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LIST OF PLATES
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2.2-1 Mathematical model of "simple" groundwater system.  

2.2-2 Laplace's equation.  

2.2-3 Poisson's equation.  

2.2-4 Transient flow equation.  

2.2-5 Explanation of mathematical notations.  

2.2-6 Flow equations written in a form allowing for consideration of aquifer 
heterogeneity and anisotropy.  

2.3-1 Role of mathematical and conceptual models.  

2.3-2 Interdependence of conceptual models.  

2.3-3 Conceptual model of a groundwater system.  

2.3-4 Importance Of conceptual models.  

SECTION 3.0 
3.1-1 Location of the Death Valley groundwater system within the Great 

Basin.  

3.1-2 Simplified isostatic anomaly map of the United States.  

3.1-3 Configuration of the crust in north-central Great Basin. Based on CO
CORP 400 N transect.  

3.1-4 Estimated P-wave velocity in the upper mantle of the continental United 
States, based on deep seismic soundings, nuclear explosions, and earth
quakes.  

3.1-5 Intensity of heat flow in the Great Basin.  

3.1-6 Schematic representation Of conceptual understanding of tectonophysi
cal character of the Great Basin.  

3.2-1 Numerical analysis of a process of upwelling of asthenospheric materials 
into the lithosphere for the Rio Grande Rift.  

3.2-2 Effect of a mantle upwelling on the lithospheric structure.  

3.2-3 Surface heat flow and shear stresses in the upper mantle and lower crust 
resulting from convective flow of heat and mass in the upper mantle.  

3.2-4 Continuum crustal stresses and surface uplift resulting from convective 
How of heat and mass in the upper mantle.  
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3.2-5 Failure-surface trajectory diagram for the upper crust overlying convec
tive system in the upper mantle.  

3.2-6 Contour diagram of shear stress magnitude in units of maximum base 
normal stress. Upper crust overlying convective system in the upper 
mantle.  

3.2-7 Idealization of the conceptual linkage between an extension dominated 
tectonic enviroment and a groundwater system operating in the upper 
crust.  

3.3.1-1 The Walker Lane shear belt and major associated faults.  

3.3.1-2 Major late Pliocene and Quaternary faults in the Nevada Test Site re
gion, their relation to the Death Valley-Pancake Volcanic Zone.  

3.3.1-3 Quaternary faults near proposed repository.  

3.3.1-4 Quaternary faults near proposed repository.  

3.3.1-5 Seismicity of the southern Great Basin. Period August 1, 1978 through 
December 31, 1983.  

3.3.1-6 Strain changes in the vicinity of the Nevada Test Site during a two
month period.  

3.3.2.1-1 Summary of strain rates and of accumulated shear strain for the region 
of the Yucca Mountain groundwater system.  

3.3.2.3-1 Division of deformation area into strain domains.  

3.3.2.2-2 Idealization of tectonic cycle for a strain domain.  

3.3.2.2-3 Idealization of changes in stress field during a tectonic cycle.  

3.3.2.2-4 The dilatancy/iluid diffusion model of an earthquake nucleation process.  

3.3.2.2-5 Idealized response of a fractured medium during uniform extension.  

3.3.2.2-6 Idealized response of a dilated fractured medium to sudden changes in 
pore pressure.  

3.3.2.3-1 Schematic illustration of: a) division of the strain domain into the upper 
and lower parts with different in situ stress conditions; and b) division 

of the lower part of the strain domain into the dilatant zone and the "outside zone." 

3.3.2.3-2 Schematic representation of strain accumulation within a single strain 
domain during three cycles of deformation.  

3.3.2.3-3 Schematic representation of changes in the in situ stress conditions 
occurring near the ground surface in a cyclically deforming fractured 
medium.  

3.3.2.3-4 Location of faults containing calcite-silica veins of Quaternary age in 
the Yucca Mountain area.
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3.3.2.3-5 Geologic section across Yucca Mountain showing location and thickness 
Of mosaic breccias.  

3.3.3.1-1 Stress on a fracture as a function of magnitude and orientation of prin
cipal stresses.  

3.3.3.2-1 Mohr's representation of stresses in two dimensions and combined 
Griflth/Navier-Coulomb failure envelope.  

3.3.3.2-2 Assumed initial in situ stresses around a deforming fracture.  

3.3.3.2-3 Idealization of changes in stresses and displacements occurring along a 
deforming fracture as a function of depth and time.  

3.3.3.2-4 Idealization of changes in stresses and displacements occurring along a 
strike of a deforming fracture.  

3.3.3.2-5 In situ stress states around a deforming fracture.  

3.3.3.3-1 Conceptual model of conductive aperture of fractures.  

3.3.3.3-2 Relationships between time and hydraulic properties for decreasing 
Cnfeff•.  

3.3.3.3-3 Idealized joint response during shear displacement.  

3.3.3.3-4 Relationship between time and hydraulic properties for increasing rf,.  

3.3.3.3-5 Time-dependence of 5s and K, around a segment of a deforming fracture 
at a const. depth.  

3.3.3.3-6 Time-dependence of vertical extent of a segment of a deforming frac
ture and time-dependence of the total enhancement of the conducting 
aperture.  

3.3.3.3-7 Schematic representation of changes in : a) the in situ stress conditions; 

and b) the hydraulic conductivity structure, occurring near the ground 
surface in a cyclically deforming fractured medium.  

3.3.4-1 Conceptual model of groundwater flow in a deforming fractured medium.  

3.3.4-2 Deforming fractured medium-idealized history of changes in hydraulic 
potential.  

3.3.4-3 Deforming fractured medium-idealized history of changes in hydraulic 
potential.  

3.3.4-4 Deforming fractured medium-idealzed history of changes in hydraulic 
potential.  

3.3.4-5 Deforming fractured medium-idealzed history of changes in hydraulic 
potential.  

3.3.4-6 Idealized history of the position of the water table for a single point 
P(=,).-
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3.3.4-7 Non-homogeneous strain-its relationship to configuration of the water 
table.  

3.3.5-1 Repeated temperature profles from Well UE-25a7.  

3.3.5-2 Maximum rise of the water table at point P(.,,) caused by changes in 

the in situ stress conditions.  

3.4.1-1 Generalized geologic map of the Death Valley Pancake Range Volcanic 
Zone and of the Death Valley groundwater system.  

3.4.1-2 Location of seismic monitoring stations used for detailed analyses of the 
P-wave residuals.  

3.4.1-3 Seismic velocity structure of the upper crust from teleseismic P-wave 
residuals for the region of Death Valley groundwater system.  

3.4.1-4 Seismic velocity structure of the lower crust from teleseismic P-wave 
residuals for the region of Death Valley groundwater system.  

3.4.1-5 Seismic velocity structure of the upper mantle from teleseismic P-wave 
residuals for the region of Death Valley groundwater system.  

3.4.1-6 Seismic velocity structure of the mantle (depth 81-131 kin) from tele
seismic P-wave residuals for the region of Death Valley groundwater 
system.  

3.4.1-7 Seismic velocity structure of the mantle (depth 131-231 kin) from tele
seismic P-wave residuals for the region of Death Valley groundwater 
system.  

3.4.1-8 Regional heat flow values within and adjacent to the Nevada Test Site.  

3.4.1-9 Intensities of heat flow at the Nevada Test Site.  

3.4.1-10 Map of western United States showing intensities of heat flow.  

3.4.1-11 Terrestrial temperature - a perspective.  

3.4.1-12 Terrestrial heat flow - a perspective.  

3.4.2-1 Total hydraulic gradient combines buoyancy and hydraulic head gradci
ent.  

3.4.2-2 Mathematical model for a simultaneous flow of heat and fluid.  

3.4.2-3 Governing equations in the Calerkin finite element method.  
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Mathematical model of "simple" groundwater system.
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Laplace's equation.
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Poisson's equation.  
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Transient flow equation.

plate 2.2.-4

CONTINUITY EQUATION 

+ + z R(±,z,t) - . LZ-1 

DARCY'S LAW 

.- K-h-;, .qy=-K-lh, qz =-K~ 

TRANSIENT FLOW EQUATION 

+ +h &2h S 012h -1. T-; or -tj + 67 + 5z S .- -5i - R(z.,y,z,t) orT 

V~h = S . T-'-Lh- R(.,y,.,t) • T-1



z

q,, + ~Ax

AV = AZAyAz

q, + -9, z

1 
Az

qy + Ay

Y

Az

VOLUME;

o AV NET CHANGE IN THE DISCHARGE RATE IN x DIRECTION; 

-0&q'4V NET CHANGE IN THE DISCHARGE RATE IN y DIRECTION; &YY

az

-AViv A- Aj AzAyAh 

4,V =_.z _S• /XL= y 
'nt &-

NET CHANGE IN THE DISCHARGE RATE IN z DIRECTION; 

VOLUME OF WATER ADDED PER UNIT TIME PER UNIT 
AQUIFER VOLUME TO THE INFINITESIMAL VOLUME AROUND 
A POINT P(,,,); 

STORATIVITY, REPRESENTS VOLUME OF WATER RELEASED 
FROM STORAGE PER UNIT AREA OF AQUIFER PER UNIT 
DECLINE IN HEAD; 

RATE OF FLUID RELEASE FROM STORAGE;

T - TRANSMISSIVITY.  

Explanation of mathematical notations.

plate 2.2.-5



LAPLACE'S EQUATION

Flow equations written in a form allowing for consideration of aquifer heterogeneity and anisotropy.  
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APPROXIMATE LOCATION OF THE 
DEATH VALLEY GROUNDWATER SYSTEM

APPROXIMATE LOCATION OF THE 
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Location of the Death Valley groundwater system within the Great Basin.
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Configuration of the crust in north-central Great Basin. Based on COCORP 400 N transect. From Allmendinger, et al., 1987.
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Estimated P-wave velocity in the upper mantle of the continental United States, based on deep seismic soundings, 
nuclear explosions, and earthquakes. From E. Herrin, 1969.
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Intensity of heat flow in the Great Basin. From Semken, 1984.
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Schematic representation of conceptual understanding of tectonophysical character of the Great Basin, based on Scholz et al., 1971. From Semken , 1984.
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Numerical analysis of a process of upwelling of asthenospheric materials into the lithosphere for the Rio Grande 

Rift. From Bridwell and Potzick, 1981.
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Effect of mantle upwelling on lithospheric structure. From Bridwell, 1978.
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TWO- DIMENSIONAL HEAT FLOW

4
SHEAR STRESS GRAD

DISTANCE 
x 

DISTANCE (KM) 

DISTANCE 
x

Surface heat flow and shear stresses in upper mantle and lower crust resulting from convective flow of heat and 
mass in the upper mantle. From Bridwell, 1978.
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Continuum crustal stresses and surface uplift resulting from convective flow of heat and mass in the upper mantle.  
From Bridwell and Potzick, 1981.
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TOP NORMAL STRESS

BASE NORMAL STRESS 

250 300

Failure - surface trajectory diagram for the upper crust overlying convective system in the upper mantle. From 

Spencer and Chase, 1989.
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BASE NORMAL STRESS

Km 
150 200 300

Contour diagram of shear stress magnitude in units of maximum base normal stress. Upper crust overlying convective system in the upper mantle.  
From Spencer and Chase, 1989.
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BOUNDARIES 
OF HYDROLOGIC 
SYSTEM IN THE 
UPPER CRUST 

A/

IF

44 4
TERRESTRIAL HEAT FLOW = MANTLE CONTRIBUTION + RADIOGENIC HEAT FROM 

THE LOWER CRUST + COOLING OF MAGMA BODIES 
IN THE LOWER CRUST 

SHEAR STRESS - TRANSMITTED FROM THE UPPER MANTLE THROUGH 
VISCOUS FLOW IN THE LOWER CRUST 

Idealization of the conceptual linkage between an extension dominated tectonic environment and a groundwater 
system operating in the upper crust.
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DEFORMING FRACTURED MEDIUM 
- TIME DEPENDENCE OF STRESS GRADIENTS 
- TIME DEPENDENCE OF GEOTHERMAL GRADIENTS 

( BASE OF HYDROLOGIC SYSTEM, DEPTH 10-15 km
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The Walker Lane shear belt and major associated faults. Modified from Stewart, 1985.

A.-•::::::.:.

W

plate 3.3.1-1



o 25 50 MILES 
x x x DEATH VALLEY

0 25 50 KILOMETERS PANCAKE VOLCANIC ZONE 

Major late Pliocene and Quaternary faults in the Nevada Test Site region, their relation to the Death Valley

Pancake Volcanic Zone. Modified from Carr, 1984.  
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Quaternary faults near proposed repository. Modified from Maldonado, 1985.  
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Quaternary faults near proposed repository. Modified from Maldonado, 1985.
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Seismicity of the southern Great Basin. Period August 1, 1978 through December 31, 1983. From Rogers et al..  
1983 and 1987.
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LOCATION OF THE STRAINMETER ARRAY STRAIN RECORD DECEMBER 1970 - FEBRUARY 1971

Strain changes in the vicinity of the Nevada Test Site during a two-month period. From Smith anid Kind, 1912.
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Summary of strain rates and of accumulated shear strain for the region of Yucca Mountain groundwater system.
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STRAIN STRAIN RATE OR SOURCE 
COMPONENT STRAIN ACCUMULATION 

Ea. = 0.07 x 10- 6 /per year WERNICKE et. al. 1982.  

EZ E= 0.08 x 10-6/per year SAIC, 1985 

= 2 x 10- 8 /per year GREENSFELDER et. al. 1980.  

Eyyi = -0.10 x 10- 6 /per year SAIC, 1985 

12x 10' 25 

= f f 7_y(y)dy- dt SCOTT AND ROSENBAUM, 
o 0 0 1986.  

= tan 300 in 25 km in 
z,• 12 x 106 years 

= 3 - 7 x 10-3 in 

3 x 106 years CARR, 1984.
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DEFORMATION AREA

INDIVIDUAL STRAIN 
DOMAIN 

DILATANT ZONE 

Eg.

lip

OBSERVED PHOTOELASTIC FRINGES 
IN A FAULT MODEL IN GELATIN.  
FROM LOMNITZ, 1974

STRAINS CALCULATED FROM THE ENERGY 
RELEASE OF THE KERN COUNTY AFTERSHOCK 
SEQUENCE FROM LOMNITZ, 1974

Division of deformation area into strain domains.
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- CHARACTERISTIC EARTHQUAKE

REPEAT TIME t,

TIME

COMPLETE TECTONIC CYCLE

PHASE I PHASE II 

SLOW BUILD-UP OF RATE OF LOCAL TECTONIC STRAINING INCREASES.  
TECTONIC STRESS. INHOMOGENEITIES IN THE STRESS FIELD (NORMAL 

AND SHEAR STRESS GRADIENTS) BECOME MORE 

NORMAL AND SHEAR PRONOUNCED WITH TIME. AT THE END, LARGE AND 
STRESSES EXHIBIT FAST CHANGES IN THE CUMULATIVE STRAIN ENERGY 
TIME-DEPENDENCY. OCCUR IN ASSOCIATION WITH A SEQUENCE OF 

SEISMIC EVENTS.  

MORE OR LESS NON-HOMOGENEOUS STRAIN 
HOMOGENOUS STRAIN 

TIME-DEPENDENCE OF STRESS 

0 .6 const.  

a tu, r") 0 # const.  at 

STRESS GRADIENTS 

a(L-.., •-r.) 0 const.  ax 

a(8i, ri ) # const.  

TIME-DEPENDENCE OF STRESS GRADIENTS 

at .ax 7

at • ay

Idealization of tectonic cycle for a strain domain.
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E11, = El

e2

plate 3.3.2.2-3.

Y

FAULT

HOMOGENOUS STRAIN 

.l . 50; but - 0; and 

5• 0; but - 0.  

I 

•'iO /O1 HOMOGENOUS STRAIN 

INCLUDES SHEAR COUPLE 

/• � 0; but • 0; and 

a•- # 0; but & a 0; 

_ I IINON-HOMOGENOUS STRAIN 

4 82~r) 0; and 

--1 _0.  

Idealization of changes in stress field during a tectonic cycle.
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FRICTIONAL RESISTANCE 
OF THE FAULT 

SHEAR STRESS ALONG 
THE FAULT 

PORE PRESSURE WITHIN 
THE DILATANT ZONE 

FLOW AROUND 
DILATANT ZONE

I 

a) IDEALISATION OF THE EARTHQUAKE 
NUCLEATION PROCESS

LIMIT OF SHEAR DISLOCATION 

t FLUID MIGRATION DIRECTION 
(AFTER FAULT MOVEMENT) 

SHEAR DISPLACEMENT VECTORS 

. EARTHQUAKE FOCUS

b) SCHEMATIC REPRESENTATION OF THE PROCESS 
OF "SEISMIC PUMPING" FOR STRIKE-SLIP FAULTING 

The dilatancy/fluid diffusion model of an earthquake nucleation process. From Sibson et al., 1975.
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DIAGRAM 1 

ý,:=E,. Al S=E,- c

A 

if

UNDEFORMED STATE.  

DIAGRAM 2 

L, + AL 1 . - I

+

li

.• I- LI 
..~j ~.aeo =ai... + an~ AE O5L A Z L , 0O .5 A L , 

FILIMIT EQUILIBRIUM 
IN-SITU STRES5 
CONDITIONS

I 3]
ffhor + 

0
'rem - Ewz

DEFORMED STAT E.
--

Idealized response of a fractured medium during uniform extension.

plate 3.3.2.2-5

z

L .L

-- -- area

Ofhor --,: v •7

___w

O'rem

I

Z I

Z



z 

DIAGRAM A

ZJ

It = -- Al 

Al = ,, E-1E

DIAGRAM B

12

-'H 1'*-AC2 12 = 1 + A'l 

Ali = 0,2 El 1 

0,S2 = E• AC2

z 

DIAGRAM C

3 

L, -4-AL.

I UNIFORM CHANGE IN PORE PRESSURE.  

Sp tp P Rp pR S U pE 
p =PORE PRESSURE.  

I ~L, + AL, :

AE 3 = AE 2 -+ 2A12 

A12 = E- .p-

DIAGRAM D

LOCAL CHANGE IN PORE PRESSUKR.:

I

p = LOCAL PORE PRESSURE.

Idealized response of a dilated fractured medium to sudden changes in pore pressure.
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Tr 

Z(1Y~t

Lc,) = Lf(,) + 2Lw(t)

K-M
I 31j

where: 

L'n - INITIAL WIDTH OF THE 
STRAIN DOMAIN; 

i= - EXTENSION RATE; AND 

t - TIME DURING WHICH 
EXTENSION WAS OCCURRING

Schematic illustration of: a) division of the strain domain into the upper and lower parts with different in situ 

stress conditions; and b) division of the lower part of the strain domain into the dilatant zone and the "outside" 
zone.
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'CHARACTERISTIC EARTHQUAKE 
AND WALLROCK SEPARATION

C) THICKNESS OF FAULT ZONE WITH TIME

z 

0 
0 
z 
0 

U
0 
LU 

U

0 

0 

-)

F

"1

LL 
0 
LU 

LUJ z I~) 

0 
N 

LL 

LL 
0 
u, 

LU 
U 
I 
H

T

TIME

Schematic representation of strain accumulation within a single strain domain during three cycles of deformation.
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COULOMB-NAVIER ENVELOPE OF FAILURE FOR POINT ,

A) IN-SITU STRESS AT POINT P(-,,,=) 

WITH TIME DURING A SINGLE 

CYCLE OF DEFORMATION.

1r 

SHEAR STRESS

LIMIT FOR SHEAR 
STRESS 

INITIAL SHEAR 
STRESS

LIMIT EQUILIBRIUM IN-SITU STRESS.  

NITIAL IN-SITU STRESS.  

""e a,- for illustration purposes 
/ eis assumed to be const.  

with time 

o- PRINCIPAL OR NORMAL STRESS.

PEAK SHEAR DISPLACEMENT (up)

•'ra(0,yz) = C + .f,.,v...) • tano

B) SHEAR DISPLACEMENT AT POINT P(,y,,=) u,- SHEAR DISPLACEMENT 
WITH TIME DURING A SINGLE CYCLE OF 
DEFORMATION.

TECTONIC CYCLE 

n-1 n n+1

A

SHEAR STRESS

CHARACTERISTIC E

C) CHANGE IN STRESS AT POINT P(,,,) DURING 
THREE CYCLES OF DEFORMATION.

ARTHQUAKE AND WALLROCK SEPARATION 

ýLIMIT EQUILIBRIUM

TIME

Schematic representation of changes in the in situ stress conditions occurring near the ground surface in a cyclically 

deforming fractured medium.
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3 4 5 MILES 
I I I

KILOMETERS

EXPLANATION

.G-2 DpILL HOE - TRENCH NOPMA FAULT--GAR ANO MAIL 
ON DOWNThWOWN SIDE

Location of faults containing calcite-silica veins of Quaternary age in the Yucca Mountain area.
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Geologic section across Yucca Mountain showing location and thicknesses of mosaic breccias. From Scott and Bonk, 1985.
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0 C3  " 1 ' a"1 01 Stress 

Mohr's representation of stresses in two dimensions and combined Griffith/Navier - Coulomb failure envelope.
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8,rf.,.) liy 0 0 j const.  

O 0 : const.  

! = const.

t

I f~G0~)=C + O'f tan 

I C 

z ' 

A) DISTRIBUTION OF NORMAL STRESS 
WITH DEPTH

y 4

C) SHEAR STRESS GRADIENTS ALONG 
THE FRACTURE PLANE AT A CONST.  
DEPTH

______________________________________________________________________________________ 1

GRADIENTS OF NORMAL 
\ AND SHEAR STRESS ARE 
\. PRESENT ALONG THE 
•r FRACTURE PLANE.  

FRACTURE .

B) LOCATION OF A DEFORMING FRACTURE 
RELATIVE TO O1, STRESS .TRAJECTORY

(, O'7.(.)

D) NORMAL STRESS GRADIENT ALONG 
THE FRACTURE PLANE AT A CONST.  
DEPTH

Assumed initial in situ stresses around a deforming fracture.
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SHE

.7.'

JY.) I =( : C + o'nf!4.) •and 
EAR STRESS Z DEPTH 2 

C4.  

z / I i 
DEPTH 1 /-. UaK TANO 

SHEAR STRAIN OR DISPLACEMENT Usv(.) 

A) RELATIONSHIP BETWEEN SHEAR STRESS AND SHEAR STRAIN OR DISPLACEMENT

0 STRESS DIFFERENCE A-r

, "(. , at time to Ar = 
v(s)

N 
to 

ti 

DEPTH t2 

Z 

B) TIME AND DEPTH DEPENDENCE OF THE "LIMIT EQUILIBRIUM" IN-SITU STRESS CONDITIONS

0 POST-PEAK SHEAR DISPLACEMENT Au,,(.) 

_•-/ A u..,.) -:= u.,., - uspy(.)

*- . ,(., at time to

DEPTH 

C) TIME AND DEPTH DEPENDENCE OF THE POST-PEAK SHEAR DISPLACEMENT

Idealization of changes in stresses and displacements occurring along a deforming fracture as a function of depth 

and time.
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y

A) RELATIONSHIP BETWEEN "r and r,,n WITH TIME

0 POST PEAK SHEAR DISPLACEMENT 
W Aus.(Y) 

=u.y ,ýU.Y - UP()

Au./.(V) AT TIME to

B) TIME-DEPENDENCE OF THE POST-PEAK SHEAR DISPLACEMENT AT A CONST. DEPTH.

y

FRACTURE

.#-NO POST-PEAK SHEAR DISPLACEMENT 

INCREASE IN THE VALUE OF MEAN STRESS ½ (a1 + -3) 
AND DECREASE IN THE VALUE OF STRESS 
DIFFERENCE (a1 - a3).  

"ISOTROPIC' POINT.  

•-- POST-PEAK SHEAR DISPLACEMENT Au.,,) > 0 

t • DECREASE IN THE VALUE OF MEAN STRESS - (a,+ a3) 

AND IN THE VALUE OF STRESS DIFFERENCE (ai - 0-0.  
"SINGULAR' POINT.  

S5NO POST-PEAK SHEAR DISPLACEMENT,

C) CHANGES IN IN-SITU STRESS IN WALLROCK OF A DEFORMING FRACTURE.

Idealization of changes in stresses and displacements occurring along a strike of a deforming fracture.

plate 3.3.3.2-4.
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SHEAR STRESS

COMBINED GRIFFITH-NAVIER-COULOMB 
ENVELOPE OF FAILURE -00

MEAN STRESS ½ (ol +±, 3 )'j

A) IN-SITU STRESS CONFIGURATION OUTSIDE THE ZONE OF 
"AN-ELASTIC" DEFORMATION.

NORMAL OR 
PRINCIPAL STRESS

STRESS DIFFERENCE I - o "1 - a s - pi

SHEAR STRESS 

B) IN-SITU STRESS CONFIGURATION WITHIN THE ZONE OF 
"AN-ELASTIC" DEFORMATION.

SHEAR STRESS 

"SINGULAR" POINT 

C) IN-SITU STRESS CONFIGURATION NEAR THE EDGES OF 
THE ZONE OF "AN-ELASTIC" DEFORMATION.

NORMAL OR 
PRINCIPAL STRESS

"ITROPIC" POINT 

0, 

NORMAL OR 
PRINCIPAL STRESS

In situ stress states around a deforming fracture.
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CONDUCTING 
APERTURE 

T ad 

is 

Ae-

RELATIONSHIP FOR UNSHEARED FRACTURES 

MODIFIED BY SHEAR DILATION

O'CC '7nfef I

NORMAL EFFECTIVE STRESS

acn a-... + an + ad 

ad = f [K.; (u, - up)] 

an r f (K.;u~ ei1.f) 

r= 1 if 0 < r,•feff < teec 

otherwise

r=0
EXPLANATION: 

ac- - FRACTURE CONDUCTING APERTURE; 
a•=e - RESIDUAL APERTURE; 
a,, -NORMAL DILATION COMPONENT OF 

CONDUCTING APERTURE 
ad SHEAR DILATION COMPONENT OF 

CONDUCTING APERTURE; 
us - up - POST-PEAK SHEAR DISPLACEMENT; AND 

K., K. - COMPLIANCES

Conceptual model of conducting aperture of fractures. Modified from Harper and Last, 1987.
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INCREASING TIME

INCREASING DEPTH AND o•,, 

p 
I E T R 

NORMAL EFFECTIVE STRESS

TIME -t

TIME tj Onfe f = o'==

TIME -t

DEPTH TO THE 
SURFACE 2(=,t,

AT TIME to anfeff = Mcc 

AT THE GROUND SURFACE

to TIME -t

Relationships between time and hydraulic properties for decreasing Ciff..

plate 3.3.3.3.-2

a.e.

ac,,,t) 25 S(t)

Kf~t

-------- AT TIM E tj n o',ef! = acc



INCREASING TIME

Z 

,=, 
I

U Z
1n =C+ tan f ef if

Us(0)

INCREASI

SHEAR DISPLACEMENT 

NG TIME 

DEPTH 1 
z 

DEPTH 2 = 

DEPTH 3 a I 

DEPTH 4 

limit U = f [o',nfff; (u. - U.,)

Us(= 

SHEAR DISPLACEMENT 

Idealized joint response during shear displacement. Modified from Harper and Last, 1987.
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limit Ud 

I DEPTH 1

tl t2 ts t 4 -t

AT TIME t,,, AT DEPTH n, 
t1 n r7

t1 t 2 ts t4 TIME -t

DEPTH TO THE SURFACE 

ad(t)

AT TIME ti, AT THE 

GROUND SURFACE, 
"rf = m'a.

I ~ I i i I 

-- -- -- - -- -- - -- -- -

t 2 t3 t 4 TIME -t

-7

t INCREASING TIME

Relationships between time and hydraulic properties for increasing -rf.
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0 

I

U 

L.

U 

z 
0 

F

LL

K!(1 )

NO FAILURE SHEAR FAILURE PURE TENSILE FAILURE 

"* INCREASING 1f; *7!= m; •½ (_.+ ")- O; 

"• DECREASING ani; -u. p > O; and - (a, - a3) - 0 

"• us-up<O. *u,-u- f(t) "SINGULAR' POINT 

S i 
awnI acol,) = a•.ea + ad(,) 

aco -- O~ j = co sti( aco .•ft) a.. +•, +d 

I U 

I I TIME 

SI , 
I ! 
I I 

I /,lr"aco.n(t) a o.es +ad(.) 

I I 
I II 
I II 
I II 

III 

a,,-() a,,, + ad(.) " 

I c 

SI

TIME

Time-dependence of Sf and K1 around a segment of a deforming fracture at a const. depth.
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BELOW THIS DEPTH: 
ad(t, + a.-(,,= 0 

AND 
acon --: a...  

ad(t, + an•t, 

TOTAL ENHANCEMENT 
OF ac,,, 

0

I INCREASING TIME

DEPTH

Time-dependence of vertical extent of a segment of a deforming fracture and time-dependence of the total 

enhancement of the conducting aperture.
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SHEAR 
STRESS

Kf(e) 

HYDRAULIC 
CONDUCTIVITY

I

TECTONIC CYCLE 

n--1 I n I n+f

CHARACTERISTIC EARTHQUAKE 
AND WALLROCK 

SEPARATION 

"LMT "ULBRIU M" 

S I 
I S 
I I 

I I 
I S 
I I

A) CHANGE IN S 

DURINGTHR 

aco

I 
TIME 

I 

TRESS CONDITION AT POINT P(,,z) 
EE CYCLES OF TECTONIC DEFORMATION.  

/,v~t acn .  
I I 
I I 
S I

TIME 

B) CHANGE IN HYDRAULIC CONDUCTIVITY AT POINT P(0,•,,) DURING 
THREE CYCLES OF TECTONIC DEFORMATION 

Schematic representation of changes in: a) the in situ stress conditions; and b) the hydraulic conductivity structure, 
occurring near the ground surface in a cyclically deforming fractured medium.
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POSITION OF WATER TABLE AT TIME to 

WHEN Z(,t,)-0.

const.  

S&.)#const.

Conceptual model of groundwater flow in a deforming fractured medium.

plate 3.3.4.-1
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[a; r] = f(t).  
Z(.,t) = f([; 7]) 
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to - START OF TECTONIC DEFORMATION 

PORE PRESSURE -p

TABLE AT TIME to

SATURATED ZONE

AT TIME to, AT DEPTH Z(,,t,) = 0 AND BELOW: 

U'nfeff()o) > cc 

AND/OR 

rfto) < rm=

f (Z)

Deforming fractured medium - idealized history of changes in hydraulic potential.

plate 3.3.4-2.

DEPTH 

z

a•,o -= a =,e. = CONST.  

S(UtZ) S(tf) 

K(t) = tZ ) 

K. = K



tj - EARLY STAGES OF TECTONIC DEFORMATION

PORE PRESSURE -p

t t VADOSE ZONE 

S=. 

(.o) .

SATURATED ZONE 

p = f( )

WATER TABLE AT TIME t 1 

AT TIME t1 BELOW DEPTH Z(.,t,)

17nfeff•,• > 0-c 

AND/OR 

".rj•,,) < r, =a

Deforming fractured medium - idealized history of changes in hydraulic potential.

plate 3.3.4-3.

DEPTH 

Z

ABOVE DEPTH Z(,t1) BELOW DEPTH Z(3,t,)

a, -,,, = are*+ a-- lt) + ad(t,) a,,,,, a. .. = CONST.  

SUZ - +sUZ =sZ - SsZ S(ti) =S(Uo) + A (Uf) S(St) (Stq)) 

K(U:) = KUo + AK(U) K() = K(S,) 

K. : K. = =K

ABOVE DEPTH Z(,,t,) BELOW DEPTH Z(,,,t,)



t2 - ADVANCED STAGES OF TECTONIC DEFORMATION 

PORE PRESSURE -p
0 

DEPTH 

Z

ZONE I p([) •O•eff(t,) > ac 

4-AND/OR 
< rrm 

ZONE II p(.) + Ap(,) 

ZONE III p(,) + Apm,,

ABOVE DEPTH Z(.,t2 )
SUZ - + AS� + ASUZ 4

(t,) ) (to) + & (+A ) 

SSZ = KSZ + ASz + AS(Sz 

Kfu - JUZ + AKfuz) +,aKlu f(t2 ) (.o "(t2 ) 

K.z)=KSZ + )+ 

FRACTURE FLOW

BELOW DEPTH Z(2 ,t.)

Ssz -SZ ('t2) - (to) 

KSZ KSZ 

(t 2 ) = (to) 

K. = Kv

Deforming fractured medium-idealized history of changes in hydraulic potential.
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SWATER TABLE AT TIME t 2 

AT TIME t 2 BELOW DEPTH Z(.,,=):



t3 - END OF THE TECTONIC CYCLE 

PORE PRESSURE - p

I

V- WATER TABLE AT TIME t3

WATER TABLE AT TIME to AND tj 

1 -•WATER TABLE AT TIME t 2

p = f(z)

AT TIME ts AT DEPTH Z(.,t,) AND BELOW: 

NDn!eff(,,) > OR c 

AND/OR 

t-f"3) < -r.

Deforming fractured medium-idealized history of changes in hydraulic potential.

plate 3.3.4-5.

0

DEPTH 

Z

AT DEPTH Z(,,t,) AND BELOW 

acan(,3) = a.ES 

sZ, Z SUEZ <SLUZ (ts) = (to) < (t2) 

ssz Ssz <SSZ (4,) = (to) < (t2) 

KUZ KUZ <KXZ 

KsZ = KsZ+ KSZ 

POROUS OR EQUIVALENT FLOW

,xv



Z 
E IN REFIERENCE ELEVATION 

ELEVATION ZO 

I I I 

to tj t2 t.3 TIM E 

Note: The drawing is diagramatic - no relationship between initial thickness of the vadose zone and magnitude 
of tectonic lowering of the water table is implied.  

Idealized history of the position of the water table for a single point P(=,zl)-

plate 3.3.4.-6
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(LAND SURFACE

(a)

- I W A L __8_TER TABLE AT TIM E t, 

PTH Z(=,t,) 

x 

LAND SURFACE 

7WATER TABLE AT TIME t4

(b)

If LAND SURFACE

-~1fTF~f IATER TABLE AT TIME t, 

DEPTH Z(.,t.) 

(c) s 

Non-homogeneous strain-its relationship to configuration of the water table.

plate 3,3.4.-7
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WHERE: 

nS/S', = 

=(K" in * 

DIRECTION.

maxAh(,

Soin

WHERE:

*R

maxAh=,,) - MAX. POTENTIAL RISE OF WATER TABLE AT P(my); 

maxAh'=,M) - "OVERPRESSURE" COMPONENT OF THE TOTAL RISE; 

maxAh(,) = 

maxAh"V) - STORAGE RELEASE COMPONENT OF THE TOTAL RISE; Sz,Iy

S-=Sin = /KT 

K - AVERAGE VALUE OF HYDRAULIC CONDUCTIVITY 
IN "STRAINED" STATE; 

K'- AVERAGE VALUE OF HYDRAULIC CONDUCTIVITY 
IN "UNSTRAINED" STATE.

Maximum rise of the water table at point P(_,y) caused by change in the in situ stress conditions.

plate 3.3.5.-2

yI

REFERENCE POINT R POINT P(-,,) 

_bP -P 

DEPTH, 
H DEPTH IF 

B) SECTION.  

) h in ;.  

Ah(=,) = A pma•=,,) - A p,,,o= 

- RATIO OF AVERAGE AMOUNT OF FLUID IN 
STORAGE IN "STRAINED" STATE TO AVER
AGE AMOUNT OF FLUID IN STORAGE IN 
"UNSTRAINED" STATE;

FLOW I
A) PLAN.

max Ah(,)= max Ah(=,)+ maxAh,)

/ /<



I I I

I

I I

Repeated temperature profiles from Well UE-25aT. From Sass et al., 1983.
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380

370'% V., #'' ( " ~ 

APPROXIMATE LOCATION " / -NEVADA TEST SITE 
OF THE DEATH VALLEY 

GROUNDWATER SYSTEM NEAD T nV-\ 

CR 
""LAS VEGAS 

p- , 
360 

0 25 so 75 1 00Kmn 

Explanation: SWM: Stonewall: BM: Black Mountain; TM-OV: Timber Mountain-Oasis Valley caldera complex: 

YM: Yucca Mountain exploration block: LV: Long Valley: DV: Death Valley: and CR: Coso Range. Black-shaded 

areas are volcanic rocks of the DV-PR volcanic zone: light-shaded areas are part of the western Cordillera rift 

zone.  

Generalized geologic map of the Death Valley Pancake Range Volcanic Zone and of the Death Valley groundwater 

system. From Crowe et al., 1986.
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0 10 20 ! I I 30

KILOMETERS 

Location of seismic monitoring stations used for detailed analyses of the P-wave residuals. From Monfort and 
Evans, 1982.  
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0-15 km
380 050 

I T 

MENLAE LAS VEGAS 

4,, 
118000 0• ' l 001 114*30' 

KILOMETERS 

EXPLANATION: 

•ZERO VELOCITY PERTURBATION IS THE 
MEAN LAYER VELOCITY 

* VELOCITY PERTURBATIONS ARE IN PERCENTS 

* POSITIVE VELOCITY PERTURBATIONS ARE 
RELATIVE HIGH VELOCITIES 

Seismic velocity structure of the upper crust from teleseismic P-wave residuals for the region of Death Valley 
groundwater system. From Monfort and Evans, 1982.
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Model nov9b Layer 2 15-31
-. 0o -2.95 -. 45 T 

.37 .38 .33 

.62.." .62 ..66 
5.19 4.30 .19 2.38 -. 60 .05 -2.40 -3.55 78 

.34 .49 .15 .65 .61 .59 .66 .64 .29 

.57 .71 .58 .68 .73 .0 7 .76 .68 .74% 

-.50) 3.08 .4 0 e-0.76 .88 P-.7 .3 - 1.17 -. 91 
.54 • 63 .0 .64 .58 .T2 .70 .70 .50 

.70 .67 o.30 .To70 i-,o.70 .67 ?.72 .63 .72 
-2.54 .80 -1.19 6 3 -. 23 .03 -1.85 -2.75 

.54 .73 .73 .64 .71 .70 .53 .55 

.72 .61 .67 .72 .57 '.69 .73 .69' 
000 .3 -. 21 -1.40 1^12 

:i'~~164 l..• , • %---

.64 .60 .72 .•3 1.72 

.67 .72 t.69 .4910 _.68D 
.57 .49 .17 - .80 2.07 .79 

.48 .70 .79 .80 .72 .12 .29 

.71 .71 .60 59 .65 .48 
"10-e 00 .0 .06 .51 16l -.03 
S.44 .64 .67 .50 .-39• 

.66 .69 .71 .79 .68 .  

.55 .60 .70't 

35 KM 

EXPLANATION: 

* CONTOURS SHOWN ARE ZERO VELOCITY 
PERTURBATIONS 

* IN EACH BLOCK, THE UPPER NUMBER IS 
VELOCITY PERTURBATION (%), THE MIDDLE 
NUMBER IS THE DIAGONAL ELEMENT OF THE 
RESOLUTION MATRIX, AND THE BOTTOM 
NUMBER IS THE STANDARD ERROR FOR THE 
BLOCK 

Seismic velocity structure of the lower crust from teleseismic P-wave residuals for the region of Death Valley 
groundwater system. From Monfort and Evans, 1982.

plate 3.4.1.4
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Model nov9b Layer 3 31 -81 km
.81 3.37 .12 

.56 J74 .70 o 

>, .82 .65 .75 0 

-. 50ý 1.71 2.21 -2.05 1.16 0- 1.44 -3.04 -2.01 (.60 
.75 .83 .83 /.78 .85 .87 .85 .89 .7 8 
.66 .60 .54/ .64 .5 .48 .55 .45 .66 -0 

-1.58 -.925ý? .09...720- -84 -. 43 -. 27 -. 99 -2.22 -1.62 
.89 .92 .84 .89 .92 .93 .91 .91 .91 .68 
.40 .36 .56% .46 .8 .4 41 .38 .38 .75 

-. 43 -. 67 -. 20 .67 .98 .77 .47 -1.17 -1.72 -2.18 
90 .93 .91 .924-,, .94 .91.2 .7 .4 

.40-N.34 ..42 .41 3 -329.-4 3 .487 .842 

.65 92 .4 .. *1 85 .88 .74 
.77 .39 .34 .36 .30 .56 .49 .63 

-. 06 1.22 -. 28 TTVI -7501 -2.19 132 

.89 .92 94 .05~ .90 .82
.45 .39 .34 .28 .45 5445..54 

1.92 9.63 .51 - 1.06 -. 92 .6 -. 2 -. 1 

.65 .90 .92N .94 .92 .90 .85 .67 

.78 .42 .38 .33 .39 .40 \.48 .59 

2.87 2.78 2.37 .77%1 -11 .46 

.85 .91 .189 .84 .76 .79 

.53 .40 .44 .54 .67 \.59 

3.24 4.07 9.51 2.03 

35 KM 

EXPLANATION: 

"* CONTOURS SHOWN ARE ZERO VELOCITY 
PERTURBATIONS; 

"* IN EACH BLOCK, THE UPPER NUMBER IS 
VELOCITY PERTURBATION (%), THE MIDDLE 
NUMBER IS THE DIAGONAL ELEMENT OF 
THE RESOLUTION MATRIX, AND THE 
BOTTOM NUMBER IS THE STANDARD 
ERROR FOR THE BLOCK 

Seismic velocity structure of the upper mantle from teleseismic P-wave residuals for the region of Death Valley 
groundwater system. From Monfort and Evans, 1982.
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Model nov9b Layer 4 81- 131 km
1.07 .40 .68 -1.88 -2.36 1.43 

.72 .76 .70ý .79 .80 V 477 

.73 %-.71 .72 %.62 .62 .71 

-. 74 .30 -1.30 -1.46 1.50 2.78 - .03 -. 69 1.18 

.85 .83 .85 .86 .87 .87 .89 .87\ .75 
.62 .58 .54 .54 .49 .50 .46 .49 %.67 

-(.16 -. 44 -. 16 1.29 3.90 1.37 -. 77 -1.00 -1.41 -1.01 
.92 .89 .91 .92 .92 .91 .92 .89 .85 .74 

-. 46 .49 .44 .40 .41 .43 .40 .48 .56 .74-1 

1.59 -1.08 -. 98 1.21 4.03 3.60 .60 -. 54 -1.30 /1.59 
.93 .89 .93 .94 .93 %92 .9 _.9,29 .91 .84 .89 

.42 .47 .37 .35 V'36 9 .35 .39 .41 .56 .52 

.. 4 .15 .79 6 13 3.7 R.461 f -. 181 -. 84 -. 36 1,.64 
.88 .90 .94 .94 .:V .93 .92 .88 .81 .85 
.51 .46 .36 .34 .- * .36 .39 .51 .63 .57 

1.08 .93 .28 1.62 .H -. 6 -2.17 -1.88 -1.72 .24 
.74 .88 .91 .94 .94 .93 .92 .84 .80 .67 

.74 .51 .43 .35 .32 .k .40 .58 .61 .74 

.82 1.37 .97 -. 72 -1.64 -2.27 -3.97 .74 

.84 .90 .93 .93 .93 .90 .78 .53 

.56 .46 .35 .36 .37 .43 .62 .83 
1.10 .45 1.99 -. 85 -. 18 -1.23 -1.40 :-.05 -1.00 

.77 .83 .87 .8 .89 .82 .81 .62 .69 

.71 .59 .54 .47 .47 .60 .61 .77 .69 

1.37 1.49 .01 1.14 .25 

.68 .69 .75 .75 .64 

1 66 .74 .64 .67 .70 

35 KM 

EXPLANATION: 

"* CONTOURS SHOWN ARE ZERO VELOCITY 
PERTURBATIONS 

"* IN EACH BLOCK, THE UPPER NUMBER IS 
VELOCITY PERTURBATION (%), THE MIDDLE 
NUMBER IS THE DIAGONAL ELEMENT OF THE 
RESOLUTION MATRIX, AND THE BO'TOM 
NUMBER IS THE STANDARD ERROR FOR THE 
BLOCK 

Seismic velocity structure of the mantle (depth 81-131 kin) from teleseismic P-wave residuals for the region of 
Death Valley groundwater system. From Monfort and Evans, 1982.
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nov9b Layer 5 131- 231 km
-. 82 .46 2.05 2.59 3.74 3.36 2.70 

.886 .85 .89 .86 .91 .89 .88 
.51 .63 .51 .60 .45 .50 .54 

-. 02 -. 72 1.48 .67 .75 1.69 1.24 4.19 .-87 -1.33 
.95 .94 .94 .95 .95 .96 .96 .93 .89 .87 
.39 .40 .42 .36 .35 .33 .32 .42 .53 .57 

.37 -. 41 .00 -. 22 1.61 1.93 1.90 1.11 .6 T' .16 

.97 .96 .97 .97 .97 .96 .97 .95 .86 .91 

.30 .32 .29 .28 .28 .29 .28 .33 .59 .48 

.74 ..35 05 -.04 2.26 2.54 .86 .81 -. 53" .28 

.97 .97 .98 .98 .97 .97 .97 .96 .94 .85 
.28 .27 .23 .23 .25 .25 .24 .. 31. .39 61 

2.34 1.53 1.25 .38 1.88 1.30 -. 54 -1.52 .33- -. 44 

.97 .98 .98 .99 . .97 .98 .96 .94 .95 

.28 .25 .24 .17 .2L-6,j .21 .30 L40 .37 

2.84 2.02 .55 -. 19 .~ -. 13 -1.62 -1.55 -1.61 -. 91 
.97 .97 .98 .98 . r. 98 .98 .96 .95 .95 

.27 .29 .25 .19 S .231 .21 30 .35 .36 

1.47 .84 .97 -. 37 ..7 -1 .29' -2.06 -1.04 -1.04 -. 61 
.96 .97 .98 .98 8- .981 .97 .96 .96 .89 

.32 .2 .24 .18 . .25 .31 .32 .52 

.08 .42 .07 -. 79 -1.37 -1.10 -. 9.6 -. 60 ý0.02 -. 95 

.96 .95 .97 .98 .98 .97 .98 .95 .95 .85 

.32 .35 .26 .21 .22 .27 .23 .36 .37 .61 

-. 49 .67 .21 -1.00 -. 95 -. 69 -. 01 ..73 86 -. 54 

.86 .93 .96 .97 .97 .97 .97j .95 .93 .87 

.60 .42 .31 .26 .28 .27T -".28 .36 .41 .54 

.87 .08 -. 90 .02 .93 1.10 .19 -1.70 -L.62 

.95 .93 .96 .94 .94 .95 .92 .93 .85 

.40 .41 .32 .38 .39 .36 .43 .40 .57 

-. 47 -1.25 .75. 2.15 .15 -. 62 -1.35 -1.21 

.65 .76 .89 .78 .87 .85 .85 .84 

.77 .75 .49 .65 .56 .57 .61 .64 

1 EXPLANATION: 

35 K M * CONTOURS SHOWN ARE ZERO VELOCITY 
PERTURBATIONS 

* IN EACH BLOCK. THE UPPER NUMBER IS 
VELOCITY PERTURBATION (%), THE MIDDLE 
NUMBER IS THE DIAGONAL ELEMENT OF THE 
RESOLUTION MATRIX, AND THE BOTTOM 
NUMBER IS THE STANDARD ERROR FOR THE 
BLOCK 

Seismic velocity structure of the. mantle (depth 131-231 kin) from teleseismic P-wave residuals for the region of 
Death Valley groundwater system. From Monfort and Evans, 1982.  
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NILa" >..

PM2 0 
1.5

FITZ BLACK 
MOUNTAIN MOUNTAIN PAHUTI

N.

I.J 

J
OAK SPRING 

BUTTE

UEI7e 
11586

I 
TfMAER 

MOWITAIN 

I

MIE 
MTN

PINN4ACLES RID4M 

PROW PASS I 

LJ§W I U2 5a3 

CRATER J'3 013 '*=a 

TI JACKASS 
FLAT IFLATS 

SKULL 

I- IV AOA TEST

LATHKOP

oP 
HiLla

'9

ATWE I 

YUCCA PASS

WAMMONIE 
VOLCANIC CENTER

TWF 
40$ 1

SPECTER 

RANGE

'1

? i 1& ý 2.0 k5 V0 MILES

to, I'S 20 25 30 KLOETE

Regional heat-flow values within and adjacent to the Nevada Test Site. From Sass and Lachaenbruch, 1982.
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Well Heat flow Reference 

mWm 2 HFU 

PM2 63 1.5 Sass and others, 1971 

PM1 42 1.0 Sass and others, 1971 

DOL 80 1.9 Sass and others, 1971 

U15K 56 1.3 USGS unpublished 

Uel7e 66 1.58 USGS unpublished 

TWE 29 0.7 Sass and others, 1971 

J-13 67 1.6 Sass and others, 1971 

Ue25al 54 1.3 Sass and others, 1980 

Ue25bl 47 1.1 USGS unpublished 

Ue25a3 130 3.1 Sass and others, 1980 

USWG1* 52 1.25 Table 2, this paper 

TWF 76 1.81 Sass and others, 1971 

•TW3 92 2.2 Sass and others, 1971 

TW5 84 2.0 Sass and others, 1971 

TW4 91 2.2 Sass and others, 1971 

*Average heat flow in lowermost -600 m.  

Intensities of heat flow at the Nevada Test Site. From Sass and Lachenbruch, 1982.
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0200 400 Miles 

0 200 400 600 Kilometres.  

Explanation: (1) Contour lines are heat flow units (HFU); (2) EL is Eureke Low; (3) Arrow indicates outline of 

the Nevada Test Site; (4) Heavy line is 2.5 HFU contour (Swanberg and Morgan, 1978).  

Map of western United States showing intensities of heat flow. From Sass and Lachenbruch, 1982.  
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RN~~ ffNO Rr 

-ii 
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000 SUMACE HEAT FLO qj 

• 4.0 W/f"I 

a) TERRESTRIAL TEMPERATURE AS A FUNCTION OF DEPTH AND INTENSITY 
OF FLUX OF TERRESTRIAL HEAT. FROM BRIDWELL AND POTZIC0K 1981.  

1500 

04400ofyoie(Bsdn 

I- Solidus for dry melting 
I of pyrolite (Bosed on 

I Green and Ringwood, SI 1967 a, b) 
U |--- Solidus for melting of 

pyrolite contoaning 0.1% H20 
4300 I1 (illustrotive) 

PRESSURE 25kilobors 

1200' 

010 20 30 

Percent Partial Melting of Pyrolite 

b) DEGREE OF MELTING AS A FUNCTION OF TEMPERATURE IN PYROLITE 
UNDER ANHYDROUS CONDITIONS AND IN THE PRESSURE OF 0.1% H2 0 
AT 25kb. FROM RINGWOOD, 1969.  

Terrestrial temperature - a perspective.
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Number Arith- Range 
of metic of 

Measure- Mean, Values, 
Tectonic Zone meats IHFU ItFU 

Precambrian folded regions 49 0.96 0.61-1.8 
Shields 11 0.86 0.61-1.4 
Platforms 38 0.99 0.70-1.4 

Paleozoic folded regions 113 1.6 0.6 -2.6 
Caledonian folded regions 11 1.1 0.8 -1.5 
Hercynian folded regions 102 1.6 0.6 -2.6 

Cis-Caucasus 32 1.6 0.91-2.6 
Crimea 13 1.4 1.0 -1.8 
Western Europe 57 1.7 0.60-2.6 

Cenozoic folded regions 82 1.7 0.65-3.3 
Foredeeps 33 1.2 0.65-1.9 
Foredeeps, not including 

Cis-Alpine foredeep 30 1.12 
Folded mountain structures 28 1.8 1.2 -2.7 

Cenozoic volcanic areas 21 2.1 1.4 -3.3

A) HEAT FLOW DATA FROM EURASIAN CONTINENT.  
AND POLYAK, 1969.

FROM LUBIMOVA B) HISTOGRAM OF OCEANIC HEAT FLOW DATA.  
FROM VON HERZEN AND LEE, 1969.

* 0

A

VOLCANIC TRENCH 
ARC 

NORMALIZED DISTANCE

C) HEAT FLOW ACROSS THE JAPAN TRENCH.  
FROM ANDERSON, 1980.  

Terrestrial heat flow - a perspective.
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