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ABSTRACT 

Panchalingam, Geethanjali. Ph.D., Purdue University, May 1992. Uncertainty 
Modeling of Many Correlated and Skewed Random Variables. Major Professor: 
Milton E. Harr.  

This thesis presents a point estimate methodology directly suited to uncertainty 

modeling for systems with many correlated and skewed random variables. The 

methodology proposes two models. The models provide a simple but powerful procedure 

to approximate the joint probability density function of many correlated and skewed 

random variables. It is assumed that the only available information is the set of expected 

values, standard deviations, skewness coefficients, and correlation coefficients of the 

random variables.  

Examples and step-by-step procedures are provided to illustrate the models.  

Comparisons are made with the results of Rosenblueth (1975), Lind (1983), and Harr 

(1989) point estimate methodologies, the Monte Carlo simulation technique, and also 

with the exact solution for a special case. Application is also made to the flow code 

LLUVIA for estimating the groundwater travel time in an unsaturated medium.



CHAPTER 1

INTRODUCTION 

One of the major problems in modeling civil engineering systems today is the 

choice of values to use as system input variables. Add to this that for most situations, 

decisions have to be made under conditions of uncertainty. Values of input parameters 

are not single-valued and, consequently, the reliability of civil engineering designs must 

be framed in probabilistic terms. Available information is a significant factor in deciding 

the method of reliability analysis. In selecting the method of analysis, good engineering 

design necessitates that all reasonably possible scenarios be accounted for; but, on the 

other hand, no more information should be assumed than is available and reliable.  

Today there is a constantly increasing need to solve problems, such as problems 

of resource management or environmental protection, for which there is little 

information. The complexity of the system functions and inadequate statistical data have 

given rise to a need for reliable procedures, which are capable of accounting for 

uncertainties resulting from inadequate information. Assumptions and approximations 

must be introduced in a "least-biased" manner.  

- Several probabilistic methods have been developed in the past to obtain measures 

of the reliability of engineering systems. These range from exact analytical procedures 

to approximate methodologies that can be accommodated by relatively simple algebraic 

computations. While each method has its own set of assumptions and advocates, the 

adoption of a reliable method of analysis depends on the amount of information available
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concerning the uncertainty of the system variables, the nature of the system functions, 

and the desired level of accuracy.  

In practice, it is not uncommon to find systems which have many skewed and 

correlated random variables. The combination of very many variables and of highly 

complex system functions have given rise to point-estimate methods (Rosenblueth (1975), 

Lind (1983), Harr (1989)). However, current point-estimate methods are restricted to 

systems of symmetrical and correlated random variables. The present work seeks to 

provide a methodology that will account for correlated and skewed random variables in 

uncertainty analyses. It is assumed that the only information available is the set of the 

first three statistical moments: expected values, standard deviations, and skewness 

coefficients; and the correlation structure of the random variables.
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CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1 Point Estimates of Statistical Moments 

The fundamental concept of the point estimate method is the approximation of the 

probability density functions of random variables at selected points of the space defined 

by the random variables. The location of the points are determined so as to satisfy the 

requirement that the discrete approximations have the same statistical moments (up to a 

specified order) as the probability density functions.  

Rosenblueth (1975) first introduced the point estimate method by requiring the 

equivalency of the first three statistical moments: mean, standard deviation, and skewness 

of a random variable and it's point-wise approximation. The procedure was then 

generalized to functions of several random variables. In concept, Rosenblueth point 

distributions are at the comers of a hypercube defined in the variable space (in reality 

for non-equal variables the figure is a "hyperprism"). The number of point estimates of 

Rosenblueth's method is 2N where N is the number of random variables. As an 

illustration, for a function of three random variables (N=3), Rosenblueth point 

distributions are at the comers of a 3-dimensional cube, and hence, the number of point 

estimates is 21 = 8, which is equivalent to the number of comers of a 3-dimensional cube.  

- Higher-order approximations were also derived by Rosenblueth (1975) for 

functions of a single random variable whose first four statistical moments: mean, 

standard deviation, skewness, and kurtosis were approximated as a gaussian random
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variable.  

In 1981, Rosenblueth derived a point distribution approximation for a function of 

two random variables by satisfying the mean, standard deviation, skewness, and 

correlation coefficient of these two random variables. However, this procedure was not 

generalized to functions of several skewed and correlated random variables.  

Lind (1983) developed a methodology called the "face-center point distribution.  

This methodology consists of 2N equal probability masses or weighting functions located 

"near the center of each face of the hypercube whose corners are the points of 

Rosenblueth's distribution." Lind's methodology approximates the first two moments: 

means and covariances of the random variables.  

Harr (1989) developed an alternative point estimate methodology in which the 

estimates are obtained in the eigenspace of the correlation matrix. This methodology also 

requires only 2N point estimates.  

Athanasiou-Grivas and Stiefel (1983) proposed a three-point representation for a 

beta variate. The representation approximates the first four statistical moments: mean, 

standard deviation, skewness, and kurtosis of a beta variate. An m-point representation 

was also suggested by Athanasiou-Grivas and Stiefel for a function of a single random 

variable.  

In a private communication, Harr suggested an m-point representation to 

approximate the probability density function of a single random variable. This m-point 

representation involves the approximation of a definite integral as the sum of a number 

of terms using an algorithm for numerical integration.
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2.2 Rosenblueth's Point Estimate Method 

2.2.1 Two-point Representation 

Rosenblueth (1975) developed a simple two-point representation to approximate 

a probability density function of a random variable, f(x), up to its third-order statistical 

moment. He also provided a procedure to consider a joint probability function of many 

random variables, f(x1, x2.  , xN), using a second-order approximation. The 

generalization of the two-point procedure assumed the skewness of the random variables 

to be zero.  

2.2.1.1 Functions of a Single Random Variable 

In Figure 2.1 is shown schematically the two-point representation of f(x) as x+ 

and x-, and the corresponding mass densities or weighting functions as p+ and p-, 

respectively. Rosenblueth solved for the four unknowns (i.e., x+, x-, p+, p.) to meet the 

following four conditions: 

p++p_=1 (2.1) 

p+x.+,-x_=•x (2.2) 

2 (2.3) 

p.(x÷3x)3 +p(x__-)3 =3(1)ax (2.4) 

where x is the random variable with mean i, standard deviation a,,, and skewness 

coefficient 3(1). From equations (2.1) through (2.4), it is seen that for the case of a 

two-point approximation of f(x), the determination of the four unknown quantities 

requires knowledge of the statistical moments of x up to the third order. The solution 

of the above system of simultaneous equations is



Figure 2.1 Two-point Representation.

6

fRx)

X



7

P=1 -3(1) 2 (2.5) 

p_=l-p. (2.6) 

_x (2.7) 

XP.  

In equation (2.5) the sign preceding the radical is that of -03(1).  

In the special case where the probability density function, f(x), is symmetrical, 

(3(1)=0), and equations (2.5) through (2.8) take the simple form: 

p*=p_= (2.9) 
2 

x÷=x+U (2.10) 

x_=x-a,, (2.11) 

2.2.1.2 Functions of Many Random Variables 

For a joint probability density function of N random variables, f(xl, x2, ... , XN), 

Rosenblueth's distribution is composed of 2N probability masses or weighting functions, 

, where all the possible permutations of N +'s and -'s are considered. The 

correlations between pairs of the random variables are accounted for in the weighting 

functions. These weighting functions are concentrated at the comers of a multi

dimensional hyperprism of N-dimensional space defined by the random variables with
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coordinates x' =- 12±,.., '•±•+,N), i-- 1,2, .... I2N. The magnitude of the 

weighting functions at the coordinates xi are given by: 

p+,.,... g=2 -N { 1 +(- 1 )d,(-l)d'1 2 +(- 1 )d'(-l)d'P1 3 + ......  

where pij is the correlation coefficient between xi and xj; and d, is the il binary digit of 

the weighting function P,.± ....,,, djE {O, 1. The binary digit di takes the value according 

to the il sign value of the weighting function p±,±....+, {di=O, if the sign is positive (+); 

di= 1, if the sign is negative (-) }.  

2.2.2 Three-point Estimates 

Rosenblueth (1975) derived a three-point representation to approximate the first 

four moments of a gaussian random variable. For the three-point estimate, the weighting 

functions p+, po, and p. are taken to be respectively at x+, k, and x.. The solution is 

obtained following the procedure above for the two-point representation (see section 

2.2.1.1 for a single random variable). As the gaussian distribution is symmetrical and 

the kurtosis coefficient of the gaussian distribution is equal to three, the weighting 

functions of the three-point representation and the point estimate locations are as follows: 

p+=p-=1/6, po=2/3, x+=i+4/3au, and x_ =i-4i[3ar.  

2.2.3 Point Representation for a Function of Two Correlated and Skewed Random 

Variables 

Rosenblueth (1981) presented a point representation for a function of two 

correlated and skewed random variables. The representation is as shown in Figure 2.2.  

The coordinates of the rectangle, as shown in Figure 2.2, are determined so as to satisfy 

the first three moments: expected value (it), standard deviation (a.), and skewness 

(3l,(l)) of the random variables x, and x2. The weighting functions at the comers of the 

rectangle are defined to satisfy the specified correlation coefficient p12-between x, and x2.  

The point representation coordinates as given in Figure 2.2 are as follows: x,+ =



P--

x1-

I p+-

Xl +

Figure 2.2 Point Representation for a Function of Two 
Correlated and Skewed Random Variables.

9

If(x) 

x2 -

x2 -

-

-4I

x

I i 
I

I
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i 1 +(,p 1_/p+) 0-5 o*x, x1 ._= i 1-(p1+/p_-)°0 5 ax1, x2+= x2+(p2-/p 2 +)°'5 ax2, and x.2-= 

, 2 -(P 2 +/P2.)°' o',2; and the weighting functions are defined as follows: p++ =p1+p2++ 

a, p+- =P,+P2-- a, p-+ =P1-P2+- a, and p__=pl_.p2 +a, where pi+ and pi- (i=1,2) 

are as defined in the equations (2.5) and (2.6); and a=p,2/{[4+±3lx(1) 2] [4 +/3 .2(l)2]}°05.  

2.3 Lind's Alternative Point Estimate Method 

Lind (1983) introduced an alternative point estimate method with 2N point 

estimates. Lind's methodology is referred to as a "face-center'' point representation.  

The representation is a simple point-symmetric distribution about the expected values of 

the random variables. The distribution approximates the first two statistical moments, 

mean and covariances, of the random variables. As with the point-symmetric 

distribution, the variables are assumed to be symmetrical. The distribution consists of 

2N equal probability masses or weighting functions located at xi =R±zi, i = 1,2, ... , N, 

with 

= 34 [ 3,E2, ..... ,I N1 (2.12) 

Z - [Z 1, Z 12 , Z 13 . ..... I Z1N] 

Z2 = [0, z2. Z23 ....... ,7zN] 
Z3 = 01 0, Z33, ... ,z3N] 

ZN[ = O0 ..... ,0, zN] 

As an illustration, Lind's point distribution for a function of two random variables is 

located at the points shown in Figure 2.3. The coordinates of these points are given in 

Table 2.1.



X2

Pl+ (x7l + Z1 1 ,x2 + z1 2)

P2+1.(Xl, x2 +z2 2 )

('1, ' 2) Xl

P2 - (xl, Z2 " z22 )
I 6

Figure 2.3 Lind's Point Representation - Two Variables.

11

A2
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Table 2.1 Lind's Point Representation Coordinates - Two Variables.

The location of the weighting functions can be considered as N point-distribution 

pairs, [(++z.), (X-z)], i= 1,2 .... ,N. Each pair, [(++z.), (R-z)], represents the point

representation coordinates which are placed symmetrically about the mean value of the 

random variables. The coordinates xi of Lind's point-representation are determined 

sequentially. An algorithm is given in Appendix A. 1.  

In Lind's methodology it is assumed that the weighting functions are equally 

distributed among the N point-distribution pairs. Also, the coordinates of the point 

distribution depend upon the sequence of the variables in the R vector as given in 

equation (2.12). As a result, if there are N random variables, it is possible to choose 

N! sequences for the 5 matrix, and consequently, N! point distribution models are 

possible. For example, in the case of a function of two random variables (xj and x2), it 

is possible to select 2! =2 sequences (i.e., sequence [xj, x2] or [x2, x]) to solve for the 

point distribution coordinates. For 3 random variables, 6 sequences are possible.  

2.4 Harr's Alternative Point Estimate Method 

Harr's (1989) alternative point estimate methodology stems from "principal 

component analysis". His methodology starts from the correlation matrix of the random 

variables. The use of a correlation matrix rather than a covariance matrix negates the 

problem of the arbitrariness of units of variables by standardizing the variables by the 

linear transformation:

variable x, variable x2  weighting function 

Ri+z11 t2+z12  0.25 
•i-Zli R2-Z12 0.25 

3t2+z 22  0.25 
_ _ _ _ _ 2-zz 2 0.25
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dsx,=fL (2.13) 

where xi is the random variable with mean ki and standard deviation a,,1, and ds, is the 

standardized random variable with mean as zero and standard deviation of unity. As in 

principal component analysis, the standardized random variables ds, are then transformed 

into new random variables [ui ,J= 1,2 .... ,N] in the eigenspace of the correlation matrix.  

The variables ui are linear combinations of the standardized variables ds, (see Appendix 

A.2).  

In Harr's methodology, the point estimates are first obtained in the direction of 

the eigenvectors of the correlation matrix. The first two statistical moments of the new 

random variables u, are known in the eigenspace - the expected value (first-order 

statistical moment) of the new random variables is zero and the eigenvalues (Xi, i= 1,2, 

.. ,N) of the correlation matrix represent the variance (second-order statistical moment) 

of the new random variables. In the eigenspace, the variables ui are independent of each 

other; hence, the correlations vanish in these directions. The independence among 

variables makes the 2N point-representation easily obtainable. The point-representations 

are then given by two points along each eigenvector which are placed symmetrically 

about the expected value U1 of the new random variables u, (i=1,2, ... , N). In the 

eigensystem, the correlation matrix is represented by a hypersphere of radius ,[N 

centered at the expected values 5ii of the new random variables. The hypersphere follows 

from the weighting function along each eigenvector direction being a function of the 

eigenvalue X, in that direction. The weighting function is given by X./N, where N is the 

number of random variables.  

The coordinates of the point representation in the eigensystem are then 

transformed back into the space of the original random variables x,. The point 

representations satisfy the first two statistical moments of the random variables and the
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correlation structure. The skewness of the random variables are taken to be zero.  

2.5 Athanasiou-Grivas and Stiefel Three-point Representation 

Athanasiou-Grivas and Stiefel (1983) proposed a three-point representation to 

account for the first four statistical moments of a random variable's probability density 

function. This representation is shown schematically for a single random variable in 

Figure 2.4; the three discrete values for x are denoted as x+, R, and x-, and the 

corresponding mass densities as p+, p,, and p-, respectively. The location of the point 

estimate associated with the probability p0 is taken to coincide with the mean value R.  

Using the equations (2.14) through (2.18), Athanasiou-Grivas and Stiefel solved 

for the five unknowns, x+, x-, p+, p0 and p-, of the three-point representation. Equation 

(2.14) satisfies the requirement that the sum of the probabilities associated with the 

discrete values of x (i.e., x+, R, and x. ) must be equal to unity. The remaining four 

equations are obtained by equating the point estimates to the mean value and the second, 

third, and fourth central moments of the variable x.  

p.+po+P_=1 (2.14) 

p.x++pox+pxx (2.15) 

p._( x)2+p_(_x-i)2fo (2.16) 

- 3 (2.17) 

p÷ -•)p.(X._-•_(X__W p(2)C14(2.18) 

where x is the random variable with mean R, standard deviation or, skewness coefficient 

0(1), and kurtosis coefficient 3(2).  

The solution of the system of equations (2.14) through (2.18) given by 

Athanasiou-Grivas and Stiefel is as follows:
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Figure 2.4 Three-point Representation.
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{ t-1 2 4+ 3(1)2 ± 413(1)2 [ p3(1)2 2 (2.19) 
-- [(2)_p (1)2 p3(2) -' -1)2 p•[(2)-[3(1)2 p (2)-p (1)2 

+ p(2)-13(1)2 -p (2.20) 

p0 2l 1 (2.21) 

x =xP (x,._,) (2.22) 
P_ 

x+=x+a'ýp+[1+L--- 2 (2.23) 
P_

In equation (2.19), the sign preceding the radical is that of -3(1).  

Athanasiou-Grivas and Stiefel (1983) also suggested an m-point representation for 

a random variable's probability density function. This representation is shown 

schematically in Figure 2.5. It specifies discrete values of x, located at multiple standard 

deviations away from the mean. The order of the statistical moments required in this 

case for the determination of weighting functions pi = p(x.) at xi, i= 1,2 ...... ,m, is m-i.  

Reliable higher order statistical moments are seldom attainable; nevertheless, this type 

of multiple point representation may be used for certain engineering applications.  

In a private communication, Harr suggested an alternative m-point representation, 

called a revised point estimate method. It involves the approximation of a definite 

integral as the sum of a number of terms of the form as follows: 

Ewey (x)) i th given f n f (x)iabty, (2.24) 

where y(x) is the given function; f(x) is the probability density function of a random
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Figure 2.5 Multiple-point Representation, 
Athanasiou-Grivas and Stiefel (1983).
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variable x, defined over the interval (a,b); yi's are the values of the function defined at 

xi's (i.e., y1 = y(x.), i=1,2, .... m); wi's are the values corresponding to an algorithm 

for approximating a definite integral; and f1's are the ordinates of the probability density 

function at the points of subdivision as shown in Figure 2.6.  

Among the many algorithms for numerical integration used in engineering 

applications, the most frequent are the trapezoidal rule and Simpson's rule. The 

probability density function, f(x), is selected based on the amount of information 

available (Table 2.5.1, Harr 1987).  

Athanasiou-Grivas and Stiefel (1983) also discussed the applicability of three-point 

and multiple-point estimate methods for functions of many random variables. The 

generalization of point-estimate methods for functions of many random variables involves 

a large number of non-linear simultaneous equations: these are necessary to solve the 

point representations of the random variables' joint probability density function. The 

unknowns of the simultaneous equations are the coordinates of the point representation 

and the weighting functions of the joint probability density function. The coordinates for 

functions of N-random variables are defined in N-dimensional space, and the weighting 

functions act at these coordinates. The number of simultaneous equations required to 

solve these unknowns of the point representations increase very rapidly with the number 

of variables. Difficulties multiply even more when the variables are correlated. Seldom 

are sufficient data available to obtain the statistical moments of the joint probability 

density function.



X2 X3 xi

Figure 2.6 Alternate Multiple-point Representation.
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CHAPTER 3 

ACCOUNTING FOR SKEWNESS 

A new point distribution methodology is presented in this chapter that incorporates 

both correlated and skewed random variables into uncertainty analyses. The 

methodology takes into consideration the first three statistical moments: expected value, 

standard deviation, and skewness coefficient of the random variables, and the correlation 

structure of the variables. As was noted previously in Chapter 2, prior point distribution 

methodologies were predicated for functions of unskewed random variables.  

Two point distribution models (I and II) will be proposed to incorporate skewed 

and correlated random variables into uncertainty analyses. Model I is an extension of 

the point distribution pattern used by Rosenblueth (1975) and it requires 2 N point 

estimates. In model I, the point estimate locations are first determined so as to 

incorporate the skewness coefficient of the random variables and the required correlation 

structure of the variables are incorporated in the respective weighting functions associated 

with the point estimate locations. Model II uses an extension of the point distribution 

pattern proposed by Lind (1983); consequently, the second model requires only 2N point 

estimates. The algorithm of the second model defines both the point estimate locations 

and tlhe respective weighting functions as functions of skewness coefficients and the 

required correlation structure of the random variables.  

The two models will be first illustrated for functions of two and three random 

variables. Then a general solution of these models will be proposed.
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3.1 Model I of the New Point Distribution Methodology 

3.1.1 Discrete Approximation for a Function of Two Random Variables' 

Model I of the new point distribution methodology will be illustrated using Figure 

3.1 for a function y=y(xl,x2) of two random variables x, and x2. The statistical 

moments: expected value, standard deviation, skewness coefficient, and the correlation 

structure of the random variables are assumed to be known. As shown in Figure 3.1, 

the point estimates are placed unsymmetrically about the expected value of the random 

variables. The unknowns to be determined are (a) the locations of the point estimates, 

x,., x,,, x2., and x.2+ (or x,,, x12, x2,, and x22) and (b) the weighting functions associated 

with the discrete locations of x, and x2 [i.e., (x,-, x2,), (xl+, x2.), (xi., x2+), and (xl+, 

x2+)], denoted as p-, p+., p.+, and p++ (or pu, P12, P21, and P22), respectively.  

Equations can be obtained as functions of the unknowns, x,-, xl,, x2-, x2+, p_, P+., 

p.+, and p++, by specifying these as the means, standard deviations, skewness 

coefficients, and correlation coefficients of the random variables. In these equations, P,+ 

and pi-, where i = 1,2, represent the sum of the weighting functions associated with the 

point estimate locations xj+ and xi., respectively. For instance, as shown in Figure 3.1, 

p. and p.+ represent the weighting functions associated with the point estimate location 

xt., and hence, the weighting function pl. will be defined as the sum of the weighting 

functions p- and p.+. The corresponding relationships of all the weighting functions are 

pt÷=p_+-+p+ (3.1) 

pl_=p__+p_÷ (3.2) 

p2÷=P-+ ÷÷+ (3.3) 

p2 _=p--+p4 - (3.4)

SThis model was first proposed by Professors Harr and Chameau of Purdue University
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Figure 3.1 Model I Point Distribution 
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Using the definitions given in equations (3.1-3.4) and given the mean, standard deviation, 

skewness coefficient and correlation coefficient of the random variables, the resulting 

equations are 

p__+p_+p+P=l.O (3.5) 

(X,1_- -Tl)[P__(X2_ -T•2) +P_÷ (X.2 -T2) ] 

+(X- ÷X_)[p_(x2- _X2 )+p.(x2 ,-X2)]p o, (3.6) 

p,÷x÷ +,_xl=7,(3.7) 

pi.(Xi. -x)2 +pi(Xi ) 2  (3.8) 
3 (3.9) 

2,+(x +-T)' +p_(x5 _ -x) 3 = 3ma(1) x (3.9) 

where xi (i = 1,2) is a random variable with mean xi, standard deviation axi, and skewness 

coefficient i3,j(1): P12 is the correlation coefficient between x, and x2.  

Comparing equations (3.7) through (3.9) with the conditions for a single random 

variable (i.e., equations (2.2) through (2.4) of Chapter 2), it can be seen that the 

coordinates of the discrete approximation for functions with two random variables satisfy 

similar conditions as for a single random variable, and thus, the solution for the locations 

of the point estimates (i.e.,x 1., x,+, x2., and x2+) has the same form as for a single 

random variable. The solution is given as:
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Pi.---±J 1- 2 (3.10) 2 ~ 1 +[----•])1 

pi_=l-pj÷ (3.11) 

S=. P.(3.12) 
P,÷ 

1.- (3.13) X, =XI- O',aFL 

where i= 1,2, and in equation (3.10) the sign preceding the radical is that of -•,(1).  

The above results show that the solution for pi+ and pi- (sum of the weighting 

functions) for two random variables is of the same form as for a function with a single 

random variable. Having obtained the solution for pi+ and pi-, the weighting functions 

at the point estimate locations, p-, p_, p.+, and p++, are then determined. The 

weighting functions at the point estimate locations must satisfy the implied dependance 

among the variables. They are conveniently obtained by first setting the variables to be 

independent and then determining the solution for these weighting functions using the 

following relations: 

p-- =p-p2- +a 2  (3.14) 

P+- =Pl P2--al2 (3.15) 

P-÷ =p1-p72+-al2 (3.16) 

p ++=pl dp2+ +a12  (3.17) 

where the first term of each weighting function represents the solution for the special 

case for a function with independent random variables. The sign preceding the factor a, 2
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is determined by the product of the subscripts (+'s and -'s) of the respective weighting 

functions, p++. For example, the plus sign preceding the factor a12 in equation (3.14) 

is of the product of a minus times a minus.  

The solution obtained for the factor a12 that satisfies equation (3.6) is 

a12 j 

When the random variables are not skewed (01=0), the solution reduces to the simpler 

form: 
_1 

P. =P-' (3.19) 

-- 4 =x+~(3.20) Xi ÷ =Xi + O xi (.0 

xt_ =x- o~a(3.21) 

.P12  (3.22) 
a-4 

where i = 1,2. The above result is precisely that given by Rosenblueth for symmetrically 

distributed random variables.  

3.1.2 Discrete Approximation for a Function of Three Random Variables 

Figure 3.2 illustrates model I of the new proposed point distribution methodology 

for a function y=y(xj, x2, x3) of three random variables. As explained for a function of 

two random variables, the point estimates are placed unsymmetrically about the mean 

value of the random variables. In the present case, the point estimates are placed in a 

three-dimensional space defined by the random variables x,, x2, and x3. The unknowns 

to be determined are the locations of the point estimates (x,, and xi-, i= 1,2,3) and the 

respective weighting functions as given in Table 3.1.
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Figure 3.2 Model I Point Distribution 
Approximation - Three Variables.
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Table 3.1 Model I Point Estimate Locations for Three Random Variables.  

Point estimate locations weighting function 

variable x, [ variable x 2  variable x 3 

Xi+ X2 + X3 + P...  

x1. x2+ x3+ P-++ 
xl+ x2. x3+ P+-+ 
x1+ x2- x3+ P--+ 
Xl+ X-2+ X3- P++

xl" X2 + X3. p_+_ 

x+ x2. x3- P+-
xl. x2. x3. P---

The methodology adopted in model I is that the point estimate locations (xi+ and 

xi-) are first determined by specifying the statistical moments: means, standard deviations, 

and skewness coefficients of the random variables as functions of the point estimate 

location unknowns xj+ and xi-. The weighting functions at these determined locations are 

then computed by satisfying the required correlation structure of the variables.  

Equations (B.1) through (B.8) in Appendix B.1 represent the model I point 

representation approximation for a function of three random variables, where the 

variables, xi, i=1,2,3, are considered to be skewed and correlated. From equations 

(B.5-B.8), it can be seen that the coordinates of the discrete approximation (i.e., x,+, xi, 

i=1,2,3) satisfy the same form of equations as for a single random variable. Thus, 

equations (3.10) through (3.13) represent the solution to the location of the point 

estimates xj+ and xi.; and the weighting functions pi+ and pi., where i= 1,2,3. As given 

in equations (B.9-B.11), pi, and pi. represent the sum of the weighting functions 

associated with the point estimate locations xi, and xi., respectively.  

"Next, the weighting functions associated with the point estimate locations 

(coordinates) as given in Table 3.1 are determined. The total number of unknown 

weighting functions is eight. These weighting functions have to satisfy the correlation
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structure of the variables as given in equations (B.1 - B.4) and the conditions given in 

equations (B.9 - B.11). Hence, the total number of available conditions is seven.  

Therefore, with the point distribution pattern as shown in Figure 3.2, the total number 

of available conditions is one less than the eight unknown weighting functions. As a 

result of this, a unique solution will not be provided for the unknown weighting 

functions. The problem of non-uniqueness with the less number of available conditions 

is addressed below.  

The first alternative solution to reconcile unknowns and equations for three 

random variables ignores a weighting function associated with one of the point estimate 

location and considers only the weighting functions associated with seven remaining point 

estimate locations, instead of all the eight locations given in Table 3.1. For example, 

neglecting the point estimate location associated with p- (see Table 3.1), the solution 

obtained for the remaining seven weighting functions is as follows: 

P..+ =P 2+P3 ÷ -Pl-P3+ +P 1-P2- + a 12 +a 13 +a23 (3.23) 

P- = Pl-P3÷ -P1-P2- - a12 - a1 3  
(3.24) 

P+- =P2-P3+ -plp 2 --a 12 -a23 (3.25) 

p--÷ =Pj-P2- + a12 (3.26) 

P ÷- = P2 ÷P- - P -P3- - a13 -a23 (3.27) 

P- =Pl-P3 + a13  
(3.28) 

P--=P2-- + a23 (3.29) 

where a12 = p12[p,+p 2+pl-p2-]Va, a13 = P13(Pi+P3+PI-P3] /2, and a23 =P23P2+P3+P-P3-]tn; 

and, pi+ and pi. (i= 1,2,3) are defined in equations (3.10-3.11).  

A second alternative solution to achieve or balance the unknowns proposes that 

all the eight point estimate locations given in Table 3.1 (comers of Figure 3.2) be
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considered. As noted, the solution provided will not be unique; however, the proposed 

solution does satisfy the necessary approximations to incorporate the skewed and 

correlated random variables. The proposed solution for the weighting functions is as 

given below: 
."V.. =1P 2 .93+ +a1 p3÷ +a13p2. +a23p1÷ (3.30) 

P-..÷ =P .P2.P 3+ -ap 33. -a13p2. +a2pP- (3.31) 

P +-÷PlP2 .93 -a2p3 ÷+a13P2--a 23Pl (3.32) 

P--. =pp 2-.9 3 ÷ +a12p3 -a 3p2--a 23p1 - (3.33) 

P V-=P1 2 P3 +a12P3 --a13 2 ÷-a23P1+ (3.34) 

P-÷-P-=Pt92 93 --ap3 - +al3P2 ÷-a23Pl- (3.35) 

P .-- =PlP 2.P3-- al2p3--a 13P2- +a23PI÷ (3.36) 

P--- =,P2-P3-a2p3+ap3 p2-+a 2-+ 1.P- (3.37) 

where a,2 = P12[Pl+P 2+Pl-P2-]V, a,3 = Pl3[P1-+P3+P1-P3-]', and a23 = p23[P 2+P3+ 2-P3-]I.  

The above results for the weighting functions show that the number of point 

estimate terms required are all the permutations of three +'s and -'s (i.e., 23=8). In the 

proposed solution given in equations (3.30-3.37), the factors a12, a,3, and a2 are functions 

of the correlations between the variables, where the subscripts of these factors are those 

of the correlation coefficients by which these factors were defined. In addition, P+ and 

pi- (i= 1,2,3) are defined in terms of the skewness coefficient of the variables (equations 

3.10 and 3.11). The first terms of all the weighting functions (P1+2+3+, P1.2+3+, etc.) 

given in equations (3.30 - 3.37) represent the solution for the special case where the 

variables are independent (a12 =a13 =a2 =0). The sign preceding the factors al2, a13, 

or a23 in equations (3.30 - 3.37) is determined as the product of the subscripts (+'s and 

's) of the respective weighting functions (p+++, p.++, etc.). The position of +'s and -'s 

in the weighting functions is dictated by the subscripts of these factors. For example,
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in equation (3.31), the sign preceding the factor a12 is the product of - times + = - (i.e., 

the first two subscripts in p.-+); for the factor a13, the sign is - times + = - (i.e., the 

first and third subscripts in p.,+). When the random variables are symmetrically 

distributed, the above solution again reduces to Rosenblueth's (1975) solution.  

3.1.3 Generalization of Model I Point Distribution Approximation 

Model I of the new point distribution methodology will be generalized from the 

point distribution patterns for functions of two and three random variables (see sections 

3. 1. 1 and 3.1.2). For functions of N correlated and skewed random variables, the point

distribution will be defined in the N-dimensional variables space. It is again assumed 

that the statistical moments: expected value, standard deviation, skewness coefficient, and 

correlation structure of the random variables are known.  

The point distribution pattern of model I requires 2N+2N unknowns, where N is 

the number of input random variables of a given function; the 2N term represents the 

unknown coordinates of the point distribution pattern: the term 2N represents the 

unknown weighting functions of the respective point estimate locations. With the given 

information on statistical moments: expected value, standard deviation, skewness, and 

correlation structure of the variables, the total number of available conditions to solve 

for the point-representation unknowns are 1 +3N+N(N-1)/2, where N is the number of 

random variables; the term 1 represents the condition obtained by the sum of the 

weighting functions of the point-representation, which is similar to the sum of the 

discrete probabilities is always unity, the term 3N represents the number of conditions 

obtained by specifying the first three statistical moments: expected value, standard 

deviation, and skewness of the variables, and the term N(N-1)/2 represents the number 

of conditions obtained by specifying the given covariance terms of the variables. Table 

3.2 compares the number of unknowns of the point representation and the number of 

available conditions to solve for these unknowns.
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Table 3.2 Model I Number of Point Representation Unknowns.  

Number of Number of Unknowns Number of 

Variables Conditions 
unknown unknown total 

point weighting number of 
estimate functions unknowns 
locations 

2 4 4 8 8 

3 6 8 14 13 
4 8 16 24 19 

5 10 32 42 26

As the number of unknowns exceeds the number of available conditions, the solution 

provided by model I point distribution approximation will not be unique for N >2. A 

solution is proposed below which satisfies the specified number conditions given in Table 

3.2. Also, the solution provided follows a pattern that can be used directly in computer 

applications.  

The proposed generalized solution of model I first solves for the unknown point 

estimate locations (xi, and xi-, i=1,2, ... , N) by specifying the first three statistical 

moments: expected value, standard deviation, and skewness coefficient of the random 

variables (for more details see equations (B.5-B.8) for three random variables). The 

solution to these point estimate locations is defined in N-dimensional space, with the 

coordinates given by: 

[x1 +(_l)dIFjaxj, x+(-l)d'F o . .......... XN+(_ )dFN a' ] (3.38) 

where xi (i= 1,2 ...... , N) is a random variable with mean Ri, standard deviation .,i, and 

skewness coefficient 3,j(1); diE{0,1}; and {Fi=(pi+/pip.) 0' if djl-', Fi=(Pj./pi+)0'5 if 

di=0}; where pi+ and pi. are functions of the skewness coefficient of the random 

variables given by the following equations:
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1- 1 (3.39) 

2 

P,_=l-p1+ (3.40) 

where i= 1,2 ..... , N and in equation (3.39) the sign preceding the radical is that of 

-011P1).  

The point distribution coordinates of model I as given in equation (3.38) form a 

"hyper-prism" in the N-dimensional space. According to this equation, the Fj's are unity 

for Rosenblueth's (1975) original distribution: his solution is symmetrical about the 

expected value of the random variables.  

Having determined the point estimate locations, the point distribution unknowns 

to be defined are the respective weighting functions associated with the point estimate 

locations. As noted previously, a unique solution is not possible (see Table 3.2).  

Therefore, a solution is proposed that does incorporate skewed and correlated random 

variables. The proposed generalized solution provides 2' point estimate locations. In 

addition, it considers all the possible permutations of N +'s and -'s. The proposed 

generalized solution for these respective weighting functions is 

P** ...... * =Plods2*• .... ,PN,: +(- 1)all(- 1)"al2PI2 

+(- 1)d'(-l )al 3p 3 ........ +(_ 1)dJ,-L(_ 1)UaN-INPN-_ (3.41) 

where Pip (i=1,2 ..... , N) is defined in equations (3.39) and (3.40) as functions of the 

skewness coefficient of the variables; a,..= pjt. (p1+P,-Pm+Pm-)0'5, p,. = Pl±P2± ... P ... PN± 

(kdl and kdm) where 1=1,2 ..... , N, m=l+1, 1+2 ..... , N and p,. is the correlation 

coefficient between the random variables x, and x.; and die {0,1}.
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The product [(-1)"d x (-1)dl in equation (3.41) determines the sign preceding the 

factor aim, which is also the product of the subscripts +'s and -'s of the respective 

weighting function, p± . ..... :,. The position of +'s and -'s in the weighting functions is 

dictated by the subscripts of the factor a,., which are 1 and m. The total number of 

terms of the factor aj. is N(N-1)/2. When the skewness of the random variables is zero, 

the generalized of the weighting functions reduces to Rosenblueth's (1975) solution.  

As an example, consider a function with four random variables (N1=4). Then the 

total number of weighting functions is equal to 16 (24). The magnitudes of these 

weighting functions are given by the equation (3.41) in which all possible combinations 

of the binary digits d1, d2, d3, and d 4 are considered. For instance, the weighting 

function p.+++ has binary digits (d,, i=1,2,3, & 4) of the form (1,0,0,0) and thus the 

magnitude of p.,++ is given by: 

p ....+ =p-P 2+P3+P4.+(- 1)1(- l)°a12P3.,P4÷ +(- 1)1(- 1)Oal 3p 24 p4' +(- 1)'(- 1)0a14p 2X 3+ 

+ (-l1)°(-l)°a23Pl-.P4. +(-I)°(- l)°a24Ip,-P3. +(-l1)°(- l)°a34P1-p2, 

=Pl -P 2 +P3 .P 4 . -a 1 2P3.P4- -a 1 3p2 ,p 4 * -a 1 4P2 P3 - +a23P1 -..,P4 +a24Pl-P3+ +a34pj p 2+ 

where pi+ and pi- (i= 1,2,3, & 4) are defined in equations (3.39) and (3.40); 

a12 =p 12 (Pl+P1.P2+P2.)0 '5 , a13= P13 (P1+Pl-P3+P3-) 0'5 , a 14 = P14 (PI+PI-P4+P4-)°'*, 

a-= P23 (1P+P2-P3+P3-)' 5 , and a2= P2 (p2+p2-p4+p4-) 0° 5; P12=P3+P4+, P13=P2+P4+, 

P14=P2+P3+, P23=Pl-P4+, P24'=P.P3+, and P4=Pi-P2+. The weighting functions have 

coordinates given by the equation (3.38). Hence, for N=4. weighting function p.+++ is 

located at: 

x_..:=(x"+(-F1 )IFT , ,+F2 +(-1)°F2ar z,2 +(-F1)°F3, F+(-1)°F4U.') 

w e F=( a.-f,, 2+F2 = +F3p,.S, F.,3 =4 4 0 d.) 

where F, = (p, +/pl_)o-', F2 = (p2./p2+)O-I, F3 - (13-/1p+)0.5, and F4=-(p4-/P4 +)o-..
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Following the sequence of operations as given above, the resulting distributions 

of weighting functions for N=4 are given in Appendix B.2.  

A computer program was developed to compute the point representation 

approximations of model I. The program listing is given in Appendix D.  

3.2 Model II of the New Point Distribution Methodology 

3.2.1 Discrete Approximation for a Function of Two Random Variables 

The point-distribution pattern for model II is as shown in Figure 3.3 for a 

function f(x,, x2) of two random variables x, and x2. To account for the skewness of the 

random variables, as shown in Figure 3.3, the point estimates are placed unsymmetrically 

about the expected value of the random variables (R, R2). The unknowns are the 

locations of the point estimates and the respective weighting functions associated with the 

discrete locations of the point estimates. The coordinates of the point-representations are 

given in Table 3.3.  

Table 3.3 Model II Point Estimate Locations for Two Random Variables.  

Point estimate locations Weighting 

XI X2  xi-ii X2-R'2  1 functions 

xl+zl+ xt2 + z 12  Z11+ Z12 Pi+ 
ki-zii. x2-z12 -z11- "Z12 Pi

x± Z2 2+ + 0. Z22+ P2+ 

_ _ X2 -z 22. 0. -Z22- P2-

Following the methodology, equations are obtained as functions of the point 

representation unknowns (zll+, z1 .., z2+, z22_, z12, Pl+, Pl-, P,+, and p2-) by specifying the 

statistical moments: mean, standard deviation, skewness coefficient, and correlation 

coefficients of the random variables. The weighting functions are assumed to be equally
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distributed among the point distribution pairs. For example, the point distribution pairs 

for the point estimate locations given in Table 3.3 are [Pi+, Pl.] and [p2., p2], therefore, 

p 1 (3.42) 

where i= 1,2.  

Using the above assumptions and with the given information concerning the 

random variables' statistical moments, the equations given below are obtained.  

For the variable xj: 

E [(x -x)] =pl z÷ -P -zl1- =0.0 (3.43) 

E.- --X,) l.z +p 2 2 (3.44) 

3P 3 -(3.45) 

For the variable x2: 

E[(x2 -T2)] =(Pl-P-) z12 +P2 z22 -P2-Z22- =0.0 (3.46) 

[(X _22) =(l )Z2 2 2 2 (.7 
E[x-2 ](l+l)1+P2÷ Z22. +P2- Z22- =C.2 (.7 

E[(x2 2)3)] =(PI'. _P..)Z3 + -2- 3 _=pPz2(l) a (3.48) 
1 P2 + Z22÷-2 Z22-= X()2 

The covariance term of the variables x, and x2 is 

E(x 1 -XI) (x2 -X2)] =(P 1 zl1++PI-Zl.-) z 2 =P12 xlo 2  (3.49) 

where xi (i = 1,2) is a random variable with mean xi, standard deviation ',,j, and skewness 

coefficient O,,(l): P12 is the correlation coefficient between x, and x2.  

A special sequence is recommended to solve the above system of equations.
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First, the unknowns zl 1,, z1I., p,+, and pl- are solved, and then the unknown z12; finally, 

the unknowns 2:2+, z22-, p2+ and P2- are obtained. The sequence is to solve the point 

estimate locations associated with the weighting function Pi (i.e., P'+ and Pt-) and then 

that of p2 (P2+ and p2-). The unknown locations associated with the weighting functions 

are simply the values in columns 3 and 4 of Table 3.3. Given below is the sequence 

adopted in solving the point estimate locations in vectorial form: 

z,= [zi, Z10 

Z= [0, Z22] 

where z• = {zii+, zii., pi+, and pi-}, i=1,2.  

Following the above sequence, the point representation unknowns are found.  

Equations (3.42-3.45) provide the four unknown quantities, Pj+, Pl-, z,,+, and zl 1., and 

have the following form: 

1 3xl(1) 2  (3.50) 

4- 8 + p8(1)2 

1 (3.51) 

' l2 O (3.52) 

SPF 1+ (3.53) zzz-=•/2 •- '_ X1 

where. the sign preceding the radical in equation (3.50) is that of -I3x1(1).  

The solution to the equation (3.49) provides the following expression for z,2: 

Z1= P12 (', " 2 (3.54) 
Pi÷ Z.i÷+Pi-Zil-
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where pt+, Pi-, Zil+, and zu. are defined in equations (3.50-3.53).  

Knowing the solution to Pi+, Pi-, zjj÷, z11., and z12, equations (3.46-3.48) are 

rearranged as follows: 

p2 ÷z22 ÷_p 2 z.22-= _(pl+-plz)z1 2 =A (3.55) 

2 2 2 2.56) 
p 2 ÷Z22 , +P2 _-Z =, 2 -(P +Pil)Z12=%B 

(3.  

p2÷z22 +-P2 -Z2= P2(1)oa - (p 1.- p_)z2=C (3.57) 

where P2+ + P2- = 1/2.  

From equations (3.55-3.57), a quadratic equation is obtained as: 

B _A,, (3.58) =.  
( -A 2) 2  -A B)Z22 + (A C-B2) =0.0(3.58) 

where A, B, and C are defined in equations (3.55-3.57), respectively. This quadratic 

equation provides z22+ and zr2_, where the solution is given as z22+ =z22 and z22_ =(-z2 2).  

Finally the weighting functions P2- and p2+ are determined from the expressions: 

1 
•2z- -- (3.59) 

Z22÷ +Z22

1 (3.60) 
P 2 ÷='•-P 2

There are some limitations in using model HI. One limitation is in situations 

where the roots of the quadratic equation (3.58) are imaginary. The other is when the 

locations of the point distributions are negative. Alternatives are discussed in sub section 

3.2.4.
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3.2.2 Discrete Approximation for a Function of Three random variables 

Figure 3.4 presents the point distribution scheme of model H for a function of 

three random variables. The point estimates are placed unsymmetrically about the 

expected value of the random variables (R1, ' 2, x3). The procedure adopted in placing 

the point estimates is the same as for a function of two random variables. Table 3.4 

presents the location of the coordinates.  

Table 3.4 Model II Point Estimate Locations for Three Random Variables.  

Point estimate locations Weighting 

x, X2 X3 x - R1 X2-R2 - x 3 R3 Functions 

ii + Z11+ i2 + Z 12  R 3 + Z13 Z11+ Z12 Z13 Pl+ 

R1 - Z11- X2 - Z 12  R3 - Z 13  -Z11" -Z12 -Z13 Pl

Ri R2 +Z 22 + ' 3 + Z2 3  0. Z22 + Z2 P2+.  

5t x2 - 2 2-. R3 - Z 2 3  0. -z22- -z23 P2

X1  R2  5t3 + Z 33 + 0. 0. Z3 3 + P3+ 

RI X 2  X3 - Z33 - . 0. -Z 33 . P3

Given the statistical moments: expected value, standard deviation, skewness 

coefficient, and correlation coefficient of the random variables, x,, x2, and x3; equations 

are obtained as functions of the point representation unknowns (see Appendix B.3).  

These equations are based on the assumption that the weighting functions are equally 

distributed among the point distribution pairs, i.e., pi+ + pi- = 1/3, where i=1,2,3. In 

solving these equations, a special sequence is followed such that the unknowns can be 

evaluated. Thus, the sequential order in which the unknowns are solved is given in a 

vector as follows: 

z= [z11, z12, z13] 

Z2 = 0, Z-2, Z231 

Z3= 0, 0, Z33] 

where zu = {zii+, za., pi+, pi-}, i=1, 2, and 3.



A 

P3+ 

P1. I(X2

P2 , 

X23 P3 -

Vx3 

(r1, Ir2, f'S + z33+) 
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' z12 ,x 3 -z 1 3 ) I

P++ (Xlz11+,X2',Z1 zi3 +Z13) 
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Figure 3.4 Model II Point Distribution 
Approximation - Three Variables.
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The vectors zj, z2, and z3 are associated with the weighting functions Pi, P2, and P3, 

respectively. The above sequence follows the same pattern as explained for a function 

of two random variables.  

. The solutions for the unknowns are given in Appendix B.3 (equations B.25 

B.39). Equations (B.25 - B.28) represent the solution for P,+, Pi-, z1 1+, and z11..  

Knowing these solutions, z12 and z13 are then determined using equation B.29. Then z22+, 

z22, P2+, and p2.- are obtained. To solve these unknowns, equations (B.16 - B.18) are 

rearranged as (B.30-B.32), and a quadratic equation (B.33) is obtained as given in 

Appendix B.3. The solution to this quadratic equation provides the unknowns z22+ and 

z2.. The weighting functions P2- and P2+ are then determined using equations (B.34) and 

(B.35), respectively. Next, the unknown z23 is solved using equation (B.36). Finally, 

equations (B. 19 - B.21) are rearranged to solve for the unknowns z33+, z33., P3+, and p3-.  

A quadratic equation (B.37) is obtained, which yields the solution for z33+ and z33..  

Lastly, the solution to the weighting functions p3 and P3+ are determined from equations 

(B.38) and (B.39), respectively.  

The conditions of applicability of model II are discussed in subsection 3.2.4.  

3.2.3 Generalization of Model H Point Distribution Approximation 

The generalized coordinates of the point representation for a function of N 

random variables for model II can be given as N-point estimate pairs, located at R + zi+ 

and i - zi. (i= 1,2 ..... , N), with: 

i............ ... ...... N] 

zi+ = [zil, zi2, ...... z(I-I), ziO+, Zi(1+ 1) ..... Z, ] 

zi.= [z71 , z2, ....... Zi(-1 ), Zfi-, zi+t), .... . I z] (3.61) 

where x& is the expected value of the random variable xi (i = 1,2 ..... , N) and {zii = 0 

for j = 1,2 ..... , i-I}.
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The locations i + zi+ and i - z, are associated with the weighting functions pi+ 

and pi., respectively. In providing the discrete approximation, the statistical moments: 

expected value, standard deviation, skewness coefficient, and correlation coefficient of 

the random variables are assumed to be known. For a function of N random variables, 

the number of point representation unknowns will be 2N + [N(N+3)/2], where the term 

2N represents the number of weighting functions pi+ and pi. (i= 1,2 ..... , N), and the 

term [N(N+3)/2] represents the number of unknown locations of the point 

representation, which are given in the vector forms as z,+ and zi. (equation (3.61)), 

i= 1,2 ...... , N.  

The solution is based on the assumption that the weighting functions are equally 

distributed among the point-distribution pairs, that is, 

A +P1_=.1 (3.62) 

where i = 1,2, .... ,N.  

The point representation unknowns are solved by specifying the statistical 

moments of the random variables as functions of these unknowns. By defining these 

statistical moments, the equations obtained are 

E[(x _x)]=p,÷zu._p,_zU_=O.O k.-1 (p,÷ _pkjzkj =A, (3.63) 

-2 =i (P=-1 +Pk 2 = (3.64) E[(x,-x) ]=iZU+ p_•. Z .i- •. (Pt k-1-)Z =~Bi 

-- 3 

E[(x1-x1 )3]=pj+z1 -pA_ 3_ (1) U3- .,. (P Pk-_) •= C1  (3.65) 

where the random variable xi (i= 1,2 ..... , N) is with mean ki, standard deviation oa, and 

skewness coefficient O3j(l).  

Similarly, defining the covariance term of the random variables x, and xj (pi):
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E[x,-x1) (xj-Tj)] = (p,+z,.,pzD =p, k. +pki Z (3.66) 

where pi+, pi-, za+, z.- and zi, ( i=1,2 ...... , N-1 and j=i+l, i+2 ...... , N) are the 

unknowns of the point representation.  

Equations (3.62-3.66) represent the required conditions to solve for the point 

representation unknowns of model 1I. In solving these unknowns, a special sequence is 

followed. The sequential order is given in vectorial forms zi+ and zi. (see equation 

(3.61)). Equations (3.62 - 3.65) are rearranged to solve for the unknowns z.+, z., pA., 

and pi+ (i=1,2 ..... , N), and then the unknowns z i (=1,2 .... ,N-1 and j=i+l, i+2, 

.... I N) are computed using equation (3.66). The corresponding expressions are given 

below.  

The quadratic equation which solves for the unknowns zu+ and za. is as follows: 

22 2 =0.  

(-A, )z -(.- -AB)z + (A C -B)=O.O (3.67) 

where the solution zi is defined as zd+ =z.i and z.= (-z.).  

The expressions for the unknowns pi- and pi+ are 

1 
A RU -A (3.68) 

ZU+ +Zu/ 

1 (3.69) PA. W -Pi-

The unknowns zij are obtained from the expression
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Pyald -•i'- (Pk÷+Pk")ZkiZJ (370) 

where i=1,2 ..... ,N-1 and j=i+l, i+2 ...... , N. An algorithm was designed and is 

incorporated into a computer program to solve for the unknowns. The algorithm is 

analogous to that for solving functions of two and three random variables. When the 

random variables are symmetrically distributed, the generalized solution of model II 

reduces to Lind's (1983) solution.  

3.2.4 Alternative Solutions for Model II Applicability 

The applicability of model II is contingent on the roots of the quadratic equation 

(3.67) being real; and, of course in practical applications, by the condition that the 

coordinates of the point representation are greater than zero (because the variables are 

defined to be positive). In cases where these conditions are not met, two alternative 

procedures will be suggested. One alternative is to change the variables' sequence when 

solving for the point-estimates, and the other alternative is to redistribute the weighting 

functions. The suggested alternatives are discussed below: 

1) The discrete approximation for model II is provided by following the extended 

'face-centered' point representation (see Tables 3.3 and 3.4). By virtue of this 

representation, the coordinates of the discrete approximation depend on the 

sequence of the variables of the 5 vector as given in equation (3.61). For 

example, if there are N random variables, it is possible to choose N! sequences 

for the R vector. Recall, there is no uniqueness. Therefore, one alternative is to 

use a trial and error procedure to produce a sequence of variables among all the 

possible sequences of N! such that the required conditions for practical use are 

-satisfied. But, it is not appropriate to consider all the possible N! sequences as 

it increases tremendously with N. An example will be given in the next chapter.
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2) Formally, the second alternative distributes the weighting functions equally 

among the point-distribution pairs (see equation 3.62). This assumption is 

consistent with the principle of maximum entropy, which says that if no additional 

information is available about the distribution, the least biased is the uniform 

distribution. However, if this alternative does not satisfy the required conditions, 

another alternative is to redistribute the weighting functions according to the 

available information. Again a trial and error procedure must be involved 

because of the sequential nature of the algorithm.  

The alternatives suggested here are also applicable to Lind's (1983) methodology.
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CHAPTER 4 

NUMERICAL EXAMPLES OF THE DEVELOPED METHODOLOGY 

4.1 Numerical Examples 

Illustrations of the newly developed point estimate methodology is presented in 

this chapter using some numerical examples with detailed step-by-step procedures. The 

results of the new point estimate methodology are also compared with Rosenblueth 

(1975), Lind (1983), and Harr (1989) point estimate methodologies, and with the Monte 

Carlo simulation technique. A sensitivity analysis is also performed to assess the 

influence of the skewed and correlated random variables. In the next chapter, the 

methodology will be applied to the flow code LLUVIA.  

4.2 Function of Three Random Variables 

The first example will consider the function y=x, x2/x3 of three random variables.  

Three cases will be investigated. In the first case, variables will be skewed and 

correlated. In the second case they will be independent and skewed. In the third case, 

the variables will be assumed to be statistically independent log-normal variates.  

4.2.1- Point Estimate Results for Skewed and Correlated Variables 

The statistical properties of the variables xi, x2, and x3 are given in Table 4.1: the 

correlation structure of these variables are P12= 0 .8, P13= 0 .7, and p23=0. 6 . Using this 

information, the expected value and standard deviation of the function y = (x, x2/x3) will 

be obtained using the two models of the new point estimate method. Estimates will also
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be obtained using Rosenblueth's (1975), Lind's (1983), and Harr's (1989) methods.  

Table 4.1 Statistical Data of Input Random Variables.

4.2.1. 1 Results Using Model I 

The procedure to be followed in model I of the new point estimate methodology 

was given in section 3.1.3. The point representation coordinates of model I are 

computed using equations (3.38), (3.39), and (3.40) for which there are 21 coordinates.  

For example, using equations (3.39) and (3.40) for the random variable xj, the weighting 

functions pl+ and P,- are given by:

p=
=0.8 (4.1) 

(4.2)
p = 1 -0. 8 = 0. 2

Using equation (3.38), the factor F, is defined as Fj= (0.8/0.2)0.5 if d,=l and F,= 

(0.2/0.8)0.5 if d,=0. Hence, the point estimate locations x,+ and x,. are then given by: 

_x 1  2 =20. ( -1) (-28) (0.2) (20.0) =22.0 (43) 
0.8

(4.4)0.8 0.5 
x3.=20.0+ (-1)'( (- -) (0.2) (20.0) =12.0 

0.2

Similarly, for the random variables x2 and x3, the point estimate locations are x2+ = 8.236, 

x2.=3.764, x3+ = 17.781, and x3.=7.719. Model I requires all the possible permutations
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of the point estimate locations xi+ and xi-, i=1,2,3. Table 4.2 gives all the eight 

permutations of xi, and xi.  

Table 4.2 Model I Point Estimate Locations for 
Skewed and Correlated Random Variables.  

sign variable variable variable 
X1 x 2  x 3 

12.000 3.764 7.719 
22.000 3.764 7.719 
12.000 8.236 7.719 

++ 22.000 8.236 7.719 
-- + 12.000 3.764 17.781 
+-+ 22.000 3.764 17.781 
-++ 12.000 8.236 17.781 
+++ 22.000 8.236 17.781

The next step in the procedure is the calculation of the weighting functions 

associated with the point estimate locations as given in Table 4.2. This is accomplished 

by using the generalized solution for the weighting functions given in equation (3.41).  

According to equation (3.41), the weighting functions are defined in terms of p,+, pi-, 

and the correlation structure of the variables. For example, considering the first sign 

value (-- -) as given in column one of Table 4.2, the corresponding weighting function 

for this sign value is given by: 

P--= Pl-P2-P3-+(-1)1(-1y a12 P3- + (-1)a(-1)' a13 P2- + (-a)2(-1)' a23 PI. (4.5) 

where a12 =P12(Pl +Pj-P2+p2_)°'5, a13 =P13(P1+PI-P3 +P3-)05, and a23 =P23(P2+P2-P3+P3-)°'. The 

factors pl. in equation (3.41) are defined as 1h2=P3-, P13=P2., and P23=-P..  

All the weighting functions pi+ and pj. (i= 1,2,3) in equation (4.5) are computed 

using-equations (3.39) and (3.40). Therefore, p,+=0. 8, p.-=O.2, P2+=0. 2764 , p2.  

=0.7236, p3+=0.7236, and P3.=0. 2764 . Substituting these weighting functions in 

equation (4.5), the factors a•, are defined as a12= 0.8 (0.8 0.2 0.2764 0.7236)0.5 -



49

0.1431, a,3= 0.7 (0.8 0.2 0.7236 0.2764)0.5 = 0.1252, and a2= 0.6 (0.2764 0.7236 

0.7236 0.2764)0.5 = 0.1200. Hence, the weighting function p--- of equation (4.5) 

reduces to: p- = 0.2 0.7236 0.2764 + 0.1431 0.2764 + 0.1252 0.7236 + 0.1200 0.2 

= 0.1942.  

The corresponding estimate of the function y for the sign value ( - -) is y = 

(12.000)(3.764)/ 7.719 = 5.852. Continuing this procedure provides the magnitudes of 

all the weighting functions for the signs listed in column one of Table 4.2 and the 

corresponding point estimates of the function y = (x1 x2/x3). The results are given in 

Table 4.3.  

Table 4.3 Model I Results for Point Estimates of Function y =xI x2/x3 

- Skewed and Correlated Random Variables.  

sign weighting function y Pijk Yij, Pijk Yijk2 

function point estimates 
Pijk Yik 

0.1942 5.852 1.137 6.651 
0.1258 10.728 1.350 14.478 
-.0137 12.804 -. 175 -2.246 

++- -.0299 23.474 -.702 -16.476 
-- + 0.0937 2.540 0.238 0.605 
+-+ 0.3099 4.657 1.443 6.721 
-++ -.0742 5.558 -.412 -2.292 
+_+_ + 0.3942 10. 190 4.017 40.932

With the point estimates of the function y as given in Table 4.3, the estimates for 

the statistical moments of the function y are then obtained using the relationship (for 

more details see section 4.8, Harr (1987)):

E [ y 'I= ~PijkYi~jk (4.6)

where the indices i, j, and k represent the signs listed in column one of Table 4.3; p.,



50

and yij are given in Table 4.3.  

The expected value and standard deviation of the function y are obtained using 

equation (4.6). The expected value of y, E[y], results from M= 1. The standard 

deviation of function y (sy) follows from the relationship s = E[y2] - (E[y])2. E[y] is 

the sum of the terms in column four of Table 4.3, Ely] = 6.894; and E[y2] is the sum 

of the terms in column five of Table 4.3, E[y2] = 48.356. Using the relationship s2Y = 

48.356 - (6.894)2 = 0.829, this gives s. = 0.911 and the coefficient of variation V = 

(sy/E[y]) 100 = (0.911/6.894) 100 = 13.21 %. These results form the first row of 

Table 4.6.  

4.2.1.2 Results Using Model II 

The procedure followed in model II of the new point estimate methodology was 

given in sections 3.2.2 and 3.2.3. The point estimate locations and the corresponding 

weighting functions were given in Table 3.4. The necessary relations are equations 

(B.25-B.39) of Appendix B.3. To provide a balance between unknowns and equations 

(the equations of Appendix B.3), the assumption is made that the weighting functions are 

equally distributed among the point-distribution pairs, i.e., pi++pi. = 1/3 (as was 

discussed in section 3.2.2).  

The point estimates for model II were obtained with the sequence of the variables 

taken as [x3, x,, x2]. That is, in providing the point distribution approximation, the 

statistical data of the variable x3 is considered first and then the variables x, and x2, 

respectively. This particular sequence meets the required conditions of applicability 

(positive point estimate locations and non imaginary roots) discussed in section 3.2.4.  

Using equations (B.25-B.28), the unknowns Pl+, Pi-, z,,+, and z11. of the variable 

x3 are first obtained. In solving for these unknowns, the first three'statistical moments 

of the variable x3 are substituted in the respective equations.
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12t(= -1.0) 2 =0.2129 (4.7) 
6 N12+ (-I. O)Ii 

Pi-=-i -Pi÷=0.3333 -0.2129 =0.1204 (4.8) 

Z1+ 3 1204 0. 3(150)=5. 863 (4.9) ZII+V• 02129 

ZI _= V34 0.2129 0.3 (15. 0) =10.362 (4.10) 
0. 1204 

The unknowns z, 2 and z13 are then solved using equation (B.29). For the selected 

sequence Ix 3, x1, x2], the point representation unknowns z12 and z,3, respectively, satisfy 

the covariance terms between x3 and x, (P31) and between x3 and x2 (P32). Therefore, in 

equation (B.29), corresponding correlation coefficient terms are substituted as follows: 

0.7 0.3 (15.0) 0.2(20.0) =5048 (4.11) z=0.2129 (5.863) +0.1204(10.362) =.4 

0.60.3(15.0) 0.4(5.0) 2.163 (4.12) 
0. 2129 (5. 863) +0. 1204 (10.7362) 

Therefore, the coordinates of the first pair of the point estimate locations are 

(15.0+5.863, 20.0+5.048, 5+2.163) = (20.863, 25.048, 7.163) and (15.0-10.362, 

20.0-5.048, 5.0-2.163) = (4.638, 14.952, 2.837). The corresponding weighting 

functions are 0.2129 and 0.1204, respectively. These coordinates are entered in the first 

two rows of Table 4.4.  

- To solve for the unknowns z22+, z22., p2+, and P2-, the factors A2, B2, and C2 are 

computed using equations (B.30-B.32). In equations (B.30-B.32), the first three 

statistical moments of the variable x, are substituted into these equations. Because, the 

variabile x, is the second variable in the sequence [x3, x1, x2].
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A2 =-(0.2129-0.1204) 5.048=-0.46 6 9 

B2 = (0.2 (20.0)) 2- (0.2129 +0.1204) 5.0482 =7.506 

C2 =(-1.5) (0.2(20.0))3 -(0.2129 -0.1204) 5.0483=-107.899 

The quadratic equation (B.33) is then given by: 

7.506_ )Z -107. 899 ( 7(-0.467) 2)Z2( -(-0.467) (7.506)) z 22 3 3 

+((-0.407) (-107.899) -7.5062)=0.0 (4.13) 

and the solution is z22=z 22+=0.183 and Z22=(-z722-)-14.392.  

The respective weighting functions P2- and p12+ are as follows: 

1 0. 183 - (-0.467) 

0.183 +14.392 =0.0362 (4.14) 

P 2 +=1-0.0362=0.2971 (4.15) 
3 

The unknown z2 is then determined by using equation (B.36). In solving the unknown 

z2, the covariance term between x, and x2 (p,2) is considered as x, and x2 are the second 

and third variables in the sequence [x3, x,, x2].  

0.8 0.2(20.0) 0.4(5.0) -(0.2129+0.1204) 5.048 2.163 =4.799 
Z23 = 0.2971 (0.183) +0.0362 (14.392) (4.16) 

Hence, the coordinates of the second pair of the point estimate locations are (15.0, 

20.0+0.183,5.0+4.799) = (15.0, 20.183,9.799) and (15.0, 20.0-14.392,5.0-4.799) 

= (15.0, 5.608, 0.201). The respective weighting functions are 0.2971 and 0.0362.  

The coordinates are entered in the third and fourth rows of Table 4.4.  

Finally, the unknowns z33+, z33., P3+, and tN- are solved to satisfy the first three 

statistical moments of the third variable in the selected array, x2. Using the equation
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(B.37), the quadratic equation which solves for the unknowns z33+ and z33. is as follows: 

5. 236(_1.45)2) Z3 2
3 _ 1.772 -(-1.452) (-5.236)) Z33 3 3 

+ ((-1.452) (-21.772) - (-5.236)2) =0.0 (4.17) 

where the factors A3, B3, and C3 in equation (B.37) are enumerated as follows: 

A3 =0.0 -(0.2129 - 0.1204) 2.163 - (0.2971 - 0.0362) 4.799 = -1.452 

B3 =(0.4 (5.0))2 - (2.163)2/3 - (4.799)2/3 = -5.236 

C3 =1.0 (0.4 (5.0))3 - (0.2129 - 0.1204) 2.1633 - (0.2971 - 0.0362) 4.7993 = -21.772 

The solution of the quadratic equation yields z33 = Z33+ = 4.120 and z33 = (-z33.) = 

0.265. The weighting functions P3- and P3+ are given by: 

-14. 120 - (-1.452) -0.6444 (.8 
93-= 34.120+0.265 

P93+ = -1 0 0.6444 = -0.311i0 (4.19) 3 

Hence, the coordinates of the third pair of the point estimate locations are defined as 

follows (15.0, 20.0, 5.0+4.120) = (15.0, 20.0, 9.120) and (15.0, 20.0, 5.0-0.265) = 

(15.0, 20.0, 4.735). The respective weighting functions are -0.3110 and 0.6444. The 

coordinates of the third pair are entered in the fifth and sixth rows of Table 4.4.  

The above was presented to explain the details of model II solution procedure.  

Actual results were obtained by the use of a computer program given in Appendix D.
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Table 4.4 Model H Point Estimate Locations for 
Skewed and Correlated Random Variables.  

variable ariable variable weighting 
X3 x, x2 functions 

20.863 25.048 7.163 0.2129 
4.638 14.952 2.837 0.1204 
15.000 20.183 9.799 0.2971 
15.000 5.608 0.201 0.0362 
15.000 20.000 9.120 -. 3110 
15.000 20.000 4.735 0.6444

The point estimates of the function y = (xI x2/x3) can now be computed using the 

results given in Table 4.4. For example, considering the first row of the point estimate 

location given in Table 4.4, the estimate of the function y is given by y =(25.048) 

(7.163) / (20.863) = 8.600. Continuing this procedure, the estimates of all the point 

estimate locations are given in Table 4.5.  

Table 4.5 Model II Results for Point Estimates of Function y =xI x2/x3 
- Skewed and Correlated Random Variables.

The expected value and standard deviation of the function y are again obtained 

using equation (4.6). The procedure followed beyond this point in determining these

weighting function y p y2 

function point 
p estimates 

0.2129 8.600 1.831 15.746 
0.1204 9.146 1.101 10.071 
0.2971 13.184 3.917 51.641 
0.0362 0.075 0.003 0.0002 
-.3110 12.161 -3.782 -45.994 
0.6444 6.314 4.069 25.690
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statistical moments is exactly the same procedure as was explained for model I.  

Following this procedure, the expected value of the function y is given by the sum of the 

six point estimates in the third column of Table 4.5, E[y] = 7.139. The sum of the 

fourth column of Table 4.5 produces E[y2] = 57.155, and hence, the standard deviation 

sy of the function y is sy = (57.155 - (7.139)2)0.5 = 2.490. The coefficient of variation 

is V = (2.490/7.139) 100 = 34.88 %. These results form the second row of Table 4.6.  

For comparison purposes, the estimates for the statistical moments of the function 

y=(xl x2/x3) are also obtained using Rosenblueth (1975), Lind (1983) and Harr (1989) 

point estimate methodologies. The results of all the point estimate methodologies are 

given in Table 4.6.  

Table 4.6 Point Estimates for Statistical Moments of Function y =x, x2/x3 

- Skewed and Correlated Random Variables.  

methodology expected value standard coefficient of 
deviation variation 

E[y] SY V 

model I of new method 6.894 0.911 13.21 % 

model II of new method 7.139 2.490 34.88 % 

Rosenblueth (1975) 6.960 3.253 46.73 % 

Lind (1983) 6.957 2.903 41.73 % 

Harr (1989) 7.004 3.487 49.79 %

4.2.2 Point Estimate Results for Independent and Skewed Variables 

The same statistical properties of the variables will be used as given in Table 4.1, 

excepi that there will not be any correlation structure among the variables. The results 

of all the methodologies are tabulated in Table 4.7.
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Table 4.7 Point Estimates for Statistical Moments of Function y =x, x2/x3 

- Independent and Skewed Random Variables.  

methodology expected value standard coefficient of 
deviation variation 

Ely] sY V 

model I of new method 7.650 5.005 65.42 % 

model II of new method 8.062 5.867 72.77 % 

Rosenblueth (1975) 7.326 4.112 56.12 % 

Lind (1983), Harr (1989) 7.489 4.213 56.25 % 

A Monte Carlo simulations of the above cases was conducted using beta 

distributions (Harr, 1987) for the variates. The assumed beta distributions were selected 

to satisfy the given statistical moments about the variables xj, x2, and x3 as given in 

Table 4.1 and also the constraint 32(1)+ 1:- 0(2) -<1.50((1)+3, where 03(1) is the 

skewness coefficient, and 3(2) is the kurtosis coefficient of the beta distribution. The 

later constraint is imposed to meet the criteria for a possible beta distribution (as given 

in Figure 2.2.2 of Harr, 1987).  

The lower bounds of the beta variables x,, x2, and x3 for the Monte Carlo 

simulation were taken to be 0, 2, and 3, respectively, along with the statistical properties 

as given in Table 4.1. In selecting the bounds for the negatively skewed random 

variables x, and x3, the lower bounds were defined such that the upper bounds of these 

variables were one standard deviation from the mean. For the positively skewed random 

variable x2, the lowest possible bound was selected, which meets the constraint on 0(1) 

and f-(2) as stated above along with the statistical properties given in Table 4.1. The 

Monte Carlo simulation technique was then applied to the function y by varying the 

number of simulations from 100 to 10,000. The results obtained for the statistical 

moments of the function y =(xI x2/x3) using the Monte Carlo simulation are tabulated 

in Table 4.8.
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Table 4.8 Results of the Monte Carlo Simulation Technique for 
Function y =x1 x2/x3 - Beta Variables.  

Number of Expected value Standard deviation coefficient of 
simulations of function y of function y variation V 

E[y] SY 

100 8.049 5.311 65.98 % 
1000 8.278 6.406 77.39 % 
5000 7.952 6.551 82.38 % 
10000 7.882 6.166 78.23 %

4.2.3 Point Estimate Results for Independent Lognormal Variables 

This case requires more information than is known about the variables in the 

previous cases (see section -4.2.1 and 4.2.2). That is, conceptually, all statistical 

moments of the random variables are completely known. Also, the exact solution can 

be obtained for the statistical moments for lognormal variates given as the function y = 

x1 x2/x3.  

The expected values of the input random variables xi (i= 1,2,3) are taken to be 

the same as given in Table 4.1. The coefficients of variation of the input random 

variables are assumed to range from 10% to 90%. For illustration purposes, the 

coefficient of variation of the random variables xj, x2, and x3 will be taken to be the 

same. As the variables are taken to be lognormal variates, the skewness of the variables 

is a function of the coefficient of variation of the variables. The relevant relationships 

are given by Hahn and Shapiro (1967).  

As an example, considering the case in which the coefficient of variation of the 

input random variables is 60%, the computed values for the statistical parameters using 

the relationship by Hahn and Shapiro (1967) are as given in Table 4.9. For instance, 

considering the variable x1, the variance of the lognormal variate In x, is given by 

ln(1+0.62)=0.308, the expected value of the log normal variate is given by ln(20.0)-



58

0.5(0.308) = 2.842, and the skewness of the variable x, is given by (e°' 308-1) 0.5 (e0.308 +2) 

=2.016. As the coefficients of variation of all the input random variables (x,, i= 1,2,3) 

are assumed to be the same, the variance of the lognormal variates and the skewness of 

the random variables xi are the same as given in Table 4.9.  

Table 4.9 Statistical Parameters of Input Random Variables with Coefficient 
of Variation 60 % - Independent Lognormal Variates.  

variable expected expected value variance of skewness 
value of lognormal lognormal 

variate variate 

X1  20 2.842 0.308 2.016 
x2 5 1.456 0.308 2.016 
X3 15 2.554 0.308 2.016

With the first three statistical moments: expected value, standard deviation 

(coefficient of variation), and skewness coefficient of the independent lognormal variables 

xi (i= 1,2,3) (for example, the expected value and skewness coefficient are respectively 

given in first and fourth columns of Table 4.9, and the coefficients of variation of the 

variables as 60 %), the estimates for the statistical moments: expected value and standard 

deviation of the function y = x, x2/x3 are computed using the two models of the new 

point estimate methodology. The results of Rosenblueth's (1975), Lind's (1983), and 

Harr's (1989) point estimate methodologies were computed (see also Figures 4.1 and 

4.2). Furthermore, the exact solution (lognormal solution) for the expected value and 

standard deviation of the function y = x1 x2/x3 as independent lognormal variates were 

also obtained. The results are tabulated in Table 4.10 and shown in Figures 4.1 and 4.2.



Table 4.10 Results for the Expected value and Standard deviation 
of Function y = x1 x2/x3 - Independent Lognormal Variates.

coefficient skewness expected value of standard deviation of function 
of function y y 

variation 
(%) model I model II lognormal model I model H lognormal 

of new of new solution of new of new solution 
method method method method 

10 0.301 6.732 6.733 6.733 1.160 1.159 1.172 
20 0.608 6.913 6.933 6.933 2.354 2.339 2.450 
30 0.927 7.172 7.262 7.267 3.611 3.556 3.947 
40 1.264 7.459 7.707 7.733 4.951 4.811 5.792 
50 1.625 7.733 8.235 8.333 6.384 6.082 8.136 
60 2.016 7.964 8.791 9.067 7.908 7.319 11.161 
70 2.443 8.138 9.301 9.933 9.519 8.461 15.091 
80 2.912 8.253 9.694 10.933 11.210 9.462 20.193 
90 3.429 8.315 9.927 12.067 12.975 10.315 26.792

59
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CHAPTER 5 

APPLICATION TO LLUVIA 

LLUVIA is a flow code developed at Sandia National Laboratories to estimate the 

groundwater travel time computation for one-dimensional, steady-state flow problems 

through multiple layers of saturated or partially saturated media. The problem of special 

interest in the present chapter is the variability of the travel time caused by the 

uncertainties in the unsaturated zone parameters. The analysis of uncertainties in the 

prediction of travel time is supported by Carsel and Parrish (1988); Panian (1987); Rawls 

et al. (1982); and Kaplan and Yarrington (Report SAND88-2247C, Sandia National 

Laboratories).  

The developed procedures described in Chapter 3 and illustrated in Chapter 4 

were used to address the uncertainties of the input parameters. Three cases will be 

investigated. Representative statistical parameters are those reported by Carsel and 

Parrish (1988). The results of the new models will be compared to Rosenblueth (1975), 

Lind (1983), and Harr (1989) methods.  

5.1 Flow Code LLUVIA 

The flow problem will be treated as a steady-state, one-dimensional, unsaturated 

flow in a layered, fractured medium. The system is assumed to be isothermal, non

deforriing, and the fluid is assumed to be of constant density. Only a-single fluid phase 

the liquid phase - will be considered. The flow in the system is assumed to be Darcian.
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5.1.1 The Model 

5.1.1.1 Mathematical Model 

The mathematical model used in the flow code LLUVIA to describe the 

unsaturated flow in a fractured medium is the composite matrix/fracture model of 

Klavetter and Peters (1986, 1988). The model representation treats the media material 

as a continuum when solving for the pressure field. The major assumption in this 

development is that the pressure gradient in the matrix and the fractures are identical in 

the direction perpendicular to flow. The flow media may or may not contain fractures.  

The flow in the system is assumed to Darcian; therefore: 

v= -K(+) V (qr +z) (5.1) 

where v is the Darcian velocity (infiltration rate), i, is the pressure head (P/Y, where 'Y 

is the unit weight of the liquid), K(#) is the effective hydraulic conductivity for the 

prevailing degree of saturation, and z is the elevation head, above a chosen datum.  

5.1.1.2 Parameter Models 

The characterizing fluid movement in an unsaturated medium requires knowledge 

of the unsaturated parameters hydraulic conductivity K(#) and the degree of saturation 

S(4,) as functions of the pressure head 0. The recommended functional form for the 

matrix and fracture saturation is van Genuchten (1978) model: 

S(W) = (SS-S) {1 -+IatI - -, (5.2) 

where •' is the pressure head; S(&) is the degree of saturation for the prevailing pressure 

head 0; S, is the maximum saturation; Sr is the residual saturation; and a and N are the 

curve Tfitting parameters of van Genuchten's model respectively descfibing the air entry 

parameter and the slope of the desaturation curve.
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The recommended functional form for the matrix and fracture hydraulic conductivity is 

van Genuchten/Mualem (1976) model: 

K(*J) =K,[1+IalJI 2 12L1 ~*N (5.3) 

where K(&) is the hydraulic conductivity for the pressure head ', K, is the saturated 

hydraulic conductivity, a and N are the saturation-curve fitting parameters of van 

Genuchten's (1978) model, and X = 1 - 11N.  

5.1.2 Boundary Conditions 

Two boundary conditions must be stipulated as the flow is assumed to be one

dimensional (equation 5.1). The upper boundary is the constant infiltration flux 

boundary (q=qo), and the lower boundary is taken as a water table boundary with the 

pressure head '=0.0. Hence, 

q =q at z =zt 

= 0.0 at z = 0.  

5.1.3 Solution Procedure 

Equation (5.1) is the governing flow equation to be solved for the pressure field.  

For partially saturated conditions, the hydraulic conductivity (K(#)) is a strong function 

of pressure head (0t) and hence, equation (5.1) is extremely nonlinear. The solver in 

LLUVIA is based on Hindmarsh's code (1981). The solver is designed to provide an 

efficient numerical solution procedure for the one-dimensional, steady-state flow equation 

(5.1).  

The pressure field obtained by solving equation (5.1) is subsequently used to 

compute the hydraulic conductivity, matrix saturation, and flow velocities in matrix and 

fractures (if present). The flow velocities are calculated following the equations from 

Peters et al. (1986). Using these flow velocities, minimum groundwater travel time is
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computed from a given elevation to the bottom of the flow domain.  

5.1.4 Parameters Required 

The program separates the one-dimensional domain into a number of layers.  

Layers are numbered consecutively from the bottom to the top of the domain. For the 

groundwater travel time computation, the program requires the quantification of the 

infiltration rate, boundary pressure head at the bottom of the domain, and the material 

characterization for each layer. The material properties are the porosity (4), saturated 

hydraulic conductivity (K5), residual saturation (S,), and the curve fitting parameters of 

van Genuchten's model (the air entry parameter (a) and van Genuchten model 

desaturation parameter (N)). If the layer is fractured, matrix and fracture properties are 

defined separately for the LLUVIA program. If there are no fractures in the material, 

the area fraction of fractures (referred to as a fracture porosity) is set to zero.  

5.2 Specific Problems Solved 

The developed methodology described in Chapter 3 was incorporated in to the 

flow code LLUVIA for the probabilistic estimate of the groundwater travel time in an 

unsaturated medium. The material input parameters: saturated hydraulic conductivity 

(K5), residual saturation (S), and van Genuchten model parameters describing air entry 

parameter (a) and the slope of the desaturation curve (N) are taken to be the random 

variables. The layers will be assumed to be nonfractured. Therefore, within each layer 

(unit) of nonfractured medium there will be four random variables: K,, S,', a, and N.  

The representative values for the probabilistic analyses are selected in accordance with 

the data reported by Carsel and Parrish (1988). These results show that these four 

random variables within each unit are correlated and skewed.  

Infiltration flux rates of 0.1 mm/year and 1 mm/year are considered in the 

illustrative examples presented in this chapter (Report SAND88-0942, Sandia National 

Laboratories).
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5.2.1 Example I - Single Layer Problem of Silty Clay 

The first application of the newly developed methodology to LLUVIA considers 

a silty clay layer of 10 m thickness. The groundwater travel time is taken to be the time 

for a drop of water to travel from the top of the layer to the groundwater table which is 

at the bottom of the layer. According to the reported data by Carsel and Parrish, silty 

clay has the highest coefficient of variation (453.3 %) for the saturated hydraulic 

conductivity (KI. The fitted beta distribution (Harr, 1987) for silty clay saturated 

hydraulic conductivity (K,) has a skewness of 6.26. In fitting a beta distribution for K1, 

the reported values by Carsel and Parrish (1988) were used for the expected value, 

coefficient of variation, and the range of limits. Similarly, the representative values for 

the other three random variables Sr, a, and N of silty clay were selected as given by 

Carsel and Parrish, and the skewness of these random variables were determined by 

fitting a beta distribution within the given limits of variation. The reported data of 

Carsel and Parrish also give positive pair-wise correlation coefficients among the four 

random variables K3, S,, a, and N of silty clay. Table 5.1 gives the desired expected 

values, coefficients of variation, skewness coefficients, and correlation coefficients of the 

random variables.  

Table 5.1 Representative Values of the Random Variables for Silty Clay.  

Random K, (cm/hr) Sr a (1/m) N 
variable 

expected value 0.02 0.07 0.5 1.09 

coefficient of 453.3 33.5 113.6 5.0 
variation (%) 

skewness 6.26 0.00 2.10 0.78
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The correlation matrix for the silty clay layer is 

Ks Sr a N 

1.0 0.949 0.974 0.908 

p = 0.949 1.0 0.964 0.794 

0.974 0.964 1.0 0.889 

0.908 0.794 0.889 1.0 

Having chosen the expected values, coefficient of variations, skewness 

coefficients, and correlation coefficients of the random variables, the point distribution 

approximation of the random variables were computed using the newly developed 

methodology. Models I and II, as outlined in Chapter 3, were considered. A computer 

program was developed to solve for the point distribution approximation of these two 

models.  

5.2.1.1 Example I - Model I 

For the first example, model I gives sixteen realizations for the LLUVIA run.  

These are the required number of runs for a system of four random variables 

(2 N=24=16 ). These values are tabulated in Table C.l.  

For each set, infiltration flux rates of 0.1 mm/year and 1.0 mm/year were 

specified, and the groundwater travel time outputs of LLUVIA were obtained. Each 

output of the groundwater travel time was then weighted by the corresponding weighting 

functions of each sets of values as given in Table C. 1. The evaluation of the statistical 

parameters, expected value and coefficient of variation of the groundwater travel time, 

are summarized in Appendix C. 1 and the results are given in Table 5.2. Estimates of 

the expected pressure head, degree of saturation, and hydraulic conductivity profiles in 

the silty clay layer were also obtained (see Figures 5.1, 5.2, and 5.3).
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Figure 5.1 Steady-State Pressure Head Profile when Flux rate = 0.1 mm/year, 
Example I - Model I.
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Example I - Model I.
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Flux rate = 0.1 mm/year, Example I - Model I.



71

5.2.1.2 Example I - Model II 

Model H was applied with the same statistical properties for the random variables 

as given in Table 5.1. With the assumption of equally distributed weighting functions 

among the point estimate pairs (pi,+p. = 1/4= 0.25, as stated in equation (3.62)), 

model II failed to provide a point distribution approximation with all of the eight point 

estimate locations being positive. For example, model H requires eight point estimate 

locations in the case of four random variables, i.e., 2 times 4 = 8. Among the eight sets 

of values (see Table C.3), only four sets of values are possible (see Table C.4). That 

is, only four sets of point estimate locations satisfy the necessary condition of positive 

values.  

As the original assumption of equally distributed weighting functions failed to 

provide the positive point estimate locations for all the point estimate pairs, alternative 

two suggested in section 3.2.4 with unequally distributed weighting functions among the 

point estimate pairs (i.e., pi++pi. • 1/4) was considered. As given in equation (3.62), 

the weighting function of a point estimate pair is given by the sum of the weighting 

functions pi+ and pi.. In the present example with four random variables there will be 

four pairs of p.+ +pi, where i= 1,2,3,4. Therefore, the redistribution of the weighting 

functions were considered among these four pairs. In redistributing the weighting 

functions, the only condition adopted is that the sum of all the weighting functions pairs 

is equal to unity. As s result of this, there is no uniqueness. As stated before in section 

3.2.4, a possible redistribution to meet the necessary condition of positive point estimates 

was a trial and error procedure.  

In considering a possible redistribution of the weighting function, for the given 

statistical values (Table 5.1), the random variable K, (skewness 6.26 and coefficient of 

variation of 453.3%) had the greatest influence in producing negative point estimate 

locatifns. Therefore, the weighting function for the random variableK, was varied over 

the range of zero and one. With the statistical properties given in Table 5.1, the random 

variable K. failed to provide positive point estimates locations. Therefore, the alternative
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approach suggested with unequally distributed weighting functions failed.  

As an alternate solution for this case, an appropriate point distribution 

approximation was then obtained by redistributing the weighting functions among the 

positive point estimate locations. The resulting point distribution approximations are 

given in Table C.4. The four possible sets of values were then used to estimate the 

groundwater travel time (see Table C.5). Model II results for the probabilistic estimates 

of the groundwater travel time are given in Table 5.2 for the infiltration flux rates of 

0.1 mm/year and 1.0 mm/year.  

As another alternative to model II, the four random variables K., 0., ce, and N 

were treated as independent skewed random variables, and the probabilistic estimates for 

the groundwater travel time were obtained. In treating the variables as independent 

skewed random variables, the representative statistical properties of the random variables 

were again taken to be as given in Table 5.1 except there was no correlation structure.  

Again, a point distribution approximation was obtained by redistributing the weighting 

functions equally as explained before and only six sets of values were possible among the 

eight sets of values. The results are given in Table 5.2.  

5.2.1.3 Example I - Other Models 

Results of Rosenblueth (1975), Lind (1983), and Harr (1989) point estimate 

methodologies were also obtained for Example I. In applying these point estimate 

methodologies, the statistical values as given in Table 5.1 were used except the skewness 

coefficients of the random variables were zero. In obtaining the probabilistic estimates 

of the groundwater travel time using these methodologies, the possible sets of values 

considered are tabulated in Tables C.6, C.7, and C.8. Possible sets of values implies 

that the locations are positive. Therefore, in applying Rosenblueth's methodology, only 

four iets of values were positive (possible) among the sixteen sets of values (24).  

Similarly, in applying Lind's methodology, only seven sets of values were possible 

among the eight sets of values (2 times 4 =8). In Harr's methodology also only four
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sets of values were possible among the eight sets (2 times 4=8). In the later 

methodologies, the weighting functions for possible locations were redistributed as shown 

in the respective tabular values in Tables C.6, C.7, and C.8.  

All the point estimate methodologies results for the probabilistic estimates of the 

groundwater travel time are tabulated in Table 5.2 for the infiltration flux rates of 

0.1 mm/year and 1.0 mm/year. The single valued deterministic solution was also 

obtained for the groundwater travel time in the silty clay layer.  

Table 5.2 Probabilistic Estimates of the Groundwater Travel Time 
using Point Estimate Methodologies - Example I.  

Point estimate Flux rate = 0.1 mm/year Flux rate = 1.0 mm/year 
methodology expected coefficient expected coefficient 

value of value of 
(years) variation (years) variation 

Model I 30,682.62 10.94 % 3,150.31 8.88 % 

Model H with 20,669.08 -0 % 2,210.58 -0 % 
redistributed weighting 

functions 

Model II with 29,032.70 5.97 % 3,000.22 5.65 % 

uncorrelated variables 

Rosenblueth (1975) 26,170.47 -0 % 2,657.94 -0 % 

Lind (1983) 29,357.65 MO % 2,986.36 -0 % 

Harr (1989) 26,583.76 6.32 % 2,696.68 5.92 % 

Deterministic Solution 30,447.50 3,096.53 1
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5.2.1.4 Example I - Two Variables Study 

A study was performed to explain the effect of the skewness coefficient of the 

random variables in predicting the probabilistic estimate of the groundwater travel time.  

For this study, representative statistical values for the random variables K, and ot were 

varied; the values for the other random variables (S, and N) and the correlation structure 

were kept the same as before. The random variable K, was taken to have an expected 

value as before (0.02 cm/hour), coefficient of variation of 120 %, and skewness 

coefficient of 2.16. For the random variable a, an expected value as before (0.5 1/m), 

coefficient of variation of 80 %, and skewness coefficient of 1.51 were taken. The 

skewness coefficient of the random variables K. and a was computed by fitting a beta 

distribution within the range of 0.0 to 0.1 cm/hour and 0.0 to 15.0 1/m, respectively.  

An infiltration rate of 0.1 mm/year was used as the input.  

The results are given in Table 5.3. As mentioned previously, model I requires 

sixteen (2- = 16) runs of LLUVIA for four random variables. The redistribution of the 

weighting functions was necessary for model HI locations. With the statistical values 

considered in this study, model II gives only four sets of values with the positive point 

estimate locations, instead of all the possible eight point estimate locations involved in 

this methodology. An alternative for model II, independent skewed random variables 

were also considered. The results of the point estimate methodologies by Rosenblueth 

(1975), Lind (1983), and Harr (1989) were also obtained and tabulated in Table 5.3.
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Table 5.3 Probabilistic Estimates of the Groundwater Travel Time using 
Point Estimate Methodologies - Example I (Two Variables Study).  

Point estimate methodology Infiltration 
flux rate = 0.1 mm/year 

expected value coefficient of 
(years) variation 

Model I 30,425.23 11.24 % 

Model H with redistributed 19,931.48 - 0 % 
weighting functions 

Model H with uncorrelated 29,238.01 5.62 % 
variables 

Rosenblueth (1975) 26,773.52 - 0 % 

Lind (1983) 29,450.37 - 0 % 

Harr (1989) 27,073.78 5.72 %

As model I gave the largest coefficient of variation for the groundwater travel 

time, probabilistic estimates of the pressure head, degree of saturation, and hydraulic 

conductivity profiles in the silty clay layer were also obtained using this model (see 

Figures 5.4, 5.5, and 5.6).  

5.2.2 Example H - Two Layer Problem of Silt and Silty Clay 

A second example of the newly developed methodology considers two layers: silt 

and silty clay. In this example the layer thickness is also 10 m and the bottom layer is 

taken to be a silt layer of 5 m. According to the published data by Carsel and Parrish 

(1988), silt has the highest capillary tension force (see Table 3, Carsel and parrish, 

1988). Therefore, the second application is intended to illustrate the effect of the silt 

layer in the silty clay layer profile. An infiltration rate of 1 mm/year was selected to 

maintain the steady state (Report SAND88-0942, Sandia National Laboratories). Each 

layer is assumed to be independent.



76

6
z 5- Deterministic Estimate of Press Head Profile 

3- Band width of One Standard Deviatio 

2

-9.0 -o0 -1.0 -.&0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 
Pressure Head (m) 

Figure 5.4 Steady-State Pressure Head Profile when Flux rate = 0.1 mm/year, 
Example I (Two variables study ) - Model I.
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Figure 5.5 Steady-State Degree of Saturation Profile when Flux rate = 0.1 mm/year, 
Example I (Two variables study) - Model I.
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Figure 5.6 Steady-State Hydraulic Conductivity Profile when Flux rate =0. 1 mm/year 
Example I (Two variables study) - Model I.
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The representative values for the silty clay layer are again those in Table 5.1.  

For the silt layer the values taken from Carsel and Parrish (1988) are given in Table 5.4.  

The skewness coefficient of the silt layer random variables K,, S,, a, and N were 

calculated as before by fitting a beta distribution with the available data of expected 

value, coefficient of variation, and limits of variation given by Carsel and Parrish. The 

global correlation matrix is given in Appendix C.2.  

Table 5.4 Representative Values of the Random Variables for Silt.  

Random K, (cm/hr) Sr a (1/m) N 
variable 

expected value 0.25 0.034 1.6 1.37 

coefficient of 129.9 21.6 64.7 8.5 
variation (%) 

skewness 1.79 0.17 0.97 0.27

The correlation matrix for the silt layer is

K, 

1.0 

p = -0.204 

0.984 

0.466

Or 

-0.204 

1.0 

-0.20 

-0.61

0.984 

-0.20 

1.0 

0.551

N 

0.466 

-0.61 

0.551 

1.0

5.2.2.1 Example II - Model I 

Using the statistical values as given in Tables 5.1 and 5.3 and the global 

correlation matrix, model I was applied to the LLUVIA code. The total number of runs 

required by model I is 256 (28 = 256). For each set of values, a LLUVIA input file was
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programmed and the corresponding groundwater travel time was computed. The 

expected value and coefficient of variation of the groundwater travel time were computed 

by weighting the travel time output by the corresponding weighting functions. The 

results are given in Table 5.5.  

Probabilistic estimates of the pressure head, degree of saturation, and hydraulic 

conductivity profiles of the two layer problem were also obtained using model I (see 

Figures 5.7, 5.8, and 5.9).  

5.2.2.2 Example H - Model II 

With the information given for the two layer problem, probabilistic estimates for 

the groundwater travel time were also obtained using model II. For two layers, model 

H requires sixteen sets of values (2 times 8 = 16, where 8 is the number of random 

variables). However, for the statistical parameters given in the two layer problem, only 

ten sets of values satisfy the requirement of positive point estimate locations. These 

possible ten point locations were obtained with the assumption of equally distributed 

weighting functions among the point distribution pairs (see section 3.2.3). The estimates 

for the ten sets are given in Table 5.5. The alternate solution with a redistribution of the 

weighting functions which specifies the condition of positive point estimate locations for 

all the sixteen point estimate locations of the given two layer problem again failed.  

Consequently, probabilistic estimates using model I[ was undertaken for the condition of 

independent skewed random variables. With independent condition also, a possible point 

distribution approximation was obtained with only twelve sets of values, instead of all 

the sixteen point locations of model H.  

5.2.2.3 Example II - Other Models 

Probabilistic estimates of the groundwater travel time in the two layer problem 

were also obtained using the point estimate methodologies by Rosenblueth (1975), Lind 

(1983), and Harr (1989). In applying these methodologies to the two layer problem,
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Figure 5.7 Steady-State Pressure Head Profile when Flux rate = 1.0 mm/year, 
Example II - Model I.



82

j" 6" rrooabtllltSc itstmate ot =wpected baturanon rroule

5 

3

2- Deterministic Estim of Satura P He 

1

0 
0.3 0.'4 0.5 0.6 0.7 0.8 0.9 1 

Degree of Saturation 

Figure 5.8 Steady-State Degree of Saturation Profile when Flux rate = 1.0 mm/year, 
Example II - Model I.
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Figure 5.9 Steady-State Hydraulic Conductivity Profile when Flux rate= 1.0 mm/year 
Example II - Model I.
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Rosenblueth's, Lind's, and Harr's methodologies respectively provide 256 (28), 16 (2 x 

8), and 16 (2 x 8) sets of values. Among these sets of values, the possible sets of values 

were again selected for the condition of positive point estimate locations. With this 

condition, Rosenblueth's, Lind's, and Harr's methodologies respectively gave 32, 14, and 

8 possible sets of values for the LLUVIA run. With these selected sets of values, the 

probabilistic estimates of the groundwater travel time were computed. The results of all 

the methodologies are given in Table 5.5.  

For example II, the deterministic solution of the groundwater travel time is 

2896.65 years for the influx rate of 1.0 mm/year.  

Table 5.5 Probabilistic Estimates of the Groundwater Travel Time using 
Point Estimate Methodologies - Example II.  

Point estimate methodology Infiltration flux rate 
1.0 mm/year 

expected value coefficient of 

(years) variation 

Model I 3,008.44 11.43 % 

Model II with redistributed 2,389.11 22.41 % 
weighting functions 

Model II with uncorrelated 2,903.33 10.22 % 
variables 

Rosenblueth (1975) 2,572.29 6.76 % 

Lind (1983) 2,831.26 10.48 % 

Harr (1989) 2,620.62 9.72 % 

Deterministic solution 2,896.65
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5.2.3 Example Ill - Four Layer Problem of Silt, Clay, and Silty Clay 

As another example, a four layer problem was considered with a clay layer of 0.1 

m thickness placed in the middle of the silt layer (bottom layer) presented in the second 

example. The total thickness of the flow domain is 10 m (see Figure 5.10). In 

particular, this example is interesting because the published data by Carsel and Parrish 

(1988) gives very low air entry value parameter (a) for the clay layer. Therefore, this 

example will explain the effect of having a clay seam in the silt layer. An infiltration 

flux rate of 1.0 mm/year (Report SAND88-0942, Sandia National Laboratories) was 

selected and the groundwater travel time is computed from the top of the silty clay layer 

to the water table at the bottom of the silt layer.  

The representative values of silty clay and silt layers are those taken previously.  

The clay layer representative values taken from Carsel and Parrish (1988) are given in 

Table 5.6. The skewness coefficients of the random variables for the clay layer were 

again determined by fitting a beta distribution.  

Table 5.6 Representative Values of the Random Variables for Clay.  

Random K, (cm/hr) Sr a (I/m) N 

variable 

expected value 0.20 0.068 0.8 1.09 

coefficient of 210.3 49.9 160.3 7.9 
variation (%) 

skewness 3.40 0.14 2.64 0.31
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Figure 5.10 One-Dimensional Flow Domain of Example IMI.
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The correlation matrix for the clay layer is 

K, ez a N 

1.0 0.972 0.948 0.908 
P = 0.972 1.0 0.890 0.819 

0.948 0.890 1.0 0.910 
0.908 0.819 0.910 1.0 

In the probabilistic analysis the properties between layers are independent: the 

total number of random variables is sixteen. Model I requires 216 = 65,536 number of 

runs of LLUVIA which are beyond reason; for the same system, model II requires only 

2 times 16 = 32 number of runs. Consequently, only model II was employed.  

Using model II, 18 sets of values are possible among the 32 point estimate 

locations. The probabilistic estimates of the groundwater travel time were then obtained 

with these possible sets of values. As in the previous examples, model II point 

distribution approximation was possible with equally redistributed weighting functions.  

Probabilistic estimates were also obtained using the point estimate methodologies by Lind 

(1983) and Harr (1989). Both of these methodologies provide 32 point estimate locations 

for the problem considered in example III. Among these 32 point estimates, 27 sets of 

values were possible in Lind's methodology, and in Harr's methodology 11 sets of values 

were possible. The results are given in Table 5.7. The deterministic solution of the 

groundwater travel time for example III is 2903.45 years.
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Table 5.7 Probabilistic Estimates of the Groundwater Travel Time using 
Point Estimate Methodologies - Example III.  

Point estimate methodology Infiltration flux rate 
1.0 mm/year 

expected value coefficient of 
(years) variation 

Model II with redistributed 2,800.17 9.26 % 

weighting functions 

Lind (1983) 2,868.71 8.14 % 

Harr (1989) 2,720.67 9.30 % 

Deterministic solution 2,903.45
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CHAPTER 6 

DISCUSSION OF THE NEW POINT ESTIMATE MODELS 

The preceding chapters presented and demonstrated the new point estimate models 

I and II for uncertainty analyses of systems with correlated and skewed random variables.  

Comparisons were made with the results of Rosenblueth (1975), Lind (1983), and Harr 

(1989) point estimate methodologies, the Monte Carlo simulation technique, and also 

with the exact solution for a special case. Application was also made to the flow code 

LLUVIA. In the present chapter various aspects of the models will be discussed.  

6.1 Applicability of Models I and II 

The purpose of the present study was to provide a methodology capable of 

accommodating functions of many correlated and skewed random variables into 

uncertainty analyses. Given were information concerning the expected values, standard 

deviations, skewness coefficients, and correlation coefficients of the random variables.  

Models I and II were devised to incorporate this information into uncertainty analyses.  

Existing methods are incapable of accommodating either the correlation structure or 

skewness or both.  

6.1.1 Condition of Uniqueness 

It was shown (see sections 3.1.3 and 3.2.3) that uniqueness of a solution cannot 

be obtained given only the knowledge of first three statistical moments and the 

correlation structure of the N random variables for N> 2. To overcome this deficiency,



90

the developed models introduced assumptions using information in the "least-biased" 

sense. Hence, in model I, the point estimates and the corresponding weighting functions 

were taken to be concentrated at the comers of a multi-dimensional hyperprism of N

dimensional space defined by the random variables. For model II, the weighting 

functions are taken to be equally distributed among the point estimate pairs (equation 

(3.62)).  

The lack of uniqueness of a solution for N >2 is also the case in Rosenblueth's 

(1975), Lind's(1983), and Harr's (1989) point estimate methods. In the Monte Carlo 

simulation technique complete probability distribution functions must be assumed " a 

priori." The necessity of doing so is often overlooked in the literature wherein the 

Monte Carlo simulations are thought to be the standard for comparisons. The necessary 

assumption of complete probability density functions is the major difference between the 

Monte Carlo simulation techniques and point estimate methodologies. Conceptually, if 

a probability distribution function is invoked all orders of statistical moments can be 

computed. Hence, the requirement of uniqueness could also be met by point estimate 

methodologies by assuming a probability distribution.  

6.1.2 Requirement of Positive Locations 

If variables are defined to be positive by their physical attributes then this 

requirement can be treated as an additional piece of information. This led to the 

assertion that negative point estimate locations should be disregarded. Examples 

presented in this study showed that model I point distribution approximation given in 

equation (3.38) meets the necessary condition of positive locations for highly skewed, 

scattered, and correlated random variables. For model II, alternative solutions had to be 

sought to meet the necessary requirement for variables having high coefficients of 

variation (i.e., coefficients of variation greater than 100%). Two alternatives for model 

II were suggested in section 3.2.4. As stated in the alternatives, a possible solution was 

first considered with equally distributed weighting functions. When this failed, 

redistribution of the weighting functions was considered among the selected positive
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locations in order to satisfy the condition that the sum of the weighting functions must 

be equal to unity. Motivating the first alternative was the principle of maximum entropy 

which states that the uniform distribution is the least based solution for a system with no 

additional information (Table 2.5.1, Harr 1987).  

6.2 Effect of Skewness Coefficient in Point Estimate Methodologies 

The models were first used to demonstrate the effect of incorporating the 

skewness coefficients of random variables (see Chapter 4) for the function y = x1 x2/ x3.  

Three cases were considered: 1) correlated and skewed, 2) independent and skewed, and 

3) independent lognormal input variables.  

6.2.1 Results for Skewed and Correlated Variables 

Results given in Table 4.6 illustrated the effect of incorporating correlated and 

skewed random variables in the point estimate methodologies; specifically, in estimating 

the coefficients of variation for the function. Models I and II gave lower coefficients of 

variation than Rosenblueth (1975), Lind (1983), or Harr (1989) methodologies.  

Differences were also found between the two models. Recognizing that the developed 

models are not based on similar assumptions, differences in estimates should be expected.  

However, for the example considered with positively correlated and skewed variables, 

the difference was very high. Therefore, the purpose of the next case was to compare 

the difference when the variables are not correlated.  

Comparisons for similar sets of assumptions were investigated. Model I and the 

point distribution pattern used by Rosenblueth (1975) are similar in this respect. Model 

II and the point distribution pattern used by Lind (1983) are similar. Hence, the 

comparison of similar models was thought to show the influence of the skewness 

coefficients. As expected, the results (see Table 4.6) showed the influence of skewness, 

specifically in estimating the coefficient of variation of the function. It was found that 

when accounting for skewness, lower estimates were obtained for the coefficient of
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variation than when it is taken to be zero. Note that this result was for positively 

correlated variables.  

6.2.2 Results for Independent and Skewed Variables 

For independent and skewed random variables (see section 4.2.2), models I and 

II gave comparable results but higher coefficients of variation for the function than 

Rosenblueth (1975), Lind (1983), or Harr (1989) point estimate methodologies. As 

might be expected, skewness coefficients of the random variables influenced the estimates 

of the coefficient of variation.  

Comparative studies were also made using the Monte Carlo simulation technique.  

However, the significance of such comparisons should be carefully noted. Monte Carlo 

simulations do not consider the correlation structure among the variables. In addition, 

they require complete " a priori; " knowledge of the entire distribution of all the 

variables. Recall that the hypothesis of the present thesis specifies only knowledge of 

the first three statistical moments and the correlation structure of the variables. Complete 

probability density functions of the random variables x,, x2, and x3 must be defined to 

perform Monte Carlo simulations. Consequently, comparison between the results of the 

Monte Carlo simulation technique and the point estimate methodologies should be 

considered in a qualitative sense only.  

As expected, the results given in Table 4.8 (section 4.2.2) show that the number 

of simulations performed in the Monte Carlo simulation technique dramatically affect the 

estimate of the statistical moments of the function. It is more noticeable when computing 

the coefficient of variation of the function. To provide a Monte Carlo simulation with 

a 95 % confidence level, two thousand times the 10,000 number of trials performed in 

Table 4.8 would have to be performed! 

For the Monte Carlo simulation results given in Table 4.8, the coefficient of 

variation of the function should lie between 70 % and 80 %. When comparing the
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results of the Monte Carlo simulation approach and the point estimate methodologies 

approximations for independent and skewed variables (see Table 4.7), it was shown that 

the results of the new models and the Monte Carlo simulation results are within range 

of each other. On the other hand, models I and II approximations for case one (see 

Table 4.6), where the variables are correlated and skewed, are not in line with the Monte 

Carlo results. Recall that the correlation structure of the variables is not taken into 

account in the Monte Carlo simulation approach.  

6.2.3 Results for Independent Lognormal Variables 

Figures 4.1 and 4.2 compared the point estimate results for independent variates 

(section 4.2.3) with the exact solution for lognormal variates. The third case considered 

is a special situation. Recall, complete lognormal probability density functions were 

assumed. On the whole, when comparing the results of the point estimate methodologies 

with the lognormal solution, the new models under-predict and Rosenblueth (1975), Lind 

(1983), and Harr (1989) point estimate methodologies over-predict. The effect of 

incorporating the skewness coefficients in the new models is clearly noticeable when the 

skewness coefficient of the random variables is greater than unity or when the coefficient 

of variation of the random variables is greater than 40 % (Figure 4.1). As shown in 

Figures 4.1 and 4.2, the results given by Lind (1983) and Harr (1989) methodologies are 

the same; because when the variables are statistically independent, the point distribution 

models for both methodologies are the same.  

According to the example presented, the difference between models I and II 

estimates increases as the skewness (which is a function of coefficient of variation in this 

example) of the random variables increases. However, when compared to the difference 

with the results presented for correlated and skewed random variables, it is small. From 

the three cases of input variables considered, the following conclusions can be drawn: 

1) models I and II indicated the influence of skewness in obtaining the probabilistic 

estimates for both independent and correlated variables 2) the observed influence was a 

combined function of both the skewness and the correlation structure, and 3) as expected,
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models I and II showed differences in the approximation, but the difference was obvious 

for correlated and skewed variables. Specifically, this example is for positively 

correlated variables.  

6.3 Application of New Models to flow code LLUVIA 

Both models were applied to LLUVIA to estimate the steady-state groundwater 

travel time and to quantify the effect of uncertainty of the material parameters. The two 

models, as employed in the present work, considered the uncertainty associated with a 

system of correlated and skewed random variables. The required information is the first 

three statistical moments: expected values, standard deviations, and skewness coefficients 

and the correlation structure of the random variables.  

As available information is a vital factor in engineering designs, the two models 

have a special significance by providing the approximations with a minimum of practical 

data available. Four random variables within each layer scale LLUVIA: the saturated 

hydraulic conductivity (K.), residual saturation (St), and van Genuchten model parameters 

describing air entry parameter (a) and the slope of the desaturation curve (N).  

Applications used the data reported by Carsel and Parrish (1988). According to these 

data, the four random variables are correlated and skewed. Very low infiltration flux 

rates were considered in these examples to maintain the steady-state flow (Report 

SAND88-0942, Sandia National Laboratories).  

6.3.1 Single Layer of Silty Clay 

The first application of the models to LLUVIA (see section 5.2.1) was the 

determination of the travel time in a silty clay layer of 10 m thickness. The random 

variables were both positively skewed (except S) and positively correlated. Among the 

four random variables, K, was highly skewed and scattered (see Table 5.1). Infiltration 

flux rates of 0.1 mm/year and 1.0 mm/year were considered.
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Table 5.2 gives the estimates of all the point estimate methods. As expected, 

these estimates are seen to be dependent upon the methods. For example, model I gave 

the highest estimate for the expected groundwater travel time and coefficient of 

variation. In view of this, the estimates indicated the influence of accounting for both 

the skewness and the correlation structure. The predicted coefficient of variation for the 

steady-state travel time is low when compared to the amount of uncertainty involved in 

the input parameters K, and a (see Table 5.1).  

In using model II, with equally distributed weighting functions, available 

information was used in the "least-biased" manner. However, model II estimates were 

found not to be satisfactory. That is, computed estimates gave negative variances for 

both flux rates. This is believed to be due to the very high skewness and scatter of the 

variable K. which had the greatest influence in computing model II point estimates 

locations. Negative variances were also obtained in Rosenblueth (1975) and Lind (1983) 

methodologies (see Table 5.2). As an alternative in using model II, uncorrelated 

variables were considered (third row entry of Table 5.2). Comparison of the results with 

model I indicated the influence of the correlation structure as anticipated. In this case 

the correlation structure gave higher estimates than when it was neglected. This was 

shown for both flux rates (0.1 mm/year and 1.0 mm/year).  

Comparison of model I estimates with Harr's methodology (sixth row of Table 

5.2) clearly show the influence of skewness in estimating the travel time. For the case 

presented, the influence of positive skewness gave higher estimates for the expected 

travel time and coefficient of variation.  

The results in Table 5.3 demonstrated the influence of saturated hydraulic 

conductivity (K,) and air entry parameter (a), which were taken to have less skewness 

and lower coefficients of variation than the values assumed for the results given in Table 

5.2 (see section 5.2.1.4). Comparison of the results given in Tables 5.2 and 5.3 

illustrate the influence of both the skewness and correlation structure. For instance, the
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comparison of model I results shows a decrease in the travel time by having lower values 

of skewness and coefficient of variation. This finding agrees with the observation that 

when the skewness is taken to be zero, lower estimates were obtained for the travel time.  

Note that these observations were for positively skewed variables. But the comparison 

of model I estimates for coefficient of variation illustrated that the estimates were greatly 

biased when the variables were taken to be symmetrical.  

Another example of illustrating the influence of the correlation structure is that 

when it was neglected (i.e., model II (uncorrelated) estimates) with less skewness and 

lower coefficient of variation an increase in the travel time was observed which was not 

the case with model I estimates. Model I showed a decrease.  

Comparison of the deterministic travel time for both flux rates agreed well with 

model I results than the other methods (see Table 5.2). However, model I estimates have 

the added advantage in assessing the uncertainty. According to the profiles shown in 

Figures 5.1, 5.2, and 5.3, the steady state hydraulic conductivity profile displayed a 

coefficient of variation in the range 400 - 600 %, which is compatible with the 

uncertainty involved in the input parameters K, and a. The coefficients of variation in 

the pressure head and degree of saturation profile were in the range 3 - 10 %, which is 

very small when compared to K, and a. The characteristics of the two variables study 

profiles also were found to be the same (see Figures 5.4, 5.5, and 5.6).  

6.3.2 Two Layers of Silt and Silty Clay 

This example was intended to illustrate the effect of adding a silt layer into the 

silty clay layer profile of the previous example (see section 5.2.2). The effect observed 

was a decrease in the expected ground travel time in the range of 70 - 140 years. The 

coefficient of variation of the travel time was increased by 2 - 5 %. Of special note is 

that tfe coefficient of variation of the steady-state groundwater travel time is very low 

when compared to the uncertainty in the input parameters K, and a (see Tables 5.1 and 

5.4).
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The results given in Table 5.5 were for positively and negatively correlated 

random variables but the variables were only positively skewed. The results given 

support the conclusion as drawn before that the skewness and correlation structure have 

an important influence on estimates. As noted before for correlated random variables 

(section 6.2.1), results given by models I and II approximations were not the same.  

According to the results presented, model I approximations accommodated positively 

skewed and positively and negatively correlated variables by giving higher estimate for 

the expected travel time and lower coefficient of variation than model H estimates. The 

difference between the two models estimate for coefficient of variation was almost one 

hundred percent whereas in the travel time 20 % difference was observed.  

The deterministic groundwater travel time is respectively at one third and one 

standard deviations from models I and H estimates. As in the previous problem, the 

scatter in the hydraulic conductivity profile (coefficient of variation 100 - 600 %, see 

Figure 5.9) was compatible with the uncertainty involved in the input parameters. Also, 

as before, the pressure head and degree of saturation profiles (Figures 5.8 and 5.9) 

showed very low scatter (coefficient of variation 5 - 30 %).  

6.3.3 Four Layers of Silt, Clay, and Silty Clay 

This example was intended to illustrate the effect of a more complex system: a 

clay seam with the silt layer of the previous example (see section 5.2.3). In this example, 

model II was within the practical range with respect to the number of simulations 

required in the analysis. As in the previous case, the variables were positively and 

negatively correlated but only positively skewed. According to model II (redistributed 

weighting functions), the effect of having a clay seam in the silt layer increased the 

expected travel time by 400 years and the coefficient of variation was decreased by 15 

% (see Table 5.7). Lind's and Harr's methodologies respectively showed an increase of 

40 arid 100 years, whereas in the deterministic solution the increase was only 7 years.  

Lind's and Harr's methodologies showed very small differences in the coefficients of 

variation of the groundwater travel time. Therefore, the present models are clearly
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illustrating the influence of accounting for the skewed and correlated random variables.  

However, the influence seems to be problem specific. That is when only the results 

given in Table 5.7 are compared, the effect of incorporating the skewness is small. The 

estimates of the three methodologies are comparable.  

As in the other two examples, the coefficient of variation of the travel time is low 

when compared to the amount of uncertainty involved in the input parameters K, and a 

(see Tables 5.1, 5.4, and 5.6). The deterministic travel time is within the bandwidth of 

0.4 standard deviation of model II (redistributed weighting functions) estimate.
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

Two point estimate models have been formulated that are directly suited to 

evaluating the uncertainty for systems with many correlated and skewed random 

variables. It was assumed that information is available concerning the first three 

statistical moments of the N random variables: expected values, standard deviations, and 

skewness coefficients and their correlation structure. On the basis of the developed 

procedures, it was shown that: 

1. The proposed models will provide point estimates that compute the statistical 

moments of functions of correlated and skewed random variables.  

2. For a function of N random variables, a maximum of 2 ' point estimates are 

required for model I and 2N for model II. A computer program was developed 

in this study incorporating the algorithms of the two models.  

3. Uniqueness of solution cannot be obtained given only knowledge of first three 

statistical moments and the correlation structure for N random variables with 

N>2.  

4. Additional assumptions were introduced in these models to render the models 

determinate. In model I, the point estimates and the corresponding weighting 

functions were assumed to be concentrated at the corners of a multi-dimensional 

hyperprism of N-dimensional space defined by the random variables. In model 

II, the weighting functions were assumed to be equally distributed among the 

point estimate pairs.  

5. Alternative procedures were provided if the original assumptions of these
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models failed to meet the necessary condition of providing positive point estimates 

locations.  

6. Step-by-step procedures were presented to lead the reader through the 

developed procedures.  

7. Examples were presented that illustrated the use of the models and compared 

results with those obtained using the point estimate procedures of Rosenblueth 

(1975), Lind (1983), and Harr (1989); as well as the Monte Carlo simulations.  

7.1. The results of these examples showed the effect of incorporating the 

skewness coefficient of the random variables into the point estimate 

methodologies. The influence of skewness coefficient was very apparent 

when estimating the coefficient of variation.  

7.2. Comparison made with exact solution (lognormal solution) showed 

that the new models obtained better approximations for highly skewed 

random variables than Rosenblueth (1975), Lind (1983), or Harr (1989) 

methodologies.  

7.3. The Monte Carlo simulation results agreed with the new models 

results for independent and skewed random variables. But for correlated 

and skewed random variables, as expected, the results were not 

comparable.  

8. The models were applied to the flow code LLUVIA to estimate the steady

state groundwater travel time in an unsaturated medium. Four random variables 

within each layer scale LLUVIA: saturated hydraulic conductivity, residual 

saturation, and van Genuchten model parameters describing air entry parameter 

and the slope of the desaturation curve. Three cases were presented using the 

parameters reported by Carsel and Parrish (1988). The saturated hydraulic 

conductivity and van Genuchten model air entry parameter are highly skewed and 

exhibit high coefficients of variation: all the four random variables were 

- correlated. It was demonstrated that: 

8.1 The coefficient of variation of the steady-state groundwater travel 

time is low (10 - 30 %) when compared to the amount of uncertainty
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involved in the input parameters, specifically in the saturated hydraulic 

conductivity and in the air entry parameter.  

8.2 The hydraulic conductivity profiles showed coefficients of variation 

within the range of 100 to 600 %. The pressure head and degree of 

saturation profiles showed coefficients of variation within the range of 5 

to 30 %. For the examples considered, the deterministic groundwater 

travel time was within one standard deviation band width of models I and 

II estimates.  

8.3 Model I gave higher estimates for the expected groundwater travel 

time than model II. On the other hand, model II gave higher estimates for 

the coefficient of variation of the groundwater travel time.  

9. In sum, knowing only the expected values, standard deviations, skewness 

coefficients, and correlation coefficients of the random variables, models I and 

II provide methodologies that address the problem of incorporating the correlated 

and skewed random variables into uncertainty analyses.  

10. Examples presented showed that the generalized point distribution algorithm 

provided by model I (equation (3.38)) meets the necessary condition of positive 

point estimates locations for highly skewed and scattered random variables.  

11. For a system of very many random variables, model II is recommended as 

the methodology requires only a maximum of 2N point estimates.
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CHAPTER 8 

SUGGESTIONS FOR FUTURE RESEARCH 

1. The examples presented in this dissertation clearly establish the importance of 

accommodating both the skewness and correlation. Therefore, the success associated 

with the application of the models suggest that they be applied to other problems.  

2. The present study presented two models to incorporate correlated and skewed random 

variables. According to the examples presented, model I generalized algorithm met the 

necessary condition of positive locations. However, in model II the assumption of 

equally distributed weighting functions failed to meet this necessary condition in the cases 

highly skewed and scattered random variables. Therefore, a study should be under taken 

to examine other distribution of weighting functions.  

3. Alternate algorithms for the models can be considered. Recall that uniqueness of a 

solution cannot be obtained. Therefore, the differences in estimates associated with the 

algorithms can be studied in more detail.  

4. Alternate point distribution models can be developed to incorporate correlated beta 

variaies. An attempt was made in the present study to expand Harr's methodology.  

However, complications arose. The transference from the eigenspace back to the 

solution space for beta variables required more information than was available.  

However, it appears that there might be a way to connect the eigenspace and the solution 

space. Successful accomplishment of this would provide approximations of higher order.
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Appendix A: Details of the Methodology 

A.1 Lind's Point-representation Algorithm 

The vectors z, i= 1,2, ... ,N, of Lind's point-representation coordinates (as given 

in equation (2.12)) are determined as follows: 

Zi. = fNo2.. Z~~- ~/2 
S kZi i= 1,2, ..... , N 

=Nail Zki Zkj} 
zZi i=1,2 ...... , N-1 

and j=i+1, i+2, ... N (A.1) 

where z• and zij are the point distribution coordinates of the vector z,; or, and rij are 

respectively the variance, covariance terms of the random variables; and N is the number 

of random variables.  

A.2 The principal component analysis involved in Harr's methodology 

The principal component analysis involved in transforming the standardized 

random variables ds1 (as given in equation (2.13)) into new random variables u4 in the 

eigenspace of the correlation matrix is as follows: 

ui = 1 i sa d+ 2 ds2 + .... + ei dsj ....... +C&Ni dSN (A.2) 

where i = 1,2,...,N, j = 1,2,...,N, and aji is the eigenvector component of the correlation 

matrix. The eigenvalues - eigenvectors of the correlation matrix is given by: 

eigenvalue 

[11 X2 .... jXN] 

eigenvector 

(11 M12 . .2N 

OC21 M3 2 .... a 2 N 

aNI amX .... aN.
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Appendix B: Models I and II Point Distribution Approximation 

B. 1 Model I Discrete Approximation for a Function of Three Random Variables 

The equations of the discrete approximation to a joint probability density function 

f(x1, x2, x3) with three random variables are given below: 

p . +++p...+p_.+p__ +p .. _+p+- p .__P+p__ -- (B..1) 

+( x 1÷_)[(p÷_+-p_ ÷)(x2 _x-2) +(pX). _+p.÷-(x2._ ')] =p2 03(.2) 

+(Xi +_-')[ .__ ++)÷(X2-__T2) +(P._+- P ...)(X2+_ l P 12',1'7.2 (B.2) 

(x2 _ -Xl)[(p___ +p._J(x3 _- -x) +(P--+ +-p_)(x 3 -X3)] + 

T.T P=l 0x 3 (B.5) 

p , + (x, -x) +p , 1 (x, -xi) =0 (B.6) 

Pi÷(xi÷-•)2 +Pi-(X!--x-- =g 2 3(B.7) 

p3(X )+ 3  (B. 8) 

where xi, i = 1,2,3, is a random variable with mean R, standard deviation axe, and 

skewness coefficient 93,(1); and pip i= 1,2, j =2,3, is the correlation coefficient between 

xi and xj.  

In defining the equations (B.5-B.8), p.- and pi+ (= 1,2,3) represent the sum of the 

weighting functions associated with the point estimate locations x-. -and xi+ (i= 1,2,3), 

respectively. The corresponding relationships are given in equations (B.9-B. 11).
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For the point estimate locations xi. (i= 1,2,3) : 

p,_=p___+p_._+p__.+p_÷. (B.9) 

P2- =P---+P --+P--÷+P÷-÷ 0(B.10) 

p3_=p___+p__+p .__+p ÷._ (B.11) 

where Pl-, P2-, and p3- are associated with the locations x1., x2-, and x3-, respectively. The 

similar expressions for pi+ (i= 1,2,3) can be obtained from the relationships (B.9 - B. 11) 

and (B.5).  

B.2 Model I Discrete Approximation for a Function of Four Random Variables 

The magnitudes of all the weighting functions are given in a matrix form as 

follows: 

[P] = [C] [D] (B.12) 

where the matrices [P], [D], and [C] are given below: 

[p]T = [p.... p_... p..+÷ p__.. p+... p_... p+__. p___.  

P++... P.... P+.... P.... P ... P.... P .... P-...]-- t

[D] = [1.0 P12 P13 P14 P2 P24 P3411.0
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PIP 2÷P3.p4. a12  a1,3 a14  a23  a24  a34 

P1 -P 2. P3-P 4. -a 12 -a1,3 -a 4 a23  a.4  a34 

Pl÷P2-P3÷P4. -a12 a1,3 a14  -a23 -a 24 a34 

Pl-P2 -P3p4. a12  -a1,3 -a14 -a 23 -a24  a.4 

P1 .P2.P3-P4. a12  -a,3 a14  -a 23 a. -a34 

P1-P2+P3-P4,. -a12 a13 -a14 -a 23 a. -a34 

PI.P2-P3-P4. -a12 -a 13 a14  a23  -a24 -a34 

m P2-P-P 4÷. a,, a13 -a1 4  a23  -a24 -a34 

P1÷P2.P3.P 4- a12  a1,3 -a 14 a23  -a 24 -a34 

PI-P2.P3-P4- -a 12 -a 13 a,4 a.3 -a24 -a34 

PI÷P2-P3÷P,,- -a,2 a,3 -a14 -a23 a24 -a34 

Pl- P2-P3.P4- a 12 -a,3 a,4 -a23 a24 -a34 

PI÷P2.P3-P4- a,2 -a13 -a14 -a23 -a 24 a34 

PI-P2-P 3-P4- -a12 a13 a 14  -a23 -a 24 a34 
PI÷P2-P3-P4- -a 12 -a13 -a,4 a2z3 a24 a34 

mP-P2-P3-P4- a 12  a13 a14  a23 a24  a34  16x7 

where p, and a,. (1= 1, 2, 3 & m= 1+1, 1+2, ... , 4) are defined in equation (3.41).  

B.3 Model II Discrete Approximation for a Function of Three Random Variables.  

For the variable x1, the expressions obtained by specifying the mean i,, standard 

deviationn o'a,, and skewness coefficient/ 3x•(1), respectively, are as follows: 

E [(xl -x,)] =p,. z,* -pl-- ffi 0.0 (B. 13) 

[(xl -xII=p+l pzl_=ox1  (B. 14) 

--1)3] =p1  -p_3 (B. 15) E[(Xt -x7 ]= z.-p_zn P•()os

Similarly, the expressions are obtained for the variables x2 and x3 as follows:
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For the variable x2 

E[(x2-x2)] =(PI --p 1J)z12+P2 z22+-P2-z2.O_ .o (B. 16) 

E[( -2--2)2)] 2+ 2 2 2 (B.17) 
E [x.2 -x2) A = ,Pi.,i-) Z12 P2+Z22 -+P 2 -Z2 2 -='7x2 

E[(x,-x2)3 =+ -p - 3 ..-pPzC.. 3 (B. 18) E 'A2x: )=(P÷-+r.Z1'2 +P2+ Z.2÷-2_Z22P l~X2 

For the variable x3 

E[(x3 x)] =(p 1 ÷-p-_z13+(p2 -_p2 .z, +p3 ÷z33 ÷-p3 _z33 _=O.O (B. 19) 

[( x 2)].=(p1 +P1 )Z+ 2 Z2 2 2 (B.20) 

E[(x3-X3)2)=P _2 1 2÷P2-)Z23PZ 3 3 ÷+J3-Z3 3-='x3 
=(l+-l 33 + Z3 Z3 _p3 C3 (B. 21) 

[(X3-X-)) =(+p_)Z 133+(P2+-P2..)Z23 P3+33+-P3- 33- •x()x3 

The covariance terms of the variables are given below: 

For the variables x, and x2 

Et(xl-Tx) (x2-x2)]=(PI.l÷ +÷+PI-Zl.-)Zt2=P n oYao.2 0.2 

For the variables x, and x3 

E[(x, -x-) (x3 -x) =(P 1 zn÷ +P1-z1 -)z13 P13 = Pl x3 (B.23) 

For the variables x2 and x3 

E[(x2 -_2)(x3 -T)]=(pl.+pl_)z1 2zl 3 +(p2 ÷z22÷+p 2 _zI22)z 2 3=P23a ~ x (B.24) 

In the equations (B.13 - B.24), x, (i= 1,2,3) is a random variable with mean Ri, standard 

deviation aa, and skewness coefficient ( The correlation coefficient between the 

random variables xi and x (i = 1,2 & j =2,3) is pij, and according to the assumption of 

equally distributed weighting functions as mentioned in section 3.2.2, pi+ + pi. = 1/3 

(i=1,2,3).
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The solution of the equations (B.13 - B. 15) give the unknowns P+, p,, z1 +, and 

z,,. as follows: 

p1+ 41 1 2+pii2 (B.25) 6l 12"-P,-1(1)2" 

1 (B.26) 
1 p- 3 

Z ,•. =T3 03X (.27) 

z r V(3- 03 (.28) 

where the sign preceding the radical in equation (B.25) is that of -I3l(1).  

According to the equations (B.22 and B.23), the unknowns z12 and z,3 are given 

by: 

= P V 0..__ 6rY (B.29) 
Pl÷ ZIl. +P1-ZI1

where j = 2,3; and the unknowns p,+, pl., z,,+, and z,,. are defined in the equations 

(B.25 - B.28).  

Knowing the solution to p,+, pi-, z11+, z11- and z12, equations (B.16 - B.18) are 

rearranged as follows: 

P2.Z2+-P 2-Z•_- (Pl+-PD-)z 12=A2  (B.30) 

P 2 P2-_= -2 2 =B (B.31) 

3 3•(1)c7~ - (p3÷-p 1_Z1= C2 (B.32)

where P2+ + P2- = 1/3.
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From the equations (B.30-B.32), the quadratic equation which solves for z22, and 

z22. is obtained as given below: 

-A2)z2
2 - (- -A2B)Z 22 + (A2 C2-B2)=" (B.33) 

33 

where the solution z22 is defined as z22=z 2 +2 and z22=(-z22 ).  

The weighting functions p2- and P2+ are determined from the expressions given 

below: 

1 A 
ZZ 2 ÷- -A2  (B.34) 

P 2 - - Z 2 Z 2 

_1 p (B.35) P2÷- =5-P2

From the equation (B.24), the unknown z23 is given by: 

=P3 0ý, 2 0. 3 - (PI- +Pl-)zl 2z13  (B.36) 
P 2+Z22.+ *P2-Z22

By rearranging the equations (B. 19 - B.2 1), the quadratic equation which solves 

for z33, and z33. is obtained as given below: 

(B23 _A_2) =0.0 (B.37) 
B 2 -( -A 3 B3) Z 3 + (A43 C3 -B3) -0

where A3, B3, and C3 are defined as follows:
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A3 =0.0 - (Pl. -P1 -)ZI 3 - (P2- -P 2-)Z23 

2 2 
2 Z13  Z23 

3 3 
33 _ ' 3 3P 

C3 = P(1)O3 -(Pl. -p-_z)13 (P2+-P2  3z• 

From the equations (B. 19 - B.20), the weighting functions p3- and P3 + are given 

by: 

SZ33,-A3  (B.38) 

.z33+ +Z33

1 (B.39) 
P3, -- -P3
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Appendix C: Probabilistic Calculations 

C. 1 Point Estimates Using Model I - Example I 

Table C. 1 Sets of Values using Model I - Example I.  

K I Sr N weighting 
(cm/hour) (1/m) function 

P 

0.0059 0.0465 0.2728 1.0527 0.7101 
0.6014 0.0465 0.2728 1.0527 -0.0724 
0.0059 0.0935 0.2728 1.0527 0.0929 
0.6014 0.0935 0.2728 1.0527 -0.0006 
0.0059 0.0465 1.9200 1.0527 -0.1157 
0.6014 0.0465 1.9200 1.0527 0.0035 
0.0059 0.0935 1.9200 1.0527 0.0419 
0.6014 0.0935 1.9200 1.0527 0.0213 
0.0059 0.0465 0.2728 1.1696 -0.0392 
0.6014 0.0465 0.2728 1.1696 -0.0012 
0.0059 0.0935 0.2728 1.1696 0.1290 
0.6014 0.0935 0.2728 1.1696 0.0436 
0.0059 0.0465 1.9200 1.1696 0.0051 
0.6014 0.0465 1.9200 1.1696 0.0098 
0.0059 0.0935 1.9200 1.1696 0.1521 
0.6014 0.0935 1.9200 1.1696 0.0199

Table C. 1 lists the sixteen different values obtained using model I of the new 

point estimate methodology for the single layer problem (example I - containing four 

random variables KY, S,, a, and N). As an aid in determining the various values of the 

random variables and the corresponding weighting functions, the reader is referred to 

sections 3.1.3 and 4.2.1.1. Table C.2 lists the ground water travel time computed using 

these sets of values for influx rates of 0.1 mm/year and 1.0 mm/year.
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Table C.2 Ground Water Travel Times Computed using 
Sets of Values given in Table C. 1.

The expected value and the standard deviation of the travel time was computed 

using equation 4.6 and as explained in section 4.2.1.1.  

Considering the travel times for the flux rate = 0.1 mm/year, from equation (4.6) 

EM = E p T = 30,682.62 years and E[T2] = E p T2 = 9.53 108. This gives, standard 

deviation S.r=(E[T2] - (E[T])2)°'= 3357.47 years and coefficient of variation 

V=(3357.47/30,682.62) 100 = 10.94 %. Similarly, for the flux rate = 1.0 mm/year 

EM -= 3150.31 years and coefficient of variation V = 8.88 %.  

C.2 Point Estimates Using Model II - Example I 

Table C.3 lists the eight sets of values obtained using model II. The procedure 

followed in determining these values was explained in sections 3.2.3 and 4.2.1.2.

weighting ground water travel time T (years) 
function p flux rate = 0.1 mm/year flux rate = 1.0 mm/year 

0.7101 33121.63 3364.94 
-0.0724 32995.16 3300.78 
0.0929 31488.99 3199.08 
-0.0006 31368.75 3138.08 
-0.1157 32226.11 3349.76 
0.0035 30765.44 3115.30 
0.0419 30637.61 3184.64 
0.0213 29248.94 2961.74 
-0.0392 30564.54 3099.64 
-0.0012 30506.58 3051.18 
0.1290 29057.95 2946.85 
0.0436 29002.85 2900.78 
0.0051 25971.49 2892.70 
0.0098 24228.10 2451.98 
0.1521 24691.30 2750.11 
0.0199 23033.85 2331.12
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Table C.3 Sets of Values using Model H - Example I.

Table C.4 lists the possible four sets of values among the sets of values given in 

Table C.3 for the LLUVIA run.  

Table C.4 Possible Sets of Values using Model II - Example I.  

K. S, a N weighting redistributed 

(cm/hour) (1/m) function weighting 
function 

0.6403 0.1528 2.5543 1.2738 0.0197 0.0305 

0.02 0.0827 4.3203 1.4490 0.3798 0.5886 

0.02 0.07 5.5813 1.9853 -0.1940 -0.3007 

0.02 0.07 0.5 1.5058 0.4398 0.6816 

The redistributed weighting functions given in column six of Table C.4 are 

obtained by dividing each weighting functions given in column five by the sum of the 

weighting functions of column five. Following this, the sum of the weighting functions 

of column five is given by 0.6453, therefore, the first row of redistributed weighting 

function is given by 0.0197/0.6453 = 0.0305. Continuing this procedure, the 

redistributed weighting functions given in column six are obtained.

K, Sr a N weighting 

(cm/hour) (1/r) function 
p 

0.6403 0.1528 2.5543 1.2738 0.0197 

-0.0330 -0.0128 -1.5543 0.9063 0.2303 

0.02 0.0827 4.3203 1.4490 0.3798 

0.02 -0.0271 -3.3203 0.7310 -0.1298 

0.02 0.07 5.5813 1.9853 -0.1940 

0.02 0.07 -0.6897 0.1947 0.4440 

0.02 0.07 0.5 1.5058 0.4398 

0.02 0.07 0.5 -0.1966 -0.1898
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Table C.5 gives the ground water travel time computed using LLUVIA for the 

sets of values given in Table C.4

Table C.5 Groundwater Travel Time Computed using 
Sets of Values given in Table C.4.

weighting ground water travel time T (years) 
function 

p flux rate = 0.1 mm/year flux rate = 1.0 mm/year 

0.0305 16508.88 1694.98 
0.5886 12918.43 1647.70 
-0.3007 6256.55 939.96 
0.6816 21190.42 2159.19 

Table C.6 Sets of Values using Rosenblueth (1975) Methodology - Example I.  

K, Sr a N weighting redistributed 
(cm/hour) (1/m) function weighting 

function 

0.1107 0.0465 1.0680 1.0355 -0.0589 -0.1193 
0.1107 0.0935 1.0680 1.0355 0.0810 0.1641 
0.1107 0.0465 1.0680 1.1445 0.0665 0.1348 
0.1107 0.07 1.0680 1.1445 0.4049 0.8204
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Table C.7 Sets of Values using Lind (1983) Methodology - Example I.  

K, Sr a N weighting redistributed 
(cm/hour) (1/m) function weighting 

function 

0.2013 0.1146 1.6065 1.1890 0.125 0.1429 
0.02 0.0848 0.6429 1.0666 0.125 0.1429 
0.02 0.0552 0.3570 1.1134 0.125 0.1429 
0.02 0.07 0.7140 1.1083 0.125 0.1429 
0.02 0.07 0.2860 1.0717 0.125 0.1429 
0.02 0.07 0.5 1.1247 0.125 0.1429 
0.02 0.07 0.5 1.0553 0.125 0.1429 

Table C.8 Sets of Values using Harr (1989) Methodology - Example I.  

K, Sr0 a N weighting redistributed 
(cm/hour) (1/m) function weighting 

function 

0.1129 0.0933 1.0814 1.1422 0.4677 0.8930 
0.0142 0.0429 0.3204 1.1772 0.0269 0.0514 
0.0258 0.0971 0.6796 1.0027 0.0269 0.0514 
0.0646 0.0403 1.2530 1.0556 0.0022 0.0042

C.2 Global Correlation Matrix used for the Two Layer Problem - Example II

sil t 

Ks a N

1.0 -0.204 0.984 0.466 

-0.204 1.0 -0.20 -0.61

0.984 -0.20 1.0 0.551

0.466 -0.61 0.551 1.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0

si 1 tycl ay 
Ks 

0.0 

0.0 

0.0 

0.0 

1.0 

0.949

Or a N

0.0 0.0 0.0 
0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.949 0.974 0.908 

1.0 0-964 0.794

0.974 0.964 1.0 0.889

0.0 0.0 0.0 0.908 0.794 0.889 1. 0 J8,a0.0
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Appendix D: Computer Program 

D. 1 Point Estimates Program for LLUVIA 

C 
c This program calculates the point distribution 
c approximation of Model I, Model I, 

c Rosenblueth (1975), Lind (1983), and Harr (1989) 

c methodologies for LLUVIA run 
c 

c corr - global correlation matrix 
c xm - mean 

c xs - standard deviation 
c cs - skewness 
c P - weighting fumetion 
c npg - number of variables 
C 

common /cor/corr(50,50) 
common /inp/xm(40),xs(4 0 ),cs( 4 0) 
common /lay/ES(100),ESL(100),ESF(20) 
common lseq/IS(30) 
integer rowmax, colmax, row, col 

c 
c input file : 'input' 
C 

open(unit= 8, file ='input', status= 'unknown') 
c 
c output files: rose-Rosenblueth (1975), 
c lin-Lind(1983), alt-Harr(1989) 
c skro-Model I, slin - Model II 
c 

open(unit= 10, file ='rose',status= 'unknown') 
open(unit= 11,file ='Iin',status ='unknown') 
open(unit = 12, file= 'alt',status= 'unknown') 
open(unit = 13, file ='slin',status ='unknown') 
open(unit= 14,file= 'skro',status= 'unknown') 

C 

c SELECTING THE INPUT MODE FOR THE GLOBAL CORRELATION 

c MATRIX FOR THE LLUVIA RUN 
c 
c - input subroutine called - 'dacor' 
c each sub layer correlation matrix file - 'entry' 
c profile correlation matrix file - 'global' 
c 

open(unit = 15,file = 'global' ,status = 'unknown') 
open(unit= 16, file ='entry' ,status= 'unknown')
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C 

print *,' ...... select the input mode for .......  
print *,' ........ the correlation matrix .......  
print *,' "0" = SCREEN' 
print *,' "1" = FILE(INPUT)' 
print *,' ....................................  
read *,ise 
print 
if (isc.eq.0) then 

print *,' The sequence to be followed is from the bottom' 
print *,' layer to the top layer' 

c print ,' and' 
c print ,' the matrix order is ks, theta res, parl, and par2' 

print P,' 

call dacor(npg) 
else 
print *,' Enter the size of the Correlation matrix :' 

read *,npg 
rowmax = npg 
colmax = npg 

C 
c Reading the Correlation matrix :' 

c 

do 10 row= 1, rowmax 
read (15,*)(cort(row, col), col= 1, colmax) 

10 continue 
end if 

c 

c SETTqING THE INPUT MODE FOR THE PARAMETERS FOR THE 
C CALCULATION OF POINT ESTIMATES 
c 

print * .......... Select the INPUT mode ............  
print * ........ for the input parameters ...........  
print *,' 
print *, "0" = SCREEN' 
print *, "1" = FILE(input)' 
print *,' 
read *,inp 
if (inp.eq.0) then 

print *,'Enter the mean, standard deviation, & skewness' 
print *,'The sequence is from the bottom layer to the top' 
print *, 'and enter matrix, and fracture properties for' 
print *,'each layer' 
print *,'Enter xm, xs, cs' 
do 30 i=1,npg 
print *,i 
read *,xm(i),xs(i),cs(i) 
write(8,*)xm(i),xs(i),cs(i) 

30 continue 
else 
do 35 i= l,npg 
read(8,*)xm(i),xs(i),cs(i)
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35 continue 
end if 

c 

print *,' 
print *,' If the columns has to be rearranged' 
print *,' for the final output' 
print *,' Enter --- > 1' 
read *,ire 
if(ire. eq. 1)then 
print *,'Enter the correct sequence of the columns:' 
print *,,' 
read *,(IS(iq), iq= 1,npg) 
print *,' The sequence is' 
do 22 iq-=1,npg 

22 print *,iq,'col',IS(iq) 
else 
do 23 ip =1,npg 

23 IS(ip)=ip 
end if

subroutines of the methods: rosen-Rosenblueth(1975), 
skros -Model I, lind-Lind(1983), sklind-Model H1, 
altpem-Harr(1989).  

call rosen(npg) 
call skros(npg) 

call lind(npg) 
call sklind(npg) 
call altpem(npg) 
endfile (unit= 10) 
endfile (unit= 11) 
endfile (unit= 12) 
endfile (unit= 13) 
endfile (unit= 14) 
close (unit= 15) 
close (unit= 16) 
print *' If the lluvia.inp file to be created' 
print *' Enter========> 1' 
print *,' Else Enter-------- > 0' 
read *,isw 
print *,' This program can only deal with all layers' 
print *,' matrix or matrix and fractured' 
if(isw.eq. 1)then 
rewind (unit= 10) 
rewind (unit= 11) 
rewind (unit= 12) 
rewind (unit= 13) 
rewind (unit= 14) 
call read(npg) 
end if 
stop 
end
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c 
c subroutine skros calculates model I point distribution 
C approximation 
c 

c NB - number of variables 
c corr - global correlation matrix 
C xm - mean 

c xs - standard deviation 
c cs - skewness 
c P - weighting function 
c si - sign matrix 
c pp - p-plus weighting function 

c pm - p-minus weighting function 

c fi - independent component weighting function 
c 

subroutine skros(NB) 
common /cor/corr(50,50) 
common /inp/xm(40),xs(40),cs(40) 
common /localx(40) 
dimension P(300), pp(40), pm(40), fi(400) 

common /signal/si(400,20) 
common /seq/IS(30) 

c 
c subroutine SIGN: assign sign for the variates 
c 

print *,' Model I approximation' 
print *,' ......................  
print *,' ' 
call SIGN(NB) 
N = 2**NB 

c 
c calculation of p-plus(pp) and p-minus(pm) 
c 

do 5 kp= 1,NB 
pf= 1. + (cs(kp)12.)**2.  
pfl= 1.0-(1.O/pf) 
pf2=pfl**0.5 

c print *,'cs, pf =', pf2,cs(kp) 
c 
c sign value assigned according to skewness 
c 

if(cs(kp).lt.O.O.or.es(kp).eq.O.O)then 
pp(kp) = 0.5*(l.+pf2) 
else 
pp(kp) = 0.5*(l.-pf2) 
end if 
pm(kp)= l.O-pp(kp) 

c print *,'pm, pp =', pm(kp),pp(kp) 
5 continue 
c
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c calculation of independent component weighting 
c function 
c 

do 100 ke = 1,N 
fi(kc) = 1.0 

do 110jc = 1,NB 
if(si(kcjc).It.0.0)then 

fi(kc) = fi(kc)*pm(jc) 
else 

fi(kc) = fi(kc)*pp(jc) 
end if 

110 continue 
c print *,'fi =', fi(kc) 
100 continue 
c 
c Calculation of weighting functions 

c P-lm (see equation 3.38 given in Thesis) 
c 

do 30 k= 1,N 
fa = 0.0 
do 35 jk= 1,NB-1 
do 40 kk = jk+1,NB 

c 
c component corresponding to variable x -1 
c 

if(si(k,jk) .lt. 0.0)then 
pf2= fi(k)/pm(jk) 

else 
pf2= fi(k)/pp(jk) 

end if 
c 
c component corresponding to variable x -m 
c 

if(si(k,kk).lt. 0.0)then 
pf2 =pf2/pm(kk) 

else 
pf2 =pf2/pp(kk) 

end if 
c print *,'pt2 =',pf2 
c 
c calculation of correlation component weighting 
c function 
c 

pfl = (pp(jk)*pm(jk)*pp(kk)*pm(kk))**0.5 
c print *,'pfl =',pfl 
c 
c calculation of sum of all the correlation component 
c weighting functions 
c 

fa = fa + si(kjk)*si(k,kk)*corr(jk,kk)*pfl*pf2 
40 continue 
35 continue
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c 

c calculation of weighting functions ratio 
c according to given skewness 
c 

do 45 jkk = 1,NB 
if(si(k,jkk).It.0.0)then 
fx =(pp(jkk)/pm(jkk))**0.5 
else 
fx = (pm(jkk)/pp(jkk))**0.5 

end if 
c print *,, fx =',fx 
c 
c calculation of point estimates coordinates 
c 

x(jkk) = xm(jkk) + si(kjkk)*xs(jkk)*fx 
45 continue 
c 
c weighting function:summation of independent and correlation 
c component weighting function 
c 

P(k) = fi(k)+ fa 
c print *,P(k) 

print *, (x(kl),kl = 1,NB),P(k) 
c 
c output coordinates 
c 

write(14,99)k,(x(IS(kl)),kl= 1,NB),P(k) 
99 format(iS,9f14.6) 
30 continue 

return 
end 

c 
c Subroutine rosen calculates Rosenblueth (1975) 
c point approximation 
c 
c 
C NB - number of variables 
c corr - global correlation matrix 
C xm - mean 
c xs - standard deviation 
c cs - skewness 
c P - weighting function 
C si - sign matrix 
C 

subroutine rosen(NB) 
common /cor/corr(50,50) 
common /inp/xm(40),xs(40),cs(40) 
common /loca/x(40) 
dimension P(300) 
common /signal/si(400,20) 
common /seq/IS(30)
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c 
c SIGN: read the sign of the variates 
c 

print *,' Rosenblueth Point Estimate Method' 
print *, . .................................  
print *,' I 

call SIGN(NB) 
N = 2**NB 

c 

c calculation of correlation component 
c weighting functions - fa 
c 

do 30 k= 1,N 
fa = 0.0 
do 35 jk= 1,NB-1 
do 40 kk = jk+ 1,NB 
fa = fa + si(kjk)*si(k,kk)*corr(jk,kk) 

40 continue 
35 continue 
c 
c calculation of point locations 
c 

do 45 jkk = 1,NB 
x(jkk) = xm(jkk) + si(k,jkk)*xs(jkk) 

45 continue 
c 
c calculation of weighting function 
C 

P(k) = (I. + fa)Ireal(N) 
c print *,(x(kl),kl= I,NB),P(k) 
C 

c output of estimates 
c 

write(10,99)k,(x(IS(kl)),kl = 1,NB),P(k) 
99 format(i5,9fl4.6) 
30 continue 

return 
end 

c 
c subroutine sklind calculates model II point distribution 
c approximation 
c 
c * 

subroutine sklind(NB) 
c 
c NB - number of variables 
c cor - global correlation matrix 
C xmn - mean 
c xs - standard deviation 
c cs - skewness 
c Pm - P-minus weighting function



c 
c 
c 
c

c

c 
c 
c 
C 

c 

c 
c

Pp - P-phis weighting function 
Zm. - Z-minus coordinate 
Zp - Z-plus coordinate 

common Icorlcofr(50,50) 
common Iinp/xmn(40),xs(40),cs(40) 
common /loca/x(40) 
'common IseqIIS(30) 
dimension Pm(40),Pp(40),Zm(20,20),Zp(20,20) 
dimension sig(2),Z(20,20),P(2) 
data sig(1),sig(2)/I.,-1.I 

rad = ra(])*.  
print *,'Model HI approximation' 
print ',.........  

print ", 

with the assumption of equally distributed 
weighting functions 

do 30 i= 1,NB 
do 45j =i,NB 
ifoj.eq.i)then 
ifoj.eq. 1)then 
fra =(cs(i)**2.)**0.51((4. *real(NB) +ci)*.*05 

jn= 1 equals P plus is calculated

if(cs(i). gt.0.)then 
Ppl = (I. - fra)/(2.*real(NB)) 
else 
PpI = (1. + fra)/(2.*real(NB)) 
end if 
Pmin = (1./real(NB)) - Ppl 
Zpl = a4*((Pmin/Ppl)**0.5)*xsoj) 
Zmi = d*((Ppl/Pmin)**O.S)*xsoj) 
Zm(i,i) =Zmi 

Zp(i,i) =Zpl 

Pm(i) = Pmin 
Pp(i) = Ppl 

c print *,'i ZM Zp Pm. Pp' 
c print *,i,Zm(i,i),Zp(i,i),pm(i),Pp(i) 

-go to 45 
end if 
cml = 0.  
cm2 = 0.  
cm.3 = 0.  
z4o 50 k= iJ-1.  
Pcml3 =(Pp(k) - Pm(k)) 
Pcm2 =(Pp(k) + Pm(k)) 
cml = cml + Pcml3*Z(k,i) 
cm2 = cm2 + Pcm2 * (Z(k,i)**2.)

130
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cin3 = cm3 + Pcnil3 * (Z(k,i)**3.) 
50 continue 

cmi = 0. - (cml) 
cm2 = xs(i)**2. - cxn2 
cm3 = cs(i)*(xs(i)**3.) - cm3 

C 

c cml.= A, cm2 =B, cn3 =C 
C 

c print *1 j A B C' 
c print *,j,cml,cm2,cm3 

acl = (cin3lreal(NB) - cml*cxn2) 
ac2 = 4.*(cml*cm3 - (crn2**2.)) 
ac3 = (cin2/real(NB))-(cml**2.) 
ac4 = (acl**2. - ac2*ac3)**0.S 

C print *,ac3,acl,ac214 
c print *,'delta' 

delta = (acl**2. - ac2*ac3) 
if(delta.1t.0.0)then 
print Sj'delta = ',delta 
print* 
print *, 'Try Different Sequence' 
print ' 

print , 

go to 120 
end if 
Zpl = (adl - ac4)/(2.*ac3) 
Zp2 = (adl + ac4)/(2.*ac3) 

C 
den = (Zpl**2./real(NB)) - cm2 

c print *,'den = ',den 
diff = 0.  
do 67 kp = l,i-I 
diff = Pp(kp) - Pni(kp) + diff 

c print *,diffPp(kp),Pm(kp),kp 
67 continue 

if(diff. it. 0. )then 
diff = -1.*diff 
end if 

c if(cs(i).eq.0.0.and.cs(i-l).eq. 0.0)then 
if(diff.lt.0.0001 .and.cs(i). eq.0.0)then 
Zml = Zpl 
Zm2 = Zp2 
else 

-ZmIn = (cm3 - cml*(Zpl**2.))/((Zpl**2./real(NB)) 
c - cin2) 

Zin2 = (cm3 - cinl*(Zp2**2.))/((Zp2**2./real(NB)) 
c - ci2) 

_end if 
Pml =((Zpi/real(NB)) - cml)/(Zml + Zpl) 
PpI = (l./real(NB)) - Pml 
Pm2 =((Zp2Ireal(NB)) - cml)/(Zm2+Zp2) 
Pp2 = (I./real(NB)) - Pin2
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C 
c check 
C 

cliffi = ZmIn - (-Zp2) 
dift2 = ZpI - (-Zm2) 
if(diffl .lt.0.O)then 
diffi = -1.*diffl 
end if 
if(diff2.lt. O.0)then 
diff2 = -1.*diff2 
end if 
if(diffl. .t.0.O01.and. diffMALt0. 01)thefl 
Zp(i,i) =ZPl 
Zin(i,i) =Zml 
Pm(i) =PM1 

Pp(i) =PPl 

c print *,Zm(i,i),Zp(i,i),Pm(i),P'P(i),i 
go to 45 
else 
print *','Check quadratic equation' 
print *,'diffl =',diffl,'diff2 =',diff2 
print *,'Pinl =',Pml,'Ppl =',PPl 
print *,'Zml =',Zml,'Zpl =',Zpl 
print *, Tm2 = ',Pm2,'Pp2 =',Pp2 
print *,'Zm2 =',Zm2,'Zp2 =',Zp2 
chbl = (Ppl*(Zpl**3.)) - (Pml*(Zml**3.)) 
chb2 = (Pp2*(Zp2**3.)) - (Pm2*(Zm2**3.)) 
print *,'chbl,chb2 (C) =',chbl,chb2 
go to 120 
end if 
end if 
sui2 = 0.  
do 51 k= 1,i-1 
suni2 = surn2 + Z(k,i)*Z(k~j) 

51 continue 
cof = Pm(i)*Zin(i,i) + Pp(i)*Zp(i,i) 
Z(i~j) = (xs(i)*xsOj)*corr(i~j) - (surn2/real(NB)))/cof 

c print *,Z'i',,)= ',Z(i~j),suni2,corr(i~j) 
c print *,i~j,'Zcr = ',Z(i~j),cof~suni2,xs(i),xsOj) 

45 continue 
c 
C calculation of pairs coordinates and weighting functions 
c 

ao 70 kI = 1,2 
do 60 kj = 1,NB 
if(kj .eq.i)then 
if(kl.eq. 1)then 
;S(kj) = xm(kj) + Zp(kj,kj) 
P(kl) = Pp(i) 
else 
x(kj) = xin(kj) - Zin(kj,kj) 
P~kd) = Pin(i)
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end if 
go to 60 
end if 
x(kj) = xm(kj) + sig(kl)*Z(i,kj) 

c print *,x(kj),sig~d),Z(i,kj) 
60 continue 

print *,(x(kn),kn= 1,NB),Pkd) 
write(13,99)i,(x(IS(kn)),kn= 1,NB),P(kl) 

99 format(is,9fl4.6) 
70 continue 
30 continue 
120 return 

end 

c generate the input sign matrix for model I and 
c Rosenblueth (1975) 

c NB - number of variables 
c j=No. of runs (2**NB) 
c i=No. of variables 
c 

subroutine SIGN(NB) 
common /signal/si(400,20) 
dimension s(20,400) 
N = 2.**NB 
do 10 i =1,NB 
do 20j=I,N 
rq = real(j/(2.**i)) 
iq-- (j/(2**i)) 
re = rq - iq 
if (re.eq.0.0) re = 1.  
s(ij) = 1.  
if (re.eq.0.5.or.re.lt.0.5) s(ij)=-1.  

20 continue 
10 continue 

do 30 i=1,N 
do 29 j= 1,NB 
si(ij) = sj,i) 

29 continue 
30 continue 

return 
end
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C 

c subroutine lind calculates the point distribution 
c approximation of Lind (1983) 
c 

c NB - number of variables 
c corr - global correlation matrix 
c xm. - mean 
c xs - standard deviation 
c cs - skewness 
c P - weighting function 
c si - sign matrix 

subroutine lind(NB) 
common /cor/cort(50,50) 
common /inp/xm(40),xs(40),cs(40) 
common /loca/x(40) 
common /seq/IS(30) 
dimension P(300) 
dimension sig(2),Z(20,20) 
data sig(l),sig(2)/1.,-1./ 

c 
c calculation of weighting functions 
c P(i)- weighting function 
C 

print *,' Lind Point Estimate Method' 
print *," ............................  
print *,' * 
do 30 i= 1,NB 

c 
c assumption of equally distributed weighting function 
C 

P(i)= 1./(2.*real(NB)) 
do 47 jn= 1,2 
do 45j = i,NB 
if(j.eq.i)then 
sum = 0.  
do 50 k= 1,i-1 
sum = sum + Z(k,i)**2.  

50 continue 
Z(ij) = (real(NB)*(xs(i)**2.) - sum)**.5 
go to 45 
end if 
sum 2=0.  
do 51 k=1,i-1 
sum 2 = sum 2 + Z(k,i)*Z(kj) 

51 continue 
Z(i~j) =(real(NB)*xs(i)*xs(j)*corr(ij) - sum2)/Z(i,i) 

45 continue 
C 

c calculation of coordinates 
c
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do 48 jl = 1,NB 
x(jl) = xm(jl) + sig(jn)*Z(i,jI) 

48 continue 
C 

C output 
C 

print *,(x(j) j = 1,NB),P(i) 
write(11,99)i,(x(IS(j)),j =i 1,NB),P(i) 

99 format(i5,9f14.6) 
47 continue 
30 continue 

return 
end 

C 
c subroutine altpem calculates the point distribution 
c approximation of Harr (1989) methodology 
C 

C 

subroutine altpem(NB) 
c 

c NB - number of variables 
c corr - global correlation matrix 
c xm - mean 
c xs - standard deviation 
c cs - skewness 
c P - weighting function 
c evalue - eigenvalue 
C evectr - eigenvector 
c 

common /cor/corr(50,50) 
common /inp/xm(40),xs(40),cs(40) 
common /loca/x(40) 
common /seq/IS(30) 
dimension P(300) 
dimension sig(2) 
common /eig/evalue(5O), evectr(50,50) 
data sig(1),sig(2)/1.,-1./ 

c 
print *,' Alternate Point Estimate Method' 
print *,' .................................  
call eigen(NB) 

c 
c calculation of weighting functions 
C 

rad = real(NB)**0.5 
do 30 k= 1,NB 
P(k)= evalue(k)/(2.*real(NB)) 
do 47 jn= 1,2 
do 45 jkk = 1,NB 
radc = rad *eveetr(jkk,k)
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c 

c calculation of point locations 
c 

x(jkk) = xm(jkk) + sigjn)*radc*xs(jkk) 
45 continue 

print *,(x(jkc),jkc= 1,NB),P(k) 
write(12,99)k, (x(IS(jkc)),jkc = 1,NB),P(k) 

99 format(i5,9fl4.6) 
47 continue 
30 continue 

return 
end 

c 

c This subroutine calculates the Eigen values and Eigen vectors 
c of a Correlation matrix in a descending order using the 

c subroutines - JACOBI & EIGSRT 
c Parameter Rowmax and Colmax depend on the size of the 
c correlation matrix 
c EVALUE and EVECTOR are printed in a certain pattern 
c Input file - Correlation Matrix 
c Name the Output file 
c 

subroutine eigen(ipara) 
common /cor/corr(50,50) 
common /eig/evalue(50), evectr(50,50) 
integer rowmax, colmax, row, col 
rowmax = ipara 
colmax = ipara 

call jacobi (corr, rowmax, colmax, evalue, evectr, nrotn) 
call eigsrt (evalue, evectr, rowmax, colmax) 

c 
do 60 col = 1, colmax 

print *, evalue(col) 
print *,(evectr(row,col),row = 1,rowmax) 

60 continue 
c 

return 
end 

subroutine jacobi (a, n, np, d, v, nrot) 
parameter (nmax= 100) 
dimension a(50, 50), d(50), v(50, 50), b(nmax), z(nmax) 

do 12 ip=1, n 
do 11 iq= 1, n 

v(ip, iq)=O.  
11 continue 

v(ip, ip)=I .  

12 continue
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do 13 ip=1, n 
b(ip) =a(ip, ip) 
d(ip) =b(ip) 
z(ip)=0.  

13 continue 

nrot = 0.  

do 24 i= 1, 50 
sm=0.  
do 15 ip=1, n-i 

do 14 iq=ip+1, n 
sm= sm+abs(a(ip,iq)) 

14 continue 
15 continue 

if (sm .eq. 0.) return 
if (i Ilt. 4) then 

tresh=0.2*snt/n**2 
else 

tresh =0.  
endif 

do 22 ip=l1, n-i 
do 21 iq=ip+ 1, n 

g= 100. *abs(a(ip,iq)) 
if ((i.gt.4) .and. (abs(d(ip)) +g .eq. abs(d(ip))) 

& .and. (abs(d(iq)) +g .eq. abs(d(iq)))) then 
a (ip,iq) =0.  

else if (abs(a(ip,iq)).gt. tresh) then 
h =d(iq)-d(ip) 

if (abs(h)+g .eq. abs(h)) then 
t=a(ip, iq)/h 

else 
theta= 0.5*h/a(ip, iq) 
t= 1.I(abs(theta) +sqrt(1. +theta*hI2)) 
if (theta Ilt. 0.) t=-t 

endif 
c = 1. Isqrt(l + t**2) 
S=t*c 
tau=s/(1. +c) 
h=t*a(ip, iq) 
z(ip) =z(ip)-h 

z(iq) =z(iq)+ h 
d(ip) =d(ip)-h 

d(iq) = d(iq) + h 
a(ip,iq) = 0.  
do 16j=1, ip-1 

g = aj,ip) 
h=aoj,iq) 
aoj,ip)=g-s*(h+ g*tau) 
aoj,iq) =h +s*(g-h*tau) 

16 continue
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do 17 j=-ip+ 1, iq-1 
g=a(ipj) 
h=a(j,iq) 
a(ipj) = g-s*(h + g*tau) 
ao ,iq)-= h + s*(g-h*tau) 

17 continue 
do 18 j-=iq+ 1, n 

g=a(ipj) 
h=a(iqj) 
a(ipj)-= g-s*(h + g*tau) 
a(iqj) = h+ s*(g-h*tau) 

18 continue 
do 19j=1, n 

g=v(j,ip) 
h=v(j,iq) 
v(j,ip) = g-s*(h+g*tau) 
v(j,iq) =h + s*(g-h*tau) 

19 continue 
nrot= nrot+ 1 

endif 
21 continue 
22 continue 

do 23 ip= 1, n 
b(ip)=b(ip) + z(ip) 
d(ip) = b(ip) 
z(ip) =-0.  

23 continue 
24 continue 

pause '50 iterations should never happen' 

return 
end 

subroutine eigsrt (d, v, n, np) 
dimension d(50), v(50, 50) 
do 13 i=1, n-i 

k=i 
p=d(i) 
do 11 j=i+1,n 

if (d(j).ge.p) then 
k=j 
p-=do) 

endif 
11 continue 

if (k.ne.i) then 
d(k) = d(i) 
d(i) = p 
do 12j=1, n 

p=vo,i) 
v(j,i) =fv(jO,k)
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vo,k)=p 
12 continue 

endif 
13 continue 

return 
end 

C 

subroutine dacor(na) 
c 

C 

c This program forms the correlation matrix from 
c the partitioned sub layer correlation matrices 
C 
c The sub layer correlation matrices are entered as 
c row entries of the matrix C and then the global 
c matrix correlation is formed 
c 
c Ex. For a 3 x 3 correlation matrix 
c Enter the Lower Triangular Matrix only with the 
c diagonal elements and it is stored as 
c C(.,l),C(.,2) ........ C(.,6) 
c . - Layer number 
C 
c To run the LLUVIA it is assumed that each sub layer 
c is fractured and the matrix and fracture properties 
c are uncorrelated. Therefore each matrix and fracture 
c properties can be treated as sub layers to form 
c the GLOBAL CORRELATION MATRIX 
c 

common /cor/corr(50,50) 
dimension C(10,20) 

c integer rowmax,colmax 
c 
C Reading the Sub Layers Correlation Matrices 
c 

open(unit= 15,file ='global' ,status- 'unknown') 
open(unit= 16 ,file= 'entry' ,status= 'unknown') 
print *,' Input the Correlation Matrix' 
print *,' 
print *,' Example.-' 
print *,
print *' LAYER 1' 
print *,' matrix(sub layer 1) Fracture(sub layer 2)' 
print *,' 

print *," 
print *,' LAYER 2' 
print *,' matrix(sub layer 3) Fracture(sub layer 4)' 
print *,' 

print *,' 
print *,' total number of sub layers = 4' 
print*,'



140 

print 
print *,'Enter the total number of sub layers =>' 

read *,nl 
print *,' ' 
print *,'Enter the number of properties for each' 
print *,'sub layer ==>' 

read *,np 
c 

c Calculating the number of elements in each sub 
c correlation matrix 
c 

do 2 i = 0,np-1 
npe = npe + np

2 continue 
c 

print *,'Entries per each sub layer = ',npe 
print *,' 

C 

print *,' If the "entry" file is already created' 
print *,' Enter 0"' 
print ' Else Enter "1"' 
read *,ien 
print *,' $ 

do 6 i=1,nl 
print *,' Layer =',i 
do 5 j =l,npe 
if (ien.eq.0) then 
read(16,*)C(i,j) 
print *,'C(',ij,') =',C(ij) 
go to 5 
else 
print *,'C(',ij,') =' 

read *,C(ij) 
write(16,*)C(i,j) 
end if 

5 continue 
6 continue 
c 
c Initializing the Assembled Correlation Matrix 
c 

na = n1 * np 
do 7 i = 1,na 
do 7 j = 1,na 
corr(ij) = 0.0 

7 continue 
c 
c Assembling the Correlation Matrix 
c 

n-1 
k- 1 
do 10 i = l,na,np 
ie = k * np
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do 20 kk = i, ie 
do 30 j = kk,ie 

corr(kk,j) = C(k,n) 
n =-n+l 
corr(j,kk) = corr(kkj) 

30 continue 
20 continue 

n= 1 
k = k + 1 

10 continue 
c 

c Writing it to an output file 
c 

rowmax na 
colmax na 
do 40 i 1,na 
write(15,*)(corr(ij),j = 1,na) 

40 continue 
return 
end 

subroutine read(npg)

subroutine read creates file for the LLUVIA 
run 

common Ilay/ES(100) ,ESL(100),ESF(20) 
open(unit = 15, file ='rose. in') 
open(unit = 16, file= 'lin.in') 
open(unit= 17,file='alt.in') 
open(unit= 18,file='slin.in') 
open(unit= 19, file= 'skro.in') 
print *,'Enter the number of Layers =' 

read *,nl 
print *, ' 

print *,'enter the number of properties' 
print *,'per layer' 
print *,' If the Layer is Fractured' 
print*,' Enter > 1' 
read *,ifr 
if(ifr.eq. 1)then 
np=8 
else 

np=4 
end if 
np = npg/nl 
N=nl*np

first reading the Rosenblueth point estimates

NN = 2**N

c 
c 
c 
C 

C 
c 
C c 
c 
C 

C 

C 
c 

C 

c 

c 

c 

C
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C 

c assigning the unit numbers 10 & 15 and km= 1 
c 

]C 

ku = 10 
kr = 15 

c 
110 do 10 ii- =1,NN 

read(ku,*)k,(ES(i),i= 1,N),P 
write(kr,*)ii,P 
j=1 
do 15 ij = 1,np 
do 20 if=ij,N,np 
ESL(j) =ES(if) 

C 

c Hydraulic conductivity model four parameters for 
c matrix and fractures and the unit is changed from 
c cm/hour to m/sec 
C 

if(ij.eq. 1.or.is.eq.5)then 
ESL(j)=ESL(j)/(100. *3600.) 
end if 
j=j +1 

20 continue 
c 
c integer j is updated therefore ESL(1)..ESL(nl) 
c keep changing 
c 

j=1 
write(kr,*)(ESL~d),',' ,kl = l,nl- 1),ESL(nl) 

15 continue 
if(np.eq.4)then 
do 23 if= 1,np 
write(kr, *)(ESF(kl),',' ,kl = 1 ,nl-1),ESF(nl) 

23 continue 
end if 

10 continue 
if(km.eq. 1)then 
kmn=2 
ku = 11 
kr = 16 
NN = 2*N 
go to 110 
else if(km.eq.2)then 

km=3 
kr= 17 
ku= 12 

NN =2*N 
go to 110 

else if(km.eq.3)then 
km==4 
kr =18
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ku = 13 
NN = 2*N 
go to 110 
else if(km.eq.4)then 

km==5 
kr = 19 
ku = 14 

NN = 2**N 
go to 110 

end if 
return 
end


