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What is the Groundwater 
Chemistry Model? 

One Attempt to Understand Water-hock 
Interactions at Yucca Mountain 

Conceptual Model (Qualitative
Quantitative) 
" Geochemical Processes (Dissolution) 
" Reactions (Description of Processes)

Los Alam,•s 
SK Prelimin )
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X)aft
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What is the Groundwater 
Chemistry Model?

Mathematical Model
• Quantitative (UncertaintyiSen"." -••-i...  

Predictive Capability

Los Alamos
Draft

K
Prelimint'



Purpose of the Groundwater 
Chemistry Model 

SCP Specifies GWC Model (Study 
8.3.1.3.1.1) 

Predictive Capability (Performance 
Assessment) 

Support Other Investigations 
"• Sorption 
"* Radionuclide Solubility 

An "Integrating Study" 

Los Alamos Preliminý Draft



Progress to Date 

Study Plan 
a Review Comments Completed 
* Revised Draft 

Preliminary Modeling 
* Processesm-Sepiolite Formation 
* ReactionsmmpH Stability 
"* "Most Active Groundwater" 

Review of pH, Eh in Preparation 

Los Alamos 
Preliminý Draft



Sepiolite Formation During 
Evaporation 

Evaporation of Well A Water (Tuff)
Concentration 

Factor 
1 
2 
5 
10 
50 

100

Predicted 
mineraI 

C, D C, D 
C, S,D 

COs 
CS

C = Calcite, D = Dolomite, and S Sepiolite

Los Alamns
Prelimin)a 3)raft



pH vs. U022+ Added, US W HI & 
UE 25p#1 Water

Los Alamos
Prelimina( )raft



Los Alamns relimini Draft

Np Speclatfon, Jim 13 ;.,ý,nd UE 
25p#l Water

6
J=13 

NP02+ (99%)

UE 250#

NP02+ (67%) 
NP02SO4-(31%)

NP02+ (96%) 
NP02CO3-(3%) 
NP02CO3-(3%) 

NP02+(46%) 
NP02CO3-(38%)

N P02+ (60%) 
NP02SO44.  

NP02(CO3).6 (97%) 
NP02(CO3)-6(2

8w6





Np Speciation, UE 25p#1 Water

Los Alamos Prelimin(
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Planned Work 

Study Plan Revisions 

Identify Geochemical Processes 

Testing 
"* pH Control (Bicarbonate?) 
"• Eh (Oxygen Pressure?) 

"* Mineral/Water Interactions

Los Alamrns
Prelimin X)raft



Planned Work., continued

Develop Conceptual Model(s) 
* Hypothesis formulation 

Descriptions ofProbable Models..  

Develop Mathematical Model(s) 
"• Test Hypotheses 
" Uncertainty and Sensitivity

Los Alamrs
Prelimin D fD)raft



Conclusions

Study Plan Revised

Preliminary Modeling Showing Results.  

Several Tasks and Tests Planned 

Support of Other Investigations

Los Alam-ns Prelimini Draft
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Approach

Photothermal and LIF Spectroscopies

I 

NMR, Vib 
Spectrosc.
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Vary [NaHCO3] 
pH = 8.4 to 8.9
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Proposed Monomer and Trimer Structures in Uranyl Carbonate System

U0 2 (C0 3 )34 -

0 
U

(U0 2)3 (C0 3)66-

C 
C

0.  
0
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62.9 MHz 13 C NMR Spectra at 0 'C, and pH 6.5

(U0 2 )3 (C0 3 )66 -

U0 2 (C0 3)3
4 " 

(U0 2 )3 (C0 3 )6 6 "

C0 2 \

vw-w'J

122.1 ppm

CO3 2-/HCO3-

157 ppm 

PRELIMINARY DRAFT
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13C NMR titration of U02(CO 3)34- system at 0 'C.

Uo 2(CO3 )3 '4

(Uo 2 )3 (CO3 )6 6"

7.01
6.87

6.78
6.51

6.32
6.23

6.06

pH
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170 NMR spectrum of fully170-enriched U02(CO3)34 - at pH 9.7 and 0 'C.

bound C0 3 2

8•= 225

free C0 32
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33.8 MHz 170 NMR Spectra 

3 U0 2 (CO3 )3
4 - + 6 H+ (UO2)3(CO3)66- + 3 CO2 + 3 H2 0

1105 (UO 2 )3 (CO 3)6 6" 

1098 U0 2 (CO3 )3
4 -
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62.9 MHz 13 C NMR Spectra at 0 'C

3 NpO2 (CO3 )3
4 - +

C0 3 2- / HCO3

6 H+ + 3 C0 2 + 3 H2 0

NpO2 (CO3 )34 "

(NpO2)3(CO3 )66 -
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170 NMR Spectra of actinyl ions

NpO 2 (OH 2)n+

1635 1

NpO2(OH2)n 2 + UO2(OH 2 )n2 +

1220.9 1120.9 
1

1235 1225 1215 1205 1123 1121 1119
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FUTURE DIRECTION
(both Absorption and NMR)

NpO2+ 

- un-ambiguous oxidation state in natural 
environments 

- low sorption coefficients

- possible multinuclear species (?)
analogy to U022+ and NpO22 +, but discounted in lit

some preliminary results from UV/Vis absorption:

PRELIMINARY DRAFT
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Other Studies 

1. Solubility (Double Salts) 

from Ueno & Saito (1975):

rcarbonatel (M)
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2. At pH = 8.  

log[HCO3 
O -ý

-1

-2

-3-

"I

5 G. Bidoglio, G. Tanet, and A. Chatt 
(1985) "Studies of neptunium(V) 
complexes under geologic 

•-] repository conditions" Radio
chim. Acta 38, 21-26. (solvent 
extractions) 

NpO2(CO3)2]3-1

"Np02(C03)-" 

- -- 4
Np02+ 

I 
8.s pH

H. Nitsche, E.M. Standifer, and R.J.  
Silva (1990) "Neptunium(V) 
complexation with carbonate" Lan
thanide and Actinide Res. 3, 203
211. (Absorption study)
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DOE-NRC TECHNICAL EXCHANGE 

RADIONUCLIDE MIGRATION AND 
NEAR-FIELD PHENOMENA RELATED TO RADIONUCLIDE 

-RELEASES 

FROM THE ENGINEERED BARRIER SYSTEM

Atomic 
Natural

Force Microscopy Studies of 
Iron-Oxide Mineral Surfaces 

Marilyn Hawley (CMS, LANL) 
and 

Pamela Rogers (INC-9, LANL)



Purpose: To determine which surface parameters 

(surface structure, orientation, roughness) 
have the most influence on sorption properties 

of iron-oxide minerals.

!



Approach: Different crystallographic surfaces of 

goethite and hematite mineral surfaces 

both freshly cleaved and weathered 

have been imaged in air and under water.

f



Surprises: Many goethite surfaces reacted immediately 

on contact with water.

The results of such reactions were greatly 

increased surface roughness, 

and hence a higher surface area for 

sorption.

/
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To extend these measurements to samples of 
hematite and maghemite from Yucca Mountain 
and thereby study the differences in 
surface structure and reactivity between 
the sample sets.

To determine why pure iron-oxide mineral 
samples appear to have much higher measured 
batch sorption capacities than those from 
Yucca Mountain tuffs.

Goals:
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Conclusions: 
We have published the first atomic resolution 

AFM scans of goethite surfaces.  

AFM imaging of surface reactions under water 

is possible and has lead to some fascinating 

observations.

PRELIMINARY DRAFT



Conclusions: 
Goethite surfaces were seen to react very 

quickly in water.  

Both surface dissolution and precipitation 

reactions were observed.  

The location of surface precipitates was 

observed to be controlled by the by the 

underlying crystal structure.

PRELIMINARY DRAFT



Conclusions: 
The net result of the reactions was greatly 

increased local surface area.  

This would increase the sorption capacity both 

by increasing the surface area and 
by increasing the number of the most reactive 
sites on the surface.

PRELIMINARY DRAFT
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BUT 

More (non-AFM) compositional measurements 

are needed to confirm that the reacting 

surface really was goethite and not a very thin 
covering of some other mineral.

PRELIMINARY DRAFT



Conclusions: 

The size regime most important for sorption 

reactions is on the scale of step heights, 

or generally 10 angstroms.  

This is precisely the spatial resolution readily 

obtained in an AFM scan.

PRELIMINARY DRAFT



PRELIMINARY DRAFT

Conclusions: 
Rapid surface reactivity probably precludes 
easy imaging of sorbates on goethite 
at the level of atomic resolution 
the surfaces just become too rough.  

However, lower resolution methods of gauging 
site reactivity are being tested.



(

The burning question: 
"How do the surface structure and reactivity of 

mineral separates from Yucca Mountain 

compare with these, and how might that 

influence sorptive capacity?".  

We are presently working with small samples 

of maghemite from Yucca Mountain to try to 

resolve this issue.

PRELIMINARY DRAFT
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ADSORBENT PROPERTIES

ADSORPTION EXPERIMENTS 

2-x 2-n *.S'-. U02(OH)-' U02 A 
(UO,),(yH)

L

W20 
.Se- MA;*Nm*...

e 
Saq)

-'I

ADSORBATE PROPERTIES 

H20 solid 

Uo u02  ,...  
1? 

e -solidsoi

q -

ADSORPTION BEHAVIOR I

I



Table 2

Characteristics of Soil Samples

N16 N21 N33 

Parameter 
Surface Area 
m2/g(dry wt) 3.7 9.0 8.0 
Water Content 

% (wet wt) 21 47 37 
Extactable Organic 

mg/g 3.6 18.8 6.8 
Total Organic* 
mr/g(dry wt) 11 260 17 

*Based on 50 percent carbon content.

Table 3 

Range of Site Densities for Soil Components* 

Minerals Site Densities Site Densities Percent 
sites/nm2  moles/m2  Carbon 

Clays 0.5-4 0.8 - 6.6x 10-6 

Oxides 3-17 5 - 28 x 10-6 

Organics** mole sites/g 

Humic 3- 11 x 10-3  54-59 

Fulvic 7 - 16 x 10-3  40_-_53 

Polysaccharide 0.5 - 6 x 10-3 45 

*From Buffle (1988) 
**Carboxylic and phenolic sites
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Cadmium sorption to soil N4-33(6.3g/I) and N4-16(13.5g/l); 1.5x10-6M total 
cadmium; 0.01N and O.1N NaCI 
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Kent, Davis, Anderson and Rea (1992)

20 30 40- 50

Days After Injection

Fe(OH) 3 (s) + ZnEDTA 2

= FeEDTA

+ SOH 

+ SOZn+

S2H+ 

+ 3H2 0
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SORPTION COMPLEXES 

- l w 

>6 ADSORPTION 
"Outer sphere complex" 

No metal ions in 2nd CN Shell

ADSORPTION 
"Inner Sphere Complex, 
S[. Fe] in 2nd CN Shell

Ol

Sd-.,
.p 

ECIPITATE 
Pb] in 2nd CN Shell

F~urc Z

".W



SYPE OF SURFACE COMPLEX

INNER SPHERE 

SOH + M2+ SOM + H+ 

SOH + L2- +H= SL + H20 

OUTER SPHERE 

SOH + M2+ = SO,-M 2 + H+ 

SOH + L2-+ H÷= SOH2+-L2

.p !



"_OMPETITIVE REACTIONS IN 
ADSORPTION

COMPETITIVE ADSORPTION 

SOA + B = SOB + A 

COMPETITIVE LIGAND 

SOM + L = SO + ML 

COMPETITIVE SURFACE 

SOM + TO = SO + TOM



LIGAND EFFECTS ON CATION 
ADSORPTION 

COMPETITION FOR SURFACE SITES 

SOH + M =SOM + H 

SOH+L+'H=SL+H 20 

COMPETITION WITH SURFACE SITES 

SOM +L= SO + ML 

FORMATION OF TERNARY SURFACE COMPLEXES 

SOH + ML = SOML + H 

SOH + ML + H= SLM + H20

'I



OVERALL REACTIONS STOICHIOMETRY 

Exchanize witb proton

Exchanee with hydr-oxvl

S +bMm++cV-+dH++eH 
H Lc 

a(OH)a 20 =Sad Mb(OH)8 + (a + e)OH-, 

H OH)BYH+)(a+e) 
K ((Sa dLcMb( c O)e (Sa(OH)a )(Mm+)b(L,-)c(H+)d(H2 

I

SoaHa +bMm+ +cV- +dH+ +eH20 =(SO)aMb(OH)eHdoc +(a+ e)H+, 

K= ((SO)aMb(OH)eHdL8cyH+)(a+e) 
(SOaHa )(Mm+)b(L,-)c(H+)d(H20) e



PROTON STOICHIOMETRY

Cation Binding

CKM 
SH +M = SM+XH

Anion Binding

CKA 
SH + XH + A - SH(1+X)A



ADSORBED 
PHASE

-OMe 

-L 

- OMeL

MeL

- LMe

SCHEMATIC REPRESENTATION OF 
SURFACE COMPLEXATION REACTIONS

SOLUTION 
PHASE

Me 

+ 

L

I



Me-L 

1

L- Me 

2

M 

I 
L 

3

L* Me 

Me L 

4 5 

POSSIBLE CONFORMATIONS FOR 

TERNARY SURFACE COMPLEXES



-OOC-(CH2)2 -CH -COO
. i 

NH 3 + 

glutamic acid 
in mid-pH region

N COO

(000 

2, 3-PDCA 
in mid-pH region

N COO

picolinic acid 
in mid-pH region 

OH GLUTAMIC ACID 

OH 2*--OOC-(CH2)2 -- CH -COO

OH NH 3+

OH 
-OOC 

OH2 *- NV 

OH2 * ----------- N

PICOLINIC ACID

OH
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OH2+-
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Ag +

sa 02614-*ý
S203 Ag AgsOi 9 Ag(S203)2 

A4+ + Cl- Ag(CI)1-1'

SOLID

Fe(OH)3
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Adsorption of U(VI) onto 1 g/l Goethite 
I =0.1 MNaCIO 4 ; [U(VI)Ja 1 -10- 6M (STb) 

(Ri)1 SOH +UOz + H2 O < SOUO 2OH +2H+ 
+ (R2):, SOH + 3UOz~ + 5H2 0&+4 SO(UO2) 3 (OH) 5 + 6W~
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Hydraqi Model of the 
Adsorption of U(VI) onto 1g/l Goethite 

I -0.1 M NaCtO4; [U(VI)] _ - 1 1-6 
-. The Effect of Pcoz,

2 3 4 5 6 7 8 9 10

KA6, A~&wa^. "~. LeA %A 6w% rtf)
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Distribution of Adsorbed Uranyl Species 
I = 0.1M NaCI04; [U(VI)]= 1.10" 6 M

PCm = 3.10" 4 atm

a. SaJO2 0H

- SaHgUM2(CU3)
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Schematic illustration of hypothetical 
neptunyl reactions 

ONpN (1) 

OL K. (2) 

"ONpL 4•w (3) 

NPL (4) 

-OLNp (3')

L = carbonate, EDTA



* EDTA Sorption onto hematite: 
effect of variation in ionic strength

EDTA - 33;tM hematile= iglA NaCIO4 
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Effect of EDTA on Neptunyl Sorption

2 ~468

N No EITA 

*No EITA 

ANoEYrA 
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A33I±M Ca-EDTA 

-Model: 33PM EDTA
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pH 
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EDTA solution complexes considered: 

NpOý + EDTA' = NpO 2EDTA3' 
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Adsorption of Neptunyl in 
presence of Humic acid and EDTA
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Adsorption of Neptunyl on Gibbsite in presence 
of Humic acid (data from Rhigetto et al., 1991) 
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DOE-NRC Technical Exchange 
Radionuclide Migration 

Retardation sensitivity analysis 

George A. Zyvoloski, LANL
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Bottom Line -

Prevent Radionuclide escape to

the environment

h.



Groundwater Flow at Yucca 
Mountain 

1) Uncertainty in Infiltration 

rates 

2) Fracture flow important 

3) Stratigraphy and faults 
can be important



Issues Affecting Radionuclide 
Transport 

1) Release rates 

2) Sorption 
- Geochemistry 

3) Air flow (C 14) 

4) Ground water flow



Porous Flow and Fracture 
CODE PHYSICS - George Zyvoloski and Bryan Travis 

FEHM Finite element heat, mass (and stress) 
"* 3-D geometry 
"* Flow of air, water and heat 
. Multiple chemically reacting and sorbing tracers 
* Coupled stress solution 
* Saturated and unsaturated media 
* Double porosity, double permeability treatment 
* Finite element/finite volume formulation 
e Algorithms: 

- Preconditioned conjugate gradient solution of 
coupled linear equations; 

- Newton-Raphson solution of nonlinear equations



Porous Flow and Fracture 
CODE PHYSICS - George Zyvoloski and Bryan Travis 

(continued) 

TRACR3D 

"* 3-D geometry 
"* Flow of air and water 
"* Multiple chemically reacting and sorbing tracers 
"* Saturated and unsaturated media 
"* Biokinetics 
"* Adjolnt sensivity capbilitles 
"* Finite difference formulation 
"* Algorithms: 

- Preconditioned conjugate gradient solution of 
coupled linear equations; 

- Newton-Raphson solution of nonlinear equations

I
F

..0



Construction of Flow Model 

1) Use information from the Sandia 
Data Base 

2) Block values identified with 
hydrogeologic units 

3) Structured or Unstructured meshs

I -j



a) Ii 'I

a)Well Log Data 
b)Model of Stratigraphy 
c)2D Computational Mesh 
d)3D Computational Mesh

�s-,v.

d)

b)
'.1 -

c)



Air Flow at Yucca Mountain 

1) Needed for C 14 transport calculations 

2) Thermal convection and barometric 
changes are the driving forces

MM OM O

Ii



Yucca Mountiahi topography on a grid with 250ft. centers.
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Coupled flow and Geochemistry 

1) Important to understanding 
processes at Yucca Mountain 

2) Interaction with Ebinger's task

hh.



Multiple Reaction Module 

* User specifies a system of chemical reactions 
involving one or more components 

- Stoiciometry 
- Reaction rate laws 
- Identification of phase(s) participating 
in reaction (fluid, sorbed, etc.) 

* Code solves transport equation with reaction 
for each component at each time step



Types of Chemical Species 

* Liquid Phase 

* Vapor Phase 

* Solid Phase (chemical reaction only) 

* Henry's Law-solute partitions between liquid 
and vapor subject to Henry's Law equilibrium 

S Sorption is included through the use of linear 
and nonlinear sorption isotherm (equilibrium) 
models

(

-'4
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Students 
Activities Related to Flow and Transport 

New Mexico Tech 
Colarullo (Philips) 
- heterogeneities, flow, transport 

University of Illinois 
Viswanathan (Valocchl) 
- flow and coupled geochemistry 

University of Utah 
Snelgrove (Forester) 
- vapor transport, air flow 

University of Arizona 
Levin (Neuman) 
- heterogeneities, flow, transport

or- NOWMENOMMOM

W010
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FLOW MODEL

* 76 m (250 ft) by 152 m 
(500 ft) plan view 

* 35 vertical nodes (10 meters) 

* 2 - phase flow 

* Uniform flow (0.1 mm/yr) 

* Finite element / finite volume

ý4 Od



CROSS-SECTION OF YUCCA MOUNTAIN ALONG ANTLER RIDGE 
(5x vertical exaggeration)
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Steady State Saturation Field 

V 

A



Saturation 1.0
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Issues Affecting Radionuclide 
Transport 

1) Release rates 

2) 5.ption 
- Geochemistry 

3) Air flow (C 4 ) 

4) Ground water flow

E IMMO



IMPORTANT ISSUES FOR 
THE FUTURE 

• Distributed flow 

• Model faults better 

o Dual porosity/dual 
permeability 

* Thermal repository 

- Affects gas and 
liquid flow

L.

/



TRANSPORT MODEL

* Kd values from PACE- 90

- Radioactive decay 

- Coupled geochemistry 

- Gas phase tracers

dý mmqký

/



(

DOE-NRC Technical Exchange 
Radionuclide Migration

International 

Robert S. Rundberg and D

Programs

avid B. Curtis, LANL

Alamos

((



Np Sorption Onto Iron Oxides



NAGRA/USDOE TECHNICAL COOPERATIVE PROJECT 

MECHANISTIC APPROACHES TO SORPTION 

Objectives 

1. Determine the mechanisms for adsorption of radionuclid ýs onto 
minerals and rocks.  

2. Indentify critical parameters affecting sorption in the field. These 
parameters can be mineral composition, pH, groundwater 
carbonate concentration, and cation composition.  

3. Measure the adsorption isotherms for minerals and rocks. The 
reasons for measuring isotherms are twofold. One is to 
determine the limit of applicability of the linear isotherm (Kd 
concept). The other is to get insight into the mechanism.  

4. Develop improved methods for characterizing mineral and rock 
surfaces 

5. Develop a model that will predict radionuclide sorption under field 
conditions.



NEPTUNIUM (V) ADSORPTION ONTO GOETHITE 
AND HEMATITE 

Robert S. Rundberg, Los Alamos National Laboratory 

Yngve Albinsson, Chalmers University of Technology 

Karl Vannerberg, Chalmers University of Technology 

presented at ACTINIDES-93, Santa Fe, New Mexico 
September 20, 1993



Definition of Sorption Coefficients

Concentration in solid phase per unit mass 
Kd= 

Concentration in the aqueous phase 

Concentration in solid phase per unit area 
Ka= 

Concentration in the aqueous phase



Crystallographic Structure of Goethite Showing the 
A-type, B-type, C-type oxygens and Lewis Acid 
Site in the C plane..  

[001] 
A 

A 8 Q 

ABC 

ýýYy <-Lewis Acid Site

[ 
[100]

[010]



EXPERIMENTAL

Preparation of Goethite, FeOOH 

Goethite was prepared according to a method of Atkinson et al. as described in more detail by Machesky and Anderson.  The goethite was prepared from A.R. quality reagents using a 
OH/Fe ratio of 2 in the preliminary aging step.  The goethite was repeatedly washed with >16 megaOhm water until the conductivity no longer decreased with further washing.  The conductivity of the rinse water in the last washing was less than or equal to 30 microSiemens (measured with a Philips PW
9529 conductivity meter).  
The N2 BET surface area was 76.2 m2 /g. Suspensions were prepared as needed from freeze-dried solid.  

Preparation of Hematite, Fe 2 03 

"* The hematite was analytical reagent grade Fe 2 0 3 (Merck).  
"* The N2 BET surface area was 3.8 m2 /g.



EXPERIMENTAL

A 0.5 M stock solution of 2 3 7 Np was prepared by dissolving 
Neptunium in 1 M HCIO 4 . A secondary stock solution was 
prepared by diluting with deionized water to 5 x 10-4 M. Each 
sample was prepared by adding 0.2 ml of the secondary stock to 
10 ml of emulsion.  

" The sorption measurements were made holding electrolyte 
concentrations to 0.01M or 0.10 M with sodium perchlorate.  

" The pH was adjusted by adding perchloric acid or sodium 
hydroxide.  

" The suspensions were made to a concentration of 0.2 grams of 
goethite per 10 ml.  

" The solutions were contacted with goethite in hermetically sealed 
vials for 2 days before phase separation. The solid phase was 
separated by centrifugation at 12000 RPM for 1 hour using a 
Beckman model J2-21 centrifuge with a type JA-20.1 rotor.  

" The aqueous phase was sampled by taking a 1 ml aliquot 
immediately after centrifugation. Solution concentrations were 
.determined by liquid scintillation counting 
The 2 3 7 Np alpha activity was determined by setting a energy 
window on the liquid scintillation counter discriminating nearly all of 
the beta activity from the 2 3 3 Pa daughter of 2 3 7 Np.  
The measurements were checked by measuring the 2 3 3 Pa activity 
using a gamma counter after 6 months to ensure that secular 
equilibrium was established.



Np(V) Sorption onto Goethite, 
0.01M NaC1O 4 
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Np(V) Sorption onto Goethite, 
0.10 M NaCIO 4 
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Np(V) Sorption onto Hematite, 
0,01 M NaClO 4 
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Np(V) sorption onto hematite 
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The hydrolysis constants listed are defined as follows: 

[NpO: (OFYI) /P = [',po.][ou ] 

Hydrolysis Constants used in EQ3 calculations 

Reference log P31 log 132 
Allard 1980 5.1+0.8 (,10.(+2)a 
Lierse 1985 2.3±.6 4.89±0.05 
Nagasaki 1 988 6.0 9.9 

EQ3 fixed input parameters 

Parameter Innut Value 
Temroerature 25 C 
loa (02 fuacitvl -.6794 

+ 1.0 x 10-5 M [Np0001 

[Na+] 0.01,0.1 M 

S ] 0.01,0.1 M 

aEstimated



Langmuir Adsorption Isotherm 

cl KQ_ " 
C', + (K -]I 

q K KQ., _ KQ..  
c c C+(K - )c I +K c



CONCLUSIONS

* Neptunium (V) adsorption onto iron oxides does not 
depend electrolyte concentration 

" Neptunium (V) adsorption onto iron oxides goes an inner 
sphere surface complexation mechanism 

" The magnitude of the sorption coefficient, Ka, does not 
depend strongly on the crystal structure of the oxide.  

" The sorption coefficient is inversely proportional to the 
hydrogen ion concentration suggesting neptunyl 
hydrolysis is involved.  

" There are discrepancies in the neptunyl hydrolysis 
stability constants between potentiometric titrations and 
solubility measurements. This disagreement makes the 
.interpretation of the surface complexation mechanism 
equivocal.



Application of Neptunyl Surface Complexation Data to 
Tuff and J-13 ground water



Predictions of Neptunium(V) Sorption onto Tuff 

Data 

Iron Content - 1% 
pH = 8.4 
Alkalinity = 1.0 e -3 M 
Estimated crystal size of oxide = 0.01 to 1 micrometer 

Calculation 

Iron oxide surface area = 0.011- 1.1 m2 / g tuff 

EQ3NR calculations for J-1 3 water

NpO 2 OH(aq) 

0.2331 E-07 
0.7230E-07 
0.5794E-06 
0.1423E-05 
0.2293E-05

NpO 2 +

0.9896E-05 
0.9706E-05 
0.7779E-05 
0.4799E-05 
0.2445E-05

Ka 

6.5 
2.0 
1.6 
4.0 
6.8

Kd

E-6 
E-5 
E-4 
E-4 
E-4

0.07 - 7.2 
.22-22 
1.8-180 
4.4 -440 
7.5-750

Measured Ka/Kd in J-13 (Triay et al., Thomas. and Schroeder and 
Meii er)

Goethite
pH 
7.1 
8.5

Hematite 7.1 
8.5

Ka 
6.0 E-5 
1.5 E-3 

9.2 E-5 
3.5 E-4

Tuff 
Zeolitic

pH 
8.4 
6.5

Devitrified 8.5 
8.3

pH 
pH 
pH 
pH 
pH

6.3 
6.8 
7.8 
8.4 
8.9

Kd 
6 
7

2 
.5



Predicted Neptunyl Adsorption with a C02 Atmosphere

Conditions pH

Hematite. 2% C02 

Hematite .03% C02

7.0 
7.5 
8.0 
8.5 
9.0 
7.0 
7.5 
8.0 
8.5 
9.0

Ka measured 

(m) 
9.0 E-5 
2.1 E-4 
1.6 E-4 
6 E-5 
2 E -7 
9.0 E-4 
4.9 E -4 
6.9 E -4 
>7.0 E-4 
>7.0 E-4

Ka predicted 

(m) 
8.9 E-5 
1.9 E-4 
9.7 E-5 
7 E-7 
1 E-10 
9.4 E -5 
2.9 E -4 
8.1 E-4 
1.4 E -3 
6.1 E-4

I Kohler, Honeyman and Leckie



RESULTS OF NEPTUNIUM SORPTION ON TUFFS 
TREATED WITH THE BORGAARD METHOD

Sample Dithionite 
+ EDTA 

G1-1941 3.62 
G4-270 1.3
G2-770 
G4-1067 
G4-1506 
G2-1813 
YM-22 
G1-1271

2.94 
11.17 
5.93 
2.43

3.15 
1.55 

2.84 
9.73 
6.14 
2.75

EDTA 

7.69 
0.38 
1.17 
3.3 
7.29 
1.7 
2.23 
13.76

Untreated

7 
1.51 
1.39 
3.09 
6.21 
1.35 
1.84 
4.99

1.8 
0 
0.2 
0.2 
3.9 
1 
0.4 
1

1.9 
0.2 
-0.1 
0.4 
3.6 
1 
0.5 
0.1



Triple Layer Model of Surface Complexation

K, "K1  SOH + Hs" 

(S) 
K2 

O- + SO +H(S)

I1. Surface Complex formation

NO 3(S

int 
Na+ 

- SO

int 
NO
"P 3SOH2

3

OSeO2 
OSeO2-Na+ 

2 
OSeOH

2 
0
OH 

.O- Na+

OH .  

OH+.  
OH+.  

OH
2

NO3 
"NO3 

""NO32 
SeO 

"'HSeO3

0 
,immobile layer

Na 
Na+ NO; 

Na+ 

Na+ 
Na+ 2SeO 

3 

Na+ 

Na+ 2

SeQ3 

Na+ NO3 Na

d
diffuse layer

,

I. Site activation

SOH + 
2 

SOH

SO- + Na(+ 
N(S)

SOH++ 
2

f, I \
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Triple Layer Model Capacitance

Gouy-Chapman Double Layer 

Gd = -11.74C sinh ( zeAkm T) 

Concentrations in double layer 

[H+]s = [H+] exp( -eWI{/kT) 

[Na+]s= [Na+] exp(-e~ikT)

XV W1

C
0I yd

I~

I2

Diffuse 

Layer 

BULK

•1'E 1

[NO 3Is = [NO3] exp(+ey,/kT)

A



Equations Which Comprise the 
Surface Complexation Model

1. K int [SOH][H +][exp(-e'V0 /kl)] 
[SOH2 + 

2 

2. K int [SO ][H+][exp(-e.- 0 /kT)] 
a2 =.  

[SOH] 

K int [SO :Na + ][H+] exp[e( yo W 0 )/kT] 3. K Na =..  

[SOH][Na +] 

* int [SOH ][H+][CI J exp[e( ý - Y•o)/krj 4. Kci-= 

[SOH2- CI2C]

5. Gd = -11.740 1/ 2sinh (zeNTd )pC/CM 2 • ) C/om



Equations Which Comprise the 
Surface Complexation Model

6. Mass B 
Ns= B 

7. Charge 
To=B

cy0= B(

alance 
([SOH+] + [SOH2 -Cl + [SOH] + 

[S I + [SO -Na+]) 

and Charge Balance 
([SOH I+ [s +H C,] [SO2] + [SOH2-Cl I + ISO]- + [SO -- Na + ])

[SO -Na+ ] + 
[SOH2 -CI)

(To + (71P+

8. Charge and 

0'O

Capacitance 
T /C1

=-Gd/C 2

(d = 0



Cation Exchange

Consider the general case of cation B, valence ZB, in the aqueous 
phase exchanging with cation A, valence ZA, bound to the clay 
mineral surface, the exchange reaction can be written as follows: 

ZBA-Cay+zA.B # ZA.B-Clay+zB.A (5a) 

BK_ = NZA aZ'.  
NZB aZA (5b) RA B 

aA and aB are the solution activities of nuclides A and B, respectively.  
NA and NB are equivalent fractional occupancies defined as the 
equivalents of A (or B) sorbed per unit mass divided by the cation 
exchange capacity, in equivalents per unit mass.
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Sorption und Reversibilitoet von Ni-63 auf Mylonit
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CONCLUSIONS 

" Neptunium sorption ratios for zeolitic tuff increase after treatment 
with EDTA and increase still further with dithionite + EDTA. This 
suggests either opening of detritus plugged channels and/or 
removal of competing species (i.e., calcium and rare earths) 

"* Neptunium sorption ratios for zeolitic tuff do not exhibit a pH 
dependence consistent with surface complexation.  

" Some devitrified tuffs exhibit an increase in Kd with EDTA stripping 
and a decrease with the dithionite + EDTA treatment. This 
suggests both removal of competing species and removal of 
surface complexation site.  

"* The adsorption of Np in tuffs cannot be attributed to iron oxides 

alone.  

"* Iron oxides appear to be passivated in Yucca Mountain tuffs.  

"* The method of iron oxide extraction alone is not adequate to 
determine the mechanism of Np sorption in tuff.  

"• Competetive isotherms similar to those done under the NAGRA 
program should be applied to actinide adsorption in tuff.
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NATURAL NUCLEAR REACTION 
PRODUCT GEOCHEMISTRY 
Objective: 

Characterize the timing, rates, and 
chemical effects of processes 
affecting radionuclide release, 
transport, and retention in geologic 
systems.
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NUCLEAR PRODUCTION OF RADIONUCLIDES
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CONCLUSIONS 
1) Processes that release and transport radionuclides from 
uranium minerals are operative in geologic systems representing a wide range of hydrogeochemical conditions.  

2) These processes have been operative in the time domain 
between the present and 108 years ago.  

3) Release processes for 1291 are orders of magnitude faster 
than for uranium.  

4) Water residence times at Cigar Lake are more than an order 
of magnitude longer than at Koongarra.  

5) Radionuclide release rates are smaller at Cigar Lake than at 
Koongarra.  

6) Processes operative at Cigar Lake concentrate 99Tc and 
and possibly 239Pu in rock.

U



Natural Nuclear Product Geochemistry 

David Curtis, June Fabryka-Martin, Paul Dixon, Don Rokop; Los Alamos National Laboratory. Carol Bruton, Lawrence Livermore Laboratory, and 
Jan Cramer; AECL Whiteshell Laboratory.  

An understanding of processes involving radionuclide distribution and transport is inherent to safety assessment protocol. Such assessments associated with the development of geologic repositories for high-level radioactive wastes are uncertain because of uncertainties inherent in our understanding of fundamental processes in relevant environments and over relevant time scales. To aid in constraining the results of safety assessments of these geologic repositories,we are developing information from studies of uranium deposits to enhance our understanding of radionuclide behavior, rates at which key processes proceed, and factors influencing changes in these rates in geologic environments. Uranium deposits represent natural analogues of processes associated with the release and transport of radionuclides from spent fuel.  
Our work involves measurement abundances of the natural radionuclides 99 Tc, 1291, and 2 3 9 Pu in rock, water, and minerals from uranium deposits. Measured abundances are compared with those produced by nuclear reactions to determine the nature and extent of radionuclide enrichment or depletion. No enrichment or depletion indicates that the system has been undisturbed over relevant time domains (106 yr for 9 9Tc, 1 08 yr for 1291, and 105 yr. for 2 3 9Pu), or processes rates were significantly less than rates of radionuclide production, or processes did not chemically enrich or deplete parent from daughter element.  Conversely, measures of enrichment or depletion show that the system has been disturbed in the relevant time domain and the rate of the disruptive process was significant relative to the rate of radionuclide production, and the processes chemically fractionated parent from daughter. We then seek to resolve our interpretations regarding the timing, rate, and chemical effects with our understanding of system parameters believed to control processes that influence these properties 

in the system being examined.  
We have studied uranium deposits in two extremely different hydrogeochemical settings. The Cigar Lake deposit is an impermeable deposit in a reduced environment. It appears to have been largely undisturbed for most of the 1.3 x 109 yr since its formation. The



Koongarra deposit can be considered as two zones, with an intervening transitional zone. The near surface zone is weathered rock in an oxidizing environment. Uranium has been dispersed by water flow. The sub-surface zone. is unweathered, but has been altered from primary ore at some time in the geologic past. There is no obvious evidence for uranium dispersion 
in the unweathered zone at Koongarra.  

At this time interpretations of our measurements suggest the 
following conclusions: 

1) Processes that release and transport radionuclides from uranium 
minerals are operative in both the Koongarra and Cigar Lake deposits.  

2) These processes have been operative in the time domain between the 
present and 108 years ago.  

3) Release processes are orders of magnitude faster for 1291 than for U.  
4) Water residence times at Cigar Lake are more than an order of magnitude longer than at Koongarra.  
5) Radionuclide release rates are slower at Cigar Lake than at 

Koongarra.  

6) Processes operative at Cigar Lake concentrate 9 9Tc and possibly 2 3 9Pu in rock.
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KD Approximation Testing 

When is it appropriate to use KD to calculate retardation? 

VrMD 

Equation is valid when 

1) Isotherm is linear 
2) Sorption/desorption is fast and reversible 

(Freeze and Cherry, 1979) 

Why must the isotherm be linear? 

What effect does the shape of the isotherm have on 
radionuclide transport?



Method of Testing 

Simulate ion exchange (a sorption mechanism) 

PHREEQM, a mixing cell code 

Flow-through column experiment 

K*+NaX=Na "+KX 

K÷, Na÷ can be considered analogs for radionuclides 

W is more strongly sorbed than Na÷ 

Varied concentrations and flushing solution
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Conclusions 
Isotherm need not be linear to calculate retardation from 
KD. If isotherm is convex up, retardation corresponds to 

KD at maximum concentration.  

Isotherm is linear when radionuclide is trace relative to the 
competing cation 

However, J-13 is a very dilute solution. Therefore, U, Np, 
Cs, and Tc may not be occur in trace amounts.
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

OBJECTIVES: 

TASK 2 - SORPTION MODELING: 

DEVELOP SIMPLIFIED SORPTION MODELING APPROACHES AND EVALUATE THEIR 
ADEQUACY FOR PERFORMANCE ASSESSMENT NEEDS 

INVESTIGATE APPLICATION OF EXISTING COUPLED HYDROGEOCHEMICAL 
TRANSPORT CODES 

TASK 3- SORPTION EXPERIMENTS: 

DERIVE EXPERIMENTAL DATA ON SORPTION OF URANIUM AND OTHER 
RADIONUCLIDES 

EVALUATE EFFECTS OF SOLUTION CHEMISTRY AND ROCK/MINERAL PROPERTIES 
ON RADIONUCLIDE SORPTION 

IDENTIFY SORPTION PROCESSES/MECHANISMS IMPORTANT TO THE YUCCA 
MOUNTAIN ENVIRONMENT

TECHEXCH-10I93 pg2



SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

ACCOMPLISHMENTS FROM PROJECT INCEPTION (9/90): 

COMPLETED EXTENSIVE LITERATURE REVIEW OF SORPTION 
MODELING AND REACTIVE TRANSPORT (TASK 1) 

TASK 2: 

• IDENTIFIED, ACQUIRED AND INSTALLED SORPTION CODES 

-MINTEQA2 SORPTION/SPECIATION CODE (Allison et al., 1991) 
-FITEQL PARAMETER OPTIMIZATION CODE (Westall, 1982) 

• DEVELOPED RADIONUCLIDE THERMODYNAMIC DATABASE 
FORMATTED FOR SORPTION MODELING USING MINTEQA2 

ANALYSIS OF POTENTIOMETRIC TITRATION DATA TO DERIVE.  
MODEL-SPECIFIC ACIDITY CONSTANTS FOR SIMPLE (HYDR)OXIDES 

COMPILATION AND ANALYSIS OF AVAILABLE RADIONUCLIDE 
SORPTION DATA USING SURFACE COMPLEXATION MODELS

TECHEXCH- 10W93 pg.3
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

TASK 3: 

CONDUCTED EXPERIMENTS ON URANIUM SORPTION ON 
CLINOPTILOLITE, ALUMINUM-OXIDE, AND MONTMORILLONITE 

DISTINCT MINERAL STRUCTURE AND SURFACE PROPERTIES 

VARIABLE SOLUTION CHEMISTRY (E.G., pH AND YU), BUT 
FIXED pCO2 (ATMOSPHERIC).  

VARIABLE SURFACE-AREA/SOLUTION-VOLUME RATIO 

CONDUCTED CAREFUL CONTROL EXPERIMENTS TO 
CHARACTERIZE EXPERIMENTAL LOSS TO CONTAINER, FILTERS, 
PIPETTES, ETC.

TECHEXCH- 10/93 pg.4
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

SURFACE COMPLEXATION MODELS (SCMs): 
ALL MODELS CORRECT FOR ELECTROSTATIC EFFECTS 
REPRESENTATIONS OF MINERAL-WATER INTERFACE

USING DIFFERENT

CONSTANT CAPACITANCE 
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

GOAL: A UNIFORM APPROACH TO DETERMINE BINDING CONSTANTS 
FOR SURFACE COMPLEXATION MODELS

NEEDS:

DATA:

MODEL-SPECIFIC PARAMETERS TO DESCRIBE MINERAL 
ACID-BASE BEHAVIOR BASED ON UNIFORM DATA 

MINERAL POTENTIOMETRIC TITRATION DATA FROM OPEN 
LITERATURE

Mineral Generalized PHzpc Reference(s) Asp (m2/g) (_1 ) 

Goethite 50 8.0±0.8 Hsi and Langmuir (1985); Hayes et al.  
(n-l ) (1990); Yates and Healy (1975); Balistrieri 

and Murray (1981); Mesuere (1992) 

Ferrihydriteca) 600 8.0±0.1 Hsi and Langmuir (1985); Davis (1977); 
(n-9) Swallow (1978); Yates (1975) 

Magnetite 5 6.7±0.1 Regazzoni et al. (1983) 
(n-2) 

Pyrogenic-SiO2  175 2.8±0.3 Abendroth (1970); Bolt (1957) 
(n-3) 

ct-A1203  12 8.9±0.4 Hayes et al. (1990) 
(n-4) 

y-AI0 3  120 8.4±0.3 Huang and Stumm (1972); Sprycha (1989) 
(n-3) 

5-MnO1  270 1.9±0.5 Murray (1974); Catts and Langmuir (1986) 
(n-7) 

TiO,(anatase) (b) 6.1±0.2 Sprycha (1984); Berube and de Bruyn (1968) 
(n-2) 

TiO,(rutile) 30 5.9±0.3 Berube and de Bruyn (1968); Yates (1975) 
(n-4) 

(a)Values recommended in Dzombak and Morel (1990).  
(b)The reported value of 16 m2/g used with data of Sprycha (1984); 125 m2/g used with data of 
Berube and de Bruyn (1968).



SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

Model Comparison 

Goethite-Weighted Values
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

SORPTION OF U(VI) ON GOETHITE 
Experimental data from Hsi & Langmuir (1985) 

U(VI)T = 10-5 M; 0.1 M NaNO3; No CO2

Diffuse Layer Model (DLM) Constant Capacitance Model (CCM) 
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

Kaolinite [A12Si20 5(OH)J - SiOH0 :AIOH0 = 1:1 
Biotite [K(MgFe)3A1Si30 10(OH)2 l -- SiOHO:AIOHo = 3:1 

SORPTION OF U(VI) ON KAOLINITE
Diffuse Layer Model (DLM)

U(VI)T= lxlO-' M
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0 Experimental Data 

- Model Results 
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Diffuse Layer Model (DLM)

* ' i *" I ' I 

NNp(V)T= 6x10- 6 M 

I = 0.1 M NaNO3 
A = 8 m 2/g 

C3 = 1 g/l

L Data from Nakayama 
and Sakamoto (1991)
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

URANIUM CONCENTRATIONS IN CLINOPTILOLITE 
SORPTION EXPERIMENTS: 

Clinoptilolite Expt.: Final U conc. vs pHeu, 
600 
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

URANIUM CONCENTRATIONS IN a-A120 3 EXPERIMENTS: 

A12 0 3 Experiment: Final U concentration vs pH,.•

Surface area: 0.0686 m2/g
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

URANIUM CONCENTRATIONS IN CONTROL 
EXPERIMENTS (NO MINERALS PRESENT): 

Clinoptilolite Expt.: Initial U conc. vs pHequil 
550 ...  

5 0 0 % =0 0
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

SURFACE CHARACTERIZATION: 

*MOLECULAR DYNAMICS SIMULATION OF URANIUM SORPTION 
(MOLECULAR SIMULATIONS SOFTWARE; M. LUPKOWSKI, SwRI) 

-THEORETICALLY-BASED THROUGH ENERGY MINIMIZATION AND 
NEWTON'S SECOND LAW (F = me a) 

-SIMULATE EFFECTS OF AQUEOUS SPECIATION AND MINERAL 
STRUCTURE 

-COMPLEMENTS INFORMATION DERIVED FROM SORPTION 
EXPERIMENTS AND SPECTROSCOPIC STUDIES (E.G., EXAFS) 

*INITIATED CHARACTERIZATION OF MINERAL SURFACES USING 
ATOMIC FORCE MICROSCOPY

TECHEXCH- 10/93 pg.13



SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

MOLECULAR DYNAMICS: U0 2(CO 3)34- -BOND ANGLES AND LENGTHS 
BASED ON CRYSTALLOGRAPHIC DATA

TECHEXCH-10/93 pg.14
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

MOLECULAR DYNAMICS: U0 2(CO3 )34- ADSORPTION ON c-A1203 ENERGY DISTRIBUTION 
(NEGATIVE SURFACE CHARGE):

1ECHEXCH-10/93 pg. 15
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT

LiT IuMAMUb: UO2(CO 3)34 ADSORPTION ON at-A120, WITH
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

NEXT YEAR'S PROSPECTIVE 

TASK 2

EXPAND AND CONTINUE MODEL COMPARISON AND STREAMLINING; 
EVALUATE PREDICTIVE CAPABILITIES 

HYDROGEOCHEMICAL MODELING OF LABORATORY-SCALE TRANSPORT 

CONTINUE TO MODEL U-SORPTION RESULTS FROM TASK 3 - SORPTION 
EXPERIMENTS 

MODEL EFFECTS OF p(CO2), SOLID/LIQUID RATIO, Cradlonuclide, IONIC 
STRENGTH 

RESULTS TO BE PRESENTED AT MIGRATION '93 (CHARLESTON, SC; 
DECEMBER, 1993)

TECHEXCI--10/93 pg. V

\
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SORPTION MODELING FOR HLW 
PERFORMANCE ASSESSMENT 

NEXT YEAR'S PROSPECTIVE: 

TASK 3: 

CONTINUE SORPTION EXPERIMENTS ON CLINOPTILOLITE, 
MONTMORILLONITE, AND ALUMINUM OXIDE (VARIABLE pCO2) 

INITIATE BATCH AND FLOW-THROUGH COLUMN EXPERIMENTS ON 
URANIUM SORPTION AND TRANSPORT USING WEDRON QUARTZ SAND 

INITIATE BATCH SORPTION EXPERIMENTS ON NEPTUNIUM 

*INPUT EXPERIMENTAL DATA INTO TASK 2 (SORPTION MODELING) 

CONTINUE MOLECULAR DYNAMICS SIMULATIONS OF URANIUM SORPTION 

CONTINUE CHARACTERIZATION OF MINERAL SURFACES USING ATOMIC 
FORCE MICROSCOPY (USING FLUID CELL) 

RESULTS TO BE PRESENTEDAT MIGRATION '93 (CHARLESTON, SC; 
DECEMBER, 1993) 

TECHEXCH-1O/93 pg.18
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GEOCHEMICAL MECHANISMS AND EFFECTS OF VAPORIZATION 
IN THE NEAR FIELD OF A PROPOSED REPOSITORY 

AT YUCCA MOUNTAIN 

William M. Murphy 
Center for Nuclear Waste Regulatory Analyses 

San Antonio, Texas 
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computations were performed with EQ3/6 version 7.1 using R12 and R16 data bases (Wolery, 1992).



GEOCHEMICAL MECHANISMS AND EFFECTS OF VAPORIZATION 
IN THE NEAR FIELD OF A PROPOSED REPOSITORY 

AT YUCCA MOUNTAIN 

OUTLINE 

I. Partial equilibrium, multicomponent, reaction path model for natural 
conditions 

II. Nonisothermal, kinetic, multicomponent, partial equilibrium, reaction 
path model for heated repository conditions 

III. Local equlibrium, multicomponent, 100'C, reaction path model for boiling 
to 99.6% dry, assuming CO2 buffering, using extended Debye Huckel 
equation 

IV. Rayleigh fractionation model for C02 and H20 volatilization for the 
carbonate system at 1000C 

V. Local equilibrium, multicomponent (with no silica), 250C, reaction path 
model for evaporation to 99.997% dry, assuming alternate buffered C02 
pressures, using Pitzer equations

/
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(

R.C. Arthur and W.M. Murphy 

Sci. G,•,L,. Dul., 42, 4. p. 313- 327, Stasbours, 1989 

AN ANALYSIS OF GAS-WATER-ROCK INTERACTIONS 
DURING BOILING IN PARTIALLY SATURATED TUFF 

Randolph C. ARTHUR* and William M. MURPHY" 

- Figure 2 

Speciation of dissolved carbonate and H 2 0 relative to the frac
tion of H 20 remaining in the liquid phase, *, during open
system boiling. The initial system is represented by values at 

1= , and the system evolves to the left.  

1.0 Distribution des espices aqueuses dans ke systime C0 2 -H 2 0 en 
fonction de to faction de La mwwe deau prisente dans /a phase 

VATER liquide, V/ , durant rdbulition en systime ouvert. Le systime Initial 
correspond ý- = 1. et rA'olution du systime seffectue de Ia 
droite wers la gauche.
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EVAPORATION MODEL 
250C, NO SILICA, DOLOMITE SUPPRESSED, HIGHER p CO 2 

PITZER EQUATIONS (HMW)

Percent 
Boiled

Mineral 
Assemblage

Dominant 
Water Chemistry

pH 
NBS/rational

Ionic 
Strength

Calcite (CaCO3) 

+Magnesite (MgCO3) 

+Nahcolite (NaHCO3) 

+Thenardite (Na2SO4) 

+Halite (NaCl) 

+Aphthitalite 
(NaK3(S04)2)

Na+,HCO3

Na+,HCO3

Na+,C032-,HCO3

Na+,Cl-,(S042-) 

Na+,Ci-,(SO42-) 

Na+,Cl-,(K+, S042-)

Na+,Cl-,(K+, S042-)

0.0 

22.6 

99.59 

99.973 

99.979 

99.988

8.0(7.9 

8.1/8.0 

9.4/9.1 

8.7/9.4 

8.6/9.6 

8.6/9.6

0.014 

0.018 

4.0 

8.5 

8.4 

8.9

99.997 8.6/9.6 8.9



EVAPORATION MODEL 
250C, NO SILICA, DOLOMITE SUPPRESSED, LOWER p C02 

PITZER EQUATIONS (HMW)

Percent 
Boiled

Mineral 
Assemblage

Dominant 
Water Chemistry

pH 
NBS/rational

Ionic 
Strength

none 

Calcite (CaC03) 

+Magnesite (MgCO3) 

+Halite (NaCl) 

+Pirssonite 
(Na2Ca(C03)292H20) 

+Sylvite (KCI) 

+Aphthitalite 
(NaK3(SO4)2)

Na+, HCO3-, Cl

Na+,HCO3-,CI

Na+,Cl-,HCO3

Na+,Cl-,K+,(CO32-) 

Na+,Cl-,(K+,C032-) 

Cl-,Na+,(K+) 

Cl-,Na+,(K+, S042-)

8.0/8.0 

8.0/8.0 

8.2/8.1 

9.0/10.0 

9.3/10.1 

9.3/10.2 

9.3/10.3

0.0 

7.1 

57.4 

99.965 

99.983 

99.993 

99.997

0.005 

0.0055 

0.009 

6.5 

7.1 

7.8 

8.4

/
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CONCLUDING REMARKS: 
SPECULATIVE GEOCHEMICAL CONSEQUENCES OF VAPORIZATION 

RELEVANT TO REPOSITORY PERFORMANCE 

SOLUTIONS AT A REWETTING FRONT WOULD DISSOLVE 
PRECIPITATED SALTS AND BECOME CONCENTRATED IN SODIUM, 
CHLORIDE, AND SULFATE 

SOLUTIONS THAT DRIP ON CONTAINERS AND EVAPORATE WOULD 
EVOLVE TOWARD HIGHER pH, AND HIGHER SODIUM 
(BI-)CARBONATE AND CHLORIDE CONCENTRATIONS 

WATER CHEMISTRY CHANGES WOULD AFFECT CONTAINER AND 
WASTE FORM ALTERATION PROCESSES AND RADIONUCLIDE 
SPECIATION 

VAPOR PRESSURE LOWERING AT EQUILIBRIUM WITH SALTS 
COULD AFFECT MOISTURE DISTRIBUTION 

MINERAL DISSOLUTION AND GROWTH COULD AFFECT 
HYDROLOGIC PROPERTIES OR FLOW PATHS 

FLUID REFLUXING COULD AUGMENT EFFECTS OF VAPORIZATION
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INTEGRATION WITH TOTAL SYSTEM 
PERFORMANCE ASSESSMENT (TSPA) 

"* December 1991 workshop. "Integration of Geochemistry with 

Performance Assessment" 

"° Elicitation of Kd's for TSPA 1 

"* March 1993 exchange on data needs for TSPA 
- TSPA defined needed parameters 
- Refined values of Rn solubilities; data using J-13 
- Effect of temperature on solubility 

° May 1993 attempted to incorporate colloid transport into TSPA 2 

° Input to retardation sensitivity analysis - maintain iterative 
approach 

° Hypothesis testing by PA to determine what information is 
needed with greater confidence

I NTPALA1 .125/10-12-93
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SoIWOG Consensus Values for the Potential Range of 
Actinide Solubilities at Yucca Mountain and Environs

Radionuclide Minimum Maximum Expected Coefficient Distribution 

Value Value Value of Variation 

Uranium 10-8 10-2 10-4.5 0.20 log beta 

Neptunium 5x 10-6  10-2 10-4 1 log beta 
(10-8) (0.20)___ 

Plutonium 10-8 10-6 - uniform 
(1 .0-10) .... ... . .  

Americium 10-10. 10-6 - uniform 
All concentration values are in molarity units.

INTPALA24.125/10-12-93
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Probability Distributions for Kd

Element (rock type) Distribution Mean value Illustrated in 
Type* (mI/g) Figure Number 

Carbon, Iodine, Technetium constant 0 

Tin, Plutonium, Americium constant 100 

Uranium, Selenium (devitrified) uniform 2.5 3-11 
Uranium, Selenium (zeolitic) beta 10 3-12 
Uranium, Selenium (vitric) uniform 2 3-13 

Neptunium (devitrified) beta 2 3-14 
Neptunium (zeolitic) beta 4 3-15 
Neptunium (vitric) beta 0.5 3-16 

Cesium (devitrified) beta 50 3-17 
Cesium (zeolitic) beta 2000 3-18 
Cesium (vitric) beta 50 3-17 

from TSPA (SNL, 1992) 

INTPALA23.125/10-12-93
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SUMMARY OF U.S. NUCLEAR REGULATORY COMMISSION AND 
U.S. DEPARTMENT OF ENERGY TECHNICAL EXCHANGE ON 

NEAR-FIELD RADIONUCLIDE RELEASES FROM THE ENGINEERED BARRIER SYSTEM 
October 14, 1993, Los Alamos, NM 

On October 14, 1993, representatives of the Nuclear Regulatory Commission, 
U.S. Department of Energy (DOE), State of Nevada Nuclear Waste Project Office, 
Nye County, Nevada, and Inyo County, California, participated in a technical 
exchange on near-field radionuclide releases from the engineered barrier 
system. The purpose of the technical exchange was to hold discussions on 
previous and on-going experiments and computer simulations of near-field 
phenomena for the Yucca Mountain candidate repository. The technical exchange 
agenda is included as Attachment 1 and the list of attendees is Attachment 2 
to this summary. Copies of presenters' handouts are included in Attachment 3.  

The exchange included presentations by DOE representatives from the Yucca 
Mountain Project Office (YMP) and Lawrence Livermore National Laboratory.  
Discussions focused on the effects of heat on the engineered barrier system 
(EBS) and the saturation of the rock, circulation of air and water vapor, 
effects of fractures, post-waste emplacement changes in water chemistry, and 
conceptual models of releases of radionuclides from the EBS. The agenda also 
included a presentation by an NRC consultant from the Center for Nuclear Waste 
Regulatory Analyses on analyses of thermally driven vaporization, 
condensation, and flow around waste packages.  

All participants and attendees were provided opportunities for questions and 
discussion during the technical exchange. At the conclusion of technical 
exchange presentations, Ms. Ardyth Simmons (DOE YMP) provided a brief synopsis 
of the status of DOE activities to address unresolved NRC Site 
Characterization Analysis concerns related to the technical exchange topic.  

In the closing remarks, all parties agreed that the presentations had been 
beneficial and that appropriate time had been allowed for discussion. NRC 
participants commented that key information related to spent fuel degradation 
should be integrated into experiments and noted the importance of the field 
heater tests. The State of Nevada representative observed that DOE activities 
and presentations appeared to emphasize matrix effects, and that future 
interactions should focus more on discussions of fracture and rock properties 
and fracture flow. The representative from Nye County stressed the importance 
of tests and modeling of the Calico Hills tuff because of that unit's 
importance to radionuclide migration. He also noted the importance of 
examining bounding scenarios in determining whether or not the hot and dry 
repository concept will be used. The Inyo, California, representative 
stressed the need for site data as input to models and the importance of 
examining mass transport in alternative ways to strengthen hydrochemical
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modeling efforts. He also stated that, because the technical content of 
performance assessment discussions is limited by the data available at this 
time, he believed that a discussion on experiments related to radionuclide 
releases from the waste form should have been substituted for this agenda 
item.

"Charlotte Abrams, Sr6.P.fject Manager 
Repository Licensing and Quality 

Assurance Directorate 
Division of High-Level Waste Management 
Office of Nuclear Material Safety and 

Safeguards 
U.S. Nuclear Regulatory Commission

Chr tian Einbe?•, Gene"ýl En'ine~r 
Regulatory Integratio Br nch 
Office of Civilian Radhjctive Waste 

Management 
U.S. Department of Energy



AGENDA 
DOE-NRC TECHNICAL EXCHANGE 

NEAR-FIELD PHENOMENA RELATED TO RADIONUCLIDE RELEASES FROM THE ENGINEERED 
BARRIER SYSTEM

October 14, 1993 at Los Alamos, NM 

8:00 Welcome/Protocol 

8:15 Overview of radionuclide release studies 

8:45 Modeling effects of heat on the saturation of rock and 
on the circulation of air and water vapor and modeling of 
dripping in fractures in the heated zone 

10:00 BREAK 

10:15 Modeling of coupled processes in the altered zone 

11:00 Testing geochemical modeling codes using New Zealand 
hydrothermal systems 

11:30 Radiation effects on environmental conditions 

12:00 LUNCH 

1:15 Experiments on the interactions of steam and water with 
the components of the EBS 

2:00 Integrated testing 

2:45 BREAK 

3:00 Conceptual models for releases of radionuclides from 
the EBS in realistic near- field environments (source term) 

3:45 Thermally driven vaporization, condensation, and flow 
around waste package 

4:30 SCA Open Items 

5:15 Closing Comments 

5:45 Adjourn

DOE, NRC, State, Counties 

DOE (Simmons) 

DOE (Buscheck) 

DOE (Glassley) 

DOE (Bruton) 

DOE (Van Konynenburg) 

DOE (McCright) 

DOE (Viani) 

DOE (Halsey) 

NRC 

DOE (Simmons) 

DOE, NRC, State, Counties

NOTE: Each topic on the agenda includes time allotted for discussion.
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