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PREFACE

The series of manuals on techniques describes procedures for planning and executing specialized work in
water-resources investigations. The material is grouped under major subject headings called "Books" and
further subdivided into sections and chapters. Section A of Book 6 is on ground-water modeling.

The unit of publication, the chapter, is limited to a narrow field of subject matters. This format allows
flexibility in revision and publication as the need arises. Chapters 6A3, 6A4, and 6AS are on the use of a
particular transient finite-element numerical method for two-dimensional ground-water flow problems.
These Chapters (6A3, 6A4, and 6A5) correspond to reports prepared on the finite-element model given the
acronym MODFE and designated as parts 1, 2, and 3, respectively. Part 1 is on "model description and
user's manual," part 2 is on "derivation of finite-clement equations and comparisons with analytical
solutions,” and part 3 is on "design philosophy and programming details.” Parts 1 and 3 have been released
as Open-File Reports (see References, Torak (1992 a, b)) pending publication as Chapters 6A3 and 6A5
respectively.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.
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TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF

THE U.S. GEOLOGICAL SURVEY

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting
specialized work in water-resources investigations. The manuals published to date are listed below and may be
ordered by mail from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box
25425, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing

Office).

Prepayment is required. Remittance should be sent by check or money order payable to U.S. Geological
Survey. Prices are not included in the listing below as they are subject to change. Current prices can be
obtained by writing to the USGS address shown above. Prices include cost of domestic surface transportation.
For transmittal outside the U.S.A. (except to Canada and Mexico) a surcharge of 25 percent of the net bill should
be included to cover surface transportation. When ordering any of these publications, please give the title, book
number, chapter number, and “U.S. Geological Survey Techniques of Water-Resources Investigations.”
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S

A MODULAR FINITE-ELEMENT MODEL (MODFE) FOR AREAL AND
AXISYMMETRIC GROUND-WATER FLOW PROBLEMS,
PART 2: DERIVATION OF FINITE-ELEMENT EQUATIONS AND
COMPARISONS WITH ANALYTICAL SOLUTIONS

By Richard L. Cooley

ABSTRACT

MODFE, a modular finite-element model for simulating steady- or
unsteady-state, areal or axisymmetric flow of ground water in a hetero-
geneous anisotropic aquifer is documented in a three-part series of reports.
In this report, part 2, the finite-element equations are derived by minimiz-
ing a functional of the difference between the true and approximate hydrau-
lic head, which produces equations that are equivalent to those obtained by
either classical variational or Galerkin techniques. Spatial finite
elements are triangular with linear basis functions, and temporal finite
elements are one dimensional with linear basis functions. Physical
processes that can be represented by the model include (1) confined flow,
unconfined flow (using the Dupuit approximation), or a combination of both;
(2) leakage through either rigid or elastic confining units; (3) specified
recharge or discharge at points, along lines, or areally; (4) flow across
specified-flow, specified-head, or head-dependent boundaries; (5) decrease
of aquifer thickness to zero under extreme water-table decline and increase
of aquifer thickness from zero as the water table rises; and (6) head-
dependent fluxes from springs, drainage wells, leakage across riverbeds or
confining units combined with aquifer dewatering, and evapotranspiration.

The matrix equations produced by the finite-element method are solved
by the direct symmetric-Doolittle method or the iterative modified
incomplete-Cholesky conjugate-gradient method. The direct method can be
efficient for small- to medium-sized problems (less than about 500 nodes),
and the iterative method is generally more efficient for larger-sized
problems. Comparison of finite-element solutions with analytical solutions
for five example problems demonstrates that the finite-element model can
yield accurate solutions to ground-water flow problems.

INTRODUCTION

This report is the second part of a three-part series of reports (parts
1 and 3 are by Torak, 1992a and 1992b) that document the computer program
MODFE (modular finite-element model), which simulates steady- or unsteady-
state, areal or axisymmetric flow of ground water in a heterogeneous,
anisotropic aquifer. The model incorporates a variety of physical processes
necessary to simulate ground-water flow in the complicated settings that
often characterize actual field problems. Flow may be confined, unconfined
(using the Dupuit assumption), or a combination of both; known recharge and
discharge may be distributed areally, along lines such as specified-flow
boundaries, or at point sources and sinks such as pumping wells; and head-
dependent leakage may be distributed areally, such as through confining
units or wide riverbeds, or along lines such as narrow riverbeds. Confining
units may be rigid or may have elastic storage capacity. Special nonlinear,
head-dependent source and sink functions allow simulation of springs, drain-
age wells, rivers or confining units combined with aquifer dewatering, and
evapotranspiration.



The material in the three reports has evolved over the past 10 years
from material presented by the authors in the courses entitled "Finite-
Element Modeling of Ground-Water Flow" held at the U.S. Geological Survey
National Training Center in Denver, Colorado. These reports formalize the
course material and incorporate valuable suggestions and comments from
attendees of the courses.

Features that appear to be new, at least to published finite-element
programs for ground-water flow, include (1) the method of deriving the
finite-element equations from a functional of the difference between the
true and approximate solutions, (2) the method of approximating the vari-
ability of transmissivity over an element so that the coefficient matrix
does not have to be reassembled element by element each time the saturated
thickness changes, (3) the method of treating decreases of aquifer thickness
to zero under conditions of extreme water-table decline and increases of
aquifer thickness from zero as the water-table rises, (4) the finite-element
in time method for deriving (a) the finite-element equations for unconfined
flow and (b) the functions for nonlinear, head-dependent sources and sinks,
and (5) the method for incorporating transient leakage from confining units.

PURPOSE AND SCOPE

The purpose of this second part of the three-part series of reports is
to derive the finite-element equations for the physical processes contained
in the finite-element model. A knowledge of the physics of ground-water
flow, as explained by Bear (1979), for example, is assumed. The differen-
tial equations that describe the physics of the flow processes are stated
and the situations under which they apply are briefly explained, but the
equations are not derived here. Basic differential and integral calculus
and the symbolic representation of systems of equations using matrix algebra
are used extensively.

This report is organized as follows. First, the basic differential
equation and boundary conditions for unsteady-state flow in a confined
aquifer are stated and the finite-element equations for this system are
derived in Cartesian coordinates. Next, the finite-element equations are
extended to include unconfined or combined confined and unconfined flow;
decreases of aquifer thickness to zero and increases from zero; the non-
linear, head-dependent source and sink functions; and transient leakage from
confining units. Following this, finite-element equations are derived in
axisymmetric cylindrical coordinates and in steady-state form for either
areal or axisymmetric problems. Finally, two matrix solution procedures are
presented: a direct factorization method and an iterative, generalized
conjugate-gradient procedure combined with approximate factorization.

Symbols used are defined where they first appear and in a special
notation section at the end of the report. This should minimize confusion
over use of similar symbols in different contexts.
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FINITE-ELEMENT FORMULATION IN CARTESIAN COORDINATES

GOVERNING FLOW EQUATION AND BOUNDARY CONDITIONS

Ground-water flow in an aquifer where there are no discontinuities in
transmissivity is assumed to be governed by the two-dimensional, unsteady-
state flow equation (Bear, 1979, p. 103-116)

a_[T Qb‘+T @]+8[T 'ah-'l"l' ﬂ]

Ix|"xx 0% Xy dy 5; yx 9% yy 9y
+ R(H-h) + W + P = 53, (1)
where
(%,y) = Cartesian coordinate directions [length],
t = time [time],
h(x,y,t) = hydraulic head in the aquifer [length],
H(x,y,t) = hydraulic head at the distal side of a confining
unit [length],

Txx(x,y,t) Txy(x,y,t) - symmetric transmissivity tensor written in matrix
Tyx(x,y,t) Tyy(x,y,t) form [1ength2/time],

R(x,y,t) = hydraulic conductance (vertical hydraulic
conductivity divided by thickness) of a

confining unit [time-l],

S(x,y,t) = storage coefficient [0],

W(x,y,t) = unit areal recharge or discharge rate
[length/time] (positive for recharge), and

P
P(x,y,t) = j§16(x-aj]6[y-bj]Qj(t) = designation using Dirac

delta functions for p point sources or sinks,
each of strength Qj [length3/time] (positive

for injection) and located at x = a] and
y = bj. J

Equation (1) is subject to the following boundary and initial
conditions:

1. At a discontinuity in transmissivity within the aquifer, hydraulic head
and the component of flow normal to the discontinuity are unchanged as the
discontinuity is crossed (Bear, 1979, p. 100-102). Thus, at a discontinuity
in transmissivity between transmissivity zones a and b (figure 1),

h|, =h (2)
and |a Ib
qn!a = qnlb’ 3
where -Ia and e b indicate evaluation just within the a and b sides of the

discontinuity, respectively, and qn(x,y,t) is the normal component of flow

(specific discharge times aquifer thickness).



qplp=normal
component of
flow on a side
of boundary

b

q,lp=normal
component of
flow on b side
of boundary

gp=specified
boundary flow

X

Figure 1. A hypothetical aquifer that has a discontinuity in transmissivity
between zones a and b.

2. The normal component of flow across a boundary of the aquifer is given
by the sum of specified and head-dependent flow components (Bear, 1979,
p. 117-120). Thus, on this type of boundary
qQ, = 9 * a(HB-h), (4)
where
qg(%,y,t)

specified flow (specific discharge times aquifer thickness)
normal to the boundary [length?/time] (positive for
inflow),

a(x,y,t) = a parameter that approaches infinity for a specified-head
(Dirichlet) condition, is zero for a specified flow
(Neumann) condition, and is finite and positive for a
general or mixed (Cauchy) condition [length/time], and

specified head at the boundary [length].

Hp(x,y,t)

Note that although equation (4) is usually used to specify external boundary
conditions (see Bear, 1979, p. 116-123, for examples), it may also be used
to specify internal sources and sinks such as rivers (which are idealized as
lines) or springs (which are idealized as points).

3. The hydraulic head is known everywhere at the initial instant of time, or

h=H, (5)
where
Ho(x,y) = the initial head [length].

For convenience in subsequent discussions, specified flow (a = 0 in
equation (4)) and Cauchy (0 < a < @ in equation 4)) boundary conditions are
referred to as Cauchy-type boundary conditions, because the former is simply
a special case of the latter. Specified-head boundary conditions are
treated separately from Cauchy-type boundary conditions.



FINITE-ELEMENT DISCRETIZATION

The finite-element method is used to solve equations (1) through (5).
The basic concept underlying the finite-element method is that a complex
flow region or domain may be subdivided into a network of subregions or
elements, each having a simple shape (figure 2a). Each of these elements is
then assumed to be small enough that at any instant of time the true solu-
tion, h, of equations (1) through (5) may be approximated within the

A
element by a simple function, h. These local functions are continuous
across element boundaries to ensure that the approximate solution is
spatially continuous. Presumably, as each element is reduced in size and
the number of elements is increased, the approximate solution approaches the
true solution.

B)

HYDRAULIC HEAD

Figure 2. (a) Hypothetical aquifer of figure 1 subdivided into spatial
finite elements, and (b) variation of hydraulic head with time subdivided
into time elements.

The time domain of the true solution is similarly subdivided into
elements (figure 2b), each bounded by two points in time at which local
approximate functions are linked to form a piecewise continuous function of
time. First the spatial functions are developed, then the time functions
are superimposed.

In the present report, spatial element shapes are assumed to be

triangles (figure 2a) and head, h, is assumed to vary linearly within each
element. Element corners are called nodes. Because three points define a
plane, the three nodes of each triangular element are used to define the
linear function.

5



At any point within typical element e (figure 2a) having nodes k, 1,
and m, the approximate solution may be written as

A

h = A® + B®x + ¢, (6)

where constants Ae, Be, and ¢° can be found from the simultaneous equations

that must be satisfied at the nodes:

" e e e
hk =A  + B Xt c Yy
hy = A% + Bexl + Ceyl, (7)
h =A% + B%x_ + Cey ,
m m m

Solution of equations (7) for Ae, Be, and Ce, substitution of the results

into equation (6), and rearrangement yields the final equation (Segerlind,
1976, p. 28-30)

A A e A e A e
h =hN +hN + h N, (8)
where
h, = h[x.,y.,t], i=%,1l,m,
i i'’i
(9
NS = [a? + b%x + c?y]/er, i=k,1,m,
i i i i
and the Ni are called basis (or coordinate) functions. In equations (9),
€ = -
8 T *1Yn T 10
e
b =Yy - Y
e
Cp = X - Xq,
a® = -
17 "k " Xk’
e
bl = Ym T Y (10)
c® =x -x
1 %k m’
a® = - x
m - k1 17k’
e
by = Yk - Y1
=%, - x
m 1 k’
and
e
207 = [Xk - me[yl - me - [xm - Xl][ym - yk). (11)

If nodes k, 1, and m are numbered counter-clockwise around element e,

e . . e . .
then A~ is the area of element e. Otherwise, A~ is the negative of the
area. Following the counter-clockwise numbering convention is critical to
maintain the proper signs of quantities in the finite-element equations to

be developed.
6
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Figure 3. Finite-element discretization of time using basis functions o,
and o 41 (after Zienkiewicz, 1971, p. 337).

Useful properties of the N? are given by Wang and Anderson (1982,
p. 120) as:

1 N? is 1 at node i and 0 at the other two nodes.

2 N; varies linearly with distance along any side.

3. N? is 0 along the side opposite node i.

4, N? is 1/3 at the centroid of the triangular element.

Another easily verified, useful property is that NE + Ni + N; =1 at any
point (x,y) in element e.

An approximate solution over time is developed by using the same
finite-element concepts used to derive the approximate solution in space
(Zienkiewicz, 1971, p. 335-337). Finite elements in time are chosen to be
one-dimensional, and basis functions ¢ are chosen to be linear with a time
node at each end of each element (figure 2b). If times at two time nodes

are designated as t_ and t , and the length t - t_ of a time element is
n n+l n+l n

A

At (figure 3), then hydraulic head h can be written for each space node i

n+1

within each time element as

hi = hi,n %n + hi,n+1 Tn+1’ (12)
where the basis functions are given by
tl
g =1 - s
n Athn (13)
tl
(< = H]
n+l Atn+1
t’ = t-t_, and h, = h.[t ], r=n, n+ 1. The basis functions ¢_ and o
n i, il n nt+l

satisfy the first three properties listed for Ni previously, modified

accordingly for the one-dimensional nature of the time element.



Combination of equations (8) and (12) yields the final approximate

solution
h = E[h. g+ h i=%k,1l,m. (14) J,J
1{i,n 'n

Nodal hydraulic heads in equation (14) are calculated so that h approximates
the true solution, as described in the following section.

e
i,n+l an+1]Ni’

DERIVATION OF FINITE-ELEMENT EQUATIONS

Assume that there are N nodes in the flow domain, and that we wish to
solve for values of hydraulic head at all N nodes. The necessary equations
are generated by the approximate solution of equations (1) through (5),
which is commonly derived using either weighted residual methods (Zien-
kiewicz, 1971, chap. 3; Norrie and deVries, 1973, chaps. 2 and 5; Pinder and
Gray, 1977, chap. 3) or classical variational methods (Zienkiewicz, 1971,
chaps. 3, 15, and 16; Remson and others, 1971, chap. 7; Norrie and deVries,
1973, chaps. 3-6, 9, 10). In weighted residual methods, solution over space
is generally carried out separately from solution over time. To derive the
necessary equations, the approximate solution given by equation (8) is
substituted into equation (1) to form a residual, which is then multiplied
by each member of a set of N weighting functions and integrated over the
flow domain. The resulting set of N equations is then manipulated using the
boundary conditions (equations (2) and (4)) to yield a set of N ordinary
differential equations in time, which are usually solved with finite-
difference methods. A commonly used weighted residual method is the
Galerkin method, where the weighting functions are the basis functions

Ni’ each of which is the union of all elemental basis functions Ni. A l,J

Galerkin in time method was given by Zienkiewicz (1971, p. 335-336) as an
alternative to the finite-difference solution over time.

The classical variational method involves use of a variational princi-
ple, which is an integral that, when minimized over the flow domain, yields
equations (1) and (4). Because this variational principal is equivalent to
the flow problem, the approximate solution may be substituted into it, and
the integral may be minimized with respect to each nodal value of hydraulic
head to yield the required finite-element equations. Variational and
Galerkin finite-element methods applied to equations (1) through (5) yield
the same set of finite-element equations when the same approximate solution
(for example, equation (8)) is used.

Error-functional justification for the finite-element equations

Another method that is closely related to the classical variational
method is to fit the approximate solution to the true solution using an
A A
integral functional! of the error, e = h-h. In this author’s opinion,
derivation of the finite-element equations with this method is easier and
provides more direct insight into the nature of the solution in terms of its
error than the other methods.

-~ -~ ~

1a functional is a function of a function. The integral is a function of the error e = h-h, and e is U

~

regarded as a function of the values of h .

3

+1; hence, the integral is a functional.
n
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To be useful, the functional, termed I(e), must be defined such that

(1) I(e) = 0, with equality occurring only if e = 0, (2) the true solution,

h, can be eliminated from the final finite-element equations, and (3) I(e)
measures total (or integrated) error over the entire flow domain. The only
error functional that satisfies these requirements and produces the same
equations as produced by the Galerkin and classical variational methods is

oy = de de de| | 8e de de
I(e) = g { axLTxx ax t Txy ay] + ay[Tyx ox + Tyy ay]
0 e
+ ReZ + S[%%Wzt']dxdy + | ae? ac dt’, (15)
P Ce
2

where the sum over e indicates the sum over all elements, the double
integral over A® indicates integration over spatial element e, and the
contour integral over CS indicates integration over the side (if any) of

element e that is part of a boundary where a Cauchy-type boundary condition

applies. For equation (15) to be valid, the matrix of transmissivities must

be symmetric and positive definite, and R, S, and a must be greater than or

equal to zero. The requirement for the transmissivities guarantees that the
A

sum of terms involving transmissivities is positive (or zero if e = 0)

because this sum is a positive-definite quadratic form (see Hohn, 1964,

p. 336, 338). Note that for ground-water flow problems, all of these

requirements are satisfied.

The approximate solution is fitted to the true solution by minimizing
A
I(e) with respect to the approximate solution, which leads to an error
distribution in which the error at any point (x,y,t) is as small as possible
A A

as measured by I(e). Because functional I(e) includes terms involving the
error and its spatial and temporal derivatives, the minimization process
minimizes the combination of the error and its derivatives. Magnitudes of
Txx (etc.), R, S, and o indicate which types of terms are more heavily

weighted, and thus have more influence on the solution, for any given
problem. For example, if terms involving the error directly were heavily
weighted (that is, R and (or) a were large) compared to the other terms,
then the average (integrated) error should be small, but if terms involving
derivatives were heavily weighted, then the average error might be large if
large errors were required to make the average derivatives of the error
small. This latter situation could arise if space or time elements were too
large or were poorly configured.

Minimization of equation (15) is accomplished by taking its derivative

with respect to each value of hi i =1,2,++¢,N, and setting each result

,n+1’
to zero. Equation (15) does not also have to be minimized with respect to
9



A

hi 0 because an equation for time level n was created by minimizing equation
2
A

(15) with respect to hi ntl for the previous time element. For the initial

3
A

time element, hi 0 is the known initial condition so that equation (15) is
’

not minimized with respect to it. It can be readily verified that the
result of minimization is

a1 n+l ON: . an aN‘ie -
dh, - -2§. n+1 ax Txx ax t Txy ay + dy Tyx ax
i,n+l i
0 e
A
de e " e de
+ Tyy 3y + NiRe + Nisat dxdy

, (16)

where summation over e indicates summation over all elements sharing node
i, termed a patch of elements by Wang and Anderson (1982, p. 12) (figure 4),
Terms for all other elements over the flow domain drop out because h,

_ i, n+l
does not appear in the approximate solutions in these elements.

Element in
patch sharing
node i

Figure 4. A typical patch of elements sharing node 1i.

10



Equation (16) can be separated into two parts, one written in terms of

A

approximate solution h and the other written in terms of the true solution
N h. Thus,

At A e A A
n+]_ A oN;
el 8h _i dh déh
gi J “n+1 J ‘ [Ni[sat ) R[H_h] "W P] ¥ ox [Txx ax * TXy ay]
e

e _A .
oy + ol ooee

n|s&B - r@-h) - w - | + -—aN? R
i7at dx | 'xx 9% Xy 8y
e

e "o
I:i[qB + a(HB-h]]dC dt 0. (17)
2

Note that, to make each part of equation (17) complete, several terms were
added to one part of the equation and subtracted from the other part. In
appendix A the sum of the terms involving the true solution is shown to
equal zero, so that equation (17) becomes

C

At i A e A A
n+l A N

e|.8h _i dh dh

“~ éi J In+l J ] _Ni[sat ) R(H_h] "W P] * x [Txx ax * Txy 6y]
0 e
A

aNe A A N
i a_h._ ih_ R e - LA i = oee
+ E;_[Tyx 3% + Tyy ayj]dxdy J eNi[qB + a[HB h]]dc dt 0, i 1,2, ,N.
C

2

Equation (18) represents the required set of finite-element equations.
Performing the indicated integrations yields the final set of operational
equations. However, before the integrations can be accomplished, the
specific space and time dependencies of the various terms in the integrals
must be specified, and two desirable simplifications are made.

Integral approximations

The first simplification involves the integrals of Sdéh/dt, R(H-h), and

a(HB-h). These integrals do mot involve spatial derivatives of h and can be

shown to contribute positive terms to the diagonal and off-diagonal elements
of the final coefficient matrix for the approximate solution (Segerlind,
1976, p. 216). 1In contrast, the integrals involving spatial derivatives
contribute nonpositive off-diagonal terms and positive diagonal terms such
that the sum of absolute values of the off-diagonal terms equals the
diagonal term if all internal angles of the triangular elements are less
than or equal to 90° (Narasimhan and others, 1978, p. 866). When specified-
head boundary conditions are introduced, the coefficient matrix resulting

11
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from the spatial derivative terms is a type of M-matrix known as a Stieltjes
matrix (Varga, 1962, p. 85), which is ideal for the iterative matrix
solution technique introduced further on. In addition, a Stieltjes final
coefficient matrix can be shown to guarantee a nonoscillatory solution to
equation (18) when combined with proper restrictions in time-element size
(Briggs and Dixon, 1968). Addition of positive off-diagonal terms to the
matrix can destroy the Stieltjes matrix property, so that it is desirable to

replace the integrals of S8h/dt, R(H-h), and a(HB-h) with integrals that

contribute only positive diagonal terms. This replacement also simplifies
the resulting finite-element equations so that their solution requires less
computer time and storage than if the matrices resulting from the original
integrals were used.

In structural dynamics problems, replacement of the so-called
consistent mass matrix (the matrix resulting from an integral involving
second derivatives of time that is analogous to the integral of S3h/3t) with
a diagonal approximation of the mass matrix has been reported to yield
degraded results (Zienkiewicz, 1971, P. 326). Similar degraded solutions
were reported when a diagonal approximation was used for advection-dominated
advection-diffusion problems (Gresho and others, 1976). However, Narasimhan
and others (1978, p. 863-864) argue that a diagonal approximation enhances
the numerical performance when applied to the integral of Sdh/dt, and that
retaining the nondiagonal form can lead to numerical difficulties. In
addition, Wilson and others (1979) obtained good correspondence between
analytical and finite-element solutions of equation (1) for several
different test problems by using the same diagonal approximation, linear
basis functions, and triangular spatial elements as used here. The author
is aware of no study indicating degraded solutions when the diagonal
approximation is applied to equations (1) through (5) using triangular
spatial elements and linear basis functions, and the author's own numerical
experiments have not revealed any significant degradation either. Finally,
the author’s analysis indicates that the method used here yields consistent
mass balance over each patch of elements.

The method can be demonstrated for one integral, and results for the
other two are similar. The diagonal approximation is

e dh dh

éh - e 1
SNi 3t dxdy = SNi it dxdy. (19)

e Ae

The quadratic function Niah/at is replaced by the linear function N?dhi/dt,
which, for constant S over the element (which is adopted for the present

report), makes the approximation equivalent to the second-order correct
trapezoidal rule (McCracken and Dorn, 1964, p. 161-166).

Rotation of coordinate axes
The second simplification, which is not an approximation, involves
rotating the x and y coordinate axes locally, within each element, to axes

X and y that coincide with the principal directions of the transmissivity
tensor (figure 5) (Zienkiewicz and others, 1966). In the rotated coordinate

12
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y direction

<
<

Figure 5. Rotation from global (x,y) to local (i,&) coordinates in
element e having node numbers k, 1, and m.

system, the only nonzero components of the local transmissivity tensor are
the diagonal (principal) components, T-- and T--. Coordinates x and y are
obtained by using the rotation equatiomns ¥y

% = x cos 0° + y sin He,
- (20)

y = -x sin 8% + y cos 9%,

where 6° is the angle of rotation of the axes, measured counter-clockwise,
in element e (see figure 5). By replacing coordinates x_and y and the
original transmissivity tensor with rotated coordinates x and y and the
diagonal transmissivity tensor, equation (18) can be transformed to become

Athi1 o A o o
g, | Tnn Ni® @& - R[Hi_hiJ "W - P+ 5x Tixoex

0 ae

(21)
_e A ~
BNi shl .- .- e A3 _
+ 5§— T-- 5; dxdy - eNi[qB + a[HBi-hiJ]dC dt’' =0, 1 =1,2,¢¢s N,
UC2

where the bars over the variables indicate evaluation using x and y and
equations like equation (19) were used to modify the appropriate integrals.

Evaluation of spatial integrals

To reduce notational complexity, the space and time integrations in
equation (21) are performed in two separate steps. To perform the space
integrations, it is assumed that S, R, and W are constant in each spatial
element, and that Tii and T§§ are linearly variable in each element as given

by relationships analogous to equation (8). That is,
e -e e -e e ~e
Tax = Taiade * Txzaa™ ¥ Tiinm (22)
and
e gze e -e e e
T-- = T-~, N~ + T--.N;7 + T-- N_, 23
yy  Cyykk  Tyyl'l © Tyymm (23)



where Tzik’ etc., are values of transmissivity at nodes k, etc., in
element e. It is further assumed that qp and o are constant along any
Cauchy-type boundary side of each element. The integration is performed for

typical element e bounded by nodes k, 1, and m using the general formulas
(Segerlind, 1976, p. 45)

selP |xeld [gelr ;240 . _plglir! e
[ J[Nk] [Nl] [Nm] dxdy = (prqir+2)y1 28 (24)
Ae
and
€IP [7e]9 47 - —219!
I[Nk] [Nl] € = orqryt k1 (25)
1

where Lkl is the length of the element side between nodes k and 1. Thus, by
writing h using equation (8) and substituting the appropriate expressions
for ﬁ;, aﬁi/ai, and 3ﬁ§/8§, i =k,1,m, the spatial integrals in equation

(21) are evaluated for i = k (for example) as

dh dh,
€ o Kk ,-.- l.e,e __k
J J Np 8 g dRdy = 35°a° 5, (26)
Ae
e " -.- 1le.e 0,
J J R R[n by aies - a5, 27y
Ae
N Wdzdy = +u°a® (28)
k Y =3 ’
Ae
¥ paxdy - | R .3° 5['-"] 5[9-5:]Q.d§d§
k k j=1 3 )73
A® A®
. 3 Ne[ 5']Q - p® @9
=1 kU373 k’
=e A = e
3N Y
-k 9B 4zay = | |=%|T%-. ®® + TS §® + TS Re|°
J Jai Tix ox &I = J Jax [Txxk kT Txx1 Mt Tizm Nm]
A® A® '

iy



ane . aNe . aN® .
e | =K n +-—=Lh +=0nh |dzdy
x k ox 1 ax m
T¢.
XX|lser-e ~ere ~er-e
1 bbby + bbby + bbbl (30)
A
e A -
aN o
—k o8 o | [=K|re.. §® e. ¢, 1. ®l°
J Jay Tyy ay dxdy J [6y [Ty x Ny + Tyyl N1 + T Nm]
Ae Ae
ans . aNE A ane .
e |=Eh +=th +="n |dxdy
3y 'k dy 1 38y

e
T-- A A A
L -Yy|-e-e -e-e -e-e
iA° Sy + ckclh1 + ckcmhm , (31)

[ selos + olimei]et - 3@+ (i
C
2

* (Y km * [aL)km[HBk'ﬁk]]’ (32)

where Se, Re, and W® are the constant values of S, R, and W in element e;

e 1f..e e e .
Tz = 3[ sk F Tt Txxm] (33)
e 1[ e e e ]
T-- = ZJT--, + T--. + T-- |; (34)
yy 3Uyyk  “yyl = “yym
bS and ée, i = k,1,m, are defined by equations (10) and evaluated using X
i i
and y; P, is the number of point sources and sinks in element e; Ni[iﬁ,ﬁj]
is the basis function for node k evaluated at point [aj,bj]; and Lkland Lkm

are lengths of element sides between nodes k and 1 and between nodes k and
m, respectively, on a Cauchy-type boundary. If a side is not on a Cauchy-
type boundary, then L for that side is set to zero.
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The term Pi represents the total amount of pumping that is allocated to

node k in element e. If a well is located at node k (where éj = %, and

k

Bj = ﬁk so that ﬁi[&j,ﬁj] = 1), then the pumping rate Qj can be allocated to

one element so that when summed over all elements in the patch, the total
rate is still Q.. For other points in element e, the rate allocated to node

k is less than the total rate Qj because ﬁi[éj,ﬁj] < 1 for éj # ik and (or)
Bj # &k. However, parts of Qj are also allocated to the other two nodes of
the element so that, because ﬁi + Ni + ﬁ: = 1, the sum of the rates
allocated to the three nodes is Qj’ as required.

By using equations (26) through (34), the spatial integrals for element
e in equation (21) can be written as

dh n 13 ) b -
-e k k dh k dh| .- .-
e

A

A

dh A A A
e k e e e e 1le,e _l.ee
= %kk ac [gkk + ka]hk teby t By RAH - 3WAT - By

8O =

[[qBL] ke * (8L km] - %[["‘L) S km} Hpye» (35)

where
e _l.e,e
cpp = 35 4%, (36)
v& = Lgepe L Lican) 4 (el (37)
kk = 3 2[]k1 (]km
e _ TE- 5858 + T-- ceze (38)
B = X Py T Gy
4A® 4p®

16



e TS. -ece TS. -e-e

gkl = _XX bk 1 + ¥y ckcl’ (39)
4A°® N
e e

g, = Lxx 6SBS + I3y &%cd (40)
40® 4n°

A small alteration in the integral formulations given by equations (30)
and (31) is useful for computations and in developments further on. Because

-e -e -e
Nk + N1 + Nm = 1, the terms
=€ =€ =€{ A
o A |
0% ax ox )
and r e -e _ew
A%+ M s Myln
3y ay 3y J
are both equal to zero and can be added into the terms
=€ A =€ A =€ A
Men, + Ming + Mpn
ax ax ax
and e e e
Pem + 21 + Tany
ay ay ay

in equations (30) and (31), respectively. The resulting modifications of
equations (30) and (31) are

aﬁe " e [ A A A A A
_k dh .-.- T:-|-e-e -e-e
J Jai Tix ax 9xdy = =xx|by 1[h1' hk] + byl m[hm' hk] (41)
e 4n°
A L .
and
aﬁi aﬁ Te i A A A A i
'k gh .-.- _T:-i-e-e ) -e-e }
J Ja§ T§§ ay dxdy _yg ckcl[h1 hk] + ckcm[hm hk] , (42)
A\ 407 | i

which indicates that e

e__e_
Bk = "Bkl T Bkm-

The revised formulation, which was used by Narasimhan and others (1978,

(43)

p. 875), saves both computer time and storage requirements because gik never

need be explicitly computed using equation (38). An added advantage over
the original formulation is that equations (41) and 42) generate less round-
off error than equations (30) and (31) when solving the simultaneous systems
of equations developed further on.
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Substitution of equation (35) into equation (21) written for node k
yields

At "
s o e e + g8 +v8 |h, + g8k, + g2 h - 1r®A%H - luSa® - p°
g | o+l %k ac Brr ¥ Vik)Pk t BaPy t Brglp - R A - 3 k
0
1 L + L 21 al. + [al H,, pdt’ =0 (44)
2 [qB ]kl [qB ]km 2 ( ]kl [ ]km Bk ‘

Equation (44) must apply to all N nodes of the finite-element mesh. These N
equations can be written in matrix form as

At 41 | dn . At an .
o +1 ca—t-+[g+\=7]t_1-]§dt'= Ontl C—-+éh-l_3dt = 0, (45)
0 0

where

(b

-G +U, (46)
and doubly underscored letters indicate matrices and singly underscored
letters indicate vectors. Entries of the matrices and vectors are defined
as follows:

% S, 1=
¢, =4°1 H , (47)

I 1o A

e

2 v.., 1 =]
v,, =4 13 , (48)

Qo S

e
ij = gigij’ 49
l e.e 1l.e 1 L

B, = §1[3R ATH, + 3w N P + 2§ (qBIJ 15" ? (aL)lJ, Bl] (50)

where the sum over j' indicates the sum over the two nodes that are adjacent
to node i in an element.

Specified-head boundaries were not considered in the preceding
development. If node k was designated as a specified-head node, then
equation (44) would be replaced by

Atn+l A
O el hk - HBk dt’ = 0, (51)
0

and this equation would replace equation k in matrix equation (45). Note
that setting hk equal to HBk is formally equivalent to letting a -+ = at node

k in equation (44).
18
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Example of equation assembly

A simple finite-element mesh shown in figure 6 is used to demonstrate
how the terms of equation (45) are assembled. Matrices C and A, and vector
B, are assembled separately, then these are used to obtain the final system
of equations.

Assembly is based on the patch of elements concept, where contributions
to any equation i (that is, row i of C, A, or B) come from all elements
sharing node i. By using this concept, C can be assembled to yield:

(Note: 1In the following equations all zero entries are left blank.)

1 2 3 4 5
1| sstal
2 (salis2a?)
c=3 %{81A1+82A2+S3A3] ;
4 |- %[52A2+S3A3]
1.3.3
5 ] 3S A ]
1
4
2 g4,=0
q, = flow normal to an element boundary
qg = specified flow normal to an element boundary
o= proportionality parameter for a Cauchy-type boundary condition
Hp = specified head at a boundary '
h = hydraulic head
Q; = volumetric recharge from a well at node 4

Figure 6. Example of three elements and five nodes for demonstrating
assembly of finite-element equations.
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Matrix A can be thought of as the sum of three matrices, a matrix composed

of the gij (i #£ j) terms, a matrix composed of the %ReAe terms, and a matrix l,)
composed of the %[alJij’ terms. These matrices are defined as G, R, and a,

respectively, where, from equations (37) and (48), R+ a=V. For the mesh
shown in figure 6,

1 2 3 4 5
- (11 1 1
L '[g12+g13] 812 813 ]
1 1.1 1.2 2
2 851 '[g21+523 83%823 8o4,
2 2
+g23+524]
1 1.2 1.1 .2 2 .3 3
g=3 E31 832%832 '[531+g32+g32 B34%834 E35 '
2 .3 3
+g34+g34+g35]
2 2 .3 ) 3
4 842 8,3%843 ’[g42+g43 845
3.3 l_)
+g43+g45]
3 3 3.3
°| 853 &5 ‘[g53+g54]_
1 2 3 4 5

i ]
1| elal
2 %[R1A1+R2A2]

R = 3 %[R1A1+R2A2+R3A3] ,

4 %[R2A2+R3A3]
5 R

20



and

’_I
N =
F——

a1]13 :

1R
1]
W

N [

[ 31+ (21 35)
_ [+2)s5

v
N =

A

Finally, the B vector, which contains all terms that do not multiply h

dh/dt, is
111 1 1
1 R7ATH, + W A + 2[ ] [qB ]13 + z[aL]13HB1
1(,1,1 2,2 (1,1 2,2 1
2 3[RA +RA]H2 3[WA +WA] +2[qBL]21

2,2 3 1(.,1,1 2,2 3

1(,1,1 3 1 3 1
B=3 3[RA + R°A +RA]H3+3[WA +WA+WA]+2[[qBL]31+[qBL]35]

+ 3@ 51 * (atss) |Has

4 %[RzAZ + R3A3] + 1[w2A2 + W3A3] + Ql

w

3 2

1.3,3 1 1
5| SR%A° + WA +[ ] + [aL]53HB5

A A

and vectors dh/dt and h are

1 —dﬁl/dt— 1 -gl-

2 dﬁz/dt 2 ﬁz
EE =3 dﬁB/dt and g = 3 £3 .
dt

4 dﬁa/dt 4 ﬁ&

5 -dﬁs/dt- 5 _QS_
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The final set of equations corresponding to equation (45) can be written

A n+l dh A A A
Tl C11 — 1+ Allhl + A12h2 + A13h3 - B1 dt’ =0
0]

At
n+l dh
o 02 dtZ + A21h + A22h + A23h3 + A24h - B2 dt’ =0
0

n+l ac 31 2 33 35

At

n+l dh

o 33 3+ A h + A h + A h + A h + A h - B3 dt' =0
0

At
n+l dh
"n+1caad4+A42h2+A43h +A h4+A h -Bth'=0

0

At A
n+l dh A A A
I+l 055 dt5 + A53h3 + A54h4 + A55h5 - B5 dt' =0
0

where terms involving zero coefficients were omitted and an entry A,. is

A =Gy +R.. +a... tJ
ij ij ij ij

There are no specified-head nodes in figure 6. If node 2 (for example)
is designated as a specified-head node, then the second equation above is

Atn+1 A

replaced by J Un+1[h2 - HBz]dt‘ = 0 and h2 is replaced by HB2 in the
0

remaining equations, i = 1,3,4, and 5, so that the terms AiZHBZ are regarded

as knowns. To accomplish this, (1) all entries in row 2 and column 2 of
matrices G, C, R, and g are set to zero except for entry (2,2) in matrix g,
s

which is set to unity, (2) row 2 in B is set to HBZ’ and (3) all other rows
i=1,3,4, and 5 in B have AiZHBZ subtracted from them.
Evaluation of time integral

Time integration of equation (45) is performed using a formula that is
analogous to equation (25):

et p q _plq!
L
(anJ [an+1) dc (p+q+1)! At n+l"’ (52)
0
The simplest solution of equation (45) is obtained when coefficient matrices LVJ
C and A and known vector B are constant in time. In this case, term by term /

integration of equation (45) yields
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At 1 a ATl a do_ do_,,
Cig —% op419t" = Cyy [hi,n ac t PRy o Tae ] on+19E’
ac
0 0
~ i [n - h (53)
2741 i,n+l i,n)’

Atn+l A Atn+l A A
Aij jan+ldt' = Aij [hi,nan + hi,n+lan+1] an+1dt

0 0
1" iy
= At Aij[6hi,n + 3hi,n+l]’ (54)

Atn+1 Atn+l 1

Bian+1dt' = Bi an+1dt' = §Atn+1Bi. (55)
0 0

Therefore, equation (45) is evaluated as

clo -n)+ae . afth + 2 - At_ B (56)
=|-n+l -n n+l =(3-n 3-n+l n+l--

Solution of equation (56) produces round-off errors, which can be
reduced by solving for a change in head between time levels rather than for

A

the actual head values, h By defining é§ as 2/3 of the total head

i,ntl"

change between two time levels and substituting this into equation (56), a
convenient equation for solution results. Thus, by defining

2 A A
8 = & - 1) 7
h - %§ + bn and equation (56) can be written in the form
¢ A -
A + A|§ = B - Ah_. (58)
(2/3)Atn+1 =| - - =-n

Further reduction of round-off error is obtained by writing the diagonal
A
terms of G using equation (43) so that gbn can be written in terms of head

differences of the form of equations (41) and (42).

Equations (57) and (58) are used to solve for head vectors bn+l at all
time levels successively, starting with n = 0 at which hO is the known

initial condition. First, equation (58) is solved for 6 using one of the
matrix solution routines discussed further on, and second, equation (57) is
A A

solved for h

, which becomes h_ for the next time level.
-n+l -n
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The finite-element in time method given by equation (56) is equivalent
to the weighted finite-difference in time method,

g[bn+l ) bn] + Atn+1 é[(1-0)1:1n + 0bn+l] - Atn+11-3’ (59)

with weighting factor # equal to 2/3. The weighted finite-difference in
time method is unconditionally stable for #21/2 (Smith, 1965, p. 23-24), but
Briggs and Dixon’s (1968) criterion shows that use of #<l can cause
oscillatory solutions if Atn+1 is too large. Bettencourt and others (1981)

reported very good accuracy and only slight oscillations in a solution
obtained with the finite-element in time method (§ = 2/3). 1In contrast,
their solution to the same problem obtained with the well-known Crank-
Nicolson method (# = 1/2) (Crank and Nicolson, 1947) exhibited large
oscillations with little, if any, improvement in overall accuracy over the
finite-element in time method. Numerical experiments conducted by the
author also show that solutions are accurate and exhibit minimal oscillatory
behavior if the sizes of time elements are not too large (which is problem
dependent) .

Time variability of B results if source-bed heads H, specified heads
HB’ areal recharge W, or specified boundary flux dg change with time. A

simple method of approximating this time dependence in the finite-element
equations is to assume linear time variability during each time element so
that during time-element n+l
Bi - Bi,nan + Bi,n+lan+l' (60) l,J

Thus, equation (55) is replaced with

Atht1 A+l
LA I
Bian+1dt (Bi,non + Bi,n+lan+1)an+ldt

0 0
1 1 5
- 6Atn+l( * 2Bi,n+l] 22th+1B1 (61)
where Bi is a weighted average value of B, over timespan At ., defined by
5 1
By = 3[Bi,n * 2Bi,n+1]' (62)

Hence, time dependence of known heads and fluxes may be incorporated into
equation (58) by replacing B with B.

Time variability of C, A, and B also results from processes such as
unconfined flow, conversions from confined to unconfined flow (and vice
versa), nonlinearlty of stream-aquifer interactions, and discharges from
springs, drains, or evapotranspiration. These types of time wvariabilities
are treated in the sections covering these topics.

Mass-balance calculation

A mass balance based on equation (56) is needed to allow hydrologic L,L
budget analysis of the model and to assess the accuracy of the matrix
solution methods discussed further on. Total quantities of water moved
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during the timespan Atn+1

product of weighted average discharges and Atn+1'

the mass-balance equations are formulated in terms of weighted average
discharges and weighted average head, defined as

- l/\ gA

b=ghy 5 (63)
By employing equations (56), (62), and (63), along with the definitions of
the quantities in these equations, the system of nodal mass-balance
equations is written as

are computed according to equation (61) as the

To compute these totals,

1. -e.ef: - 1. e.ef- - 1. -e,e -e
28 58 [hi - hi,n] "3z RA [Hi - hi]Atn+1 T 3E A B & i
N
e - - - Ee -
] Eigij[ 5 hl]At +1 ~ Wilttnn 22,[[‘131‘] 1§
i#j
+ [aL]ij,[HBi - hi]]Atn+l =0, i=1,2,e0¢,N, (64)

where QBi = 0 unless node i is a specified-head node, in which case QBi is

the volumetric discharge across the node (positive for inflow) obtained by
direct solution of equation (64) for QBi' Bars over quantities in equation

(64) indicate weighted averages over time.

To obtain the total mass balance over the flow domain, equation (64) is
summed over i. When this is done, it can be seen that

NN
i#1 321 & B [hj - hi] =0
4]

e e
because gij = g..

so that g?.[ﬁ. - ﬁ.] + g?.[ﬁ. - ﬁ.] = 0. Thus, the
ji ij i i k|

J Ji

components that should sum to give nearly zero are:

N
Total depletion or accretion of water in storage = % z

i

N
.. . 1 e.eln -
Total leakage across confining units = 3 i§1 ZRA [ § " hi]Atn+1'

Total areal recharge or discharge = %



N P
Total water pumped into or out of wells = El giPiAtn+l = j§1QjAtn+l.

Total water crossing specified-head boundaries = iél QBiAtn+1'

Total water crossing Cauchy-type boundaries

™M=

l - - -
=2 % ?'[[qBL]ij' + (aL]ij'[HBi - hi}]Atn+l'

Average volumetric flow rates in time element n+l can be obtained by
dividing the components by Atn+l' and running totals over time can be
obtained by summing the components over all preceding time elements. The
mass imbalance in time element n+l is obtained by summing the components,
and a running mass imbalance is obtained by summing mass imbalances over all
preceding time elements.

EXTENSIONS OF THE BASIC EQUATIONS

Unconfined flow

When equation (1) is applied to areal flow in an unconfined aquifer by
using the Dupuit approximation (Bear, 1979, p. 111-114), transmissivities
are functions of the current saturated thickness of the aquifer, as follows:

=TKThK? AL (65)

where b is the saturated thickness h - z, of the aquifer, h is the elevation

of the water table above some datum, zy is the elevation of the aquifer

bottom referred to the same datum, and subscripts x and y were omitted from
T and K for simplicity. Because b is head dependent and varies in time,
equation (1) is nonlinear, with transmissivities that are head dependent and
vary in time.

Time variance of the transmissivities can be handled in the same manner
as time variance of Bi' That is, the Gij coefficients, which contain the

transmissivities, can be written for time element n+l as

635 = C15,0% * Cij,n+1%n41" (66)

so that, by using the relationship A;. = G,. + V.., equation (54) is
A ij ij ij
replaced with

Atn"l"l/\
Aij hj an+1dt
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At
n+l A A
= J [Gij,non * Gij,n+lan+1 + Vij][hj,nan + hj,n+lan+1]an+1dt
0

1_ A
= 1726041 (S50 * S15,001 ¥ 2V13)P5 00
1_ A
+ 128041 (G5 ,n * 355,001 * Vig)Py 01 (67)

For an aquifer that remains unconfined (that is, h never exceeds the
elevation of the base of an overlying confining bed) throughout the
simulation period, matrix C is modified by replacing the storage

coefficient, S%, in each element by specific yield, S;. Therefore, C is

constant in time. Conversions from confined to unconfined flow (and vice
versa) and their effect on C is discussed in a later section.

Use of equation (67) in place of equation (54) modifies equation (56) to

A A l A
g[bn+1 - an + 6Atn+1[gn + 32n+l + az]hn+l

~

1 _ _
* 6%t [En *Ghn t 2‘=’]h = Atpn® (68)

where equation (61) was used for B. Equation (68) can be written in a form
analogous to equation (58) by using equation (57) and weighted average
values of Gij’ defined as

o 1[ ] ‘
.. =5]|G.. + 3G, . (69)
and ij 4171ij,n ij,n+l
é.. -+lc + 2G ‘ (70)
i 3U7ij,n ij,n+l)"
Thus,
c » ] »
W S +§+Ys=f3-[§+\_7]13. (71)
(2/3)Atn+1 = =|- - = =J-n
Define the terms
e Kﬁi -e-e RS -e-e
a®, = EE %% 4+ L %l i £ 5. (72)
ij 4a® 13 4ap® 177
Then an off-diagonal element of G is given by
c.. =% [ |a®., 1 #j (73)
ij e, 3s7s| i’ ’
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where bS is the aquifer thickness at node s = k,1,m, and %gbs is the average

aquifer thickness in element e, assuming that thickness wvaries linearly over
the element. Computation of Gij using equation (73) requires reassembling

Gij element by element each time thickness bs is changed. An approximation

that Cooley (1971) found to be good for a subdomain finite-element solution
of axisymmetric, variably saturated flow problems avoids this reassembly.
The approximation is to evaluate the head-dependent coefficient in Gij using

the head half-way between nodes i and j. For the present problem, this

approximation is equivalent to replacing %Eb in equation (73) with the

average thickness between nodes i and j. Thus, the approximation is

1 e _ 1
Gij = Z[bi + bj]éidij = 2[bi + bj]Dij’ (74)
where

- % d°
e

c s 75
et (75)

D..
1]

Because aquifer thickness is dependent upon head, a means of predicting
this thickness at an advanced time level, nt+l, is needed prior to solving
equation (71). A simple and effective method is the predictor-corrector
technique described by Douglas and Jones (1963). 1In the predictor step of
this two-step process, the previously calculated thicknesses are used in G
to form an equation of the same form as equation (58). This equation is
then solved for the head changes over the time element, and heads at the
advanced time level are predicted based on equation (57). Aquifer
thicknesses are then updated using the predicted head changes, and these
updated thicknesses are used to form G and G. These matrices are used in
equation (71) to solve for the head changes over the time element, which is
the corrector step.

The predictor step is expressed by the following equations. Based on
equation (58},

C A
= * -
[(2/3)Atn+1 tE Z}‘? =B - {En + X]bn (76)

*
where § 1is the predicted head-change vector and

1 . .
Gij,n = Z[bi,n + bj,n]Dij’ i#£73. (77)

The thickness bi a is
(78)

and bj a is defined similarly. From equation (57), the predicted head

*
vector, h_, at time level t is
-n n+l
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A* ; * A
h™ =36 +h. (79)

A
*
The corrector step uses heads h to form the following corrector
equations. Based on equation (71)

g - L (s R
@/3ae_ * & *IE=B - [Si + X]hn. (80)
n+

o % ~ -
where G and G are the approximations of G and G, defined, using equations

(69), (70), (74), and (79), as

-2 [5’;+ 8§+%b. + b, n]]nij, 143, (81)

and

L+ bj,n]Dij, i3, (82)

~% *
In practice, to reduce round-off error {g/[(Z/B)Atn+l] +G + Z}S is

subtracted from both sides of equation (80) to create a residual form of the
equation so that § - §* is actually solved for. Head change § is then
directly computed as § = [§ - §*] + §*. The head at the end of the time
element is calculated using equation (57).

Mass-balance calculations could be based on equation (80). However,

more information about the accuracy of the predictor-corrector scheme can be
obtained by computing mass-balance components from an equation derived from
A

equation (71) in which g and g are computed using bn+1’ which is
g (= X A
7Tl | Rl (R -
g - _ (< s _
- 2/3ac_, & + [E + X]b + [E - §]§ - B
=0, (83)
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where, by employing equations (57), (69), (70), and (74), it can be verified
that

s e L
Gij - Gij = 16[61 + Sj]Dij' (84)

Equation (83) becomes equation (64) when G is not time variant.

- M
Because and G are computed using bn+l instead of h , § is only the

fen

approximate solution of equation (83). If the time element Atn+l is too
large, then the approximate solution will be poor, and this will result in a
large mass imbalance as computed using equation (83). 1In this case, the
time-element size should be reduced.

The algorithm used to implement the predictor-corrector method is
summarized by the following steps.

A

* %
1. Predictor: Solve equation (76) for 6 , and solve equation (79) for h .

% - % * »
Then compute a predicted average head vector h using h =§ + bn’

~% -%
2. Compute elements of G and G using equations (8l) and (82).

*
3. Corrector: Solve the residual form of equation (80) for § - § , and

i, " * %
compute the average head h using h = § - § + h , which is obtained by

- % * ~ - ~ * ¥
combining h = § + bn and h = § + bn' Compute § = [6 -6 ] + 5

4. Compute the weighted average mass-balance components using equation (83).
5. Update the aquifer thickness for the next time element using

3
Phtl = 28+ by (85)

which is obtained by using the definition of b and equation (57).

6. Compute bn+1 using

A _]; -
h . =38 +h, (86)
which is derived by combining equations (57) and (63).

7. Advance the time-element index, n, define a new At
unless the simulation time limit has been reached.

ntl’ and return to 1,

Drying and resaturation of nodes

If the water table declines to the base of the aquifer at a node during
a simulation, then the node is said to "go dry" (figure 7). Although the
aquifer thickness at the node is zero, horizontal flow to or from adjacent
saturated nodes can still exist by virtue of equation (74). Thus, the node
should remain active and hydraulic head at the node should still be
calculated. An approximate method of simulating this process is to solve
the finite-element equation (equation (71)) using zero aquifer thickness at
dry nodes. Because the storage term Cii is not altered when a node goes
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S

dry, this use of equation (71) assumes (1) that water is released from or
taken into storage in the aquifer where the saturated thickness is greater
than zero and in the material underlying the aquifer where the saturated
thickness is zero, (2) that the specific yield of the aquifer and underlying
materials is the same, and (3) that both of these sources of water
contribute to horizontal flow in the aquifer. If the material underlying
the aquifer is explicitly incorporated into the simulation as a confining
unit (R > 0), then this unit serves to vertically convey water to or from
the aquifer in addition to releasing or taking on stored water at dry nodes.
Because dry nodes are active nodes in the flow system, solution of equation
(71) can produce heads that decline below the aquifer base so that the water
table can move laterally away from the dry nodes (figure 7). 1In this case,
the computed heads at the dry nodes can be thought of as effective heads
that allow approximation of horizontal flow in the aquifer near the dry
nodes. If all nodes j adjacent to a dry node i also are dry, then, from
equation (74), all Gij = 0, and horizontal flow in the aquifer near the dry

node ceases. Water table decline at the dry node will also cease unless the
A
underlying unit is a confining unit (R > 0) and hi > Hi’ or the node is on a

Cauchy-type boundary (e>0) and hi > H or known sources and sinks in Bi

Bi’
are negative, which is treated below.

If a pumping well (or other specified sink) is located at a node that

goes dry, then the net discharge at the node is too large for the aquifer to
sustain. This incompatibility must be rectified by the investigator.

m,n

>

mn+1

/ﬁ. (i=k,m ; r=n,n+1)=computed hydraulic head at node i
and time level r

b; . (i=klm ; r=n,n+1)=saturated thickness at node i and
’ time level r

Y  Water table

Figure 7. Node k in element e drying up as the water table declines during
simulation.
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However, to allow the simulation to continue, and to suggest how much
discharge the model can supply, the following automatic procedure is
followed. 1If the net specified flux is negative at a node that is predicted
to go dry at the end of a predictor step, then the net flux at the node is
permanently cut in half beginning with the corrector step. Discharge can
continue to be reduced by a factor of two on subsequent time elements if the
node continues to go dry. If this procedure is insufficient to maintain a
positive saturated thickness, the head at the node may drop below the
aquifer base, and the dry node may at least temporarily supply water to the
sink, which is physically unrealistic. However, the results of this
procedure should indicate to the investigator how the model input could be
changed to yield a physically compatible situation.

Combined confined and unconfined flow

Equation (1) can be applied to a problem where there is confined flow
in some areas of the aquifer and unconfined flow in other areas. 1In this
case, conversion can take place from one type of flow to another at any time
or place in the aquifer (figure 8). Where flow is confined, the storage
coefficient in equation (1) is the artesian storage coefficient, S, and
transmissivity is constant in time. Where flow is unconfined, the storage
coefficient is the specific yield, S_, and transmissivity is time variant,
as given by equation (65). y

If flow at node i converts from confined to unconfined, or vice versa,
during time-element n+l, the time interval Atn+1 is divided into two

subintervals, GiAt and (l-ﬁi)At where Gi is the unknown proportionate

n+l n+l’

point in the time interval when node i converts. The storage-change term
analogous to equation (53) is then approximated as the sum of the two
storage-change terms resulting from treating the two subintervals as
subelements, each having its own basis functions and approximate function
for hydraulic head. Thus, for the subinterval 0iAtn

+1
Lo (1) (1)

where hi B hi,nan t 219 o (87)

(1) _ Tn+l
o =l T (88)

1

g
021) = ?+1’ (89)
i

and Z s is the elevation of the top of the aquifer and equals the head at

node i at time t_ + 4.At For the subinterval [l-ﬁ.]At ,
n i~ i n+l

+1°
c 2y, 7 (2)
hy =z 40 7+ by 17041 (90)
where o
(2) _'n
o§? = 72, (91)
1
2) _,  ’n
ol T 1T 104 (92)
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Land surface

Aquifer

Confined Unconfined 1 Unconfined Confined

Aquifer base

v Locates potentiometric surface in the confined part of the aquifer and
water-table position in the unconfined part

Figure 8. Cross section showing conversion from confined to unconfined flow
at time t near a well pumped at volumetric rate Q.

By using equations (87) through (92), the integrals involving the storage term
Cii (see equation (53)) for both subintervals are formed and evaluated as

eiAtn+1 dﬁ (1) (1) GiAtn+1 A do(l) daél) (1)
C.. io dt’' = GC., h. +z, . . |o dc’
ii— "¢ ii i,n dt ti dt 7
dt
0 0
_ 1 (L) _ -
=3 Si1 [Zti hi,n] (93)
and
Atn+l " Atn+1 da(z) A da(z)
o dh @y, _ o(2) el E Vil (2) 4
ii = "n+l ii ti dt i,n+l dt n+l
8.4t de 8.4t
i~ n+l i" n+l
_1 (D f(s 3
=2 i [hi,n+1 zti]’ (9%

(2)

where C§§) is the storage term before conversion, and Cii is the storage

term after conversion.
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The required finite-element equation for node i and time-element n+l is
obtained by summing the equations for the two subintervals, so that the
storage-change term is the sum of equations (93) and (94). This sum is one- l,J
half the total change in water stored during time element n+l (Prickett and
Lonnquist, 1971, p. 40-41; Trescott and others, 1976, p. 10-11; and Wilson
and others, 1979, p. 52). It is instructive to note that this sum can be

written as A
1.(1) 1.(2)
2011 [ ei * By n] 2011 [h ,n+l zti]

i
= L.(D) o 1.(2) h . 1.(2) o
= 2031 [ ei T Py nJ + 9% [hl n+l h',n] 2%i1 [ ti hi,n]

_1 (2) (1) } (2) } -
h 2[ [ ii i1 ] i][hi,n+1 hi,n]’ 4>
where z .-h.
A ti 1,n
Bi e T (96)
by n1Pin

A
Therefore, if head is assumed to vary linearly within time-element n+l, 4.
is an estimate of 0i and the term in brackets defines an effective storage
coefficient for time element n+l.

By making use of equations (95) and (96) and approximating the sum of
terms of the form of equation (67) for the two subintervals by the analogous
term (equation 67) for the entire time element, an equation of the form of
equation (68) may be written to include the p0351b111ty of one or more
conversions within time-element n+l as

(2 - (1) (2) - 1 -
¢ { n+l bn} + [g - ¢ ](gt } I-ln] + 0t +1[G + 3647 42]t-ln+l l_J
1 C 5
+ 6At +1[G + G +1 + 2‘\=7]}_1n = Atn+11_3, (97)
where C;}) = ng) for all nodes that do not convert in the time interwval
Atn+1’ and z, is the vector of nodal aquifer-top elevations. Hence, the

equation to replace equation (71) is

c(2) c(2)_ () A
————— + G + V|6 = B - [é + V]ﬁ + f—————f———[gt ) bn] (98)
2/Hac_, TETIE TR (€ Ihy At

The predictor-corrector method is used to solve equation (98). For the
predictor step, the predicted head vector h is obtained using equations

(76) and (79) with Cc = C( ) These predicted heads are used to determine
which nodes, if any, convert during the time interval and to estimate the
saturated thlckness for all nodes that are either unconfined during the
entire time interval or convert from confined to unconfined conditions
during the time interval.

*
Predicted heads hi were found to be poor estimates of hi ntl for nodes

that convert from confined to unconfined conditions; thus, they cannot be
directly used to calculate saturated thickness for the corrector step. This
problem occurs because the artesian storage coefficient is usually several L{L

orders of magnitude smaller than the specific yield, so that unless Gi=1,
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the change from Cg%) to ng) + [Cg}) - ng)]ﬂ. is large. It was also found
ii ii ii ii )1

that total storage changes during confined to unconfined conversions are

usually determined much more accurately in the predictor step than the head
values. Therefore, an expression that can be used to revise a predicted

~%
head can be developed by equating the predicted change in storage, C(l)[h. -

ii i
hi ol t° the change in storage calculated with the conversion, to obtain
A Ay A* A
dpk.-h.]+cgqh-z.]=dp&.-h } (99)
ii Vel i,n ii (1 ti ii |1 i,n
Ay Ay

where hi is the revised predicted head. Solution of equation (99) for hi
yields (1)
C

A, ii A*
hi = 0(2) hi -z + Zege (100)

ii

A A I3
For confined to unconfined conversions, Céi) << ng) so that hi n - hi is
H

A A

A
* ‘ . * . .
much smaller than hi - hi' However, if hi predicts a conversion, so
~

1
will h,.
i
N
The corrector step incorporates any possible conversions. If hi <z.s
A A A*
< h,. or h, < z_. < h., then a conversion is assumed to have taken place.
i,n i,n ti i

The corrector equation is

g(2)

(2/3)at_,

2)_ 4 )

- [é* + V]h + =——= 1z¢ “ byl on
= =}-n At
n+1l

Iy

*

+G6 + V6=

(K]
[Re-]l

A Ay

~% -k *
where entries Gij and Gij are computed using hi or hi as appropriate.

As in the case of purely unconfined flow, the magnitudes of the errors
generated by the predictor-corrector method are indicated by the mass-
balance errors. If the errors are large, then the time element sizes should
be reduced.

Point head-dependent discharge (springs and drainage wells)

The discharge rate from springs or drainage wells varies with the head
in the aquifer and declines to zero as the head declines to some elevation
zp (figure 9). Discharge is zero as long as the head remains below zp

Discharges from springs or drainage wells may be simulated by adding a point
head-dependent sink function to equation (1) to give an equation of the form

g Ben, &) Ll B B

x| xx 8x Xy 0y yx 9% yy dy
_ «3h
+ R(H-h) + Sp + W+ P = Sat‘ (102)
The term Sp is the sink function, given by
s - 3% 5(y-b (103)
=, x-a’. -b!. .
p = 3218 (*2p3) 8 (7 Pp3) %3
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Land surface

Point where discharge is
assumed to be concentrated

----- h=hydraulic head
;p’;.cpntrolling elevation

Figure 9. Cross section showing configuration of water-table position, V,
and controlling elevation for point head-dependent discharge functions.

where ij is the volumetric rate of head-dependent discharge
[length®/time] (negative for a sink) at point [aéj,béj], and there are pp
such points. Discharge ij is assumed to vary linearly with head as long as

head is greater than zp. Thus, it is calculated from

c .[z - h), h>z
Q.=4 PILP P (104)
Pj 0 , h <z
P
where ij is a function of hydraulic conductance of aquifer materials in the

vicinity of the spring or drainage well [length?/time]. Nonlinearity of the
sink function results from the fact that the form of the function is
dependent on the head in the aquifer.

To Incorporate equations (103) and (104) into the finite-element
equations, it is assumed that the point sinks are located only at node
points. Hence, spatial finite-element discretization is applied to
equations (103) and (104) to yield

i i j' Pj
£E
=Q i (105)
where |
Cpi[zpi- hi]’ hi > zpi
Qpia A . (106)
0 , h, =z .
i pi

and subscript i indicates that the quantity is at node 1.
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Case 1. Head above Zpi through- Case 3. Head rises above z

pi
out the time element within the time element
hi,n+l A hisnr
A v A 4 i o
Bin Bint1 hotl T
Z,; . e
p: ~
fhi,n T
Datum

Case 2. Head drops below z Case 4. Head below Zpi through-

pi
within the time element - out the time elem_ent
A
By ——
Lo
1
ﬁ; ___.!___... P A : A
bl = B T — —— Ny
; ,ﬁLn —— ~‘r - By 41
~ Datum = .
z_. = controlling elevation at node i

Pt
ﬁir (r=n,n+1) = hydraulic head at node i/ and at time level r

Figure 10. Four possible cases involving change in head over time element
n+l during which there is point head-dependent discharge.

To time integrate the sink function, four cases involving the change in
head hi over time element n+l must be distinguished (figure 10). If the

sink function changes form within the time element, then the element is
divided into two subintervals, ¢iAtn+1 and [1 - ¢i)Atn+1’ defined by

proportional change-over point ¢i. Because head is assumed to vary linearly
within the time element, ¢i is defined by

z_ . - hi n

¢i = X ~ . (107)
i+l " Pin

Formulations for each of the four cases in figure 10 are as follows:
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1. Head above zpi throughout the time element.

4 tn+1 A A n+1 A A
- r - - ¢
Cpi[zpi hi]an+ldt Cpi[zpi hi,non hi,n+1an+1]an+1dt
0 0
.]__ A A
- 6Atn+lcpi[zpi ) hi,n + 2[zpi B hi,n+l]]' (108)

2. Head drops below zpi within the time element. This sink function must
A

allow for linear variation of head from hi a t° zpi during the time interval
+

t to t_ + ¢.At , after which the sink function vanishes.
n n i ntl

Atn+1 A Atn+1 A A
Cpi[zpi B hi]an+ldt' - Cpi[zpi B hi,nan B hi,n+lan+1]an+ldt

0 0
iAtn+1 A A 1 A
- Cpi [zpl T Vi,n"n _[{zpl ) 1,nJ$i + hl,n.]an+1]an+1dt
0

R %1 oo
- _ - '
N Cpi[zpl 1,n] 1 é. Tn+19t

0 i

1.2 )
= 6¢1Atn+1cpi[zpi - hi,n]’ (109)

where equation (107) was used to eliminate hi E

3. Head rises above zpi within the time element. This sink function must

allow for linear variation of head from z ; to hi 1 during the time

,nt+

interval t_ + ¢.A to t , before which the sink function vanishes.
n i n+l n+l

Atn+l A Atn+l A F
Cpi[zpi B hi]an+ldt = Cpi[zpi i hi,nan i hi,n+lan+l]an+1dt

0 0

Atn+1 A Un A
- Cpi Zpi C [Zpi ) ¢ihi,n+1]1 - ¢, hi,n+1an+1 Tnt19¢
¢iAtn+1 1

38

iy



~ Atn+1 o
S PR A | Il PN e
pil7pi i,n+l $.At 1 - ¢.] n+l

n+l

l A
= 3[1“"{]Atn+1cpi[zpi - hi,n+l]’ (110)
where equation (107) was used to eliminate hi a’ and
$. |¢. + 1]
) = = , (111)

4. Head below zpi throughout the time element. The sink function vanishes
during the entire time element.

To obtain the terms that add into equation (71), the results of cases 1
through 4 must be multiplied by -2/At and converted to residual form

using equation (57) to give nt+l
1 - lC Z_ .- ﬁ + 2lz_.- ﬁ
’ 37pi|"pi i,n pi Ti,n+l
=C.6.-C.[z .- h, ] (112)
pi“i pilpi "i,n
1.2 \
2. - 38201 (701 By o) (113)
3 .2 1 - 41C .z .- ﬂ
: 3 i) pilpi i,n+l
' Y : 2 ' _ " '
=t )%l - 3[1 ) ¢i]cpi[zpi hi,n]' e

4., No formulation.

Addition of these terms into equation (71) consists of adding the
coefficient of Si (that is, Cpi or (1 - ¢£)Cpi) into matrix V and adding the
term containing zpi - hi o onto the right-hand side. Because ¢i is unknown
at the beginning of the time element, the predictor-corrector method is used
to solve the modified equation (71).

The predictor step is initiated by checking whether hi a = zpi or
hi n < zpi' If the former is true, then case 1 is assumed and if the latter

is true, then case 4 is assumed. Prediction equation (76) is then solved

with the appropriate terms added in, and predicted heads h are obtained
using equation (79).
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H = hydraulic head at
top of confining
unit or riverbed

‘ -+ Potentiometric Confini
e Dt oy ™ 2 -Confining unit or:
—_Surface riverbed sediments
z, = elevation of top
Water of aquifer
table
. h = hydraulic head
Aquifer
Confined Unconfined
Datum

Figure 11. Cross section showing aquifer dewatering beneath a confining
unit or riverbed sediments having low permeability.

A

* A
To initiate the corrector step, heads hi and hi n are checked to

H

determine which of cases 1 through 4 apply. If case 2 or case 3 applies,
then ¢i is estimated from

Zoi ~ Byn
$. = o— 8 (115)
i *

hi - hi,n

A A

*
Predicted head hi was found to be a good prediction of h,

unless the
i,n+l h

time-element size was too large. The corrector equation is formed by adding

% %
the appropriate terms into equation (80), in which G and G may or may not
be time variant depending on whether flow is unconfined or confined.

Areal head-dependent leakage combined with aquifer dewatering

Vertical leakage through a confining unit overlying an aquifer being
dewatered, or leakage through the bed materials (assumed to have low
permeability) of a river that is wide enough that it cannot be considered to
be a line source or sink, may be simulated using a function in equation (1)
similar to R(H - h) (figure 11) (Prickett and Lonnquist, 1971, p. 33-35).
The difference is that in the present case the maximum rate of leakage to
the aquifer is attained when the head in the aquifer declines below the base
of the overlying confining unit or riverbed sediments. Any further decline
in head results in a constant rate of leakage. There is no maximum rate of
leakage from the aquifer when the head rises above the base of the confining
unit or riverbed sediments. With this leakage function included, equation
(1) may be written as

a_ dh dh} 3 dh _oh
ax[Txx ax t Txy ay) + 6y[TyX ax * Tyy 3Y]
#R(H - h) + S+ W+ P = s (116)
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where Ra[Ha _ ], h > z,

B Ra[Ha - zt), h < zt.

In equation (117), Ra is the hydraulic conductance [time-l] of the confining

. (117)

unit or riverbed sediments overlying the aquifer, Ha is the head at the
distal side of the confining unit or riverbed sediments, and z, is the

elevation of the base of the overlying confining unit or riverbed sediments.
The term R(H - h) is retained in equation (116) to allow for a confining
unit underlying the aquifer.

Spatial finite-element discretization applied to equation (117) results
in an equation analogous to equation (27). Therefore, the leakage term
resulting from the patch of elements for node i can be written

C i[H . - h.], hi > Zes
Q. . allat L . ) (118)
at c .(H. - z h. < z
ai[ ai ti]’ i~ “ti
where 1 e e
Cai = ggiRaA , (119)

and Qai is the volumetric flow rate at node i [length®/time] from leakage
through the overlying confining unit or riverbed sediments.

Four cases similar to those developed for the point head-dependent sink
functions (figure 10) are used to integrate equation (118) over time. The
time element is divided in the same manner into two subintervals if the head
in the aquifer crosses the base of the overlying confining unit or riverbed
sediments within the element. For convenience, the same designation ¢i is

used for the changeover point in time. The four cases can be expressed as
follows:

1. Head above Zes throughout the time element.

At
n+l A
J Cai[Hai ) hi]0n+1dt
0

A1l A R
= Cas [[Hai,n ) hi,n]an * [Hai,n+l ) hi,n+1]an+l]an+ldt'

l A A
= 6Atn+lcai[ﬂai,n T Yi,n + 2[Hai,n+l ) hi,n+1]] (120)
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2. Head drops below Z s within the time element. This function must allow
A

for linear variation of head from hi n Oz during time interval t to
»

tn + ¢iAtn+1’ after which the head-dependent function is replaced by a known

function.
iAtn+l A Atn+l
- ' - 1
Cai[Hai hi]an+ldt + 6. At Cai(Hai zti)an+ldt
0 i~ n+l
Atn+1 ¢iAtn+1 A Atn+1
= 4 - ! - ?
CaiHaian+ldt Cai ian+ldt 8. AL Caiztian+1dt
0 0 i7" n+l

Athel
- Cai (Hai,non + Hai,n+lon+1)an+1dt
0

iAtI'H'l N A A
{hi,nan + [[Zti - hi,n] Y hi,nJan+l]Un+ldt
0

Atn+1
- ’
Caizti an+1dt

¢iAtn+1

- C_.
al

- =

A

1.2
= 6¢iAtn+lcai[Hai,n “hy ot (Mg e Zti]]

+

o =

[ - o)onnCas [Far o - s 2(Mag,ne1 ™ Zes)] (121)

A

where equation (107) was used to eliminate hi el

3. Head rises above zti within the time element. This function must allow

A

for linear variation of head from Z.4 tO hi ntl during the time interval
3

tn + ¢iAtn+1 to tn+1’ before which the head dependent function is replaced

by a known function.
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i n+l n+l A
Cai(Hai T % ]an+1dt + . At Cal[Hal } hi]an+1dt
0 n+1l
Atn+1 ¢iAtn+1 Atn+l ~
= L. r _ '
CaiHaian+ldt Caiztian+ldt 4.At Caihian+ldt
0 0 i7" nt+l
= Cat [Hai,nan + Hai,n+lan+1)an+1dt, - Cai%ed Th+19t
0 0
Atn+l A Un ~
- Cai 5.0t [zti - ¢1hi,n+1]1-¢. By 19041 | %019t
1% n+1 t
- _¢ En+l al[Hai,n T Zeg * 2[Hai,n+l ) zti]]
l A
6[1 - ¢ ]Atn+1cai[Hai,n T Ee t 2[Hai,n+l ) hi,n+l]]’ (122)

where equation (107) was used to eliminate h , and ¢! is defined by
n i
equation (111). Ls

4., Head below Zeg throughout the time element.

At +1
Cai (Hai - zti] 74198
0

Atn+l
- Caij [[Hai,n ) zti)an * [Hai,n+l ) zti]an+1]an+ldt'
0

-l ¢ -z.+2[H

6 n+l alfﬁai,n ti (123)

ai,n+l ~ zti]]'

As for the point head-dependent sink functions, the terms that add into
equation (71) are obtained by multiplying the above results by -2/At ] and
converting to residual form using equation (57). The results are:
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l A A
.- 3Cai[Hai,n ) hi,n * 2[Hai,n+1 . hi,n+1]]
l A A
= Ca1%5 - SCai[Hai,n “hiat Z[Hai,n+1 - hi,n”' (124)
1.2 Y
2. - 3¢icai[Hai,n “hy ot 2(Hy g - Zti]]
1 2
- 3[1 i ¢i]cai[ﬂai,n T2 t 2[H.ai,n+1 } zti]]‘ (125)
1
I Y L ] LV 21)]
1 ' -
) 3(1 ] ¢i]cai[Hai,n T et 2[Hai,n+1 ) hi,n+l]]
' 1, . -
= (1 #i)Cai%s - 3iCas[Hag 0 Ee 2(Has ner ~ Zed)]
—1- A
) 3[1 B ¢i]cai[ﬂai,n T Zei + 2[Hai,n+1 ) hi,nJ]' (126)
1
b - 3Cai[Hai,n N zti + 2[Hai,n+l i Zti]]' (127)

The terms in the above four cases are incorporated into equation (71) and
the predictor-corrector method is employed in exactly the same manner as for
the point head-dependent sink functions.

Areal head-dependent discharge (evapotranspiration)

Another areally distributed function allows for discharge-only
processes such as evapotranspiration (figure 12). The rate of discharge
from the aquifer is assumed to reach a maximum when the water table (or head
in the aquifer) reaches the top of the aquifer, which is land surface. The
minimum rate of zero is reached when the head declines to some lower
threshold elevation (Prickett and Lonnquist, 1971, p. 37-38). This
discharge function occupies the same position in equation (1) as Sa (see
equation (116)) and is stated in the form

Re z, - zt], h > z,
Se = Re z, - h) ' Zg < h< Ze, (128)
, h < z,

where Re linearly relates the discharge rate to the head difference, z, is
the elevation below which the function vanishes, z, is the elevation of the

top of the aquifer, and z, > z,. An expression for Re is (Prickett and
Lonnquist, 1971, p. 37)
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<

-]
Re - de’
where

de =2z, - Zg,

and v
e

(129)

(130)

is the absolute value of the maximum unit discharge rate

[length/time] due to evapotranspiration from the aquifer.

Spatial integration of equation (128) is performed by using the same

process used for equations (118) and (119).
Coi(Zei = Zti) Pi = Zes
i = (CeilZet ~ hi] » Zep SRy
0 , h, =z .
i ei
where 1 e e
C . =322R A,
ei 3ei e

Therefore,

. (131)

(132)

and Qei is volumetric discharge at node i [length®/time].

Time integration yields nine separate cases (figure 13) involving the

A

A
positions of h, and h, relative to z
i i,n+l e

b

. and z_.
i ti’

and the time element

is divided into either one, two, or three subintervals depending on the case

applying.
with the changeover elevations z g

K Land surface

e ———————

Ground-water
discharge
Water table

Changeover points in time are designated ¢
and z ;» SO that

Figure 12.

. and ¢ei to conform

z, = upper controlling
elevation

h = water table
elevation

z, = lower controlling
elevation

Datum

Cross section showing configuration of the water table and

controlling elevations for evapotranspiration type of head-dependent

discharge.
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Case 1. Case 4. Case 7.
A VAN
Bin 1 Min+l
N A
hi,n+1 Y th
Zyj - = Zyj
hi,n A hi,n+1
A A
hinep X hin
Z.; zZ.:
el el ~ ~
hi,n i hi,n+1
A A
) h. Y h.
Datum : Datum ___bntl L
Case 2. Case 5. Case 8.
A AN
Bin —— B ——
2y Zy
N AN
th+1 X th -1
Ze - Zej
A . VAN
B pep L h; 1 Y-
Datum Datum
Case 3. Case 6. Case 9.
AN A
hi,ﬂ+1 '_‘r hi,n+l ____]r
Zy 2y
A A
th —_ hi,n+1 B
Zoj Zej
N N
Bin - Bin -
Datum Datum

z,; = upper controlling elevation at node i
z,; = lower controlling elevation at node i
ﬁir (r=n,n+1) = hydraulic head at node i and at time level r

Figure 13. Nine possible cases involving change in head over time-element
n+l during which there is areal head-dependent discharge.
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T e (133)
ti 1
i,n+l i,n
and A
Zgg - by g
$ei = - o (134)
i,n+l i,n

The cases are as follows.

1. Head above Z, s throughout the time element.
At

n+l
, 1
J Coi(Zei = Ze1)oni19t’ = 28%n41Cei (Zet - 2¢4) - (135)
0

2. Head drops below Z 4 but stays above Zgoi within the time element.

¢t.At At

i~ n+l n+l
[ cei(zei h zti]an+1dt + J Cei[zei ) hi]an+1dt
0 ¢tiAtn+1
¢tiAtn+l
- Cel(zel ) ztl) n+ldt

0

Atn+1

A Un A
* CeiJ Zei " [Zti - ¢tihi,n+1]1 b hi,n+lan+l}an+1dt
¢tiAtn+1

A

1. 1
= 2%e18t011% (Zes  Zeq) * 5[1 - éi]Atn+1Cei[zei T Zep T 2[zei - hi,n+l]}’ (136)

where ¢£i is given by equation (11l1l) with ¢ti replacing ¢i.

3. Head rises from between z ., and z,. to above z_., within the time
ei ti ti
element.

d’t'At Atn+1

i" nt+l
- ’ . - '
J Cei[zei h']an+1dt + [ Cei[zei zti]an+1dt
0

$riBt1
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- o . o 1 - ,
h CeiJ [zei hi,nan [{zti hi,n]¢ . + hi,n]an+l]an+ldt L’l
0 ti N
At:n+1
* Coi(Zes * Zei) T4t
$eibtn
1,2 o 1 2
= 6¢ciAtn+1Cei[ze1 S hy ot 2z - zci]] + 2[1 - ¢ti]Atn+1Cei(zei - zgg)e (137)

4. Head stays between z,4 and z s throughout the time element.

At At

n+l n+l
J Cei[zei ) hi]an+ldt' = CeiJ [[Zei ) hi,n]an + [Zei _hi,n+l]an+l]an+1dt’
0

0

-]; A A
- 6Atn+lcei[zei "Byt 2[Zei - hi,n+l]]' (138) l{)
5. Head drops from between zeiand z_. to below Zgs within the time element.

t1

é At

ei” n+l
J Cei[zei ) hi]0n+1dt
0

¢ At

ei” n+l
A A l A ,
b CeiJ {Zei ) hi,nan } [[zei ) hi,n]¢ . + hi,n]an+l]an+ldt
0

1.2 Y
= 6¢eiAtn+1Cei[zei T hi,nJ' (139)
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6. Head rises above Z,g but stays below z, within the time element.

Athil Athv1 -
A , _ A n
J Cei[zei ) hi]an+1dt - Ceij [Zei ) [zei . ¢eihi,n+1]1-¢ei
¢eiAtn+l ¢eiAtn-i-l
n , o1 . h
- hi,n+lan+l]an+1dt = 3[1 - ¢ei]Atn+1Cei[zei - hi,n+1]’ (140
where ¢éi is given by equation (111) with ¢ei replacing ¢i.
7. Head stays below z s throughout the time element. The discharge
function vanishes within the entire time element.
8. Head drops from above z 4 to below z,4 within the time element. This
function must allow for constant discharge during timespan t tot,
+ ¢tiAtn+1 and head-dependent discharge during timespan t + ¢tiAtn+l to t
+ ¢eiAtn+1’ and must vanish during timespan t ¢eiAtn+l to t .- The
head-dependent discharge can be expressed as a function of ¢ei’ ¢ti’ zei’
and z.s by eliminating hi,n and hi,n+l using equations (133) and (134).
First hi,n+1 is eliminated by solving equation (134) for hi,n+l’ then hi,n
is eliminated by combining equations (133) and (134) to get
A ¢ 2, . - ¢ . .
hy = e1¢t1 - ¢t1 ei (141)
! ei ti
Thus,
$ei8%n41 $eibtni1
J Coi(Zer = Zei)ons1dt’ + Cei[zei - hi]"mldt
0 ¢tiAtn+1
¢tiAtn+1 ¢eiAtn+1
- cei[zel ) ztl]J an+1dt + ceiJ ei "i,n'n ~ [[ ei = hi,n].
0 ¢tiAtn+1

49



¢, . At ¢ At

ti” o+l ei n+l o
- i ' n _ o+l ' :
= Cei[Ze1 Zti]J Ta+19t" * Cei[zei hi,nJJ {1 bos ]"n+1dt J_J
0 ¢tiAtn+1
$eif%he1 Peifnil,
, ei n+l ,
B cei(zei ) zti][ an+1dt + cei[zei ) zti]J [¢ei - ¢ti ]an+1dt
0 $eifthi
-+ ¢ 6. + ¢ + ¢2 at_ .C [z . - z (142)
6 ti[ ei ti] ei|” n+l ei( ei ti]'

9. Head rises from below Z.s to above z. s within the time element. This

case is analogous to case 8, except that the head changes in the opposite
direction. Hence, the resulting equations are

¢ Atn+1

J Cei(zei - hi]"n+1dt + [ Coi(Zei = Zei)ons19t
¢

eiA n+1l ¢tiAtn+1

tiAtn+l

o

(et * 20ei) (Fes = #x) * 31+ #e0) (0 + bee) | 00manCer (Far - Zer) - 049

Multiplication of the above discharge functions by -2/Atn+1 and

conversion to residual form using equation (57) yields the terms that add
into equation (71). The results are:

1. - Cei[zei - zti]' (144)

' 1 ' )
2. - $5Ces(Zer - Zeq) - 3[1 - ¢ti]cei[zei T Zeg * z{zei - hi,n+l]]

+ 2[zei - h ’n]]. (145) L-L
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L

1,2 " 2
o 3¢ticei[zei - hy ot 2%y - Zti]] - [1 - ¢ti]cei[zei - 24)- (146)

l A A
& ) 3Cei[ ei = hi,n + 2[Zel i,n+1]]
=C .6, - C .[z . - h. ]. (147)
ei i eil"ei i,n
1.2 Y
3.0 3¢eicei[zei ) hi,n]’ (148)
6. - 201 -4 1c - h
: 3 ei)eil%ei i,n+l
- ' 2 )
N [l ) ¢ei]ceisi i 3[1 } ¢éi]cei[zei - hi,nJ' (149)

7. No formulation.

o]

- %[¢ti[¢ei *deg) t ¢§i]cei[zei - 2] (150)

9. - (e + 28es) (Per + $ot) * 31 * bea) (1 - 9e) Ces(Fer - Zer) D

Procedures for use of the above nine cases in equation (71) and
solution using the predictor-corrector method are analogous to those used
for the previous two types of head-dependent functions. For the predictor,

if hi n > Ziso then equation (144) is used in equation (76) (case 1); if Zei
< hi,n < Zogo then equation (147) is used (case 4); and if hi,n < z.s then
no terms are used (case 7). Estimates of ¢ei and ¢ti to use in equations

o
(144) through (151) are obtained using equations (133) and (134), with hi

substituted for hi ntl The corrector is employed by adding one of

equations (144) through (151) into corrector equation (80), as appropriate

A* A
based on checking hi and hi n against Zoi and =z and solving for §.

ti’
Line head-dependent leakage combined with aquifer dewatering
The final type of head-dependent function is a line source or sink of

the general form of the boundary condition given by equation (4), except in
the present case the function yields a maximum flux when the head in the
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Aquifer

Figure l4a. Block diagram of a river idealized as a line source or sink
along spatial element sides.

aquifer declines to a specified elevation. This function is most often used
to simulate a river that is mnarrow enough to be replaced by a line (figure
l4a). As for the case of a wide river, the maximum leakage rate from the
river to the aquifer is attained when the head in the aquifer declines to

the bottom of the riverbed sediments (assumed to have low permeability)
(figure 14b).

The line source or sink function is written in the form of a flow
across an internal or external boundary, or

a [H - h} , h>z
't r

9 " Ye (5 - 2z ], h<z ° (152)
r{r r r
where e [length/time] is a parameter that is a function of the hydraulic
conductivity of sediments through which leakage occurs, Hr is the
controlling head (for rivers, the river-stage elevation), and z. is the
elevation at which the discharge to the aquifer is a maximum (for rivers,

the elevation of the bottom of the riverbed sediments). For riverbed
sediments, . is given by KW

a_ = , (153)

where Kr is the hydraulic conductivity of the riverbed sediments, Wr is the
width of the river, and br is the thickness of the riverbed sediments.

Equation (152) is incorporated into the spatial finite-element
equations in the same manner as equation (4) (see equation (32)). That is,
the total discharge across the line source or sink in the patch of elements
for node i is

Cri|Bei - hi] » by >z
N , (154)

C..|H. . - =z .], h, <z .

rl rt ri 1 rli
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Wr=width of river
River

land surface
stage
tale hv4 H, = river stage
b, = thickness of riverbed
sediments
z, = base of riverbed
sediments

Riverbed
sediments

h = water-table elevation

Assumed position of ___
line source or sink

Figure 14b. Cross section showing a configuration of the water-table
elevation under a river that is idealized as a line or source sink.

where 1
C . =32 [aL]..,, (155)
ri 2j’ r)ij
Q,; 1s the volumetric discharge at node i [length3/time] from leakage
involving the line sources or sinks, and Lij' is defined the same as for

equation (32) (figure l4c).

H,; (&=km) = river-stage elevation
at node

z,; (i=k;m) = base of riverbed
sediments at node i

W, = width of river in
element e
Lim = length of side k-m

of element e

Figure l4c. Nomenclature for side k-m of element e that forms a line
head-dependent source or sink.
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Equation (154) is exactly the same as equation (118) expressing areal

head-dependent leakage, except that H_. replaces H_., C_. replaces C_. and
ri ai ri a

. L
z.: replaces z Therefore, the expressions and the predictor-corrector ' l

ti’

solution procedure derived for areal, head-dependent leakage apply to the
present case as well.

Leakage of water stored elastically in a confining unit (transient leakage)

Equation (1) can be rewritten in a general form that includes leakage
to or from a confining unit as follows (Cooley, 1974, p. 3-9):

Ll B en, 8] ifr 2o )

dx | "xx 9% xy a3y Ayl yx 9x yy 9y
oh' dh
+ K - s
* Kzz 3z 2=z + W+ P Sat ) (156)

where Kéz is the vertical hydraulic conductivity of the confining unit, h'
is the head in the confining unit, and z, is the elevation of the base of

the confining unit (if the confining unit overlies the aquifer) or the
elevation of the top of the confining unit (if the confining unit underlies
the aquifer).

If the confining unit has no elastic storage capacity and flow in the
confining unit is almost vertical, then the leakage rate is lyj

£ g 20
2z Jdz z=z

= R(H-h), (157)

and equation (1) results. However, if the confining unit has elastic
storage capacity, then the leakage rate must be computed using an unsteady-
state equation for flow in the confining unit. The formulation of this
problem was developed by Hantush (1960), and expanded by Neuman and
Witherspoon (1969) and Herrera and his coworkers (Herrera, 1970, 1974;
Herrera and Rodarte, 1973; Herrera and Yates, 1977). The following approach
is an expansion of their approaches to apply to the finite-element method.
For notational simplicity, the confining unit is assumed to overlie the
aquifer, because the final function describing leakage to or from the
aquifer is the same whether the confining unit overlies or underlies the
aquifer. In this case, z, =2 the elevation of the base of the confining

unit. ¢
Flow in the confining unit is assumed to be almost vertical, which is a
reasonable approximation when Kéz/Kxx < lO-2 (Neuman and Witherspoon, 1969,

p. 804). With this assumption, flow in the confining unit at some location
(x,y) can be described by the following initial value problem:

, 3% oh’

Kzz 2 T Sé at (158) L/l
dz )
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subject to

h' = h(t), z = Z s t=0,
h' = H(t), z = z, +b’, t =0, (159)
h! = Hé(z), z,, fz=<z_+Db', t =0,

t t

where Sé is specific storage of the confining unit [1ength-1], b’ is the

thickness of the confining unit, h is head in the aquifer, H is head at the
distal side of the confining unit (assumed to be a known function of time),
Hé(z) is the initial steady-state distribution of head in the confining
unit, Ho[zt] = h(0), and H(')[zt + b’] = H(0).

To initiate development of the leakage function to be inserted into the

finite-element equations, spatial finite-element discretization is applied
to the general leakage rate in the same manner as it was to R(H-h) to yield

' dh!
> ” jegr dhl 1
e. izz o0z
e
A

dkdy = 33K'°A° = , (160)
3z
where, to conform with R, Kéz is assumed to be constant in element e.

= 7=Z
z Zt £

Equation (160) expresses the total leakage rate across the patch of elements
for node i in terms of the hydraulic gradient at node i. Thus, the equation
for flow in the confining unit at node i must yield equation (160) when used
to obtain the leakage rate. This flow equation is derived as follows.
Integration of equation (158) from z, toz=<z + b’ and solution for the

leakage rate across the base of the confining unit yields

’ ah_' = K -——ah' - SSJ —-ah'dz (161)
z

zzZ 0z

zz Jz at
t

Zz=Z
t

which, when substituted into the integral in equation (160), yields an
expression for the approximate leakage across the patch of elements for node
i in the form of

dh!
lE K,e e_ i

,e edh’
3%, 3z K

1
3§ dz

1. o,e.ef? on
3§.S A J 3t dz, (162)
4

t

'
S

where Sée is the specific storage of the confining unit in element e.

Differentiation of equation (162) with respect to z yields the equation for
flow in the confining unit at node i as

e ea hi e eahi
R SR R AL T 163)
i dz i
The leakage rate given by equation (160) is calculated using the head

in the confining unit, hi, which is obtained by analytically solving

equation (163). Appropriate boundary and initial conditions are given by .
equations (159) written for node i using approximate head in the aquifer hi
in place of exact head hi' That is,
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h{ = h(t), z=2_, t =0,
hi = H(t), z=1z_ +bl, t =0, (164) ij
hi = Héi(z), Z s <z =< Z s + b!, t =0,

where bi is a weighted average thickness of the confining unit for all

elements in the patch for node i that is derived further on. The solution
to this initial wvalue problem was obtained by Carslaw and Jaeger (1959,
p. 102-104) and can be written in the form

m=1 mm b!

t
© mr(z-z dn_.(7) _ 2 :
hi(z,t) =2 —L sin [ t] [ o g(mm) vy (E-1) g,
i

Hi(t) - hi(t)

+ bi [z - zti] + h, (), (165)
where
m A
nmi(t) = (- Hi(t) - hi(t) (166)
and
% K’ °a®
e, zZzZ |
7 = ' (167) b
L pi2 5 8@ :
1 ei S

, is computed from equations

The leakage rate at time t, K’ _dh!/dz
zz 1 £

Z=2Z

(165) and (166). When this is substituted into equation (160), the leakage
rate across the patch of elements for node i is obtained as

t 2
dh! © dH, (7) -(mm) vy, (t-7)
1 ,e,e_ 1 2 ,e.e m i i
32 K272 527 |z=z. ~ 3br 2Kzt mZ21 D J dr °© dr
i t i~i 0
t A 2
L2 e ; dh. () -(mm) vi(t-'r)d
3b! €., zz"7 m=1 dr ¢ T
i~i
0
1o e o
+ 3bi éiKzzA [Hi(t) hi(t)]' (168)
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As Sée - 0, equation (168) should approach the leakage term based on

equation (27). That is,

L 5 K'eAe[H. - h.] - i ReAe[H. - h.]. (169)
1 1 1 1

- (170)

to make equations (168) and (27) consistent. Because R® is Ké; divided by

the confining-unit thickness for element e, bi is a weighted harmonic mean
of confining-unit thicknesses.

The leakage functions to be inserted into the finite-element equations
are developed from equation (168). To yield a useful form for the leakage
functions, the integrals must be evaluated and the infinite series must be
approximated. The integrals can be approximated by using the procedure of
Cooley (1972), in which the integrals for time level t = tn+1 are evaluated

in terms of integrals for time level t = € which have already been

evaluated. Thus, the necessity for storing the heads for all previous time
levels is avoided. The procedure is applied to the second integral in
equation (168), for example, as follows:

t N
n+l 2
J dh; (1) -(mn) 7i[tn+l-r]
— e dr
0 dr

t A t A
n 2 n+l 2

[ dh, (7) é(mw) 7i[tn+Atn+1—f]dT . J dh, (7) é(m«) 7i(tn+1-1]dT
0 dr tn dr

T

[N
2 n 2
- (mm) 738t 1 dhi(f) - (mm) yi[tn-T]
= e ar ¢ d

0
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A A t
n+l 2
4 hi,n+l - hi.nJ - (mm) 7i(tn+1-7]
+1 t

AL e dr ly)
n
n .

2 th 2

- (mr) 7iAtn+1J dhi(T) - (mw) 7i[tn-r]
= e e dr
dr
0

h

l-e (171)

i.n+tl hi.n 1
At

2
- (mm) 7iAtn+l]

n+l (mﬂ2)7i

By multiplying equation (171) by 2 (for convenience in later manipulations)
and defining

I. =

mi,n

t A
Dah, (r) - (ma) 2y, [t -
2J e R e o 71[ n T]dr, (172)

0 dr

a recursive relation for evaluating the integral is obtained as

A A

2 2
~ ()Y At Biner "B o “(mm) Ty At
I . =e I_. + l-e , (173) |
mi,n+l mi,n At
n+l (mn) 15 L,J
where Imi,O = 0. Equation (173) permits evaluation of Imi,n+l from Imi,n

and the heads at only the current (n+l) and previous (n) time levels. In an

analogous manner, 2(-1)m times the first integral in equation (168) is
evaluated as

2

- (mm) 'yiAtn+1

J . = e J :
mi,n+l mi,n

2 y
H. - H. m -(mr) y.At
1,nzi i,n _2(-1) [l-e i n+1], (174)
n+1l (mm) 73
where
tn 2
dH. (r) -(mm)"y.{t -7

J . = 2(-1)mJ —— ¢ 1[ o ]dr. (175)
mi,n dr :

0

Next, the infinite series in equation (168) are approximated by finite i
series so that a large number of terms given by equations (172) through
(175) do not have to be computed and saved at each time level. The
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coefficients of the finite series are determined so that a small number of
terms of the finite series can be used to give a good approximation of
results obtained with the infinite series. The approximations are

Cntl 2 2 RS

© dh.(r) -(mn)"y.[t -7 N dh.(r) -a 7v.|t -7
2.3 —4 . i(fa1 ]dr ~ 3t a L T .m i(fo1 ]dT (176)

=1 0 dr m=l "m 0 dr
and Catl 2 tatl

0 di, (7)) -(mm)"vy.{t -7 N di.(r) -8 7.1t -T
2 3 [-1]mj —4 i (fon1 ]dt ~ 52 B —i_ i(for1 ar, (177)
m=1 0 dr m=1l "m 0 dr

where A', o , B', and 8_ are coefficients to be determined, and N, and N
m’ m’ m m 1 2
are the numbers of terms in the two finite series.
By repeating the derivation leading to equation (171) using the

approximations, it can be seen that equations (173) and (175) are
approximated by

- - ' -
- amyiAtn+1A hi.n+1 hi.n Am am7iAtn+l
I. = e I. + l-e , (178)
mi,n+l1 mi,n At a_ Y.
n+l m'i
where
t A
A n - Y. |t -T
. - A'J dhy(r) o m (% ]dT, (179)
mi,n m
dr
0
and
. -ﬁmyiAtn+1A 1-Ii,n+]_ . Hi.n Bm [ -ﬂmTiAtn+1]
Jmi ntl = € Jmi n + At B lL-e ? (180)
? ! n+l m'i
where
t
A n -B v. |t -7
J. = B'J dH; (r) JSm (% ]dr. (181)
mi,n m
0 dr

The leakage rate computed using equations (178) and (180) is approximately
equal to the exact leakage rate computed using equations (173) and (174) if

r

1

2 c 3
© -(mn) Ty, At N, A’ -a_v.At
2 1 1 - e 1"+l _ 21 _le e i n+11, (182)
m=1 2 / m=1l o
(mmr) m
and r 9 3
o PrYL -(mn) " y.At N, B'( -B_v.At )
2z L1 - nil) | g2 omfy | mimel] (183)
m=1 2 J m=1 g_\ J
(mm) m

To obtain the best approximations, equations (182) and (183) should
hold exactly when At 4= 0 and when At 4 @ The first requirement helps
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yield an accurate solution for small time elements and is automatically
fulfilled because both pairs of series equal zero when At 4

second requirement ensures that the total yield from storage in the
confining unit under a unit head change that is fixed indefinitely is
preserved by the approximation (Herrera and Yates, 1977, p. 726-727).

Herrera and Yates (1977, p. 727) found the accuracy of their approximate

solutions to be highly sensitive to fulfillment of this requirement.

letting Atn+

By
17> in equations (182) and (183) and using the sums of the

resulting infinite series (Herrera and Yates, 1977, p. 727), it can be seen

that this requirement is fulfilled if

o)
202 ! 7 =
(mm)

and © o
2 5, 1
m=1 2

(mm)

™ =
—
R I_»
=] |’B‘

O =
=]
™M =2

(184)

(185)

It remains to find coefficients A&, @ B&, and ﬁm so that approxima-

tions given by equations (182) and (183) are good with a small number of

terms, N1 and N2. For notational convenience,
AtD is defined by AtD = 7iAtn, and the series are denoted as
© 1 [ -(mn)zAtD]
S, [At =2 3 1 - e ,
l( D] m—l(mﬂ)Z
© m
SZ[AtD] _ ZmEIL;ll_
(mm)
N
Ml[AtD] N mélAm
and
N, [
M, (2%p) = nEi®
where
AI
P
m a
m
and
B
Bm = E_'
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Because both sets of series are functions of only Aty the coefficients
Am’ Bm’ o and ﬁm can be uniquely obtained by fitting approximate, finite

series Ml[AtD] and MZ(AtD) to infinite series Sl(AtD] and SZ[AtD]’

respectively, using a range of values for AtD sufficient to include most
time-element sizes and values of ;-

The coefficients were determined using nonlinear least squares (see
Cooley and Naff, 1990, p. 61-64) applied to the weighted sum of squared
error functions

[ 12
P [Sp[8tp] - My (%)
55, = o21 5, (8cp) ] (192)
5,05y - Hforg) |2
P 82 AtD - M2 AtD
$S, = 21 5, (5%) | (193)

subject to the constraints given by equations (184) and (185). The number
of dimensionless times used in the fitting process, P., was set equal to 25,

and Aty = 1 x 1008 2.5x10% 5x10% 1x107°, 2.5x% 107°,

5 x 10-5,..., 1x 102. The weights 1/|Sl[AtD]I and l/ISZ[AtD)I are somewhat

arbitrary, but were found to give good approximations for both small and
large dimensionless time elements. Constraints were applied by specifying

N. -1
1 1
AN1 -3 7 mglAm (194)
and . N2-1
By, = "6 " nfitw (195)

Thus, the coefficients determined by nonlinear least squares are Nl values

of o and Nl-l values of Am for equation (192) and N2 values of ﬁm and N,-1

2
values of Bm for equation (193).

Good fits for both least squares problems were obtained with Nl = 3 and
N2 = 2, and the resulting approximations are illustrated in figures 15 and

16. Values of the coefficients determined are

Ay = 0.26484, oy = 49538,
A, = 0.060019, B, = -0.25754,
Ay = 0.0084740, B, = 0.090873,
@) = 13.656, By = 10.764,
@, = 436.53, By = 19.805.
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Figure 15. Relationship between series Sl(AtD) defined by equation (186)
and its approximation Ml(AtD) defined by equation (188).
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Figure 16. Relationship between series -Sz(AtD) defined by equation (187) U
and its approximation -Mz(AtD) defined by equation (189).
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The final step leading to the leakage function to incorporate into the
finite-element equations is to integrate the product of equation (168) and
041 over time element n+l by assuming that ahi/az 7=z varies linearly like

t

A

hi (which is consistent with the treatment of R(H - h)). Therefore (see
equation (54)),

L e o) [ne1 any
[EE-KZZA ] 3z |z=z an+ldt
1 0 t
ah! ah!
1 1. ,,e,e i.n intl
6Atn+1[3§iKzzA ][ 7z T 2’“5;"‘]z=zt (196)

By using equations (168), (170), and (176) through (181), the leakage rates
at time levels n and n+l in equation (196) are evaluated as, respectively,

1. .,e.e|%in (1o e.e)| Y2 4 Np»a A
5 K TA = |75 R7A PIUREN - 251 . + H. - h,. (197)
3ei ZZ iz z=z, 3ei m=l "mi,n wm=l "mi,n i,n i,n
and
%Z K,eAe i.n+l - [lz ReAe][ 22 i n+1J .
e; zz 3z z=z 3€. m=1 mi,n
H. H.
i, ntl i.n
? M, |v.At
Atn+17i 2[ i n+l]
N - ’Y.At A h. - h. A
1 m'i” nt+l i, n+l i,n
"1 ® Tmin =7 Ar_ g My (V38%50]) * By ne1 hi,n+1] (198)

To obtain the leakage function to incorporate into the finite-element
equations, equation (196) is multiplied by -2/Atn+1 and equations (197) and
(198) are substituted into it. For notational compactness of the resulting
expression, the following quantities are defined.

r1 e e\ Ni2
Phi,n - LséiR A m§11mi,n’ (199)
( )l N A
1. .e,e 2
PH1,n h 3§1R A mélJml,n’ (200)
N - 'Y.At A
{1l pe,e 1 "m'i nt+l
th,n - [3§1RA ]mél ¢ Imi,n’ (201)



N 'ﬂ 'Y.At A
1 e.e 2 m'i” n+l
QHi,n = [3§iR A ]m e J . , (202)

f M |1.At I
lE REAS 117i "ntl (203)

Chi n+1 = |32

f M, [v. At
1, _e.e 2' i n+l|
cHi,n+1 = 3§1R 4 7y (204)

. r

C.. = iz Rea°,

Ri = 3% (205)
i
Therefore, the final leakage function is
H - H
1 2 indl “Hin o1
- S[PHi,n + 2QH1,nJ " 301 ne1 at_ o + 3[Phi,n + 2th,n]
h h o n
2 i,n+l i.n 1 2 .
¥ 5%, e - CR1[3[Hi,n - hi,n] + 3[Hi,n+1 hi,n+1]] ij
N SIS R R l[P . 20 ] L2 Bina ~ 8 g
Atn+1 Ri i 3U'Hi,n Hi,n 37Hi,n+l Atn+1
+ile . 42 N TR IS G ¥ - h (206)
3(*hi,n ¥ %%hin 3°Ri|",n " Pi,n i,n+l ~ Pi,n

The leakage process described by equation (206) is time dependent, but
linear. Therefore, equation (206) is added into equation (58), unless the
predictor-corrector method is required to include other phenomena, in which
case equation (206) is added into the appropriate predictor and corrector
equations. The coefficient of Si 1s added into V for every node i where

leakage occurs, and the remaining terms are subtracted from the right-hand
side.

FINITE-ELEMENT FORMULATION IN AXISYMMETRIC
CYLINDRICAL COORDINATES

GOVERNING FLOW EQUATION AND BOUNDARY CONDITIONS

Axially symmetric ground-water flow in an aquifer is assumed to be
governed by the following unsteady-state flow equation written in

axisymmetric cylindrical coordinates (Bear, 1979, p. 116): L_E
11 (¢ ,80) , 8 (, 8h] _ ¢ &b
r ar[KrrrEZ] + az[Kzzaz] Ssat’ (207)
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finite-element mesh

Figure 17. Axisymmetric aquifer subdivided into spatial finite elements.

where the new symbols used are

r radial (horizontal) coordinate direction [length] from the axis of
symmetry, which is vertical,
z = vertical coordinate direction [length],

Krr(r,z),Kzz(r,z) = the principal components of the hydraulic conductivity

tensor [length/time] in the radial and vertical coordinate directions,
respectively, and 1
Ss(r,z) = gpecific storage [length 7].

The orientation of the r and z axes is shown in figure 17.

The principal directions of the hydraulic conductivity tensor are
assumed to be parallel to the r and z axes in equation (207). Equation
(207) was not written in full component form like equation (1), because any
rotation of the principal directions from the r and z axes (see figure 5)
must be revolved around the z axis to maintain axial symmetry. This pro-
duces the physically unusual case of an axially symmetric rotation of the
principal directions, which seemed to the author to be an unnecessary
complication to include.

Equation (207) is subject to boundary and initial conditions analogous
to equations (2) through (5) used for equation (l). However, equations (3)
and (4) must be changed to reflect the change from flow integrated over
aquifer thickness in equation (1) to flow in a radial cross-section in equa-
tion (207). Thus, equation (3), which expresses flow continuity across a
discontinuity in the porous medium, is replaced by

ana = VnIb’ (208)
where vn(r,z,t) is the normal component of specific discharge, and equation
(4), which expresses either a specified-head or Cauchy-type boundary

condition, is replaced by
Vo=V

gt a'(HB - h), (209)
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where

VB(r,z,t) = specified specific discharge normal to the boundary
[length/time] (positive for inflow), and l.j
a’'(r,z,t) = a parameter that, like a of equation (4), approaches /

infinity for a specified-head (Dirichlet) condition, is
zero for a specified flow (Neumann) condition, and is
finite and positive for a general or mixed (Cauchy)

condition [time-l].

FINITE-ELEMENT DISCRETIZATION

Finite-element discretization in axisymmetric cylindrical coordinates
is accomplished in the same manner as for the Cartesian case. An r-z plane
is subdivided into triangular elements (figure 17) over each of which the
approximate solution h is assumed to vary linearly. Because of axial
symmetry, each element is revolved around the symmetry axis so that it is a
ringlike volume with triangular cross section. The time domain is
subdivided into time elements over each of which the solution is also
assumed to vary linearly. Therefore, the approximate solution is stated as
an equation that is analogous to equation (14):

A A A e .
h = ?[hi,non + hi,n+lan+1]Ni, i=k,1,m, (210)
where
NS = [a? + bSr + c?z]/er, i=k,1,m, (211)
1 1 1 1 .

4}
~ o
I
[a]
ool
N
=}

)
H
=]
N
=

e
b =27y - 7
e -r -
k m 1’
as = r T, z
17~ "o’k T TKPm
be
1~ %m " %k (212)
=1 -r
1 k m’
a® =r,z, - ryz
m k™1 17k’
e
b =7 - 2y
¢ - -r
°m T T1 k’
e
20T = [rk - rm](z1 - sz - [rm - rll[zm - sz, (213)
and o and o 41 are defined by equation (13). : L_j
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DERIVATION OF FINITE-ELEMENT EQUATIONS

The error-functional equation in axisymmetric cylindrical coordinates
is analogous to equation (15). It is written for an r-z plane as

At A A A A A
A n+l
- de, de . de, de del2,,
L(e) = EJ I j[arKrrar * 9252282 Ss[at] t ]rdrdz
e

0

+ J a’elrdclde’ . (214)
e
Cy

Minimization of equation (214) with respect to hi and separation of the

n+l

result into two parts as for equation (17) gives

At . an 0N} PR "
éi T+l NiSs 52 + r Krr 5; + az Kzz —E rdrdz
e

Qs Qs

At e
- No|v. + o' |H, - h rdCpdt’ - = n+1a N°s oh + igi K gh
il B B e; n+l i"s 8t ar rr 3r
C

aNi oh .
+ 37 K,z 3z rdrdz - eNi[vB + a'[HB - h]]rdc dt’ = 0. (215)
C

2

By following the procedures used in appendix A, the second part of
equation (215) can be shown to equal zero. Therefore, when the integrals

A

involving Ssah/at and a’(HB - h) are converted to diagonal form using

approximations analogous to equation (19), the following integral form of
the finite-element equations results:

A1 o dh aN7 s N ah
gi Tn+l Niss dt + ar Krr 5; + adz Kzz 5; rdrdz
e

0 A
e , - _ .
j oy gy - BJrastae 0 Lmnz im0
C

Equation (216) is analogous to equation (21). However, because the
principal axes of the hydraulic conductivity tensor were originally assumed
to be parallel to the r and z coordinate axes, no coordinate rotations are
performed.
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Equation (216) is integrated to obtain the final finite-element
equations. As before, the spatial integrations are performed first. It is
assumed that SS, Krr’ and Kzz are all constant in each spatial element, and

that Vg and o' are constant along any Cauchy-type boundary side of each

element. The extra r in the integrals presents a complication not present
for the Cartesian case. However, by writing r as the identity

e e e
r = Nkrk + Nlr1 + Nmrm’ (217)

equations (24) and (25) can be used to perform the integrations. Therefore,

by substituting the appropriate expressions for h, N?, aNi/ar, and 8N§/6z,

i = k,1,m, the spatial integrals in equation (216) are evaluated for i = k
(for example) as

e dhk 1 e edhk
NkSS az—rdrdz = IESS{Zrk + r1 + rmJA EE_’ (218)
e

A

aNe A aNC aNe aNS. NS,
J J——k K Prardz - I J——k K [——kh + —Ly, 570 [rdraz
Ae

ar rr dr Jr rr{dr 'k dr 1 4r
AE
ke
r e e e e e e -
ZZE bkbkhk + bkblh1+ bkbmhm r, (219)

aNe A aNe aNe . aNS.  anc.
J J——k K Qhrdrdz = J J——k Ke [—“kh + —‘lh +*”mh rdrdz
ZZ m
e

dz zz 9z dz dz 'k dz 1 4z
A® A
K:z e el e e, e e |-
= ZZE ¢ Crby + ckc1h1+ ckcmhm r, (220)
’ " —_ l 1 "
[ 52l + o fime - 8]0 - Hor o =) [(5h + e - )]
ce
2
l A
+ G[Zrk " rm] [[VBL]km + (o ]km{HBk i hk]], (221)
where Se, K , and K® are the constant values of § , K__, and K in
s rr ZzZ s rr ZZ
element e, ) 1
r = g[rk + ry + rmJ, (222)

and other terms were defined earlier.
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The spatially integrated finite-element equation for node k is obtained
by substituting equations (218) through (221) into equation (216) and using
equations analogous to equations (41) and (42). The result is

k

Atn+1 e dh e e A e A e A
. 75+1]%kk de T [gkk * ka]hk * 8Pyt Bk

- %[[hk + o) (Y * (Pt ) [VBL]km] ] %[[zrk 1) (Y

+ (25 + 1) (o ]km]HBk de’ = 0, (223)
where

o2 = 1358 {Zrk v+ rm]Ae, (224)
Ve, - %[(uk ) ('L * (2 * ) [a'L]km], (225)
Bidc = "8kl Bim (226)

(e e \
B1 = jﬁbkbl * f\i‘ckcld r (227

- .
N Li—Zbkbm + :Zi_ckch r, (228)

As before, equation (223) must apply to all N nodes of the finite-element

mesh. These N equations are written in matrix form as equation (45), where
C.., V.., and G.. are given by equations (47) through (49), and
1] 1] 1]
1 '
B, = §1{6j’[2ri + rj,] [[VBL] 2L + [a L] ij'HBi]}' (229)

Specified-head boundaries are handled using equation (51).

To perform the final time integration, parameters Ss’ K__, Kzz’ and a'

rr
are all assumed to be constant in time, and specified boundary flux Vg is
assumed to be linearly variable through each time element. Thus, the time
integrated finite-element equations for axisymmetric flow are given by

equation (58) with B replaced by E defined by equation (62). No nonlinear
or other extensions are used.
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FINITE-ELEMENT FORMULATION FOR STEADY-STATE FLOW

By definition, steady-state flow occurs when hydraulic heads do not ij
vary with time, or dh/dt = 0 in equation (1) or (207). Steady-state flow
equations are obtained by setting S or S to zero and letting all quantities

in equations (1) through (4) or (207) through (209) be time invariant.

LINEAR CASE

The finite-element equations for steady-state confined flow in the
absence of any of the nonlinear source-sink functions may be derived from
equation (56) by setting C (which contains S or SS) to zero and setting bn+1
=h_ = h. The resulting equation is

A

ah = B, (230)
where A = g V. As for unsteady flow, round-off error may be minimized by
solving for head change rather than head Thus, by defining this head
change, § , as A

§,=h-h, (231)

A

where bo is an arbitrary initial set of heads close to h, equation (230) is

modified to become
A§ =B - Ah . (232)

=-o0

To solve a linear, steady-state flow problem, first equation (232) is solved L‘j

for §0, then equation (231) is solved for h. Mass balance components are

obtained from equation (232) using analogous procedures to those used for
unsteady-state flow.

NONLINEAR CASE

If steady-state flow is unconfined or a nonlinear source-sink function
is employed, then A and B are functions of h and a nonlinear problem
results. In the case of unconfined flow, an off-diagonal entry of G is

A

given by equation (74) in which bi = hi -z The particular form of the

bi-’

nonlinear source-sink term incorporated into V and B is dependent on the
type of function: point head-dependent discharge, areal head-dependent
leakage, areal head-dependent discharge, or line head-dependent leakage.

The general algorithm used to solve the nonlinear problem is derived
before stating the specific terms used for unconfined flow and nonlinear
sources and sinks. For nonlinear problems, equation (230) is restated as

A[ﬁ]ﬂ = B[ﬁ], (233)

where the notation é{b] and g{b] signifies that A and B are functions of h.

An iterative solution method for equation (233) may be derived by adding and
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subtracting A|h| to the right-hand side, then restating the result . as an

iteration equation of the form

é&ﬁbﬁ1=ébgbg+§&J ‘é&dhy

or
Bo8p = 1y (234)
where £ is the iteration index, and
8, = alny), (23%)
B, - 8[n,|, - (236)
§p = Bpa1 - By @3N
t, =B, - Aph,. (238)

Head-change vector §£ in equation (234) frequently requires damping to

reduce undesirable oscillations from one iteration to the next. Addition of
a damping parameter Py (0 < Py < 1) to equation (237) yields the following -

iteration algorithm:

r, =B, - Ashy
-1 :
6, = ég r, £ =0,1, (239)
hopg = Pe8p * By
The iterations are terminated when
max|s?] < ¢, (240)
3 i s _

where 6£ is a component of §£ and € is a small number about an order of
A
magnitude smaller than the desired accuracy in h.

An effective empirical scheme for computing p,y was developed by Cooley

(1983, p. 1274). 1t is given in three steps. Let e, be the value of 5§

that is largest in absolute value for all i =1,2,...,N, and let € nax be
the largest value of Iegl permitted on any iteration. Then,
Step 1 ‘
e
-7 L— 1>1
£2-172-1 (241)
p=1 , £4=1
Step 2
3+
= a3ip s P L
1 (242)
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= p% * <
Py P=s P |e£| = ®hax

o (243)
max
= *
Py |e£| » P |e£| > ®max
A good trial value for © hax is about half the maximum value of |boi - bil

expected (where boi is a component of the initial head vector). Much

smaller values may be needed for highly nonlinear problems.

At the beginning of each iteration £, ég and @2 must be recomputed

using the newly computed values of bg' The way in which A, and §£ are

£
recomputed depends on the source of the nonlinearity. Nonlinearity from
unconfined flow results when hi <z, To allow for the possibility of

unconfined flow, off-diagonals of G are computed from equation (74) written
for iteration £ as B

¢t - l[b? + b?]D.., (244)
ij 2071 j) i3
where A
0 21 2-1 ¢
by =By T+ pp8 T, by <z,
' ~p (245)
by =2y -z » by =z,

Nodes that go dry are treated in the same manner as explained for
unsteady-state flow. The head is allowed to decline below the base of the
aquifer at a dry node i, but horizontal flow in the aquifer is allowed
between adjacent nodes i and j unless node j also goes dry. If a dry node i
becomes surrounded by dry nodes during the iterative solution process, then
Gii = 0 and flow can only take place vertically through an underlying
confining unit or across a Cauchy-type boundary at the dry node. If there
is no confining unit or Cauchy-type boundary so that Vii is also zero, then

Aii’ which is Gii + Vii’ is zero so that the head at node i is undefined and

must be removed from the solution. This is accomplished by setting Aii to
1030 and setting the right-hand side of the equation to zero, which holds
the head constant at the last computed value. If the sum of the known
fluxes is negative at a dry node, this sum is reduced by 1/2 at each
iteration until the node remains saturated. As discussed earlier, this
tells the user the approximate discharge that can be sustained at the node.

Nonlinear source-sink functions require reevaluation of v, and B,. For

point head-dependent discharge functions, reevaluation is based on equation
(106) written for iteration £ as
A
241
i),

C .[z .
Qﬂ _ Jpilpi i
pi

o)

3

2

i pi

I . (246)
i
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The terms that add into equation (234) are found by converting Qpi to

residual form using equation (237). That is, if hf > Zpi’ then
Qi =C.[z. -h@{]= - C 4?4-0.[2. -hﬂ (247)
i pil’pi i pii pil"pi i
so that C ., is added into V?. and C .[z .- h?] is added to the
pi ii pil"pi i

right-hand side. If hf < Zpi’ then no terms are added.

Use of the other nonlinear source-sink functions is analogous. For
areal head-dependent leakage, equation (118) for iteration £ is

2 Cai[Hai ) h§+1]’ hﬁ > Zei
Qi = ~p (248)
Coi(Baz = Zes) » i = Zei
so that, when h? >z, .,
i ti
Qt. -c .[H .- h?*l] --c st+c .[H - h?]. (249)
al ai{ ai i ai'i ail ai i
" . . e . . 2
Therefore, when hi >z, ;, equation (234) is modified by adding Cai into Vii
and adding C .[H . - hg] to the right-hand side. When h? <z_.,
ail ai i i ti

c .(H . - Z .] is added to the right-hand side and V?. is not modified.
ailai ti ii

Likewise, for areal head-dependent discharge functions, equation (131) is
written for iteration ! as

~p
CoifZei = Zei )r i = Ze
oo [z, - nBY, 2 <nf<z (250)
el el el 1 el 1 t1
0 , hg <z .
1 el
so that, when z . < hg <z,.,
el 1 t1
2 A o4l 2 ~g
Qi = Cei[zei - hy ] = - Ceiby Cei[zei - hi]' (251)

Substitutions into equation (234) are analogous to the previous case.
Finally, for line head-dependent leakage functions, equation (154) is
written for iteration £ as

2 Cri[Hri - h§+1]' hf >z
QUi Ay (252)
C .[H . -z .] , hy < z_.
rl ri rl 1 rl
so that, when h, > z_.,
1 rlL
2 A o4l 2 ~g
Qi = Cri[Hri - by ] = - Cy85 + Cri[ﬂri - hi]' (253)



SOLUTION OF MATRIX EQUATIONS

Some of the symbols used in previous sections are redefined in this
section to avoid complex or nonstandard matrix-solution terminology. Thus,
symbols defined in this section are for use .in this section only.

- DEFINITION OF MATRIX EQUATION

Equation -(58) must be solved for each time level of a linear, unsteady-
state flow problem, and equations (76) and (80) (the predictor-corrector
equations) must be solved sequentially at each time level of a nonlinear,
unsteady-state flow problem. Likewise, equation (232) must be solved for a
linear, steady-state flow problem, and equation (234) must be solved for
each iteration of a nonlinear, steady-state flow problem. All of these
equations are linear and of the form

Ax = d, o (254)
where definitions of the coefficient matrix A, the known vector d, and the
unknown vector x depend on the equation being solved. For example, for
equation (58),

C
A= + G+ V, (255)
= @/t T2 =

X =39, (256)
a-8- [g+yfn,. (257)

Thus, A is an N X N matrix, and X and d are N-vectors.

The location of nonzero entries in matrix A depends on the finite-
element mesh. Each row i of A contains nonzero entries only corresponding
to nodes in the patch of elements for node i. Therefore, unless N is very
small, A is sparse in that most entries in any row are zero. Also, if the
nodes are numbered so.that the difference between the largest and smallest
node numbers in the patch is small compared to N, then A is banded, which
means that all nonzero entries in each row are clustered near the main
diagonal. Because A is derived from the positive definite forms in equation
(15) or (214), it is symmetric and positive definite. Finally, as discussed
previously, "if 411 internal angles of the spatial elements are acute, A is a
Stieltjes matrix. Additional information on finite-element matrices can be
found in Desai and Abel (1972, chap. 2).

If node i is a specified-head node, equation i of equation (254) is

g _ A
Xs =~3[HBi,n+l - hi n] for unsteady-state flow and X = HBi - hi for steady-

H

A

state flow. Because X is known at all specified-head nodes, all of the

corresponding equations may be eliminated from equation (254). This may be
accomplished as a partitioning operation by numbering all specified-head
nodes in the finite-element mesh last, which is accomplished automatically
in the code. Terms in the remaining equations that contain values of Xg for

the specified-head nodes are then transferred to the right-hand sides of
these equations to become part- of the known vector. In the remainder of
this section, equation (254) is regarded as the reduced equation resulting
from this partitioning operation.
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SYMMETRIC-DOOLITTLE METHOD

The first of two alternative matrix-solution procedures is discussed in
this section. This method is referred to as symmetric-Doolittle decomposi-
tion (Fox, 1965, p. 99-102, 104-105) and is generally the preferred direct
solution method for finite-element equations (Desai and Abel, 1972, p. 21).
It is a direct method because the solution is found directly in three steps
as opposed to iteratively in an unspecified number of steps required by the
second method. Direct solution is usually efficient whenever there are
fewer than about 500 nodes (Gambolati and Volpi, 1982).

The symmetric-Doolittle method is based on the fact that the symmetric
matrix A can be uniquely factored into the product of three matrices (Fox,

1965, p. 105), so that T
a - Uy, (258)

where superscript T stands for transpose, U is upper triangular of the form

“11 Y12 Y13 YN
0 o u
22 Uy, 2N
U = , (259)
0 0 Cqq .. u3N
0 o 0 e ey
and D is diagonal of the form
a;; O 0 0 ]
0 1/a,, 0 0
D - (260)
= 0 0 /ey, 0
| o o 0o ... /o]

Factorization, which is the first step of the three-step solution, is

accomplished by forming the product matrix QTQH, setting each entry of this
matrix equal to the corresponding entry of A, then solving for the unknown
values of uij and @i entry by entry.

Solution of equation (254) using the factorization given by equation
(258) is accomplished as follows. By defining a vector y by

ux - 3, (261)

the combination of equations (254) and (258) can be written as
u'Dy - ¢ - (262)
The lower triangular form of UTD and the upper triangular form of U permit

equations (262) and (261) to Za:ily be solved for y and x, respectively, as
the second and third steps of the solution procedure. By forming the

product QTQy, it can be seen that the first equation in equation (262)
contains only y, as an unknown, the second y; and y,, and so forth, so that
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the first equation may be solved for MR which is used in the second to
solve for Yo and so forth. Solution vector x is found in exactly the lﬂ)

opposite way. The last equation in equation (261) contains only the last
unknown, Xy the second from the last Xy and X1 and so forth, so that the

last equation is solved for Xy which is used in the second from the last to
solve for Xy.1 and so forth.

For N equations with N unknown values in X, the calculations may be
stated in algorithmic form as

-~

i-1
Rt E R e A S0
i-1
i=1,2,...,N
Yij T 245 T 1:1 “ki“kj/"‘kk’j = i+1,i+2,...,N, (263)
’ —
Bij T Y13/ )
i-1 ]
y, =d. - T u.y
i 1 k=1 “ki’k > i=1,2,...,N, (264)
yi - yi/ ii J LJJ
N
X, =y! - T ul,x, i=N,N-1,...,1. (265)
- k=i+] TK K

Equation (263) is known as the factorization step, equation (264) is the
forward substitution step, and equation (265) is the backward substitution
step.

When the above algorithm is applied to the banded matrix A, entries in
U outside of the band are always found to be zero. However, U has mostly
nonzero entries within the band, even if the corresponding entries in A are
mostly zeros. Therefore, the algorithm can be coded to operate on and store
only entries within the band. Storage of A for efficient computer

application of the solution algorithm is eiplained in part 3.

As with any direct solution method, the above method can generate
inaccurate solutions for poorly conditioned equation systems, such as can
occur when A is not diagonally dominant, or has weak diagonal dominance,
and(or) has highly variable entries. Matrix A can have weak diagonal
dominance if all internal angles in spatial elements are acute but R, S, and
a in equations (1) and (4) (or Ss and a' in equations (207) and (209)) are

zero and there are few specified-head nodes. Matrix A may not be diagonally

dominant if R, S, and a are zero, and one or more elements has an obtuse

internal angle. Entries in A can be highly variable if values of i
transmissivity or element shapes are highly variable. An inaccurate !t
solution generally results in a large mass imbalance.
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MODIFIED INCOMPLETE-CHOLESKY CONJUGATE-GRADIENT METHOD

If N is large or the direct solution method produces large mass balance
errors, then an iterative method should be used. An iterative solution
method called the generalized conjugate-gradient method (GCGM) has been
found by Gambolati and Volpi (1982) to be more efficient than the direct
method for solving sets of finite-element equations when N = 500. The
iterative method used here is a combination of a variant of GCGM by
Manteuffel (1980) with a preconditioning method by Wong (1979) designed to
enhance the convergence rate.

Generalized conjugate-gradient method

The iteration equation for the GCGM method is derived by replacing A
with a coefficient matrix M that is similar to A but much easier to invert
(Concus and others, 1975). Matrix M, known as a preconditioning matrix, is
defined from the fact that A can always be split into the sum of two
matrices, M and N (Varga, 1962, p. 87-93), so that

A =M+ N. (266)
Therefore, because the combination of equations (254) and (266) gives
Mx = d - Nx, (267)
the iteration equation is
MR = d - Nxp (268)
or, written in residual form,
MSpe1 = Txr (269)
where
s = X - X,
“k+1 -k+1 -k (270)
I = d - Ax, .

The GCGM algorithm based on iteration equation (269) can be stated as
(Concus and others, 1975, p. 7-8)

-1 W
s, = M"'r
L
Pr = %k
-1 1
S =M 1)
S Tr
g - %k Tk Lk = 1,2,..., (271)
k ST T
®k-1 Tk-1
Pp = Skt AxPro1
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°k Tk
TA i
Py APy * k=0,1,2,..., LJ

Freel T B TPy

%k

T I ooyl |

T+l

Equations (271) can be derived using the idea that, if a set of
linearly independent vectors Py k=1,2,...,N, can be obtained, then the

solution x can be written as a linear combination of the pk's because this

set of vectors spans the N-dimensional space. Such a set of linearly
independent vectors can be obtained by constructing them to be A-conjugate,

that is, so that Ezépj = 0 if and only if i # j (Beckman, 1967, p. 63).
Coefficients ﬂk are calculated to construct this set of vectors. The proper
linear combination of the Py Vvectors to give the solution x is obtained by
minimizing the error in the solution along the line X, t ap, at each itera-

tion (Beckman, 1967, p. 64). The value of "a" that minimizes this error is
given by «

K
In the absence of round-off error, the exact solution X is obtained in :
N iterations. Thus, if nearly N iterations were actually needed to obtain a ij

good approximation of x, the method would not be useful for large systems of
equations. Concus and others (1975) argued that the method can be
considered to be a general iteration method that permits the gradual loss of
A-orthogonality from round-off error and never converges to the exact

solution. They showed that the weighted error function [x - X JTé[x - X ]

is reduced at each iteration if M and A are symmetric and positive definite,
and that the method has certain optimality properties, so that, for a good
choice of M, it usually converges to the desired accuracy in far fewer than
N iterations.

Modified incomplete-Cholesky factorization

Modified incomplete-Cholesky factorization is an extension of a method
introduced by Meijerink and van der Vorst (1977) known as incomplete-
Cholesky factorization.! The extension is a combination of methods from
Wong (1979) and Manteuffel (1980).

Wong’'s (1979) method, known as row-sums agreement factorization, is
developed from incomplete-Cholesky factorization as follows. Let matrix
entries located at (i,j) be those entries corresponding to nonzero entries
of A, and let U be an upper triangular matrix with the same form as U,
except that the only nonzero entries of Z are located at (i,3). Finally,
let D be a diagonal matrix with the same form as D. Then an approximate
(incomplete) factorization of A is defined by B

1Meijerink and van der Vorst (1977) used an approximate factorization that is more like
the symmetric-Dolittle method than the Cholesky method. However, it is still called
incomplete-Cholesky factorization.
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N

M - , (272)

[[=4]
ot
fct

where M will generally contain nonzero entries in addition to nonzero

entries at the (i,j) locations because of fill-in generated by forming the
o

product U™D
a

E. Both incomplete-Cholesky and row-sums agreement
factoriz n

tion are based on equation (272).
For incomplete-Cholesky factorization, entries of E and E are obtained

by equating entries of §T§ U with nonzero entries a; . of A and rearranging
the results, so that J

i-1
Qs = a;; - kil ukiuki/akk’ i=1,2,...,N, (273)
i-1 _ o
a,, - = U, ./a,, (i,j) belongs to (i,]j)
0 , (1,j) does not belong to (I,j).

It can be verified by direct calculation that entries of M and A located at
(I,j) are identical. The two matrices differ because of fill-in in M. By
assigning the negatives of the fill-in entries in M to N and letting all
other entries in N be zero, A = M + N, as required. -

An ideal modification would make N near zero, but this is not possible
using equation (272) without adding nonzero entries to U. It is possible to
modify N to have the property of a zero matrix that the sum of entries of
each row (a row sum) of N equal zero. This is Wong's (1979) row-sum agree-
ment factorization. To develop this method, each row sum of A is set equal
to each row sum of M using equations (273) and (274) to define entries of M.

Because aij = aji’ entries of A below the main diagonal where Gij = 0 are
L i-1~ o~ Cd
given from equation (274) as aij = uji + kElukjuki/akk so that a row sum is
i-1 N
a,, + £ a + b
j=
_ i-1 o i-1 (. i-1 _
=a.,, + 2 . Lfe s+ 2 fu,. + 2 U L/
it " Ykiki/ Kk BT BV E S WY ukJ ki’ “kk
N [_ e
+ b u,., + 2 . L fa . (275)
j=itl ij -1 uklukJ kk

The factorization is obtained from equation (275) by computing all values of
uij using equation (274), so that all nonzero off-diagonal entries of A

cancel with their corresponding entries of M. Thus, the only remaining
entries in the sums on j in equation (275) result from fill-in, for which
4.. = 0, so that
1]
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i-1 i-1 N

a,. =a,.+ % w.u./a, + 3 f..+ T £, (276)
ii ii g Yki ki’ kK j=1 ji j=itl ij

where fij is a fill-in entry of M defined by

i-1

_ )2 u.u . /e, (i,j) does not belong to (i,3)

£ij = el KL K3 OKK o (277
0 , (i,j) belongs to (i,j).
Diagonal entry Eiiis calculated from equation (276) as
_ i-1 i-1 N
.. =a,., - = LU L /o - T f.. - = f... (278)
ii i Yi%ki/ %kk j=1 ji j=isl ij

Comparison of equations (273) and (278) shows that diagonal entries of A no
longer equal diagonal entries of M defined by equation (272).

The method from Manteuffel (1980) forces M to be positive definite, as
required by the generalized conjugate-gradient method. If A is not a
Stieltjes matrix, then M as defined using incomplete-Cholesky factorization
may not be positive definite (Meijerink and van der Vorst, 1977), which
means that @ computed by equation (273) will not be positive. 1In this

case, M as computed for row-sums agreement factorization also may not be
positive definite because as calculated using (278) may be even smaller.

Manteuffel (1980) showed that computation of aiis 0 for incomplete-Cholesky

factorization of finite-element matrices can be prevented by adding the
product of an empirically determined, small positive number, §, and ass to

the right-hand side of equation (273). The analogous modification of
equation (278) is

_ i-1 i-1 N
a.. = (L + §)a,., - = 4, . /a - X f,.. - = f... (279)
ii ii k=1uk1uk1 kk j=1 ji j=i41 ij

The matrix approximately factored by this modification of row-sums agreement
factorization is thus A + 61 (where I is the identity matrix), which is more
diagonally dominant than A.

The above method is implemented here as follows. If 511 <0 is

detected during factorization, then factorization is stopped and a new value

of §, Snew’ is computed from the old wvalue, 601d, using the empirical

equation 3
6new = §5old + 0.001, (280)

where the initial value of 601d is zero. Factorization is then reinitiated,
and equation (280) is applied again if aii < 0 is detected again, and so

forth. This process is continued until a large enough value of § is
computed that all a; s > 0.
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Gustafsson (1978, 1979) also presented a method that yields equations
having forms similar to those of equations (274), (277), and (279).
However, his method applies to finite-difference approximations for which A
is a Stieltjes matrix so that the motivation and method of choosing § are
different.

Based on equation (272), the solution of equation (269) is obtained
using the forward and backward substitution steps of the symmetric-Doolittle
method as T :

Ict
o

Ik ~ Ik
T _ (281)
k - Ik

where entries of E and 2 are computed using equations (274) and (279),
respectively. The remaining part of the algorithm implied by equations
(281) is

[Tan};
v {n

uij = uij/aii’ (i,j) belongs to (1,j), (282)
yk -5 iélﬁ' yk
N Nt S R T S (283)
K k.~
Yi = Yi/eyy
N
s§ -y5 - 3 aiﬂsf ,i=N,N-1,...,1. (284)
f=i+l

In applying the above algorithm, note that the factorization step to
compute D and U is only done once before applying the generalized conjugate-
gradient algorithm (equations (271)). At each iteration, S is computed
using only equations (283) and (284). The factorization, forward
substitution, and backward substitution steps are all fast and require

-~

little computer storage because U is sparse like A. This combination of

GCGM and modified incomplete-Cholesky factorization is called the modified
incomplete-Cholesky conjugate-gradient method (MICCG method).

Stopping criteria

One stopping criterion is to terminate the algorithm whenever the

maximum value of x§+1 - x? becomes small, or whenever
k+1 k k
m?x X. - Xg| = m?x akpil < ¢, (285)

k . . . -
where x; is an entry of x p? is an entry of Py> and € is a small positive

k’
-4 k+1 k| .
number, such as 10 . The value of max Xg - x| is usually assumed to be
i
a rough measure of the error max X, - x? in the solution. However, the

1
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. . . . . k+1 k
conjugate-gradient algorithm can sometimes yield a value of max |xi - X,

1
1

that is small even when the solution is inaccurate. Thus, another criterion

. k
that is also a rough measure of max X; - Xy

1

is employed.
The residual given by equation (270) can be written for any row i as
k k ki  k
ail[x1 - x1] + aiz[x2 - x2] + ... + aiN[XN - XN] = ri (286)

Thus, because ass is positive,

k
. a la. I r,
il X, - xk + i2 X, - xk + .+ LN X, - xk > l—l—l, (287)
a, . 1 1 a,. 2 2 a,. N N a..
ii ii ii ii
or
1 N K |r11<|
— % |a,.|max|x, - X.I > . (288)
a.. . ijl s i i a..
ii j=1 i ii
N
The sum X ai'l/aii is generally in the range of 1 to 2, so is assumed to
j=t H
be unity. Therefore, a rough measure of max |x., - X? is r? /aii’ and the
additional stopping criterion is t
k
m?x ry /aii < €. (289)

Note that if MICCG is used to solve the nonlinear equation (234), then
there will be an inner MICCG iteration loop and an outer loop on the
nonlinearity. An efficient way of employing MICCG for these problems is to
set the convergence criterion ¢ to be larger than normal (say, larger than
€g by about an order of magnitude) to reduce the number of inner iterations

taken at each outer iteration. Good accuracy is achieved by requiring close
convergence of the outer iteration sequence.

COMPARISONS OF NUMERICAL RESULTS WITH ANALYTICAL SOLUTIONS

Results of simulating some simple ground-water flow problems for which
analytical solutions have been presented in the literature are given here to
demonstrate the accuracy of the finite-element code (MODFE). Each simula-
tion is designed to test specific computational features that were discussed
in preceding sections and to verify that MODFE can accurately represent the
physical processes. To demonstrate that any consistent system of units may
be used with MODFE, both English and metric systems of units are used in the
example problems.

THEIS SOLUTION OF UNSTEADY RADIAL FLOW TO A PUMPED WELL
MODFE is used with axisymmetric cylindrical coordinates to compute
unsteady flow to a well located in a confined nonleaky aquifer having homo-
geneous and isotropic hydraulic properties and an infinite areal extent.
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DISTANCE ALONG

The pumped well fully penetrates the aquifer thickness (100 feet) and its
diameter (1 foot) is not significant for the simulation. The analytical
solution for drawdown is given by the Theis equation (Lohman, 1972, p. 15) as

where s is drawdown [length], Q is volumetric discharge [length®/time], T is
transmissivity [length?/time], and W(u) is the well function

J” T,

where u = rzs/aTt, r is radial distance from the well [length], and S is the
storage coefficient [0].

Because of radial symmetry about the well bore, the problem can be
simulated as an r - z plane section through the aquifer with the well
located at the z axis (figure 18). The radial extent of the simulated-
aquifer region is 8,000 feet, although the analytical solution was developed
for an aquifer of infinite areal extent. This distance is beyond the
influence of the pumped well during the simulation period so that the
computed solution near the well is not affected by the boundary condition

at r = 8,000 feet. Radial node spacing was expanded by a factor of / 2
starting with r = 125 feet to obtain the finite-element mesh composed of 52
triangular elements and 42 nodes shown in figure 18. The initial time-

element size was 3 X 10-5 days, and an expansion factor of 1.25 was used to
generate subsequent elements, to yield a total of 20 time elements. Other
characteristics of the problem are:

T = 105 ft2/d,
S = 0.001,
Q = 160,000 ft3/d,
h(r,z,0) = 0 ft,
h(8,000,z,t) = 0 ft.

These characteristics and time-element sizes are the same as used by Wilson
and others (1979, p. 85-88) to test their finite-element code, except that

ﬁ / Well

W 100 o morss s 30 27 /od 7 18 75 12 ) 6 3
Hf<
1)
17
zP VA1 |bslfs | b be | ba o ! P 8 S 2
O
o
=25 |
<9 ol NolaaNsiNes Nos Npo N9 NJte 13 10 7 4 1
05 o %, % %, o 1000 141421 2000 28284 4000 56569 8,000
‘@ G5 7y

DISTANCE ALONG r AXIS, IN FEET (NOT TO SCALE)

Figure 18. Finite-element mesh used to simulate unsteady-state radial flow
to a pumped well.
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Figure 19. Theis solution (Lohman, 1972, p. 15) and finite-element results
for unsteady radial flow to a pumped well.

lengths are designated as feet here rather than meters. Radial node spacing
is also the same, but Wilson and others solved the problem using Cartesian
coordinates.

To simulate confined flow in axisymmetriec cylindrical coordinates,
no-flow boundaries are placed along the aquifer top and bottom. Well
discharge is simulated as a line sink at the well radius r = 0.5 feet using
the specified-flow part [VB] of the Cauchy-type boundary condition (equation
(209)). Because Vg is specific discharge (volumetric discharge per unit
area), it is obtained from Q as follows:

o -0 _ _-16.000 _ _
B~ 2rr b ~ 2r(0.5)(100) ~

- 509.296 ft/d

Computed values of 4nTs/Q versus 1/u for the radial distances of 250,
500, and 1,000 feet are compared with the type curve of the Theis solution
in figure 19. The numerical results show good agreement with the analytical
solution and are nearly the same as obtained by Wilson and others (1979,
p. 87) in Cartesian coordinates.
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HANTUSH SOLUTION OF UNSTEADY RADIAL FLOW TO A PUMPED WELL
IN A LEAKY AQUIFER

The effects of release of water stored in an elastic confining layer
(transient leakage) in the vicinity of a well pumped at a constant rate in a
confined, homogeneous, isotropic aquifer of infinite areal extent are
contained in an analytical solution by Hantush (1960) (figure 20). The
analytical solution for drawdown in this flow system is stated as (see
Hantush, 1960, figure 5) . 9. Hew, 8

4nT ! ’

where H(u,B8') is an infinite integral that equals the well function W(u)

when B8’ = 0, and
, _1lzx /S’
PP =4wr/s

where S' is the storage coefficient (Séb’) of the confining unit and B 1is
JTb' /K’ [length].

The flow problem could be conceptualized with axisymmetric cylindrical
coordinates, as in the first simulation. However, in order to test the
transient-leakage algorithm, the flow system is represented by Cartesian
coordinates. Radial symmetry is used to reduce the size of the flow domain
by simulating a 22.5-degree wedge of the total flow system (see figure 21).

The finite-element mesh used in this simulation consists of 86

triangular elements and 67 nodes (figure 21) and extends 32,000 feet from
the pumped well, which is placed at node 1. Node spacing increases radially

T Initial potentiometric surface

Q = volumetric discharge

AV

. K = hydraulic -
S con‘ductivity;

Confining urit o e
R L) = specific -~
- storage

T = transmissivity

Confined aquifer S = storage coefficient

Impermeable base

Figure 20. Geometry used to simulate the effects of transient leakage on
drawdown near a pumped well,
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Figure 21. Finite-element mesh used to simulate the effects of transient
leakage on drawdown near a pumped well.

The (x,y) coordinates of nodes that are offset from the x axis by 11.25
degrees (figure 21) are computed from the x coordinate of the nodes located
on the x axis as (X cos 8, x sin 8), where 6 = *11.25 degrees.

from the pumped well by the factor / 2 starting at 50 feet (figure 21). Iﬂ)

Hydraulic heads are specified at nodes 65, 66, and 67 along the
external model boundary that is 32,000 feet from the pumped well. This
boundary is beyond the radius of influence of the pumped well during the
simulation period. Because the flow system exhibits radial symmetry,
element sides that are oriented in the radial direction from the well
represent flow lines; hence, there is no flow across these element sides.
Other characteristics of the problem are

T = 105 ft2/d,
S = 1.25 x 1074,
Q = 1,256,637 ft3/d,
h(x,y,0) = 0 ft,
h(r = 32,000 ft,t) = 0 ft

for the aquifer and

K' = 10 ft/4,
b’ = 400 ft,
S’ = 0.008
for the confining unit. The head above the confining unit is held constant
at 0 feet for the simulation period. L_i
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Pumpage is simulated for 0.10417 day (about 15 minutes) using 87 time

elements. An initial time-element size of 2 X ].O-8 day was selected, and
the other time-element sizes were generated by multiplying previous values
by factors ranging from 1.0 to 1.5.

Computed values of 4nTs/Q versus 1/u at distances of 100, 300, 500, and
2,000 feet from the pumped well are compared with the type curves H(u,B8')
versus l/u using B' values of 0.1, 0.3, 0.5, and 2, respectively, in figure
22. The Theis solution plotted on this figure indicates the extent to which
transient leakage affects drawdown. The numerical results show good
agreement with the analytical solution. :

MOENCH AND PRICKETT SOLUTION FOR CONVERSION FRdM CONFINED TO
UNCONFINED FLOW NEAR A PUMPED WELL

An analytical solution of Moench and Prickett (1972) is used to test
the accuracy of MODFE for the problem of drawdown in an aquifer that
converts from confined to unconfined conditions. A fully penetrating well
of negligible diameter placed in a nonleaky, confined, homogeneous, and
isotropic aquifer that is infinite in areal extent pumps at a constant rate
Q sufficient to partially dewater the aquifer near the well (figure 23).
Ground-water flow is assumed to be horizontal and obeys the Dupuit
assumptions (Bear, 1979, p. 74-78) in the unconfined part of the aquifer.
Changes in aquifer thickness, b, with drawdown in the unconfined part of the
aquifer are assumed to be small and do.-not cause significant changes in
transmissivity. : C
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@ | — |
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® = —— -+ P'=0.3(r=300 feet) 3
@ N A 2 B'=0.5(r=500 feet) _
g B B'=2(r=2,000 feet) ]
o | Finite-element solution |
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Figure 22, Hantush‘(l960) solution and finitefelement fesuits‘fdr the
effects of transient leakage on drawdown near a pumped well.
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Figure 23. Geometry used to simulate the effects of conversion from
confined to unconfined flow near a pumped well.

Solutions for total drawdown in the unconfined part of the aquifer, S 1‘)
and in the confined part, S,, are given by

9 [W(ul’v) N AwT(H-b)]’

51 T 4aT Q
and
_ Q9 v[{ay/ay)-1]
S92 = %t 1° ()}
where
2§
Y1 T 4Te ¢
" = r?s
2 4Tt
R2S
v = —X
4Tt

S. is the specific yield, S is the storage coefficient, a;/a, [0] is the
aquifer-diffusivity ratio (T/Sy)/(T/S), or S/Sy’ and R is the radial
distance from the pumped well to where conversion takes place. W(uz) is the
well function used for the Theis solution and W(ul,v) = W(ul)-W(v).
The aquifer problem is simulated using Cartesian coordinates, and the [\J,

finite-element mesh is the same as used by Wilson and others (1979,
p. 95-101) for a similar test problem, except that their mesh terminated at
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r = 8,000 feet whereas the mesh used here extends to r = 32,000 feet. The
22.5-degree wedge of the aquifer region is subdivided into 68 triangular
elements and 52 nodes (figure 24) such that the node spacing expands in the

radial direction by a factor of / 2 starting at 125 feet from the well.

Time elements range in size from the initial value of 5 X 10-5 days to a
final value of 30 days and are expanded by factors of 1.0 for the first four
elements to approximately 1.5 afterward; 44 time elements were used. Other
characteristics of the problem are

K = 26.73 ft/d,

b = 100 ft,

S =0.1,

y

S = 0.0001,

Q = 33,591 ft3/d,
h(x,y,0) = 0 ft,

H=0 ft.

A Cauchy-type boundary is placed along the element sides at 32,000
feet. Because the influence of the pumped well on the aquifer extends
beyond this radial distance and the analytical solution assumes that the
aquifer has an infinite areal extent, the Cauchy-type boundary is used to
simulate the part of the aquifer that is influenced by the pumped well but
is not represented by the finite-element mesh. It allows flow across the
artificial model boundary from the aquifer region that is external to the
mesh, and allows drawdowns to be computed at the model boundary.

A7
52
N
51 oy
1 (125,0) \(176.78,0) (250,0) (32,000, 0)
> _
5
o N N
(x cos6, x sinB)
50

Figure 24. Finite-element mesh used to simulate the effects of conversion
from confined to unconfined flow near a pumped well.
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Figure 25. Moench and Prickett (1972) solution and finite-element results
for conversion from confined to unconfined flow near a pumped well.

The specified head HB (equation (4)) for the Cauchy-type boundary was

located 200,000 feet from the pumped well. It is assumed that all drawdown
in the infinite aquifer occurs within this distance. The coefficient a was
obtained by assuming that flow beyond 32,000 feet is governed by the steady-

state flow equation with known-head boundary conditions of h(t) at
r = 32,000 feet and HB = 0 at r = 200,000 feet. Therefore, by using the

appropriate solution to the steady-state flow equation (Bear, 1979, p. 306,
equation (8-7)) and equation (4),

T [h - HB] 1
r = 32,000 1o [-32.000) 32,000
200,000

= a[HB - h],

so that, because T = 2,673 ft2/d, o = 0.04558 ft/d.

dh
94, = T ar

Computed drawdowns at a radial distance of 1,000 feet from the pumped
well were compared with the analytical solution. Values of dimensionless
drawdown, 47nTs/Q, and dimensionless time, 1/u2, were computed from the

simulation results and are plotted in figure 25 along with the type curves
of the analytical solution. Values for ev[(al/az)-l]W(uz) versus 1/u2 were

plotted for drawdowns less than 2 feet (before conversion), and values of
[W(ul,v) + 2] versus 1/u2 were plotted for drawdowns greater than 2 feet

(after conversion). The numerical results are in good agreement with the
analytical solution, and are better than the results of Wilson and others

(1979, p. 99) because they specified HB =0 at r = 8,000 feet, which did not

allow drawdown to propagate beyond 8,000 feet as it should have.
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Figure 26. Cross section of steady-state flow through a dam with areal
recharge.

STEADY-STATE FLOW THROUGH A DAM WITH AREAL RECHARGE

A straight dam with vertical faces 50 meters wide and 100 meters long
maintains a water level of 8 meters on one side and 2 meters on the other
side (figure 26). The hydraulic conductivity, K, of the earth material in

the dam is 10-6 m/s and areal recharge, W, is applied to the surface of the

dam at the rate of 4.8 x 10.8 m/s (figure 27). By making the Dupuit

assumptions for unconfined flow, the solution for the height, h, of the

water table in the dam can be obtained as the Dupuit parabola (see Verruijt,

1970, p. 51-57)
! ’ 2 2 2 2lx , W

h™ = Hl - [Hl - H2 ]L + EX(L - x),

where x is the horizontal distance along the width L of the dam and the

water levels Hl and H2 on either side of the dam are

Hl = 8 meters, x = 0 meters,
H2 = 2 meters, x = L = 50 meters.
A Y
10 K3 7 11 i5 19 3 7 31 35 39 43
2 6 10 14 18 22 26 30 34 38 42
4 8 12 16 20 24 28 32 36 40
o U 5 9 13 17 21 25 29 33 37 41
0 10 20 30 ' 40 50

DISTANCE ALONG WIDTH, IN METERS

Figure 27. Finite-element mesh used to simulate steady-state flow
through a dam with areal recharge.
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Because ground-water flow is virtually one-dimensional through the dam,
the entire 100-meter length need not be simulated. Instead, a 10-meter-long
section of the dam is represented by a finite-element mesh consisting of 60
triangular elements and 43 nodes (figure 27). No-flow boundaries are placed
along the element sides that are parallel to the x axis at y = 0 meters and
y = 10 meters, because ground-water flow is parallel to these boundaries.
Specified-head boundaries are located along the lines x = 0 meters and x =
50 meters in order to maintain the height of the water levels at the values

given for Hl and H2, respectively. Areally distributed recharge is applied

over the entire model area.

The steady-state solution for the water-table height provided by MODFE
is plotted along with the analytical solution in figure 28. The solution by
MODFE is in close agreement with the analytical solution.
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Figure 28. Analytical solution (Dupuit parabola) and finite-element
results for steady-state flow through a dam with areal recharge.
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Figure 29. Geometry for two-dimensional steady-state flow in an unconfined
aquifer.

TWO-DIMENSIONAL STEADY-STATE FLOW IN AN UNCONFINED AQUIFER

The flow problems described previously for testing the accuracy of
MODFE have one-dimensional solutions, even though MODFE solved these
problems in two dimensions. This flow problem tests the ability of MODFE to
accurately compute steady-state water levels in an unconfined aquifer for a
problem that has an analytical solution in two dimensions,

The problem used in this simulation is taken from Verruijt (1970,

Problem 6.2) where four wells pumped at the same rate (1.196 X 10'6 md/s)
are located at the corners of a 40-meter square in an unconfined aquifer
(figure 29). The square represents a construction site where the water
level is to be maintained 4 meters below the original water table, which is
10 meters above the impermeable base, The aquifer is homogeneous and

isotropic with a hydraulic conductivity, K, of 10_7 m/s, an initial
thickness of 10 meters, and an external radius, R, of 2,000 meters, measured
from the center of the square. Beyond R the drawdown is zero.

The solution for the aquifer head, h, is given by Verruijt (1970,
p. 66) as

b
2 2
s 1 4 Jx-xplr -y

where HB is the specified head (10 meters) at the radius R and Q. is the

volumetric discharge from well j located at the point [x.,y.] in the
aquifer. 37
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Because the wells are pumped at the same rate and are regularly spaced
about the center of the square (see figure 29), the flow problem can be
simulated in the 45-degree wedge shown in figure 30. The origin of the
wedge is the center of the square, and one of the four pumped wells is
placed at the point (20 meters, 20 meters) in the wedge. No-flow boundaries
are located along the x axis and the line y = x, and a specified-head
boundary (HB = 10 meters) is located at a distance of 2,000 meters from the

center of the square.

The aquifer region is subdivided by a finite-element mesh consisting of
94 triangular elements and 67 nodes (figure 30). Results from the nonlinear
steady-state simulation and the analytical solution are presented in figure
31. The simulated results show good agreement with the analytical solution.
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0 1 1 -
0 40 80 120 160
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Figure 30. Finite-element mesh used to simulate two-dimensional
steady-state flow in an unconfined aquifer.

94




11 — T T T 717177 T T T 17177 T T T TTTT T T T 77771
| I
10 —— Analytical solution |
. Finite-element solution
9 — ]
8 _]
%) 7 —
o
i
|_
T
= 6 % —
=
g 5 | 1 lllllll ] | Illllll | { IlllIII 1 | L1 1i¢tl
E 0 10 100 1,000 10,000
E DISTANCE ALONG x OR y AXIS, IN METERS
m
u_lJ 11 T T |Illll| T 1 Illlll| 1 T |||||II T T T T TTTT
o
=
C 10 — Analytical solution ]
i
g *  Finite-element solution
9 _
8 — ]
7 — |
6 o —
5 | ] lllllll | IIIIII' 1 1 IIIIlII | 1 | 3 118
o] 10 100 1,000 10,000

DISTANCE ALONG y=x, IN METERS

Figure 31. Analytical solution and finite-element results for
two-dimensional steady-state flow in an unconfined aquifer.

SUMMARY

The two-dimensional steady- and unsteady-state equations for ground-
water flow in a heterogeneous, anisotropic aquifer were approximately solved
with finite-element techniques. Spatial finite elements are triangular with
two-dimensional linear basis functions and time elements are linear, with

95



one-dimensional linear basis functions. Finite-element equations were
derived by minimizing a functional of the difference between true and
approximate hydraulic heads and are equivalent to finite-element equations
obtained by either classical variational or Galerkin methods. Variable
directions of anisotropy are incorporated by rotating the coordinate system
locally so that the rotated coordinates are aligned with the local principal
directions of the transmissivity tensor. For unsteady-state problems, a
mass balance is computed at the end of each time element. Computed flow
components include accumulation or depletion of water in storage, flow
across confining beds, flow across specified-head boundaries, flow across
specified-flow boundaries, and flow across head-dependent flow boundaries.
For steady-state problems, the mass balance, excluding the storage
component, is computed at the end of the simulation.

The basic finite-element equations include the following processes:
confined flow; leakage through rigid confining beds; specified areal and
point recharge and discharge; and specified-flow, specified-head, or head-
dependent boundary conditions. Extensions of these equations allow for
unconfined flow using the Dupuit assumption, decreases of aquifer thickness
to zero and increases from zero (termed drying of nodes), conversions from
confined to unconfined flow and vice versa, point head-dependent discharge
from springs and drainage wells, areal head-dependent leakage combined with
aquifer dewatering, areal head-dependent discharge from evapotranspiration,
line head-dependent leakage combined with aquifer dewatering for narrow
rivers, and transient leakage from confining beds. Except for transient
leakage, all of these extensions are nonlinear.

The finite-element equations were also formulated using axisymmetric
cylindrical coordinates to allow analysis of problems involving axisymmetric
flow in multiaquifer systems. Boundary conditions are the same as for the
two-dimensional Cartesian versions, but for radial flow the principal
directions of the hydraulic conductivity tensor are assumed to be the radial
and vertical directions. None of the extensions can be used in this case.

Matrix solution techniques for the finite-element equations include the
direct symmetric-Doolittle method, which can be efficient for small to
medium problems (less than about 500 nodes), and the iterative modified
incomplete-Cholesky conjugate-gradient (MICCG) method, which is more
efficient for larger problems (more than about 500 nodes). Nonlinear
unsteady-state problems are solved using a predictor-corrector method that
can employ either the direct or MICCG method to solve both the predictor and
corrector equations. Nonlinear steady-state problems are solved using an
iterative method that can also employ either matrix solution method. Use of
MICCG for nonlinear steady-state problems yields an inner MICCG iteration
loop and an outer iteration loop on the nonlinearity. Because the inner
loop converges in progressively fewer iterations as the outer loop
converges, MICCG is recommended for these problems.

The accuracy of the finite-element solution method was evaluated using
five test problems for which analytical solutions are available: radial
flow to a well in a homogeneous, infinite, nonleaky, confined aquifer;
radial flow to a well in a homogeneous, infinite, confined aquifer with
transient leakage; radial flow to a well in a homogeneous, infinite,
nonleaky aquifer undergoing conversion from confined to unconfined flow;
one-dimensional, unconfined, steady-state flow through a dam with areal
recharge; and two-dimensional, unconfined, steady-state flow to a group of
drainage wells. All problems except the first were solved using Cartesian
coordinates. All numerical solutions are in good agreement with the
analytical solutions.
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APPENDIX A

It is shown here that

At e
n+l N,
e[ 8h i dh dh
éiJ “n+l [ J Ni[sat - R - h) -W- P] * ox [Txx ax * Txy ay]
0 e
A
A 3h ah e
+ 5§~[Tyx 5; + Tyy 5;} dxdy - eNi[qB + a[HB - h]]dC dt’ = 0. (Al)
C
2

To simplify notation, the generalized Darcy'’'s law (Bear, 1979, p. 71) is
used to replace the terms involving transmissivity. That is,

- éh éh
9 = “Tyx ax Txy dy (42)
and
vh vh
& = Tyx ox ~ Tyy oy 43

are used to write equation (Al) as
e

At o ah aN; aNg
21 o1 Ni[S—— -R(H -h) - W - P] " g U C 3y q dxdy
e

e [ -
- J eNi[qB + a[HB - h]]dc dt’ = 0. (A4)
C

To initiate the proof, equations (A2) and (A3) are substituted into
equation (1), which is then multiplied by an+1N§ and integrated over spatial

element e and time element n+l to obtain

At
+1 el.dh \
- - - - '
94l Ni{SEE R(H - h) w Pdedy dt
e

0 A

N

9q
- - ax 5—1 dxdydt’ . (A5)
A®

4

Next, a result from vector calculus known as Green's first identity
(Splegel 1959, p. 107) is used to modify the right side of equation (A5).
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e . . . . .
If Ay qy, and Ni are continuous and have continuous derivatives in element

e, then
o209, 39y ONg oNS . ]
Ni 3= T 3y dxdy = - 7% 9 T 3y Yy dxdy - eNiqndC’ (A6)
A& G C

where q_ is the component of the flow vector [qx, qy] that is normal to the
element boundary and is positive for inflow, and c® is the boundary of

element e. Substitution of equation (A6) into equation (A5) and
rearrangement yields

e

At o( an ong oN¢
Y Ni[SEE -R(H-h) - W - P] -3 Uk - 3y qy dxdy
e

0 A

e 1 J—
- ‘ Nig dCpdt’ = 0. (A7)
Ce

The integral over the element boundary ¢® can be split into two
integrals: the integral over a Cauchy-type boundary and the integral over
the remaining side(s), so that

e e e
J N;q.dC = J N;q dC + J Ng [qB + a[HB - h]]dC, (A8)
c® c® ¢t

¢ designates the side(s) that are not Cauchy-type boundaries and

1
equation (4) was used to replace q_ in the integral over a Cauchy-type
boundary. o

where C

When equation (A7) is summed over all elements in the patch for node 1i,
all boundary integrals over Ci for adjacent element sides cancel because of
equation (3) and the continuity of Ni across an element boundary. Further-
more, all boundary integrals for element sides forming the outer boundary of

the patch are zero, because Ni is zero on these sides. Therefore, equation
(A7) yields

e e

Atnel o[ on aNg oNG
g 041 Ni[SEE -R(H - h) - W - P] " 3% Ux T 5§_qy dxdy
e

i

0

e [ R—
- ‘ eNi[qB + a[HB - h]]dc dt’ = 0, (A9)
C

which, when written using equations (A2) and (A3) to replace q  and q_, is
equation (Al). % y
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The principal notation used in this report is given below.

NOTATION

Certain symbols

used only locally are omitted from the list for brevity.

I

e

e
C..
11

(D (@)

ii *Uii

[~ [&!

e

Coefficients defined by equation (6) and used to compute the

approximate solution, h.

Coefficients defined by equations (176) and (177) and used to
approximate the infinite series for transient leakage calculations.
A =A'Jfa ; B =B'/B .

m m "m’ “m m “m

(x,y) location of the jth point source or sink. Overbars signify
that the location is given in (i,&) coordinates.

Coefficients used in basis functions N;; defined by equation (10)

for Cartesian coordinates and by equation (212) for axisymmetric
cylindrical coordinates. Overbars signify evaluation using (x,y)
coordinates.

Matrix G + V or the coefficient matrix defined by equation (254),
depending on context. Entries are Aij for A= G + V and 2 for A

as the coefficient matrix. Subscript 2 (éﬁ) signifies evaluation

of the coefficient matrix at iteration £ for a nonlinear steady-
state problem.

Vector of known flows and boundary conditions, defined by equations
(45) and (50) for Cartesian coordinates and by equations (45) and
(229) for axisymmetric cylindrical coordinates. Entries are B..
Subscript £ (@2) signifies evaluation at iteration £ for a

nonlinear steady-state problem.
Weighted average B over time element n+l defined by equation (62).
Entries are Bi'

Aquifer thickness; bi is aquifer thickness at node i, and bi n is

L
aquifer thickness at node i and time level n.
Confining-unit thickness; bi is harmonic mean confining-unit

thickness at node i defined by equation (170).
Side(s) of element e that are Cauchy-type boundaries.

Coefficient for areal head-dependent leakage function that applies
for aquifer dewatering at node i; defined by equation (119).
Coefficient for areal head-dependent discharge function at node i;
defined by equation (132).

Coefficient for point head-dependent discharge function at node i;
defined by equation (104).

Coefficient for line head-dependent leakage function at node i,;
defined by equation (155). N

Storage coefficient term for node i of element e; defined by
equation (36) for Cartesian coordinates and by equation (224) for
axisymmetric cylindrical coordinates.

Entry Cii of C for before (1) and after (2) conversion from

confined to unconfined flow or vice versa.

Diagonal matrix with diagonal entries defined by Cii =2 cii.
e i
zd; ..
i 1

Diagonal matrix for symmetric-Doolittle factorization of A; defined
by equation (260). Entries are 1/aii'
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len

(oL

Iex
*
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%

09
o
(8N
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o W

[+]

st
la]

gt > 5>
s

15> st
%*

1=2
(=]
>

(]
~

o
~

=t
8
=y
o}

- >

g
=y
B

Diagonal matrix for incomplete-Cholesky or modified incomplete-
Cholesky factorization of A; defined by equation (272) and
calculated using equation (273) for incomplete-Cholesky
factorization or equation (279) for modified incomplete-Cholesky
factorization. Entries are 1/511.

Hydraulic-conductivity term for unconfined flow; defined by
equation (72).

Right-hand side vector for finite-element matrix equation (254).
Entries are di‘

Exrror h - h in the approximate solution of equation (1).

Index indicating summation over elements in the patch for node 1i.

Element of fill-in in M; defined by equation (277).

Matrix defined by entries Gij = § g?j for confined flow and by
i

equation (74) for unconfined flow.
Weighted average G over time element n+l defined by equation (69).

Weighted average G over time element n+l defined by equation (70).

A

*
Matrix G computed using predicted head vector h .

([pl}

A

- *
Matrix G computed using predicted head vector h .

Transmissivity term defined by equations (38) (or (43)), (39), and
(40) for Cartesian coordinates and by equations (226), (227), and
(228) for axisymmetric cylindrical coordinates.

Hydraulic head at the distal side of a confining unit.

Specified head at a boundary.

Initial head (at t = 0).

Hydraulic head at the distal side of a confining unit or the stage
elevation of wide river overlying an aquifer being dewatered.
Controlling head for line head-dependent leakage functions (for
rivers it 1is the river-stage elevation).

True hydraulic head in the aquifer.

Approximate hydraulic head in the aquifer defined by equation (6};
A A A A

hi is h at node i and hi n is h at node i and time level n.

»

Predicted head at node i during a conversion from confined to
unconfined flow. . A A
Vector of entries hi; hn is a vector of entries h

A

i,n
Weighted mean of h over time element n+l; defined by equation (63).

Predicted head vector for time level n+l for predictor-corrector
method.
Arbitrary initial head vector for steady-state flow problems.

Error functional defined by equation (15) for Cartesian coordinates
and by equation (214) for axisymmetric cylindrical coordinates.

The mth term of the infinite series for transient leakage at time
level n resulting from time variation of head in the aquifer at
node 1; defined by equation (172).

The mth term of the finite series to approximate transient leakage
at time level n resulting from time variation of head in the
aquifer at node i; defined by equation (179).
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=

Row and column location of nonzero entries in A.

The mth term of the infinite series for transient leakage at time
level n resulting from time variation of head at the distal side of
a confining unit at node i; defined by equation (175).

The mth term of the finite series to approximate transient leakage
at time level n resulting from time variation of head at the distal
side of the confining unit at node i; defined by equation (181).
Components of the hydraulic conductivity tensor for the

aquifer written using Cartesian coordinates (x,y). Principal

components in the (i,&) coordinate system are ( <%’ K9§).
Principal components of the hydraulic conductivity tensor written

using axisymmetric cylindrical coordinates (r,z). e
Vertical hydraulic conductivity in a confining unit; K' is the
constant value of K’ for spatial element e.

Length of the side of an element between nodes i and j'.

Finite series approximation of Sl(AtD] for transient leakage.
Finite series approximation of Sz[AtD] for transient leakage.

Preconditioning matrix that is an approximation of A but is much
easier to invert; defined by equation (266). -

Number of nodes in the finite-element mesh, or the number of
unknowns in equation (254), depending on context.

Number of terms in Ml[AtD) and MZ[AtD]’ respectively.

Basis functions for spatial finite elements defined by equation (9) L,J
for Cartesian coordinates and equation (211) for ax1symmetr1c )
cylindrical coordinates. Overbar signifies evaluation using (x,y)
coordinates.

Matrix A-M.

p
2,6 x-al)é|y-bi]Q.(t), which is the designation of sources or
5218 (%-23) 8 (7-23) % ® 8 P

sinks, each of strength Qj’ defined for equation (1).

Volumetric flow rate for point source or sink j; defined for
equation (1).

Volumetric flow rate at node i from leakage through a confining
unit or river overlying an aquifer being dewatered.

Volumetric flow rate at node i from areal head-dependent discharge.

Py

Volumetric flow rate at node i from point head-dependent discharge.
Volumetric flow rate at node 1 from line head-dependent discharge.

Specified flow (specific discharge times aquifer thickness) normal
to a boundary.
Normal component of flow (specific discharge times aquifer
thickness) at a boundary.
Hydraulic conductance of a confining unit; R® is the constant value
of R for spatial element e.
Radial and vertical coordinates of the axisymmetric cylindrical
coordinate system. A
Residual vector @2 - ézhz for the finite-element matrix equations LVJ
at iteration £.
Storage coefficient of the aquifer; s® is the constant value of S
for spatial element e.
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e ot et

et

i<

(x,y)
(x,¥)

X

i~

Specific storage; $® is the constant value of S_ for spatial
element e. s S

Specific storage of a confining unit; $'® is the constant value of
Sé for spatial element e. s

Specific yield; $° is the constant value of S_ for spatial
element e. y Y
Infinite series for transient leakage; defined by equation (186).

Infinite series for transient leakage; defined by equation (187).

Displacement vector x for the iterative GCGM method.

k+1 T 2k

Components of the transmissivity tensor for the aquifer

written using Cartesian coordinates (x,y). Principal components in
the (x,y rdi --, T--3.
(x,y) coordinate system are [Txx’ Tyy)

Time.
Time since time-level n, t - tn'

Upper triangular matrix for symmetric-Doolittle factorization of A
defined by equation (259). Entries are uij’ i< j, and ;-

Upper triangular matrix for incomplete-Cholesky or modified
incomplete-Cholesky factorization of A; defined by equation (272).

Nonzero entries are u,., i < j, and a. ..
ij ii
Diagonal matrix defined by entries Vi = g vii.
i
Specified specific discharge normal to a boundary.

Normal component of specific discharge at a boundary.

Hydraulic conductance and Cauchy-type boundary condition term
defined by equation (37) for Cartesian coordinates and by equation
(225) for axisymmetric cylindrical coordinates. o

Unit areal recharge or discharge rate for the aquifer; W 1is the
value of W for spatial element e.

Global Cartesian coordinates.

Local, rotated Cartesian coordinates along the principal directions
of the transmissivity tensor.
Solution vector for the finite-element matrix equation (254).

Intermediate vector for the symmetric-Doolittle factorization
solution of equation (254) or equation (269).
Vertical coordinate direction, positive upward.

Elevation of the aquifer base; zy 5 is z, at node 1.

Elevation below which the areal head-dependent discharge function

vanishes; z ., is z_ at node i.
ei e

Elevation below which the point head-dependent discharge function

vanishes; zpi is zp at node 1.
Elevation at which discharge to the aquifer from a line head-
dependent source or sink is at a maximum; Z.4 is z. at node 1.
Elevation of the top of the aquifer (base of the confining unit);

z ., is z_ at i.
- ‘ node i
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Greek

’

ti

Parameter for Cauchy-type boundary conditions in Cartesian
coordinates; defined by equation (4). l_J
Parameter for Cauchy-type boundary conditions in axisymmetric
cylindrical coordinates; defined by equation (209).

Entry of matrix E-l.

Entry of matrix E_l.

Exponents defined by equations (176) and (177) used to approximate
the infinite series for transient leakage calculations.
Transient leakage parameter for node i; defined by equation (167).

Area of element e; defined by equation (11) for Cartesian
coordinates and by equation (213) for axisymmetric cylindrical
coordinates.

Time interval tn - tn-l for time element n.

Dimensionless time interval 7iAtn.

2 A A . . _2_
Head change vector 3[bn+1 - bn] over time interval 3Atn+l for

unsteady-state problems; §2 is head change b£+l - @z from iteration
£ to iteration £+1 for nonlinear, steady-state problems,

A

Predicted head change vector over time interval %Atn+l for

predictor step of the predictor-corrector method.
A

Head change vector h - bo computed for linear steady-state l\)
problems.

Convergence criterion for the MICCG method; defined for equation

(285).

Convergence criterion for the iterative solution of nonlinear
steady-state flow problems; defined for equation (240).

Counter-clockwise rotation angle from (x,y) coordinates to (i,&)
coordinates in element e.

Proportionate point in time element n+l when node i converts from
confined to unconfined flow or vice versa.

The estimate of 91 given by equation (96).
Basis functions for time elements; defined by equation (13).

Proportionate point in time element n+l when a point head-dependent
discharge function, an areal head-dependent leakage function, or
line head-dependent leakage function changes form at node 1.

¢i[¢i + 1]/2.

Proportionate point in time element n+l when an areal head-

dependent discharge function changes form at node i; defined by

equation (134).

¢ei[¢ei + 1)/2'

Proportionate point in time element n+l when an areal head- |
dependent discharge function changes form at node i; defined by L,L
equation (133).

¢ti[¢ti + 1]/2' 108



- Gooley—A MODULAR FINITE-ELEMENT MODEL (MODFE) FOR AREAL AND AXISYMMETRIC GROUND-WATER FLOW PROBLEMS, PAR h Water-Resources Jn




