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ABSTRACT 

A new computational method is developed for numerical solution of the nonlinear equation for 

variably saturated flow in porous media. The new method, referred to as the mixed transform finite 

element method. employs the mixed formulation of the Richards' equation but expressed in terms of a 

partitioned transform. An iterative finite element algorithm is derived using a Newton-Galerkin weak 

statement. Specific advantages of the new method are demonstrated with applications to a set of 

one-dimensional (ID) test problems. Comparisons with the modified Picard method show that the new 

method produces more robust solutions for a broad range of soil-moisture regimes, including unsaturated 

flow in desiccated soils, heterogeneous media, and variably saturated flow in layered soils with formation 

of perched water zones. In addition, the mixed transform finite element method is shown to converge 

faster than the modified Picard in a number of cases and to accurately capture pressure head and moisture 

content profiles with very steep fronts.  

INTRODUCTION 

The physics of isothermal, variably saturated flow in porous media is largely embedded in the 

mathematical symbolism referred to as Richards' equation (Jury et al., 1993). The descriptive capability 

of Richards' equation has popularized it as the "knowledge engine" for many 1D infiltration models 

(Celia, 1991: Stothoff, 1994), as well as for sophisticated three-dimensional unsaturated flow models 

(Runchal and Sagar, 1993; Ababou and Bagtzoglou, 1993). The generation of physical insights through 

high-resolution numerical simulations, however, has been limited because of the difficulty in obtaining 
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rapidly convergent and accurate numerical solutions for realistic problems. This is particularly the 

circumstance for simulation problems involving wetting fronts moving into a desiccated soil, unsaturated 

flow in layered soils with sharp contrasts in hydraulic properties, as well as the formation and dissipation 

of perched water zones.  

Two primary sources of numerical difficulty are the strongly nonlinear nature of the Richards' 

equation and its unique mathematical character which can transition from parabolic, to hyperbolic, and 

elliptic behavior. The standard prescription for accommodating the nonlinearity has been to utilize an 

iterative method, such as a Newton-Raphson or Picard algorithm in conjunction with finite difference or 

finite element approximations (Huyakorn and Pinder, 1983). The ability of Richards' equation to 

simultaneously exhibit behavior of the three archetypal partial differential equations in the same simulation 

is particularly daunting. This mathematical character is a function of the flow regime and soil hydraulic 

properties. For earth materials with certain soil-moisture retention properties, capillarity will dominate 

moisture transport and, as result, the governing equation behaves like a nonlinear parabolic equation. In 

more drainable materials and relatively high saturation levels, gravity generally dominates and induces the 

propagation of a steep wetting front which is characteristic of a hyperbolic equation. In the case of fully 

saturated conditions, the governing equation simplifies to a linear elliptic equation. The "multiple 

personalities" of Richards' equation pose a special difficulty for the computational algorithm which must 

be capable of accommodating all three types of partial differential equations.  

In this paper, the mixed transform finite element method is developed and applied to a set of 

challenging variably saturated flow problems. The capability of this new numerical method is demonstrated 

through direct comparisons with solutions produced with the widely popular modified Picard method 

(Celia et al., 1990).
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GOVERNING FLOW EQUATION 

The partial differential equation (PDE) for flow in a variably saturated porous medium was 

originally derived by Richards by combining the mass conservation equation with the Buckingham-Darcy 

flux law. Richards' equation provides an average macroscopic description of fluid flow processes that are 

essentially probabilistic in nature and occur at the microscopic level. In 1D form, the PDE is written as 

at az z - (az 

where e is the volumetric water content (cm 3/cm 3), K(h) the hydraulic conductivity (cm/s), z is the depth 

(cm) taken positive downward. and h(0) the pressure head in centimeters of water. This PDE is 

commonly referred to as the mixed formulation of the variably saturated flow equation. Storage associated 

with compressibility of the porous medium and fluid is neglected in Eq. (1) although it can be easily and 

very effectively incorporated into Eq. (1), for example, using the approach of Paniconi et al. (1991).  

Two alternate forms of this PDE are the so-called h- and 0-based PDEs (Jury et al., 1993). The 

standard h-based formulation, which is the more popular of the two, is expressed as: 

Ca K(hh) Oh 1 (2) 

with the moisture capacity term defined as C(h) = 8-61ah. The 0-based formulation is: 

S0 D(O) 00_K (3) 

at az &z 

with the moisture diffusivity defined as D(0) = K(0)[C(0). The classical h-based formulation has the 

advantage of being applicable to both saturated and unsaturated conditions, and accommodating 

heterogeneous soils. However, numerical approximations of this formulation generally exhibit very poor 

preservation of global mass balance (Celia et al., 1990; Milly, 1985) and relatively slow convergence. In
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contrast, the classical 0-based formulation is limited to homogeneous media and strictly unsaturated 

conditions. When discretized, however, it produces very well behaved and rapidly convergent solutions 

(Selim, 1971).  

Celia et al. (1990) developed a semi-discrete "delta" formulation of Eq. (1), which is referred 

to as the modified Picard method. This method apparently combines the benefits of both h- and 0-based 

PDEs without the inherent drawbacks of each formulation. Of particular importance is the mass 

conservative nature of this delta formulation. This formulation is expressed mathematically as: 

CQh)-a = a K(h) -a - I + a_ 11h')ak A ( (4) 

where 8 = hi k*1 - h k and k is the iteration index.  

Similarly, Hills et al. (1989) and Kirkland et al. (1992) harvested the advantages of both the h

and 0 -based formulations by introducing a generalized variable 4V which is a linear transform of pressure 

head and moisture content. They derive a modified form of the Richards' equation, namely 

SK 4 K a K g (5) 
Ft--- G az ) z G az 

where 4D = 0(z,t) = g[h(z,t),z], 0 = 0(z,t) = f[h(z,t),z], F = qffah Oh/&D, and G = ag/ah. The 

last term in Eq. (5) accounts for the "jump conditions" in the soil properties at layer interfaces. Because 

Eq. (5) requires that 4 be uniquely defined, it can only be solved using a finite volume analog with cell

centered nodes so that discontinuous changes occur at the cell interface. Other disadvantages of this 

approach are associated with the calculation of G and A 0 at the layer interfaces (Kirkland et al., 1992).  

In this paper, it is demonstrated that the modified PDE expressed in Eq. (5) is unnecessary and 

a finite element analog can indeed be used with node points located at the material interfaces. In addition,
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the computational advantages of the new mixed transform method are illustrated through comparisons 

against the modified Picard method.  

VMIXED TRANSFORM FORMULATION 

Using ideas similar to that of Kirkland et al. (1992), a mixed formulation of Richards' equation 

can be developed in terms of the transformed variable X: 

_ o (K ah aX -K) (6) 
at az 3x oz ) 

where 

X -h h • ho (7) a" h o0+a h< h0 

with the transform constants 

{ -1 h ; ho} (8) 

ax 1/caC(h) h < ho 

l= - 1 (9) 
C(ho) 

•2 = -ho -ce 0o (10) 

The transition pressure head ho is an arbitrary parameter with 0o being the corresponding water content 

value. It is easy to verify that for h z ho, direct substitution of Eqs. (7) and (8) into Eq. (6) yields the h 

based form. Similarly, for h < ho, Eq. (6) transforms to the e -based form. To fully exploit the benefits 

of the partitioned transform, the transition pressure is chosen to be close to the air entry pressure. This
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particular choice of h0 has the effect of making the transformed PDE behave (numerically) much more 

like the classical 0-based formulation expressed in Eq. (3).  

FINITE ELEMENT ALGORITHM 

An iterative finite element algorithm is formulated using the elegantly simple Galerkin procedure 

which requires that the integral over the domain of the residual, r, and a set of weighting functions, w , 

vanishes. Thus, the Galerkin functional is 

L 

Q = f W) Edz = 0 (11) 

0 

where the residual is obtained directly from Eq. (6), namely 

E = -- C K -K (12) 
& & ( ax az 

In this expression, the quantities 0, X, and K are approximated in terms of a set of linear basis functions; 

these functions are chosen to be identical to the set of weighting functions (a. Since the residual is 

nonlinear, it is useful to expand F in terms of a Taylor series (Baca et al., 1978). Thus, the Newton

Galerkin functional is 

ONG f E(k + Alh dz 0 (13) 0 ah 

where k is the iteration index. It is important to note that the Taylor series is expanded in terms of h 

rather than 0 or X, which are discontinuous. Choosing h as the solution variable has the advantage cited 

previously for the h-based formulation. The nodal values of pressure head h. at the new iterate k+ 1 and 

the new time plane n+ 1 are computed using the Newton iteration formula:
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h(k+l) h(k) + A hj (14) 

In certain problems, convergence can be improved by use of a "damped" Newton iteration in which A hj 

is limited to a maximum value. There are a number of approaches (Jenning and McKeown, 1992) for 

computing the appropriate level of damping. A simple and direct approach consists of computing the 

incremental change according to 

Ahm = min( I AhjIf Ihj1 ) (15) 

where the damping factor f • 1. The appropriate sign is recovered from Ahj = sign (Ahm , Ahj).  

Rearranging the quantities in Eq. (13) and expressing them in matrix notation produces: 

[J] {Ah} = -{R} (16) 

where the right-hand side vector, {R}, and Jacobian matrix, [J], are: 

{R} = L 8j.(k)dz {} f r5(k) d" (17) 

f G 1 dZ{J1 = f ah 
0 0 / 

Discretizing aoe& and integrating by parts, the components of the Newton-Galerkin "weak statement" 

become 

L L OJ( hc)]• 

{R} (,f (en' oo)dz + f ozj KPŽ aX 

(18) 

LL 
0 ah () 6-K ý ax OX z o0 

AJ - t 0 ah 0 aX ah az - ah
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The integration by parts, in the previous equations, effectively reduced or "weakened" the differentiation 

requirement (Pepper and Heinrich, 1992) on x. Inserting the standard expressions for the linear basis 

functions. Eqs. (18) and (19) can be integrated exactly. For a generic finite element of length Le, the 

elemental matrices are: 

I L, ( ij [~~ n+l {1 l 9 K, +Kr [i lR - 6 " 1 1, eR} At L2 0 01 e 

(20) 

(K1+K) ~ - bc 

2qL 

1 (L 3[a1Iah 01 K K aX1/ah -~jh Fie] - t j ao 2 ah + o; -K, lh ax 21ah 

(21) 

_1 [-aK1 ah - aK 2 h1 
2 aKtlah aK,2 ah 

where r = Kahlax. In deriving the above expression, the derivatives of r, have been neglected because 

be be they result in products of first order terms that are small. The boundary flux terms qO and qLi are zero 

everywhere except at the top and the bottom boundaries, if specified. Mass lumping has been used in Eqs.  

(20) and (21) to stabilize the matrices associated with the 0-terms.  

In implementing the new finite element algorithm, termination of the Newton iteration process 

is based on a dual convergence criteria which tests the norms of relative change and residual vectors.  

Specifically, the numerical solution must satisfy: 

max IAhj/hj I • erf and Ir(k~l)1. < E• (22) 

where I is the infinity norm and r(k1l) is the residual computed as JAh(k 1 ) + R.  
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In general, the maximum relative change is a good indicator of convergence: however, the 

residual norm is more stringent and reliable. Typical values of the control tolerances are 10-' z El • 10-3 

and 10-8 • e - 10-5.  

COMPUTATIONAL TEST PROBLEMS 

Three challenging computational test problems, taken directly from the hydrology literature, were 

solved to demonstrate the capabilities of the mixed transform finite element code. For the purpose of 

making comparisons, numerical solutions were also generated using two distinct 1 D codes that utilize the 

modified Picard method. The two codes were the UNSAT1D code (Celia, 1991) and BREATH code 

(Stothoff. 1994). Both of these codes utilize the modified Picard algorithm described in Celia et al. (1990).  

Two primary differences between these independent codes and the mixed transform finite element code 

are associated with the convergence criteria and the spatial approximation of hydraulic properties. Those 

differences are subsequently described.  

The computational difficulties associated with the selected test problems can be characterized 

in terms of the grid hydraulic Peclet number Pehg and hydraulic time scale parameter rhg" As in heat and 

mass transfer, the hydraulic Peclet number (Finlayson, 1980; Ababou, 1990) describes the relative 

significance of convective to diffusive transport. A large Peclet number Pehg > 2 means that the gravity 

term in Richards' equation is dominant and implies that a fine grid may be necessary to capture a sharp 

pressure front. The grid hydraulic Peclet number is calculated from: 

Pehg = - a nK(h)] z (23) 
ah' 

where Az is the element size. In diffusion or capillarity dominated moisture transport, the hydraulic time 

scale parameter is an approximate indicator of the characteristic hydraulic response time for a 

computational element. This quantity is computed from
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AZ2 (24) 'hg K(h)/C(h) 

Zones at or near saturated conditions generally exhibit smaller characteristic times and. thus, control the 

time stepping for the entire domain. Typically, the maximum time step should be chosen to be some 

fraction of 3 'thg to capture the transient changes in pressure head occurring across an element.  

Test Problem 1 - Unsaturated Flow into a Desiccated Soil Column 

The first computational problem is adapted from an unsaturated flow simulation previously used 

by Celia et al. (1990) to test numerical techniques for solving Richards' equation. This test problem 

involves modeling a wetting front moving through a homogeneous, vertical soil column. This deceptively 

simple flow problem is fairly challenging because of the imposed Dirichlet boundary conditions, strongly 

nonlinear soil hydraulic properties, and relatively large pressure head gradients. The idealized soil column 

is 60 cm in length and is assumed to consist of desert soil representative of the Las Cruces field site in 

New Mexico. Flow in the soil column occurs as a result of the specified pressure head at the surface, 

gravity, and capillarity effects. The bottom boundary is held at the initial pressure head, h,. Soil hydraulic 

properties are described by the van Genuchten (1980) relations: 

S-0 [r1 ]M (25) eS S- o--•r 1 1+(a-Ih i)n 

K = KS1 12 [1-(1-SleM)m ]2 (26) 

where 0r and 0, are residual and saturated water contents, respectively, K. is the saturated hydraulic 

conductivity, and a, n, and m are model parameters with m = 1 - 1/n. Values for these parameters are 

er = 0.102, 0e = 0.368, K3 = 0.00922 cmis, a = 0.0335 1/cm, and n = 2.
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To make the problem progressively more challenging, three cases were computed in which the 

top boundary pressure, hb, was varied, namely hb = -75, -25. and 0 cm. The initial pressure head in the 

soil column was uniform and set to a value of h,= -1,000 cm. A uniform mesh of 2-node line elements 

was used to represent the vertical soil column with Az = 2.5 cm. The mixed transform simulation was 

performed using variable time stepping ranging from At = 10 to 100 s. Convergence of the iteration 

algorithm was defined by the tolerances Erel • 10' and E, 10-5. The UNSATiD code (Celia, 1991) 

determines convergence based on the maximum relative change, max IAh/lhjI and the infinity norm of 

the right-hand side, I1 R II.. Consequently, the convergence criteria were only approximately equivalent to 

those used in the mixed transform finite element code, namely Eq. (22).  

Numerical results for the three cases are summarized in Figure 1, which compares the pressure 

head profiles obtained with the mixed transform method and the modified Picard method. Overall, this 

graphical comparison shows satisfactory agreement except in the location of the front. To resolve this 

difference. the UNSATID simulation was repeated with a finer grid and smaller time steps. The fine grid 

solution, also presented in Figure 1, shows closer agreement with the mixed transform solution. Iteration 

histories for the two bounding cases are compared in Figure 2. These histories suggest that the mixed 

transform method exhibits much faster convergence for the case of the "wet" boundary condition (hb = 0 

cm) while the modified Picard method is more competitive (i.e., faster convergence and less sensitivity 

to time step size) for the "dry" boundary condition (hb = -75 cm) case. In terms of cpu time, the mixed 

transform solution for the wet case was about twice as fast as the modified Picard solution, whereas, it 

required about 30 percent more cpu time for the dry case.  

Insight into the numerical characteristics of this test problem is provided in Figure 3 which 

shows the Peh and -ch. curves for the three cases. Progressing from the dry boundary condition to the
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wet boundary condition, the Peag curves show an increasingly rapid change to the maximum value ( - 900 

not shown in figure) and formation of regions behind the front of zero and near zero values. Similar trends 

are exhibited by the "ch, curves. In the wet boundary condition case, a large portion of the soil column 

exhibits r,'g 0 which means that the flow equation has degenerated to steady state (i.e., elliptic) in this 

region. The flow equation is fully transient (and parabolic to hyperbolic) at and ahead of the front, 

explaining the observed progressive sensitivity to time step illustrated in Figure 2.  

Test Problem 2 - Unsaturated Flow into a Dry Layered Soil 

The second test problem. originally solved by Hills et al. (1989), involves modeling infiltration 

into a field scale layered lysimeter. This test problem is an excellent one because it poses a strongly 

nonlinear unsaturated flow problem that exhibits very large gradients in both pressure head and moisture 

be content. The flow regime is driven by a constant flux boundary condition of qO = 2 crr/d at the soil 

surface. Five soil layers (each 20 cm) consisting of alternating Bernino loamy fine sand and Glendale clay 

loam make up the 100-cm soil column. Soil hydraulic properties are described by the van Genuchten 

(1980) formulas. For the Bemino loamy fine sand, these parameters are 0r = 0.0286, Os = 0.3658, 

K, = 541.0 cmnd. a = 0.0280 1/cm, and n = 2.2390. For the Glendale clay loam, the soil hydraulic 

parameters are 0E, = 0.1060, 0s = 0.4686, K, = 13.1 cm/d, a = 0.0104 1/cm, and n = 1.3954.  

Two cases of increasing computational difficulty were simulated in which the initial pressure 

head profile was set to h, = -10,000 and -50,000 cm. The bottom boundary was held at the initial 

pressure head. The flow domain was discretized into a uniform mesh of finite elements with Az = 1 cm.  

A time domain of 5 days was simulated using variable time stepping ranging from At = 10 to 100 s. The
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convergence tolerances were set to Erel • 10-5 and E • 10'. In running this test problem with the 

UNSAT1D code, the arithmetic averaging option was used for calculation of interlayer conductivities.  

The moisture content profiles computed for the two are shown in Figure 4 for t = 5.0 days. In 

this figure, the numerical results obtained for both cases with the mixed transform code are compared with 

those obtained with the UNSAT1D code. The results produced by the mixed transform finite element 

method match nearly perfectly with those computed with the modified Picard method. At depths of 60 to 

65 cm. the two moisture profiles differ very slightly because of differences in the shapes of the pressure 

fronts, which are compared in Figure 5. Although both cases exhibit very large pressure gradients, quite 

interestingly, neither case was especially taxing for either the mixed transform or modified Picard method.  

The comparison of cpu times for the first case showed that the modified Picard solution was about 3.5 

times faster than the mixed transform solution, while for the second case, it was about 5.5 times faster.  

This comparison of cpu times clearly shows the superiority of the modified Picard method for problems 

with low infiltration rates and very dry initial conditions.  

The Peh and rhg curves for the two cases were found to be quite similar with the main 

differences being the maximum values. It was noted that the Peclet number and time scale parameter 

values for this test problem are more constraining at the end of the simulation than at the beginning. The 

curves for t = 5 days and h= -10,000 are illustrated in Figure 6; they suggest that the first two layers 

are largely capillary dominated and exhibit the smaller hydraulic response times.  

Test Problem 3 - Variably Saturated Flow into a Layered Soil 

The final test problem is taken from Ross and Bristow (1990) and involves flow into a layered 

soil column. A high flux boundary condition, relative to the soil hydraulic conductivity, creates locally 

saturated and unsaturated flow regimes. The physical setting consists of a surface crust (0.5 cm), a tilled 

layer (10 cm), and an undisturbed subsoil layer (15 cm). At the surface, the water application rate is
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bc qo= 10 cmnh while the bottom boundary is held at a fixed pressure head value equal to the initial value.  

The soil hydraulic properties for each layer are described by the formulas (Campbell, 1985): 

0 (h) = O(/h ;>I h a (27) O8) s(h~ha)-11" h < ha 

K(h) = Ks h;h (28) 
Ks (h/ha)-n h < ha 

where ha is the air entry value of pressure head, and b and n are fitting parameters with n = 2 + 3/b.  

The parameter values for: (i) the surface crust are 0, = 0.562, K, = 0.0616 cm/hr, ha = -4.55 cm, and 

b = 6.8; (ii) the tilled layer are e. = 0.562, K, = 1.396 cm/hr, ha = -4.55 cm, and b = 13.3; and 

(iii) the undisturbed subsoil are 0, = 0.440, K, = 0.312 cm/hr, ha = -9.50 cm, and b = 13.3.  

The vertical soil column was represented by a variably spaced finite element mesh consisting 

of Az = 0.25 cm in the surface crust, Az = 0.5 cm in the tilled layer, and Az = 0.5 to 1.0 cm in the 

undisturbed subsoil layer. The initial pressure head was uniform and set to hi = -35,100 cm. In setting 

up the BREATH code (Stothoff, 1994) for this problem, a slightly finer grid was necessary because the 

code uses "node based" hydraulic properties; small elements were used to straddle the layer interfaces. A 

total time period of 7 hr was simulated using variable time steps of At = 10 to 200 s. Convergence of 

the mixed transform iteration algorithm was defined by the tolerances erel • 10' and Fr, • 10-6. In the 

BREATH code, convergence is determined on the basis of maximum relative change only. Thus, the 

convergence criteria between the two computational methods was only partially equivalent.  

The computed moisture content profiles for t = 7.0 hr are illustrated in Figure 7. In this figure, 

the numerical solutions produced by the mixed transform finite element method are compared with those 
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calculated with the BREATH finite element code. The differences between the two moisture profiles are 

very small. The calculated pressure head profiles, which are presented in Figure 8. also show excellent 

agreement. The iteration histories, which are presented in Figure 9, give insight to the computational 

efficiency of the two solution techniques. From this plot, it can be noted that the modified Picard method 

exhibits a much greater sensitivity to time step size for this case. In fact, for the large time step size the 

Picard iteration process shows a large increase in iterations. This behavior is consistent with the iteration 

history observed in the first test problem. The comparison of cpu times showed that the mixed transform 

solution was about 1.6 times faster than the modified Picard solution.  

The Pe, and -rh. curves calculated for this test problem were found to be relatively simple and 

showed that this problem was primarily dominated by capillary flow and the hydraulic response times 

were very large for the entire simulation period. These numerical characteristics explain, to some degree, 

the observation of Ross and Bristow (1990) that accurate solutions for this test problem can be obtained 

with a coarse grid and large time steps.  

SUMMARY AND CONCLUSIONS 

A mixed transform finite element method was developed for solving Richards' equation for 

variably saturated flow. In this new approach, the mixed formulation of the flow equation is transformed 

using a partitioned change of variable. An iterative scheme is embedded in the finite element algorithm 

for the transformed equation. This technique is formulated using a Newton-Galerkin weak statement. The 

capabilities of this new method are demonstrated with applications to a set of challenging ID 

computational test problems. For the broad range of regimes considered in the test cases, the mixed 

transform method exhibits a higher degree of robustness than the modified Picard method. In certain cases, 

the mixed transform method can converge faster and more accurately capture steep pressure head and 

moisture content profiles, which are typically encountered in desiccated soils. The new method is easy to 

implement in existing one- and multi-dimensional finite element codes, as well as finite volume codes.
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Although the new method offers improved computational efficiency, accuracy, and reliability for a broad 

class of variably saturated flow problems, it must be acknowledged that the modified Picard method may 

be more competitive (i.e., allows larger time steps) for certain cases of strictly unsaturated flow conditions.  

This suggests that an even more robust computational technique might be constructed by combining both 

methods, possibly through a linear weighting of the element stiffness matrices. Such an approach is being 

explored and may be the topic of a future publication.  
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Fig. 1 . Comparison of mixed transform and modified Picard solutions 
for 3 cases specified for test problem 1: hb.- -75, - 25, 0 cm.  
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Fig. 2. Iteration histories for mixed transform and modified Picard 
solutions for bounding cases of test problem 2.
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i9. .3. tlydraulic Pec let number rind irescalecurves (or n casestol I 
problem 1.
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:- . 4. Moisture conitent c~c,,!es c=m::ujec :c est crooiemn 2 Lsino. :ne 

-xea ~rrnstorm crne -7c:;r ec Pccro rrev~cs.
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- a. z. Comoarison or oressure neca cromies computea for two cases or 
:est oroolem 2.
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Fig. 6. Hydruulic Peclet nijmbe' and tirne scole curves for kc,- problern 2.
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q:q. 7. Comparison of moisture content profiles computea for test 

:roolem 3 usina mixea transform ana moaifiea Picara memtoas.  
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Fig. 9. Iteration histories computed for test problem 3 using the mixed 
transform and modified Picard method.
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