
International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human-Machine Interface Technologies (NPIC&HMIT
2000), Washington, DC, November, 2000.

From Measures to Reliability1

C. Smidts, M. Li
Reliability Engineering Program, University of Maryland

Marie Mount Hall 2100C, College Park, MD 20742-7531, USA
{csmidts, mli}@eng.umd.edu

R. W. Brill
US Nuclear Regulatory Commission

11545 Rockville Pike, Rockville, MD20852-2738, USA
rwb2@nrc.gov

Keywords: software reliability, software engineering measure, ranking

ABSTRACT

Software-based digital systems are progressively replacing analog systems in
safety-critical applications like nuclear power plants. Although they must satisfy more
stringent reliability requirements than the old analog systems, their behavior is still not well
understood and should be studied thoroughly. In particular it is essential to quantify their
failure behavior through software reliability prediction. Prediction can be performed using
diverse sources of information. One possible source of information is “software
engineering measures”, which address multiple aspects of the software development
process and of the product itself.

Software development organizations typically elect to select a small number of
software engineering measures by which to manage, predict, and assess the quality of their
development processes and products. The question we attempt to address is whether these
measures are suitable for the prediction of software reliability, and if so, to what extent.
This question necessitates assessing both the intrinsic characteristics of the measure (how
good the measure is by itself, the measure’s purpose, how much it costs) as well as its
extrinsic characteristics (how it relates to reliability).

This paper introduces a structural classification scheme that helps in more
objectively assessing the intrinsic and extrinsic characteristics of the measure. A graphical
method is described for the purpose of structural representation. The creation of this
graphical representation is shown to be another valuable tool in the analysis of a software
engineering measure.

1. INTRODUCTION

Software engineering measures2 are essential not only to good software
engineering practice, but also for the thorough understanding of software failure behaviors
and reliability prediction (Fenton,1997). Software engineering measures address multiple
aspects of the software development process and of the product itself. For instance, one

1 The research discussed in this paper was sponsored under a Cooperative Agreement with the US Nuclear
Regulatory Commission. The views expressed in this paper are those of the authors and should not be
construed to reflect the U. S. Nuclear Regulatory Commission position.
2 In the remainder of this paper the word “measure” and the expression “software engineering measures”
will be used interchangeably. Likewise the term “prediction” may be used in place of the expression
“software reliability prediction”.



(2)

finds measures associated with estimation and/or prediction of cost and schedule of
software development, measures involving organizations, staff, number of lines in a
software module, logical complexity of a module, etc.

Software development organizations typically elect to select a small number of
such software engineering measures to manage, predict, and assess the quality of their
development processes and products. The purpose of the research described in this paper
is to determine whether these measures are suitable for the prediction of software
reliability, and if so, to what extent. In other words, can these measures be used as
reliability predictors?

The scientific literature reveals that limited research efforts have been undertaken
to answer this question (Rome Lab., 1992), (Khoshgoftaar, 1990), (Lawrence, 1998),
(Evanco, 1999), (Smidts, 1998), (Stutzke, 1998). However, the research has not yet
reached maturity and more research is definitely required (Lyu, 1995). The research
presented in this paper builds on these prior efforts.

To assess whether a software engineering measure can serve as a reliability
predictor it is necessary to assess both the intrinsic characteristics of the measure (how
good the measure is in itself, the measure’s purpose, how much it costs) as well as its
extrinsic characteristics (how it relates to reliability). In this paper, a structural
classification scheme is introduced. Classification of a measure is an important step in the
analysis of a measure because it helps in more objectively assessing the intrinsic and
extrinsic characteristics of the measure and also because it helps better understand the
relationships that may exist between various measures. The paper begins with the
definition and explanation of the structural classification (Section 2). Deriving the
particular structural class to which a measure belongs involves an analysis process leading
to a graphical representation of the structure of the measure (Section 3). The “Gaffney
estimate of the bugs per Line of Code” is given as an example. Section 4 provides an
extended structural representation that bridges the gap between a measure and reliability.

2. Structural Classification

As noted above, software reliability is defined by: the development environment,
the operational environment and the development processes. Software engineering
measures quantify diverse aspects of these processes. Therefore an accurate and reliable
software reliability prediction necessitates the thorough understanding of software
engineering measures.

Not all measures will play an identical role in predicting software reliability or
provide the same amount of information about processes and product. For instance, the
measure LOC3 assesses the physical size of the code, and the measure “Failure Rate”
estimates the failure rate of the software. Obviously the measure “Failure Rate” is a much
better reliability indicator than LOC and contains more information about the failure
behavior of the software product than LOC.

3 LOC stands for “Line of Code”.



(3)

Hence a mechanism needs to be devised to determine how close a measure is to
reliability, how rich the measure is in terms of product/process information, how
repeatable and well defined the measure is, how costly the measure is, to define if two
measures are dependent on each other (i.e. share information content) and to determine
the path between the measure and reliability. The structural classification is designed for
this purpose.

The notion of structural classification is inspired from Emam and Card’s
information model in (Emam, 1999) that defines the increasing structural levels of
measures. Structural classification establishes the relative position of a software
engineering measure on a scale that goes from physical reality to an indicator used for
decision-making, namely reliability. The classification helps evaluate the “conceptual
distance” between the measure and the indicator. The classification also attempts to
characterize the transformations used to derive the measure. Fig. 1 shows the structure of

this classification. A detailed
explanation of the terminology
used is given below.

Definitions

The classification uses
the following seven terms:
indicators, derived measures,
primitive measures, software
attributes, models, algorithms
and rules. Each term is
defined in turn in the
remainder of this section.

Indicators are
estimates or evaluations that
provide a basis for decision-
making. In this particular
study, reliability is deemed an
appropriate indicator for
decision making. Measures
structurally less complex than

reliability, and which when combined with other measures or parameters, can yield
reliability estimates are deemed unfit to be indicators.

Derived measuresare any intermediate values which are neither indicators nor
primitive measures.

Primitive measuresare values resulting from the application of rules to software
attributes.

4 Reliability is defined as the probability of successfully performing the safety function on demand with
no unintended functions that might affect safety.

Fig. 1 Structural Representation of a Measure



(4)

Software attributesare properties of the software. Software attributes are not
measures and hence do not constitute a structural level in the measurement framework.
But they are needed to ascertain the source of the data, i.e. requirements documents or
code as well as the type of data, for example, failures.

To go from one structural level5 to another, the concepts of models, algorithms
and rules are needed. Models, rules, and algorithms are typically simple transformations
which allow the combination of several lower level measures to create a hierarchically
higher measure.

Models are procedures for combining measures to produce an estimate or
evaluation based on a series of assumptions. Each assumption is an idealization of reality.
The procedure is logically deduced from the assumptions.

An Algorithm is a straightforward procedure for combining two or more measures.
The output of the algorithm represents one or more characteristics of the software product
under study.

A Rule is a mapping of the attribute to a subset of the field of real or integer
numbers.

3. Structural Representation and Analysis

The analysis of a measure’s description such as, for instance, a description
abstracted from (IEEE, 1988) can help identify the structural level to which a measure
belongs. As support to such analysis, the representation given in Fig. 1 can be used. An
illustration of this graphical technique on the “Gaffney Estimate of Bugs per Line of
Code” is given in Fig. 2.

The Gaffney estimate of bugs per line of code is meant to give a crude estimate of
the number of faults per lines of code. The estimate is based on code size. More
specifically, if there areN modules in a program, one estimates the number of faults,Fi, in
each of theN modules using the following formulaFi = 4.2 + 0.0015 Si

4/3. The number of
faults in the complete program F can be estimated as the sum of allFi’s. The formula used
to derive Fi is clearly an empirical model (a correlation) based on a series of non
documented assumptions. A question which the analysis of the measure and, in particular,
the nature of the mathematical transformations (i.e., model) used to obtain the bug per line
of code estimate raises, is the question of validity: how well validated is the model, what is
its range of applicability, etc.

5 A structural level is any of the following: software attribute, primitive measure, derived measure or
indicator.



(5)

To obtainFi , the measure “Si”, number of executable source statements in the
modulei, is required. In this case “Si” is measured directly from the existing code in the
module i. In other words, “Si” is a primitive measure directly related to a physical entity
through a rule. The rule explains how the line count should be made. The physical entity in
question, or software attribute, is the size of the existing code. Since multiple approaches
for line count have been documented in the software engineering literature, multiple
interpretations of the rule can thus occur. This of course may present a problem: different
companies may use different interpretations of the rule and if one does not pay attention to
this particular issue, incorrect conclusions can be drawn. This concern is highlighted in the
structural representation and constitutes a part of the analysis which can be made during

the construction of
the structural
representation.
The same
discussion applies
to the second
attribute, namely,
the number of
modules in the
code.

In
conclusion, the
structural analysis
determines
whether a measure
is a primitive
measure, a derived
measure or an
indicator. Such
classification
provides a
preliminary
assessment of a
“conceptual
distance” between
the measure and
the indicator. The
structural analysis
also determines
whether models,
algorithms or rules
are involved in the
transformations
applied to the

software attributes to yield the measure. This information is important since it gives a
preliminary feel of the extent of the validity of a measure. Through the analysis process,

Fig. 2 An Example of Structural Representation and Analysis



(6)

preciseness of the definitions of the different concepts involved (for example, rules) is
examined. From this knowledge, one is able to assess the degree to which a measure is
repeatable. Finally, the structural representation helps identify the cost of a measure since
it clearly establishes the software attributes it builds upon and hence defines the data that
should be collected.

4. Extended Structural Representation

A measure can be thoroughly analyzed by using the structural representation
provided in Fig. 1 and 2. However, the link between the measure and reliability is still
obscure. In this paragraph we define an extended structural representation that helps
define and understand the relationship between reliability and the measure.

This extended representation provides a visualization of a measure’s relevance to
reliability, the cost entailed in bridging the gap between reliability and the measure, the
degree of subjectivity involved, etc. The following example clearly illustrates this
expansion.

Fig. 3’s bottom-left part is the structural representation of the “Bugs per Line of
Code” and hence is an exact replica of Fig. 2. The top part of Fig. 3 on the other hand
(displayed in dashed lines) was added to “connect” the derived measure “Bugs per Line of
Code” to the indicator of interest, reliability. Measures such as the “Linear Execution
Frequency” or the “Fault Exposure Ratio” can be considered as support measures to the
software engineering measure under study. The support measures could themselves be
analyzed to determine whether they should be classified as derived measures or primitive
measures. This would help understand their validity (repeatability, how well defined they
might be) as well as the amount of effort (cost) involved in their evaluation. Such
decomposition would parallel and complete the decomposition and analysis of the
software engineering measure under study. Another element of the extended
representation is function “g”. This function has intentionally been left unspecified..In fact,
several software reliability models can be used in place of “g”. An example of such model
is the “Musa Basic Execution model” (Musa, 1987). Function “g” is another contributor
to the validity and cost of the prediction of reliability. If “g” has been extensively
validated, and/or, if an extensive body of experience exists then the prediction is more
credible.

In conclusion, a reliability prediction for the software can be derived from the
measures “Bugs per Line of Code”, “Linear Execution Frequency”6 (Musa, 1987),
(Fenton, 1997), , “Fault Exposure Ratio”7 (Musa, 1987), and “Conversion Factorρ”.
These four measures constitute a complete set (from the indicator’s viewpoint), which is
namedReliability Prediction System. In order to assess reliability all the elements of this
set need to be available to the analyst.

6 The “Linear Execution Frequency” is the number of times the program would be executed per unit time
if it had no branches or loops.
7 The “Fault Exposure Ratio” represents the fraction of time that the “passage” results in a failure.



(7)

Fig. 3 Structural Analysis of the Bug Per Line of Code (Gaffney Estimate)

5. RESULTS AND CONCLUSIONS

This paper presented a structural classification of software engineering measures
and a representation method which together help understand the contribution software
engineering measures make to reliability prediction. The classification allows the
identification of measures “close” to reliability, a systematic attention is given to the way
in which the measure is constructed. Hence dependencies between measures can be
assessed, compatibility between measures can be defined, validity and cost of the measure
can also be determined. An extended structural representation is also provided to expand
the study from measures to reliability. The extended representation introduces notions of



(8)

“support measures” and “reliability prediction systems”. Reliability prediction systems are
minimal sets of measures allowing reliability prediction.

These techniques were utilized in ranking measures with respect to their reliability
prediction potential (Smidts, 2000). Top-ranked measures (if they all belong to a reliability
prediction system) are the starting point for highly predictive systems of measures. A set
of measures from which software reliability can be predicted originates from these top-
ranked measures. The top three measures are shown per software development phase in
Table 1 and 2 for the non-object-oriented and object-oriented systems respectively.

Requirements Design Implementation Testing

Fault density Design defect density Code defect density Failure rate
Requirements

specification change
requests

Cyclomatic complexity Design defect density Code defect density

Error distribution Fault density Cyclomatic complexity Coverage factor

Table 1 Top 3 Measures per Phase for non-Object-Oriented Systems

Requirements Design Implementation Testing

Fault density Design defect density Code defect density Failure rate
Requirements

specification change
requests

Fault density Design defect density Code defect density

Error distribution Fault number days Fault density Coverage factor

Table 2 Top 3 Measures per Phase for Object-Oriented Systems

REFERENCES

Emam, K., Card, D., 1999.ISO/IEC Standard 15939, Software Measurement Process,
International Organization for Standardization (draft).

Evanco, W.M., 1999. Using a proportional hazards model to analyze software reliability,
STEP’99. Proceedings Ninth International Workshop Software Technology and
Engineering Practice, pp. xvii+187, 134-41

Fenton, N.E., Pfleeger, S.L., 1997.Software Metrics, A Rigorous & Practical Approach,
International Thomson Computer Press, New York, 2nd Edition.

IEEE, 1988. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software, IEEE Std 982.2-1988, The Institute of Electrical and
Electronics Engineers, Inc.

Khoshgoftaar, T., Munson, J., 1990. Predicting Software Development Errors using
Software complexity Metrics,IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 2.



(9)

Lawrence, J. D., et al., Assessment of Software Reliability Measurement Methods for Use
in Probabilistic Risk Assessment, FESSP, Lawrence Livermore National Laboratory.
1998.

Li, M. Smdits, C., 2000, Ranking Software Engineering Measures Related to Reliability
Using Expert Opinion, PSAM’5, International Conference on Probabilistic Safety
Assessment and Management, November 27-December 1, Osaka, Japan, to appear.

Lyu, M. R., editor, 1995.Handbook of Software Reliability Engineering, computing
McGraw-Hill, New York.

Musa, J. D., Iannino, A., Okumoto, K., 1987.Software Reliability, Measurement,
Prediction, Application, McGraw-Hill Book Company, New York, 1987.

Rome Laboratory (RL), Methodology for Software reliability Prediction and Assessment,
Technical report, RL-TR-92-52, volumes 1 and 2, 1992.

Smidts, C., Li, M., Measures for Software-Based Safety Critical Digital Systems, NRC
Report, University of Maryland, October, 2000, Maryland, to appear.

Smidts, C., Stutzke, M., Stoddard, R. W., 1998. Software Reliability Modeling: An
Approach to Early Reliability Prediction,IEEE Transactions on Reliability, Vol. 47,
no.3.

Stutzke, M., Smidts, C., 1998. A Stochastic Model of Fault Introduction and Removal
during Software Development,Probabilistic Safety Assessment and Management –
PSAM’4,Vol 1, Springer, pp 1111 – 1116.

DISCLAIMER

This paper was prepared in part by an employee of the United States Nuclear
Regulatory Commission. It presents information that does not currently represent agreed-
upon staff positions. NRC has neither approved or disapproved the content.


