12	66	14	0.016
WMMW-14	20	13	0.016
WMMW-15	40	11	0.016


**OTITAN** Environmental


TABLE1.XLS (10/7/94)

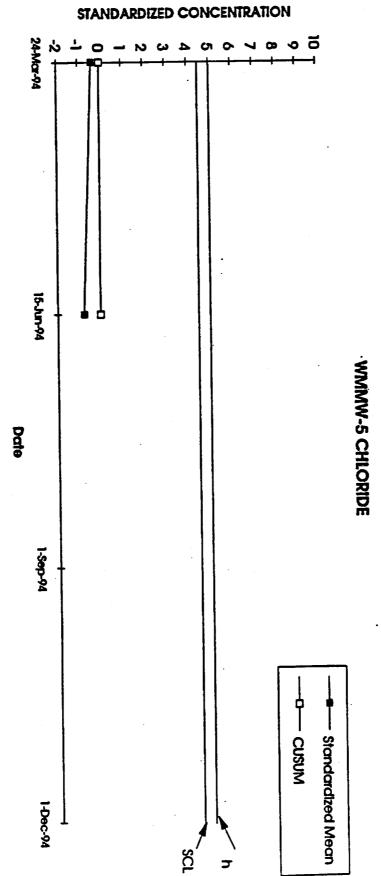
1



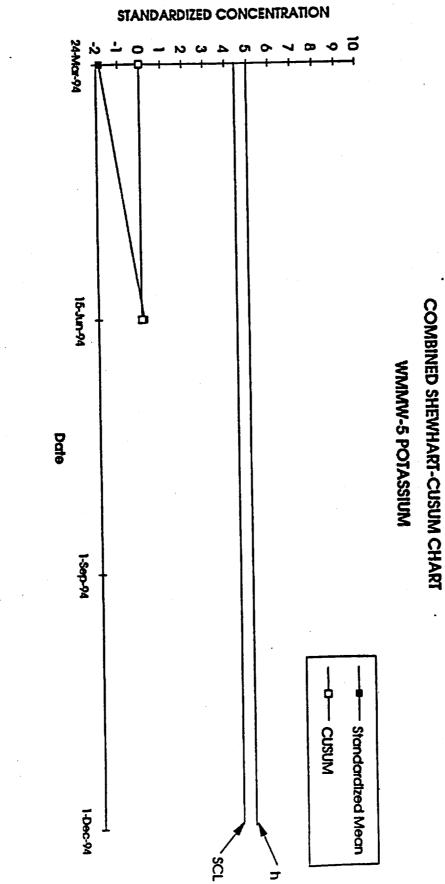




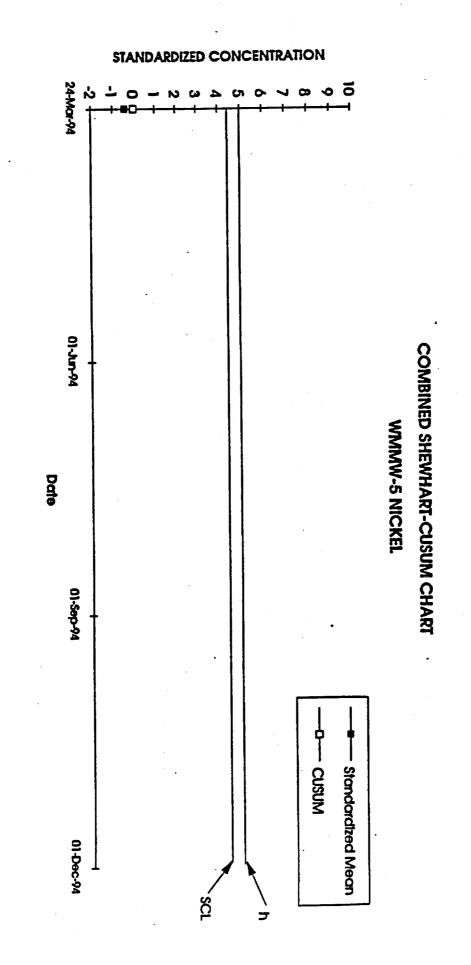


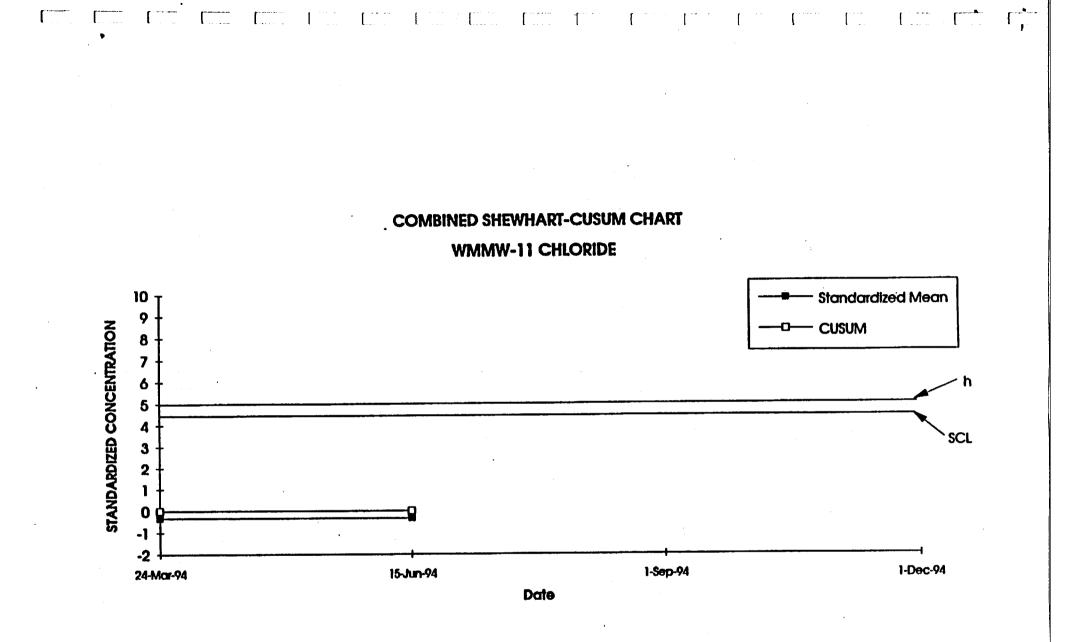

. • •

# APPENDIX B


# COMBINED SHEWHART/CUSUM CONTROL CHARTS FOR WHITE MESA POC's

CHWPWENTECLOCIMADIW.POC (MIGH)




•



- ].

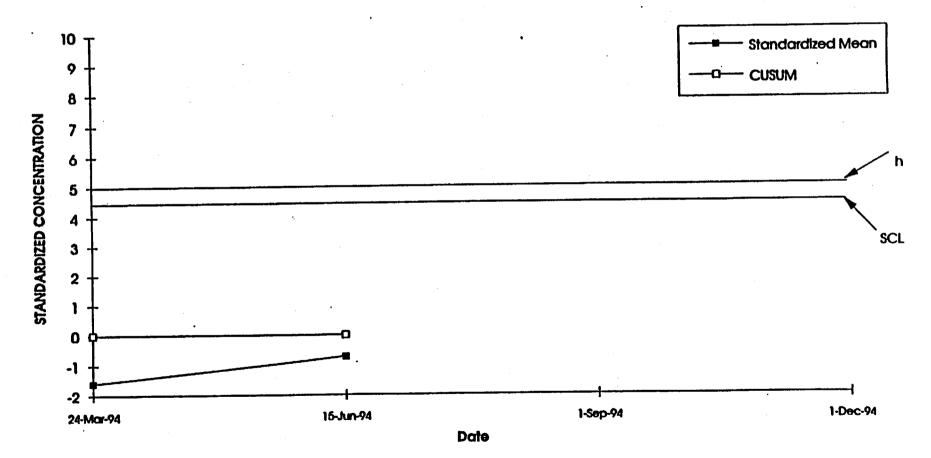


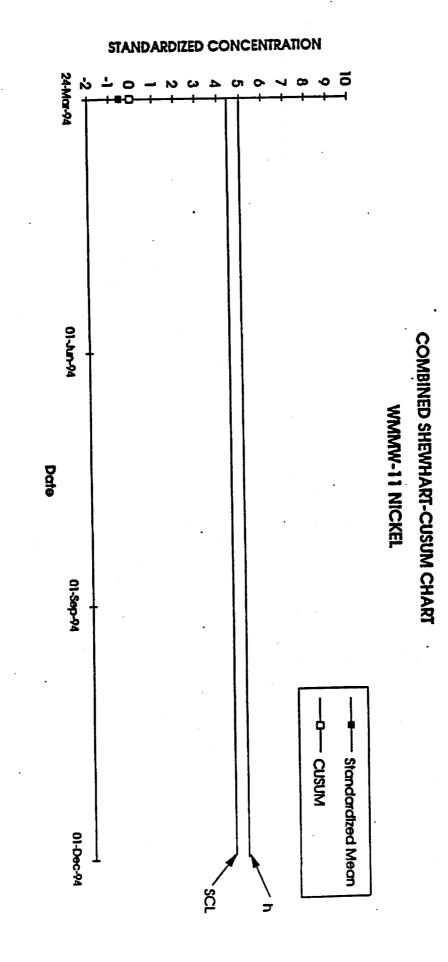


. .

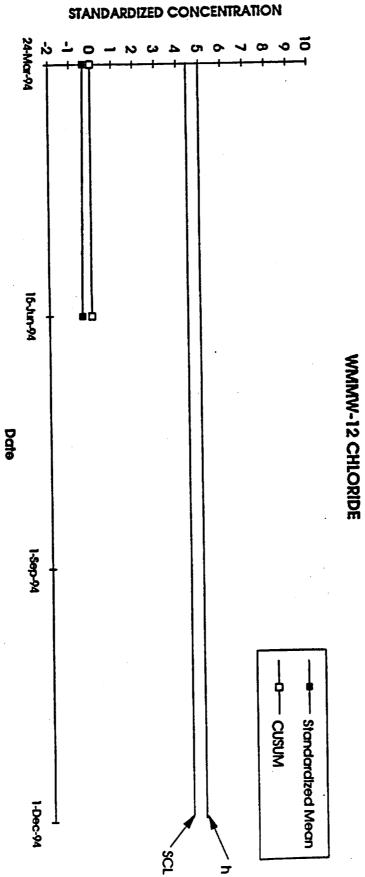
Γ,

····· `


[----




1


.1

[

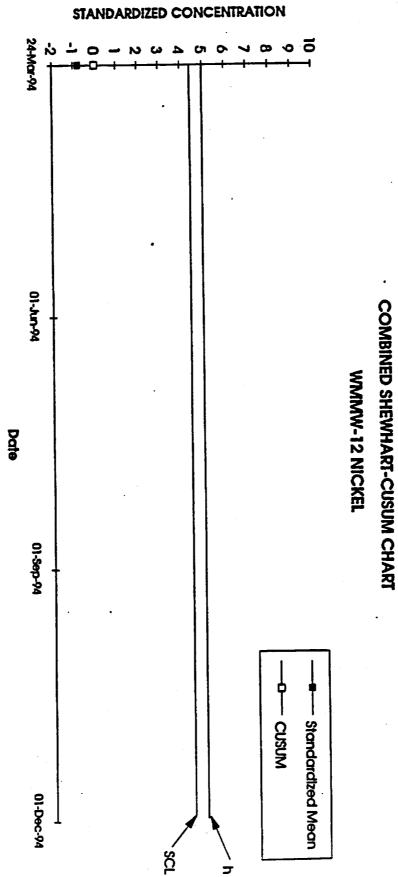


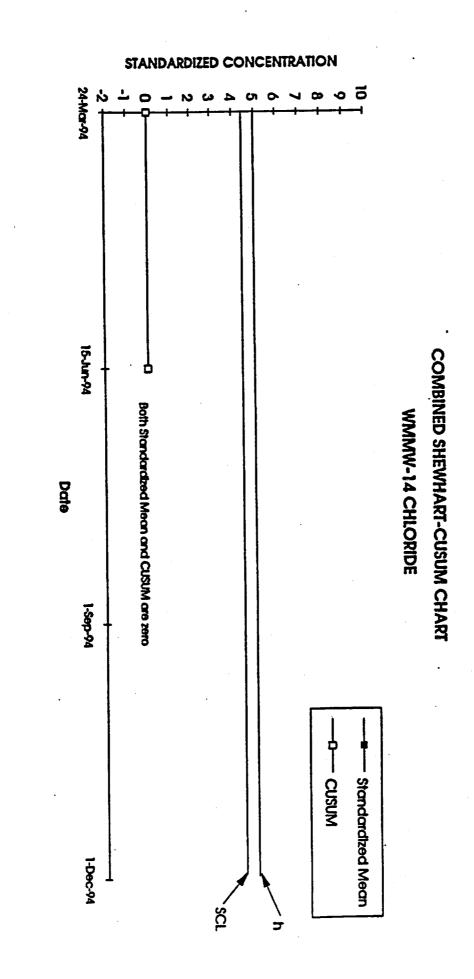


. .



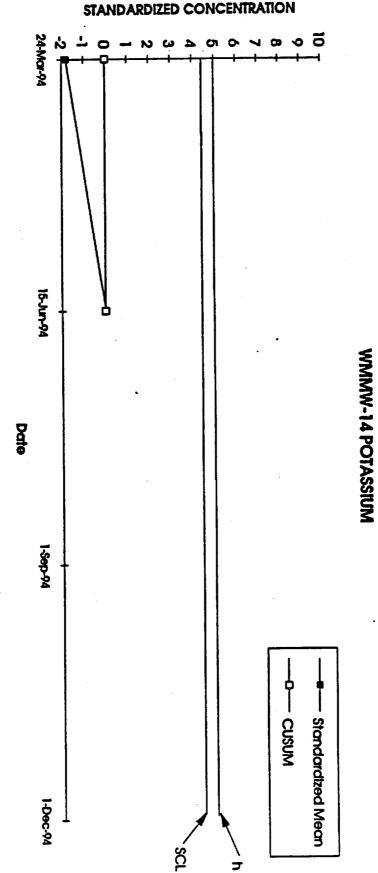
-


COMBINED SHEWHART-CUSUM CHART


-

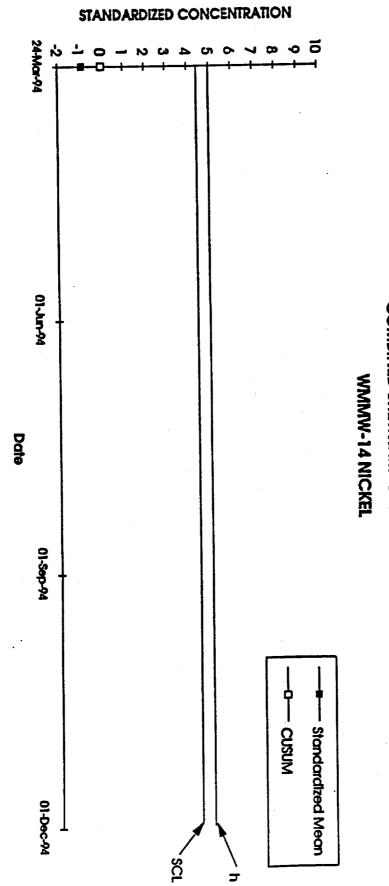


:


-

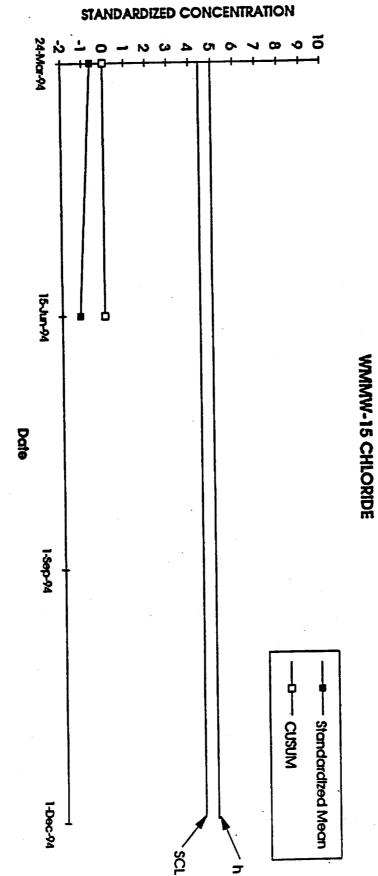





• •

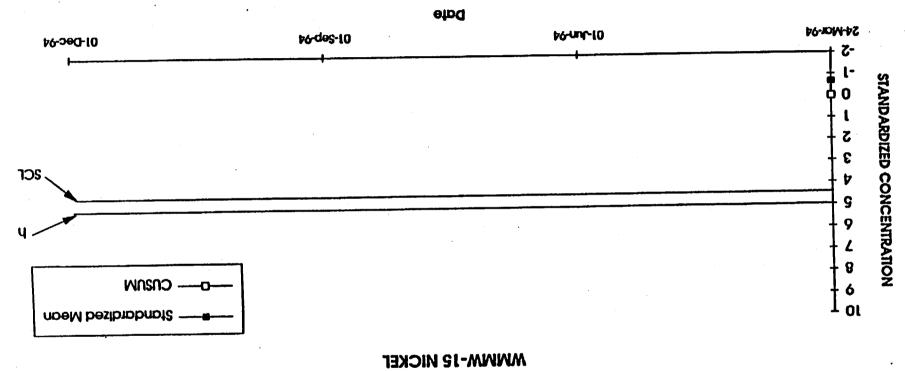
-




STANDARDIZED CONCENTRATION

- ]+

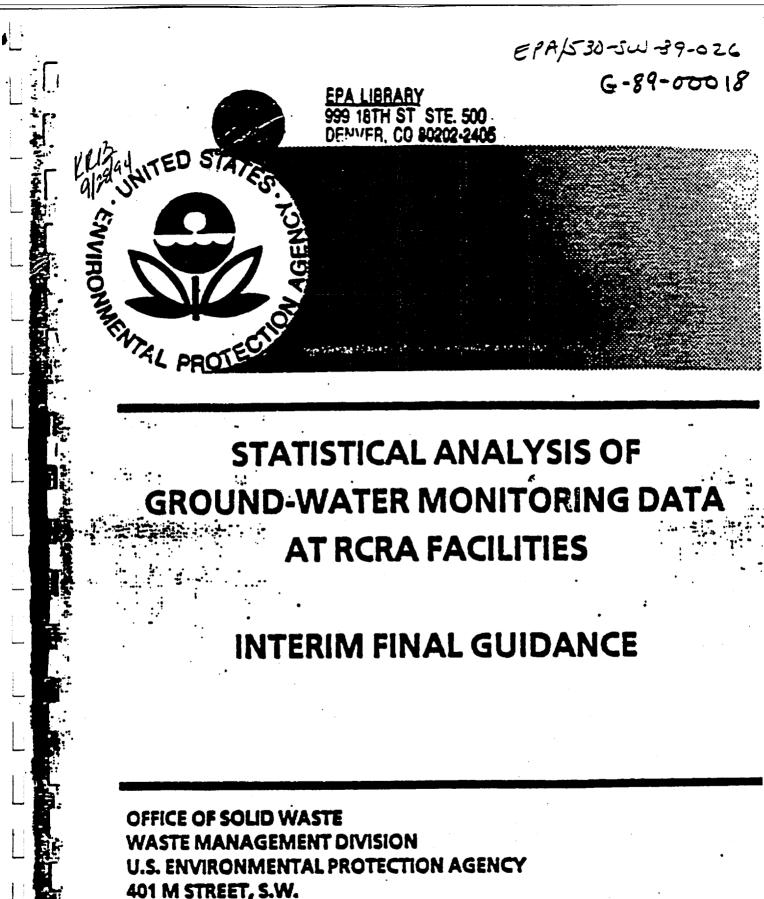



.

-






•



4

. .**f**. -----

COMBINED SHEWHART-CUSUM CHART



WASHINGTON, D.C. 20460

**APRIL 1989** 

Step 3. Within each month and year, subtract the average monthly concentration for that month and add the grand mean. For example, for January 1983, the adjusted concentration becomes

1.99 - 2.05 + 2.17 = 2.11

The adjusted concentrations are shown in the last three columns of Table 7-1.

. The reader can check that the average of all 36 adjusted concentrations equals 2.17, the average unadjusted concentration. Figure 7-1 shows the plot of the unadjusted and adjusted data. The raw data clearly exhibit seasonality as well as an upwards trend which is less evident by simply looking at the data table.

INTERPRETATION

£.;

-----

As can be seen in Figure 7-1, seasonal effects were present in the data. After adjusting for monthly effects, the seasonality was removed as can be seen in the adjusted data plotted in the same figure.

7.3 COMBINED SHEWHART-CUSUM CONTROL CHARTS FOR EACH WELL AND CONSTITUENT

Control charts are widely used as a statistical tool in industry as well as research and development laboratories. The concept of control charts is relatively simple, which makes them attractive to use. From the population distribution of a given variable, such as concentrations of a given constit-distribution of a given variable, such as concentrations of a given constit-uent, repeated random samples are taken at intervals over time. Statistics, for example the mean of replicate values at a point in time, are computed and plotted together with upper and/or lower predetermined limits on a chart where the x-axis represents time. If a result falls outside these boundaries, then the process is declared to be "out of control"; otherwise, the process is " the process is declared to be "out of control"; otherwise, the process is " declared to be "in control." The widespread use of control charts is due to their ease of construction and the fact that they can provide a quick visual evaluation of a situation, and remedial action can be taken, if necessary.

In the context of ground water monitoring, control charts can be used to monitor the inherent statistical variation of the data collected within a single well, and to flag anomalous results. Further investigation of data points lying outside the established boundaries will be necessary before any direct action is taken.

A control chart that can be used on a real time basis must be constructed from a data set large enough to characterize the behavior of a specific well. It is recommended that data from a minimum of eight samples within a year be collected for each constituent at each well to permit an evaluation of the consistency of monitoring results with the current concept of the hydrogeology of the site. Starks (1988) recommends a minimum of four sampling periods at a unit with eight or more wells and a minimum of eight sampling periods at a unit with less than four wells. Once the control chart for the specific constituent at a given well is acceptable, then subsequent data

7-5

points can be plotted on it to provide a quick evaluation as to whether the process is in control.

The standard assumptions in the use of control charts are that the data generated by the process, when it is in control, are independently (see Section 2.4.2) and normally distributed with a fixed mean a and constant variance gr. The most important assumption is that of independence; control charts are not robust with respect to departure from independence (e.g., serial correlation, see glossary). In general, the sampling scheme will be such that the possibility of obtaining serially correlated results is minimized, as noted in The assumption of normality is of somewhat less concern, but Section 2. should be investigated before plotting the charts. A transformation (e.g., log-transform, square root transform) can be applied to the raw data so as to obtain errors normally distributed about the mean. An additional situation which may decrease the effectiveness of control charts is seasonality in the data. The problem of seasonality can be handled by removing the seasonality effect from the data, provided that sufficient data to cover at least two seasons of the same type are available (e.g., 2 years when monthly or quarterly seasonal effect). A procedure to correct a time series for seasonality was shown above in Section 7.2. 

## PURPOSE

33C

13

Combined Shewhart-cumulative sum (CUSUM) control charts are constructed for each constituent at each well to provide a visual tool of detecting both trends and abrupt changes in concentration levels. بنمة فحمة ولينه المعاد والمعاد والمعاد

Assume that data from at least eight independent samples of monitoring are available to provide reliable estimates of the mean, µ, and standard deviation, e, of the constituent's concentration levels in a given well.

To construct a combined Shewhart-CUSUM chart, three parameters Step 1. need to be salected prior to plotting:

211

• 3 • • **4** • • • The a decision internal value

k - a reference value

SCL - Shewhart control limit (denoted by U in Starks (1988))

The parameter k of the CUSUM scheme is directly obtained from the value, D, of the displacement that should be quickly detected; k = D/2. It is recommended to select k = 1, which will allow a displacement of two standard deviations to be detected quickly.

When k is selected to be 1, the parameter h is usually set at values of 4 or 5. The parameter h is the value against which the cumulative sum in the CUSUM scheme will be compared. In the context of groundwater monitoring, a value of h = 5 is recommended (Starks, 1988; Lucas, 1982).

The upper Shewhart limit is set at SCL = 4.5 in units of standard deviation. This combination of k = 1, h = 5, and SCL = 4.5 was found most appropriate for the application of combined Shewhart-CUSUM charts for groundwater monitoring (Starks, 1988).

Step 2. Assume that at time period  $T_1$ ,  $n_1$  concentration measurements  $X_1$ , ...,  $X_{n1}$ , are available. Compute their average  $X_1$ .

Step 3. Calculate the standardized mean

$$Z_{i} = (\overline{X}_{i} - \mu) \sqrt{n_{i}}/\sigma$$

4.5 = X-ju

VH. S+4= X-45

where  $\mu$  and  $\sigma$  are the mean and standard deviation obtained from prior monitoring at the same well (at least four sampling periods in a year).

Step 4. At each time period, T₁, compute the cumulative sum, S₁, as:  $z = z_{1} + z_{2}$   $S_{1} = max \{0, (Z_{1} - k) + S_{1-1}\}$ 3204119

where max  $\{A, B\}$  is the maximum of A and B, starting with S. O. entened design of Step 5. Plot the values of S₁ versus T₁ on a time chart for this com-bined Shewhart-CUSUM scheme. Declare an "out-of-control" situation at sam-pling period T₁ if for the first time, S₁ ≥ h or Z₁ ≥ SCL. This will indicate probable contamination at the well and further investigations will be necessary. 1 . . . . . <u>1</u> . . . .

N. . . . REFERENCES 

Lucas, J. H., 1982. "Combined Shewhart-CUSUM Quality Control Schemes." Journal of Quality Technology. Vol. 14, pp. 51-59.

Starks, T. H. 1988 (Draft). "Evaluation of Control Chart Hethodologies for RCRA Waste Sites."

Hockman, K. K., and J. M. Lucas. 1987. "Variability Reduction Through Subvessel CUSUM Control." Journal of Quality Technology. Vol. 19, pp. 113-121.

## EXAMPLE

The procedure is demonstrated on a set of carbon tetrachloride measurements taken monthly at a compliance well over a 1-year period. The monthly means of two measurements each  $(n_1 = 2 \text{ for all i's})$  are presented in the third column of Table 7-2 below. Estimates of µ and c, the mean and standard deviation of carbon tetrachloride measurements at that particular well were obtained from a preceding monitoring period at that well;  $\mu = 5.5 \ \mu g/L$  and  $\sigma = 0.4 \text{ ug/L}.$ 

9125194 Sampling Mean concentration. Standardized X4. CUSUM. period Z₁ - k '*X4 Zł. 51 Date Τſ 0.07 -0.93 5.52 0 1 Jan 6 0.35 -0.65 0 2 5.60 ·Feb 3 5.45 -0.18 -1.18 0 3 Mar 3 -1.24 -2.24 0 ·5.15 · Apr 7 1.59 0.59 5 : 5.95 0.59 :May 5 6 0.14 -0.86 0.00 5.54 Jun 2 7 5.49 -0.04 -1.04 0.00 Ju1 7 2.05 1.05 6.08 1.05 Aug 4 8 4.99ª 3.99 5.04 6.91-Sep 1 8.56^b ,53ª 3.53 6.78 4. 10 : Oct 6 11.84^b 4.28 3.28 11 🗧 6.71 Nov 3 14.910 4.07 3.07 fDec 1 12 6.65 • • ، نیاب 🖞 12.1 1. inter 1 Parameters: , Mean = 5.50; std = 0.4; k = 1; h = 5; SCL = 4.5. Indicates "out-of-control" process via Shewhart control limit ( $Z_1 > 4.5$ ). 2 2 **3** 4 - 4. **A**+ "bo CUSUM "out-of-control" signal (S1 > 5). 10.01 18: nne Step Shewhart-CUSUM chart ware selected as h = 5; k = 1; SCL = 4.5 in units of standard deviation. "Step 2. The monthly means are presented in the third column of Table 7-2. 1. 80 gt 7.7 "Step 3. Standardize the means within each sampling period. These computations are shown in the fourth column of Table 7-2. For example,  $Z_1 = (5.52 - 5.50) + 12/0.4 = 0.07.$ Step 4. Compute the quantities  $S_1$ , i = 1, ..., 12. For example,  $S_1 = \max \{0, -0.93 + 0\} = 0$  $S_2 = \max \{0, -0.65 + 0\} = 0$ '!e*  $S_s = max \{0, 0.59 + S_s\}$  $= \max \{0, 0.59 + 0\} = 0.59$  $S_{g} = \max \{0, -0.86 + S_{g}\} = \max \{0, -0.86 + 0.59\} = \max \{0, -0.27\} = 0$ etc.

TABLE 7-2. EXAMPLE DATA FOR COMBINED SHEWHART-CUSUM CHART--CARBON TETRACHLORIDE CONCENTRATION (ug/L)

:::::

5

162

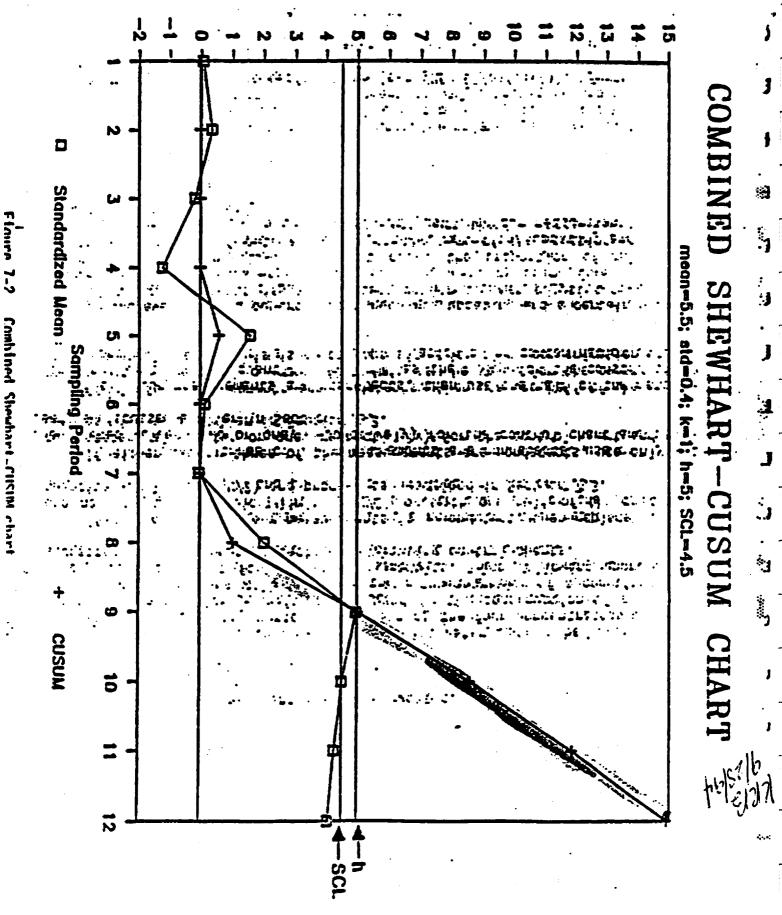
### These quantities are shown in the last column of Table 7-2.

Step 5. Construct the control chart. The y-axis is in units of standard deviations. The x-axis represent time, or the sampling periods. For each sampling period,  $T_{i}$ , record the value of  $X_{i}$  and  $S_{i}$ . Draw horizontal lines at values h = 5 and SCL = 4.5. These two lines represent the upper control limits for the CUSUM scheme and the Shewhart control limit, respectively. The chart for this example data set is shown in Figure 7-2.

The combined chart indicates statistically significant evidence of contamination starting at sampling period  $T_9$ . Both the CUSUM scheme and the Shewhart control limit were exceeded by  $S_9$  and  $Z_9$ , respectively. Investigation of the situation should begin to confirm contamination and action should be required to bring the variability of the data back to its previous level.

## INTERPRETATION

с 😳


d The combined Shewhart-CUSUM control scheme was applied to an example data set of carbon tetrachloride measurements taken on a monthly basis at a well. The statistic used in the construction of the chart was the mean of two measurements per sampling period. (It should be noted that this method can be used on an individual measurement as well, in which case  $n_f = 1$ ). Estimates of the mean and standard deviation of the measurements were available from previous data collected at that well over at least four sampling periods.

-(-7. The parameters of the combined chart were selected to be k = 1 unit, the reference value or allowable slack for the process; h = 5 units, the decision interval for the CUSUM scheme; and SCL = 4.5 units, the upper Shewhart control limit. All parameters are in units of  $\sigma_s$  the standard deviation obtained from the previous monitoring results. Various combinations of parameter values can be selected. The particular values recommended here appear to be the best for the initial use of the procedure from a review of the simulations and recommendations in the references. A discussion on this subject is given by Lucas (1982), Hockman and Lucas (1987), and Starks (1988). The choice of the param-eters h and k of a CUSUM chart is based on the desired performance of the chart. The criterion used to evaluate a control scheme is the average number of samples or time periods before an out-of-control signal is obtained. This criterion is denoted by ARL or average run length. The ARL should be large when the mean concentration of a hazardous constituent is near its target value and small when the mean has shifted too far from the target. Tables have been developed by simulation methods to estimate ARLs for given combinations of the parameters (Lucas, Hockman and Lucas, and Starks). The user is referred to these articles for further reading.

7.4 UPDATE OF A CONTROL CHART

The control chart is based on preselected performance parameters as well as on estimates of  $\mu$  and  $\sigma$ , the parameters of the distribution of the measurements in question. As monitoring continues and the process is found to be in control, these parameters need periodic updating so as to incorporate this new information into the control charts. Starks (1988) has suggested that in

11-2 **Concentration in Standardized Units** 



Combined Shewhart_ClistM_chart

÷

:

general, adjustments in sample means and standard deviations be made after sampling periods 4, 8, 12, 20, and 32, following the initial monitoring period recommended to be at least eight sampling periods. Also, the performance parameters h, k, and SCL would need to be updated. The author suggests that h = 5, k = 1, and SCL = 4.5 be kept at those values for the first 12 sampling periods following the initial monitoring plan, and that k be reduced to 0.75 and SCL to 4.0 for all subsequent sampling periods. These values and sampling period numbers are not mandatory. In the event of an out-of-control state or a trend, the control chart should not be updated.

7.5 NONDETECTS IN A CONTROL CHART

A.W.

.J. m.J.; churt.

Lond Ined

~~~

- Regulations require that four independent water samples be taken at each well at a given sampling period. The mean of the four concentration measurements of a particular constituent is used in the construction of a control chart. Now situations will arise when the concentration of a constituent is below detection limit for one or more samples. The following approach is suggested for treating nondetects when plotting control charts.

o 191. 110 - J - natherol 2 h o 191.200 - J - natherol 2 o 191.200 - J - natherol 2 o 2 If only one of the four measurements is a nondetect, then replace it with one half of the detection limit (MDL/2) or with one half of the practical quantitation limit (PQL/2) and proceed as described in Section 7.3.

= If either two or three of the measurements are nondetects, use only the quantitated values (two or one, respectively) for the control chart and proceed as discussed earlier in Section 7.3.

 \pm If all four measurements are nondetects, then use one half of the detection limit or practical quantitation limit as the value for the construction of the control chart. This is an obvious situation of no contamination of the vell. -- 5

--- In the event that a control chart requires updating and a certain proportion of the measurements is below detection limit, then adjust the mean and standard deviation necessary for the control chart by using Cohen's method described in Section 8.1.4. In that case, the proportion of nondetects. described in Section 8.1.4. In that case, the proportion or nondetects applies to the pool of data available at the time of the updating and would include all nondetects up to that time, not just the four measurements taken at the last sampling period.

CAUTIONARY NOTE: Control charts are a useful supplement to other statistical techniques because they are graphical and simple to use. However, it is inappropriate to construct a control chart on wells that have shown evidence of contamination or an increasing trend (see §264.97(a)(1)(i)). Further, contamination may not be present in a well in the form of a steadily increasing concentration profile -- it may be present intermittently or may increase in a step function. Therefore, the absence of an increasing trend does not necessarily prove that a release has not occurred.

TABLE 1

| I CELL2LOS | | FLY ASH POND | | | | |
|--|---|--|--|--|--|---|
| | Blind | Upper | Lower | Previous | | Olaada |
| CZLDS | | Pool | Pool | | | Blank |
| and the second sec | | 391 | 279 | and the second s | | ND |
| | the second se | 0.05 | 0.04 | | the second se | ND |
| | | 72 | 9.6 | | and the second se | 0.03 |
| | and the second se | the second se | 0.23 | 0.005 | | ND |
| | | the second se | ND | 0.002 | 0.005 | ND |
| | and the second se | | | 1.4 | 14 | ND |
| | | | the second se | 0.06 | 1.1 | ND - |
| | | | | | 1.0E-05 | NO |
| | the second se | | | | 165 | ND |
| Sector Statements | and the second se | | | | 50 | ND |
| | | | | | and the second sec | ND |
| | and the second se | | | the second se | | 0.2 |
| Concernment of the local division of the loc | | | | and the second se | | ND |
| | and the second se | | | | | ND |
| | | | and the second sec | | and the second sec | ND |
| | | | | and the second se | | ND |
| | | | | And the second se | | ND |
| | A second s | | in the same second s | Name and Address of the Owner, which the | And the second sec | ND |
| | the second se | | the second se | and the second sec | | ND |
| ND | the second se | the second se | | | the second se | Feb-91 |
| Feb-91 | Feb-91 | Feb-91 | 1-6091 | 1 ud-90 | 100-01 | 100-01 |
| | C2LDS
34
0.02
2.6
ND
ND
22
0.04
1.2E-08
0.03
ND
ND
ND
1.2E
0.03
ND
ND
ND
1.79
ND
179
ND
150
765
ND | C2LDS Duplicate 34 36 0.02 0.02 2.6 3.3 ND ND ND ND ND ND ND ND 1.22 2.5 0.04 0.05 1.2E-08 1.0E-08 0.03 0.03 ND ND ND ND ND ND ND ND ND ND ND ND 179 180 ND ND ND ND 179 180 ND ND ND ND <td>Bind Upper G2LDS Duplicate Pool 34 36 391 0.02 0.02 0.05 2.6 3.3 7.2 ND ND 0.028 ND ND 0.05 2.2 2.5 1.1 0.04 0.05 0.05 1.2E-08 1.0E-08 2.6E-07 0.03 0.03 9.7 ND ND ND ND ND ND ND ND ND 3.8 3.92 2.52 ND ND 134 ND ND 134 ND ND 0.1 150 159 654 765 770 1514 ND ND ND <</td> <td>Blind Upper Lower G2LDS Duplicate Fool Pool 34 36 391 279 0.02 0.02 0.02 0.04 2.6 3.3 7.2 9.6 ND ND 0.028 0.23 ND ND 0.028 0.23 ND ND ND ND 2.2 2.5 1.1 2.1 0.04 0.05 0.05 0.04 1.2E-08 1.0E-08 2.6E-07 2.7E-07 0.03 0.03 9.7 11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 134 74 ND ND ND ND ND ND ND ND ND ND 0.1 0.3 <td>Blind Upper Lower Previous C2LDS Duplicate Pool Pool Sample 34 36 391 279 570 0.02 0.02 0.05 0.04 3.8 2.6 3.3 7.2 9.6 2.3 ND ND 0.028 0.23 0.005 ND ND ND ND 0.002 1.22 2.5 1.1 2.1 1.4 0.04 0.05 0.05 0.04 0.08 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND ND ND ND ND 1.0E-07 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND</td><td>Blind Upper Lower Previous Simes C2LDS Duplicate Pool Sample Drain 34 36 391 279 570 2345 0.02 0.02 0.05 0.04 3.8 72 2.6 3.3 7.2 9.8 23 251 ND ND 0.028 0.23 0.005 0.044 ND ND 0.028 0.23 0.005 0.044 ND ND ND 0.002 0.005 22 2.5 1.1 2.1 1.4 14 0.04 0.05 0.05 0.04 0.06 1.1 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 1.0E-05 0.03 0.03 9.7 11 0.43 165 ND ND ND ND ND ND ND ND ND ND ND ND</td></td> | Bind Upper G2LDS Duplicate Pool 34 36 391 0.02 0.02 0.05 2.6 3.3 7.2 ND ND 0.028 ND ND 0.05 2.2 2.5 1.1 0.04 0.05 0.05 1.2E-08 1.0E-08 2.6E-07 0.03 0.03 9.7 ND ND ND ND ND ND ND ND ND 3.8 3.92 2.52 ND ND 134 ND ND 134 ND ND 0.1 150 159 654 765 770 1514 ND ND ND < | Blind Upper Lower G2LDS Duplicate Fool Pool 34 36 391 279 0.02 0.02 0.02 0.04 2.6 3.3 7.2 9.6 ND ND 0.028 0.23 ND ND 0.028 0.23 ND ND ND ND 2.2 2.5 1.1 2.1 0.04 0.05 0.05 0.04 1.2E-08 1.0E-08 2.6E-07 2.7E-07 0.03 0.03 9.7 11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 134 74 ND ND ND ND ND ND ND ND ND ND 0.1 0.3 <td>Blind Upper Lower Previous C2LDS Duplicate Pool Pool Sample 34 36 391 279 570 0.02 0.02 0.05 0.04 3.8 2.6 3.3 7.2 9.6 2.3 ND ND 0.028 0.23 0.005 ND ND ND ND 0.002 1.22 2.5 1.1 2.1 1.4 0.04 0.05 0.05 0.04 0.08 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND ND ND ND ND 1.0E-07 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND</td> <td>Blind Upper Lower Previous Simes C2LDS Duplicate Pool Sample Drain 34 36 391 279 570 2345 0.02 0.02 0.05 0.04 3.8 72 2.6 3.3 7.2 9.8 23 251 ND ND 0.028 0.23 0.005 0.044 ND ND 0.028 0.23 0.005 0.044 ND ND ND 0.002 0.005 22 2.5 1.1 2.1 1.4 14 0.04 0.05 0.05 0.04 0.06 1.1 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 1.0E-05 0.03 0.03 9.7 11 0.43 165 ND ND ND ND ND ND ND ND ND ND ND ND</td> | Blind Upper Lower Previous C2LDS Duplicate Pool Pool Sample 34 36 391 279 570 0.02 0.02 0.05 0.04 3.8 2.6 3.3 7.2 9.6 2.3 ND ND 0.028 0.23 0.005 ND ND ND ND 0.002 1.22 2.5 1.1 2.1 1.4 0.04 0.05 0.05 0.04 0.08 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND ND ND ND ND 1.0E-07 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 0.03 0.03 9.7 11 0.43 ND ND ND ND ND | Blind Upper Lower Previous Simes C2LDS Duplicate Pool Sample Drain 34 36 391 279 570 2345 0.02 0.02 0.05 0.04 3.8 72 2.6 3.3 7.2 9.8 23 251 ND ND 0.028 0.23 0.005 0.044 ND ND 0.028 0.23 0.005 0.044 ND ND ND 0.002 0.005 22 2.5 1.1 2.1 1.4 14 0.04 0.05 0.05 0.04 0.06 1.1 1.2E-08 1.0E-08 2.6E-07 2.7E-07 1.0E-07 1.0E-05 0.03 0.03 9.7 11 0.43 165 ND ND ND ND ND ND ND ND ND ND ND ND |

3222431973

mg/l = miligrams per liter pG/l = picoCurles per liter mmg/l = micrograms per liter ND = not detected NS = not sampled

Note: The blank sample is obtained by flushing the sampling equipment with defonized water. After 10 to 20 minutes of flushing, fresh defonized water is pumped through the equipment and sampled.

PAGE. 002

3032431973

PAGE.003

•

[

.....

ľ

| | i cel | L2LDS | | FLY ASH PO | • | | |
|----------------------------------|-------|-----------|-------|------------|----------|--------|-----------|
| | | Blind | Upper | LOWER | Previous | Slimes | |
| Parameter | C2LDS | Duplicate | Pool | Pool | Sample | Drain | Blank |
| Gross Alpha, pCUI | 4.50 | 7.00 | 260 | 250 | 230 | 14000 | 0.0 |
| Gross Beta, pCi/ | 4.70 | 3.60 | 130 | 130 | 140 | 6200 | 1.0 |
| Ra-226, pCi/l | 1.70 | 1.40 | · 0.7 | 3.4 | 53 | 40 | 0,0 |
| Ra-228, pCI/I | 1,50 | 1.60 | 1.0 | 0.7 | 1.8 | 1.9 | 1.4 |
| Th-230, pCM | 0.00 | 0.00 | 24 | 2.9 | | 3650 | 0.5 |
| acetone, mmg/l | ND | ND | ND | ND | NS | 513.61 | NO |
| 2-butenone, mmg/l | ND | • ND | ND | ND | NS | 15.13 | ND |
| chioroform, mmg/l | ND | ND | ND | ND | NS | 18.84 | ND |
| toluene, mmg/l | ND | ND | ND | ND | NS | 625 | ND |
| di-n-buly pthalate, mmg/l | ND | ND | 1.3 | ND | NS | 1.08 | ND |
| hucranthene, mmg/l | ND | ND | 1.15 | ND | NS | ND | ND |
| chrysene, mmg/f | ND- | ND | 1.73 | ND | NS | ND | ND |
| bist2-ethylnexylipthalate; mmg/l | ND | ND | 1.79 | 12 | NS | 1.13 | ND |
| benzo(a)pyrene, mmg/l | ND | ND | 1.78 | ND | NS | ND | <u>ND</u> |
| phenol, mmg/l | ND · | ND | NÐ | ND | NS | 38.4 | ND |
| napthalene, mmg/l | ND | · ND | ND | ND | NS | .2.44 | ND · |
| dimethyl pthalate, mmg/l | ND. | ND | ND | ND . | NS | 2.70 | ND |
| dicthyl pinalate, mmg/l | ND · | ND | ND | ND | NS | 18.10 | ND |
| AL mg/l | 0.08 | 0.06 | 0.46 | 0.33 | 1.8 | 2450 | 0.01 |
| As, mg/l | 0.004 | 0.004 | 0.24 | 0.43 | 0.092 | 0.26 | 0.002 |
| Ba, mg/i | 0.10 | 0.10 | 0.03 | 0.04 | 0.10 | ND · | ND |
| B, mg/l | 0.1 | 0.1 | 0.3 | 0.3 | 02 | 3.5 | ND |
| Ca, mg/l 🛛 🖞 | 108 | 110 | 72 | 112 | 81 | 474 | ND |
| Cd, mg/l | 0.001 | 0.002 | 0.002 | 0.002 | 0.066 | 4.2 | 0.001 |
| Cr, mg/i | 0.006 | 0.005 | 0.002 | 0.003 | 0.006 | 1.0 | ND |
| Co, mg/i | ND | ND | ND | ND | 1.0 | 14 | ND |
| Cu, mg/l | ND | ND | ND | ND | 20 | 177 | ND |
| Pb, mg/l | 0.008 | 0.005 | 0.007 | 0.025 | 0.062 | 0.21 | ND |
| Mg, mg/ + | হা | 52 | 23 | 35 | 121 | 2450 | ND |
| Mn, mg/i | 4.1 | 4.1 | ND | ND | 23 | 128 | ND |
| Ma, mg/l | 0.030 | 0.030 | 1.6 | 28 | 0.49 | 0.44 | ND |

TABLE 1

· [

1

.•.

{ \_\_\_\_\_

[

Sept. 1991

ſ\_\_\_\_,

{

Ľ

1

ç

ATTACHMENT 12

ENVIRONMENTAL ASSESSMENT FOR RENEWAL OF SOURCE MATERIAL LICENSE NO. SUA-1358

ENERGY FUELS NUCLEAR, INC. WHITE MESA URANIUM MILL SAN JUAN COUNTY, UTAH

FEBRUARY 1997

DOCKET NO. 40-8681

U.S. Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards Division of Waste Management The requirements were incorporated into SUA-1358 when initially issued. The requirements have been modified following subsequent amendments to the MOA. The most recent modifications were incorporated into SUA-1358 through the issuance of a license amendment on May 11, 1983. These requirements will be included in the renewed license.

The licensee will also be required to conduct, as a minimum, an archaeological and historical artifact survey of areas not previously surveyed prior to their disturbance.

4.4 Impacts to Water Resources

4.4.1 Surface Water Impacts

Continued operation of the mill should have negligible impacts on surface waters on and in the vicinity of the project site, because (1) mill effluents are not discharged to local surface waters; (2) sanitary wastes are discharged to State-approved leach fields; and (3) tailings from mill operations are discharged by pipeline to partially below-grade, lined impoundments. In addition, 3s noted above, EFN has committed to regular inspections of the tailings disposal system, including disposal cell embankments.

4.4.2 Groundwater Impacts

For the following reasons, the NRC staff does not believe that groundwater beneath or in the vicinity of the site will be adversely impacted by continued operation of the mill:

1. Four tailings cell have been constructed to accept tailings slurry and solutions and other approved wastes. Each of the cells has been designed and constructed to minimize seepage of tailings fluids into the subsurface. Cells 1-I, 2, and 3 have a 6-inch compacted sandstone bedding layer, an overlying synthetic liner, and a leak detection system consisting of: (1) a 12-inch thick compacted sand layer on the upstream face of the downstream retention dike, (2) a 3-inch diameter perforated pipe installed at the toe of the sand layer, and connecting to (3) a 12-inch diameter access riser pipe.

Cell 4A is constructed with a 12-inch thick clay base layer overlain by a synthetic liner covering both the bottom and side slopes of the cell. A leak detection system is located beneath the synthetic liner. This system is composed of 4-inch perforated pipes embedded in granular materials in synthetically-lined trenches excavated into the clay base. These pipes are connected in turn to a 12-inch diameter access pipe.

As part of EFN's inspection procedures for the tailings management system, daily measurements are taken of liquid levels in the leak detection system for each cell. If specific changes in these levels are recorded, site management is notified immediately. Quarterly sampling of a number of monitor wells completed in the Burro Canyon perched water zone and located around and among the tailings cells, is also required by EFN's inspection procedures. Further discussion of the licensee's groundwater detection monitoring program is provided in Section 4.6.1.

15

- Based on estimates of net infiltration and volumetric moisture content of the vadose zone (i.e., the unsaturated portions of the Dakota and Burro Canyon Sandstones) and an average thickness of the vadose zone, EFN estimates that it would take 50 to 150 years for moisture to travel from the bottom of a tailings disposal cell to the perched water zone, depending on the extent of failure of the tailings disposal cell liner (Titan, 1994). Tailings disposal cell seepage traveling along joints or fractures in the Dakota Sandstone could potentially reduce this travel time to a few days or months. Jointing is common in the Dakota along the mesa's rim; however, coring studies to date have revealed no evidence of continuous fractures or joints with depth. Once in the saturated portion of the Burro Canyon, the travel time for seepage from a tailings impoundment to the downgradient edge of the mesa has been estimated at 8900 to 13,400 years (Titan, 1994b).
- 3. The Morrison and Summerville Formations form an approximately 1200-foot thick low-permeability barrier to ground water flow separating the Entrada/Navajo Aquifer from the Burro Canyon perched zone. The NRC staff considers that this barrier makes it unlikely that constituents from the tailings disposal cells would ever impact water quality of this aquifer.

4.5 Impacts on Ecological Systems

4.5.1 Endangered Species

2.

In the vicinity of the site, four animal species classified as either endangered or threatened (i.e., the bald eagle (*Haliaeetus leucocephalus*), the American peregrine falcon (*Falco peregrinus anatum*), the black-footed ferret (*Mustela nigripes*), and the Southwestern willo *n* flycatcher (*Empidonax traillii extimus*)) could occur. While the ranges of the bald eagle, peregrine falcon, and willow flycatcher encompass the project area, their likelihood of utilizing the site is extremely low. The black-footed ferret has not been seen in Utah since 1952 and is not expected to occur any longer in the area.

No populations of fish are present on the project site, nor are any known to exist in the immediate area of the site. Four species of fish designated as endangered or threatened occur in the San Juan River 29 km (18 miles) south of the site. There are no discharges of mill effluents to surface waters, and therefore, no impacts are expected for the San Juan River due to operations of the White Mesa mill.

Currently, no designated endangered plant species occur on or near the plant site.

4.5.2 Wetlands

No true wetlands exist on the project site. Two small catch basins approximately 18 m (60 feet) in diameter, fill for brief times in the fall or spring if heavy rainfall occurs. These catch basins are the only "aquatic" habitat found on the project site, and they more properly represent terrestrial environments. No wetland plants have been found in these basins.

d. Direct Gamma Exposure

Direct radiation exposure measurements are made quarterly at the four air particulate monitoring stations. The greatest differential between measured exposure rate and background for the same time period since 1989 was 8.6 mR/qtr. However, measured exposure rates are normally at or slightly above cr below background rates.

e. Surface Water Sampling

Surface water monitoring is conducted at two sampling locations, known as Westwater Canyon and Cottonwood Creek, adjacent to the mill. Grab samples are collected annually from Westwater Canyon and quarterly from Cottonwood Creek. The samples are analyzed for total and dissolved U-nat, Ra-226, and Th-230, as well as for pH, specific conductivity, temperature, total dissolved and suspended solids, gross alpha concentrations. Measured values for these consituents and parameters over the period of mill operations since 1980 have been consistently low.

f. Ground Water Sampling

Groundwater monitoring samples have been collected quarterly from seven monitoring wells and the culinary water well. These samples were analyzed for pH, specific conductance, chlorides, sulfates, TDS, and U-nat, and water level measurements were also taken. Groundwater samples were analyzed semiannually for arsenic, selenium, sodium, Ra-226, Th-230, and Pb-210. No trends are apparent from measurements taken since 1985.

With this license renewal, EFN proposed that groundwater detection monitoring be conducted in accordance with the program described in the document entitled, "Points of Compliance, White Mesa Uranium Mill," submitted by letter dated October 5, 1994. Under this program, samples will be collected quarterly from five "point of compliance" (POC) wells, completed in the Burro Canyon Formation (wells WMMW-5, -11, -12, -14, and -15) (see Figure 4.1). These samples will be analyzed for chloride, potassium, and nickel, and water level measurements also will be taken. EFN selected these indicator parameters, because the concentrations of these species are significantly higher in the tailings pond fluid than in the perched water of the Burro Canyon, and they are representative of both anionic and cationic species.

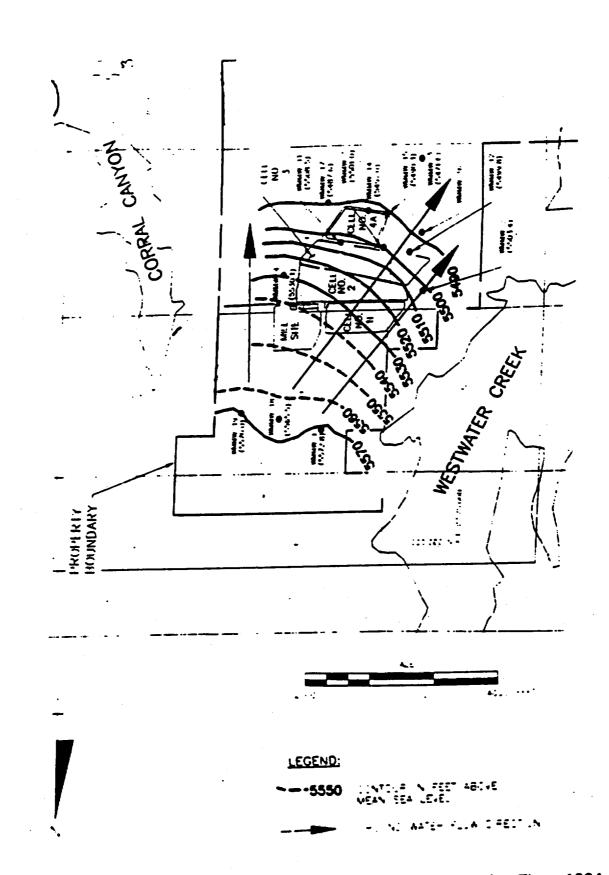
The data will be analyzed using the Shewhart-Cusum control chart technique. These charts have been developed on a well-by-well basis, with a separate control chart for each of the four indicator parameters. If limits on the control charts are exceeded for a parameter at a well, a program of confirmatory sampling will commence. This will involve monthly sampling for six months; a separate analysisof-variance technique will be employed to determine whether there is a significant difference between these samples and those collected prior to the confirmatory sampling program. If the data are significantly different, then a corrective action plan will be developed.

The NRC staff found the proposed groundwater detection monitoring program to be acceptable, with modifications as follows: (1) that well WMMW-17 be included in the sampling program; and (2) that uranium be added as an indicator parameter to be analyzed for. EFN agreed to these modifications in a telephone conversation on December 11, 1996. EFN will be required, by license condition, to conduct its groundwater detection monitoring in accordance with the proposed program, as modified.

Finally, the licensee will continue to be required to (1) analyze liquid found in the leak detection system during weekly inspections for specified constituents; (2) conduct statistical analyses to determine if significant linear trends exist, and (3) propose corrective action for NRC review and approval if such trends do exist.

4.6.2 Radiological Assessment

a. Offsite Impacts


The radiological impacts from milling operations at the White Mesa site have been assessed previously and documented in the FES (NRC, 1979) and the 1985 EA (NRC, 1985a). In the previous EA, the staff analyzed impacts associated with milling at a nominal rate of 2000 tons of ore per day, and an average ore grade of 0.60 percent, for a yellowcake production rate of 4380 tons per year, and determined that both site boundary radionuclide concentrations and individual dose commitments were small fractions of the applicable standards.

As part of its November 22, 1994, amendment request for authorization to install a second dryer, EFN provided updated MILDOS-AREA calculations and results. In approving EFN's request, the NRC staff determined, based on its review of the MILDOS-AREA results, that releases from the mill would not result in a member of the public receiving a radiation dose in excess of the 10 CFR Part 20 limit (i.e., 100 mrem per year).

It should be noted that actual radiation doses to the public will likely be less than modeled, because EFN normally processes lower grade ores, at a rate less than 2000 tons of ore per day.

b. Radiological Impact on Biota Other than Humans

Although no guidelines concerning acceptable limits of radiation exposure have been established for the protection of species other than man, it is generally agreed that the limits for humans are also conservative for other species. Doses from gaseous effluents to terrestrial biota (such as birds and mammals) are quite similar to those calculated for man and arise from the same dispersion pathways and considerations. Because the effluents of the facility will be monitored and

