
CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES

TRIP REPORT 

SUBJECT: Eighth International Conference on Computational Water 
Resources 

DATE/PLACE OF TRIP: Venice, Italy; June 11-15, 1990 

AUTHOR: Rachid Ababou 

DISTRIBUTION:

CNWRA NRC

J. Latz 
CNWRA Directors 
CNWRA Element Managers 
R. Ababou 
R. Green 
S. Hsiung 
W. Murphy 
B. Pabalan 
G. Wittmeyer

S.  
J.  
S.  
B.  
H.  

D.  
D.  
R.  
R.  

T.  
T.  
T.

Mearse 
Funches 
Fortuna 
Stiltenpole 
Schechter 

Brooks 
Chery 
Codell 
Wescott 

McCartin 
Nicholson 
Margulies

" 0109'0244 901:.004 WM- 1. 1 F [r: 
wtl- 1 1 PDC

FULL TEXT ASCHI SCAN 
dj ,3 U &•'54, eYce

QJý M~uaocs-5cab+r-aCt

1/

//I6 , 
'AL(2'I 

I/vA-- 11



I--

CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES 

TRIP REPORT 

SUBJECT: Eighth International Conference on Computational Water 
Resources 

DATE/PLACE OF TRIP: Venice, Italy; June 11-15, 1990 

AUTHOR: Rachid Ababou 

PERSON PRESENT: 

CNWRA 

Rachid Ababou 

BACKGROUND: 

This is the eighth of a series of conferences covering a wide array of topics on 
computational approaches to problems in environmental hydraulics and water 
resources. This conference was endorsed by AGU, ASCE, IAHR, National Science 
Foundation, National Society of Computational methods in Engineering, and Italian 
Universities (the chairman, Prof. Giuseppe Gambolati, being from the University 
of Padua).  

CONFERENCE TOPICS: 

Contributions at the conference were published in a two-volume proceedings by 
Computational Mechanics Publications and Springer-Verlag, under the titles: (1) 
"Computational Methods in Subsurface Hydrology", and (2) "Computational Methods 
in Surface Hydrology". Briefly the first volume covered saturated, unsaturated, 
multiphase flow, fracture flow, contaminant migration, chemical reactions in 
porous media, stochastic problems, and optimization for groundwater projects.  
The second volume dealt with shallow water, coastal, and estuarial models, 
sediment transport, advection-diffusion and mixing, boundary element methods, 
special computational techniques, and water management. These volumes can be 
ordered directly from the publisher, e.g. by contacting Prof. C.A. Brebbia at the 
Computational Mechanics Institute in Southampton, U.K.  

SCIENTIFIC ACTIVITIES: 

My own contribution at the conference was about the "Numerical Analysis of 
Nonlinear Unsaturated Flow Equations." This paper can be found in Volume 1 (Part 
A, Section 2: Unsaturated Groundwater Flow, pp. 151-160). I also chaired the 
session on Boundary Element Methods (Vol. 2, Part C, Section 2: Boundary Element 
Models), and contacted a number of participants with common research interests 
on applied numerical methods for advective-dispersive and nonlinear flow
transport problems. I am attaching a copy of my paper, as well as a list of 
sponsoring institutions, title pages, and table of contents of the two 
proceedings volumes.
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PROBLEMS ENCOUNTERED:

None 

PENDING ACTIONS: 

None 

RECOMMENDATIONS:

Attendance at such meetings plays an important role in publicizing NRC and CNWRA 
research efforts as well as obtaining up to date information on recent progress 
in key areas of research. It is recommended that such communication channels be 
kept open in the future, notably through research presentations by CNWRA staff 
at scientific conferences and workshops.  
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OBJECTIVES 

The Conference is intended as a forum for the 
review of the advances so far achieved in the field ot 
computational simulation of surface and subsurface 
water, presentation of new research ideas anc 
exchange of experiences in the practical applications 
of computer methods in water resources. All aspects 
related to accuracy of approximation, efficiency ow 
techniques, economy of application, improvement of 
.existing methodologies and limitations vis a vis the 
scale effect as well as the quality and quantity of the 
available information should be discussed. The non
linear problems and the great potential offered by the 
supercomputer technology are especially within the 
scope of the Conference. The Organizing Committee 
welcomes and solicits contributions related to any of 
the following topics: 

modeling of groundwater flow in porous and 
fractured media 
modeling of estuary, river, lake, lagoon and ocean 
hydrodynamics 
modeling of surface and subsurface transport 
modeling of water quality 
modeling of sedimentation processes 
optimization of water resources systems 
parameter estimation techniques 
simulation of water resources on supercomputers 
basic principles and computational methods 
numerical mathematics and advances in software 

- methods for non-linearities 

This Conference is ideally connected to and 
represents the natural evolution of the previous 
conferences of the series which were held at Princeton 
University, U.S.A. (1976), Imperial College, London.  
U.K. (1978), University of Mississipi, Oxford, U.S.A.  
(1980), University of Hannover, Germany (1982), 
University of Vermont, Burlington, U.S.A. (1984), 
Laboratorio Nacional de Engenharia Civil, Lisbon, 
Portugal (1986) and MIT, Cambridge, U.S.A. (1988).  

Invited keynote lectures will be delivered in the 
areas of major interest with emphasis to be placed on 
the state of the art and the development of new 
research directions and applications.
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The choice of Venice as the site of the VIII International Conference on 
Computational Methods in Water Resources is both timely and meaningful.  
Its timeliness and significance stem from the visibility and the complexity 
of the water resources problem affecting the environment of the city: the 
lagoon and its contributing mainland. It is not therefore by chance that 
among the various sponsorships, gratefully acknowledged, we particularly 
appreciate the major contribution from the Consorzio Venezia Nuova, i.e.  
the institution in charge of the rescue of Venice, its lagoon and its main
land. It is the organizers' hope that this book will also contribute to the 
professional background and the scientific advances needed to address the 
complex issues related to the use and preservation of the Venetian water 
resources system.  

This book results from the edited proceedings of the VIII International 
Conference on Computational Methods in Water Resources (originally Fi
nite Elements in Water Resources) held at the Giorgio Cini Foundation, 
Venice, Italy, June 1990. The Conference series was started in 1976 to serve 
as an internationally acknowledged forum for researchers in the - at that 
time - novel and emerging field of finite element methods applied to water 
resources. The name and the peculiar role of the ongoing Conference series 
were later (1986) modified to host contributions based on the increasingly 
diverse computational techniques being applied in water resources research.  
The previous meetings were held at: Princeton University, USA, 1976; the 
Imperial College, UK, 1978; the University of Mississippi, USA, 1984; the 
Laboratorio Nacional de Engenharia Civil, Portugal, 1986; and the Mas
sachussets Institute of Technology, USA, 1988.  

The 1990 Proceedings cover a wide spectrum of computational methods en
compassing both theory and applications. Contaminant transport in surface 
and subsurface hydrology has attracted most of the researchers' interest, in 
a way reflecting the trends observed in the referred literature in this field 
and plays an important role in this book. It is significant that several papers 
edited in this book concern the increasingly studied field of computational 
stochastic hydrology .  

The organizing committee of the Venice Conference wishes to express deep 
appreciation to the key-note invited lecturers J. Glimm, S.P. Neumann,it imply, even 

i the relevant



J.C.J. Nihoul, Y. Pomeau and I. Rodriguez-Iturbe. We are also indebted 
to the invited lecturers J. Carrera, V. Casulli, M.A. Celia, G. Dagan, R.E.  
Ewing, I. Herrera, M. Kawahara, U. Meissner, A. Quarteroni, W.M. Sches
takow, A.J. Valocchi, S.S.Y. Wang, and M.F. Wheeler. A significant con
tribution to the scientific fallout of the meeting came from the organizers 
of the Wave Propagation in Shallow Waters Forum (A. Adami and A. Noli) 
and the Supercomputing in Water Resources Forum (A. Peters). It is also a 
pleasure to acknowledge the continuing efforts and support offered by C.A.  
Brebbia, W.G. Gray and G.F. Pinder, of the permanent organizing com
mittee.  

The committee gratefully acknowledges the sponsorship of: AGIP, Alitalia, 
Aquater, Banca Popolare Veneta, Bonifica, Camera di Commercio I.A.A. di 
Venezia, Cassa di Risparmio di Padova e Rovigo, CISE, Comune di Venezia, 
Consiglio Nazionale delle Ricerche, Consorzio Venezia Nuova, Centro Sper
imentale per l'Idrologia e la Meteorologia della Regione del Veneto, Dagh 
Watson, Digital Equipment Italia, ENEL, FIATIMPRESIT, Gruppo Ac
qua, Hydrodata, IBM Italia, Idroser, INC - il nuovo castoro, ISMES, Is
tituto di Credito Fondiario delle Venezie, Istituto Federale delle Casse di 
Risparmio delle Venezie, Lotti & Associati, Provincia di Venezia, Rodio, 
SIP, Studio Geotecnico Italiano, Technital, Tecnomare, ZF-MPM, Zollet 
Ingegneria. The endorsement of the following organizations is also acknowl
edged: AGU, AIMETA, ASCE, IAHR, Istituto Veneto di Scienze Lettere 
ed Arti, National Science Foundation, National Society of Computational 
Methods in Engineering, University of Padua - School of Engineering, Uni
versity of Trent - School of Engineering, (ISME) the International Society 
for Computational Methods in Engineering, (ISBE) the International Soci
ety for Boundary Elements 

May we finally add that the final version of the accepted papers appearing 
in this volume is reproduced directly from the material submitted by the 
authors who are therefore responsible for their content.  

The Editors 
June 1990

1k. I
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PREFACE

The choice of Venice as the site of the VIII International Conference on 
Computational Methods in Water Resources is both timely and meaningful.  

rg Its timeliness and significance stem from the visibility and the complexity 
of the water resources problem affecting the environment of the city: the 
lagoon and its contributing mainland. It is not therefore by chance that 
among the various sponsorships, gratefully acknowledged, we particularly 
appreciate the major contribution from the Consorzio Venezia Nuova, i.e.  
the institution in charge of the rescue of Venice, its lagoon and its main
land. It is the organizers' hope that this book will also contribute to the 
professional background and the scientific advances needed to address the 
complex issues related to the use and preservation of the Venetian water 
resources system.  

This book results from the edited proceedings of the VIII International 
Conference on Computational Methods in Water Resources (originally Fi
nite Elements in Water Resources) held at the Giorgio Cini Foundation, 
Venice, Italy, June 1990. The Conference series was started in 1976 to serve 
as an internationally acknowledged forum for researchers in the - at that 
time - novel and emerging field of finite element methods applied to water 

Tokyo resources. The name and the peculiar role of the ongoing Conference series 
Tokyo were later (1986) modified to host contributions based on the increasingly 

diverse computational techniques being applied in water resources research.  
The previous meetings were held at: Princeton University, USA, 1976; the 
Imperial College, UK, 1978; the University of Mississippi, USA, 1984; the 
Laboratorio Nacional de Engenharia Civil, Portugal, 1986; and the Mas,r part 

use of sachussets Institute of Technology, USA, 1988.  
i: s, and 
rrmitted The 1990 Proceedings cover a wide spectrum of computational methods en

Sversion compassing both theory and applications. Contaminant transport in surface 
ider the and subsurface hydrology has attracted most of the researchers' interest, in 

a way reflecting the trends observed in the referred literature in this field 
and plays an important role in this book. It is significant that several papers 
edited in this book concern the increasingly studied field of computational 
stochastic hydrology.  

The organizing committee of the Venice Conference wishes to express deep 
ey, even appreciation to the key-note invited lecturers J. Glimm, S.P. Neumann, 

relevant apeito otekynt nie etrr .Gim .. Nuan
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J.C.J. Nihoul, Y. Pomeau and I. Rodriguez-Iturbe. We are also indebted 
to the invited lecturers J. Carrera, V. Casulli, M.A. Celia, G. Dagan, R.E.  
Ewing, I. Herrera, M. Kawahara, U. Meissner, A. Quarteroni, W.M. Sches
takow, A.J. Valocchi, S.S.Y. Wang, and M.F. Wheeler. A significant con
tribution to the scientific fallout of the meeting came from the organizers 
of the Wave Propagation in Shallow Waters Forum (A. Adami and A. Noli) 
and the Supercomputing in Water Resources Forum (A. Peters). It is also a 
pleasure to acknowledge the continuing efforts and support offered by C.A.  
Brebbia, W.G. Gray and G.F. Pinder, of the permanent organizing com
mittee.  

The committee gratefully acknowledges the sponsorship of: AGIP, Alitalia, 
Aquater, Banca Popolare Veneta, Bonifica, Camera di Commercio I.A.A. di 
Venezia, Cassa di Risparmio di Padova e Rovigo, CISE, Comune di Venezia, 
Consiglio Nazionale delle Ricerche, Consorzio Venezia Nuova, Centro Sper
imentale per l'Idrologia e la Meteorologia della Regione del Veneto, Dagh 
Watson, Digital Equipment Italia, ENEL, FIATIMPRESIT, Gruppo Ac
qua, Hydrodata, IBM Italia, Idroser, INC - il nuovo castoro, ISMES, Is
tituto di Credito Fondiario delle Venezie, Istituto Federale delle Casse di 
Risparmio delle Venezie, Lotti & Associati, Provincia di Venezia, Rodio, 
SIP, Studio Geotecnico Italiano, Technital, Tecnomare, ZF-MPM, Zollet 
Ingegneria. The endorsement of the following organizations is also acknowl
edged: AGU, AIMETA, ASCE, IAHR, Istituto Veneto di Scienze Lettere 
ed Arti, National Science Foundation, National Society of Computational 
Methods in Engineering, University of Padua - School of Engineering, Uni
versity of Trent - School of Engineering, (ISME) the International Society 
for Computational Methods in Engineering, (ISBE) the International Soci
ety for Boundary Elements 

May we finally add that the final version of the accepted papers appearing 
in this volume is reproduced directly from the material submitted by the 
authors who are therefore responsible for their content.  

The Editors 
June 1990
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Numerical Analysis of Nonlinear 
Unsaturated Flow Equations 
R. Ababou 
Southwest Research Institute, Center for Nuclear 
Waste Regulatory Analyses, San Antonio, TX 

C half- 78228, USA &ht).  

ABSTRACT: 

The numerical behavior of the nonlinear unsaturated flow 
equation is examined analytically for an implicit finite 
difference scheme. The governing equation combines nonlinear 
diffusion and convection operators, and is characterized by a 
simple Peclet number. Numerical errors are investigated using 
truncation error analysis, frozen stability analysis, and 
functional analysis of the nonlinear mapping associated with 
Picard iterations. These approaches shed light on different 
but complementary aspects of the same numerical problem.  

INTRODUCTION: 

Flow in unsaturated porous media is governed by a 
strongly nonlinear diffusion type equation with a nonlinear, 

KSat' forced convection term due to gravity. These features make it 

particularly difficult to solve by any means. Analytical 
solutions have been and are still providing valuable insights 
for certain classes of flows, but most realistic problems have 
to be solved numerically: see [(] and (2] for high-resolution 
supercomputer simulations of 3-dimensional, transient 
unsaturated flow in randomly heterogeneous and stratified 
media.  

Our experience is that the strong nonlinearity of 
unsaturated flow usually causes considerable numerical 
difficulties and requires trial-and-error adjustments of mesh 
size, time step, relaxation parameters, tolerance criteria, 
and adaptive controls. To improve the efficiency of future 
numerical algorithms will require some understanding of how 
the specific features of the unsaturated flow equation 
contribute to numerical errors. Exploring this question 
constitutes the main purpose of this paper.  

I ted.
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UNSATURATED FLOW EQUATIONS: 

For transient flow in variably saturated porous media, a mixed variable formulation of the governing equation is obtained by combining the mass conservation equation (dO/dt=-V.Q) with the Darcy-Buckinghaa equation (Q=-KVH): 
dO(h,x)/dt = V( K(h,x) (Vh + g) ) (1) 

where H=h+g.x is the hydraulic potential, h is pressure head, and g is the cosine vector aligned with the acceleration of gravity and equal to (0,0,-i) if the third axis is vertical pointing downwards. Defining the specific moisture capacity C=d$/dh yields the pressure-based Richards equation: 
C(h,x) dh/dt = V( K(h,x) (Vh + g) ) (2) 

Introducing a nonlinear moisture diffusivity D=K/C, assuming a spatially homogeneous moisture retention curve 0(h), and h < 0 everywhere, yields the moisture-based version of eq.(1): 
d0/•t = V( D(0,x) V$ + g K(0,x) ) (3) 

In the detailed 3-dimensional simulations of [1] and [21, the finite difference method was applied to the mixed form (1), which is more mass conservative than eq.(2) and is not limited 
to negative pressures as eq.(3). For convenience, however, we will use the standard Richards equation (2) for the numerical 
analyses to be developed in this paper.  

The nonlinear gravity term containing (g) acts as forced convection, in competition with the diffusion term represented by the elliptic operator V(KVh). For homogeneous media, eqs.(2) and (3) can be reformulated as follows, respectively: 

C (dh/dt + V.Vh) V(KVh) (2)' 

and: 

c36/Ot + V.VO = V(DVO) (3)' 
where: 

V = - (OK ) (4) 
The vector V represents the velocity of pressure or moisture disturbances, in the absence of the right-hand side diffusive terms. Note that moisture and pressure waves propagate at the same speed in homogeneous media. The convective-diffusive form taken by equations (2-3) suggests that a Peclet number might be used to characterize convection versus diffusion effects.  

A Peclet number emerges quite naturally from the Kirchhoff transform formulation [1]. This transform is valid for the class of heterogeneous media possessing a homogeneous relative conductivity curve Kr(h), i.e. with a separable conductivity curve K(h,x)=Ks(x)Kr(h). But we focus here on the more restricted case where both the saturated and relative

0
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conductivities are homogeneous, .e. with a homogeneous 

conductivity curve K(h)=KsKr(h). The Kirchhoff transform is 

., a then defined by: 

is h 
ion (h W K(h') dh' (6) 

Substituting eq.(6) in eq.(2) and using chain rules yields: 

-ad, °0/dt + V.V0 = D V20 (7) 

of 
cal Here again, the wave velocity V is given by equation (4), or 

:ity equivalently by V = -aDg, where a=dlnK/dh is the slope of the 
log-conductivity/pressure curve.  

Given the form of the Kirchoff equation (7), the Peclet 

ig a vector Pe=VI/D emerges as a relative measure of convective 

< 0 versus diffusive moisture transport over the chosen length 
"scale (1). Furthermore, substituting the above expression for 
V gives a very simple expression for the Peclet vector: 

Pe = -&1g (8) the 
(t), which reveals the special role played by the i-parameter.  

ited Since transforms like 6(h) or ý(h) do not fundamentally alter 
, we the ratio of convection versus diffusion coefficients, this 

ical Peclet vector characterizes the transport of pressure as well 

as moisture, Kirchoff potential, or any other quantity that 
can be related to pressure in a one-to-one fashion.  

rced 
nted dit, TRUNCATION ERROR ANALYSIS: 

iy: In this section, we evaluate truncation error as a 
function of mesh size and time step for a nonlinear, implicit 
finite difference discretization of the Richards equation.  
Note that truncation analysis compares the discrete and 
differential operators, but is not concerned with the 
numerical errors incurred by the dependent variable itself, or 
with the space-time propagation of such errors (stability), or 
with the additional errors incurred while solving the 

nonlinear discretized system (linearization). Our purpose here 
ture is to identify potential sources of inaccuracies by looking at 
isive the leading order terms of truncation error.  

the 
form Consider the Richards equation (2), to be solved for a 
uight 1-dimensional homogeneous medium using a fully implicit 

nonlinear finite difference discretization (Euler backwards in 
time, 2-point centered in space). The differential and 

the discretized equations are, respectively: 
/alid 
ieous 
-able 
i the 
itive
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Z(h) = -C(h) ht + ( K(h) (h + g) ) = 0 (9.a) tx x 

h n+l_ h- n K.: h n+1 hn+1 hn+l) = cn+l i -i i+I2 [ i+l - " L(hi ) = _c + i ~ -L~ ASt- +Yx-Z- - AxX + g] 
Kn+1 hn+1 hn+1 (9.b) 

i-/2x - + g =0 

where g is a cosine representing gravity, with g=O if x is 
horizontal and g=-1 if x is vertical downwards. The 
coefficients of the discrete operator are fully nonlinear, 
being expressed at the current time step (n+1). The mid-nodal 
conductivities are approximated by a geometric weighting: 

Ki+1/2 = I K(hi) K(hi+ 1 ) ]1/2 (10) 

In the case of an exponential K(h) curve, this scheme weights 
pressures arithmetically, and it yields the exact midnodal 
conductivity in zones of spatially constant pressure gradient.  

The truncation error E(h)=L(h)-Z(h) at the nodes of the 
space-time mesh was calculated in [1] using intermediate 
results from [31. We choose here to express the final result 
in terms of both flux (Q) and pressure (h) as follows: 

2 
E(h) At K h C ~h] Kx Ft -x 2 d-• (11) 

Ax2 ( K d3 h 3 Ax 2 2 Q d 2 

where Q=-K(dh/dx+g), and &=c1nK/Oh. It is interesting to note 
that one recovers the linear heat equation by letting K=1, 
C=1, and a=0 in (9-11). Inserting in eq.(11) the identities: ht = h and ht:Q h 

xx htt -Qxxx xxxx 

leads to the verification of a well known result [41: the 
order of accuracy of the linear heat equation increases from 
O(At)+O(Ax2) to O(At2)+O(Ax4) with the choice At/Ax2 = 1/6.  

Let us now discuss the implications of (11) in the fully 
nonlinear case. The O(At) term, due to temporal discretization 
errors, appears to be controlled by the rate of change of the 
pressure gradient and by the second order time-derivative of 
pressure. The first of the two O(AxAx) terms is due to spatial 
discretization errors other than midnodal conductivity 
weighting. The second O(AxAx) term is due solely to errors in 
evaluating aidnodal conductivities by the geometric rule (10), 
and vanishes in regions of spatially constant pressure 
gradient, as expected in the case of exponential K(h).

m
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(9.a) Equation (11) simplifies considerably in the steady 
state case, since the I-dimensional flux Q becomes constant in 
both space and time. The result suggests that, even in the 
transient case, spatial errors are dominated by the rate of 
change of pressure curvature with depth, which can become 

(9.b) quite large near sharp wetting fronts above and below the 
inflexion point. This type of information may be used for 
designing optimal adaptive grid procedures.  

X is 
The STABILITY ANALYSIS: 

.near, 
-nodal To complement the previous truncation error analysis, we 

now examine how numerical errors propagate as a function of 

0) time. In addition, we hope to capture at least some of the 
additional error amplification effects due to inexact 

treatment of nonlinearity. Our approach is to analyze the 
eights stability of a linearized version of the finite difference 

mnodal problem, such that all nonlinear coefficients are evaluated 

iient, from the solution at the previous time step (no iterations).  

The unstable effect of linearization is partially taken into 
ef the account by unfreezing the nonlinear convective coefficient, 
ediate while other coefficients remain frozen.  
result 

We focus once more on the case of 1-dimensional 

homogeneous media as in eqs.(9). Consider the following 
linearized form of the finite difference system: 

(11) hn+l hn hn+l hn+1 h0+l hn+l 
n i i n i1in 1 i1 C• -7 = [K Ki-ax(12) 

T n 

where the superscript (n+l) indicates the current time level.  

o note The form of this finite difference system suggests that, while 

g K=l, the nonlinear diffusion operator is treated implicitly, the 

ies: nonlinear gravity term g(K[i+1/2]-K[i-1/2])/Ax is treated 
explicitly since it is entirely evaluated at the previous time 
level. Based on this remark, we will now examine how this 

the discrepancy affects the numerical stability of the solution.  

s from The proposed method is to develop a Fourier stability 
/6. analysis of equation (12) with partially frozen coefficients.  

This is analogous to the usual frozen coefficients analysis as 

Sfully described in (41, except that the nonlinearity of the gravity 

of the term is taken into account via the quasilinear approximation: 

ive of K.n K-n_ Kn 

3patial g i++ g _ + (hi i- &) + O(Ax 2 ) (13) 

:tivity 
ors in where again e=dinK/dh. The leading term on the right-hand side S(10), 

is expected to be a reasonable approximation of the left-hand 

-essure side if the quantity Ijh[i+lJ-h(i]t Z eAxlOh/dxl is on the 
order of unity or less. At any rate, even rough indications on

A
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the numerical stability of the nonlinear unsaturated flow system will be useful given the lack of theoretical results in this area. With this provision, substituting (13) into (12) yields the following mixed implicit/explicit scheme: 
hn+1 n+1 n+ -D-i1  hi- + (l+D- +Di+) h. - D. h h+l ~ 

Inn 1 
i i n (14 .a ) 

2 grAx D. h + hi+ g eiAx D. hai+ 

where D is the dimensionless diffusion coefficient: 
- K 
D -((*) i At (14.b) Ci Ax2 

The stability of equation (14) with frozen diffusion coefficients can be studied in the standard way using Fourier stability analysis [41. This leads to a complex amplification factor, p, characterizing the growth rate of numerical errors in time: 

1 + j &gAx D. sin(kAx) 
i M (15) 1+(Di+.+D._+)(1-cos(kAx)) - j(Di+J-Di_4)sin(kAx) 

where j is the square-root of -1, and k is a Fourier mode or wavenumber taking discrete values: k E {6/L,-.,nr/L}.  

Requiring jpj~l in equation (15) finally leads to the necessary and sufficient stability condition: 

Pe = IjgAxl < 2 J1+(2 -1 " -1 (16) -C • i Ax2 

where Pe represents the grid Peclet number [see eq.(8)]. If the Peclet number is less than 2, then the stability condition is always satisfied irrespective of the time step size. On the other hand, if the Peclet number is greater than 2, stability requires a stringent constraint on the time step size. To summarize, the stability condition is: 

either: Pe = (agAxj < 2, 

else: Pe = IagAxI 2 and _' At2 < Ci AZ2 - (Pe-2)(Pe+2) 

Recall that the Peclet number was defined as a convection to diffusion ratio [see discussion above eq.(8)]. When the grid Peclet number of eqs.(16-17) is much smaller than unity, pressure disturbances appearing at any node are smeared out by diffusion before reaching the next node (stable case).
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.ow Finally, the effects of heterogeneity can be analyzed in 
in a qualitative manner as follows. Assume for instance that the 

12) &-parameter of the exponential conductivity curve is spatially 
variable. The local Peclet number is therefore also spatially 
variable. Assuming (roughly) that the previous stability 
analysis still holds locally, we see from equation (17) that 
instabilities must be triggered in zones of coarse porosity 

.a) where a takes large values. Equation (15) shows that the most 
unstable Fourier modes are those with largest wavenumbers, 
having fluctuation scales comparable to mesh size. And, 
equation (16) indicates that such instabilities will grow 
faster where moisture diffusivity is high, e.g. in wet zones.  

.b) In order to minimize the chances of explosive error 

amplification, it seems reasonable to require that the 

ion vertical mesh size be a fraction of the average length scale 

ier 1/a, which typically lies in the range 10-100 cm for sandy to 

ion clayey soils. This guideline was used to design large scale 

ors numerical experiments of unsaturated flow in [1] and [2].  

CONVERGENCE ANALYSIS OF NONLINEAR PICARD ITERATIONS: 

15) 

In practice, an iterative scheme such as Picard or 
Newton must be used to iteratively linearize and solve the 

or nonlinear algebraic system at each time step. For instance, a 
modified Picard scheme that preserves the symmetry of the 
system was used in [1,2]. In this section, we show how the 

the convergence of the Picard scheme can be investigated by 
applying functional analysis methods (5,6,7] to the nonlinear 
mapping associated with the iteration scheme. The proposed 
approach is to apply the Picard method directly to the partial 

16) differential equation of unsaturated flow, and to examine the 
convergence properties of the resulting iteration scheme, a 

If priori independent of discretization.  

ion 
the For illustration here, we will restrict our analysis to 

;ty the special case of steady unsaturated flow in a spatially 

ro homogeneous 1-dimensional medium, for which an exact solution 
can be derived by direct integration. Assume that K(h) is 
exponential with exponent a=dlnKdh and that the x-axis is 
vertical downwards. Define the dimensionless variables: 

17) = x/L, 9 -h/L, a = &/L, q = Q/Ks, and k = K/Ks, 

where t is the dimensionless suction head, always positive in 
to unsaturated media. Our model problem is steady infiltration or 

irid evaporation in a vertical column extending, say, from soil 
.ty, surface at z=O (ý=O) to a water table or other boundary at z=L 
Sby (ý=1). This can be formulated as the boundary value problem:
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S( = (k ) (4 + 1 ) 0 

(18) 

A straightforward integration of (18) yields the conductivity 
profile k(ý), which itself can be used to obtain the suction 
profile 4(ý). The complete solution is given by: 

k(@(ý)) = q + (ki-q) exp(a(&-l)} (19.a) 

q = {ki-koexp(a)}/{1-exp(a)} (19.b) 

k(#)=exp(-a4), ko=k(f 0 ), ki=k(ft), (19.c) 

q • {l-kiexp(-a)}/{l-exp(-a)} (19.d) 

where the constant dimensionless flux q is either positive 
o (downwards) or negative (upwards). Note that the solution is 

only valid for boundary conditions such that 4(f) Ž 0 on the 
[0,1] interval. This requires satisfying 40>0, #1>0, and the a inequality (19.d) which boils down to q < 1 if a >> 1.  

0; 
Let us now apply a Picard scheme with relaxation 

*' parameter a to iteratively solve (18). The solution is 
constructed by way of an iterated mapping: 

k(in) (jn+1-9 n) ) = - w Z(9n) 
=• (20) 

- -n+(• *n(q) 0 at • 0 and 1 -c 

The residual operator X(t) is the same as the one defined in 
equation (18), and n is the iteration counter. The Dirichlet 
conditions are implemented exactly at each iteration, since 
they are linear.  

At each iteration, the iterated mapping of equation (20) 
is a boundary value problem that is directly integrable in 
terms of the incremental suction V[n+lI]-[n]. One obtains 
after some manipulations: 

@n+l = { (1-0) 2(.) + i P(.) } on (21.a) 

where 2 is the identity operator satisfying 2(*)=#, and P is 
the Picard iteration operator defined by: 

,( 9 n) = ((4-40+1) ,(9n) + (90- •) } (21.b) 

. where 7 is the ratio of two integral operators:

FV1

0
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I(n) = k(@n(sl)- Ids]/ 0 k( jn(s) )-'ds (21.c0 

ýy Each operator V(.), P(.), and Y(.) maps onto itself the space 
)n of continuous functions 4(ý) defined on the interval [0,11, 

and (21.a) yields C[n+lI(ý) = i[n](ý) at ý=0 and ý=1.  

The convergence properties of the Picard scheme are most 
directly related to the properties of the iteration operator 
(21.a) which maps the old solution 4(n] into the new solution 
$[n+l]. Without going into details, let us point out that the 
contraction mapping theorem and Ostrowski's local convergence 
theorem [7] can be used to test the conditions under which 
convergence occurs, and to estimate convergence rate in some 
function space norm. Work along these lines is ongoing. The 
case of transient flow will be developed by applying the same 

is principles to the semi-discretized differential flow equation.  
he 
he 
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