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ABSTRACT 

Currently available rock joint models were developed based on data taken under unidirectional 
pseudostatic loading conditions. These models cannot be used to adequately predict the joint response 
during reverse shearing. The primary reason for this is that the joint roughness representations used in 
these models do not appear to contain the joint characteristics that are responsible for the joint reverse 
shearing behavior observed in the laboratory. A proper representation for rock joint roughness appears 
to be needed.  

Self-affine fractal properties of Barton's ten standard profiles for the joint roughness coefficient (JRC) 
were analyzed with the ultimate goal of relating the JRC values with the fractal properties of rock 
profiles. Four different methods were adopted in the study for calculation of fractal properties. The 
applicability of these methods was tested using the fractional Brownian motion functions with Hurst 
exponent, H, varying from 0.5 to 0.9. Contrary to the common belief that a larger fractal dimension, D, 
should correspond to a higher JRC value, all four methods consistently predict a decreasing trend of JRC 
values with increase in fractal dimension. This finding suggests that using fractal dimension alone for rock 
profile characterization is not sufficient. The intercept of the fractal model was found to be representative 
of the local trend (long wavelengths) of a rock profile that controls the shear behavior of rock joints at 
laboratory scales. To uniquely define a joint profile, both the fractal dimension and the intercept are 
needed. Even considering these two parameters in evaluating the ten profiles, this study has shown that 
not all of the ten standard profiles are representative of the roughness classes as suggested. Consequently, 
it has not been possible to develop a valid systematic relationship between the fractal properties and JRC 
values of the ten profiles. Barton's ten profiles will need to be revised to meet more rigorous 
requirements or an alternate approach is needed for relating the roughness of a joint surface and its fractal 
properties.
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EXECUTIVE SUMMARY 

The results of an extensive laboratory study of the cyclic pseudostatic and dynamic behavior of rock 
joints, which was conducted as a part of the ongoing Rock Mechanics Research Project at the Center for 
Nuclear Waste Regulatory Analyses (CNWRA), have indicated a distinct difference between joint shear 
behavior during forward shearing and reverse shearing, whether a rock joint is subjected to a cyclic 
pseudostatic or dynamic shear loading. This finding has severely limited the utility of the commonly used 
rock joint models for adequately describing joint behavior under cyclic pseudostatic or dynamic loading 
conditions. These rock joint models were extended to predict the joint reverse shearing behavior by 
assuming that the reverse shearing would follow the same rule as the forward shearing. This assumption 
is found to be inconsistent with the experimental findings.  

A major effort has been undertaken by the CNWRA on behalf of the Nuclear Regulatory Commission 
(NRC) Division of Waste Management in developing a rock joint model that can be used for adequate 
representation of rock joint cyclic behavior. This rock joint model will include mathematical 
representations of joint shear and dilation behavior. This report documents the progress to-date on 
developing a methodology for characterizing rock joint surface profiles and establishing a relationship 
between the characterized joint profile and the joint roughness concept. Such relationship will form the 
basis for the development of a rock joint model.  

The approach adopted uses the theory of fractal geometry to characterize the ten standard profiles 
proposed by Barton (1973). The objective was to make use of the concept of joint roughness coefficient 
(JRC), developed by Barton (1973) and accepted by the International Society for Rock Mechanics (ISRM) 
(1978) as the standard for representing surface roughnesses, where the relationship has been established 
between JRC and rock joint model parameters such as friction angle and rock joint degradation. Since 
a rational rock joint model needs to adequately account for the roughness of the joint surface the plan was 
to determine the fractal properties of the ten standard profiles using the self-affine fractal method and then 
to establish the relationship between the fractal properties and the rock joint model parameters. Four 
methods [i.e., divider, variogram, spectral, and roughness-length (RMS)] were used for the determination 
of fractal properties, initially the fractal dimension, D. Contrary to the common belief that a larger D 
should correspond to a higher JRC value, the results from all four methods show a consistent trend of 
a profile with a higher JRC value having a smaller D value. Thus, the D value alone cannot be used to 
uniquely characterize the roughness of a rock joint. The intercept of the fractal model was found to be 
representative of the local trend (long wavelengths) of a rock profile that controls the overall shear and 
dilation behavior of rock joints. To uniquely define a joint profile, both the fractal dimension and the 
intercept are needed. Even considering these two parameters, this study has shown that not all of the ten 
standard profiles are representative of the roughness classes as proposed by Barton (1973). It is, 
therefore, not possible to establish a valid systematic relationship between the fractal properties and the 
JRC values of the ten profiles.  

An alternate approach is considered to be necessary for relating the roughness of a joint surface and its 
fractal properties; the fractal dimension and the intercept. Two alternatives are currently under study. One 
is to modify the standard profiles, with JRC values between 6 and 16, as appropriate. The other approach 
is to develop a new basis for correlating the fractal dimension and intercept of a rock joint with its joint 
model parameters such as friction angle and rock joint degradation under shear.
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1 INTRODUCTION 

1.1 BACKGROUND 

In 1987, the U.S. Congress designated Yucca Mountain, in southern Nevada, as the only site 

to be characterized to determine its suitability for constructing a repository for high-level nuclear waste 
(HLW). The proposed repository horizon is about 300 m beneath Yucca Mountain, in a densely welded 
prominently vertically and subvertically jointed tuff. The unit was chosen as the proposed repository 
horizon because of its thickness, lateral continuity, dense welding, and its location in the unsaturated zone 
about 200 to 400 m above the water table.  

Analyses of the behavior of underground structures in hard rocks, such as those proposed at 
Yucca Mountain, which contain discontinuities such as faults, joints, shear zones, and beddings, show 
that the shear behavior of these discontinuities is a primary determinant of rock mass deformation and 
the stability of the underground structures under various loading conditions. One important loading 
condition that could potentially affect the preclosure and postclosure performance of a repository is 
repeated ground motion due to seismic activities (Kana et al., 1991; Nuclear Waste Technical Review 
Board, 1992). The fundamental failure mechanism for an excavation in a jointed rock mass subjected to 
repetitive seismic loading is the accumulation of shear displacements at the major pervasive features such 
as joints and faults (Hsiung et al., 1992a;b). Conditions for slip on joints or for the sliding of individual 
blocks from the boundaries of excavations are governed by the shear strengths that can be developed by 
the discontinuities. Specific seismic implications for repository design and performance may include 
cumulative effects of repetitive seismic loads on: (i) emplacement drift stability; (ii) underground opening 
stability; and (iii) creation of preferential water pathways to connect the emplacement area with perched 
water zones, neighboring steep hydraulic gradient zones, or the condensation area above the emplacement 
area.  

The results of an extensive laboratory study of the cyclic pseudostatic and dynamic behavior of 
rock joints, which was conducted as a part of the ongoing Rock Mechanics research project at the Center 
for Nuclear Waste Regulatory Analyses (CNWRA), have indicated a distinct difference between joint 
shear behavior during forward shearing and reverse shearing, whether a rock joint is subjected to a cyclic 
pseudostatic or dynamic shear loading. (A concise definition for forward shearing and reverse shearing 
is provided in a later section). This observation has severely limited the utility of commonly used rock 
joint models, which were developed based primarily on experimental data taken under unidirectional 
pseudostatic loading conditions, in predicting joint performance under cyclic pseudostatic and dynamic 
loading conditions (Hsiung et al., 1994b). These rock joint models were extended to predict the joint 
reverse shearing behavior by assuming that reverse shearing would follow the same rule as forward 
shearing. This assumption is not consistent with the experimental results (Hsiung et al., 1994a; Wibowo 
et al., 1992; Huang et al., 1993; Jing et al., 1992). These experimental results have suggested that the 
representations of the joint roughness used in the existing rock joint models do not adequately reflect the 
actual joint characteristics that control the reverse shearing behavior. A new or modified joint roughness 
representation is needed to allow a rock joint model to adequately predict the reverse shearing behavior.  

1.2 OBJECTIVE AND SCOPE 

The objective of this study is to develop a rock joint model using the experimental results of 

the Rock Mechanics research project (Hsiung et al., 1994a) that can be used for representation of rock
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joint cyclic behavior. The activities associated with the development of a rock joint model for predicting 
the cyclic pseudostatic and dynamic behavior of a jointed rock mass include: 

(i) Developing a methodology for characterizing rock joint surface profiles and establishing 
a relationship between the characterized joint profile and the joint roughness concept 

(ii) Developing a model for joint roughness degradation due to joint shearing 

(iii) Developing a mathematical representation of joint shear behavior utilizing the relationship 
developed in item (i) and the degradation model developed in item (ii) 

(iv) Developing a mathematical representation of joint dilation behavior utilizing the 
relationship developed in item (i) and the degradation model developed in item (ii), and 

(v) Testing the validity of the rock joint model developed 

This progress report is intended to document the activity and results to date for item (i). Chapter 2 gives 
a brief discussion regarding the experimental results obtained at the CNWRA while studying the joint 
cyclic shear behavior and the need for a method for characterizing rock joint surfaces that will capture 
the characteristics governing the joint shear behavior during reverse shearing. Chapter 3 discusses the 
development of such a method using the self-affine fractal approach along with the problems encountered 
in correlating JRC with the fractal properties of the ten standard profiles proposed by Barton (1973).  
Chapter 4 outlines current thinking on further rock joint model development in the light of the results 
obtained in Chapter 3.
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2 ROCK JOINT RESPONSE UNDER PSEUDOSTATIC AND 
DYNAMIC LOADS 

The rock joint specimens used for the cyclic pseudostatic and dynamic direct shear tests in the CNWRA 
experimental program (Hsiung et al., 1994a) were collected from the Apache Leap site near Superior, 
Arizona. The rock at the Apache Leap site is a vitrified and densely welded tuff that is moderately to 
heavily jointed. A large-diameter core drilling technique was used for sample collection. From these 
cores, rock joint specimens were prepared to a predetermined size such that the rock block on one side 
of the joint had dimensions of 305 x203 x 102 mm and the rock block on the other side of the joint had 
dimensions of 203 x203 x 102 mm. The joint surfaces on both rock blocks were matched when the rock 
block with smaller size (top block) was seated at the center of the larger size rock block (bottom block).  

2.1 CYCLIC PSEUDOSTATIC LOAD 

During a cyclic pseudostatic direct shear test, the top block was sheared a distance of about 2 
in. (50.8 mm) in one direction followed by a reversal of shearing back to the original starting position 
under a predetermined constant normal stress and at a constant velocity of about 4.2 X 10-2 mm/sec. The 
same process could be repeated on the same joint specimen under a different normal stress level. To aid 
the discussion, the term "forward shearing" is used throughout this report to indicate that the top rock 

block moves away from its original position while the term "reverse shearing" denotes the top rock block 
moves toward its original position, regardless of the absolute direction of movement.  

Figure 2-1 shows the shear stress response for test no. 17 (Hsiung et al., 1994a) under various 
normal stress levels. The test sequence followed an ascending order with respect to the normal stress. The 
curve with the 1-MPa normal stress (the first cycle of shearing) illustrates the shear behavior of an 
originally undamaged (fresh) joint and shows a distinct peak shear strength at the early stage of the shear 
cycle. The shear strength of the joint gradually reduces to a residual value at greater shear displacements.  
No distinct peak shear strength was observed for other cycles of shearing. Figure 2-1 also indicates a 

gradual increase in shear strength during reverse shearing when the top block was approaching its original 

position. Another feature that can be observed in this figure is that the shear strength during the reverse 

shearing is smaller than the shear strength during the forward shearing.  

The relation between normal displacement (dilation) and shear displacement for test no. 17 is 
given in Figure 2-2. This figure indicates that joint dilations at various normal stresses increase during 
forward shearing. For reverse shearing, there is some degree of hysteresis with the joint dilation 

decreasing towards zero from below the dilation curve of forward shearing. In general, for repeated shear 

cycles, the amount of joint dilation decreased with increasing normal stress.  

2.2 DYNAMIC LOAD 

Figures 2-3 and 2-4 show the characteristic plot of joint shear stress versus joint shear 
displacement under harmonic and earthquake loading conditions, respectively. The harmonic load for 
Figure 2-3 was generated from a prescribed shear displacement drive input in a sinusoidal wave form.  
The frequency and amplitude of the harmonic input motion were 1.4 Hz and 12.7 mm, respectively. The 
earthquake input motion used in Figure 2-4 is shown in Figure 2-5 with a nominal maximum 

displacement amplitude of 25.4 mm and a dominant frequency of about 0.5 Hz. This displacement input
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signal was developed based on the acceleration response signal recorded from the Guerrero accelerograph 
array for the earthquake of September 19, 1985, in Mexico. The development of this displacement input 
has been discussed by Hsiung et al. (1994a). All figures include the test results of the first three cycles 
and Figure 2-3 also includes the result of the 40th cycle.  

For Figures 2-3 and 2-4, the experiment started with shearing the top rock block from its 
original position (represented as the zero shear displacement in the figures) toward one end of the bottom 
rock block until a predetermined maximum value of shear displacement (based on the input displacement 
time history) was reached. The corresponding shear stress versus shear displacement characteristic curve 
with this portion of shearing is shown in the first quadrant of the figures (i.e., clockwise progression 
around the figure). After the maximum shear displacement in the first quadrant was reached, the top rock 
block began to move backward and eventually past its original position. The corresponding shear stress 
versus shear displacement characteristic curves are presented in the fourth and third quadrants of the 
figures, respectively. After the maximum shear displacement in the third quadrant was reached, the top 
rock block moved again back to its original position to complete a cycle of shear motion, and the 
associated shear stress versus shear displacement characteristic curve is presented in the second quadrant 
of the figures. This process was repeated for a number of cycles. As shown in the figures, the shear 
stress is denoted as positive when shearing is in one direction and negative when shearing is in the 
opposite direction. Consequently, the sign for the shear stress denotes the direction of the shear instead 
of the magnitude of the shear stress.  

A peak joint shear strength was observed for the first cycle of both harmonic and earthquake 
tests if the jointed specimens used for the tests were never shear tested before or did not show signs of 
past shearing before specimen collection. This observation is consistent with the joint pseudostatic
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behavior. The phenomenon of wear of the joint is also clearly shown in the figures as the shear stress 
(joint shear strength) decreases with the number of cycles.  

As observed for the cyclic pseudostatic tests (Figure 2-1), one distinct feature of the shear stress 
versus shear displacement characteristic curve in Figures 2-3 and 2-4 is the nature of the smaller shear 
strength upon reverse shearing as compared to that of forward shearing (the first quadrant versus the 
fourth quadrant, the third quadrant versus the second quadrant). The equivalent input frequency for the 
cyclic pseudostatic test as shown in Figure 2-1 is about 2.1 x 10-4 Hz. The same behavior was also 
reported by other researchers (Jing et al., 1992; Wibowo et al., 1992; Huang et al., 1993) for rock joint 
replicas under cyclic pseudostatic loads.  

It also can be observed in Figures 2-3 and 2-4 that the shear stress curves are fluctuating instead 
of smooth during the course of forward and reverse shearing. These variations can be better characterized 
as stick-slip (chatter) behavior. This chatter behavior may be related to the waviness of the joint surface 
and rock fragments broken from the joint surface (asperities), state of normal stress, frequency of the 
loading cycles (velocity of shear displacement), and the variation of strength of the asperities or rock 
fragments. During a shear test, when the shear stress is equal to the joint shear strength, joint slip begins.  
This joint slip will continue until asperities are encountered that tend to resist joint slip, that is, increase 
the joint shear resistance (strength). In such a situation, the joint stops slipping. The termination of a joint 
slip is the "stick" component of the phenomenon. The joint slip will not resume until the applied shear 
stress is increased to a level that overcomes this additional amount of joint shear resistance.  

If the rock fragments between the joint surfaces are strong, additional shear stress is needed in 
order for the top rock block to crush or ride over them. As shown in Figure 2-6, which denotes the 
relation between the shear stress and shear displacement of different joints under pseudostatic cyclic 
loading condition, the joint chatter behavior was not as pronounced at a relatively lower normal stress 
level; in this figure, it is 1.0 MPa. However, when the input frequency was increased from 2.1 X 10-4 

Hz for the pseudostatic cyclic tests to 0.5 Hz for the earthquake tests, or more than 1.0 Hz for the 
harmonic tests, the chatter behavior becomes increasingly pronounced, although the applied normal stress 
was 1.0 MPa (Figures 2-3 and 2-4). It is also interesting to note that, in some cases of the dynamic tests, 
the chatter behavior continues even after a number of cycles of shearing. Small shear displacement may 
take place in the process of crushing or riding over the rock fragments since these rock fragments may 
not remain fixed in a place. Therefore, the stick component of the chatter behavior in this sense should 
be treated in a broader sense.  

Figures 2-7 and 2-8 show the joint normal displacement versus shear displacement characteristic 
curves corresponding to Figures 2-3 and 2-4, respectively. The wear of the joint surfaces is a continuing 
process, as is evident in these figures, where the maximum joint normal displacement continues to 
decrease through the cycles of shearing. It is interesting to note that joint dilation (positive normal 
displacement) tends to decrease constantly during reverse shearing and may retain a small amount of 
dilation as the top rock block returns to its original position. The dilation curve is highly nonlinear but 
generally smooth for at least the first three cycles of the earthquake test results in Figure 2-8, as was the 
case for the pseudostatic test (Figure 2-2). However, for the harmonic test (Figure 2-7), many small-scale 
stick-slip oscillations were observed for many cycles. This observation gives an indication of the potential 
impact on joint dilation of input frequency, which may be related to the existence of small-size rock 
fragments created in the process of shearing. Under pseudostatic conditions or smaller input frequency 
conditions, shear stress tends to crush these rock fragments instead of riding over them. However, under 
conditions of high input frequencies or high shear velocity, the rock fragments are stronger and tend to
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Figure 2-6. Shear stress versus shear displacement response as a function of 
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resist crushing and thus result in a temporary increase in normal displacement (the top block riding over 
these fragments). It is commonly understood that rock strength depends on loading rate and generally 
increases with increased loading rate. Once the fragments are crushed, the normal displacement tends to 
return to the original path. Judging from the overall joint shear behavior, the effect of the chatter 
component of joint performance is considered to be limited.  

Because natural rock joints were used in direct shear tests under cyclic pseudostatic, harmonic, 
and earthquake loading conditions, a different joint specimen was needed for each test. As a result, the 
joint characteristics for each test were different. Therefore, it is impossible to evaluate directly the 
shearing velocity effect on the joint shear strength, unless some means is developed to account for the 
effect of different roughness. Figure 2-9 illustrates an approximate means for such an evaluation.  
Admittedly, the conclusion that can be drawn from this figure is at best an approximation, due to a 
number of uncertainties involved. However, it does give an indication of the potential shearing velocity 
effect on the peak shear strength. The horizontal axis of the figure represents the joint roughness 
coefficient (JRC) value calculated from the tilt test, while the vertical axis represents the JRC value 
calculated from the direct shear test results. Although it has been determined that the tilt test method
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grossly underestimates the real JRC value (Hsiung et al., 1994a), it has been shown through the 
Spearman's rank correlation coefficient test that the JRC value from the tilt test has a strong positive 
correlation with the corresponding JRC values calculated from the pseudostatic cyclic shear test results 
with a correlation coefficient, R2 , of about 0.85 (Hsiung et al., 1994a). Therefore, it is possible to 
develop an empirical expression relating the JRC values from the two methods. The solid line in Figure 
2-9 shows a second-order polynomial fit between JRC values from the pseudostatic cyclic test results and 
the corresponding JRC from tilt tests with an R2 of 0.82. This polynomial fit should provide sufficient 
confidence in estimating the JRC for the Apache Leap tuff joints using the tilt test. Subsequently, the 
estimated JRC can be used to estimate the "pseudostatic" peak joint shear resistance with reasonable 
confidence. Assuming that the peak joint shear strength will be affected by dynamic loads (e.g., induce 
a higher peak shear strength than the peak shear strength if the same specimen was tested under 
pseudostatic condition), then the JRC value calculated from the "dynamic" joint shear strength should 
be larger than the JRC value from the pseudostatic shear strength. In other words, the dynamic JRC 
should fall above the second-order polynomial curve if plotted in Figure 2-9. Figure 2-9 includes the 
dynamic JRC from the harmonic and earthquake test results. Examination of the figure indicates that, in 
general, the dynamic JRC values do not differ significantly from the corresponding pseudostatic JRC 
values, except for one data point from a harmonic test result. This observation is an indication that the 
shear velocity input may not have an appreciable influence on the peak joint shear strength.  

Figure 2-10 shows the effect of joint roughness on joint shear stress reduction during reverse 
shearing for the dynamic test. The horizontal axis represents the JRC values that were calculated using 
the dynamic peak shear strength results. The vertical axis is the ratio of the approximate shear strength 
during reverse shearing to the corresponding peak shear strength for forward shearing. There are two 
curves for each type of dynamic test in the figure. The legend Earthquake, I denotes that the data in the
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Figure 2-10. Effect of input frequency (shearing velocity) on joint shear strength 
during reverse shearing 

1st and 4th quadrants of the shear stress versus shear displacement characteristic curves for the earthquake 
tests were used, while the legend Earthquake, 2 denotes that the data in the 3rd and 2nd quadrants were 
used. The same approach was used for the harmonic tests. Figure 2-10 shows that the difference between 
the joint shear strength during reverse shearing and the peak shear strength will be larger for joints with 
rougher surfaces. On the other hand, the figure indicates that the effect of shearing velocity on shear 
resistance is not noticeable in the experimental results.  

In summary, within the range of variation, the test input velocity or frequency is found to affect 
the stick-slip behavior of the Apache Leap tuff joints. As discussed earlier, the stick-slip behavior is 
believed to have limited effect on joint performance. No noticeable effect of the input frequency on the 
peak joint shear strength and the joint shear strength for the reverse shearing is observed. Consequently, 
it is possible to disregard the effect of shearing velocity variations, within a range from a velocity that 
is equivalent to a static condition to a velocity variation comparable to earthquakes, in evaluating joint 
behavior. However, the observed differences in joint behavior between reverse shearing and forward 
shearing, in the sense of joint shear strength, and the joint dilation recovery during reverse shearing 
deserve adequate representation by the rock joint models.  

Commonly used empirical representations of jointed rock behavior reside in the Mohr-Coulomb, 
Barton-Bandis, and Continuously-Yielding models. These models were developed primarily on the data 
taken under unidirectional pseudostatic loading conditions, that is only for forward shearing. Careful 
examination of these three models (Hsiung et al., 1994b) has revealed that all three models have adopted 
essentially the same principle in determining the joint shear and dilation behavior during reverse shearing.  
This principle asserts that same joint behavior occurs under both forward and reverse shearing conditions.  
With this principle, the same shear strength criterion is applicable to both conditions and the joint dilation
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continues to increase even during reverse shearing. Consequently, all three models are found not able to 
adequately predict the joint shear and dilation behavior under reverse shearing (Hsiung et al., 1994b).  
This inability is clearly due to the lack of understanding of joint cyclic shear behavior and due to a 
roughness representation used in the models that does not reflect the portion of the joint characteristics 
controlling the reverse shearing behavior of a rock joint. A new or modified representation for rock joint 
roughness is apparently needed.
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3 DEVELOPMENT OF CHARACTERIZATION TECHNIQUE FOR 
ROCK JOINT ROUGHNESS 

It is recognized that an acceptable rock joint model for adequately describing rock joint behavior both 
under cyclic pseudostatic and dynamic shear conditions will require a suitable measure of rock joint 
roughness. A commonly used measure of joint roughness in rock engineering practice is the JRC 
proposed by Barton (1973) and adopted by the ISRM (1978). This JRC concept has been implemented 
in a rock joint model developed by Barton and Choubey (1977). This rock joint model is able to 
adequately describe the unidirectional shear and dilation behavior of fresh rock joints (Hsiung et al., 
1994b), provided representative JRC values are used. However, as discussed in Chapter 2, this JRC 
concept does not seem to include the joint characteristics that govern the joint behavior during reverse 
shearing. Consequently, the rock joint model that utilized this concept cannot be used for the prediction 
of the reverse shearing behavior of a rock joint. Further, the determination of the JRC value of a rock 
joint profile is highly subjective (Miller et al., 1989) since as originally proposed by Barton and Choubey 
(1977), it is done by visually matching the joint surface profile with the ten "standard" profiles whose 
JRC values range from 0 to 20. Several methods have been proposed to link the JRC value with various 
aspects of the statistical characteristics of a rock joint to provide an objective alternate for JRC 
determination. These methods were evaluated by Hsiung et al. (1993) and were found to underestimate 
the JRC value of a rock joint by a substantial amount. Furthermore, none of these methods have included 
all aspects of joint characteristics.  

One of the approaches for analyzing rock joint profiles is the theory of fractal geometry. Several 
researchers proposed equations that correlate JRC values (which range from 0 to 20) of the ten standard 
profiles to their fractal dimensions. (It will be shown later in this chapter that fractal dimension alone is 
not sufficient to uniquely define a joint profile) In the process of determining their fractal dimensions, 
the ten standard profiles were assumed to be self-similar (Turk et al., 1987; Lee et al., 1990; 
Wakabayashi and Fukushige, 1992). The assumption that rock joint profiles are self-similar implies that 
each profile is composed of several copies of itself with possible rotation and translation, scaled down 
from the original by a constant ratio r in all spatial directions. However, in reality, studies have shown 
that rock profiles or surface topographies are often self-affine fractals (Brown and Scholz, 1985; Brown, 
1987; Malinverno, 1990) and will require different scaling factors in different directions. Formally, points 
X = (x,y) transform into new points X' = (rxx, ryy) with rx = ry H where H is the Hurst exponent and 
ranges between 0 and 1. Furthermore, these existing equations developed based on self-similar fractal 
geometry have been shown to have considerably underestimated the JRC values for natural rock joint 
profiles (Hsiung et al. 1993).  

In the study reported herein, the theory of self-affine fractal geometry is adopted to characterize the ten 
standard profiles, since this theory provides a sound mathematical basis and can capture uniquely the 
characteristics of a fractal object (rock profile). The profiles are treated to be self-affine instead of self
similar. The objective of this characterization is to obtain a better understanding of the ten profiles and 
to establish a relationship between the fractal properties of the profiles with their associated JRC values, 
if such a relation exists. Since a relationship exists between JRC and rock joint model parameters such 
as friction angle and joint degradation, this approach will lead to the establishment of a relationship 
between fractal properties and rock joint parameters. Several methods are available for calculating the 
properties of a self-affine fractal. Four such methods were used in this study. These are the divider meth
od, variogram method, spectral method, and RMS method.
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3.1 DIVIDER METHOD 

Given an object is divided into N smaller objects each with a size or divider length R, the di
vider method calculates the fractal dimension D with (Mandelbrot, 1982; Feder, 1988): 

N = R-D (3-1) 

However, the dimension of a self-affine fractal may not be uniquely defined using the above equation 
(Mandelbrot, 1982), if the divider length is too large compared to the roughness of the fractal object. In 
this regard, the fractal dimension obtained should approach the topological dimension, that is D = 1.0.  
This means, in a global sense, that the object is not fractal. But in a local sense, that is, using a small 
divider length compared to the fluctuation, the divider dimension can be defined as (Feder, 1988): 

DD H 1 (3-2) 
H 

This behavior of the self-affine fractal involves a crossover value of the sample interval where the local 
value of the fractal dimension passes to a global one. The existence of a crossover value makes the 
determination of fractal dimension of a self-affine fractal object difficult since the sampling interval for 
a data set is normally much greater than this crossover value. To overcome this difficulty, Brown (1987) 
has suggested an alternative by magnifying the profile height repeatedly by various factors then using the 
divider method until a stable fractal dimension is obtained. Applying this alternative, this study indicates 
that the calculated fractal dimension increases as the magnification factor increases until a maximum 
fractal dimension value is reached. Further increasing the magnification factor results in a decrease in 
fractal dimension. The idea of magnifying a profile height (equivalent to reducing divider lengths) is to 
create a distinct contrast between the total lengths calculated using various divider lengths (that is, to 
increase the difference between the total lengths) so that a reasonable fractal dimension can be obtained.  
This approach will only work when the "equivalent" divider lengths are within a range that is comparable 
to the crossover length (perhaps, within one or two orders of magnitude). Such contrast will begin to 
diminish as the magnification factor continues to increase since the total lengths calculated for various 
divider lengths will eventually be equal.  

3.2 VARIOGRAM METHOD 

Variogram or semi-variogram is used to characterize the spatial variability of random functions 
and it is extremely well-suited for describing random functions that are second-order stationary or appear 
to vary without bound (Journel and Huijbregts, 1978; Oliver and Webster, 1986). The variogram function 
is defined as the average of the sum of the squares of the profile height differences separated by a given 
lag. The one-dimensional variogram function, -y(h), can be expressed in a discrete form: 

N 

y(h)= 2N _r [Z(x,) - Z(xi + h)f (3-3) 

where Z(xi) is the height of the profile at location xi, Z(xi+h) is the height of the profile at location 
xi+h, h is the lag between two points, and N is the number of observations. A plot of the variogram 
function versus the lag, h, will reveal a suite of information regarding the characteristics of the profile.
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However, they are not the focus of discussion in this report. The fractal dimension of a profile can be 
determined from the initial slope, #, of the log-log plot of the variogram function versus the lag, using 
the equation, D = 2 - #/2.  

3.3 SPECTRAL METHOD 

The spectral method has been widely used for fractal dimension determination of a self-affine 
fractal object (Brown and Scholz, 1985; Power and Tullis, 1991). When an object or a profile is fractal, 
the slope of the power spectral density (PSD) of the profile will not vary with the cutoff frequency. PSD 
curves of fractals can be approximated by 

Sf) = af'P (3-4) 

where S(f) is the PSD, a is a constant, and f is the frequency. The fractal dimension can be calculated 
from D = (5 - #)/2. All data used in this study were detrended before they were analyzed with the 
spectral method.  

3.4 ROUGHNESS-LENGTH (RMS) METHOD 

The RMS method was proposed by Malinverno (1990). This method measures the profile rough
ness as the root-mean-square value of the residuals on a linear trend fitted to the sample data points in 
a window of length w. The removal of this local trend is necessary to avoid overestimating roughness in 
small windows since small samples contain significant trends, due to the presence of the powerful long 
wavelength, although self-affine series tend to be flat on large scales (Malinverno, 1990). The RMS 
roughness can be calculated by 

RMS(w)_ 1 (ZJ Z) (3-5) 

n .= ni -2.  

where ri, is the total number of windows of length w, m, is the number of points in window wi, z, is the 
residual on the trend, and z is the mean residual in window wi. The fractal dimension from this method 
can be obtained from D = 2 - #, where # is the slope of the log-log plot of the RMS(w) function versus 
the window length w.  

3.5 METHOD VERIFICATION 

FORTRAN computer programs based on these four methods were written for fractal dimension 
calculation. Fractional Brownian motion functions with known fractal dimensions were used to verify the 
validity of these programs. Generation of the fractional Brownian motion functions used the algorithm 
proposed by Saupe (1988). Five Hurst exponent H values ranging from 0.5 to 0.9 were chosen to 
generate the fractional Brownian motion functions that have fractal dimensions D from 1.1 to 1.5, where 
D=2 -H.  

Figure 3-1 shows the comparison of the H values calculated from the four programs with the 
actual H values used to generate the Brownian motion functions. There is difference among the 
predictions of fractal dimensions from the various methods. However, it can be concluded from the figure
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Figure 3-1. Comparison of Hurst exponents calculated using 
with the expected values

the four methods

that all four methods estimate reasonably well the H value of each Brownian motion function, although 
there is a slight overestimation for rougher Brownian motion functions (corresponding to smaller H 
values), and underestimation for smoother Brownian motion functions (corresponding to larger H values) 
recognizing that self-affinity is intrinsically difficult to measure on a finite sample. The fact that all four 
methods yield fairly good predictions gives the authors reasonable confidence in applying these methods 
to analyzing Barton's ten standard profiles.  

3.6 EVALUATION OF BARTON'S TEN PROFILES 

As discussed earlier, the JRC value is the most commonly used measure for representing joint 
roughness. The proposed ten profiles (Barton, 1973; ISRM, 1978) represent JRC values from 0 to 20.  
Each profile covers a range of two scales of JRC; for example, from 0 to 2. In this study, a unique value 
(middle value of a range) was assigned to each profile for practicality.  

The plot of the ten profiles contained in the ISRM (1978) publication was magnified using a 
photocopier to about 3 times the size of the original plot for ease of digitization. The enlarged profiles 
were then digitized individually to create ten data sets. The upper boundary of each curve was used as 
a basis for digitizing. Only local peaks and valleys were digitized to give coordinates with respect to a 
selected horizontal datum. Consequently, the data interval in each of the data sets was not constant. For 
most of the profile curves, more than 300 points (locations) were digitized. The same unit length was
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TYPICAL ROUGHNESS PROFILES for JRC range: 
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Figure 3-2. Roughness profiles and the corresponding range of JRC values 

used for both the horizontal and vertical axes. A FORTRAN program was developed to re-scale the data 
using the interpolating technique such that each data set has an equal data spacing and contains 512 data 
points. Equal spacing is necessary for using the spectral and variogram methods and the 512 value is the 
7th power of 2, which greatly simplifies the Fourier transform procedure used in the spectral method.  
Figure 3-2 shows the plot of the ten standard profiles regenerated using the final data sets. Comparison 
of the ten profile curves with the corresponding ones in the original ISRM (1978) publication shows a 
remarkable similarity and can be considered representative.  

Figure 3-3 shows the relation of the JRC values of the ten profiles and the corresponding fractal 
dimensions from the four methods. Contrary to common belief that a larger fractal dimension should 
correspond to a higher JRC value, Figure 3-3 shows that all four methods consistently predict a 
decreasing trend of the JRC values with increase in fractal dimension. Similar results were also reported 
by Sakellariou et al. (1991). They also used the spectral method to calculate the fractal dimensions of the 
ten profiles. Although the fractal dimensions reported by them do not show a distinct decreasing trend, 
they did report unusually high fractal dimensions for the first five profiles. Sakellariou et al. (1991) 
considered these relatively high values as erratic behavior and suggested that this behavior may be 
explained by the "quality of source material (smooth figures of a book) that causes mixing of noise in 
the signal in the raw data, a fact that cannot be overcome." While their postulation, in general, may be 
correct, it cannot explain the distinct and consistent trend of decreasing fractal dimension with increasing 
JRC value observed in Figure 3-3. Figure 3-3 also indicates that the fractal dimensions calculated from 
different methods are quite different, with the results from the spectral method differing the most. This 
is consistent with the result shown in Figure 3-1. The differences among the fractal dimensions calculated
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Figure 3-3. Relation of JRC and the corresponding fractal dimension calculated 
from four different methods 

from the variogram and divider methods for the ten profiles are relatively small compared to those from 
the RMS and spectral methods. Except for the first two and the fourth profiles (Figure 3-2), the fractal 
dimensions calculated using the spectral method were smaller than one, which is physically unrealistic.  
The reason for this phenomenon is currently not clear.  

The finding that a higher JRC value corresponds to a smaller fractal dimension suggests that 
the use of fractal dimension alone for the characterization of the ten profiles is not sufficient since, 
according to the conventional wisdom, a rougher surface should yield a larger fractal dimension. Also 
the fractal dimension only describes how the roughness varies with the scale of observation. It is the 
intercept, for example, the constant a in Eq. (3-4), or the crossover length that determines the steepness 
(or the total variability) of the topography (Power and Tullis, 1991). Consequently, both the fractal 
dimension and the intercept are needed to uniquely define a profile curve.  

Figures 3-4, 3-5, and 3-6 show the log-log plots of the fractal models for the ten profiles using 
the variogram, spectral, and RMS methods, respectively. The log-log plot of the fractal models using the 
divider method is not constructed since a different magnification factor was used for each of the ten 
profiles, which makes a meaningful direct comparison impossible. The crossover length of each profile 
was not calculated in this study since it lies outside the range in which the data were collected. The fact 
that the crossover length is outside the range could make the interpretation of the crossover length 
difficult and potentially problematic (Power and Tullis, 1991). However, even without this information, 
the plots of fractal models yield significant insight regarding evaluation of the ten profiles.
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Figure 3-4. Plot of fractal models for Barton's ten profiles from the variogram method 

As can be observed in Figures 3-4, 3-5, and 3-6, a profile with a higher JRC value, in general, 
tends to have a larger intercept; an indication that this profile is steeper in topography and consequently 
is rougher. This observation seems to suggest that the intercept of a fractal model may be an appropriate 
parameter in addition to the fractal dimension in characterizing the roughness of a profile surface. In 
essence, the intercept, to a certain extent, may be related to the local trend (long wavelengths) associated 
with a profile. This local trend was found to be the controlling parameter in shearing behavior of rock 
joints at laboratory scales by Jing et al. (1992) and Hsiung et al. (1994a). They defined this local trend 
as primary asperities. The fractal dimension, on the other hand, may be related to the higher order 
asperities of the profile that have only a secondary effect on the shearing behavior of rock joints. A 
further study in this area to relate the intercept and fractal dimension of a rock profile to friction 
properties of the profile that can be used to predict the shearing behavior of the rock joint is in progress.  

The fractal models generated using the variogram method (Figure 3-4) seem to provide more 
insight regarding the fractal characters of the ten profiles than those from the spectral and RMS methods 
(Figures 3-5 and 3-6). Although the ten profiles are, in general, in the right order in terms of roughness 
according to Figure 3-4, not all the proposed profiles are representative of the suggested roughness 
classes. For example, the fractal models for the profiles with JRC values in the ranges of 6-8 and 8-10 
are almost identical. The same is true of the two profiles with JRC of 14-16 and 16-18. Although there 
is a slight difference between the two profiles with JRC of 10-12 and 12-14, for practical purposes they 
may be judged to be the same. Consequently, the fractal analysis using the variogram method seems to 
suggest that the ten profiles may be reduced to seven; that is, for JRC range from 0-2, 2-4, 4-6, 6-10, 
10-14, 14-18, and 18-20. The fractal analyses using the spectral and RMS methods do not show such 
a clear trend. However, these analyses do suggest that the distinctions among the roughnesses for at least 
five profiles with JRC ranging from 6-16 are not clear cut.
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BARTON'S STANDARD PROFILE, SPECTRAL APPROACH 
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Figure 3-5. Plot of fractal models for Barton's ten profiles from the spectral method 

BARTON'S STANDARD PROFILES, RMS APPROACH 

0.40 , .---

0 
C6 

0

0.20 

0.10 

0.08 

0.06 

0.04 

0.02 

0.01
2 3 4 5 6 7 8 9 10 

WINDOW LENGTH, mm 

Figure 3-6. Plot of fractal models for Barton's ten profiles from the RMS method 

3-8



4 NEED FOR ALTERNATIVE APPROACH 

As a part of the overall approach to developing a rock joint model to predict joint behavior under cyclic 
loading conditions, a technique for joint roughness characterization that relates the fractal properties 
(fractal dimension and intercept) to the commonly used JRC concept is being studied. This approach 
offers some distinct advantages. As discussed earlier, the JRC concept is well accepted as a means for 
representating the surface roughness and the rock joint model developed by Barton and Choubey (1977) 
that utilizes this concept has demonstrated, on many occasions, its ability to adequately describe the 
unidirectional shear behavior of fresh rock joints (Barton and Bandis, 1982; Barton et al., 1985; Hsiung, 
et al., 1994b), provided representative JRC values are used. By establishing a relation between the joint 
fractal properties and the corresponding JRC value, this rock joint model can be used as a basis for our 
model development work, recognizing that a correct mechanism for joint reverse shearing behavior will 
have to be included. This approach will minimize the amount of effort necessary for the model 
development work.  

As discussed in Chapter 3, the study of the self-affine fractal properties of Barton's ten standard profiles 
has found that not all these profiles are representative of the suggested roughness classes. At least five 
profiles with the suggested JRC values ranging from 6-16 do not show distinct differences in their fractal 
properties (Figures 3-4, 3-5, and 3-6). This is not too surprising because the original intent of the ten 
profiles was to provide a quick estimation of joint roughness in the field. This estimation is done by 
approximating the JRC values of joint surfaces through visually matching these surface profiles with the 
ten standard ones so that a timely judgment can be made for solving pressing rock engineering problems.  
Therefore, it is understandable if these standard profiles are not rigorous. However, this observation does 
prevent establishing a valid systematic relationship between the fractal properties and JRC values of the 
ten profiles. This matter is further complicated by the fact that the four methods used for characterizing 
the fractal properties generate somewhat inconsistent results because each method tends to focus on a 
slightly different aspect of a fractal object. This difference can be substantiated by comparing the fractal 
models plotted in Figures 3-4, 3-5, and 3-6 for the profiles with JRC values ranging from 6-16. The 
fundamental differences among these methods for fractal characterization are not well-understood.  

Given the discussions provided earlier, it is considered that an alternate approach is necessary for relating 
the roughness of a joint surface with the associated fractal properties (fractal dimension and intercept).  
The authors are currently studying the feasibility of two possible approaches. The first approach, which 
is preferred, is to still use the JRC concept but to modify the standard profiles with JRC values between 
6-16 as appropriate. The second approach calls for reformulating the JRC concept. This would involve 
developing a new basis for correlating joint characteristics, in terms of fractal dimensions and intercepts, 
of approximately 30 Apache Leap tuff rock joint specimens tested at cyclic pseudostatic and dynamic 
shear conditions at the CNWRA with the corresponding experimental results on joint shear strength 
(Hsiung et al., 1994a). It appears that first approach will require less effort than the second. Furthermore, 
the cyclic pseudostatic and dynamic experimental results can be reserved for use for verifying the rock 
joint model if the first approach is used. The applicability of the rock joint model that may be developed 
by following the first approach will be limited to JRC values of 20 or less as in the case of the Barton
Bandis rock joint model (Barton et al., 1985). The average JRC value of each Apache Leap tuff joint 
surface tested to date has been less than 20 (i-siung et al., 1993), although the JRC value along an 
individual line of the joint surface may be larger than 20. The joint model developed using the second 
approach on the other hand will limit its application to a somewhat narrower JRC range, approximately 
7-20 (Hsiung et al., 1993), as compared to that based on the first approach. Expanding usage of this 
model outside the JRC range (7-20) will involve some uncertainty. Furthermore verification of this model 
can be problematic since most or all experimental results need to be used for model development.
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5 SUMMARY 

The ten standard profiles associated with the JRC concept were analyzed using the theory of fractal 
geometry. The divider, variogram, spectral, and RMS methods were evaluated. The results from all four 
methods show a consistent trend that a profile with a higher JRC value seems to have a smaller fractal 
dimension. Consequently, using fractal dimension alone may not be sufficient for characterizing the 
roughness of a rock joint for engineering purposes. The intercept of the fractal model of a profile is found 
to be representative of the primary asperities with long wavelengths (local trend) that are believed to 
control the actual shear behavior of rock joints at laboratory scales. To uniquely define a joint profile, 
both the fractal dimension and the intercept are needed. Even considering these two parameters, this study 
has shown that not all of the profiles are representative of the roughness classes that were proposed by 
Barton (1973). Therefore, it is not possible to establish a valid systematic relationship between the fractal 
properties and the JRC value of the ten profiles.  

An alternate approach is necessary for relating the roughness of a joint surface and its fractal properties.  
Two alternate approaches are currently under study. One is to modify the standard profile with JRC 
values between 6-16, as appropriate. The other is to develop a new basis for correlating the fractal 
dimension and intercept of a joint with its friction angle. The first approach offers certain advantages over 
the second. However, the applicability of the rock joint model that may be developed by following the 
first approach will be limited to JRC values of 20 or less, as in the case of the Barton-Bandis rock joint 
model (Barton et al., 1985)
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