EXPLORATORY SHAFT FACILITY TESTS

	Test Title	SCP Section Reference
1.	Geologic Mapping of the Exploratory Shaft & Drifts	8.3.1.4.2.2.4
2.	Mineralogy & Petrology of Candidate Host Rock	8.3.1.3.2.1-2
3.	Seismic Tomography/Vertical Seismic Profiling	8.3.1.4.2.2.5
4.	Shaft Convergence	8.3.1.15.1.5.1
5.	Demonstration Breakout Rooms	8.3.1.15.1.5.2
6.	Sequential Drift Mining	8.3.1.15.1.5.3
7.	Heater Experiment in Unit TSW1	8.3.1.15.1.6.1
8.	Canister-Scale Heater Experiment	8.3.1.15.1.6.2
9.	Yucca Mountain Heated Block	8.3.1.15.1.6.3
10.	Thermal Stress Measurements	8.3.1.15.1.6.4
11.	Heated Room Experiment	8.3.1.15.1.6.5
12.	Development & Demonstration of Required Equipment	8.3.2.5.6
13.	Plate Loading Tests	8.3.1.15.1.7.1
14.	Rock-Mass Strength Experiment	8.3.1.15.1.7.2
15.	Evaluation of Mining Methods	8.3.1.15.1.8.1
16.	Monitoring of Ground Support Systems	8.3.1.15.1.8.2
17.	Monitoring Drift Stability	8.3.1.15.1.8.3
18.	Air Quality and Ventilation Experiment	8.3.1.15.1.8.4
19.	In-Situ Testing of Seal Components	8.3.3.2.2.3
20.	Overcore Stress Experiment in the Exploratory Shaft Facility	8.3.1.15.2.1.2
21.	Matrix Hydrologic Properties Testing	8.3.1.2.2.3.1
22.	Intact-Fracture Test in the Exploratory Shaft Facility	8.3.1.2.2.4.1

1

9109030228 PARTZ

EXPLORATORY SHAFT FACILITY TESTS (Continued)

	Test Title	BCP <u>Section Reference</u>
23.	Percolation Tests in the Exploratory Shaft Facility	8.3.1.2.2.4.2
24	Bulk-Permeability Test in the Exploratory Shaft Facility	8.3.1.2.2.4.3
25.	Radial Borehole Tests in the Exploratory Shaft Facility	8.3.1.2.2.4.4
26.	Excavation Effects in the Exploratory Shaft Facility	8.3.1.2.2.4.5
27.	Calico Hills Test in the Exploratory Shaft Facility	8.3.1.2.2.4.6
28.	Perched-Water Test in the Exploratory Shaft Facility	8.3.1.2.2.4.7
29.	Hydrochemistry Tests in the Exploratory Shaft Facility	8.3.1.2.2.4.8
30.	Diffusion Tests in the Exploratory Shaft Facility	8.3.1.2.2.5.1
31.	Chloride and Chlorine -36 Measurements of Percolation at Yucca Mountain	8.3.1.2.2.2.1
32.	Engineered Barrier System Field Tests System Field Tests	8.3.4.2.4.4
33.	Laboratory Tests (Thermal & Mechanical) using samples obtained from the ESF-Con.& In.	8.3.1.15.1.14
34.	Multipurpose-Borehole Testing Near the Exploratory Shaft Facility	8.3.1.2.2.4.9
35.	Hydrologic Properties of Major Faults Encountered in Main Test Level of the Exploratory Shaft Facility	8.3.1.2.2.4.10

ESF TESTS (BY PRIMARY LOCATION)

ACCESS (SHAFT OR RAMP):

MINERAL/PETROLOGY DEMONSTRATION BREAKOUT ROOM (UPPER) SHORT RADIAL BOREHOLES PERCHED WATER GEOLOGIC MAPPING

VERTICAL SEISMIC PROFILING HEATER EXPERIMENT IN TSW1 LONG RADIAL BOREHOLES HYDROCHEMISTRY MATRIX HYDROLOGIC PROPERTIES

SHAFT CONVERGENCE INTACT FRACTURE EXCAVATION EFFECTS CHLORINE-36

MAIN TEST LEVEL:

CANISTER SCALE HEATER DEMONSTRATION BREAKOUT ROOM (LOWER) EQUIPMENT/DEVELOPMENT EVALUATION OF MINING METHODS AIR QUALITY/VENTILATION PERCOLATION ENGINEERED BARRIER

HEATED BLOCK THERMAL STRESS PLATE LOADING GROUND SUPPORT MONITORING IN SITU SEALS BULK PERMEABILITY LAB TESTS

HEATED ROOM OVERCORE STRESS ROCK-MASS RESPONSE MONITORING DRIFT STABILITY SEQUENTIAL DRIFT MINING DIFFUSION

MULTIPURPOSE BOREHOLE:

MPBH'S

CALICO HILLS:

TEST SUITE

EXPLORATORY DRIFTS: MAJOR FAULT PROPERTIES

OTHER TESTS

NNOEPT5P.A42/11-20-90

TESTING GROUPS AND SEQUENCES FOR EARLY/LATE EXPLORATION AND TESTING

	OPTIONS 1-17	OPTIONS 18-34
EARLY TESTING ⁺	 TESTS IN ACCESSES EXPLORATION OF 3 FAULTS IN TS AND EAST-WEST EXPLORATORY DRIFTING 	 CRITICAL* TESTS IN SCIENCE ACCESS EXPLORATION OF 3 FAULT CROSSINGS IN CH
LATE TESTING	 TESTS IN MTL IN TS EXPLORATION OF 3 FAULTS IN CH OTHER EXPLORATION & TESTS IN CH, INCLUDING SOLITARIO CANYON FAULT DEFERRED TESTS IN ACCESSES AS MINIMUM (CONDUCT 3, 4, 5, AND 6 OR 	 3. EXPLORATION OF 3 FAULTS IN TS, INCLUDING EAST-WEST EXPLORATORY DRIFTING 4. OTHER EXPLORATION & TESTING IN CH 5. TESTS IN MTL IN TS 6. DEFERRED TESTS IN ACCESSES
	a 2 ag minimum (conduct 3, 4, 5, AND 6 0) S PERMITI	N A NON-INTERFERENCE BASIS WITH 1 & 2

* CRITICAL TESTS ARE SITE SUITABILITY TESTS IN WHICH DATA ARE IRRETRIEVABLE IF NOT OBTAINED AS CONSTRUCTION EXPOSES THE AREAS TO BE TESTED.

NNOAS5P.A42/11-19-90

ESF ALTERNATIVES STUDY

COMPARISON OF ACCESS TESTING PROGRAM BETWEEN STRATEGY 1 AND STRATEGY 2

(CONTINUED)

ACCESS TESTS:	STRATEGY 1 (EARLY TS TESTING)	STRATEGY 2 (EARLY CH TESTING)
*SHAFT CONVERGENCE	TEST + CONST. (R)	DEFERRED
*INTACT FRACTURES	TEST + CONST. (R)	DEFERRED
*EXCAVATION EFFECTS	TEST + CONST. (R)	DEFERRED
CHLORINE-36	SAMPLING	SAMPLING (R)
*PERCHED WATER	TEST + CONST. (ALL)	TEST + CONST. (ALL)

*TEST OR CONSTRUCTION SUPPORT IMPACTS CONSTRUCTION SCHEDULE (R) ASSUMPTION OF REPLICATION IN SHAFT/RAMP AND RAMP/RAMP OPTIONS (ALL) DENOTES THAT TEST WOULD BE PERFORMED IN ALL ACCESSES

ESF ALTERNATIVES STUDY

COMPARISON OF ACCESS TESTING PROGRAM BETWEEN STRATEGY 1 AND STRATEGY 2

ACCESS TESTS:	STRATEGY 1 (EARLY TS TESTING)	STRATEGY 2 (EARLY CH TESTING)
*GEOLOGIC MAPPING	TEST + CONST. (ALL)	TEST + CONST. (ALL)
*UDBR	DEFERRED	DEFERRED
*SHORT RADIAL BOREHOLES	TEST + CONST. (R)	TEST + CONST. (1)
*LONG RADIAL BOREHOLES	CONST. (R)	DEFERRED
*VERTICAL SEISMIC PROFILING	CONST. (ALL)	DEFERRED
HEATER EXPERIMENT IN TSW1	DEFERRED	DEFERRED
*HYDROCHEMISTRY	TEST + CONST. (R)	TEST + CONST. (1)
MINERALOGY/PETROLOGY	SAMPLING (R)	SAMPLING (R)
MATRIX HYDROLOGIC PROPERTIES	SAMPLING (R)	SAMPLING (R)

*TEST OR CONSTRUCTION SUPPORT IMPACTS CONSTRUCTION SCHEDULE (R) ASSUMPTION OF REPLICATION IN SHAFT/RAMP AND RAMP/RAMP OPTIONS (ALL) DENOTES THAT TEST WOULD BE PERFORMED IN ALL ACCESSES

NNOEPT5P.A42/11-20-90

INFLUENCE DIAGRAMS USED IN THE ESF ALTERNATIVES STUDY

Influence Diagram Draft 8 [9/05/90] - Health Effects Portion (pg 1 of 4)

i.

È

÷

_

-1

Influence Diagram Draft 14 [8/15/90] - Transport thru Nat. Barriers Portion (pg 2 of 4)

•

Influence Diagram Draft 14 [8/15/90] - Eng. Barrier System Portion (pg 3 of 4)

Influence Diagram Draft 8 [9/5/90] - Scenario Portion (pg 4 of 4)

.

Influence Diagram Draft 4 [5/14/90] - Radiological Worker Health

Influence Diagram Draft 4 [6/18/90] - Radiological Public Health

,

Influence Diagram Draft 5 [5/14/90] - Nonradiological Worker Safety

Influence Diagram Draft 4 [6/19/90] - Aesthetics

Influence Diagram Draft 11 [5/24/90] - Historical Properties

Influence Diagram Draft 5 [8/01/90] - Total System Life Cycle Cost (pg 1 of 3)

Influence Diagram Draft 5 [8/01/90] - Repository Life Cycle Cost (pg 2 of 3)

Influence Diagram Draft 5 [8/01/90] - ESF Cost (pg 3 of 3)

-

.

Influence Diagram Draft 8 [8/01/90] - Schedule - Ind. Costs (pg 1 of 2)

14

•

Influence Diagram Draft 11 [8/14/90] - Probability of Early False Negative

.

Influence Diagram Draft 11 [8/14/90] - Probability of Late False Negative (pg 1 of 2)

Influence Diagram Draft 11 [8/14/90] - Probability of Late False Negative (pg 2 of 2)

Influence Diagram Draft 6 [8/14/90] - Probability of Early False Positive

-

Influence Diagram Draft 5 [8/14/90] - Probability of Late False Positive

Influence Diagram Draft 7 [11/01/90] - Likelihood of Construction/Operation Approval

.

influence Diagram Draft 5 [8/02/90] - Likelihood of Retrieval

.

Influence Diagram Draft 7 [8/28/90] - Probability of Programmatic Viability

.

ANT BORNES DIRGRAM	I. D. ELEMENT		REQUIREMENT	P #
NAME/NO.	No. STATEMENT	REFERENCE	STATEMENT (OF HOTE)	AR
		60.15(c)	Site Characterization - The program of site	1
÷			characterization shall be conducted in accord	
			with the following:	
		(1)	Investigations to obtain the required informa	•
			shall be conducted in such a manner as to lim	
			adverse effects on the long-term performance	
Schedule, Draft 8	05 ESP construction		the geologic repository to the extent practic	
•	duration			
	18 CH characterization			
TSLC Cost, Draft 5	14 ESF			
ESP Cost, Draft 5	14 ESP			
	52 No. 4 duration of UG			
	access testing			
	58 Plexibility of			
	construction method			
Postclosure H & S				
Scenario Portion, Draft 6	66 ESP repository-induced change	8		
	73 ESF configuration			
	75 ESF connection w/repository			
	76 Nature and extent of CH			
	penetration			
	77 Fluid & material usage	•		
·	78 ESP construction method			
	79 Extent of exploratory			
	drifting at the			
Probability of Early	repository norison			
Palse Negative. Draft 11	A6 Inchilign to state the to			
	refute erroreant che and			
	interpretations			
	11 Inebility to understand			
	interference			

.....

-- .

•

INFLUENCE DIAGRAM	I. D. ELEMENT		REQUIREMENT	
NAME/NO.	No. STATEMENT	REFERENCE	STATEMENT (or NOT	()
	14 Adverse influence of			
	construction on test			
	18 Inability to design or conduct EBS tests	Ł		
	19 Inability to design or conduct			
	nat. barrier tests	-		
	20 Inability to adequately char.			
	the CH unit			
	22 Shaft vs ramp/no. and location			
Probability of Late		•		
False Negative, Draft 11	06 Inability to obtain data to			
	refute erroneous obs. and			
	interpretations			
	08 Inability to satisfy add.			
	info. needs beyond those			
	expected to be obtained from			
	35 tests			
	11 Inability to understand			
	interference		· · ·	
	12 Test interference			
	14 Adverse influence of			
	construction on test			
	18 Inability to design or conduct EBS tests	•		
	19 Inability to design or conduct			
	nat. barrier tests			
	20 Inability to adequately char.			
	the CH unit			
	22 Shaft vs ramp/no. and location			
	26 Insufficient ability to change			
	and expand testing program			
robability of Early				
alse Positive, Draft 6	10 Test interferences			
	11 Precludes ability to do			
	realistic tests			

•

.

·

INFLUENCE DIAGRAM	I. D. ELEMENT		REQUIREMENT	RK
NAME/NO.	No. STATEMENT	REPERENCE	STATEMENT (or ROTE)	
	12 Construction method			
	13 Inadequate physical space			
	14 Inability to design or conduc	t		
	nat. barrier tests			
	15 Shaft vs ramp/no. and locatio	n		
	18 Inability to adequately char.			
	the CR unit			
	21 Drill and blast vs moch.			
	mining			
Probability of Late				
False Positive, Draft 5	10 Test interferences			
	11 Precludes ability to do			
	realistic tests			
	12 Construction method			
	13 Inadequate physical space			
	14 Inability to design or conduc	t		
	nat. barrier tests			
	15 Shaft vs ramp/no. and locatio	n		
	18 Inability to adequately char.			
	the CH unit			
	21 Drill and blast vs moch.			
	mining	•		
Likelihood of Const/Opn				
Approval, Draft 6	22 Option facilitates			
	demonstration of compliance			
	with 60.15(c)(1-4)			
		(2)	The number of exploratory boreholes and shaft	
			shall be limited to the extent practical	
			consistent with obtaining the information nee	
			for site characterisation.	
Schedule, Draft 8	05 ESP construction			
	duration			
	11 Construction method			
	18 CH_characterization			
TSLC Cost, Draft 5	14 ESP			

•

•

3

.

.

•	NO. STATEMENT	なだがたみだれたが		
		REF EXENCE	STATEMENT	(OT BUTE)
Repository LCC, Draft 5	38 No. of ESF openings			<u> </u>
ESF cost, Draft 5	44 No. and location of VG accesses			
	52 No. & duration of UG access testing			
	58 Flexibility of construction method			
Postclosure Realth & Safet	Y			
Scenario Portion, Draft 6	73 ESP configuration			
	76 Nature and extent of CH			
	penetration			
	80 ESF access			
	87 No. and type of accesses			
Preclosure Health & Safety				
Nonradiological Worker Safe	ety,			
Draft 5	08 Norizontal openings			
	09 Ramp (TBM)			
	10 Vertical shaft		· .	
	22 Morizontal openings			
	23 Ramp (TBM)			
	24 Vortical shaft			
Probability of Early				
Talse Negative, Draft 11	12 Test interference	•		
	14 Adverse influence of			
	construction on test			
Probability of Late				
Palse Negative, Draft 11	12 Test interference			
	14 Adverse influence of			
	construction on test			
Frodadility of Early				
ALSO POSITIVO, DEALT 6	03 Misjudged global charac.			
	04 Missed adverse feature			
	06 Non-representative data			
	07 Inadequate amount of data			
	US Inadequate spatial coverage	of		
	data			

÷

•

.

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT	RK
NAMÉ/NO.	No.	STATEMENT	REFERENCE	STATEMENT (or Both)	
	10 Test i	nterferences			
	15 Shaft	vs. ramp/no. and location			
	18 Inabil	ity to adequately char.			
	the C	l unit			
Probability of Late					
False Positive, Draft 5	03 Misjud	iged global charac.			
	04 Missed	l adverse feature			
	06 Non-re	presentative data			
	07 Inadeq	uate amount of data			
	08 Inadeq	wate spatial coverage of			
	data				
	10 Test i	nterferences			
	15 Shaft	vs. ramp/no. and location			
•	18 Inabil	ity to adequately char.			
	the C	l unit			
	24 Inabil	ity to adequately char.			
	rock u	mits above the CH			
Likelihood of Const/Opn					
Approval, Draft 6	22 Option	facilitates			
	demons	tration of compliance			
	with 6	i0.15(c)(1-4)			
			(3)	To the extent practical, exploratory borehole	
				shafts in the geologic repository operations	
				shall be located where shafts are planned for	
		•		underground facility construction and operati	
				where large unexcavated pillars are planned.	
Schedule, Draft 8	05 ESF co	nstruction			
	durati	on			
	11 Constr	uction method			
TSLC Cost, Draft 5	14 ESP				
Repository LCC, Draft 5	38 No. of	ESP openings			
SF Cost, Draft 5	44 No. &	location of UG			
	ACCOSS	20			

•

•
INFLUENCE DIAGRAM		I. D. ELEMENT	DEFEDENCE	REQUIREMENT	STATEMENT (or WORK)	
		JINIENENI	REF EREINCE	STATEMENT	(er more)	
	52 No. £	duration of UG				
	ACCOS	s testing				
	58 Plexil	bility of				
	const	ruction method				•
POSTCIOSURE REALTH & SALety						
Scenario Portion, Drart 6	73 ESP (configuration				
	83 ESP A	cess location				
	an Kebos:	LTORY CONFIGURATION				
Ronradiological Markar	*					
noniadiological worker Sale Draft 5	ty,					
	10 Worki	ntar openings				
	27 Worie	sal phalt				
	24 Wert	and the				
Probability of Early	44 1010	ical sugle				
Palse Negative, Draft 11	12 Test	Interforence				
	14 Adver	e influence of				
	const	ruction on test				
	21 Locati	lon representativenes	4			
	22 Shaft	vs ramp/no. and loca	tion			
Probability of Late		··· ••				
False Negative, Draft 11	12 Test	Interference				
	14 Advers	se influence of	•			
	consti	ruction on test				
	21 Locati	lon representativenes				
	22 Shaft	vs ramp/no. and loca	tion			
Probability of Early						
False Positive, Draft 6	08 Inadeq	uate spatial coverage	e of			
	data					
	10 Test i	Interferences				
	15 Shaft	vs ramp/no. and locat	tion			
	17 Locati	lon representativenes:	5			

-

7

• •]

•

6

•

.

.

•

NAME/NO.	I. D. ELEMENT			REQUIREMENT			
NAME/NO.	No.	STATEMENT	REFERENCE	STATEMENT (or BOTE)	RK		
Probability of Late							
Palse Positive, Draft 5	08 Inad data	equate spatial coverage of					
	10 Test	interferences					
	15 Shaf	t vs ramp/no. and location					
	17 Loca	tion representativeness					
Likelihood of Const/Opn							
Approval, Draft 6	22 Opti	on facilitates					
	demo	nstration of compliance					
	with	60.15(c)(1-4)					
			(4)	Subsurface exploratory drilling everything			
				in situ testing before and during construction			
				shall be planned and coordinated with geologi			
				operations area design and construction.			
Schedule, DIAIE 5	05 ESP (sonstruction					
	durat	lion					
	11 Const	ruction duration					
SLC Cost Draft 5	18 CH CI	Aracterisation					
······································	14 63F						
ISF Cost, Draft 5	52 No. 8	duration of UG					
	acces	s testing	•				
	58 Flexi	bility of					
	const	ruction method					
concrete Resting Onest	-						
conallo Portion, Draft 6	73 ESF c	onfiguration					
	76 Natur	e & extent of CR					
	penet	ration					
	78 202 -	a material usage					
	70 555 C	UNBLINCTION Method					
	Asist	t vi expi.					
		itory horizon					
	rabon.	FART HALTZON					

м. • -

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT		
NAME/NO.	No. Statement		REPERENCE	STATEMENT	(or NOTE)	
Preclosure Health & Safety			······			
Nonradiological Worker Safe	ty,					
Draft 5	09 Ramp ((TBM)				
	23 Ramp ((TBM)				
Probability of Early						
False Negative, Draft 11	12 Test i	interference				
	14 Advers	se influence of				
	consta	ruction on test				
	16 Advers	e construction				
	sequer	ncing				
	20 Inabil	lity to adequately cha	ir.			
	the C	f unit				
	27 Option	n requires changing te	st			
	config	guration				
Probability of Late						
Palse Negative, Draft 11	12 Test i	interference				
	14 Advers	e influence of				
	constr	ruction on test				
	16 Advers	e construction				
	sequen	cing				
	20 Inabil	ity to adequately cha	τ.			
	the CH	l unit	•			
	27 Option	requires changing te	st			
	config	mration				
ProDability of Early						
AISS POSITIVE, DEALT 6	10 Test i	nterferences				
	18 Inabil	ity to adequately cha	r.			
	the CR	unit				
robability of Late						
atse rositive, Diart 3	10 Test 1	nterrences	•			
	10 INADII	ity to adequately cha	r.			
	the CR	JINIT				
	•					

8

•

.

.

INFLUENCE DIAGRAM	<u> </u>	I. D. ELEMENT	REQUIREMENT		
NAME/NO.	No .	STATEMENT	REFERENCE	STATEMENT (OF BOTE)	AA
kelihood of Const/Opn					_
proval, Draft 6	22 Opti	on facilitates			
	deno	nstration of compliance			
	with	60.15(c)(1-4)			
			60.21(c)(1)(ii)(E) The Safety Analysis Report shall inclu	uđ
				A description and assessment of the site at	w
				the proposed geologic repository operations	A
				is to be located with appropriate attention	t
				those features of the site that might affect	t
				geologic repository operations area design a	n
				identify the logation of the site st	ha
				Operations area with second to the boundary	lt
				the accessible environment	7
				The assessment shall contain-	
		ـ ـــــــــــــــــــــــــــــــــــ		An analysis of the performance of the major	a
				structures, systems, and components, both su	
				and subsurface, to identify those that are	
				important to safety. For the purposes of th	11
				analysis, it shall be assumed that operation	15
				geologic repository operations area will be	c
			•	out at the maximum capacity and rate of rece	a .
stclosure Health & Safety				radioactive waste stated in the application.	
onario Portion, Draft 6	64 Chang	es in state of			
	dispo	sal system			
	66 ESF r	epository-induced			
	chang	195			
	72 Repos	itory design			
	73 ESF c	onfiguration			
			60.21(c)(11)	The Safety Analysis Report shall include:	
				A description of design considerations that	a
				intended to facilitate permanent closure and	
	•			decontamination or dismantlement of surface	
				facilities.	

•

•

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT				
RAME/NO.	No.	STATEMENT	REFERENCE	ST	ATEMENT	(OF NOTE)	RR	
Schedule, Draft 8	14 Decom. durati	and closure	·····					
Repository LCC, Draft 5	18 Costs decomm	of closure and dissioning						
Postclosure Health & Safety								
Scenario Portion, Draft 6	72 Reposi	tory design						
	73 ESP co	nfiguration						
	90 Reposi	tory						
	config	uration						
Schedule, Draft 8	20 Test ro 23 Test p 25 Add. ro	equirements Lan eq. for	60.74(a)	Tests. DOE shall perfor Commission to perform, a Commission deems appropriate administration of the re These may include tests (2) the geologic reposit structures, systems, and detection and monitoring equipment and devices us receipt, handling, or st	T, or person such test siate or ogulation of: (1) cory incl cory incl cory of instrum red in co corage of	ermit the is as the necessary for as of this par Radioactive Juding its ents, (3) radi ments, and (4) nnection with radioactive	1	
	MUTRB/1	NRC/NV testing						
Postclosure Health & Safety	·	· · · · · ·						
Scenario Portion, Draft 6	64 Changes dispose	s in state of al system						
	66 ESF reg changes	oository induced						
	72 Reposit	ory design						
	73 ESP con	figuration						
	80 ESF acc							
	85 Areal p	ower density						
	86 Waste a	-						

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUI	REMENT		PK	
RAME/NO.	No.	STATEMENT	REFERENCE		STATEMENT	(OF NOTE)		
Postclosure Health & Safety								
ng. Barrier System Portion	,							
raft 11	59 Conta	iner degradation						
reclosure Health & Safety							•	
adiological Public Health,								
raft 4	03 Publi	c population dose						
•	from	accidents						
reclosure Health & Safety								
adiological Worker Health,								
raft 4	03 Worke	r population dose						
	from	accidents						
robability of Early								
alse Negative, Draft 11	06 Inabi	lity to obtain data to						
	refut	erroneous obs. and						
	inter	pretations						
	20 Inabi	lity to adequately						
	char.	the CH unit						
	26 Insuf	ficient ability to chan	ge					
	and er	kpand testing program		,				
robability of Late								
alse Negative, Draft 11	06 Inabil	lity to obtain data to						
	refute	erroneous obs. and	•					
	inter	pretations				•		
	08 Inabil	lity to satisfy add.						
	info.	needs beyond those						
	exp. t	to be obtained from 35						
	tests							
	20 Inabil	ity to adequately						
	char.	the CH unit						
	26 Insuff	icient ability to chan	ge					
	and ex	pand testing program						
obability of Early								
lse Positive, Draft 6	11 Preclu	des ability to do						
	realis	tic tests						
	14 Inabil	ity to design or conduc	ct					
	nat. b	arrier tests				-		

-

INFLUENCE DIAGRAM	_	I. D. ELEMENT	REQUIREMENT				~~
NAME/NO.	N	10. STATEMENT	REFERENCE		STATEMENT (C	T ROTE)	
Probability of Late			**************************************				
Palse Positive, Draft 5	11	Precludes ability to do					
		realistic tests					
	14	Inability to design or cond	luct				
		nat. barrier tests					
Likelihood of Const/Opn			-				
Approval, Draft 6	17	Option facilitates tests by					
		NRC per 10 CFR 74(a)					
			60.74(b)	The tests required	under this sect	ion shall	
				include a performan	ce confirmation	Drogram ca	
				out in accordance w	ith Subpart F o	f this part	
scnedule, Draft 8	25	Add. req. for			• · • •		
		NWIRB/NRC/NV testing					
POSCIUSURO HOAITH & Safety							
ony. Derrier System Portion	,	•					
Drart II	49	Gas phase releases		•			
	55	Groundwater vel.		· · ·			
		distribution thru EBS					
		and seals					
Postclosure Health - cadada	59	Container degradation					
Franchort Them Mak Basedan	_		•				
Portion. Draft 12							
	23	sa groundwater pathway					
	33	De groundwater pathway					
		char of setur-1					
		harriere					
Likelihood of Const/Opn		~~					
Approval, Draft 6	19	Option promotes confidence d					
		incl. of performance	or				
		Confirmation plan par 14 cm					
		60.140-143	i				
	24	Capability for extended					
		duration tests					
						•	

	•				(
INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT	RK
NAME/NO.	No.	STATEMENT	REFERENCE	STATEMENT (OF BOTE)	

60.112

OVERALL SISTEM PERFORMANCE OBJECTIVE FOR THE GEOLOGIC REPOSITORY AFTER PERMAMENT CLOSURE. The geologic setting shall be selected and the en barrier system and the shafts, boreholes and their seals shall be designed to assure that releases of radioactive materials to the acce environment following permanent closure confo such generally applicable environmental stand for radioactivity as may have been establishe the Environmental Protection Agency with resp both anticipated processes and events and unanticipated processes and events. 5

1

Postclosure Nealth & Safety Scenario Portion, Draft 6

> disposal system 66 ESF-indused changes 72 Repository design 73 ESP configuration 90 Repository configuration

64 Changes in state of

Postclosure Health & Safety Eng. Barrier System Portion, Draft 11

- 47 Gas phase transport thru unsaturated some
 48 Gas phase transport thru EBS and seals
 49 Gas phase releases
 53 Waste package releases
 54 Retardation in EBS and seals
- 55 Ground water vel. distribution thru EBS and seals
- 56 Post-waste-emplacement char. of EBS and seals
- 59 Container degradation

INFLUENCE DIAGRAM		I. D. ELEMENT	REQUIREMENT				- RK		
NAME/NO.	No.	Statement	REFERENCE		STATEMENT	(or MOTE)	A.K		
Postclosure Mealth & Safet	1						•		
Transport Thru Nat. Barrie:	15								
Portion, Draft 12	23 SZ gra	ound water pathway							
	33 UZ gra	ound water pathway							
	42 GW tra	insport thru UZ							
	44 Post-w	aste-emplacement							
	char.	of natural							
	barrie	rs							
Postclosure Health & Safety	,								
lealth Effects Portion,					·				
Draft 6	14 Releas	es to atmosphere							
	16 Concen	trations in							
	surfac	e and ground							
	water			•					
	19 Releas	es to ground							
	water	that people may							
	use								
	20 Releas	e to surface							
	water			,					
	21 Subsur	face transport							
	thru a	ccessible							
	enviro	nment							
	22 Release	es to the	•			·			
	ACCessi	ible environment							
italihood of Caret	71 Direct	releases							
neral Draft C									

INFLUENCE DIAGR	AM	I. D. ELEMENT	REQUIREMENT				
NAME/NO.	No.	Statement	REPERENCE	STATEMENT (OF BOTE)			
Postclosure Health and Eng. Barrier System Po	Safety rtion,	•	60.113(a)(1)	PERFORMANCE OF PARTICULAR BARRIERS AFTER PERMANENT CLOSURE. General provisions. (1) Engineered barrier system. (i) The engineered barrier s shall be designed so that assuming anticipate processes and events: (A) Containment of HLW substantially complete during the period when radiation and thermal conditions in the engin barrier system are dominated by fission produ decay; and (B) Any release of radionuclides engineered barrier system shall be a gradual which results in small fractional releases to geologic setting over long times. For dispos saturated zone, both the partial and complete with groundwater of available void spaces in underground facility shall be appropriately c and analysed among the anticipated processes events in designing the engineered barrier sy			
Draft 11	48 Gas pl	ase transport					
	thru 1	BS and seals	_				
	DI Trans	ort thru EBS and sea	als				
	JJ WASCO	package releases	•				

Likelihood of Const/Opn Approval, Draft 6

15 Releases

60.122(a)(2) If any of the potentially adverse conditions specified in paragraph (c) of this section is present, it may compromise the ability of the repository to meet the performance objectives relating to isolation of the waste. In order

INFLUENCE DIAGRAM	I. D. ELEMENT		REQUIREMENT	DF
NAME/NO.	No. STATEMENT	REFERENCE	STATEMENT (OF BOTK)	AA
Postclosure Mealth & Safety		(i) (ii) (iii) (B) (C)	show that a potentially adverse condition doe not so compromise the performance of the repo the following must be demonstrated: The potentially adverse human activity or nat condition has been adequately investigated, i the extent to which the condition may be pres still be undetected taking into account the d resolution achieved by the investigations; an The effect of the potentially adverse human a or natural condition of the site has been ade evaluated using analyses which are sensitive potentially adverse human activity or natural condition and assumptions which are not likel underestimate its effect; and 0(A) The potentially adverse human activity or condition is shown by analysis pursuant to pa (a)(2)(ii) of this section not to affect sign the ability of the geologic repository to mee performance objectives relating to isolation waste, or The effect of the potentially adverse human a or natural condition is compensated by the pr a combination of the favorable characteristic the performance objectives relating to isolat the waste are met, or The potentially adverse human activity or nat condition can be remedied.	•
Scenario Portion, Draft 6	64 Changes in state of disposal system 72 Repository design			
Probability of Early	73 ESP configuration			
Palse Positive, Draft 6	04 Missed adverse feature			
Probability of Tata				
False Positive, Draft 5	04 Missed adverse feature			
		16		

-

1

.

.

.

INFLUENCE DIAGRAM	<u> </u>	I. D. сыслена		REQUIREMENT		RK
NAME/NO.	No.	STATEMENT	REFERENCE	STATEMENT (or BOTE)		
			60.122(b)(1)	Favorable conditions. (1) The nature and rates tectonic, hydrogeologic, geochemical, and geomorphic processes (or any of such processe operating within the geologic setting during Quaternary Period, when projected, would not affect or would favorably affect the ability	of	2
Postclosure Health & Safety				gorogic repository to ibulata the weste.		
Fransport Thru Nat. Barriers						
Portion, Draft 12	30 SZ re	tardation				
	31 SZ gr distr GWTT)	ound water vel. ibution (incl.				
	40 UZ re	tardation				
· .	41 UE gr distr GWTT)	ound water vel. ibution (incl.				

٠

Postclosure Health & Safety Scenario Portion, Draft 6

72 Repository design 73 ESF configuration

Postclosure Health & Safety Eng. Barrier System Portion, Draft 11

56 Post-waste-emplacement char. of EBS and seals

· \

SCOPE OF DESIGN CRITERIA FOR THE GEOLOGIC REPOSITORY 2 OPERATIONS AREA. Sections 60.131 through 60.134 specify minimum criteria for the design of th geologic repository operations area. These d criteria are not intended to be exhaustive, h Omissions in 60.131 through 60.134 do not relieve DOE from any obligation to provide su features in a specific facility needed to ach performance objectives. All design bases mus consistent with the results of site character activities.

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT	RI
NAME/NO.	No.	STATEMENT	REFERENCE	STATEMENT (or BOTE)	
Proclosure Health & Safety					
Nonradiological Worker Safet	¥ •				
Draft 5	40 Venti desig	lation system n			
Likelihood of Const/Opn					
Approval, Draft 6	22 Optio	n facilitates compl. wit	h		
	IU CF	R 80.133	60.131		
			5U.IJI	OPERATIONS AREA	
			(b)	Structures, systems, and components important	
				safety. (1) Protection against natural pheno	
				environmental conditions. The structures, sys	
				components important to safety shall be desig	
				that natural phenomena and environmental cond	
				anticipated at the geologic repository operat	
		•		will not interfere with necessary safety func	
Postclosure Health & Safety					
Scenario Portion, Draft 6	72 Repos	itory design		· .	
	73 ESP c	onfiguration			
			60.133(a)(1)	ADDITIONAL DESIGN CRITERIA FOR THE UNDERGROUND	
				PACILITY (10 CFR 60.133). General criteria for	the
				underground facility. (1) The orientation, ge	
		<u>.</u> N		layout, and depth of the underground facility	
				and the design of any engineered barriers tha	
				part of the underground facility shall contri	
				the containment and isolation of radionuclide	
Repository LCC, Draft 5	24 Venti	lation and cooling			
	req.				
Postclosure Health & Safety			•		
Scenario Portion, Draft 6	66 85 P r	epository induced change	8		
	72 Repos	itory design			
	73 ESF c	onfiguration			
	88 Repos	itory location			
	90 Repos	itory configuration			

 $\overline{}$

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT
NAME/NO.	No.	STATEMENT	REFERENCE	STATEMENT (OF BOTE)
Postclosure Health & Safety				
Eng. Barrier System Portion,				
Draft 11	56 Post	-waste-emplacement		
	chai	. of EBS and seals		
Likelihood of Const/Opn				
Approval, Draft 6	22 Opti	on facilitates compl. wit	:h	
	10 0	FR 60.133		
			60.133(a)(2)	The underground facility shall be designed so
,				the effects of credible disruptive events dur
				period of operations, such as flooding, fires
				explosions, will not spread through the facil
Repository LCC, Draft 5	24 Vent	ilation and cooling		
	req.			
Postclosure Health & Safety				
Scenario Portion, Draft, 6	72 Repo	sitory design		
	73 ESP	configuration		
Postclosure Health & Safety				
Eng. Barrier System Portion,				
Draft 11	56 Post	-waste-emplacement		
	char	. of EBS and seals		
Preclosure Health & Safety				
Nonradiological Worker Safety	ł,			
Draft 5	40 Vent	ilation system		
	desi	dn.		
Likelihood of Const/Opn		• -		
Approval. Draft 6	22 Op+i	on facilitates compl with	h	
	10 000		55	

60.133(b)

Flexibility of design. The underground facility 1 shall be designed with sufficient flexibility allow adjustments where necessary to accommod specific site conditions identified through i monitoring, testing, or excavation.

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT	
NAME/NO.	No.	Statement	REFERENCE	STATEMENT (OF BOTE)	
Postclosure Health & Safety					
Scenario Portion, Draft 6	72 Repos	itory design			
Likelihood of Const/Opp	73 ESF C	onfiguration			
Approval, Draft 6	22 Optio	n facilitates compl. vi	th		
	10 CF	R 60.133		· ·	
			60.133(e)(1)	Underground openings. (1) Openings in the	
				underground facility shall be designed so tha operations can be carried out safely and the	
ESF Cost. Draft 4	45 Under	ground accesses		retrievability option maintained.	
· · · · · · · · · · · · · · · · · · ·	(shaf	ts and ramps)			
	46 MTL c	onfiguration and extent			
Postclosure Health & Safety					
Scenario Portion, Draft 6	72 Repos	itory design			
	73 ESF c	onfiguration			
	89 Rock	support system			
Likelihood of Const/Opn					
Approval, Draft 6	22 Option	n facilitates compl. wi	th		
theithest of Babalanat	10 CP	R 60.133			
LIKGIINGOO OF RETFLEVEL,	61 7 - 6	e l - 1 6 - 6 - 1 6			
	02 Insur:	ficient tecnnical			
	CONLI	.\ .\			
			60.133(e)(2)	Openings in the underground facility shall be	
				designed to reduce the potential for deleteri	
				rock movement or fracturing of overlying or	
SF Cost. Draft 4	45 Indee	TOURA ACCASE		surrounding rock.	
	(shaf)	Jivanu accesses			
	46 MPT. ~	nfiguration and autors			
Repository LCC. Draft 5	25 Rock	reatment			
	36 Free	tion mathad			

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT		RK
NAME/NO.	No.	STATEMENT	REPERENCE	STATEMENT	(OF BOTE)	
Postclosure Health & Safety	• • • • • • • • • • • • • • • • • • •					
Scenario Portion, Draft 6	72 Repos	itory design				
	73 ESF c	onfiguration				
	89 Rock	support system				
Preclosure Health & Safety						
Nonradiological Worker Safe	ty,					
Draft 5	05 Hagar	d				
	22 Horis	ontal openings				
	23 Ramp	(TBM)				
	24 Verti	cal shaft				
	42 Mater	ials handling				
	syste					
Likelihood of Rejecting a						
Site that is OK, Draft 9	22 Shaft	vs ramp/no. and locati	on			
Probability of Early						
False Positive, Draft 6	15 Shaft	vs ramp/no. and locati	on			
Probability of Late						
False Positive, Draft 5	15 Shaft	vs ramp/no. and locati	on			
Likelihood of Const/Opn						
Approval, Draft 6	22 Option	n facilitates complianc	6			
	with :	10 CFR 60.133				

60.133(f)

ESF Costs, Draft 4 Repository LCC, Draft 5 Postclosure Health & Safety Scenario Portion, Draft 6

-

54 Method of construction 36 Excavation method

• •

72 Repository design 73 ESP configuration 84 Rep. construction method

٠

Rock excavation. The design of the underground 1 facility shall incorporate excavation methods will limit the potential for creating a prefe pathway for groundwater to contact the waste or radionuclide migration to the accessible environment.

INFLUENCE DIAGRAM		I. D. ELEMENT		RECHTREMENT	
NAME/NO.	No.	Statement	REFERENCE	STATEMENT (OF BOTE)	PC
Likelihood of Const/Opn					
Approval, Draft 6	22 Optio	on facilitates compl. wi	th		
	10 CF	R 60.133			
			60.133(g)(1)	Underground facility ventilation. The ventilation	1
				system shall be designed to - (1) Control the transport of radioactive particulates and gas	
				within and releases from the underground faci in accordance with the performance objectives	
				60.111(a).	
			(2)	Assure continued function during normal opera under accident conditions; and	
			(3)	Separate the ventilation of excavation and wa	
Repository LCC. Draft 5	24 Venti	lation and cooling		emplacement areas.	
	regui	rement			
Postclosure Nealth & Safety					
Scenario Portion, Draft 6	72 Repos	itory design			
	73 ESF c	onfiguration			
reclosure Health & Safety					
Nonradiological Worker Safet	Υ,				
Draft 5	40 Ventil	lation system			
	design	- N			•
ikelihood of Const/Opn	-				
pproval, Draft 6	22 Option	n facilitates compl. wit	:h		
	10 CF1	R 60.133			
			60.133(h)	Engineered barriers. Engineered barriers shall	1
				be designed to assist the geologic setting in	-
				meeting the performance objectives for the pe	
				following permanent closure.	

.

Postclosure Health & Safety Scenario Portion, Draft 6

72 Repository design 73 ESP configuration

.

22

¢.

.

INFLUENCE DIAGRAM		I. D. ELEMENT		REQUIREMENT	R
NAME/NO.	No.	Statement	REFERENCE	STATEMENT (or Hote)	
Postclosure Nealth & Safety			<u></u>		
Eng. Barrier System Portion,					
Draft 11	45 Relea	se to unsat. sone			
	48 Gas p	hase transport			
	thru	EBS and seals			
Likelihood of Const/Opn					
Approval, Draft 6	22 Option	n facilitates compl. v	with		
	10 CF	R 60.133			
			60.133(i)	Thermal loads. The underground facility shall be	
				designed so that the performance objectives w	
				and the merchanical response of the back and	
				and chermomechanical response of the nost roc	
Postclosure Health & Safety				and suffounding scrata, groundwater system	
Scenario Portion. Draft 6	72 Benos	itory design			
	73 ESP C	onfiguration			
	85 Areal	nover density			
Postclosure Health & Safety	UJ ALGUL	bowar neustry			
Transport Thru Nat Barriers					
Portion. Draft 12	32 GW tr	anaport thru SZ			
	42 GW tr	ansport thru 112			
Likelihood of Const/Opp	12 00 620	mopute citta on			
Approval. Draft 6	22 Option	n facilitates compl s	ei th		
	10 CP	R 60.133			
			60.134(a)	General design criterion. Seals for shafts and boreholes shall be designed so that following	
				personant closure they do not become nother	
				that comprehise the sealesis repeaterning the	
				the meet the merformance chiestines for the sector and the sector	
				to meet the performance objectives for the pe	
Postclosure Health & Safety				everyarily formations cropute.	
Scenario Portion. Draft 6	72 Rebos	itorv design			
· · · · · · · · · · · · · · · · · · ·	73 ESP C	onfiguration			

INFLUENCE DIAGRAM		I. D. ELEMENT	معدنة ومرور ومعرفي والمراجع	REQUIREMENT		RK
NAME/NO.	No.	STATEMENT	REFERENCE	Stateme	TT (OF HOTE)	
Postclosure Realth & Safety			, <u> </u>			
ng. Barrier System Portion.						
Praft 11	48 Gas ph	ase transport				
	thru E	BS and seals				
	51 Transp	ort thru EBS and				
	seals					
			60.137	GENERAL REQUIREMENTS FOR PER	PORMANCE COMPIRMATION.	2
				The geologic repository oper	ations area shall	
				designed so as to permit imp	lementation of a	
				performance confirmation pro	gram that meets t	
				requirements of Subpart F of	this part.	
ichedule, Draft 8	25 Add. r MTRB/	eq. for NRC/NV testing				
Postclosure Health & Safety						
Cenario Portion, Draft 6	72 Reposi	tory design				
	73 EST Co	nfiguration				
Postclosure Health & Safety						
ing. Barrier System Portion,						
Draft 11	49 Gas ph	ase releases				
	59 Contai	ner degradation				
Postclosure Health & Safety						
Transport Thru Nat. Barriers						
Portion, Draft 12	23 SŻ gro	und water pathway				
	33 UZ gro	und water pathway				
	44 Post-w	aste-emplacement				
	char.	of natural				
	barrie	75				

٠.

٠١

=

ESF ALTERNATIVES STUDY OPTIONS EVALUATED

PRESENTED AT

DOE/NRC MEETING ON CALICO HILLS RISK/BENEFIT ANALYSIS AND ESF ALTERNATIVES STUDY

PRESENTED BY

WILLIAM R. KENNEDY SENIOR MINING ENGINEER RAYTHEON SERVICES NEVADA

JANUARY 29-31, 1991

MAJOR REGULATORY CONCERNS ADDRESSED IN DESIGN

- 1. CONDUCT SITE CHARACTERIZATION PROGRAM IN A MANNER THAT LIMITS ADVERSE EFFECTS, LIMITS NUMBER OF BOREHOLES AND SHAFTS AND COORDINATES WITH GROA DESIGN
- 2. PERFORM COMPARATIVE EVALUATIONS OF MAJOR DESIGN FEATURES
- 3. LIMIT TEST/TEST AND CONSTRUCTION/TEST INTERFERENCE
- 4. LIMIT IMPACTS AND INTERFERENCES FROM CONSTRUCTION METHOD
- 5. ENSURE ADEQUATE EXTENT OF CHARACTERIZATION PROGRAM TO EVALUATE FAVORABLE AND POTENTIALLY ADVERSE CONDITIONS

MEANS OF ACCESS

• TOPOPAH SPRING (TS) LEVEL

- SHAFTS ONLY
- RAMPS ONLY
- SHAFT/RAMP COMBINATION
- CALICO HILLS (CH) LEVEL
 - SHAFT EXTENSIONS
 - INTERNAL SHAFTS
 - INTERNAL RAMPS

LOCATION OF ACCESSES

- ALL NORTH EAST
- ALL SOUTH
- NORTH EAST/SOUTH

(CONTINUED)

MAIN TEST FACILITY

• TWO LOCATIONS

- NORTHEAST
- SOUTH

• LARGER MTL CORE AREA TO AVOID INTERFERENCES

- INCREASED FROM 27 ACRES TO 92 ACRES

EXCAVATION METHODS

• SHAFTS

- DRILL AND BLAST
- SHAFT BORING MACHINE
- BLIND HOLE DRILL
- V-MOLE
- RAISE BORE

(CONTINUED)

EXCAVATION METHODS

• RAMPS

- TUNNEL BORING MACHINE
- DRILL AND BLAST/ROAD HEADER

MAIN TEST LEVEL CORE AREA (TS)

- DRILL AND BLAST
- MOBILE MINER

EXPLORATORY DRIFTING (TS AND CH)

- DRILL AND BLAST
- MOBILE MINER
- TUNNEL BORING MACHINE
- ROAD HEADER

(CONTINUED)

EXPLORATORY DRIFTING

• **TOPOPAH SPRING LEVEL**

- LONG N-S DRIFT
- E-W DRIFT
- 4 FAULT CROSSINGS
- 15,000 20,000 LINEAR FEET OF EXPLORATORY DRIFTING

• CALICO HILLS LEVEL

- 5 FAULT CROSSINGS
- 19,000 LINEAR FEET OF EXPLORATORY DRIFTING

SUMMARY OF ESF/REPOSITORY OPTIONS

		E.S.F.							REPOSITORY						
	#		AC	ACCESS 1		CESS-2			EST LEVE		ACCESSES		CONSTRUCTION		
			SIZE	METHOD	512E	CONST. METHOD	LAYOUT	CONST. METHOD	LOCATION	ELEVATION	SHAFTS	RAMPS	RAMPS &	ENPL.	TOTAL
18	1	BASE CASE	12° SHAFT	DRILL & BLAST	12" SHAFT	DRILL & BLAST	TITLE II G.A.	DRILL A BLAST	ME	SAME AS	3.27	1-25	TBM	DRILL A	AUCESSES
19	2	A1	TH' SHAFT	^	25' RAMP	TBN	MODIFIED TRGA	~			2.25	1-25		BLAST	
20	3	A2	10° Shaft	~	te - Shaft	DRILL A BLAST	~		*			9.98*			
21	4	A4 REV.1	të" Shaft	~	12 SHAFT 25 RAMP	DAB TEM	~	•	~		1-25" DILA168	1-25			
22	5	A5	18" SHAFT	~	25' RAMP	TBM	*	~	8			+E3F	<u> </u>	<u> </u>	5
23	6	A7	25' RAMP	TBM	25' RAMP	~	*	*		<u>``</u>		<u>~</u>	<u>~</u>		5
24	7	83, REV. 2-		5814						~	<u>^</u>	ESF	~	~	4
25	8	B3,REV.S.		V-MOLE		,									
28		BLREV. A	18"	BLIND	~					_					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10		SHAFT	BORE RAISE				MECH.		^	^	1-25* +E3F		TBM	5
~1	10	Dopiev. B		BORE DRILLA											
28	11	83, HEV, 8-		BLAST											
29	12	<b>B4</b>	SHAFT	BLAST	~	~	~	~	8	•	_				
30	13	B7	25' Ramp	TBM	~	~	~	~	~		<u> </u>	IN ESE	<u> </u>		
31	14	<b>B</b> 8	të' Shaft	DRILL A BLAST	~	~	*		*		1-25	2.25	<u>~~</u>	<u>~~</u>	
X	15	CI	16' SHAFT	~	~	~	TWO	~	ME	TWO LEVELS	A-LE"	+E3F 1-25'	<u>^^</u>	<u>~</u>	
33	16	CA	18" SHAFT							REPOIL	E3-1-85"	+ESF	••	<u>~</u>	-4
34	47	<b>D</b> 11	12		12	DENLA			5			^	*	*	5
	"		SHAFT	<u>^</u>	SHAFT	BLAST	G.A.	DRILL & BLAST	ME	BAME AS REPOS.	2-25	2-25	~	~	6

ESFSUM6P.126/11-20-90

### DESCRIPTION OF COLOR CODING USED IN DEFINITIONAL ISOMETRICS

THREE BASIC COLORS WERE USED TO DEFINE THE <u>EARLY</u> EXCAVATION PHASE AND ASSOCIATED TEST PROGRAMS FOR THE 34 ESF OPTIONS.

- RED: FOR ESF ACCESSES (SHAFTS AND RAMPS) AND SEGMENTS, THE COLOR RED INDICATES THE ACCESS OR SEGMENT IS A "PRIMARY" TESTING ACCESS. ANY EARLY PHASE TEST WHICH IS NOT DEFERRED UNDER THE SPECIFIC OPTION (EITHER SCENARIO 1 OR 2), WOULD BE PERFORMED DURING CONSTRUCTION. ALL DEFERRED TESTS WOULD BE PERFORMED DURING LATE TESTING PHASE
- BLUE: FOR ESF ACCESSES, THE COLOR BLUE INDICATES THE ACCESS OR ACCESS SEGMENT IS NOT A PRIMARY TESTING ACCESS. ONLY MAPPING, NON-INTERFERING SAMPLING, AND PERCHED WATER OR FAULT TESTING (IF APPLICABLE) WOULD BE PERFORMED.

GREEN: FOR DRIFTS ON A TARGET HORIZON, EITHER MAIN TEST LEVEL OR CALICO HILLS, THE COLOR GREEN INDICATES DRIFTING AND ASSOCIATED TESTING TO BE PERFORMED DURING THE EARLY TEST PHASE.





13 ISOMETRIC SCENARIO #1 DATE













/

 $\bigcap$ 

J




6 60 a à 1 - 116 92 11

DATE



and the second sec





DATE



a state and a state of the stat





DATE

























. .



In the second second









ì











the first the second second



27 TASK NO. 4 OPTION NO. B3 REV. 5 (RAISE BORE) ISOMETRIC SCENARIO #2 DATE

















## ESF ALTERNATIVES STUDY RESULTS OF EVALUATION SENSITIVITY INFORMATION

PRESENTED AT

## DOE/NRC MEETING ON CALICO HILLS RISK/BENEFIT ANALYSIS AND ESF ALTERNATIVES STUDY



**PRESENTED BY** 

DR. PAUL GNIRK PRINCIPAL CONSULTANT RE/SPEC INC. Attachment 20

**JANUARY 29-31, 1991**
# **ESF ALTERNATIVES STUDY**



# **PERSONNEL COMPONENTS**

### SANDIA MANAGEMENT LEAD GROUP

AL STEVENS AL DENNIS LARRY COSTIN STEVEN BAUER

### **DECISION METHODOLOGY GROUP**

LEE MERKHOFER (ADA) PHIL BECCUE (ADA) JESSICA ROTHBERG (ADA)

PAUL GNIRK (RE/SPEC) DAVID PARRISH (RE/SPEC) WILLIAM BOYLE (RE/SPEC)

### **MANAGEMENT PANEL**

TOM ISAACS (DOE) STEPHAN BROCOUM (DOE) RALPH STEIN (DOE) LAKE BARRETT (DOE)

CARL GERTZ (DOE) MAX BLANCHARD (DOE) TED PETRIE (DOE) LEO LITTLE (DOE)

TOM HUNTER (SNL) TOM BLEJWAS (SNL WENDELL WEART (SNL) DICK LYNCH (SNL)

# **PERSONNEL COMPONENTS**

(CONTINUED)

### **EXPERT PANELS**

- POSTCLOSURE HEALTH
- PRECLOSURE RADIOLOGICAL HEALTH
- PRECLOSURE NON-RADIOLOGICAL HEALTH AND SAFETY
- ENVIRONMENT
  - AESTHETIC PROPERTIES
  - HISTORICAL PROPERTIES
  - BIOLOGICAL PROPERTIES (NON-DISCRIMINATORY)
- SOCIOECONOMICS (NON-DISCRIMINATORY)
- COST AND SCHEDULE
- CHARACTERIZATION TESTING
- REGULATORY APPROVAL
- PROGRAM VIABILITY

### **SUPPORT GROUPS**

- SURFACE DESIGN
- UNDERGROUND DESIGN
- COST/SCHEDULE
- TESTING
- **REQUIREMENTS**

### EXPERT PANEL INVOLVEMENT (FOR EACH OBJECTIVE)



(

# HIGHEST-LEVEL OBJECTIVES FOR THE COMPARATIVE EVALUATION OF ESF ALTERNATIVES



# THE METHODOLOGY HAS DISTINCTIVE CHARACTERISTICS DELIBERATELY SELECTED TO MEET SPECIAL NEEDS OF THE STUDY

- EXPLICIT CONSIDERATION OF IMPACT OF ESF CHOICE ON DOWN-STREAM REPOSITORY DECISIONS (e.g. CONSTRUCTION AUTHORIZATION)
- RELIANCE ON TECHNICAL PANELS TO PROVIDE INPUTS BASED ON INFORMED PROFESSIONAL JUDGEMENT
- EXTENSIVE DOCUMENTATION OF PROCESS
- USE OF FORMAL DECISION ANALYSIS LOGIC (e.g. MULTI-ATTRIBUTE UTILITY ANALYSIS)

# THE DESIRE FOR AN UNBIASED AND LOGICALLY DEFENSIBLE ANALYSIS REQUIRED MODIFICATIONS TO THE TYPICAL MULTIATTRIBUTE UTILITY ANALYSIS (MUA) APPROACH

• THE TYPICAL MUA APPROACH (SCORE, WEIGHT, AND ADD) IS STRICTLY CORRECT <u>ONLY</u> IF THE OBJECTIVES ARE "ADDITIVE INDEPENDENT", i.e.:

IMPORTANCE OF DOING WELL ON ANY ONE OBJECTIVE DOES <u>NOT</u> DEPEND ON HOW WELL YOU DO ON ANY OTHER OBJECTIVE (PREFERENTIAL INDEPENDENCE)

- MEANS OBJECTIVES CLEARLY FAIL THIS TEST BECAUSE THE IMPORTANCE OF DOING WELL ON ANY ONE OBJECTIVE DOES DEPEND ON HOW WELL YOU DO ON ANY OTHER OBJECTIVE
- THEREFORE, DECISION TREE APPROACH USED TO CORRECTLY DEAL WITH OBJECTIVES THAT CANNOT BE HANDLED BY TYPICAL MUA APPROACH

# **ESF OPTIONS ARE EVALUATED BY ESTIMATING:**

### 1. THE IMPACT OF THE ESF OPTION ON THE LIKELIHOOD OF IMPORTANT DOWN-STREAM REPOSITORY DECISIONS



ESDPPG5P.A33/1-29-91

# **ESF OPTIONS ARE EVALUATED BY ESTIMATING:**

### 2. THE END CONSEQUENCES OF EACH OF THE POSSIBLE FUTURE SCENARIOS



### **MEASURES DEFINED FOR QUANTIFYING END CONSEQUENCES**



### INFLUENCE DIAGRAMS (AND OTHER TECHNIQUES) ARE USED TO RELATE PROBABILITY AND CONSEQUENCE ESTIMATES TO SPECIFIC OPTION CHARACTERISTICS



MW W S B MB



ESOVTH5P.125/1-29-91

# **IMPACT OF ESF OPTIONS ON TESTING**

- **1. PERFORMANCE MEASURES**
- 2. INFLUENCE DIAGRAMS AND EVALUATION QUESTIONS
- 3. EVALUATION PROCESS
- 4. **RESULTS**

# TREE SHOWING POSSIBLE TRUE SITE CONDITIONS AND POSSIBLE TEST OUTCOME



### INFLUENCE DIAGRAM (AND OTHER TECHNIQUES) ARE USED TO RELATE PROBABILITY AND CONSEQUENCE ESTIMATES TO SPECIFIC OPTION CHARATERISTICS

**EXAMPLE MEASURE: PROBABILITY OF EARLY FALSE POSITIVE** 



## **POSTCLOSURE RELEASES RESULTS**

### Assessed Variable: POSTCLOSURE RELEASES Units: fraction of EPA standard

and the second se	11010000 014	Tuyuevus ieica	1363	
Option	Low	Best	High	Max
6,23	0.00001	0.017	0.20	2.00
13,30	0.00001	0.017	0.20	2.00
5,22	0.00001	0.017	0.20	2.00
12,29	0.00001	0.017	0.20	2.00
14,31	0.00001	0.017	0.20	2.00
15,32	0.00001	0.017	0.20	2.00
16,33	0.00001	0.017	0.20	2.00
2,19	0.00001	0.019	0.20	2.00
4,21	0.00001	0.019	0.20	2.00
1,18	0.00001	0.020	0.20	2.00
3,20	0.00001	0.020	0.20	2.00
7,24	0.00001	0.020	0.20	2.00
8,25	0.00001	0.020	0.20	2.00
10,27	0.00001	0.020	0.20	2.00
11,28	0.00001	0.020	0.20	2.00
17,34	0.00001	0.020	0.20	2.00
9,26	0.00001	0.023	0.20	2.00

includes C14+aqueous releases

includes aqueous releases only

Option Low		Best	High	Max		
16.33	15.12	05.07	riigii	iviax.		
10,00	15.12	20.01	0.01	1.00		
15,32	1E-12	<u>3E-07</u>	0.01	1.00		
6,23	1E-12	6E-07	0.01	1.00		
3,20	<u>1E-12</u>	6E-07	0.01	1.00		
13,30	1E-12	6E-07	0.01	1.00		
2,19	1E-12	7E-07	0.01	1.00		
5,22	1E-12	8E-07	0.01	1.00		
7,24	1E-12	8E-07	0.01	1.00		
11,28	1E-12	8E-07	0.01	1.00		
12,29	<u>1E-12</u>	8E-07	0.01	1.00		
8,25	1E-12	9E-07	0.01	1.00		
10,27	1E-12	9E-07	0.01	1.00		
1,18	1E-12	1E-06	0.01	1.00		
4,21	1E-12	2E-06	0.01	1.00		
14,31	1E-12	2E-06	0.01	1.00		
17,34	1E-12	2E-06	0.01	1.00		
9,26	1E-12	5E-06	0.02	1.00		



(,



ESOVTH5P.125/1-29-91

# IMPACT OF ESF OPTIONS ON LIKELIHOOD OF PROGRAMMATIC VIABILITY

- 1. PERFORMANCE MEASURE AND INFLUENCE DIAGRAM
- 2. INFLUENCE DIAGRAM AND EVALUATION PROCESS
- **3. EVALUATION PROCESS**
- 4. **RESULTS**

### MEASURE AND INFLUENCE DIAGRAM FOR LIKELIHOOD OF FAILURE TO MAINTAIN PROGRAMMATIC VIABILITY

### MEASURE: ESTIMATED PROBABILITY OF CONTINUED NEAR-TERM PROGRAMMATIC VIABILITY



### **PROGRAMMATIC VIABILITY**

t H/ month		Compared to ESF ong	pnal Title II Design	What is potential for a	esolution of concerns by:	Prob of site not OK given	Probability of	
Option	\$ W/ month	(w/o CTD, what is con	Schedule Slippage	{		"OK-ET", "OK-LT"	Regulatory Approval	Option
·	(	Die statiarity?	In Re-Design?	NWTRB	NRC	(%)	(5)	I
1, 1	4.6	<b>é</b> é	2	•	0	1.0	78	1
2	5.7	éééé	ାର୍ଷ୍	•••	ଭିତ୍ର	0.7	93	2
3	49	ééé	ାଇଁ	•	i di	0.8	89	3
4	6.2	éééé	ଘଘ	•••	aaa	0.6	87	4
5	6.0	éééé		•••	ÖÖÖ	0.7	85	5
6	6.2	ttt	(CCC)	••••	<u>ାଇଇଲ</u> ୁ (	0.8	93	6
17	6.4	<b>**</b> *	(C)(C)	••••	000	0.8	92	7
8	6.3	****	(C)(C)	••••	<u>ାରରର</u>	0.9	85	8
j i	6.4	éééé	(CC)	••	<u>ାରର</u> ୁ	2.6	67	9
10	6.2	ttt		••	88	1.3	74	10
11	5.9	ttt	(2) 2)	•••	<b>ାରର</b>	0.9	83	111
12	6.5	ttt		•••	ାର୍ଭତ୍ର	0.7 (	81	12
13	7.3	ttt	ା ଭିକ୍ତି 👘 👘 👘	••••	00000	0.8	89	13
14	6.1	ttt	<b>122</b>	•••	ଭୂତ୍ରଡ଼ିଁ	0.7	78	14
15	7.1	****	ା ପ୍ରପ୍ରପ୍ରପ୍ର	•••	000	0.5 😗	95	15
16	6.8	****	0000	•••	00000	0.6	90	16
17	4.8	<b></b>	Ĩ.	•		0.9	70	17
18	5.7	<b>ć¢</b>		•	(3)	1.0	77	18
19	6.1	****	Ø Ø	•••	<u>ାଞ୍</u>	0.9	90	19
20	5.5	ttt	ାଇଇ	•	199 I	0.9	83	20
21	6.8	<b>***</b>	ାଇଅ	•••	<u>ାର୍ଚ୍ଚର୍</u>	0.8	84	21
22	6.3	****	ାର୍ଷ୍	•••	ଞ୍ଚତ୍ତ	0.9	78	22
23	7.1	<b>***</b>	ା ଉଚ୍ଚ 💧		00000	0.9	90	23
24	6.7	<b>***</b>	1 CO	••••	ା ଭାତାର୍ଭ 🌷	1.0	86	24
25	6.1	****		••••	0000	1.0	80	25
26	6.8	<b>***</b>	8888	••	I ÖÖ	2.5	66	26
27	6.1	****	ାଉଉଉଉଦି	••	<b>8</b> 8	1.2	73	27
28	6.2	ttt	00	••	00	0.9	82	28
29	6.7	****		•••	ାଉଉଁଉ	0.9	79	29
30	7.4		ା ଉଉଉଉ	••••	0000	0.8	87	30
31	6.4	****		••	000	0.9	77	31
32	7.5	tttt	ଅପ୍ରପ୍ରପ୍ର	•••	000	0.7	94	32
33	6.4	#####	ା ଅଅଅଅ	•••	000	0.7	AA	33
34	45	¢¢.	88	•	Iõõ I	1.1	RO	34
							09	

•

# PROCESS FOR GENERATING PROBABILITY ESTIMATES OF PROGRAMMATIC VIABILITY

Influence Diagram	Compa	arative Evaluation	Qual Rank	itative king	Proba Estim	Probability Estimate		
	Factor	Performance Compared to Base Case	Option	Rank	Option	Prob		
	Design similarity, redesign require- ments, resolution of NWTRB/NRC concerns	Design and Testing Support Groups (11/90)	12 23 4	1st 2nd 3rd	12 23 4	.99 .97 .96		
	Early Testing/ Late Testing cost/schedule	Cost/Schedule Support Group (11/90)	•	•	•	•		
	₽ <b>[</b> Ō͡ <b>k] "</b> OK _{et} " ,"OҚ _t "]	Provided by Characterization Testing Panel (11/90)						
	Aggregate evaluation of factors	MWWS B MB			Å			
Panel meets to identify influencing	Individual members c compara	panel onduct ative	Panel d quall ran	levelops itative king	Conser probabi estima	isus lities ited		
(9/90)	evaluati (11/90	))	(11	/90)	(11/9	0)		

### Table 1

### FORM FOR CONDUCTING THE OVERALL EVALUATION: PROBABILITY OF PROGRAM VIABILITY

When compared to the ESF Base Case (option 1), does this ESF option offer a ______ likelihood for near-term success in maintaining a viable OCRWM program, considering its (1) early/late testing schedule, (2) projected costs, (3) design dis-similarity and schedule slippage due to re-design requirements, (4) resolution of NWTRB and NRC concerns, (5) residual outcome of characterization testing, and (6) expected success with regulatory approval? Choose one of the following:

much lower (ML), lower (L), about the same (S), higher (H), or much higher (MH)

Option	· · · · · ·	Ran	ae of Likeliha	od	
2	ML	L	S	H	MH
3	ML	<u>_</u>	S	H	MH
4	ML	<u>L</u>	S	H	MH
5	ML	L	S	Н	MH
6	ML	L	s	н	MH
7	ML	Ľ	s	Н	MH
8	ML	<u>L</u>	S	H	MH
9	ML	L	S	Н	MH
10	ML	<u> </u>	S	Н	MH
11	ML	L.	S	H	MH
12	ML	L	S	Н	MH
13	ML	L	S	Н	MH
14	ML	L	S	Н	MH
15	ML	L	S	Н	MH
16	ML	L	S	н	MH
17	ML	L	S	н	MH
18	ML	L	S	н	MH
19	ML	L	S -	н	MH
20	ML	L	S	Н	MH
21	ML	L	S	Н	MH
22	ML	L	S	Н	MH
23	ML	Ľ	S	Н	MH
24	ML	L	S	H	MH
25	ML	L	S	H	MH
26	ML	L	S	Н	MH
27	ML	L	S	Н	MH
28	ML	L	S	Н	MH
29	ML	L	S	Н	MH
30	ML	L	S	Н	MH
31	ML	L	S	Н	MH
32	ML	L	S	Н	MH
33	ML	L	S	Н	MH
34	ML	L	S	. H	MH

.

# **PROGRAM VIABILITY RESULTS**

# Assessed Variable: PROBABILITY OF PROGRAMMATIC VIABILITY

Option	BEST JUDGEMENT SCORE							
24	0.90							
30	0.89							
23	0.87							
25	0.84							
27	0.83							
13	0.81							
7	0.79							
28	0.79							
6	0.78							
19	0.77							
22	0.77							
21	0.77							
4	0.74							
29	0.73							
2	0.73							
31	0.70							
20	0.67							
8	0.64							
32	0.62							
33	0.59							
5	0,58							
10	0.58							
12	0.58							
11	0.56							
17	0.56							
Base Case	0.55							
26	0.55							
15	0.54							
16	0.53							
34	0.53							
18	0.52							
3	0.52							
14	0.51							
9	0.45							

# CONSEQUENCE ESTIMATES AND WEIGHTING FACTORS

/										
			X ₁	X ₂	X ₃	X4	X ₅	Xe	X ₇	X8
Rank	ESF	<u> </u>	Releases	Rad	Rad	Non-Had	Aesthetic	Historical Brop	Direct	Indirect
Order	Option	Aqueous	EPA Limit $Aq. + C-14$	Worker Derson-rem	Public Derson-rem	fatalities	constr. scale	hectares	Billion \$	Billion \$
1	30	6 x 10 ⁻⁷	.017	.20	2 x 10 ⁻⁶	12.6	1	.03	1.39	5.36
2	23	6 x 10 ⁻⁷	.017	.05	1 x 10 ⁻⁶	13.9	8	2.93	1.40	5.71
3	24	8 x 10 ⁻⁷	.020	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.37	5.38
4	13	6 x 10 ⁻⁷	.017	.20	2 x 10 ⁻⁶	12.6	1	.03	.79	5.36
5	6	6 x 10 ⁻⁷	.017	.05	1 x 10 ⁻⁶	13.9	8	2.93	.71	5.34
6	7	8 x 10 ⁻⁷	<b>.02</b> 0	.10	1 x 10 ⁻⁶	12.6	8	2.93	.71	5.34
7	2	7 x 10 ⁻⁷	.019	.05	1 x 10 ⁻⁶	13.9	8	2.93	.67	5.34
8	19	7 x 10 ⁻⁷	.019	.05	1 x 10 ⁻⁶	13.9	8	2.93	1.31	5.71
9	4	2 x 10 ⁻⁶	.019	.05	1 x 10 ⁻⁶	14.0	8	2.93	.73	5.68
10	25	2 x 10 ⁻⁶	. <b>02</b> 0	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.31	5.35
11	21	2 x 10 ⁻⁶	.019	.05	1 x 10 ⁻⁶	14.0	8	2.93	1.38	5.38
12	28	8 x 10 ⁻⁷	<b>.02</b> 0	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.31	5.37
13	22	8 x 10 ⁻⁷	.017	.10	2 x 10 ⁻⁶	18.5	0.5	.03	1.29	5.37
14	29	8 x 10 ⁻⁷	.017	.20	2 x 10 ⁻⁶	12.7	0.5	.03	1.36	5.38
15	32	3 x 10 ⁻⁷	.017	.01	2 x 10 ⁻⁷	14.1	8	2.94	1.38	5.32
16	20	6 x 10 ⁻⁷	.020	.05	1 x 10 ⁻⁶	13.9	8	2.93	.67	5.37
17	27	9 x 10 ⁻⁷	.020	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.26	5.34
18	8	9 x 10 ⁻⁷	.020	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.23	5.31
19	31	2 x 10 ⁻⁶	.017	.20	2 x 10 ⁻⁶	12.3	1	2.41	1.29	5.37
20	15	3 x 10 ⁻⁷	.017	.01	2 x 10 ⁻⁷	14.2	8	2.94	1.29	5.30
21	33	$2 \ge 10^{-7}$	.017	.01	2 x 10 ⁻⁷	14.7	0.5	.03	1.21	5.27
22	5	8 x 10 ⁻⁷	.017	.10	2 x 10 ⁻⁶	13.6	0.5	.03	.68	5.34
23	12	8 x 10 ⁻⁷	.017	.20	2 x 10 ⁻⁶	12.8	0.5	.03	.71	5.85
24	3	6 x 10 ⁻⁷	.020	.05	1 x 10 ⁻⁶	13.9	8	2.93	.61	5.34
25	16	$2 \times 10^{-7}$	.017	.01	$2 \times 10^{-7}$	14.7	0.5	.03	1.17	5.26
26	11	8 x 10 ⁻⁷	.020	.10	$1 \ge 10^{-6}$	12.6	8	2.93	.68	5.32
27	1	1 x 10 ⁻⁶	.020	.05	$1 \ge 10^{-6}$	13.2	8	2.92	.58	5.34
28	14	2 x 10 ⁻⁶	.017	.20	2 x 10 ⁻⁶	12.3	1	2.41	.68	5.35
29	10	9 x 10 ⁻⁷	.020	.10	1 x 10 ⁻⁶	12.6	8	2.93	.69	5.31
30	17	2 x 10 ⁻⁶	.020	.10	1 x 10 ⁻⁶	12.7	1	.03	.60	5.34
31	18	1 x 10 ⁻⁶	.020	.05	1 x 10 ⁻⁶	13.2	8	2.92	1.16	5.29
32	34	2 x 10 ⁻⁶	.020	.10	1 x 10 ⁻⁶	12.7	1	.03	1.08	5.31
33	26	5 x 10 ⁻⁶	.023	.10	1 x 10 ⁻⁶	12.6	8	2.93	1.36	5.36
34	9	5 x 10 ⁻⁶	.023	.10	$1 \times 10^{-6}$	12.6	8	2.93	.74	5.68

### Summary of Consequence Estimates (Rank Order Based on Decision Tree Calculations)

### RANGE OF CONSEQUENCE ESTIMATES

MEASURE	RANGI HIGHE ESF	E FOR E EST-RAI OPTIO	EIGHT NKED NS	RANGE FOR ALL OPTIONS			
	BEST	WORST	Δ	BEST	WORST	Δ	
POSTCLOSURE RADIONUCLIDE RELEASES							
• Aqueous (fraction EPA limit)	6E-7	8E-7	2E-7	2E-7	5E-6	4.8E-6	
• Aqueous • C-14 (fraction EPA limit)	.017	.020	.003	.017	.023	.006	
PRECLOSURE RADIONUCLIDE RELEASES							
• Repository Workers (person-rem)	.05	.20	.15	.01	.20	.19	
• Members of Public (person-rem)	1E-6	2E-6	1E-6	2E-7	2E-6	1.8E-6	
PRECLOSURE CONSEQUENCES			·				
<ul> <li>Repository Worker Safety (fatalities)</li> </ul>	12.6	13.9	1.3	12.3	14.7	2.4	
<ul> <li>Aesthetic Properties (constructed scale)</li> </ul>	8	1	7	8	0.5	7.5	
<ul> <li>Historical Properties (hectares)</li> </ul>	.03	2.93	2.9	.03	2.94	2.91	
<ul> <li>Direct ESF Costs (discounted Billion\$)</li> </ul>	.67	1.40	.73	.58	1.40	.82	
<ul> <li>Indirect Costs (discounted Billion\$)</li> </ul>	5.34	5.71	.37	5.26	5.71	.45	

# **WEIGHTING FACTORS**

MEASURE	UNITS	WEIGHT	BASIS
POSTCLOSURE RELEASES	EPA STANDARD	\$3.5 B	\$5 M/CANCER DEATH X 700 CANCER DEATHS/EPA STD
RADIOLOGICAL WORKER HEALTH	PERSON-REMS	\$4,000	NRC GUIDELINES OF EARLY 70s (\$1000/person-rem) INFLATED
RADIOLOGICAL PUBLIC HEALTH	PERSON-REMS	\$4,000	NRC GUIDELINES OF EARLY 70s (\$1000/person-rem) INFLATED
NON-RADIOLOGICAL WORKER SAFETY	FATALITIES	\$1.25M	25% ADDED TO WEIGHT FROM RW/0074 TO ACCOUNT FOR INFLATION
AESTHETICS	CONSTRUCTED SCALE	\$4M (full scale)	ASSESSED FROM DOE MANAGERS
HISTORICAL PROPERTIES	SQUARE METER	\$30	ASSESSED FROM DOE MANAGERS
DIRECT COSTS	DISCOUNTED \$	1	10% DISCOUNT RATE
INDIRECT COSTS	DISCOUNTED \$	1	10% DISCOUNT RATE

.

ESOVTH5P.125/1-29-91



ESOVTH5P.125/1-29-91

# **BASE CASE CONSEQUENCES AND PROBABILITIES**



/		1	1									
Deni	TOF	Emosted	Secondario A	Decement	Pro	babilities	r		RN E	RN Releases		
Orde		Not Bonofit	Cloud	Frogram-	Character	SOK-LTR /	Domistor	Paparitary	Fraction	EPA Limi		
0.02		(Billion \$)	Repository)	Viability	"OK-ET"	"OK-ET"	Approval	Closure	Aqueous	+ C-14		
1	80	24.3	.60	.89	.85	.91	.87	<b>.9</b> 99	6 x 10 ⁻⁷ .	.017		
2	23	23.3	.58	.87	.83	.89	.90	. <b>9</b> 98	6 x 10 ⁻⁷	.017		
3	24	23.0	.57	.90	.82	.89	.86	<b>.9</b> 97	8 x 10 ⁻⁷	.020		
4	13	22.9	.55	.81	.85	.91	.89	.999	6 x 10 ⁻⁷	.017		
5	6	22.5	.54	.78	.83	.90	.93	.999	6 x 10 ⁻⁷	.017		
6	7	22.3	.54	.79	.82	.90	.92	<b>.9</b> 98	8 x 10 ⁻⁷	.020		
7	2	21.1	.51	.73	.83	.91	.93	<b>.9</b> 98	7 x 10 ⁻⁷	.019		
8	19	20.4	.51	.77	.83	.89	.90	.997	7 x 10 ⁻⁷	.019		
9	4	20.0	.49	.74	.83	.92	.87	.999	2 x 10 ⁻⁶	.019		
10	25	19.9	.50	.84	.83	.90	.80	<b>.9</b> 97	$2 \times 10^{-6}$	<b>.02</b> 0		
11	21	19.6	.49	.17	.84	.90	.84	<b>.9</b> 98	2 x 10 ⁻⁶	.019		
12	28	19.2	.48	.79	.83	<b>.9</b> 0	.82	<b>.9</b> 97	8 x 10 ⁻⁷	.020		
13	22	17.8	.45	.17	.84	<b>.9</b> 0	.78	<b>.9</b> 97	8 x 10 ⁻⁷	.017		
14	29	16.9	.43	.73	.84	<b>.9</b> 0	.79	<b>.9</b> 97	8 x 10 ⁻⁷	.017		
15	32	16.8	.42	.62	.80	.90	.94	<b>.9</b> 98	3 x 10 ⁻⁷	.017		
16	20	16.6	.41	.67	.83	.89	.83	<b>.9</b> 97	6 x 10 ⁻⁷	.020		
17	27	16.3	.42	.83	.79	.89	.73	<b>.9</b> 96	9 x 10 ⁻⁷	.020		
18	8	16.0	.40	.64	.83	.90	.85	<b>.9</b> 98	9 x 10 ⁻⁷	.020		
19	31	15.9	.41	.70	.84	.90	.77	.997	2 x 10 ⁻⁶	.017		
20	15	15.5	.38	.54	.83	.90	.95	<b>.9</b> 99	3 x 10 ⁻⁷	.017		
21	33	15.4	.39	.59	.83	.90	.88	<b>.9</b> 98	2 x 10 ⁻⁷	.017		
22	5	14.7	.37	.58	.84	.90	.85	.999	8 x 10 ⁻⁷	.017		
23	12	14.0	.35	.58	.84	.90	.81	<b>.9</b> 98	8 x 10 ⁻⁷	.017		
24	8	13.9	.\$5	.52	.83	.90	.89	<b>.9</b> 98	6 x 10 ⁻⁷	.020		
25	16	13.8	.35	.53	.81	.89	.90	<b>.9</b> 99	2 x 10 ⁻⁷	.017		
26	11	13.7	.35	.56	.82	.90	.83	<b>.9</b> 97	8 x 10 ⁻⁷	.020		
27	1	12.3	.31	.55	.83	.89	.78	<b>.9</b> 95	1 x 10 ⁻⁶	.020		
28	14	11.6	.30	.51	.84	.90	.78	<b>.9</b> 98	2 x 10 ⁻⁶	.017		
29	10	11.3	.30	.58	.78	.89	.74	.996	9 x 10 ⁻⁷	.020		
30	17	11.2	.29	.56	.83	.90	.70	<b>.9</b> 97	2 x 10 ⁻⁶	.020		
31	18	11.0	.29	.52	.82	.88	.77	<b>.9</b> 95	1 x 10 ⁻⁶	.020		
32	34	9.8	.26	.53	.83	.89	.69	.995	2 x 10 ⁻⁶	.020		
33	<b>2</b> 6	7.7	.22	.55	.74	.83	.66	<b>.9</b> 91	5 x 10 ⁻⁶	.023		
84	9	6.3	.19	.45	.74	.84	.67	.991	5 x 10 ⁻⁶	.023		

### **Summary of Decision Tree Calculations**

.

,

# RANGE OF PROBABILITY AND CONSEQUENCE ESTIMATES

MEASURE	RANGI HIGHE ESF	E FOR E ST-RA	EIGHT NKED NS	RANGE FOR ALL OPTIONS			
	HIGH	LOW	Δ	HIGH	LOW	Δ	
EXPECTED NET BENEFIT (Billion\$)	24.3	20.4	3.9	24.3	6.3	18.0	
PROBABILITIES							
<ul> <li>Scenario A (closed repository)</li> </ul>	.60	.51	.09	.60	.19	.41	
• Programmatic Viability	.90	.73	.17	.90	.45	.45	
• "OK-ET"	.85	.82	.03	.85	.74	.11	
• "OK-LT"/"OK-ET"	.91	.89	02	.92	.83	.09	
<ul> <li>Regulatory Approval</li> </ul>	.93	.86	.07	.95	.66	.29	
Repository Closure	.999	.997	.002	.999	.991	.008	
POSTCLOSURE RADIONUCLIDE RELEASES							
<ul> <li>Aqueous (fraction EPA limit)</li> </ul>	6E-7	8E-7	2E-7	2E-7	5E-6	4.8E-6	
• Aqueous + C-14 (fraction EPA limit)	.017	.020	.003	.017	.023	.006	

# **SENSITIVITY INFORMATION**

RANK ORDER OF OPTIONS UNDER VARIOUS MAJORITY/MINORITY REPORTS

- - -

	MAJORITY											
	BEST		Minority	View	Minority	EFN	Minority	EFN	Minority	View	Revised E	stimates
ļ	JUDGEMENT		for		View #1		View #2	2	on Retri	eval	for Testin	g
L	RANKING		Prog. Via	ıb.	(7 exper	ts)	(2 expe	rts)			Probabilit	les
ſ	30	1.1	13	1#1	30	1 #1	23	1 51	30	181	30	1 s t
	23	211	2	2nd	13	2nd	24	2nd	23	2nd	23	2nd
	24	3rd	6	3rd	23	. Jrd	6	3rd	24	3rd	24	3rd
	13	4th	23	4th	24	4th	30	4th	13	4th	13	4th
	6	5th	19	5th	7	5th	7	5th	6	5th	6	5th
	7	6th	4	6th	6	6th	2	6th	7	6th	7	6th
l	2	7th	7	7th	4	7th	13	7th	2	7th	2	7th
l	19	8th	5	8th	19	8th	19	8th	19	8th	19	8th
I	4	9th	21	9th	2	9th	25	9th	25	9th	4	9th
I	25	10th	24	10th	25	10th	28	10th	4	10th	25	10th
l	21	11th	15	11th	21	11th	21	11th	21	11th	21	11th
I	28	12th	12	12th	28	12th	32	12th	28	12th	28	12th
l	22	13th	3	13th	22	13th	27	13th	22	13th	22	13th
I	29	14th	20	14th	29	14th	4	14th	29	14th	29	14th
I	32	16th	29	15th	8	15th	20	15th	32	15th	32	15th
ł	20	16th	32	16th	32	16th	22	16th	27	16th	27	16th
ł	27	17th	14	17th	20	17th	29	17th	20	17th	20	17th
ł	8	18th	22	18th	27	18th	8	18th	8	18th	8	18th
I	31	<b>19</b> th	28	19th	33	19th	15	19th	31	19th	31	19th
l	15	201h	31	20th	5	20th	33	201h	15	201h	33	20th
I	33	21#1	30	21st	15	2181	31	2151	33	2181	15	21 st
l	5	22nd	8	22nd	31	22nd	16	22nd	5	22nd	5	22nd
ļ	12	231d	25	23rd	3	23rd	5	23rd	12	23rd	16	23rd
I	3	24th	16	24th	12	24th	11	241h	16	24th	12	24th
l	16	25th	11	25th	16	25th	1	25th	3	25th	3	25th
l	11	28th	33	26th	11	26th	12	261h	11	26th	11	26th
l	1	27th	18	27th	1	27th	3	27th	1	271h	1	27th
l	14	28th	1	28th	18	28th	10	28th	14	28th	14	28th
	10	29th	17	291h	14	291h	18	29th	10	291h	10	29th
	17	30th	10	30th	10	3011	17	301h	17	30th	17	301h
	18	31#1	27	31el	17	31=	14	316	18	3181	18	3151
ļ	34	32nd	34	32nd	34	3200	34	3200	34	32nd	34	32nd
	26	3310	9	3310	26	33rd	26	3310	26	33rd	26	33rd
	9	3411	26	341	9	3411	9	341	9	34th	9	34th
					-		-		-		-	

RankOrder

12/17/90

# KEY MEASURES FROM SENSITIVITY ANALYSIS OF EXPERT PANEL JUDGEMENTS

# **HIGHLY RANKED ESF OPTIONS ARE LIKELY TO:**

7.	LEAD TO A LOW P _{EFN}	0.307
6.	LEAD TO A LOW PLEN	0.315
5.	LEAD TO A LOW P _{EFP}	0.381
4.	PRODUCE LOW RADIONUCLIDE RELEASES	0.511
3.	LEAD TO REPOSITORY CLOSURE	0.534
2.	ACHIEVE REGULATORY APPROVAL	0.636
1.	ENSURE NEAR-TERM PROGRAMMATIC VIABILITY	0.910



EPOPG6P.126/1-29-91

# CORRELATION OF JUDGEMENTS BY EXPERT PANEL ON PROGRAMMATIC VIABILITY WITH PRINCIPAL FACTORS IN INFLUENCE DIAGRAM

FACTOR	CORRELATION
NWTRB CONCERNS	0.628
NRC CONCERNS	0.485
END OF LATE TESTING	0.404
DURATION OF EARLY TESTING	0.278
PENALTY DELAY BETWEEN ET/LT END/START	0.220
COSTS TO END OF LT	-0.156
SCHEDULE SLIPPAGE DUE TO REDESIGN REQUIREMEN	NTS 0.065
DESIGN DISSIMILARITY	0.027
- THROUGHOUT ALL OF THE FORMAL DELIBERATIONS BY THE EXPERT PANELS, THERE WERE NO JUDGEMENTS THAT ANY OF THE ESF OPTIONS WOULD NOT MEET ALL OF THE APPLICABLE REQUIREMENTS
- ALTHOUGH UNCERTAINTIES EXIST ABOUT THE PROJECTED PERFORMANCE OF ANY ESF OPTION, A SINGLE, OVERALL RANKING OF THE 34 ESF OPTIONS WAS OBTAINED CONSISTENT WITH THE MAJORITY JUDGEMENTS OF THE EXPERT PANELS
- THE RANK ORDER OF ANY GIVEN ESF OPTION WAS DETERMINED ALMOST ENTIRELY BY THE RELATIVE LIKELIHOOD THAT THE OPTION WOULD LEAD SUCCESSFULLY TO A CLOSED REPOSITORY (SCENARIO A ON THE DECISION TREE)

- THE PROBABILITY OF PROGRAMMATIC VIABILITY WAS THE SINGLE MOST INFLUENTIAL MEASURE IN DETERMINING THE RANK ORDER OF THE 34 ESF OPTIONS
- THE PRINCIPAL FACTORS THAT INFLUENCED THE PROBABILITY JUDGEMENTS BY THE EXPERT PANEL ON PROGRAMMATIC VIABILITY WERE THE RESOLUTION OF NWTRB AND NRC CONCERNS AND DURATION OF CHARACTERIZATION TESTING
- THE RANK ORDER OF THE 34 ESF OPTIONS WAS FOUND TO BE ESSENTIALLY INSENSITIVE TO HIGH/LOW UNCERTAINTY (1 CHANCE IN 20) ESTIMATES OF END CONSEQUENCES

(CONTINUED)

- APART FROM PROGRAMMATIC VIABILITY, THE RANK ORDER OF THE ESF OPTIONS WAS NOT SIGNIFICANTLY INFLUENCED BY MINORITY JUDGEMENTS FOR PROBABILITIES RELATED TO **CHARACTERIZATION TESTING AND REPOSITORY CLOSURE**
- THE GROUP OF EIGHT HIGHEST RANKED ESF OPTIONS
  - REPRESENT FOUR PAIRS OF ESF DESIGNS (i.e., EACH PAIR FEATURES EARLY ACCESS TO THE TS UNIT AND EARLY ACCESS TO THE CH UNIT)
  - WERE JUDGED, ON AVERAGE, TO HAVE -

$$P_{viab} > 82\%$$
  $P_{"OK-ET"} > 83\%$   
 $P_{APP} = 90\%$   $P_{"OK-LT"} / = 90\%$   
 $"OK-ET"$   
 $P_{CLO} > 99.8\%$ 

33.0%

EPOPG6P.126/1-29-91

- THE GROUP OF EIGHT HIGHEST RANKED ESF OPTIONS
  - WERE JUDGED, INDIVIDUALLY, TO RELEASE LESS THAN 0.0001% OF THE EPA RN LIMIT TO THE ACCESSIBLE ENVIRONMENT BY AQUEOUS TRANSPORT DURING THE FIRST 10,000 YEARS AFTER CLOSURE
  - WERE JUDGED, INDIVIDUALLY, TO PRODUCE RADIATION DOSES, BECAUSE OF UNDERGROUND ACCIDENTS, OF NO MORE THAN 0.2 PERSON-REM TO REPOSITORY WORKERS AND 0.000002 PERSON-REM TO MEMBERS OF THE PUBLIC



#### **ESF ALTERNATIVES STUDY EVALUATION OF FEATURES**

**PRESENTED AT** 

#### DOE/NRC MEETING ON CALICO HILLS RISK/BENEFIT ANALYSIS AND ESF ALTERNATIVES STUDY

PRESENTED BY

#### DR. LAWRENCE S. COSTIN

DIVISION SUPERVISOR GEOMECHANICS ANALYSIS AND TESTING DIVISION SANDIA NATIONAL LABORATORIES



**JANUARY 29-31, 1991** 

### **OVERVIEW**

#### • DOE APPROACH TO ADDRESSING 10 CFR 60.21

- STATEMENT OF CONSIDERATIONS "THE COMMISSION HAS STRESSED THE IMPORTANCE OF EVALUATING ALTERNATIVES TO MAJOR DESIGN FEATURES THAT ARE IMPORTANT TO WASTE ISOLATION, SEE 10 CFR 60.21 (c) (1) (ii) (D), AND IN THE CASE OF THE DESIGN AND LOCATION OF THE EXPLORATORY SHAFTS, THIS CAN ONLY BE DONE PRIOR TO THEIR SINKING"
- COMMENTS IN SCA
- COMMENTS ON DAA
- NRC LETTER TO DOE CONCERNS REGARDING DOE APPROACH

#### • **RESULTS OF EVALUATION**

### INTRODUCTORY REMARKS ON APPROACH

- AS AN INTEGRAL PART OF THE ESF ALTERNATIVES STUDY, MAJOR DESIGN FEATURES WERE INCORPORATED IN 17 BASIC CONFIGURATIONS, WHICH WERE COMPARATIVELY EVALUATED
- FEATURES WERE EVALUATED IN THE CONTEXT OF AN ESF/REPOSITORY SYSTEM
  - INDIVIDUAL FEATURES CANNOT BE EVALUATED SEPARATELY BECAUSE THEIR IMPACTS MAY NOT BE INDEPENDENT
  - THE TOTAL EFFECT OF A NUMBER OF FEATURES COMBINED INTO AN OPTION MAY BE QUITE DIFFERENT THAN THE SUM OF INDIVIDUAL IMPACTS
- EVALUATION WAS MULTI-DIMENSIONAL

- FIVE MAJOR DESIGN FEATURES WERE IDENTIFIED FOR SPECIFIC INCLUSION IN THE OPTIONS IN VARIOUS ALTERNATIVE WAYS AND COMBINATIONS
- ALL EXISTING ESF AND REPOSITORY
   CONFIGURATIONS WERE COMBINED WITH A
   NUMBER OF NEW CONFIGURATIONS TO
   FORM AN INITIAL POOL OF OPTIONS
- NEW CONFIGURATIONS WERE SPECIFICALLY CREATED TO
  - HAVE VARIOUS COMBINATIONS OF ALTERNATIVE DESIGN FEATURES
  - INCORPORATE A NUMBER OF FEATURES THAT WERE IDENTIFIED BY NRC AND NWTRB CONCERNS

- INITIAL SCREENING PROCESS WAS DESIGNED TO ENSURE THAT THE PROPER RANGE OF ALTERNATIVE MAJOR FEATURES WAS INCORPORATED IN THE SET OF OPTIONS TO BE EVALUATED
- DETAILED COMPARATIVE EVALUATION OF OPTIONS WAS PERFORMED CONSIDERING A NUMBER OF DIMENSIONS
  - POSTCLOSURE PERFORMANCE
  - CHARACTERIZATION TESTING
  - **REGULATORY APPROVAL**
  - PROGRAMMATIC VIABILITY
  - ETC

- ADDITIONAL PERFORMANCE EVALUATIONS WERE DONE TO DETERMINE WHICH MAJOR FEATURES WERE POTENTIAL DISCRIMINATORS FOR POSTCLOSURE PERFORMANCE
  - BEST AVAILABLE ANALYSES AND DATA WERE USED
  - RESULTS PROVIDED TO THE POSTCLOSURE PANEL

- POST-EVALUATION ANALYSIS WAS PERFORMED TO:
  - DETERMINE WHICH ALTERNATIVE FORMS OF THE MAJOR FEATURES CONTRIBUTED TO AN OPTION'S ABILITY TO PERFORM WELL IN THE OVERALL EVALUATION
  - IDENTIFY ANY NEW FEATURES THAT CONTRIBUTED TO GOOD OVERALL PERFORMANCE

#### **FIVE MAJOR DESIGN FEATURES CONSIDERED**

#### **MAJOR DESIGN FEATURE**

#### **ALTERNATIVES**

1. MEANS OF ACCESS

SHAFTS ONLY RAMPS ONLY SHAFT/RAMP COMBINATION

2. LOCATION OF ACCESSES

ALL IN NORTHEAST ALL IN SOUTH COMBINATION OF LOCATIONS

- 3. LOCATION OF MAIN TEST LEVEL (MTL) CORE AREA IN TOPOPAH SPRING (TS)
- 4. EXCAVATION METHOD OF OPENINGS

SHAFTS

RAMPS

SOUTH

NORTHEAST

- DRILL AND BLAST

- SHAFT BORING MACHINE
- BLIND HOLE DRILL
- V-MOLE
- RAISE BORE
- TUNNEL BORING MACHINE (TBM)
- ROAD HEADER
- DRILL AND BLAST

### **FIVE MAJOR DESIGN FEATURES CONSIDERED**

(CONTINUED)

**MAJOR DESIGN FEATURE** 

**ALTERNATIVES** 

4. EXCAVATION METHOD OF OPENINGS (CONT.)

MTL (TS) CORE AREA

- DRILL AND BLAST

- MOBILE MINER

- TBM*

EXPLORATORY DRIFTING - DRILL AND BLAST IN TS & CH - MOBILE MINER

- TBM

- ROAD HEADER

5. TOTAL NUMBER OF ACCESSES ESF ACCESSES ARE AN INTEGRATED SUBSET OF THE TOTAL NUMBER OF ACCESSES FOR THE REPOSITORY

TBM NOT SPECIFICALLY CONSIDERED FOR MTL EXCAVATION BUT IS EXPECTED TO BE AN ACCEPTABLE ALTERNATIVE FOR PART OF THE EXCAVATION

EVALUFEP.126/1-29-30-31-91

# POST-EVALUATION ANALYSIS OF FEATURES

- A QUALITATIVE EVALUATION OF FEATURES WAS ACCOMPLISHED BY ASSESSING THE RELATIVE MERIT OF THE INDIVIDUAL FORMS OF THE FEATURE IN CONJUNCTION WITH THE RANK ORDER OF THE OPTIONS
  - MAJOR DESIGN FEATURES
  - FEATURES INCLUDED BY GUIDANCE
  - ADDITIONAL FEATURES IDENTIFIED AS A RESULT OF THE EVALUATION

#### • SYSTEMATIC ANALYSIS OF FEATURE EFFECTIVENESS

- KEY MEASURES
- FACTORS RELATED TO KEY MEASURES
- DESIGN FEATURES RELATED TO KEY MEASURES
- CORRELATION OF POTENTIALLY FAVORABLE FEATURES WITH THE FEATURES CONTAINED IN THE HIGHLY RANKED OPTIONS

### **QUALITATIVE EVALUATION**

#### **MAJOR DESIGN FEATURES**

#### • MEANS OF ACCESS

- OPTIONS WITH TWO RAMPS PREFERRED
- SHAFT PREFERRED FOR SITE CHARACTERIZATION

#### LOCATION OF ACCESSES

- FROM A CHARACTERIZATION TESTING PERSPECTIVE, ACCESS LOCATION COMBINATIONS THAT PERMIT BROAD SPATIAL DISTRIBUTION OF EXPOSED ROCK ARE PREFERRED
  - * LARGE SPATIAL COVERAGE OF DATA
  - * **REDUCED POTENTIAL FOR INTERFERENCES**
  - * LOCATIONALLY REPRESENTATIVE DATA

# **QUALITATIVE EVALUATION**

- LOCATION OF MAIN (CORE) TESTING AREA (MTL)
  - NO PREFERENCE IDENTIFIED
- SOME OPTIONS HAVE THE FLEXIBILITY TO MOVE THE MTL TO EITHER THE NORTH OR SOUTH, THIS MAY BE OF SOME ADVANTAGE IN THE DESIGN PROCESS
- EXCAVATION METHODS
  - MECHANICAL EXCAVATION OF ACCESSES AND DRIFTS WAS PREFERRED
- TOTAL NUMBER OF ESF/REPOSITORY ACCESSES
  - FEWER ACCESSES WERE PREFERRED

### FEATURES INCLUDED BY GUIDANCE

THREE FEATURES WERE INCLUDED IN ALL OPTIONS EXCEPT THE BASE CASE (OPTION 1) AS A RESULT OF THE DESIRE TO ADDRESS SPECIFIC CONCERNS OF THE NRC AND NWTRB

- TWO INTERCEPTS (MINIMUM) OF THE GHOST DANCE FAULT
  - ONE TOWARD NORTH END OF BLOCK, ONE TOWARD THE SOUTH
- EAST-WEST DRIFT IN THE TOPOPAH SPRING ROCK UNIT
- LARGER DEDICATED MAIN TEST LEVEL (EXCEPT OPTION 18)

# ADDITIONAL FEATURES IDENTIFIED BY STUDY

- NO CONSTRUCTED PATHWAY FOR DIRECT GRAVITY FLOW OF WATER FROM THE REPOSITORY (TS) LEVEL TO THE CALICO HILLS (CH) LEVEL (OPTION 30)
- INCREASE THE DISTANCE FROM THE WASTE EMPLACEMENT LEVEL TO THE WATER TABLE (OPTIONS 15, 16, 32, AND 33)
- AVOID EMPLACEMENT DRIFTS CROSSING THE GHOST DANCE FAULT (OPTIONS 15, 16, 32, AND 33)
- LARGE EXPOSURE OF ROCK, BOTH ON AND OFF THE BLOCK (OPTIONS 30, 13, 4, et al.)
- ATTRIBUTES THAT ALLOW FOR EARLY EXPLORATION OF BOTH THE TS AND CH ROCK UNITS (OPTIONS 4,13, 24, 25, 30, et al.)

#### ANALYSIS OF SIGNIFICANCE OF FEATURES WITHIN THE COMPARATIVE EVALUATION OF OPTIONS

#### • KEY MEASURES IDENTIFIED

- RANKING OF OPTIONS RELATIVE TO EACH MEASURE WAS CORRELATED WITH THE OVERALL RANKING
- MEASURES WITH HIGH CORRELATIONS ARE JUDGED TO BE MOST INFLUENTIAL IN DETERMINING OVERALL RANKING
- FACTORS THAT SIGNIFICANTLY INFLUENCED THE KEY MEASURES WERE IDENTIFIED FROM THE INFLUENCE DIAGRAMS AND OTHER MATERIAL
- SIGNIFICANT FACTORS WERE RELATED TO SPECIFIC DESIGN FEATURES THAT ADDRESSED THESE FACTORS

#### **IDENTIFICATION OF FAVORABLE FEATURES IN HIGHLY RATED OPTIONS**

		1	2	3	4	5	6	7	8	9	10	11a	11b	11c
RANK	TOP- RANKED OPTIONS	NUMBER OF RAMP(S)	NUMBER OF SHAFT(S)	NUMBER OF ACCESSES	MTL LOCATION FLEXIBILITY	MECHANICAL MINED ACCESSES	NO GRAVITY FLOW PATHWAY FROM TS UNIT TO CHn	MAXIMIZE DISTANCE FROM EMPLACEMENT LEVEL TO WATER TABLE	AVOID EMPLACEMENT DRIFTS CROSSING GHOST DANCE FAULT	MAXIMIZE EXPOSED ROCK- ON AND OFF BLOCK	FLEXIBILITY FOR EARLY DRIFTING IN TS OR CH OR BOTH	2 INTERCEPTS OF GHOST DANCE FAULT IN TS	E-W DRIFT IN TS	LARGER MTL AREA TO AVOID INTERFERENCES
1	30	2	0	4	N	N	N			N	$\checkmark$	N	N	V
2	23	2	0	4		N						N	N	N
3	24	1	1	5	`	N					$\checkmark$	N	$\checkmark$	N
4	13	2	0	4	N	N				N	N	N	N	N
5	6	2	0	4		<u> </u>						N	N	$\checkmark$
6	7	1	1	_5		_ <b>√</b>						N	N	N
7	2	1	1	5								N	N	$\checkmark$
8	19	1	1	5								N	N	N
9	25	1	1	5		N			•		N	N	N	N
10	4	1	2	5						N	N	N	N	N
20	15	1	1	4				~	~			~	~	~

FEATCHRTP.126/1-29-91

# FEATURES INCLUDED IN HIGHLY-RATED OPTIONS

- POTENTIALLY FAVORABLY FEATURES THAT WERE IDENTIFIED
   WERE CORRELATED WITH THE HIGHLY RATED OPTIONS
- HIGHLY RATED OPTIONS CONTAIN MANY FAVORABLE FEATURES
- NO OPTION HAS ALL FEATURES IDENTIFIED AS POTENTIALLY FAVORABLE
- SOME MODIFICATION OF HIGHLY RATED OPTIONS COULD IMPROVE CERTAIN FEATURES WITHOUT SIGNIFICANT CHANCE OF DEGRADING THE OPTION OVERALL
- IN GENERAL, THE ADDITION OF MAJOR FEATURES WOULD REQUIRE DETAILED ANALYSES TO BALANCE THE FAVORABLE AND ADVERSE EFFECTS OF THE FEATURE AS INCORPORATED IN A SPECIFIC CONFIGURATION

ESFNWBKP.125.NWTRB/1-22-91

# **ENHANCING THE ESF DESIGN**

- SUBJECT TO DESIGN CONTROL PROCESS
- SELECTED KEY FEATURES WILL BE SUBJECT TO ENGINEERING TRADE-OFF STUDIES DURING DESIGN PHASE
- ENGINEERING DESIGN METHODOLOGIES WILL BE USED TO REFINE OR IMPROVE ALL FEATURES OF THE BASELINED OPTION



#### ESF ALTERNATIVES STUDY STATUS OF EXECUTIVE REPORT REVIEW AND ACCEPTANCE PROCESS

PRESENTED AT

DOE/NRC MEETING ON CALICO HILLS RISK/BENEFIT ANALYSIS AND ESF ALTERNATIVES STUDY

PRESENTED BY

**EDGAR H. PETRIE** 

ACTING DIRECTOR-ENGINEERING & DEVELOPMENT DIVISION YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT



**JANUARY 29-31, 1991** 

# **STATUS OF EXECUTIVE REPORT**

- SANDIA INTERNAL TECHNICAL AND MANAGEMENT REVIEW COMPLETED ON DECEMBER 19, 1990
- PROJECT OFFICE RECEIVED SANDIA REPORT "FINDINGS OF THE ESF ALTERNATIVES STUDY" SAND90-3232 ON DECEMBER 21, 1990
- PROJECT OFFICE MANAGEMENT REVIEW COMPLETED ON JANUARY 5, 1991

# **STATUS OF EXECUTIVE REPORT**

- SNL SUBMITTED FINAL FINDINGS REPORT TO PROJECT OFFICE ON JANUARY 9, 1991
- OGD REPORT PRESENTED TO DR. J. BARTLETT ON JANUARY 14, 1991

# **FINDINGS OF ESF ALTERNATIVES STUDY**

- THE STUDY CONSIDERED AND SCREENED A LARGE NUMBER OF ALTERNATIVES TO PRODUCE 34 ESF/REPOSITORY OPTIONS WHICH WERE THEN FORMALLY EVALUATED AGAINST A WIDE RANGE OF CRITERIA
- THE RANK ORDER OF THE OPTIONS WAS DETERMINED PRIMARILY FROM THE RELATIVE PROBABILITIES ASSESSED FOR PROGRAM-MATIC VIABILITY. OTHER KEY MEASURES, SUCH AS REGULATORY APPROVAL, LIKELIHOOD OF REPOSITORY CLOSURE, POSTCLOSURE PERFORMANCE AND CHARACTERIZATION TESTING WERE CONSIDERED IN ASSESSING PROGRAMMATIC VIABILITY
- THE RANKINGS UNDER THE MAJORITY AND MINORITY VIEWS ARE AS EXPRESSED IN TABLE 3-4

# **FINDINGS OF ESF ALTERNATIVES STUDY**

- THE TOP RANKED OPTION INDICATED IN TABLE 3-4 IS CONSISTENT WITH THE VALUE JUDGEMENT EXPRESSED BY THE MANAGEMENT PANEL AND THE TECHNICAL JUDGEMENTS EXPRESSED BY ALL BUT THREE MEMBERS OF THE TECHNICAL PANELS. ONLY ONE TECHNICAL PANEL MEMBER PROVIDED A VIEW THAT PRODUCES A DIFFERENT RANKING. EVEN UNDER THIS VIEW, MANY OF THE SAME OPTIONS ARE CONCLUDED TO BE HIGHLY RATED.
- A NUMBER OF DESIGN FEATURES WERE IDENTIFIED THAT APPEAR TO ENHANCE THE OVERALL PERFORMANCE OF PARTICULAR OPTIONS

#### Table 3-4

۰.

RANK ORDER OF OPTIONS UNDER VARIOUS MAJORITY/MINORITY REPORTS

	MAJORITY										Deviland	Estimated
	BEST	ł	Minority	View	Min <mark>ority</mark> 1	EFN	Minority	EFN	Minority	View	Hevised	Estimates
J	UDGEMENT		for	ľ	View #1		View #	2	on Retri	evai	tor lest	ing
1	RANKING		Prog. Via	ıb	(7 exper	ts)	(2 expe	rts)			Probabl	lities
	30	1:1	13	<b>1</b> =1	30	1=1	23	191	30	1=1	30	151
	23	2nd	2	2nd	13	<b>2nd</b>	24	2nd	23	2nd	23	2nd
	24	3rd	6	brC	23	3rd	6	3rd	24	3rd	24	BrC
	13	4th	23	4th	24	4th	30	4th	13	4th	13	4th
i	6	5th	19	5th	7	5th	7	5th	6	5th	6	5th
	7	6th	4	6th	6	6th	2	6th	7	6th	7	6th
	2	7th	7	<b>7</b> th	4	7th	13	7th	2	7th	2	7th
	19	8th	5	8th	19	8th	19	8th	19	8th	19	8th
ł	4	9th	21	9th	2	9th	25	9th	25	9th	4	eth
	25	10th	24	10th	25	10th	28	10th	4	10th	25	10th
l	21	111	15.	11th	21	1111	21	<b>11th</b>	21	11th	21	1111
	28	12th	12	12th	28	1211	32	1211	28	12th	28	12th
ŀ	22	13th	3	13th	22	1311	27	131	22	13th	22	13th
ł	29	1411	20	14th	29	1411	4	14tt	29	14th	29	14th
	32	16th	29	15th	8	1611	20	1511	32	15th	32	15th
l	20	1611	32	16th	32	1611	22	16t	27	16th	27	16th
	27	1711	14	17th	20	171	29	17tt	20	17th	20	17th
1	8	1811	22	18th	27	181	8	181	n 8	18th	8	18th
ł	31	1911	28	19th	× 33	191	15	191	1 31	19th	31	19th
I	15	2011	31	20th	5	2011	33	2011	15	201h	33	201h
L	33	21:	30	21st	15	21s	31	215	1 33	218	15	21st
I	5	22nd	8	22nd	31	220	16	220	1 5	22nd	5	22nd
1	12	2310	25	23rd	3	231	1 <b>5</b>	231	12	2310		2310
I	3	2411	16	24th	12	241	11	241	h 16	2411	12	24th
I	16	2511	1 · 11	25th	16	251	n 1	251	h 3	2511	3	25th
I	11	261	n 33	26th	11	261	h 12	261	h <b>i 11</b>	2611	1	261h
I	1	271	h 18	27th	1	271	h 3	271	h] 1	271	n  1	27th
1	14	281	h 1	2811	18	281	h 10	281	n 14	281	h <b>i 1</b> 4	28th
	10	291	n 17	29tt	h 14	291	h 18	291	h 10	291	h <b>  1</b> (	) 29th
	17	301	h 10	3011	10	301	n 17	' 301	n 17	301	h  17	7 30th
	1 in		27	314	17	31	14	31	18	311	11	B 31st
	24	99-	34	320	34	321	d 34	321	nd 34	320	a 34	4 32nd
	0	120 66		330	26	33	d 26	331	d 26	331	d 20	6 33rd
		331		3.44		34	6 9	34	ih 9	341	h 9	34th
	1 9	- 34	inj ∡o	341	պ շ						•	

RnnkOrder 1

12/17/90

# **REVIEW AND ACCEPTANCE PROCESS**

MANAGEMENT REVIEW PER QMP-06-04 INITIATED (12-21-91)

#### • **PROJECT OFFICE REVIEWERS**

M.B. BLANCHARD	ACTING DEPUTY PROJECT MANAGER
E.H. PETRIE	ACTING DIRECTOR, ENGINEERING AND
	DEVELOPMENT DIVISION
D.G. HORTON	DIRECTOR, QUALITY ASSURANCE
W.R. DIXON	DIRECTOR, PROJECT OPERATIONS AND CONTROL DIVISION
D.C.DOBSON	ACTING DIRECTOR, REGULATORY AND SITE
	EVALUATION DIVISION
S. BROCOUM	DIRECTOR, ANALYSIS AND VERIFICATION DIVISION

#### INDEPENDENT REVIEWERS (GEOTECHNICAL CONSULTANTS)

H.W. PARKER	V.P. SHANNON AND WILSON INC. MEMBER - NATIONAL ACADEMY OF SCIENCES
C. FAIRHURST	PROFESSOR - CIVIL AND MINERAL . ENGINEERING DEPARTMENT
	UNIVERSITY OF MINNESOTA
	MEMBER - NATIONAL ACADEMY OF SCIENCES

# **REVIEW AND ACCEPTANCE PROCESS**

(CONTINUED)

#### **REVIEW CRITERA**

- BASED ON THE INFORMATION IN THE REPORT, IS THE CONCLUSION DRAWN LOGICAL AND REASONABLE?
- ARE THERE ANY MANAGEMENT OR TECHNICAL REASONS FOR NOT ACCEPTING THE CONCLUSIONS DRAWN IN THE ESFAS?
- WHERE THE ESFAS FINDINGS AFFECT THE PO, ARE THE MANAGEMENT AND ADMINISTRATIVE IMPACTS ACCEPTABLE?
- WAS THE DOE GUIDANCE PROVIDED TO SNL IN THE IMPLEMENTATION PLAN PROPERLY IMPLEMENTED, AND DOES THE REPORT REFLECT THE IMPLEMENTATION OF THAT GUIDANCE?
- DID SNL PERFORM A TECHNICAL AND QA REVIEW PIOR TO SUBMITTING THE FINDINGS REPORT?

# **REVIEW AND ACCEPTANCE PROCESS**

- SNL AUTHORS RESOLVED ALL COMMENTS (1-4-91)
- THERE WERE NO TECHNICAL CHANGES TO THE REPORT AS A RESULT OF THE MANAGEMENT REVIEW
- REVISED DOCUMENT PROVIDED TO PO (1-9-91)
- REVIEWERS VERIFIED INCORPORATION OF COMMENTS (1-10-91)

#### OCRWM REVIEW AND SELECTION PROCESS

#### **DOE APPROACH TO ESF DESIGN AND UTILIZATION**



ESFTLEIP.126/1-29,30,31-91



#### ESF ALTERNATIVES STUDY STATUS OF SCA CONCERNS

SITE CHARACTERIZATION

**PRESENTED AT** 

#### DOE/NRC MEETING ON CALICO HILLS RISK/BENEFIT ANALYSIS AND ESF ALTERNATIVES STUDY

**PRESENTED BY** 

DR. JERRY L. KING ASST. PROJECT MANAGER - REGULATORY & LICENSING SUPPORT TECHNICAL & MANAGEMENT SUPPORT SERVICES/SAIC



**JANUARY 29-31, 1991** 

PROJECT

#### **OVERVIEW**

- RESPONSES TO NRC'S SITE CHARACTERIZATION ANALYSIS (SCA) WERE TRANSMITTED TO NRC ON DECEMBER 14, 1990
- RESPONSES FOCUSED ON WAYS OF IMPROVING THE SITE CHARACTERIZATION PROGRAM RATHER THAN ON RETROSPECTIVE ACTIONS TO "IMPROVE" THE SCP
- MANY SCA CONCERNS CANNOT BE FULLY RESOLVED IN THE ABSENCE OF NEW SITE INFORMATION
- ALL SCA CONCERNS ARE BEING TRACKED IN A SYSTEMATIC MANNER
- SINCE ISSUANCE OF THE SCP AND SCA, SEVERAL INITIATIVES HAVE BEEN UNDERTAKEN THAT WILL ADDRESS MANY SCA CONCERNS:
  - EXPLORATORY SHAFT FACILITY ALTERNATIVES STUDY
  - CALICO HILLS RISK/BENEFIT ANALYSIS
  - TEST PRIORITIZATION TASK
  - SITE SUITABILITY TASK

### **SCA CONCERNS RELATED TO ESF**

- SCA CONCERNS RELATED TO THE ESF HAVE BEEN SPECIFICALLY EXTRACTED FOR EVALUATION
- THE MAJORITY OF THESE CONCERNS HAVE BEEN ADDRESSED BY THE ESF ALTERNATIVES STUDY OR CALICO HILLS RISK/ BENEFIT ANALYSIS
- OTHER CONCERNS WILL BE ADDRESSED AS PART OF SUBSEQUENT DESIGN ACTIVITIES
- AS ABOVE INITIATIVES ARE COMPLETED, DOE-NRC CAN RESOLVE CERTAIN SCA CONCERNS
## **60.21 EVALUATION**

- 10 CFR 60.21(c)(1)(ii)(D) REQUIRES THE LICENSE APPLICATION TO INCLUDE A COMPARATIVE EVALUATION OF ALTERNATIVES TO THE MAJOR DESIGN FEATURES THAT ARE IMPORTANT TO WASTE ISOLATION
- DOE BELIEVES THE ESF ALTERNATIVES STUDY EXPLICITLY ADDRESSES THE 60.21 ISSUE
- THE ESF ALTERNATIVES STUDY EVALUATED 17 DIFFERENT ESF/ REPOSITORY CONFIGURATIONS
- POSTCLOSURE PERFORMANCE WAS USED AS AN EXPLICIT FACTOR IN DETERMINING PREFERRED CONFIGURATIONS

## **60.21 EVALUATION**

(CONTINUED)

- MAJOR DESIGN FEATURES WERE INCLUDED IN THE EVALUATION OF AND COMPARISON AMONG THE 17 CONFIGURATIONS
- POTENTIALLY FAVORABLE DESIGN FEATURES WERE IDENTIFIED AND THE HIGHLY RATED OPTIONS CONTAIN MANY OF THESE FEATURES
- IN SUMMARY DOE BELIEVES IT HAS SATISFIED THE REQUIREMENTS OF 60.21 TO THE EXTENT IT IS APPLICABLE AT THIS STAGE OF THE ESF AND REPOSITORY DESIGN

## **CONSIDERATION OF SCA CONCERNS**

- 10 CFR 60.16 REQUIRES DOE TO CONSIDER THE NRC'S COMMENTS ON THE SCP PRIOR TO SINKING THE EXPLORATORY SHAFT
- DOE CONSIDERS THAT NRC'S CONCERNS RELATED TO SINKING THE EXPLORATORY SHAFT HAVE BEEN ADDRESSED
- DOE INTENDS TO MOVE FORWARD WITH ESF DESIGN

ENCLOSURE 24 CONSISTS OF ADDITIONAL FIGURES USED BY VARIOUS DOE REPRESENTATIVES. THESE FIGURES SUPPLEMENT ENCLOSURES 8, 10, 11, AND 15. EACH FIGURE IS LABELED FOR READY ASSOCIATION WITH THE APPROPRIATE ENCLOSURE.



Attachment 24



## THE PURPOSE OF THE ASSESSMENT PROCESS IS TO QUANTIEY THE EXPERT'S UNCERTAINTY



#### THE JUDGMENTS OF THE EXPERTS WERE DISCUSSED IN LENGTH AND THEN AGGREGATED INTO SINGLE "GROUTS BECOMMENDATION" JUDGMENTS





Resulting Distribution

Enclosuri





## Two Different Paradigms of Learning

VOI: Analyze test accuracy and decision outcomes to derive best decision for each test outcome.

Go to rock, conduct tests.

Decide action based on test data.

Value with test - value without test = test value.

Each strategy has value to extent that it result: in better decisions.

MUA: Go to rock, collect data.

Learn from data in ways that cannot be anticipated.

Each strategy has value simply because it exposes rock.

# Contrasting Strategies 2,5 vs 1 "Going from Strategy 2,5 to 1," You come out behind: PRO: CON: - risk (+.05) + cost (-.06) + confidence (+.02) + potential delay (-.03) (+.07) (-.09)

But that depends on relative weight given to risk (note other value perspectives) That is a <u>difficult</u> value tradeoff. We can finesse that tradeoff by transforming the contrast to <u>cost per life saved</u>.

## Strategies 2,5 to 1 Transformed to Cost Per Life Saved



#### That is,

Moving from Strategy 2,5 to 1 is equivalent to: spending \$61 million to reduce expected fatalities by .015, Which amounts to over \$4 billion per life saved.

Charlie Voss presentation losure

CONCENTRATED FLOW CONDITIONS

ASSUMPTIONS:

CLAY/CRUSHED TUFF BACKFILL W/ K = 10 m/sec

EXTENT OF MPZ = RADIUS

Kat of CHA = 10 M/SEC



CASE + KELSALL

FLOW POTENTIAL GRADIENT = 1. DRIFT & RAMP GRADIENT = 0.15

VEW SUBE

**CONCEPTUAL MODELS** 

## **PERFORMANCE MEASURE**

#### • TOTAL SYSTEM PERFORMANCE (40 CFR 191)

"R" =  $\sum_{n=1}^{n} \frac{R_{i}}{n}$  RELEASE, RADIONUCLIDE I

HI TABULATED RELEASE LEVEL

**"R" IS ASSESSED DIRECTLY BY CHRBA** 

- ASSUMED "MIX" OF RADIONUCLIDES AVAILABLE FOR TRANSPORT:
  - VOLUME FRACTION

DEFINITUE DEFINITUE PERFORMATINE MEASURE

- ENRICHED IN MOBILE SPECIES, e.g., Tc-99



### ESF DISCRIMINATORS 1 and 2

$\mathbf{Y}_{m_{1}n}$															<b>b</b> a1									NO Stovens
				E	S	F	D	IS	6C	R		Л	N	A	T	D	R	5	1	ar	nd	12	<b>)</b> (End	Josure 15) reants preserve
									<b>IFLU</b>	ENC	E DI/	IGA.	AM N	UMB	ERS			_	-					ofter "Testing thought
10 CFH 60 HEFERENCES			2 3		5	6	7			10	11		2 13	1	15	16	17	18	19	20	21	22		
60.15 (c) (1)		8		-10								1				X	X	X	X	X		0	•	The following titles relate to the NFLUENCE DIAGRAM NUMBERS,
00,15 (c) (2)															X	X	X	X	X	X	<u> 38</u>	0		
				46											X	X	X	X	X	X		0	Postclosure	1 Health Effects Portion
				<u> 1</u>				10			0		X	X	X	<u> X</u>	X	X	X	X	83	0	Balety	2 Transport Through Natural Barriers Portion
				<u>) x</u>			1.000	5			00	) <b>C</b>			2					0		0		3 Engineered Barrier System
60.21 (C) (T) (T) (E)				X	<u>e</u>	10	2		- XX	80								1		0	<u> </u>	0		4 Scenario Portion
				X					0		X		X	X						0			•	
50.74 (*)			X	X	X	X						X	<u> X</u>	X	X	X	X	X	X	X	0	0	Preclosure Health and	5 Radiological Worker Health
60.74 (b)	9.000 M	<u> </u>	X									X	X	X	0	0	0	0	X	X	0	0	Satety	6 Radiological Public Health
60,111 (n)					X	X	1									8				0				7 Nonradiological Worker Safety
60.111 (b)					0	0	0	0	0												X			
60.112		( X	X	X								:							$\geq$	X	0		E	
60.113 (s) (1)			X	0			Γ				Γ									X	0		Elviroimien	
60.113 (1) (2)			0	0		1					4	1		Ŵ										9 Historical Properties
60.122 [(a) (2) and (b) (1)]		X		X									1		o	0	ō	X	X	0	0	0		
60.130			X	X			X		<b>\$</b>			28			ō	Ō	ō	0	0	<del>x</del>	0	อ้	Cost	10 Total System Life Cycle Cost
60,133 (=) (1)			X	X	0	0		<u></u>		0	X	0		<u></u>	Ť		Ľ	Ť	$\ge$	$\frac{2}{\mathbf{x}}$	Ĭ	Ϋ́		11 Repository Life Cycle Cost 12 ESF Cost
80,133 (e) (2)	88		X	X		Ĭ	X			ō	x					0	D	0	0	Ŷ				L]
60.133 (b)				X	O	<b>N</b>	<u>, , , ;</u>	1999C		0	0			0000 1	<b>M</b>	K	Ň	ž	治	鈬	治	케	Schedule	13 Schedule - Indirect Costs
(1) (e) (1)			Ĭ	Y	ō	ō		M	Tak	č	N N	Ĭ¥			M	M	X	Ĭ	Ĭ	÷	칏	Ĭ		14 Schedule
60.133 (e) (2)				Y	Ĕ	-	×.	24994 		ž	¥	<u>x</u>	22	<u>.</u>	y.	r Y	Y	Y	Y	<del>ç</del>	싉		Probabilities	15 Probability of Early Falsa Manathan
60,133 (1)				Ŷ						$\frac{1}{2}$	Ŷ	Ŷ		<u>.</u>		읫	-	싉	긠	$\frac{2}{2}$	씱	汌		16 Probability of Late Faise Negative
60.193 (g)				<b>v</b>						N				. 1997. 1	Ш	의	2	쒸	쒸	싀	의	늬		(rige 1 of 2) 17 Probability of Late False Negative
60.133 m			R	Â		N N	X		2	2	Ă	X	<u>.</u>	dia di				-		즤		_		(Page 2 of 2) 18 Probability of Early Faise Presiden
60.133 m			A	X		<u></u>	<u></u>	***		2	2	0		2.92 2.92	ें	<u>88</u>	<u></u>	<u></u>	22	즤	<u>88</u>	<u> </u>		19 Probability of Late False Positive
<b>60 194</b>		X	10	X	Sec.	a year	284		7.04	<u>0</u>	0						_			X				Approval
60 197			X	X				ġ.	,¢	2	×3	ŝ.	<u> </u>	24 ju 1		<u> </u>			<u> (</u>	<u> </u>	<u></u>	×1		21 Likelihood of Retrieval 22 Probability of Programmatic Viability
	-	X	X	X									X	X	0	0	<u> </u>	<u>o</u>	0	0	<u>o</u>	에		
	ାର	138						<u>s</u> [		4	1				14	1			[	· · ? [		$\mathbb{Z}$		A CONTRACTOR OF A CONTRACT